[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019244397A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2019244397A1
WO2019244397A1 PCT/JP2019/006132 JP2019006132W WO2019244397A1 WO 2019244397 A1 WO2019244397 A1 WO 2019244397A1 JP 2019006132 W JP2019006132 W JP 2019006132W WO 2019244397 A1 WO2019244397 A1 WO 2019244397A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
fin group
flat tube
flows
Prior art date
Application number
PCT/JP2019/006132
Other languages
French (fr)
Japanese (ja)
Inventor
政貴 川村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020525238A priority Critical patent/JPWO2019244397A1/en
Publication of WO2019244397A1 publication Critical patent/WO2019244397A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger and an air conditioner including the heat exchanger.
  • the heat exchanger described in Patent Literature 1 includes a leeward heat exchanger unit and a leeward heat exchanger unit.
  • Each of the leeward heat exchanger unit and the leeward heat exchanger unit includes a large number of flat tube portions and a large number of fins.
  • One object of one embodiment of the present invention is to realize a heat exchanger or the like that can reduce the displacement of the position of the flat tube.
  • a heat exchanger is a heat exchanger that performs heat exchange with air, and a plurality of heat exchangers arranged in order with respect to the flow of the air.
  • FIG. 2 is a cross-sectional view illustrating a structure of the heat exchanger according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of an air conditioner according to Embodiment 1. It is a perspective view showing the appearance of the indoor unit of the air conditioner concerning Embodiment 1. It is a longitudinal section showing an internal structure of an indoor unit of an air conditioner concerning Embodiment 1.
  • FIG. 2 is a perspective view illustrating an appearance of a part of the heat exchanger according to the first embodiment.
  • FIG. 2 is a sectional view taken along line AA of the heat exchanger shown in FIG. 1.
  • FIG. 2 is a sectional view taken along line BB of the heat exchanger shown in FIG. 1.
  • FIG. 7 is a cross-sectional view illustrating a configuration of a heat exchanger according to a second embodiment.
  • FIG. 9 is a cross-sectional view illustrating a configuration of a heat exchanger according to a third embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the air conditioner 100 according to the present embodiment.
  • the air conditioner 100 includes an indoor unit 1, an outdoor unit 11, an expansion valve 12, a two-way valve 13, and a three-way valve 14.
  • the indoor unit 1 includes a blower 4 and a heat exchanger 6.
  • the outdoor unit 11 includes a blower 15, a heat exchanger 16, a compressor 17, and a four-way valve 18.
  • FIG. 2 shows a route of the four-way valve 18 during the cooling operation.
  • the refrigerant liquefies when cooled by being sent by the blower 15 from the outside toward the heat exchanger 16.
  • the air that has passed through the heat exchanger 16 is discharged to the outside while containing the heat released by liquefaction of the refrigerant in the heat exchanger 16.
  • the liquefied refrigerant is vaporized at a stretch by being injected into the heat exchanger 6 of the indoor unit 1 from the minute nozzle hole of the expansion valve 12 via the two-way valve 13.
  • the heat exchanger 6 is cooled by the vaporized refrigerant taking heat around the heat exchanger 6.
  • the air taken in from outside by the blower 4 is cooled by passing through the heat exchanger 6.
  • the cool air from the heat exchanger 6 is discharged outside.
  • the refrigerant that has exited the heat exchanger 6 returns to the compressor 17 via the three-way valve 14 and is compressed again.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 17 flows in the opposite direction to that during cooling by switching the path of the four-way valve 18 from the path illustrated in FIG.
  • heat exchange by the heat exchangers 6 and 16 is performed in a cycle opposite to that in the cooling.
  • FIG. 3 is a perspective view illustrating an appearance of an indoor unit (hereinafter simply referred to as an indoor unit) 1 of the air conditioner according to the present embodiment.
  • FIG. 4 is a longitudinal sectional view showing the internal structure of the indoor unit 1.
  • the indoor unit 1 includes a main body 2 and a baffle plate 3.
  • the air guide plate 3 is provided on the front surface of the main body 2.
  • a first suction port 21 is formed at an upper portion of the main body 2
  • a second suction port 22 is formed at a lower portion of the main body 2.
  • a blower 4 and a heat exchanger 6 are provided inside the main body 2.
  • an outlet 23 is formed at a front portion of the main body 2.
  • the first suction port 21 is provided with an opening / closing lid 26 for opening and closing the first suction port 21.
  • the first filter 24 is provided inside (the lower side) of the first suction port 21, and the second filter 25 is provided inside (the upper side) of the second suction port 22.
  • the first filter 24 is a filter having a function corresponding to, for example, a pre-filter.
  • the first filter 24 has lower performance than the second filter 25 and has a lower ventilation resistance than the second filter 25.
  • the second filter 25 is, for example, a HEPA filter (High Efficiency Particulate Air Filter).
  • the second filter 25 is a filter having higher performance than the first filter 24 and having a larger ventilation resistance than the first filter 24.
  • the air sucked from the first inlet 21 is blown out from the outlet 23 through the first filter 24, the blower 4 and the heat exchanger 6. Further, the air sucked from the second suction port 22 is blown out from the outlet 23 through the second filter 25, the blower 4 and the heat exchanger 6.
  • FIG. 1 is a sectional view showing the structure of the heat exchanger 5. Specifically, FIG. 1 is a diagram showing a cross section of the heat exchanger 5 in a plane parallel to a direction in which air flows.
  • FIG. 5 is a perspective view showing the appearance of a part of the heat exchanger 5.
  • FIG. 6 is a sectional view taken along line AA of the heat exchanger 5 shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the line BB of the heat exchanger 5 shown in FIG.
  • the heat exchanger 5 includes an inner fin group 51 (fin group, first fin group), an outer fin group 52 (fin group, second fin group), A pipe 53 and a header pipe 54 are provided.
  • the inner fin group 51, the outer fin group 52, and the flat tubes 53 are stacked in a depth direction (a direction perpendicular to the plane of the flat tubes 53) on the paper surface of FIG.
  • the inner fin group 51 is omitted except for a part.
  • the outer fin group 52 is not shown.
  • the heat exchanger 5 exchanges heat with air.
  • the inner fin group 51 performs heat exchange with air passing between the inner fin groups 51.
  • the outer fin group 52 exchanges heat with air passing between the outer fin groups 52.
  • the inner fin group 51 and the outer fin group 52 may be, for example, corrugated fins.
  • the inner fin group 51 and the outer fin group 52 are arranged over the entirety of the heat exchanger 5 in the left-right direction of the indoor unit 1.
  • the inner fin group 51 and the outer fin group 52 are sequentially arranged with respect to the flow of air.
  • “arranged in order” means that (i) one of the inner fin group 51 and the outer fin group 52 is arranged on the upstream side in the air flow from the other, or (ii) the inner fin group 51 and the It can also be described that the outer fin groups 52 are arranged in series along the flow of air. Further, the outer fin group 52 is arranged more apart from the blower 4 than the inner fin group 51 is. Therefore, the air blown out from the blower 4 first contacts the inner fin group 51, and then contacts the outer fin group 52.
  • the flat tube 53 is a member through which a refrigerant that performs heat exchange with the inner fin group 51 and the outer fin group 52 flows. Inside the flat tube 53, a plurality of channels 533 (refrigerant flow paths) parallel to the left-right direction of the indoor unit 1 are formed.
  • the channel 533 is a flow path through which the refrigerant flows.
  • the refrigerant those used in general heat exchangers can be used without any particular limitation.
  • the flat tube 53 is formed so as to straddle the inner fin group 51 and the outer fin group 52 so as to contact both the inner fin group 51 and the outer fin group 52.
  • a region of the flat tube 53 that comes into contact with the inner fin group 51 is referred to as an inner region 531.
  • the area of the flat tube 53 that contacts the outer fin group 52 is referred to as an outer area 532.
  • the channel 533 corresponding to the inner area 531 is a flow path through which a coolant for cooling the inner fin group 51 flows.
  • the channel 533 corresponding to the outer region 532 is a flow channel through which a coolant that cools the outer fin group 52 flows.
  • Each of the flat tubes 53 contacts the inner fin group 51 and the outer fin group 52 on both sides.
  • the plurality of channels 533 are provided at positions corresponding to the inner region 531 and the outer region 532, respectively.
  • the channel 533 provided at a position corresponding to the inner region 531 and the channel 533 provided at a position corresponding to the outer region 532 are independent of each other. That is, the channel through which the refrigerant that cools the inner fin group 51 flows and the channel through which the refrigerant that cools the outer fin group 52 flows are independent of each other.
  • “independent from each other” means that they are not in communication with each other.
  • channels 533 are provided for each of the inner region 531 and the outer region 532 for one flat tube 53.
  • the number of channels 533 is not limited to this. Further, the number of channels 533 provided corresponding to the inner region 531 and the number of channels 533 provided corresponding to the outer region 532 may be different from each other.
  • a notch 534 is formed in the flat tube 53 in a region between the inner region 531 and the outer region 532 (a plurality of regions).
  • a plurality of notches 534 are formed along the left-right direction of the indoor unit 1.
  • the number, shape, and size of the cutout portions 534 are not particularly limited, and may be formed in at least a part of a region between the inner region 531 and the outer region 532.
  • Patent Literature 1 For example, in a conventional heat exchanger as disclosed in Patent Literature 1, a difference between the flat tubes in a direction perpendicular to the air flow direction occurs due to variations in assembling the heat exchanger. There is a possibility that the position is shifted.
  • the flat tube 53 is formed so as to straddle the adjacent fin group so as to contact both the inner fin group 51 and the outer fin group 52.
  • the possibility that the displacement will occur is reduced.
  • an increase in ventilation resistance of the heat exchanger 5 due to the displacement of the position is suppressed. Therefore, in the indoor unit 1, (i) an increase in energy required to obtain a desired air volume and (ii) an increase in noise in obtaining a desired air volume due to the above-mentioned displacement are eliminated.
  • the heat exchanger 5 of the present embodiment since the positioning itself of the inner fin group 51 and the outer fin group 52 is not required, the man-hour required for the production of the heat exchanger 5 is also reduced.
  • the header pipe 54 is a pipe that communicates with the channel 533.
  • the header pipe 54 includes an inner supply pipe 541 (first refrigerant supply pipe), an inner extraction pipe 542 (first refrigerant extraction pipe), an outer supply pipe 543 (second refrigerant supply pipe), and an outer extraction pipe 544 (second refrigerant). Removal pipe).
  • Each of the plurality of flat tubes 53 is connected to an inner supply pipe 541, an inner supply pipe 542, an outer supply pipe 543, and an outer supply pipe 544.
  • the inside supply pipe 541 and the inside extraction pipe 542 are arranged at both ends of the inside area 531 of the flat tube 53 in the left-right direction of the indoor unit 1.
  • the inside supply pipe 541 is a pipe for supplying the coolant to the channel 533 through which the coolant for cooling the inside fin group 51 flows (that is, the channel 533 corresponding to the inside region 531).
  • the inner extraction pipe 542 is a pipe for extracting the refrigerant from the channel 533 through which the refrigerant for cooling the inner fin group 51 flows.
  • the outer supply pipe 543 and the outer extraction pipe 544 are arranged at both ends of the outer region 532 of the flat tube 53 in the left-right direction of the indoor unit 1.
  • the outer supply pipe 543 is a pipe for supplying the coolant to the channel 533 through which the coolant for cooling the outer fin group 52 flows (that is, the channel 533 corresponding to the outer region 532).
  • the outer extraction pipe 544 is a pipe for extracting the refrigerant from the channel 533 through which the refrigerant that cools the outer fin group 52 flows.
  • the air sent from the blower 4 comes into contact with the inner fin group 51 first, and then comes into contact with the outer fin group 52. Therefore, when the air is cooled by the heat exchanger 5, the inner fin group 51 becomes higher in temperature than the outer fin group 52.
  • the refrigerant removed from the outer extraction pipe 544 has a lower temperature than the refrigerant removed from the inner extraction pipe 542. Therefore, the refrigerant extracted from the outer extraction pipe 544 can be easily reused as compared with the refrigerant extracted from the inner extraction pipe 542.
  • the flat tubes 53 come into contact with both the inner fin group 51 and the outer fin group 52. For this reason, when heat moves from the inner region 531 to the outer region 532 in the flat tube 53 and the temperature of the refrigerant taken out from the outer extraction pipe 544 rises, there is a possibility that the efficiency of reusing the refrigerant may decrease.
  • the cutout portion 534 is formed between the inner region 531 and the outer region 532 as described above.
  • the notch 534 hinders the transfer of heat from the inner region 531 to the outer region 532. For this reason, in the flat tube 53, a rise in the temperature of the refrigerant taken out from the outside extraction pipe 544 is suppressed as compared with the case where the notch portion 534 is not formed. Therefore, in the heat exchanger 5, the refrigerant can be efficiently reused.
  • the notch 534 may not be formed in the flat tube 53.
  • the heat exchanger 5 may further include a fin group other than the inner fin group 51 and the outer fin group 52 arranged in order with respect to air. Also in this case, the flat tube 53 is formed across a plurality of adjacent fin groups so as to be in contact with two or more of the inner fin group 51, the outer fin group 52, and still another fin group. .
  • FIG. 8 is a cross-sectional view showing the configuration of the heat exchanger 5A according to the present embodiment. Specifically, FIG. 8 is a diagram showing a cross section of the heat exchanger 5A in a plane perpendicular to the left-right direction of the indoor unit 1. In FIG. 8, the inner fin group 51 and the outer fin group 52 are omitted.
  • the heat exchanger 5A is different from the heat exchanger 5 in that a flat tube 53A is provided instead of the flat tube 53.
  • the flat tube 53A differs from the flat tube 53 in that a hollow portion 535 is formed instead of the notch 534.
  • the hollow portion 535 is formed in a region located between the inside region 531 and the outside region 532.
  • the hollow portion 535 is independent of the channel 533 and is not connected to the header pipe 54. Therefore, the refrigerant does not flow through the hollow portion 535.
  • the transfer of heat from the inner region 531 to the outer region 532 is inhibited by the hollow portion 535. Therefore, also in the heat exchanger 5A, a decrease in the efficiency of reusing the refrigerant extracted from the outer extraction pipe 544 is suppressed.
  • FIG. 9 is a cross-sectional view illustrating the configuration of the heat exchanger 5B according to the present embodiment. Specifically, FIG. 9 is a diagram illustrating a cross section of the heat exchanger 5B in a plane perpendicular to the left-right direction of the indoor unit 1. In FIG. 9, the inner fin group 51 and the outer fin group 52 are omitted.
  • the heat exchanger 5B is different from the heat exchanger 5 in that a flat tube 53B is provided instead of the flat tube 53.
  • the flat tube 53B is different from the flat tube 53B in that a thin portion 536, which is a portion thinner than other portions of the flat tube 53B, is formed in a region between the inner region 531 and the outer region 532 instead of the notch 534. 53.
  • the thin portion 536 is formed continuously in the left-right direction of the indoor unit 1.
  • the thin portion 536 does not need to be formed entirely in the left-right direction of the indoor unit 1 in the region between the inner region 531 and the outer region 532, and may be formed at least partially.
  • a plurality of thin portions 536 are formed intermittently in the left-right direction of the indoor unit 1, and other portions of the flat tube 53B are provided between the plurality of thin portions 536.
  • a thicker portion which is a thicker portion, may be formed.
  • the strength of the flat tube 53B may be reduced.
  • the thin portion 536 intermittently and forming a thick portion between the thin portions 536, transfer of heat from the inner region 531 to the outer region 532 is inhibited, and the strength of the flat tube 53B is reduced. Can be suppressed.
  • a notch may be further formed between the plurality of thin portions 536.
  • the transfer of heat from the inner region 531 to the outer region 532 is further suppressed as compared with the configuration in which only the thin portion 536 is formed.
  • water drops can be drained from the notch similarly to the flat tube 53.
  • the heat exchanger (5) is a heat exchanger that exchanges heat with air, and includes a plurality of fin groups (inner fin groups) arranged in order with respect to the flow of the air. 51, an outer fin group 52), and a plurality of flat tubes (53) through which a refrigerant that performs heat exchange with the plurality of fin groups flows. Inside each of the plurality of flat tubes, The fin group is formed so as to be in contact with the fin group and straddle a plurality of the adjacent fin groups.
  • each of the plurality of flat tubes straddles the plurality of adjacent fin groups so as to be in contact with the plurality of fin groups arranged in order with respect to the flow of air. Is formed. For this reason, compared to a configuration in which separate flat tubes are in contact with a plurality of fin groups, it is possible to reduce the displacement of the positions of the flat tubes.
  • the flat tube in the first aspect, may have a cutout portion in at least a part of a region between the plurality of regions in contact with the plurality of fin groups. Good.
  • the heat exchanger according to aspect 3 of the present invention is the heat exchanger according to aspect 1 or 2, wherein the flat tube has a thin portion in at least a part of a region between the plurality of regions in contact with the plurality of fin groups. Is also good.
  • the flat tube may include a refrigerant flow path through which the refrigerant flows, and a hollow portion independent from the refrigerant flow path.
  • each of the plurality of flat tubes is A first refrigerant supply pipe for supplying a refrigerant to a refrigerant flow path through which a refrigerant for cooling the first fin group flows, and a first refrigerant withdrawal for extracting the refrigerant from a refrigerant flow path through which the refrigerant for cooling the first fin group flows.
  • a second refrigerant take-out pipe to be taken out.
  • the flat tube is connected to the pipe for supplying the refrigerant for cooling each fin group and the pipe for taking out the refrigerant. Therefore, the flow rate of the refrigerant can be increased, and the cooling efficiency can be improved.
  • the air conditioner according to the sixth aspect of the present invention includes the heat exchanger according to any one of the first to fifth aspects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

Provided is a heat exchanger capable of reducing positional shifting of the flat tubes thereof. A heat exchanger (5) equipped with an inner fin group (51) and an outer fin group (52) which are arranged in this order in the direction in which air flows, and a plurality of flat tubes (53) through which a coolant flows, wherein each of the plurality of flat tubes contacts both the inner fin group and the outer fin group.

Description

熱交換器および空気調和機Heat exchangers and air conditioners
 本発明は、熱交換器、および当該熱交換器を備える空気調和機に関する。 The present invention relates to a heat exchanger and an air conditioner including the heat exchanger.
 特許文献1に記載されている熱交換器は、風上熱交換器ユニットと風下熱交換器ユニットとを備えている。風上熱交換器ユニットおよび風下熱交換器ユニットはそれぞれ、多数の扁平管部と、多数のフィンとを備えている。当該熱交換器においては、扁平管部の長手方向に垂直であり、かつ扁平管部の面と平行な方向に空気が流れる。 熱 The heat exchanger described in Patent Literature 1 includes a leeward heat exchanger unit and a leeward heat exchanger unit. Each of the leeward heat exchanger unit and the leeward heat exchanger unit includes a large number of flat tube portions and a large number of fins. In the heat exchanger, air flows in a direction perpendicular to the longitudinal direction of the flat tube portion and parallel to the surface of the flat tube portion.
日本国特許公報「特許第5900564号」Japanese Patent Gazette "Patent No. 5900564"
 しかしながら、特許文献1に記載されている熱交換器においては、風上熱交換器ユニットの扁平管部と、風下熱交換器ユニットの扁平管部との間で、扁平管部の面に垂直な方向における位置のズレが生じる虞がある。当該ズレにより、熱交換器の通風抵抗が増加することで、(i)所望の風量を得るためのエネルギーが増大する、および、(ii)騒音が増大する、といった問題が生じる。 However, in the heat exchanger described in Patent Document 1, between the flat tube portion of the leeward heat exchanger unit and the flat tube portion of the leeward heat exchanger unit, the heat exchanger is perpendicular to the plane of the flat tube portion. There is a possibility that a positional shift in the direction may occur. Due to the deviation, the ventilation resistance of the heat exchanger increases, which causes problems such as (i) an increase in energy for obtaining a desired air volume and (ii) an increase in noise.
 本発明の一態様は、扁平管の位置のズレを低減可能な熱交換器などを実現することを目的とする。 One object of one embodiment of the present invention is to realize a heat exchanger or the like that can reduce the displacement of the position of the flat tube.
 上記の課題を解決するために、本発明の一態様に係る熱交換器は、空気との間で熱交換を行う熱交換器であって、前記空気の流れに対して順に配置された複数のフィン群と、複数の前記フィン群と熱交換を行う冷媒が内部を通流する複数の扁平管と、を備え、複数の前記扁平管のそれぞれは、複数の前記フィン群と接するように、隣接する複数の前記フィン群に跨がって形成されている。 In order to solve the above problems, a heat exchanger according to one embodiment of the present invention is a heat exchanger that performs heat exchange with air, and a plurality of heat exchangers arranged in order with respect to the flow of the air. A fin group, and a plurality of flat tubes through which a refrigerant that performs heat exchange with the plurality of fin groups flows, and each of the plurality of flat tubes is adjacent to be in contact with the plurality of fin groups. Formed over the plurality of fin groups.
 本発明の一態様によれば、扁平管の位置のズレを低減可能な熱交換器などを実現することができる。 According to one embodiment of the present invention, it is possible to realize a heat exchanger or the like that can reduce the displacement of the position of the flat tube.
実施形態1に係る熱交換器の構造を示す断面図である。FIG. 2 is a cross-sectional view illustrating a structure of the heat exchanger according to the first embodiment. 実施形態1に係る空気調和機の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of an air conditioner according to Embodiment 1. 実施形態1に係る空気調和機の室内機の外観を示す斜視図である。It is a perspective view showing the appearance of the indoor unit of the air conditioner concerning Embodiment 1. 実施形態1に係る空気調和機の室内機の内部構造を示す縦断面図である。It is a longitudinal section showing an internal structure of an indoor unit of an air conditioner concerning Embodiment 1. 実施形態1に係る熱交換器の、一部分の外観を示す斜視図である。FIG. 2 is a perspective view illustrating an appearance of a part of the heat exchanger according to the first embodiment. 図1に示した熱交換器のA-A線断面図である。FIG. 2 is a sectional view taken along line AA of the heat exchanger shown in FIG. 1. 図1に示した熱交換器のB-B線断面図である。FIG. 2 is a sectional view taken along line BB of the heat exchanger shown in FIG. 1. 実施形態2に係る熱交換器の構成を示す断面図である。FIG. 7 is a cross-sectional view illustrating a configuration of a heat exchanger according to a second embodiment. 実施形態3に係る熱交換器の構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a configuration of a heat exchanger according to a third embodiment.
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, an embodiment of the present invention will be described in detail.
 (空気調和機100の構成および動作)
 図2は、本実施形態に係る空気調和機100の構成を示す図である。
(Configuration and operation of air conditioner 100)
FIG. 2 is a diagram illustrating a configuration of the air conditioner 100 according to the present embodiment.
 図2に示すように、空気調和機100は、室内機1と、室外機11と、膨張弁12と、二方弁13と、三方弁14とを備えている。室内機1は、送風機4と、熱交換器6とを備えている。室外機11は、送風機15と、熱交換器16と、圧縮機17と、四方弁18とを備えている。 As shown in FIG. 2, the air conditioner 100 includes an indoor unit 1, an outdoor unit 11, an expansion valve 12, a two-way valve 13, and a three-way valve 14. The indoor unit 1 includes a blower 4 and a heat exchanger 6. The outdoor unit 11 includes a blower 15, a heat exchanger 16, a compressor 17, and a four-way valve 18.
 冷房運転時の空気調和機100において、圧縮機17によって圧縮された高温かつ高圧の冷媒は、四方弁18を介して熱交換器16に送られる。ここで、図2には、四方弁18において冷房運転時の経路を示している。冷媒は、熱交換器16において、送風機15が外部から吸い込んだ空気を熱交換器16に向けて送ることによって冷却されると液化する。熱交換器16を通過した空気は、熱交換器16内の冷媒が液化することで放出した熱を含んだ状態で外部に排出される。 高温 In the air conditioner 100 during the cooling operation, the high-temperature and high-pressure refrigerant compressed by the compressor 17 is sent to the heat exchanger 16 via the four-way valve 18. Here, FIG. 2 shows a route of the four-way valve 18 during the cooling operation. In the heat exchanger 16, the refrigerant liquefies when cooled by being sent by the blower 15 from the outside toward the heat exchanger 16. The air that has passed through the heat exchanger 16 is discharged to the outside while containing the heat released by liquefaction of the refrigerant in the heat exchanger 16.
 液化した冷媒は、膨張弁12の微小なノズル穴から二方弁13を介して室内機1の熱交換器6内へ噴射されることで一気に気化する。気化した冷媒が熱交換器6の周囲の熱を奪っていくことにより、熱交換器6が冷やされる。そして、送風機4が外部から取り入れた空気は、熱交換器6を通過することで冷却される。熱交換器6からの冷気は外部に放出される。熱交換器6を出た冷媒は、三方弁14を介して圧縮機17に戻って再び圧縮される。 (4) The liquefied refrigerant is vaporized at a stretch by being injected into the heat exchanger 6 of the indoor unit 1 from the minute nozzle hole of the expansion valve 12 via the two-way valve 13. The heat exchanger 6 is cooled by the vaporized refrigerant taking heat around the heat exchanger 6. Then, the air taken in from outside by the blower 4 is cooled by passing through the heat exchanger 6. The cool air from the heat exchanger 6 is discharged outside. The refrigerant that has exited the heat exchanger 6 returns to the compressor 17 via the three-way valve 14 and is compressed again.
 暖房運転時の空気調和機100において、圧縮機17によって圧縮された高温かつ高圧の冷媒は、四方弁18の経路が図2に示す経路から切り替わることにより、冷房時とは逆方向に流れる。これにより、冷房時とは逆のサイクルで、熱交換器6、16による熱交換が行われる。 (4) In the air conditioner 100 during the heating operation, the high-temperature and high-pressure refrigerant compressed by the compressor 17 flows in the opposite direction to that during cooling by switching the path of the four-way valve 18 from the path illustrated in FIG. Thus, heat exchange by the heat exchangers 6 and 16 is performed in a cycle opposite to that in the cooling.
 (室内機1の概要)
 図3は、本実施形態に係る空気調和機の室内機(以下、単に室内機と称する)1の外観を示す斜視図である。図4は、室内機1の内部構造を示す縦断面図である。
(Outline of indoor unit 1)
FIG. 3 is a perspective view illustrating an appearance of an indoor unit (hereinafter simply referred to as an indoor unit) 1 of the air conditioner according to the present embodiment. FIG. 4 is a longitudinal sectional view showing the internal structure of the indoor unit 1.
 なお、以降の説明で言及する左右、上下および前後は、室内機1が室内に設置される状態での向きである。 左右 Note that the terms left, right, up, down, front and back referred to in the following description are directions in a state where the indoor unit 1 is installed indoors.
 図3に示すように、室内機1は、本体部2と、導風板3とを備えている。導風板3は、本体部2の前面に設けられている。図4に示すように、本体部2の上部には第1吸込口21が形成され、本体部2の下部には第2吸込口22が形成されている。また、本体部2の内部には、送風機4および熱交換器6が設けられている。さらに、本体部2の前部には吹出口23が形成されている。第1吸込口21には、第1吸込口21を開閉する開閉蓋26が設けられている。 室内 As shown in FIG. 3, the indoor unit 1 includes a main body 2 and a baffle plate 3. The air guide plate 3 is provided on the front surface of the main body 2. As shown in FIG. 4, a first suction port 21 is formed at an upper portion of the main body 2, and a second suction port 22 is formed at a lower portion of the main body 2. A blower 4 and a heat exchanger 6 are provided inside the main body 2. Further, an outlet 23 is formed at a front portion of the main body 2. The first suction port 21 is provided with an opening / closing lid 26 for opening and closing the first suction port 21.
 室内機1において、第1吸込口21の内側(下側)には、第1フィルタ24が設けられ、第2吸込口22の内側(上側)には、第2フィルタ25が設けられている。第1フィルタ24は、例えばプレフィルタに相当する機能を有するフィルタである。第1フィルタ24は、第2フィルタ25よりも低性能であり、かつ第2フィルタ25よりも通風抵抗が小さい。第2フィルタ25は、例えばHEPAフィルタ(High Efficiency Particulate Air Filter)である。第2フィルタ25は、第1フィルタ24よりも高性能であり、かつ第1フィルタ24よりも通風抵抗が大きいフィルタである。 In the indoor unit 1, the first filter 24 is provided inside (the lower side) of the first suction port 21, and the second filter 25 is provided inside (the upper side) of the second suction port 22. The first filter 24 is a filter having a function corresponding to, for example, a pre-filter. The first filter 24 has lower performance than the second filter 25 and has a lower ventilation resistance than the second filter 25. The second filter 25 is, for example, a HEPA filter (High Efficiency Particulate Air Filter). The second filter 25 is a filter having higher performance than the first filter 24 and having a larger ventilation resistance than the first filter 24.
 室内機1では、第1吸込口21から吸い込まれた空気は、第1フィルタ24、送風機4および熱交換器6を経て吹出口23から吹き出される。また、第2吸込口22から吸い込まれた空気は、第2フィルタ25、送風機4および熱交換器6を経て吹出口23から吹き出される。 In the indoor unit 1, the air sucked from the first inlet 21 is blown out from the outlet 23 through the first filter 24, the blower 4 and the heat exchanger 6. Further, the air sucked from the second suction port 22 is blown out from the outlet 23 through the second filter 25, the blower 4 and the heat exchanger 6.
 (熱交換器5の構成)
 以下、上述した熱交換器6および16のいずれにも適用可能な熱交換器5について説明する。
(Configuration of heat exchanger 5)
Hereinafter, the heat exchanger 5 applicable to any of the above-described heat exchangers 6 and 16 will be described.
 図1は、熱交換器5の構造を示す断面図である。具体的には、図1は、熱交換器5の、空気が流れる方向に平行な面における断面を示す図である。図5は、熱交換器5の一部分の外観を示す斜視図である。図6は、図1に示した熱交換器5のA-A線断面図である。図7は、図1に示した熱交換器5のB-B線断面図である。 FIG. 1 is a sectional view showing the structure of the heat exchanger 5. Specifically, FIG. 1 is a diagram showing a cross section of the heat exchanger 5 in a plane parallel to a direction in which air flows. FIG. 5 is a perspective view showing the appearance of a part of the heat exchanger 5. FIG. 6 is a sectional view taken along line AA of the heat exchanger 5 shown in FIG. FIG. 7 is a cross-sectional view taken along the line BB of the heat exchanger 5 shown in FIG.
 図1および図5~図7に示すように、熱交換器5は、内側フィン群51(フィン群、第1フィン群)と、外側フィン群52(フィン群、第2フィン群)と、扁平管53と、ヘッダーパイプ54とを備える。内側フィン群51、外側フィン群52、および扁平管53は、図1の紙面における奥行き方向(扁平管53の面に垂直な方向)に複数積層されている。図5においては、内側フィン群51は、一部を除いて省略されている。また、図5においては、外側フィン群52は図示されていない。 As shown in FIGS. 1 and 5 to 7, the heat exchanger 5 includes an inner fin group 51 (fin group, first fin group), an outer fin group 52 (fin group, second fin group), A pipe 53 and a header pipe 54 are provided. The inner fin group 51, the outer fin group 52, and the flat tubes 53 are stacked in a depth direction (a direction perpendicular to the plane of the flat tubes 53) on the paper surface of FIG. In FIG. 5, the inner fin group 51 is omitted except for a part. In FIG. 5, the outer fin group 52 is not shown.
 熱交換器5は、空気との間で熱交換を行う。具体的には、内側フィン群51は、当該内側フィン群51の間を通過する空気との間で熱交換を行う。同様に、外側フィン群52は、当該外側フィン群52の間を通過する空気との間で熱交換を行う。内側フィン群51および外側フィン群52は、例えばコルゲートフィンであってよい。内側フィン群51および外側フィン群52は、熱交換器5における、室内機1の左右方向の全体にわたって配される。 The heat exchanger 5 exchanges heat with air. Specifically, the inner fin group 51 performs heat exchange with air passing between the inner fin groups 51. Similarly, the outer fin group 52 exchanges heat with air passing between the outer fin groups 52. The inner fin group 51 and the outer fin group 52 may be, for example, corrugated fins. The inner fin group 51 and the outer fin group 52 are arranged over the entirety of the heat exchanger 5 in the left-right direction of the indoor unit 1.
 内側フィン群51および外側フィン群52は、空気の流れに対して順に配置される。ここでいう「順に配置される」とは、(i)内側フィン群51および外側フィン群52の一方が他方よりも空気の流れにおける上流側に配置される、または(ii)内側フィン群51および外側フィン群52が空気の流れに沿って直列に配置される、と表現することもできる。また、外側フィン群52は、内側フィン群51よりも、送風機4から離隔して配置される。このため、送風機4から送り出された空気は、まず内側フィン群51と接触し、その後で外側フィン群52と接触する。 The inner fin group 51 and the outer fin group 52 are sequentially arranged with respect to the flow of air. Here, “arranged in order” means that (i) one of the inner fin group 51 and the outer fin group 52 is arranged on the upstream side in the air flow from the other, or (ii) the inner fin group 51 and the It can also be described that the outer fin groups 52 are arranged in series along the flow of air. Further, the outer fin group 52 is arranged more apart from the blower 4 than the inner fin group 51 is. Therefore, the air blown out from the blower 4 first contacts the inner fin group 51, and then contacts the outer fin group 52.
 扁平管53は、内側フィン群51および外側フィン群52と熱交換を行う冷媒が内部を通流する部材である。扁平管53の内部には、室内機1の左右方向に平行な、複数のチャネル533(冷媒流路)が形成されている。チャネル533は、冷媒が通流する流路である。冷媒としては、一般的な熱交換器において用いられるものを、特に制限なく用いることができる。 The flat tube 53 is a member through which a refrigerant that performs heat exchange with the inner fin group 51 and the outer fin group 52 flows. Inside the flat tube 53, a plurality of channels 533 (refrigerant flow paths) parallel to the left-right direction of the indoor unit 1 are formed. The channel 533 is a flow path through which the refrigerant flows. As the refrigerant, those used in general heat exchangers can be used without any particular limitation.
 扁平管53は、内側フィン群51および外側フィン群52の両方に接触するように、内側フィン群51および外側フィン群52に跨がって形成されている。以下の説明では、扁平管53の、内側フィン群51と接触する領域を、内側領域531と称する。また、扁平管53の、外側フィン群52と接触する領域を、外側領域532と称する。内側領域531に対応するチャネル533は、内側フィン群51を冷却する冷媒が通流する流路である。また、外側領域532に対応するチャネル533は、外側フィン群52を冷却する冷媒が通流する流路である。扁平管53のそれぞれは、両面で内側フィン群51および外側フィン群52に接する。 The flat tube 53 is formed so as to straddle the inner fin group 51 and the outer fin group 52 so as to contact both the inner fin group 51 and the outer fin group 52. In the following description, a region of the flat tube 53 that comes into contact with the inner fin group 51 is referred to as an inner region 531. The area of the flat tube 53 that contacts the outer fin group 52 is referred to as an outer area 532. The channel 533 corresponding to the inner area 531 is a flow path through which a coolant for cooling the inner fin group 51 flows. The channel 533 corresponding to the outer region 532 is a flow channel through which a coolant that cools the outer fin group 52 flows. Each of the flat tubes 53 contacts the inner fin group 51 and the outer fin group 52 on both sides.
 複数のチャネル533は、内側領域531および外側領域532のそれぞれに対応する位置に設けられている。内側領域531に対応する位置に設けられているチャネル533と、外側領域532に対応する位置に設けられているチャネル533と、は互いに独立している。すなわち、内側フィン群51を冷却する冷媒が通流するチャネルと、外側フィン群52を冷却する冷媒が通流するチャネルとは互いに独立している。ここでいう「互いに独立している」とは、互いに連通していないことを意味する。 The plurality of channels 533 are provided at positions corresponding to the inner region 531 and the outer region 532, respectively. The channel 533 provided at a position corresponding to the inner region 531 and the channel 533 provided at a position corresponding to the outer region 532 are independent of each other. That is, the channel through which the refrigerant that cools the inner fin group 51 flows and the channel through which the refrigerant that cools the outer fin group 52 flows are independent of each other. Here, “independent from each other” means that they are not in communication with each other.
 図6および図7に示す例では、1つの扁平管53について、チャネル533は、内側領域531および外側領域532のそれぞれに4本ずつ設けられている。ただし、チャネル533の数はこれに限定されない。また、内側領域531に対応して設けられるチャネル533の数と、外側領域532に対応して設けられるチャネル533の数と、が互いに異なっていてもよい。 6 and 7, four channels 533 are provided for each of the inner region 531 and the outer region 532 for one flat tube 53. However, the number of channels 533 is not limited to this. Further, the number of channels 533 provided corresponding to the inner region 531 and the number of channels 533 provided corresponding to the outer region 532 may be different from each other.
 また、扁平管53の、内側領域531と外側領域532と(複数の領域)の間の領域には、切欠き部534が形成されている。切欠き部534は、室内機1の左右方向に沿って複数形成される。切欠き部534の数、形状およびサイズは特に制限されず、内側領域531と外側領域532との間の領域の、少なくとも一部に形成されていればよい。 切 A notch 534 is formed in the flat tube 53 in a region between the inner region 531 and the outer region 532 (a plurality of regions). A plurality of notches 534 are formed along the left-right direction of the indoor unit 1. The number, shape, and size of the cutout portions 534 are not particularly limited, and may be formed in at least a part of a region between the inner region 531 and the outer region 532.
 例えば特許文献1に開示されているような、従来の熱交換器においては、熱交換器の組み立て時のバラツキなどにより、空気の流れる方向に対して垂直な方向において、これらの扁平管の間で位置のズレが生じる虞があった。 For example, in a conventional heat exchanger as disclosed in Patent Literature 1, a difference between the flat tubes in a direction perpendicular to the air flow direction occurs due to variations in assembling the heat exchanger. There is a possibility that the position is shifted.
 本実施形態の熱交換器5においては、扁平管53が内側フィン群51および外側フィン群52の両方に接触するように、隣接する前記フィン群に跨がって形成されているため、上述した位置のズレが生じる虞が低減される。このため、熱交換器5において、当該位置のズレに起因する熱交換器5の通風抵抗の増大が抑制される。したがって、室内機1においては、上記のズレに起因する、(i)所望の風量を得るために必要なエネルギーの増加、および(ii)所望の風量を得る場合における騒音の増大がなくなる。さらに、本実施形態の熱交換器5によれば、内側フィン群51および外側フィン群52の位置合わせ自体が不要となるため、熱交換器5の生産に要する工数も削減される。 In the heat exchanger 5 of the present embodiment, the flat tube 53 is formed so as to straddle the adjacent fin group so as to contact both the inner fin group 51 and the outer fin group 52. The possibility that the displacement will occur is reduced. For this reason, in the heat exchanger 5, an increase in ventilation resistance of the heat exchanger 5 due to the displacement of the position is suppressed. Therefore, in the indoor unit 1, (i) an increase in energy required to obtain a desired air volume and (ii) an increase in noise in obtaining a desired air volume due to the above-mentioned displacement are eliminated. Furthermore, according to the heat exchanger 5 of the present embodiment, since the positioning itself of the inner fin group 51 and the outer fin group 52 is not required, the man-hour required for the production of the heat exchanger 5 is also reduced.
 ヘッダーパイプ54は、チャネル533と連通するパイプである。ヘッダーパイプ54は、内側供給パイプ541(第1冷媒供給パイプ)、内側取出パイプ542(第1冷媒取出パイプ)、外側供給パイプ543(第2冷媒供給パイプ)、および外側取出パイプ544(第2冷媒取出パイプ)を含む。複数の扁平管53のそれぞれは、内側供給パイプ541、内側取出パイプ542、外側供給パイプ543、および外側取出パイプ544に接続されている。 The header pipe 54 is a pipe that communicates with the channel 533. The header pipe 54 includes an inner supply pipe 541 (first refrigerant supply pipe), an inner extraction pipe 542 (first refrigerant extraction pipe), an outer supply pipe 543 (second refrigerant supply pipe), and an outer extraction pipe 544 (second refrigerant). Removal pipe). Each of the plurality of flat tubes 53 is connected to an inner supply pipe 541, an inner supply pipe 542, an outer supply pipe 543, and an outer supply pipe 544.
 内側供給パイプ541および内側取出パイプ542は、扁平管53の内側領域531の、室内機1の左右方向における両端に配される。内側供給パイプ541は、内側フィン群51を冷却する冷媒が通流するチャネル533(すなわち内側領域531に対応するチャネル533)に冷媒を供給するためのパイプである。内側取出パイプ542は、内側フィン群51を冷却する冷媒が通流するチャネル533から冷媒を取り出すためのパイプである。 The inside supply pipe 541 and the inside extraction pipe 542 are arranged at both ends of the inside area 531 of the flat tube 53 in the left-right direction of the indoor unit 1. The inside supply pipe 541 is a pipe for supplying the coolant to the channel 533 through which the coolant for cooling the inside fin group 51 flows (that is, the channel 533 corresponding to the inside region 531). The inner extraction pipe 542 is a pipe for extracting the refrigerant from the channel 533 through which the refrigerant for cooling the inner fin group 51 flows.
 外側供給パイプ543および外側取出パイプ544は、扁平管53の外側領域532の、室内機1の左右方向における両端に配される。外側供給パイプ543は、外側フィン群52を冷却する冷媒が通流するチャネル533(すなわち外側領域532に対応するチャネル533)に冷媒を供給するためのパイプである。外側取出パイプ544は、外側フィン群52を冷却する冷媒が通流するチャネル533から冷媒を取り出すためのパイプである。 The outer supply pipe 543 and the outer extraction pipe 544 are arranged at both ends of the outer region 532 of the flat tube 53 in the left-right direction of the indoor unit 1. The outer supply pipe 543 is a pipe for supplying the coolant to the channel 533 through which the coolant for cooling the outer fin group 52 flows (that is, the channel 533 corresponding to the outer region 532). The outer extraction pipe 544 is a pipe for extracting the refrigerant from the channel 533 through which the refrigerant that cools the outer fin group 52 flows.
 上述したとおり、送風機4から送り出された空気は、先に内側フィン群51と接触し、次に外側フィン群52と接触する。このため、熱交換器5により空気を冷却する場合に、内側フィン群51は外側フィン群52よりも高温になる。同じ理由で、外側取出パイプ544から取り出される冷媒は、内側取出パイプ542から取り出される冷媒よりも低温になる。したがって、外側取出パイプ544から取り出される冷媒は、内側取出パイプ542から取り出される冷媒と比較して、容易に再利用できる。 As described above, the air sent from the blower 4 comes into contact with the inner fin group 51 first, and then comes into contact with the outer fin group 52. Therefore, when the air is cooled by the heat exchanger 5, the inner fin group 51 becomes higher in temperature than the outer fin group 52. For the same reason, the refrigerant removed from the outer extraction pipe 544 has a lower temperature than the refrigerant removed from the inner extraction pipe 542. Therefore, the refrigerant extracted from the outer extraction pipe 544 can be easily reused as compared with the refrigerant extracted from the inner extraction pipe 542.
 上述したとおり、熱交換器5において、扁平管53は、内側フィン群51および外側フィン群52の両方と接触する。このため、扁平管53において内側領域531から外側領域532へ熱が移動し、外側取出パイプ544から取り出される冷媒の温度が上昇すると、当該冷媒の再利用の効率が低下する虞がある。 As described above, in the heat exchanger 5, the flat tubes 53 come into contact with both the inner fin group 51 and the outer fin group 52. For this reason, when heat moves from the inner region 531 to the outer region 532 in the flat tube 53 and the temperature of the refrigerant taken out from the outer extraction pipe 544 rises, there is a possibility that the efficiency of reusing the refrigerant may decrease.
 そこで、本実施形態の扁平管53においては、上述したとおり、内側領域531と外側領域532との間に切欠き部534が形成されている。切欠き部534は、内側領域531から外側領域532への熱の移動を阻害する。このため、扁平管53においては、切欠き部534が形成されない場合と比較して、外側取出パイプ544から取り出される冷媒の温度上昇が抑制される。したがって、熱交換器5においては、当該冷媒を効率的に再利用できる。 Therefore, in the flat tube 53 of the present embodiment, the cutout portion 534 is formed between the inner region 531 and the outer region 532 as described above. The notch 534 hinders the transfer of heat from the inner region 531 to the outer region 532. For this reason, in the flat tube 53, a rise in the temperature of the refrigerant taken out from the outside extraction pipe 544 is suppressed as compared with the case where the notch portion 534 is not formed. Therefore, in the heat exchanger 5, the refrigerant can be efficiently reused.
 また、熱交換器5により空気を冷却する場合、内側フィン群51、外側フィン群52および扁平管53の表面に水滴が付着する。熱交換器5においては、当該水滴は、切欠き部534から下方に排水される。 When the air is cooled by the heat exchanger 5, water droplets adhere to the surfaces of the inner fin group 51, the outer fin group 52, and the flat tube 53. In the heat exchanger 5, the water drops are drained downward from the notches 534.
 なお、本発明の一態様においては、扁平管53に切欠き部534が形成されていなくてもよい。 Note that, in one embodiment of the present invention, the notch 534 may not be formed in the flat tube 53.
 また、本発明の一態様においては、熱交換器5は、内側フィン群51および外側フィン群52以外の、空気に対して順に配置されたフィン群をさらに備えていてもよい。この場合にも、扁平管53は、内側フィン群51、外側フィン群52、およびさらに他のフィン群のうちの2以上と接するように、隣接する複数のフィン群に跨がって形成される。 In one embodiment of the present invention, the heat exchanger 5 may further include a fin group other than the inner fin group 51 and the outer fin group 52 arranged in order with respect to air. Also in this case, the flat tube 53 is formed across a plurality of adjacent fin groups so as to be in contact with two or more of the inner fin group 51, the outer fin group 52, and still another fin group. .
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as the members described in the above embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
 図8は、本実施形態に係る熱交換器5Aの構成を示す断面図である。具体的には、図8は、熱交換器5Aの、室内機1の左右方向に垂直な面における断面を示す図である。なお、図8においては、内側フィン群51および外側フィン群52は省略されている。 FIG. 8 is a cross-sectional view showing the configuration of the heat exchanger 5A according to the present embodiment. Specifically, FIG. 8 is a diagram showing a cross section of the heat exchanger 5A in a plane perpendicular to the left-right direction of the indoor unit 1. In FIG. 8, the inner fin group 51 and the outer fin group 52 are omitted.
 図8に示すように、熱交換器5Aは、扁平管53の代わりに扁平管53Aを備える点で熱交換器5と相違する。扁平管53Aは、切り欠き534ではなく中空部535が形成されている点で扁平管53と相違する。中空部535は、内側領域531と外側領域532との間に位置する領域に形成されている。中空部535は、チャネル533から独立しており、ヘッダーパイプ54と接続されていない。このため、冷媒は中空部535を流れない。 熱 As shown in FIG. 8, the heat exchanger 5A is different from the heat exchanger 5 in that a flat tube 53A is provided instead of the flat tube 53. The flat tube 53A differs from the flat tube 53 in that a hollow portion 535 is formed instead of the notch 534. The hollow portion 535 is formed in a region located between the inside region 531 and the outside region 532. The hollow portion 535 is independent of the channel 533 and is not connected to the header pipe 54. Therefore, the refrigerant does not flow through the hollow portion 535.
 扁平管53Aにおいては、中空部535により、内側領域531から外側領域532への熱の移動が阻害される。したがって、熱交換器5Aにおいても、外側取出パイプ544から取り出される冷媒の、再利用の効率の低下が抑制される。 In the flat tube 53A, the transfer of heat from the inner region 531 to the outer region 532 is inhibited by the hollow portion 535. Therefore, also in the heat exchanger 5A, a decrease in the efficiency of reusing the refrigerant extracted from the outer extraction pipe 544 is suppressed.
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。
[Embodiment 3]
Another embodiment of the present invention will be described below.
 図9は、本実施形態に係る熱交換器5Bの構成を示す断面図である。具体的には、図9は、熱交換器5Bの、室内機1の左右方向に垂直な面における断面を示す図である。なお、図9においては、内側フィン群51および外側フィン群52は省略されている。 FIG. 9 is a cross-sectional view illustrating the configuration of the heat exchanger 5B according to the present embodiment. Specifically, FIG. 9 is a diagram illustrating a cross section of the heat exchanger 5B in a plane perpendicular to the left-right direction of the indoor unit 1. In FIG. 9, the inner fin group 51 and the outer fin group 52 are omitted.
 図9に示すように、熱交換器5Bは、扁平管53の代わりに扁平管53Bを備える点で熱交換器5と相違する。扁平管53Bは、内側領域531と外側領域532との間の領域に、切り欠き534ではなく、扁平管53Bの他の箇所よりも薄い部分である薄肉部536が形成されている点で扁平管53と相違する。薄肉部536は、室内機1の左右方向に連続的に形成される。薄肉部536は、内側領域531と外側領域532との間の領域の、室内機1の左右方向の全体に形成される必要はなく、少なくとも一部に形成されていればよい。 熱 As shown in FIG. 9, the heat exchanger 5B is different from the heat exchanger 5 in that a flat tube 53B is provided instead of the flat tube 53. The flat tube 53B is different from the flat tube 53B in that a thin portion 536, which is a portion thinner than other portions of the flat tube 53B, is formed in a region between the inner region 531 and the outer region 532 instead of the notch 534. 53. The thin portion 536 is formed continuously in the left-right direction of the indoor unit 1. The thin portion 536 does not need to be formed entirely in the left-right direction of the indoor unit 1 in the region between the inner region 531 and the outer region 532, and may be formed at least partially.
 扁平管53Bにおいては、薄肉部536により、内側領域531から外側領域532への熱の移動が阻害される。したがって、熱交換器5Bにおいても、外側取出パイプ544から取り出される冷媒の、再利用の効率の低下が抑制される。 In the flat tube 53B, the transfer of heat from the inner region 531 to the outer region 532 is inhibited by the thin portion 536. Therefore, also in the heat exchanger 5B, a decrease in the efficiency of reusing the refrigerant extracted from the outer extraction pipe 544 is suppressed.
 また、本実施形態の扁平管53Bにおいては、室内機1の左右方向に複数の薄肉部536が断続的に形成されるとともに、複数の薄肉部536の間には、扁平管53Bの他の箇所よりも分厚い部分である厚肉部が形成されてもよい。 Further, in the flat tube 53B of the present embodiment, a plurality of thin portions 536 are formed intermittently in the left-right direction of the indoor unit 1, and other portions of the flat tube 53B are provided between the plurality of thin portions 536. A thicker portion, which is a thicker portion, may be formed.
 室内機1の左右方向に、連続的に薄肉部536を形成した場合、扁平管53Bの強度が低下する虞がある。薄肉部536を断続的に形成し、薄肉部536の間に厚肉部を形成することで、内側領域531から外側領域532への熱の移動を阻害し、かつ扁平管53Bの強度の低下を抑制することができる。 場合 When the thin portion 536 is continuously formed in the left and right direction of the indoor unit 1, the strength of the flat tube 53B may be reduced. By forming the thin portion 536 intermittently and forming a thick portion between the thin portions 536, transfer of heat from the inner region 531 to the outer region 532 is inhibited, and the strength of the flat tube 53B is reduced. Can be suppressed.
 また、扁平管53Bに複数の薄肉部536が断続的に形成される場合において、複数の薄肉部536の間に切欠き部がさらに形成されてもよい。この場合、内側領域531から外側領域532への熱の移動が、薄肉部536だけが形成されている構成と比較して、さらに抑制される。さらに、扁平管53Bに切欠き部が形成される場合には、扁平管53と同様、当該切欠き部から水滴を排水することができる。 In the case where the plurality of thin portions 536 are formed intermittently in the flat tube 53B, a notch may be further formed between the plurality of thin portions 536. In this case, the transfer of heat from the inner region 531 to the outer region 532 is further suppressed as compared with the configuration in which only the thin portion 536 is formed. Furthermore, when a notch is formed in the flat tube 53 </ b> B, water drops can be drained from the notch similarly to the flat tube 53.
 〔まとめ〕
 本発明の態様1に係る熱交換器(5)は、空気との間で熱交換を行う熱交換器であって、前記空気の流れに対して順に配置された複数のフィン群(内側フィン群51、外側フィン群52)と、複数の前記フィン群と熱交換を行う冷媒が内部を通流する複数の扁平管(53)と、を備え、複数の前記扁平管のそれぞれは、複数の前記フィン群と接するように、隣接する複数の前記フィン群に跨がって形成されている。
[Summary]
The heat exchanger (5) according to the first aspect of the present invention is a heat exchanger that exchanges heat with air, and includes a plurality of fin groups (inner fin groups) arranged in order with respect to the flow of the air. 51, an outer fin group 52), and a plurality of flat tubes (53) through which a refrigerant that performs heat exchange with the plurality of fin groups flows. Inside each of the plurality of flat tubes, The fin group is formed so as to be in contact with the fin group and straddle a plurality of the adjacent fin groups.
 上記の構成によれば、熱交換器において、複数の扁平管のそれぞれが、空気の流れに対して順に配置された複数のフィン群と接するように、隣接する複数のフィン群に跨がって形成されている。このため、複数のフィン群に対してそれぞれ別個の扁平管が接する構成と比較して、扁平管の位置のズレを低減できる。 According to the above configuration, in the heat exchanger, each of the plurality of flat tubes straddles the plurality of adjacent fin groups so as to be in contact with the plurality of fin groups arranged in order with respect to the flow of air. Is formed. For this reason, compared to a configuration in which separate flat tubes are in contact with a plurality of fin groups, it is possible to reduce the displacement of the positions of the flat tubes.
 本発明の態様2に係る熱交換器は、上記態様1において、前記扁平管の、複数の前記フィン群に接する複数の領域の間の領域の、少なくとも一部に切り欠き部を有してもよい。 In the heat exchanger according to the second aspect of the present invention, in the first aspect, the flat tube may have a cutout portion in at least a part of a region between the plurality of regions in contact with the plurality of fin groups. Good.
 本発明の態様3に係る熱交換器は、上記態様1または2において、前記扁平管の、複数の前記フィン群に接する複数の領域の間の領域の、少なくとも一部に薄肉部を有してもよい。 The heat exchanger according to aspect 3 of the present invention is the heat exchanger according to aspect 1 or 2, wherein the flat tube has a thin portion in at least a part of a region between the plurality of regions in contact with the plurality of fin groups. Is also good.
 本発明の態様4に係る熱交換器は、上記態様1において、前記扁平管は、前記冷媒が通流する冷媒流路と、前記冷媒流路から独立した中空部とを有してもよい。 In the heat exchanger according to a fourth aspect of the present invention, in the first aspect, the flat tube may include a refrigerant flow path through which the refrigerant flows, and a hollow portion independent from the refrigerant flow path.
 これらの構成によれば、複数の前記フィン群に接する領域の間での熱の移動が抑制される。したがって、温度の低い冷媒について、再利用が容易になる。 According to these configurations, the transfer of heat between the regions in contact with the plurality of fin groups is suppressed. Therefore, it is easy to reuse the low-temperature refrigerant.
 本発明の態様5に係る熱交換器は、上記態様1から4のいずれかにおいて、前記フィン群は、少なくとも第1フィン群および第2フィン群を含み、複数の前記扁平管のそれぞれは、前記第1フィン群を冷却する冷媒が通流する冷媒流路に冷媒を供給する第1冷媒供給パイプ、前記第1フィン群を冷却する冷媒が通流する冷媒流路から冷媒を取り出す第1冷媒取出パイプ、前記第2フィン群を冷却する冷媒が通流する冷媒流路に冷媒を供給する第2冷媒供給パイプ、および、前記第2フィン群を冷却する冷媒が通流する冷媒流路から冷媒を取り出す第2冷媒取出パイプ、に接続されていてもよい。 The heat exchanger according to aspect 5 of the present invention, in any one of aspects 1 to 4, wherein the fin group includes at least a first fin group and a second fin group, and each of the plurality of flat tubes is A first refrigerant supply pipe for supplying a refrigerant to a refrigerant flow path through which a refrigerant for cooling the first fin group flows, and a first refrigerant withdrawal for extracting the refrigerant from a refrigerant flow path through which the refrigerant for cooling the first fin group flows A pipe, a second refrigerant supply pipe for supplying a refrigerant to a refrigerant flow path through which the refrigerant for cooling the second fin group flows, and a refrigerant from the refrigerant flow path through which the refrigerant for cooling the second fin group flows. A second refrigerant take-out pipe to be taken out.
 上記の構成によれば、扁平管は、それぞれのフィン群を冷却するための冷媒を供給するパイプおよび冷媒を取り出すためのパイプと接続される。したがって、冷媒の流量を増大させ、冷却効率を向上させることができる。 According to the above configuration, the flat tube is connected to the pipe for supplying the refrigerant for cooling each fin group and the pipe for taking out the refrigerant. Therefore, the flow rate of the refrigerant can be increased, and the cooling efficiency can be improved.
 本発明の態様6に係る空気調和機は、上記態様1から5のいずれかの熱交換器を備える。 空 気 The air conditioner according to the sixth aspect of the present invention includes the heat exchanger according to any one of the first to fifth aspects.
 上記の構成によれば、態様1と同様の効果を奏する。 According to the above configuration, the same effect as that of the first aspect is obtained.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining the technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 1 室内機(空気調和機)
 5 熱交換器
 51 内側フィン群(フィン群)
 52 外側フィン群(フィン群)
 53 扁平管
 533 チャネル(冷媒流路)
 534 切欠き部
 535 中空部
 536 薄肉部
1 indoor unit (air conditioner)
5 heat exchanger 51 inner fin group (fin group)
52 Outer fin group (fin group)
53 flat tubes 533 channels (coolant flow path)
534 Notch part 535 Hollow part 536 Thin part

Claims (6)

  1.  空気との間で熱交換を行う熱交換器であって、
     前記空気の流れに対して順に配置された複数のフィン群と、
     複数の前記フィン群と熱交換を行う冷媒が内部を通流する複数の扁平管と、を備え、
     複数の前記扁平管のそれぞれは、複数の前記フィン群と接するように、隣接する複数の前記フィン群に跨がって形成されていることを特徴とする熱交換器。
    A heat exchanger that exchanges heat with air,
    A plurality of fin groups arranged in order with respect to the air flow,
    A plurality of flat tubes through which a refrigerant performing heat exchange with the plurality of fin groups flows inside,
    The heat exchanger, wherein each of the plurality of flat tubes is formed so as to be in contact with the plurality of fin groups and straddling the plurality of adjacent fin groups.
  2.  前記扁平管の、複数の前記フィン群に接する複数の領域の間の領域の少なくとも一部に、切欠き部が形成されていることを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein a cutout portion is formed in at least a part of a region of the flat tube between a plurality of regions that are in contact with the plurality of fin groups.
  3.  前記扁平管の、複数の前記フィン群に接する複数の領域の間の領域の少なくとも一部に、薄肉部が形成されていることを特徴とする請求項1または2に記載の熱交換器。 (3) The heat exchanger according to (1) or (2), wherein a thin portion is formed in at least a part of a region of the flat tube between the plurality of regions that are in contact with the plurality of fin groups.
  4.  前記扁平管は、前記冷媒が通流する冷媒流路と、
     前記冷媒流路から独立した中空部とを有することを特徴とする請求項1に記載の熱交換器。
    The flat tube, a refrigerant flow path through which the refrigerant flows,
    The heat exchanger according to claim 1, further comprising a hollow portion independent of the refrigerant flow path.
  5.  前記フィン群は、少なくとも第1フィン群および第2フィン群を含み、
     複数の前記扁平管のそれぞれは、
      前記第1フィン群を冷却する冷媒が通流する冷媒流路に冷媒を供給する第1冷媒供給パイプ、
      前記第1フィン群を冷却する冷媒が通流する冷媒流路から冷媒を取り出す第1冷媒取出パイプ、
      前記第2フィン群を冷却する冷媒が通流する冷媒流路に冷媒を供給する第2冷媒供給パイプ、および、
      前記第2フィン群を冷却する冷媒が通流する冷媒流路から冷媒を取り出す第2冷媒取出パイプ、に接続されていることを特徴とする請求項1から4のいずれか1項に記載の熱交換器。
    The fin group includes at least a first fin group and a second fin group,
    Each of the plurality of flat tubes is
    A first refrigerant supply pipe for supplying a refrigerant to a refrigerant passage through which a refrigerant for cooling the first fin group flows,
    A first refrigerant extraction pipe for extracting the refrigerant from a refrigerant flow path through which the refrigerant for cooling the first fin group flows,
    A second refrigerant supply pipe for supplying a refrigerant to a refrigerant flow path through which a refrigerant for cooling the second fin group flows, and
    The heat according to any one of claims 1 to 4, wherein the heat is connected to a second refrigerant extraction pipe that extracts the refrigerant from a refrigerant flow path through which the refrigerant that cools the second fin group flows. Exchanger.
  6.  請求項1から5のいずれか1項に記載の熱交換器を備えることを特徴とする空気調和機。 An air conditioner comprising the heat exchanger according to any one of claims 1 to 5.
PCT/JP2019/006132 2018-06-19 2019-02-19 Heat exchanger and air conditioner WO2019244397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525238A JPWO2019244397A1 (en) 2018-06-19 2019-02-19 Heat exchanger and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-116328 2018-06-19
JP2018116328 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244397A1 true WO2019244397A1 (en) 2019-12-26

Family

ID=68983706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006132 WO2019244397A1 (en) 2018-06-19 2019-02-19 Heat exchanger and air conditioner

Country Status (2)

Country Link
JP (1) JPWO2019244397A1 (en)
WO (1) WO2019244397A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967126A (en) * 2006-04-21 2007-05-23 王磊 Cold heat exchanger
JP2009092262A (en) * 2007-10-04 2009-04-30 Sharp Corp Heat exchanger
JP2014043985A (en) * 2012-08-27 2014-03-13 Sharp Corp Parallel flow type heat exchanger and air conditioner mounted with the same
US20160356555A1 (en) * 2014-02-21 2016-12-08 Hanon Systems Tube for heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967126A (en) * 2006-04-21 2007-05-23 王磊 Cold heat exchanger
JP2009092262A (en) * 2007-10-04 2009-04-30 Sharp Corp Heat exchanger
JP2014043985A (en) * 2012-08-27 2014-03-13 Sharp Corp Parallel flow type heat exchanger and air conditioner mounted with the same
US20160356555A1 (en) * 2014-02-21 2016-12-08 Hanon Systems Tube for heat exchanger

Also Published As

Publication number Publication date
JPWO2019244397A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US10670344B2 (en) Heat exchanger, air-conditioning apparatus, refrigeration cycle apparatus and method for manufacturing heat exchanger
US20060237178A1 (en) Heat exchanger
EP3290851B1 (en) Layered header, heat exchanger, and air conditioner
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
US20160195335A1 (en) Laminated header, heat exchanger, air-conditioning apparatus, and method of joining a plate-like unit of a laminated header and a pipe to each other
JPH09170850A (en) Refrigerant evaporator
KR100765557B1 (en) Heat exchanger
JP2008151396A (en) Heat exchanger and vapor compression type refrigerating cycle
US11274838B2 (en) Air-conditioner outdoor heat exchanger and air-conditioner including the same
WO2014041771A1 (en) Heat exchanger
CN106132739A (en) Vehicle air-conditioning systems
US20160109192A1 (en) Interior heat exchanger
JP2006329511A (en) Heat exchanger
JP2005037054A (en) Heat exchanger for refrigerant cycle device
WO2019244397A1 (en) Heat exchanger and air conditioner
JP6413760B2 (en) Heat exchanger and heat exchanger unit using the same
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP2003214724A (en) Air conditioner
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP6906149B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
KR102131158B1 (en) Air conditioner system for vehicle
EP3598046B1 (en) Heat exchanger plate and heat exchanger comprising such a heat exchanger plate
JP6939869B2 (en) Heat exchanger
KR20190096171A (en) Heat exchanger
JP2004028393A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823569

Country of ref document: EP

Kind code of ref document: A1