[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019242708A1 - 信号传输方法、网络设备及系统 - Google Patents

信号传输方法、网络设备及系统 Download PDF

Info

Publication number
WO2019242708A1
WO2019242708A1 PCT/CN2019/092180 CN2019092180W WO2019242708A1 WO 2019242708 A1 WO2019242708 A1 WO 2019242708A1 CN 2019092180 W CN2019092180 W CN 2019092180W WO 2019242708 A1 WO2019242708 A1 WO 2019242708A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
qos parameter
bearer
access network
qos
Prior art date
Application number
PCT/CN2019/092180
Other languages
English (en)
French (fr)
Inventor
彭文杰
杨坤
仇力炜
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217001632A priority Critical patent/KR102569090B1/ko
Priority to EP19822872.8A priority patent/EP3806536B1/en
Priority to EP22196758.1A priority patent/EP4178255B1/en
Publication of WO2019242708A1 publication Critical patent/WO2019242708A1/zh
Priority to US17/131,247 priority patent/US11678213B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a signal transmission method, a network device, and a system.
  • the fifth generation (5G) (5G) mobile communication technology is an extension of the fourth generation (4G) (4G) mobile communication technology. Therefore, the 5G communication system is called an "ultra 4G network” or a “long term evolution (LTE) system” or a new radio interface (NR).
  • LTE long term evolution
  • NR new radio interface
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • MR-DC Multi-RAT Dual Connectivity
  • UE user equipment
  • the two base stations are connected to each other through a non-ideal backhaul on the X2 interface, where one base station serves as a master base station (master node, MN) and one serves as a secondary base station (secondary node, SN).
  • multiple radio access technology dual connection defines different types of dual connection, such as E-UTRA-NR dual connection (E-UTRA-NR Dual Connectivity (EN-DC), NGEN-DC dual Connection (NG-RAN, E-UTRA-NR, Dual Connectivity, NGEN-DC), NE dual connection (NR-E-UTRA, Dual Connectivity, NE-DC), and define multiple bearer types as shown in Figure 1: Termination MCG bearer on MN (MN terminated MCG bearer), SCG bearer on MN (MN terminated SCG bearer), split bearer on MN (MN terminated split bearer), MCG bearer on SN (SN terminated MCG bearer) The SCG bearer terminated at the SN (SN terminated SCG bearer), and the split bearer terminated at the SN (SN terminated split bearer).
  • E-UTRA-NR Dual Connectivity EN-DC
  • NG-RAN NGEN-DC dual Connection
  • NG-RAN NGEN-DC dual Connection
  • NR-E-UTRA Dual Connectivity
  • the MCG bearer refers to a bearer that only involves MCG air interface resources
  • the SCG bearer refers to a bearer that only involves SCG air interface resources
  • the split bearer refers to a bearer that involves both MCG air interface resources and SCG air interface resources.
  • Termination at the MN means that the Packet Data Convergence Protocol (PDCP) anchor point is at the MN
  • termination at the SN means that the PDCP anchor point is at the SN.
  • PDCP Packet Data Convergence Protocol
  • the core network determines the Aggregate Maximum Bit Rate (AMBR) applied to the UE or the Guaranteed Bit Rate (GBR) applied to the E-RAB according to the account opening / registration information of the UE.
  • AMBR Aggregate Maximum Bit Rate
  • GRR Guaranteed Bit Rate
  • the core network will issue QoS parameters with higher air interface rates to the LTE base station, such as The AMBR applied to the UE is 4Tbps.
  • the AMBR applied to the UE is 4Tbps.
  • the air interface rate supported by the LTE base station cannot reach 4 Tbps, and the single board capability of the LTE base station needs to be upgraded, which brings great challenges to actual deployment.
  • This application provides a data transmission method, network equipment, and system, which can effectively determine the QoS parameters applied to related UEs, related bearers, related PDU sessions, or related QoS flows, without the need to upgrade the board capabilities of LTE base stations.
  • the present application provides a signal transmission method applied to an access network device side.
  • the method may include: the first access network device receives a first QoS parameter and a second QoS parameter sent by a core network device;
  • the air interface rate required by one QoS parameter is less than the air interface rate required by the second QoS parameter.
  • the first access network device sends a first instruction to the core network device, and the first instruction is used to instruct the first access network device to select a QoS parameter from the first QoS parameter and the second QoS parameter.
  • the RAN side can select the first QoS parameter from the two sets of parameters issued by the core network to apply to the related UE or related bearer or related PDU session or related QoS flow; under the condition that QoS parameters with high air interface rate requirements can be supported by the RAN, the RAN side can select the second QoS parameter from the two sets of parameters issued by the core network to apply to the relevant UE or related bearer or related PDU session or related QoS flow.
  • the present application provides a signal transmission method applied to a core network device side.
  • the method may include: the core network device sends a first QoS parameter and a second QoS parameter to a first access network device, and the first QoS The air interface rate required by the parameter is less than the air interface rate required by the second QoS parameter.
  • the core network device receives a first instruction sent by the first access network device, and the first instruction is used to instruct the first access network device to select a QoS parameter from the first QoS parameter and the second QoS parameter.
  • the access network device selects the two sets of QoS parameters and applies them to the relevant UE or related bearer or related PDU. session or related QoS flow QoS parameters, and indicate the selected QoS parameters to the core network.
  • the air interface rate required by the selected QoS parameters can be supported by the RAN.
  • the QoS parameters applied to the related UE or related bearer or related PDU session or related QoS flow can be effectively determined, without the need to upgrade the board capacity of the LTE base station.
  • the core network can set corresponding QoS management policies, such as rate adjustment policies, based on the QoS parameters selected by the RAN side, to facilitate data transmission between the UE and the core network.
  • the QoS parameters applied to the related UE or related bearer or related PDU session or related QoS flow are selected by the RAN side and indicated to the core network, instead of being determined solely by the core network based on the UE account opening / registration information, it can Avoiding the problem of refusing to establish a service flow because the RAN side cannot support the QoS parameters issued by the core network, or the problem of overloading the air interface load on the RAN side.
  • the refusal to establish a service flow may be, but is not limited to, reflected in: refusal to establish an initial context, refusal to establish an E-RAB, refusal to establish a PDU session, refusal to establish a QoS flow, and the like.
  • the QoS parameters may include one or more of the following: user equipment UE-level QoS parameters, bearer-level QoS parameters, data flow-level QoS parameters, and packet data unit PDU session-level QoS parameters.
  • the first QoS parameter and the second QoS parameter issued by the core network may include one or more of the following: a guaranteed bit rate GBR and an aggregate maximum bit rate AMBR.
  • the first QoS parameter and the second QoS parameter may be the mandatory IE and optional IE in the GBR QoS defined by the existing protocol, or the AMBR QoS defined by the existing protocol, respectively.
  • Mandatory IE and optional IE in IE Different from the existing protocol, in the case of the optional IE, the first access network device in this application will save the baseline AMBR (or GBR) indicated by the mandatory IE, instead of ignoring the extension indicated by the mandatory IE AMBR (or GBR), and select the appropriate AMBR (or GBR) from the baseline AMBR (or GBR) indicated by the mandatory IE and the extended AMBR (or GBR) indicated by the optional IE.
  • the manner in which the first access network device selects a QoS parameter may include, but is not limited to:
  • the first access network device may select the second QoS parameter to apply to the relevant UE or related bearer or related PDU session or related QoS flow. That is, the QoS parameter indicated by the first indication is the second QoS parameter.
  • the air interface transmission capability of the first access network device supporting the air interface rate required by the second QoS parameter may mean that the first access network device is an NR base station or the first access network device is an LTE base station after hardware upgrade.
  • the first access network device under the condition that the air interface transmission capability of the first access network device cannot support the air interface rate required by the second QoS parameter, if one or more of the following conditions exist, the first access network device
  • the first QoS parameter may be selected and applied to the related UE or related bearer or related PDU session or related QoS flow (that is, the QoS parameter indicated by the first indication is the first QoS parameter):
  • the related UE is not configured with the first dual connection.
  • the first dual connection is associated with the first access network device and the second access network device, wherein the air interface transmission capability of the second access network device supports the air interface rate required by the second QoS parameter.
  • the association of the first dual connection with the first access network device and the second access network device means that the first dual connection needs to use air interface resources of the first access network device and the second access network device.
  • the related EPS bearer / E-RAB is not configured to the first bearer.
  • the access network device where the PDCP anchor point of the first bearer supports the air interface rate required by the second QoS parameter.
  • the access network device where the PDCP anchor point of the first bearer is an NR base station or an LTE base station after hardware upgrade.
  • the first bearer may be a bearer terminated at the SN, such as an MCG bearer terminated at the SN, an SCG bearer terminated at the SN, or an SN terminated
  • One or more of the split bearer ie, SCG split bearer).
  • the related QoS flow is not configured to the first bearer.
  • first bearer reference may be made to related content in the above 2 and will not be repeated here.
  • the related PDU session is not configured to the first bearer.
  • first bearer reference may be made to related content in the above 2 and will not be repeated here.
  • the air interface transmission capability of the first access network device cannot support the air interface rate required by the second QoS parameter may mean that the first access network device is an LTE base station.
  • the air interface transmission capability of the second access network device supporting the air interface rate required by the second QoS parameter may mean that the first access network device is an NR base station, or the second access network device is an LTE base station after hardware upgrade.
  • the first access network device may select the second QoS parameter to be applied to the relevant UE or the related device regardless of the air interface transmission capability of the first access network device.
  • Bearer or related PDU session or related QoS flow that is, the QoS parameter indicated by the first indication is the second QoS parameter:
  • the relevant UE is configured to the first dual connection.
  • the related EPS bearer / E-RAB is configured to the first bearer.
  • the related QoS flow is configured to the first bearer.
  • the related PDU session is configured to the first bearer.
  • the first QoS parameter and the second QoS parameter may be carried in one or more of the following signaling: a UE context establishment request or a UE context modification request, Bearer establishment request or bearer modification request, PDU session resource establishment request, or PDU session resource modification request.
  • the first QoS parameter and the second QoS parameter may also carry other signaling or newly defined signaling.
  • the first indication may be implemented in the following manner:
  • the first indication may be implemented as indication information carried in specific signaling, such as bits, fields, information elements (IE), and the like.
  • the first instruction may be referred to as first instruction information.
  • the first indication may be carried in one or more of the following signaling: UE context establishment response or UE context modification response, bearer establishment response or bearer modification response, bearer modification indication, PDU session resource establishment response or PDU session resource modification response, PDU session resource modification indication. Not limited to this, the first indication may also carry other signaling or newly defined signaling.
  • the first instruction can also be implemented as a separate instruction message. At this time, the first instruction may be referred to as a first instruction message.
  • the first indication message may include information indicating a first QoS parameter and information indicating a second QoS parameter. If the information indicating the first QoS parameter (or the information indicating the second QoS parameter) takes a specific value, it indicates that the QoS parameter selected by the first access network device is the first QoS parameter (or the second QoS parameter).
  • the first indication message when the first indication message includes specific information (such as a specific bit, a specific field, a specific IE, etc.), it indicates that the QoS parameter selected by the first access network device is the first QoS parameter.
  • specific information such as a specific bit, a specific field, a specific IE, etc.
  • the first indication message when the first indication message includes specific information (such as a specific bit, a specific field, a specific IE, etc.), it indicates that the QoS parameter selected by the first access network device is the second QoS parameter.
  • specific information such as a specific bit, a specific field, a specific IE, etc.
  • the RAN side configuration may change.
  • the first access network device may reselect a set of QoS parameters from the first QoS parameter and the second QoS parameter according to the changed RAN side configuration, and resend a second instruction to the core network to instruct the RAN side to restart Selected QoS parameters.
  • the manner in which the first access network device reselects the QoS parameter may include, but is not limited to:
  • the first access network device may reselect the second QoS parameter to be applied to the related UE or related bearer or related PDU session or related QoS flow.
  • the related UE has never been configured to the first dual connection.
  • first dual connection reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related EPS bearer / E-RAB has never been configured.
  • the first bearer becomes configured to the first bearer.
  • the related QoS flow has never been configured.
  • the first bearer becomes configured to the first bearer.
  • the related PDU session has never been configured with the first bearer and has been configured with the first bearer.
  • Regarding the first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the first access network device may reselect the first QoS parameter to be applied to the related UE or related bearer or related PDU session or related QoS flow.
  • the related UE changes from being configured with the first dual connection to being unconfigured to the first dual connection.
  • first dual connection reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related EPS bearer / E-RAB changes from a configured first bearer to an unconfigured first bearer.
  • first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related QoS flow changes from the configured first bearer to the unconfigured first bearer.
  • first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related PDU session changes from being configured to the first bearer to being unconfigured to the first bearer.
  • first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the second indication may be implemented as indication information carried in specific signaling, such as a bit, a field, an information element (IE), etc. At this time, the second indication may be referred to as a second indication. Instructions.
  • the second instruction may also be implemented as a separate instruction message. At this time, the second instruction may be referred to as a second instruction message.
  • the second instruction When the second instruction is implemented as the second instruction information carried in the specific signaling, the second instruction may be carried in one or more of the following signaling: initial context establishment response, UE context modification response, UE context modification instruction, Bearer establishment response, bearer modification response, E-RAB modification indication, PDU session resource establishment response, PDU session resource modification response, PDU session modification indication. Not limited to this, the second indication may also be carried in other signaling or newly defined signaling.
  • the present application provides a signal transmission method that is applied to an access network device side.
  • the method may include: the first access network device sends an instruction to a core network device, and the instruction may be referred to as a third instruction. This indicates one or more of the following: whether the user equipment is configured with a first dual connection, a bearer, or whether a QoS flow or a PDU session is configured with the first bearer.
  • the first access network device receives a QoS parameter sent by the core network device, and the QoS parameter is determined according to the indication information.
  • the present application provides a signal transmission method, which is applied to a core network device side.
  • the method may include: the core network device receives an instruction sent by a first access network device, and the instruction may be referred to as a third instruction. This indicates one or more of the following: whether the user equipment is configured with a first dual connection, a bearer, or whether a QoS flow or a PDU session is configured with the first bearer.
  • the core network device sends a QoS parameter to the first access network device, and the QoS parameter is determined according to the indication information.
  • the first dual connection is associated with the first access network device and the second access network device; the air interface transmission capability of the second access network device supports the air interface rate required by the second QoS parameter.
  • the access network device where the PDCP anchor point of the first bearer packet data convergence protocol is located supports the air interface rate required by the second QoS parameter.
  • the indication information is carried in one or more of the following signaling: initial context establishment response, UE context modification response, bearer establishment response, bearer modification response, PDU session resource establishment response or PDU session resource modification response.
  • the indication information may also be carried in other signaling or newly defined signaling.
  • the present application provides a signal transmission method applied to a user equipment side.
  • the method may include: the user equipment sends an instruction to a core network device, and the instruction may be referred to as a fourth instruction, which is used to indicate at least one of the following : Whether the user equipment is configured with the first dual connection, the related data stream or the related bearer, or whether the related PDU session is configured to the first bearer.
  • the indication information is used by the core network device to determine a QoS parameter sent to the first access network device.
  • the present application provides a signal transmission method, which is applied to a core network device side.
  • the method may include: the core network device receives an instruction sent by a user equipment, the instruction may be referred to as a fourth instruction, and is used to indicate at least the following One item: Whether the user equipment is configured with the first dual connection, the related data stream or the related bearer, or whether the related PDU session is configured to the first bearer.
  • the indication information is used by the core network device to determine a QoS parameter sent to the first access network device.
  • the first dual connection is associated with the first access network device and the second access network device; the air interface transmission capability of the second access network device supports the air interface rate required by the second QoS parameter.
  • the access network device where the PDCP anchor point of the first bearer packet data convergence protocol is located supports the air interface rate required by the second QoS parameter.
  • the indication may be carried in NAS signaling.
  • the present application provides a network device, including multiple functional units, for correspondingly executing the method provided in any one of the first aspect or the possible implementation manner of the third aspect.
  • the network device may be implemented as the first access network device in the first aspect or the third aspect.
  • the present application provides a network device, including multiple functional units, for correspondingly executing the method provided in any one of the second aspect, the fourth aspect, or the sixth possible implementation manner.
  • the network device may be implemented as a core network device in the second aspect or the fourth aspect or the sixth aspect.
  • the present application provides a user equipment, including multiple functional units, for correspondingly executing the method provided in any one of the possible implementation manners of the fifth aspect.
  • this application provides an access network device for performing the signal transmission method described in any one of the first aspect or the possible implementation manner of the third aspect.
  • the access network device may be implemented as the first access network device in the first aspect or the third aspect.
  • the access network device may include a memory, a processor coupled to the memory, and a transceiver, where the transceiver is configured to communicate with other communication devices (such as a core network device and a UE).
  • the memory is configured to store the implementation code of the signal transmission method described in any one of the first aspect or the possible implementation manner of the third aspect
  • the processor is configured to execute the program code stored in the memory, that is, execute the first aspect or the third aspect The provided method in any of the possible embodiments.
  • the present application provides a core network device for implementing the signal transmission method described in any one of the second aspect, the fourth aspect, or the sixth possible implementation manner.
  • the core network device may include a memory, a processor coupled to the memory, and a transceiver, where the transceiver is configured to communicate with other communication devices (such as an access network device).
  • the memory is configured to store the implementation code of the signal transmission method described in any one of the second aspect or the fourth aspect or the sixth possible implementation manner
  • the processor is configured to execute the program code stored in the memory, that is, execute the second aspect Or the method provided in any one of the fourth or sixth possible implementations.
  • the present application provides a user equipment for performing the signal transmission method described in any one of the possible implementation manners of the fifth aspect.
  • the user equipment may include a memory, a processor coupled to the memory, and a transceiver, where the transceiver is configured to communicate with other communication devices (such as an access network device).
  • the memory is configured to store the implementation code of the signal transmission method described in any one of the possible implementation manners of the fifth aspect
  • the processor is configured to execute the program code stored in the memory, that is, execute any one of the possible implementation manners of the fifth aspect.
  • the present application provides a communication system.
  • the communication system includes: an access network device and a core network device.
  • the access network device may be the access network device described in the seventh aspect or the tenth aspect.
  • the core network device may be the core network device described in the eighth aspect or the eleventh aspect.
  • the present application provides a communication system.
  • the communication system includes: a user equipment, an access network device, and a core network network device.
  • the user equipment may be the user equipment described in the ninth aspect or the twelfth aspect.
  • the access network device may be the access network device described in the seventh aspect or the tenth aspect.
  • the core network device may be the core network device described in the eighth aspect or the eleventh aspect.
  • the present application provides a computer-readable storage medium on which instructions are stored.
  • the computer-readable storage medium When the computer-readable storage medium is run on a computer, the computer executes any one of the first to sixth aspects described above. Signal transmission method.
  • the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to execute the signal transmission method described in any one of the first to sixth aspects.
  • Figure 1 shows a variety of bearer types in a DC architecture
  • FIG. 2 shows a system architecture of a wireless communication system involved in the present application
  • 3A-3C illustrate several typical MR-DC architectures
  • 4A-4B illustrate several processes for configuring an E-RAB as an SCG split bearer involved in this application
  • FIG. 5 shows an EPS bearer service architecture involved in this application
  • FIG. 6 shows a QoS architecture under 5GC involved in this application
  • FIG. 7 shows an overall flow of a signal transmission method provided by the present application
  • FIG. 8 shows a flow of QoS parameter interaction between the UE and the core network in the present application
  • FIG. 9 shows another process for the interaction of QoS parameters between the UE and the core network in this application.
  • FIG. 10 illustrates another process of QoS parameter interaction between the UE and the core network in this application
  • FIG. 11 shows still another procedure for the interaction of QoS parameters between the UE and the core network in this application.
  • FIG. 12 shows another procedure for interaction between QoS parameters between the UE and the core network in this application
  • FIG. 13 illustrates another process of interaction between QoS parameters between the UE and the core network in this application
  • FIG. 14 shows another process of interaction between QoS parameters between the UE and the core network in this application
  • FIG. 15 shows still another procedure of interaction between QoS parameters between the UE and the core network in this application.
  • FIG. 16 shows still another procedure for the interaction of QoS parameters between the UE and the core network in this application
  • FIG. 17 shows an architecture of an access network device in the present application
  • FIG. 18 illustrates an architecture of a core network device in the present application
  • FIG. 19 shows a functional structure of a wireless communication system and a network device provided by the present application.
  • FIG. 2 shows a wireless communication system according to the present application.
  • the wireless communication system can work in a high frequency band, and is not limited to a long-term evolution (LTE) system, but also a fifth-generation mobile communication (5G) system, a new air interface (NR) system, and machine-to-machine communication ( Machine (Machine, M2M) system and so on.
  • the wireless communication system 100 may include: a master network node (Master Node) (MN) 101, a secondary network node (Secondary Node (SN) 103), one or more terminal devices 107, and a core network 105.
  • the terminal device 107 establishes connections with the primary network node 101 and the secondary network node 103, respectively.
  • the primary network node 101 and the secondary network node 103 are access network devices.
  • the primary network node 101 may be a base transceiver station (BTS) in a Time Division Synchronous Code Multiple Division Access (TD-SCDMA) system. It may be an evolutionary base station (Evolutionary Node B, eNB) in the LTE system, and a gNB in a 5G system or a new air interface (NR) system.
  • the primary network node 101 (or the secondary network node 103) may also be an access point (AP), a transmission node (Trans TRP), a central unit (CU), or other network entities, and may include the above Some or all of the functions of a network entity.
  • the terminal devices 107 may be distributed throughout the wireless communication system 100, and may be stationary or mobile.
  • the terminal device 107 may be a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, a mobile client, and so on.
  • the communication interface in the wireless communication system 100 shown in FIG. 2 is implemented as follows:
  • the primary network node 101 and the core network 105 can transmit control information or user data through a blackhaul interface 111 (such as the S1 interface), and the secondary network node 103 and the core network 105 can communicate through a blackhaul interface 112 (such as S1 interface) transmits user data.
  • a blackhaul interface 111 such as the S1 interface
  • a blackhaul interface 112 such as S1 interface
  • the primary network node 101 and the secondary network node 103 can communicate with each other directly or indirectly through a non-ideal blackhaul interface 113.
  • the primary network node 101 interacts with the terminal device 107 through the wireless interface 114, and the secondary network node 103 interacts with the terminal device 107 through the wireless interface 115.
  • the interfaces 114 and 115 may be Uu interfaces.
  • the wireless communication system 100 shown in FIG. 2 may adopt the following typical MR-DC architectures.
  • the core network is an Evolved Packet Core (EPC)
  • the primary network node 101 is an LTE base station (such as an eNB)
  • the secondary network node 103 is an NR base station (such as gNB).
  • the core network 105 may include network elements such as a Mobility Management Entity (MME) and a Service Gateway (S-GW).
  • MME Mobility Management Entity
  • S-GW Service Gateway
  • the eNB is connected to the MME through the S1-C interface.
  • the eNB may also be connected to the SGW through the S1-U interface. That is, the backhaul interface 111 between the main network node 101 and the core network 105 may include a control plane interface S1-C and a data plane interface S1-U.
  • the backhaul interface 112 between the secondary network node 103 and the core network 105 is a data plane interface S1-U.
  • the non-ideal backhaul interface 113 between the primary network node 101 and the secondary network node 103 may be an X2 interface.
  • the LTE eNB can provide the UE with air interface resources through at least one LTE cell.
  • This at least one LTE cell is called MCG;
  • the NR gNB can provide the UE with air interface resources through at least one NR cell.
  • At least one NR cell is called SCG.
  • the core network is 5GC (5G Core)
  • the primary network node 101 is an LTE base station (such as an eNB)
  • the secondary network node 103 is an NR base station (such as a gNB).
  • the core network 105 may include network elements such as AMF, UPF, and SMF.
  • the eNB is connected to the AMF through the NG-C interface.
  • the eNB may also be connected to the UPF / SMF through the NG-U interface. That is, the backhaul interface 111 between the main network node 101 and the core network 105 may include a control plane interface NG-C, and optionally a data plane interface NG-U.
  • the backhaul interface 112 between the secondary network node 103 and the core network 105 may be a data plane interface NG-U.
  • the non-ideal backhaul interface 113 between the primary network node 101 and the secondary network node 103 may be an Xn interface.
  • the LTE eNB can provide the UE with air interface resources through at least one LTE cell.
  • This at least one LTE cell is called MCG;
  • the NR gNB can provide the UE with air interface resources through at least one NR cell.
  • At least one NR cell is called SCG.
  • the core network is 5GC (5G Core)
  • the primary network node 101 is an NR base station (such as gNB)
  • the secondary network node 103 is an LTE base station (such as an eNB).
  • the core network 105 may include network elements such as AMF, UPF, and SMF.
  • the gNB is connected to the AMF through the NG-C interface.
  • gNB can also be connected to UPF / SMF through an NG-U interface. That is, the backhaul interface 111 between the main network node 101 and the core network 105 may include a control plane interface NG-C, and optionally a data plane interface NG-U.
  • the backhaul interface 112 between the secondary network node 103 and the core network 105 may be a data plane interface NG-U.
  • the non-ideal backhaul interface 113 between the primary network node 101 and the secondary network node 103 may be an Xn interface.
  • the NR gNB can provide the UE with air interface resources through at least one NR cell.
  • This at least one NR cell is called MCG.
  • the LTE eNB can provide the UE with air interface resources through at least one LTE cell.
  • At least one LTE cell is called SCG.
  • the wireless communication system 100 shown in FIG. 2 can also use other DC architectures, such as the LTE DC architecture (MN and SN are LTE base stations, and the core network is EPC / 5GC), NR DC architecture (MN and SN are both NR base stations and the core network is EPC / 5GC).
  • LTE DC architecture MN and SN are LTE base stations, and the core network is EPC / 5GC
  • NR DC architecture MN and SN are both NR base stations and the core network is EPC / 5GC.
  • the standard increases the air interface rate supported by the system from the original 10Gbps to 4Tbps.
  • the single board capability of the LTE base station needs to be upgraded, which brings great challenges to actual deployment.
  • the standard introduces a split bearer (or SCG split bearer) that ends in the SN.
  • the PDCP anchor point of the SCG split bearer is at the NR base station.
  • the following data transmission is used as an example.
  • the NR base station receives data from the core network and performs data offload. Part of the data is distributed to the LTE base station and sent by the LTE base station to the UE. The other part of data is sent by the NR base station to the UE. Because the board capacity of the NR base station supports higher air interface rates, the default is large enough. Therefore, the SCG split bearer can avoid upgrading the LTE base station hardware.
  • the LTE base station in the EN-DC architecture can configure an evolved radio access bearer (Evolved Radio Access Bearer, E-RAB) with high air interface rate requirements as an SCG split bearer.
  • E-RAB evolved Radio Access Bearer
  • the E-RAB can be initially configured as the MCG bearer terminating at the MN, and the MN cannot support the high air interface rate required by the E-RAB.
  • the LTE base station may modify the E-RAB to another bearer type, such as a split bearer terminated at the SN (ie, SCG split bearer).
  • S101-S102 shows the process of adding a secondary base station by the primary base station
  • S103-S104 shows the process of reconfiguring the UE by the primary base station, specifically configuring the air interface configuration of the secondary base station for the UE
  • S105 shows the primary base station notifying the secondary base station: The UE has successfully configured the air interface configuration of the secondary base station
  • S106 shows the process of the UE accessing the secondary base station
  • S107-S108 shows the process of the primary base station requesting the core network to apply a modification to the E-RAB.
  • the modification can be specifically E-RAB configuration to bearer terminated at MN is modified to configure E-RAB to SCG split bearer. In this way, the air interface rate required by the modified E-RAB can be well supported by the SN (that is, the NR base station).
  • the LTE base station may also directly configure the E-RAB to the bearer terminated in the SN in the initial context establishment procedure (initial context setup procedure).
  • the core network initiates an initial context establishment process. The purpose of this process is to establish the necessary comprehensive initial UE context.
  • the initial UE context may include E-RAB context, security key, handover restriction list, UE air interface capabilities and UE security capabilities, etc .
  • S202-S203 shows the process of adding a secondary base station by the primary base station
  • S204-S205 shows the process of reconfiguring the UE by the primary base station, specifically configuring the air interface configuration of the secondary base station for the UE
  • S206 The primary base station notifies the secondary base station that the UE has successfully configured the air interface configuration of the secondary base station
  • S207 shows the process of the UE accessing the secondary base station
  • S208 shows that the MN feeds back the initial context establishment result to the core network.
  • the E-RAB can be directly configured to terminate the bearer on the SN (that is, the NR base station), and the air interface rate required by the E-RAB can be well supported by the SN.
  • the core network does not know the RAN side configuration, such as whether the LTE base station (ie, MN) supports high-air interface rates, or whether the UE is configured with DC, or whether the E-RAB is configured with SCG split bearer.
  • the core network determines a QoS parameter applied to the UE or the E-RAB according to the account opening / registration information of the UE, and delivers the QoS parameter to the LTE base station.
  • the issued QoS parameters can carry an initial context setup request (initial context setup request), a UE context modification request (UE context modification request), an E-RAB setup request (E-RAB setup setup request), and an E-RAB modification request (E -RAB (modify request).
  • the core network will issue QoS parameters with higher air interface rates to the LTE base stations.
  • the LTE base station may not have hardware upgrades, and the LTE base station may not have DC configured for the UE or SCG split bearer for the E-RAB.
  • the LTE base station will reject the initial setup request or the E-RAB setup request.
  • the LTE base station can feedback the rejection reason to the core network.
  • the core network may adjust the issued QoS parameters according to the rejection reason fed back by the LTE base station, and re-initiate the initial context establishment process or E-RAB establishment process. But this will seriously affect the efficiency of data transmission.
  • the technical solution provided in this application can effectively determine the QoS parameters applied to the UE or the bearer, and does not need to upgrade the single board capability of the LTE base station.
  • the specific scheme will be described in detail in the subsequent content, and will not be repeated here.
  • the wireless communication system 100 shown in FIG. 2 is only for more clearly illustrating the technical solution of the present application, and does not constitute a limitation on the present application.
  • Those skilled in the art will know that with the evolution of network architecture and new services, In the emergence of scenarios, the technical solutions provided in this application are also applicable to similar technical problems.
  • This application provides a signal transmission method, which can effectively determine the QoS parameters applied to the UE or the bearer without the need to upgrade the single board capability of the LTE base station.
  • the QoS parameters may include one or more of UE-level QoS parameters and bearer-level QoS parameters under the EPC architecture.
  • the UE-level QoS parameters include AMBR, and each UE corresponds to an AMBR value, which indicates that the sum of the data transmission rates (uplink or downlink) of all non-GBR bearers on the UE can reach the value of the AMBR at most.
  • Bearer-level QoS parameters include GBR.
  • GBR refers to the minimum bit rate (uplink or downlink) that the system guarantees to carry. This minimum bit rate can be guaranteed even when network resources are tight.
  • the QoS parameters may also include one or more of data flow-level QoS parameters and packet data unit session (PDU session) level QoS parameters under the 5GC architecture.
  • the PDU session-level QoS parameter includes AMBR, which refers to the maximum achievable value of the AMBR of a set of QoS (flow or downlink) data transmission rates.
  • Bearer-level QoS parameters include GBR, which means that the system guarantees the minimum bit rate (upstream or downstream) of QoS flow, which can be guaranteed even under the condition of tight network resources.
  • UE-level QoS parameters limit the bit rate of non-GBR bearers.
  • PDU session level QoS parameters PDU AMBR
  • UE AMBR UE level QoS parameters
  • the bearer-level QoS parameter limits the bit rate of the GBR bearer.
  • the data flow-level QoS parameter limits the bit rate of the GBR QoS flow.
  • GBR bearer means that dedicated network resources are permanently allocated when the bearer is established / modified, and guaranteed rates can be used even when network resources are tight.
  • the non-GBR bearer is a bearer with no guaranteed rate, and the service rate can be reduced when network resources are tight.
  • Evolved packet system (EPS) bearer / evolved radio access bearer (E-RAB) (2) Evolved packet system (EPS) bearer / evolved radio access bearer (E-RAB)
  • the EPS bearer realizes the service connection between the terminal and the PDNGW through the cascade of radio bearers, S1 bearers, and S5 / S8 bearers through the binding relationships between different layers.
  • the terminal uses an uplink service flow template to bind a service data flow to an EPS bearer.
  • an uplink service flow template to bind a service data flow to an EPS bearer.
  • multiple packet filter in the service flow template multiple service data flows can be multiplexed onto one EPS bearer.
  • PDNGW uses a downlink service flow template to bind a service data flow to an EPS bearer. Similarly, through multiple packet filter in the service flow template, multiple service data flows can be multiplexed onto one EPS bearer.
  • E-RAB is used to transmit an EPS bearer packet between the terminal and the EPC. There is a one-to-one correspondence between E-RAB and EPS bearers.
  • One radio bearer is used to transmit an E-RAB bearer packet between the terminal and the eNodeB. There is a one-to-one correspondence between radio bearers and E-RAB / EPS bearers.
  • One S1 bearer is used to transmit an E-RAB bearer packet between an eNodeB and an S-GW.
  • One S5 / S8 bearer is used to transmit an EPS bearer packet between the S-GW and PDNGW.
  • the terminal stores the mapping relationship between the uplink packet filter and the radio bearer to form a binding between the service data flow and the radio bearer in the uplink direction.
  • the PDNGW stores the mapping relationship between the downlink packet filter and the S5 / S8a bearer to form a binding between the service data flow in the downlink direction and the S5 / S8a bearer.
  • the eNodeB stores a one-to-one mapping relationship between the radio bearer and the S1 bearer to form a binding including the radio bearer in the uplink and downlink directions and the S1 bearer.
  • the S-GW stores a one-to-one mapping relationship between the S1 bearer and the S5 / S8a bearer to form a binding including the S1 bearer and the S5 / S8a bearer in the uplink and downlink directions.
  • EPS bearer and E-RAB please also refer to the protocol 3GPP TS 36.300.
  • the 5GC establishes one or more PDU sessions, and each PDU session includes one or more QoS flows.
  • the NG-RAN For each UE, the NG-RAN establishes one or more data radio bearers (DRBs) for each PDU session, and each DRB includes one or more QoS flows.
  • DRBs data radio bearers
  • the NG-RAN may establish at least one default DRB for each PDU session, which is used to transmit data of QoS flows that are not configured with a mapping relationship.
  • the packet filter at the NAS layer in the UE and the packet filter at the NAS layer in the 5GC associate uplink and downlink data packets with QoS flow.
  • QoS flow is the finest granularity for distinguishing QoS in PDU sessions.
  • the QoS flow in the PDU session is identified by the QoS flow ID (QFI) carried in the encapsulation header of the NG-U connection transmission.
  • QFI QoS flow ID
  • 5GC guarantees QoS by mapping packets to appropriate QoS flows
  • NG-RAN guarantees QoS by mapping packets to appropriate DRBs. Therefore, there are two steps of mapping from IP-flow to QoS flow and QoS flow to DRB.
  • QoS flows belonging to the same PDU session can be mapped to different bearer types, so there can be two different SDAP entities configured for the same PDU session, one of which corresponds to the primary base station and the other corresponds to the secondary station ( For example, when a MN terminated MCG bearer and a SN terminated SCG bearer are applied to two different QoS flows of the same PDU session).
  • the main inventive principles of this application may include: the core network issues two sets of QoS parameters to the access network device, and the access network device selects from these two sets of QoS parameters to apply to the relevant UE or related bearer or related PDU session or Relevant QoS flow QoS parameters, and indicate the selected QoS parameters to the core network.
  • the air interface rate required by the selected QoS parameters can be supported by the RAN.
  • the core network can set corresponding QoS management policies, such as rate adjustment policies, based on the QoS parameters selected by the RAN side, to facilitate data transmission between the UE and the core network.
  • the air interface rate required by the selected QoS parameter can be supported by the RAN, including one or more of the following meanings:
  • the air interface rate required by the QoS parameter applied to the UE can be supported by the RAN, which refers to the data between the UE and the core network.
  • Transmission involves the access network equipment (such as NR base station) with high air interface transmission capability, and the air interface rate required by the QoS parameters applied to the bearer / PDU session / QoS flow can be supported by the RAN, meaning that the bearer / PDU session / QoS flow is configured to terminate Bearer of access network equipment (such as NR base station) with high air interface transmission capability.
  • the air interface rate required by one set of QoS parameters is lower, and the air interface rate required by the other set of QoS parameters is higher.
  • a set of QoS parameters that require a lower air interface rate may be referred to as a first QoS parameter, and a set of QoS parameters that require a higher air interface rate may be referred to as a second QoS parameter. That is, the air interface rate required by the first QoS parameter is smaller than the air interface rate required by the second QoS parameter.
  • the RAN side can select the first QoS parameter from the two sets of parameters issued by the core network to apply to the related UE or related bearer or related PDU session or related QoS flow; under the condition that QoS parameters with high air interface rate requirements can be supported by the RAN, the RAN side can select the second QoS parameter from the two sets of parameters issued by the core network to apply to the relevant UE or related bearer or related PDU session or related QoS flow.
  • the QoS parameters applied to the related UE or related bearer or related PDU session or related QoS flow are selected by the RAN side and indicated to the core network, rather than being determined solely by the core network based on the UE account opening / registration information, It can avoid the problem of refusing to establish a service flow because the RAN side cannot support the QoS parameters issued by the core network, or the problem of overloading the air interface load on the RAN side.
  • the refusal to establish a service flow may be, but is not limited to, reflected in: refusal to establish an initial context, refusal to establish an E-RAB, refusal to establish a PDU session, refusal to establish a QoS flow, and the like.
  • the related UE refers to the UE that performs service flow transmission with the core network
  • the related bearer refers to the EPS bearer / E-RAB to which the service flow transmitted between the UE and the core network is mapped
  • the related PDU session refers to the UE.
  • the PDU session to which the service flow transmitted to the core network is mapped.
  • the related QoS flow refers to the QoS flow to which the service flow transmitted between the UE and the core network is mapped.
  • the data transmission method provided in this application may include:
  • the core network device sends a first QoS parameter and a second QoS parameter to the first access network device.
  • the first access network device receives the first QoS parameter and the second QoS parameter sent by the core network device.
  • a control plane connection such as an S1-C connection, an NG-C connection
  • MN master base station
  • the first access network device selects a set of QoS parameters from the first QoS parameter and the second QoS parameter.
  • the manner in which the first access network device selects a QoS parameter may include, but is not limited to:
  • the first access network device may select the second QoS parameter to apply to the relevant UE or related bearer or related PDU session or related QoS flow.
  • the air interface transmission capability of the first access network device supporting the air interface rate required by the second QoS parameter may mean that the first access network device is an NR base station or the first access network device is an LTE base station after hardware upgrade.
  • the first access network device under the condition that the air interface transmission capability of the first access network device cannot support the air interface rate required by the second QoS parameter, if one or more of the following conditions exist, the first access network device
  • the first QoS parameter may be selected and applied to the related UE or related bearer or related PDU session or related QoS flow:
  • the related UE is not configured with the first dual connection.
  • the first dual connection is associated with the first access network device and the second access network device, wherein the air interface transmission capability of the second access network device supports the air interface rate required by the second QoS parameter.
  • the association of the first dual connection with the first access network device and the second access network device means that the first dual connection needs to use air interface resources of the first access network device and the second access network device.
  • the related EPS bearer / E-RAB is not configured to the first bearer.
  • the access network device where the PDCP anchor point of the first bearer supports the air interface rate required by the second QoS parameter.
  • the access network device where the PDCP anchor point of the first bearer is an NR base station or an LTE base station after hardware upgrade.
  • the first bearer may be a bearer terminated at the SN, such as an MCG bearer terminated at the SN, an SCG bearer terminated at the SN, or an SN terminated
  • One or more of the split bearer ie, SCG split bearer).
  • the related QoS flow is not configured to the first bearer.
  • first bearer reference may be made to related content in the above 2 and will not be repeated here.
  • the related PDU session is not configured to the first bearer.
  • first bearer refer to related content in the above 2 and will not be repeated here.
  • the air interface transmission capability of the first access network device cannot support the air interface rate required by the second QoS parameter may mean that the first access network device is an LTE base station.
  • the air interface transmission capability of the second access network device supporting the air interface rate required by the second QoS parameter may mean that the first access network device is an NR base station, or the second access network device is an LTE base station after hardware upgrade.
  • the first access network device may select the second QoS parameter to be applied to the relevant UE or the related device regardless of the air interface transmission capability of the first access network device.
  • the relevant UE is configured to the first dual connection.
  • the related EPS bearer / E-RAB is configured to the first bearer.
  • the related QoS flow is configured to the first bearer.
  • the related PDU session is configured to the first bearer.
  • the first access network device sends an instruction to the core network device, where the instruction is used to instruct the first access network device to select a QoS parameter from the first QoS parameter and the second QoS parameter.
  • this instruction may be referred to as a first instruction.
  • the core network can set corresponding QoS management policies, such as rate adjustment policies, based on the QoS parameters selected by the RAN side, which facilitates data transmission between the UE and the core network.
  • the first QoS parameter and the second QoS parameter may be carried in one or more of the following signaling: UE context establishment request or UE context modification request, bearer establishment request or bearer modification request, PDU session resource establishment request, or PDU session resource modification request.
  • the first QoS parameter and the second QoS parameter may also carry other signaling or newly defined signaling.
  • the first instruction may be implemented in the following manner:
  • the first indication may be implemented as indication information carried in specific signaling, such as bits, fields, information elements (IE), and the like.
  • the first instruction may be referred to as first instruction information.
  • the first indication may be carried in one or more of the following signaling: UE context establishment response or UE context modification response, bearer establishment response or bearer modification response, bearer modification indication, PDU session resource establishment response or PDU session resource modification response, PDU session resource modification indication.
  • the first indication information may also carry other signaling or newly defined signaling.
  • the first instruction can also be implemented as a separate instruction message. At this time, the first instruction may be referred to as a first instruction message.
  • the first indication message may include information indicating a first QoS parameter and information indicating a second QoS parameter. If the information indicating the first QoS parameter (or the information indicating the second QoS parameter) takes a specific value, it indicates that the QoS parameter selected by the first access network device is the first QoS parameter (or the second QoS parameter).
  • the first indication message when the first indication message includes specific information (such as a specific bit, a specific field, a specific IE, etc.), it indicates that the QoS parameter selected by the first access network device is the first QoS parameter.
  • specific information such as a specific bit, a specific field, a specific IE, etc.
  • the first indication message when the first indication message includes specific information (such as a specific bit, a specific field, a specific IE, etc.), it indicates that the QoS parameter selected by the first access network device is the second QoS parameter.
  • specific information such as a specific bit, a specific field, a specific IE, etc.
  • the access network device that supports the air interface rate required by the second QoS parameter in this application may also mean that the air interface transmission capability reaches a certain level (such as a specific value) Air interface rate) NR base station or LTE base station.
  • a certain level such as a specific value
  • Air interface rate Air interface rate
  • This specific degree can be set according to actual needs, and this application does not limit this. That is to say, it is not limited to several existing typical MR-DC architectures.
  • the technical solution provided in this application can also be applied to NR DC architecture, LTE DC architecture, and other types of DC architectures in the future.
  • the specific degree may be higher than 4 Tbps, that is, the access network device supporting the air interface rate required by the second QoS parameter may be an enhanced NR base station, and its air interface transmission capacity is higher than that of the existing NR base station. Transmission capacity.
  • the specific degree may be lower than 10 Gbps, and the air interface rate required by the second QoS parameter may be lower than 10 Gbps, and the air interface rate required by the first QoS parameter is lower.
  • QoS parameters can include bearer-level QoS parameters, such as the presence of GBR QoS information for GBR bearers.
  • the GBR QoS information specifically includes the maximum downlink bit rate, maximum uplink bit rate, guaranteed downlink bit rate, and guaranteed uplink bit rate.
  • the QoS parameters may also include UE-level QoS parameters, such as AMBR.
  • AMBR indicates that the sum of the data transmission rates of all non-GBR bearers on this UE can reach the maximum value of the AMBR, and it also distinguishes between uplink and downlink.
  • the air interface rate is based on UE granularity.
  • the two sets of QoS parameters issued by the core network can be two AMBRs, one of which is the baseline AMBR and the other of which is the extended AMBR.
  • the air interface rate required by the baseline AMBR is lower than the air interface rate required by the extended AMBR.
  • the baseline AMBR may be a first QoS parameter
  • the extended AMBR may be a second QoS parameter.
  • the baseline AMBR is applied to the related UE when the air interface transmission capability of the first access network device does not support the air interface rate required by the second QoS parameter and the related UE is not configured to the first dual connection.
  • the extended AMBR is applied to the related UE when the air interface transmission capability of the first access network device supports the air interface rate required by the second QoS parameter, and / or the related UE is configured to the first dual connection.
  • the first dual connection reference may be made to the related description in the foregoing content, which is not repeated here.
  • the first access network device may send a first instruction to the core network to indicate the selected AMBR applied to the relevant UE. In this way, the core network can perform QoS management, such as a rate adjustment policy, on the related UE according to the AMBR indicated by the first access network device.
  • the interaction between UE-level QoS parameters between the core network and the access network device may occur during an initial context setup procedure.
  • the baseline AMBR and the extended AMBR may be carried in the initial context establishment request.
  • the first access network device may indicate the selected AMBR to the core network through the initial context establishment response, that is, the AMBR selected by the first access network device may be carried in the initial context establishment response.
  • the interaction between UE-level QoS parameters between the core network and the access network device may also be sent in a UE context modification procedure as shown in FIG. 9.
  • the baseline AMBR and the extended AMBR may be carried in a UE context modification request.
  • the first access network device may indicate the selected AMBR to the core network through a UE context modification response (or called UE context modification confirmation), that is, the AMBR selected by the first access network device may be carried in the UE context modification response (or called Modify confirmation for UE context).
  • the interaction of UE-level QoS parameters between the core network and the access network device may also occur in other processes, such as a bearer modification instruction process or a newly defined process.
  • the air interface rate is based on the granularity of bearer.
  • the two sets of QoS parameters issued by the core network can be two kinds of GBR QoS information, one of which is the baseline GBR QoS information, and the other is the extended GBR QoS information.
  • the air interface rate required by the baseline GBR QoS information is lower than the air interface rate required by the extended GBR QoS information.
  • the baseline GBR QoS information may be a first QoS parameter
  • the extended GBR QoS information may be a second QoS parameter.
  • the baseline GBR QoS information is applied to the relevant bearer when the air interface transmission capability of the first access network device does not support the air interface rate required by the second QoS parameter and the relevant bearer is not configured as the first bearer.
  • the extended GBR QoS information is applied to the relevant bearer when the air interface transmission capability of the first access network device supports the air interface rate required by the second QoS parameter, and / or the relevant bearer is configured as the first bearer.
  • the first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the first access network device may send a first indication to the core network to indicate the selected GBR applied to the relevant bearer. In this way, the core network can perform QoS management on the related bearer, such as a rate adjustment policy, according to the GBR QoS information indicated by the first access network device.
  • the interaction between the bearer-level QoS parameters between the core network and the access network equipment can also occur during the initial context establishment process (initial context setup procedure) or the UE context modification process (UE context modification procedure).
  • the interaction of the bearer-level QoS parameters between the core network and the access network equipment may also occur during a bearer establishment process (such as E-RAB setup procedure).
  • a bearer establishment process such as E-RAB setup procedure.
  • the baseline GBR and the extended GBR may be carried in a bearer establishment request.
  • the first access network device may indicate the selected GBR to the core network through the bearer establishment response, that is, the GBR selected by the first access network device may be carried in the bearer establishment response.
  • the interaction of the bearer-level QoS parameters between the core network and the access network device may also occur during a bearer modification process (such as E-RAB modification procedure).
  • a bearer modification process such as E-RAB modification procedure
  • the baseline GBR and the extended GBR can be carried in a bearer modification request.
  • the first access network device may indicate the selected GBR to the core network through a bearer modification response (or called a bearer modification confirmation), that is, the GBR selected by the first access network device may be carried in the bearer modification response (or called a bearer modification) confirming.
  • the interaction of the bearer-level QoS parameters between the core network and the access network equipment may also occur in other processes, such as a bearer modification instruction process or a newly defined process.
  • an appropriate QoS parameter is selected through interaction between the core network device and the first access network device, which can avoid access that occurs because the first access network device cannot meet the air interface rate required by the QoS parameter.
  • Network equipment rejects the problem of UE context establishment / bearer establishment.
  • the baseline GBR QoS information and the extended GBR QoS information can reuse the GBR QoS information element (IE) defined by the existing protocol.
  • the IE indicates the maximum downlink bit rate, maximum uplink bit rate, guaranteed downlink bit rate, and guaranteed uplink bit rate carried by the GBR, as shown in Table 1:
  • E-RAB Guaranteed Bit Rate Rate Downlink M E-RAB Guaranteed Bit Rate Rate Uplink M Extended E-RAB Maximum Maximum Bit Rate Downlink O Extended E-RAB Maximum Bit Rate Rate Uplink O Extended E-RAB Guaranteed Bit Rate Downlink O Extended E-RAB Guaranteed Bit Rate Uplink O Extended E-RAB Guaranteed Bit Rate Uplink O
  • E-RAB Maximum Bit Rate Rate Downlink indicates the maximum downlink bit rate
  • E-RAB Maximum Bit Rate Uplink indicates the maximum uplink bit rate
  • E-RAB Guaranteed Bit RateRate Downlink indicates a guaranteed downlink bit rate
  • E-RAB Guaranteed Bit Rate Uplink indicates the guaranteed bit rate for uplink
  • Extended E-RAB Maximum Bit Rate Downlink “indicates the maximum downlink bit rate extended”
  • Extended E-RAB Maximum Bit Rate indicates the maximum uplink bit rate extended
  • Extended E -RAB Guaranteed Bit Rate Downlink indicates the extended guaranteed bit rate
  • Extended E-RAB Guaranteed Bit Rate Uplink indicates the extended guaranteed bit rate.
  • the optional IE in Table 1 was introduced to adapt to the 4Tbps high-air interface rate supported by LTE-NR DC.
  • the existing protocol stipulates that under the condition that optional IE appears in the GBR QoS information unit, the original mandatory IE in the GBR QoS information unit is ignored and is no longer valid.
  • the difference is that the first access network device in this application will save the baseline GBR QoS information indicated by the mandatory IE and the extended GBR QoS information indicated by the optional IE, and will save the baseline GBR indicated by the required IE.
  • the GBR QoS information applied to the relevant bearer is selected from the QoS information and the extended GBR QoS information indicated by the optional IE. That is to say, in this application, the mandatory IE and optional IE in Table 1 are both valid.
  • baseline AMBR and extended AMBR can reuse AMBR and QoS defined by existing protocols.
  • the IE indicates the maximum downlink bit rate and maximum uplink bit rate of all non-GBR bearers applied to a UE, as shown in Table 2:
  • M means required, and “O” means optional.
  • Mandatory IE can indicate baseline AMBR, and optional IE can indicate extended AMBR.
  • UE Aggregate Maximum Bit Rate Downlink indicates the maximum downlink bit rate
  • UE Aggregate Maximum Bit Rate Uplink indicates the maximum uplink bit rate
  • Extended UE Aggregate Maximum Bit Bit RateRate Downlink indicates the extended maximum bit rate.
  • the optional IE in Table 2 was introduced to adapt to the 4Tbps high-air interface rate supported by LTE-NR DC.
  • Existing protocols provide that under the condition that optional IEs appear in the AMBR QoS information unit, the original mandatory IEs in the AMBR QoS information unit are ignored and no longer valid.
  • the first access network device in this application will save the baseline AMBR indicated by the mandatory IE, it will also store the extended AMBR indicated by the optional IE, and base the AMBR and optional IE indicated by the mandatory IE. From the indicated extended AMBR, an AMBR applied to the relevant UE is selected. That is to say, in this application, the mandatory IE and optional IE in Table 2 are both valid.
  • QoS parameters can include data flow level QoS parameters, such as GBR QoS information.
  • GBR QoS information includes the downlink maximum bit rate, uplink maximum bit rate, downlink guaranteed bit rate, and uplink guaranteed bit rate of QoS flow.
  • the QoS parameters may also include PDU session-level QoS parameters, such as AMBR.
  • AMBR indicates the maximum achievable value of AMBR for the sum of the data transmission rate of non-GBR QoS flow, and it also distinguishes between uplink and downlink.
  • the air interface rate is based on the PDU session granularity.
  • the two sets of QoS parameters issued by the core network can be two AMBRs, one of which is the baseline AMBR and the other of which is the extended AMBR.
  • the air interface rate required by the baseline AMBR is lower than the air interface rate required by the extended AMBR.
  • the baseline AMBR may be a first QoS parameter
  • the extended AMBR may be a second QoS parameter.
  • the baseline AMBR is applied to the related PDU session when the air interface transmission capability of the first access network device does not support the air interface rate required by the second QoS parameter and the related PDU session is not configured to the first bearer.
  • the extended AMBR is applied to the relevant PDU session when the air interface transmission capability of the first access network device supports the air interface rate required by the second QoS parameter, and / or the related PDU session is configured to the first bearer.
  • the first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the first access network device may send a first instruction to the core network to indicate the selected AMBR applied to the related PDU session. In this way, the core network can perform QoS management on the related PDU session, such as a rate adjustment policy, according to the AMBR indicated by the first access network device.
  • the interaction of PDU session-level QoS parameters between the core network and the access network device may occur during a PDU session resource establishment process (PDU session resource setup procedure).
  • PDU session resource setup procedure PDU session resource setup procedure
  • the baseline AMBR and the extended AMBR may be carried in a PDU session resource establishment request.
  • the first access network device may indicate the selected AMBR to the core network through the PDU session resource establishment response, that is, the AMBR selected by the first access network device may be carried in the PDU session resource establishment response.
  • the interaction between the PDU session level QoS parameters between the core network and the access network device can also be sent as shown in the PDU session resource modification procedure.
  • the baseline AMBR and the extended AMBR may be carried in a PDU session resource modification request.
  • the first access network device may indicate the selected AMBR to the core network through a PDU session resource modification response (or a PDU session resource modification confirmation), that is, the AMBR selected by the first access network device may carry the PDU session resource modification response. (Or PDU session resource modification confirmation).
  • PDU session-level QoS parameters between the core network and the access network device may also occur in other processes, such as a PDU session modification indication process or a newly defined process.
  • the air interface rate uses QoS flow as the granularity.
  • the two sets of QoS parameters issued by the core network can be two kinds of GBR, one of which is the baseline GBR QoS information and the other is the extended GBR QoS information.
  • the air interface rate required by the baseline GBR QoS information is lower than the air interface rate required by the extended GBR QoS information.
  • the baseline GBR QoS information may be a first QoS parameter
  • the extended GBR QoS information may be a second QoS parameter.
  • the baseline GBR QoS information is applied to the relevant QoS flow when the air interface transmission capability of the first access network device does not support the air interface rate required by the second QoS parameter and the related QoS flow is not configured as the first bearer.
  • the extended GBR QoS information is applied to the relevant QoS flow when the air interface transmission capability of the first access network device supports the air interface rate required by the second QoS parameter, and / or the related QoS flow is configured as the first bearer.
  • the first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the first access network device may send a first instruction to the core network to indicate the selected GBR QoS information applied to the related QoS flow.
  • the core network can perform QoS management on the related QoS flow, such as a rate adjustment policy, according to the GBR QoS information indicated by the first access network device.
  • the interaction of data flow-level QoS parameters between the core network and the access network equipment can also occur during the PDU session resource establishment process (PDU session resource setup procedure) or the PDU session resource modification process. (PDU, session, resource, modification, procedure).
  • the interaction of data flow level QoS parameters between the core network and the access network device may also occur in other processes, such as a PDU session modification instruction process, or a newly defined process.
  • the interaction between the core network device and the first access network device is used to select appropriate QoS parameters, which can avoid the access that occurs because the first access network device cannot meet the air interface rate required by the QoS parameters.
  • the network device refuses to establish a PDU session.
  • the configuration on the RAN side may change.
  • the LTE base station adds an NR base station as an SN based on subsequent channel measurements, and configures an EN-DC dual connection for the UE.
  • the change in the configuration on the RAN side indicates that the air interface rate that the UE can support becomes higher, and it is possible to configure the air interface rate that requires higher QoS parameters to the UE.
  • the UE is initially configured with the dual EN-DC connection, and the connection between the UE and the SN (that is, the NR base station) is released due to reasons such as the UE moving.
  • a change in the configuration on the RAN side indicates that the air interface rate that the UE can support has become lower, and it is necessary to configure the QoS parameters that require lower air interface rates for the UE.
  • the examples are only used to explain the application and should not be construed as limiting.
  • the configuration on the RAN side may include, but is not limited to, configurations of related UEs or related bearers or related PDU sessions or related QoS flows. For example, whether the UE is configured with EN-DC, or whether E-RAB (PDU session or QoS flow) is configured to terminate the bearer at the NR base station.
  • EN-DC EN-DC
  • E-RAB PDU session or QoS flow
  • the first access network device may reselect a set of QoS parameters from the first QoS parameter and the second QoS parameter according to the changed RAN side configuration, and resend to the core network.
  • the retransmission indication may be referred to as a second indication.
  • the first access network device receives the first QoS parameter and the second QoS parameter sent by the core network device, and selects only one set of QoS parameters to indicate to the core network, and the other Although the QoS parameters are not selected, they are still retained.
  • the first access network device may need to re-indicate another set of QoS parameters to the core network.
  • the examples are only used to explain the application and should not be construed as limiting.
  • the manner in which the first access network device reselects the QoS parameter may include, but is not limited to:
  • the first access network device may reselect the second QoS parameter to be applied to the related UE or related bearer or related PDU session or related QoS flow.
  • the related UE has never been configured to the first dual connection.
  • first dual connection reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related EPS bearer / E-RAB has never been configured.
  • the first bearer becomes configured to the first bearer.
  • the related QoS flow has never been configured.
  • the first bearer becomes configured to the first bearer.
  • the related PDU session has never been configured with the first bearer and has been configured with the first bearer.
  • Regarding the first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the first access network device may reselect the first QoS parameter to be applied to the related UE or related bearer or related PDU session or related QoS flow.
  • the related UE changes from being configured with the first dual connection to being unconfigured to the first dual connection.
  • first dual connection reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related EPS bearer / E-RAB changes from a configured first bearer to an unconfigured first bearer.
  • first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related QoS flow changes from the configured first bearer to the unconfigured first bearer.
  • first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the related PDU session changes from being configured to the first bearer to being unconfigured to the first bearer.
  • first bearer reference may be made to the related description in the foregoing content, which is not repeated here.
  • the second indication may be implemented as indication information carried in specific signaling, such as bits, fields, information elements (IE), etc.
  • the second indication may be referred to as the second indication information.
  • the second instruction may also be implemented as a separate instruction message. At this time, the second instruction may be referred to as a second instruction message.
  • the specific signaling implementation of the second instruction may include the following ways:
  • the re-interaction of the UE-level QoS parameters between the core network and the access network equipment may occur in an initial context establishment process (initial context setup procedure) or a UE context modification process (UE context modification procedure). That is, the second indication may be carried in the initial context establishment response or the UE context modification response.
  • the second indication may also occur during the UE context modification indication process. That is, the second indication may be carried in a UE context modification indication (UE context modification indication).
  • UE context modification indication For details, refer to FIG. 14.
  • the re-interaction of the bearer-level QoS parameters between the core network and the access network equipment can also occur in the initial context establishment process (initial context setup procedure) or the UE context modification process (UE context modification procedure).
  • the re-interaction of the bearer-level QoS parameters between the core network and the access network equipment can also occur in the bearer establishment process (such as E-RAB setup procedure) or in the bearer modification process (such as E-RAB modification procedure). That is, the second indication information may also be carried in a bearer establishment response or a bearer modification response.
  • the re-interaction of the bearer-level QoS parameters between the core network and the access network equipment may also occur during the UE context modification indication process. That is, the second indication may be carried in a UE context modification indication (UE context modification indication). For details, refer to FIG. 14.
  • the re-interaction of the bearer-level QoS parameters between the core network and the access network equipment may also occur during the E-RAB modification instruction process. That is, the second instruction may be carried in an E-RAB modification instruction (E-RAB modification indication).
  • E-RAB modification indication E-RAB modification indication
  • the re-interaction of PDU session-level QoS parameters between core network and access network equipment can occur in the PDU session resource establishment process (PDU session resource setup procedure) or in the PDU session resource modification process (PDU session resource modification procedure). That is, the second indication may be carried in a PDU session resource establishment response or a PDU session resource modification response.
  • the second indication may be carried in a PDU session modification indication (PDU session modification indication).
  • PDU session modification indication For details, refer to FIG. 16.
  • the re-interaction of data flow-level QoS parameters between core network and access network equipment can also occur in the PDU session resource establishment process (PDU session resource setup procedure) or in the PDU session resource modification process (PDU session session resource modification procedure). .
  • PDU session resource setup procedure PDU session resource setup procedure
  • PDU session resource modification procedure PDU session resource modification procedure
  • the re-interaction of data flow-level QoS parameters between core network and access network equipment can also occur during the PDU session modification indication process. That is, the second indication may be carried in a PDU session modification indication (PDU session modification indication).
  • PDU session modification indication PDU session modification indication
  • the second indication information may also be carried in other signaling or newly defined signaling.
  • the second indication information may be only a change indication, rather than the reselected first QoS parameter or the second QoS parameter. In this way, the signaling overhead of the second indication information can be saved.
  • the access network device in the case of subsequent configuration changes on the RAN side, re-instructs the selected QoS parameter to the core network, so that the core network can adjust the related UE or related bearer or related PDU session or related
  • the QoS management strategy of QoS is convenient for adjusting the data transmission between the UE and the core network.
  • the core network does not issue two sets of QoS parameters.
  • the first access network device informs the core network of the RAN side configuration, so that the core network can determine the QoS parameters applied to the relevant UE / relevant bearer / relevant PDU session / relevant QoS flow according to the RAN side.
  • the first access network device may send an instruction to the core network device to indicate the RAN side configuration.
  • the RAN side configuration includes, but is not limited to, one or more of the following: whether the relevant UE is configured with the first dual connection, whether the relevant bearer is configured to the first bearer, whether the relevant PDU session is configured to the first bearer, and the relevant QoS Whether it is configured to the first bearer.
  • this instruction may be referred to as a third instruction.
  • the core network can determine the QoS parameters applied to the relevant UE / relevant bearer / relevant PDU session / relevant QoS flow according to the third instruction, and deliver the QoS parameters to the first access network device.
  • the first dual connection and the first bearer reference may be made to related descriptions in the foregoing content, and details are not described herein again.
  • the third indication may be implemented as indication information carried in specific signaling, such as bits, fields, information elements (IE), etc.
  • the third indication may be referred to as the third indication information.
  • the third instruction may also be implemented as a separate instruction message. At this time, the third instruction may be referred to as a third instruction message.
  • the specific signaling implementation of the third instruction information may include the following ways:
  • the configuration of the relevant UE (such as whether the UE is configured with the first dual connection)
  • the interaction between the core network and the access network device can occur during the initial context setup process or the UE context modification process (UE context modification procedure). That is, the third indication may be carried in the initial context establishment response or the UE context modification response.
  • the third indication may be carried in the initial context establishment response or the UE context modification response.
  • the configuration of the related bearer (such as whether the E-RAB is configured with the first bearer).
  • the interaction between the core network and the access network device can also occur during the initial context setup process or the UE context modification process. (UE context modification procedure).
  • UE context modification procedure For details, please refer to FIG. 8 to FIG. 9.
  • the re-interaction of the configuration of the relevant bearer between the core network and the access network equipment can also occur in the bearer establishment process (such as E-RAB setup procedure) or in the bearer modification process (such as E-RAB modify procedure). That is, the third indication information may also be carried in a bearer establishment response or a bearer modification response.
  • PDU session resource setup procedure PDU session resource setup procedure
  • PDU session resource modification Process PDU, session, resource, modification, procedure
  • the third indication information may also be carried in other signaling or newly defined signaling.
  • the core network may not adjust the QoS parameters applied to the relevant UE / relevant bearer / relevant PDU session / relevant QoS flow, but only adaptively adjust the relevant UE / Bit rate of related bearer / related PDU session / related QoS flow.
  • the core network does not issue two sets of QoS parameters.
  • the UE informs the core network of the RAN side configuration, so that the core network can determine the QoS parameters applied to the relevant UE / relevant bearer / relevant PDU session / relevant QoS flow according to the RAN side.
  • the UE may send an instruction to the core network device to indicate the RAN side configuration.
  • this instruction may be referred to as a fourth instruction.
  • the core network can determine the QoS parameters applied to the relevant UE / relevant bearer / relevant PDU session / relevant QoS flow according to the fourth instruction, and deliver the QoS parameters to the first access network device.
  • the RAN side configuration reference may be made to the related description in the foregoing content, which is not repeated here.
  • the fourth indication may be implemented as indication information carried in specific signaling (such as specific non-access stratum (NAS) signaling), such as bits, fields, information elements (IE), etc.
  • the fourth indication may be referred to as the fourth indication information.
  • the fourth indication may also be implemented as a separate indication message (such as NAS signaling). At this time, the fourth indication may be referred to as a fourth indication message.
  • the content indicated by the fourth instruction is the same as the content indicated by the third instruction in Embodiment 4. For details, refer to the related description in Embodiment 4.
  • the core network may not adjust the QoS parameters applied to the relevant UE / relevant bearer / relevant PDU / session / relevant QoS flow, but only adaptively adjust the relevant UE / Relevant bearer / Related PDU session / Related QoS flow bit rate.
  • FIG. 17 illustrates an access network device 200 provided by some embodiments of the present application.
  • the access network device 200 may include one or more access network device processors 201, a memory 202, a transmitter 205, a receiver 206, a coupler 207, and an antenna 208. These components may be connected through the bus 204 or other types.
  • FIG. 17 uses the bus connection as an example. among them:
  • the transmitter 205 may be configured to perform transmission processing on a signal output by the access network device processor 201, for example, signal modulation.
  • the receiver 206 may be configured to perform reception processing on a mobile communication signal received by the antenna 208.
  • signal demodulation In some embodiments of the present application, the transmitter 205 and the receiver 206 may be considered as a wireless modem.
  • the number of the transmitters 205 and the receivers 206 may be one or more.
  • the antenna 208 may be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 207 can be used to divide the mobile communication signal into multiple channels and distribute the signals to multiple receivers 206.
  • the memory 202 is coupled to the access network device processor 201 and is configured to store various software programs and / or multiple sets of instructions.
  • the memory 202 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 202 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as uCOS, VxWorks, and RTLinux.
  • the memory 202 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more access network devices.
  • the access network device processor 201 may be used to perform wireless channel management, implement call and communication link establishment and removal, and provide cell switching control for users in the control area.
  • the access network device processor 201 may include: an Administration / Communication Module / Communication Module (AM / CM) (a center for voice path exchange and information exchange), a basic module (Basic Module, BM) ( Used to complete call processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions), code conversion and submultiplexing unit (Transcoder and SubMultiplexer, TCSM) (used to complete multiplexing demultiplexing and coding Transform function) and so on.
  • AM / CM Administration / Communication Module / Communication Module
  • BM Basic Module
  • TCSM code conversion and submultiplexing unit
  • the access network device processor 201 may be used to read and execute computer-readable instructions. Specifically, the access network device processor 201 may be configured to call a program stored in the memory 202, such as an implementation program of the data transmission method provided by one or more embodiments of the present application on the access network device 200 side, and execute the program.
  • the program contains instructions.
  • the access network device 200 may be the primary network node 101 in the wireless communication system 100 shown in FIG. 2, or may be the secondary network node 103 in the wireless communication system 100 shown in FIG. 2.
  • the access network device 200 may be implemented as a gNB, a new radio base station (New radio base station), a transmission point (TRP), a macro base station, a micro base station, a high frequency base station, an LTE macro or micro eNB, a customer terminal equipment (Customer Equipment, CPE). ), Access point (AP), WLAN, GO, etc. or a combination of several.
  • the primary network node 101 may be a gNB, and the gNB performs the functions related to the primary network node 101 (or the secondary network node 103) in this application.
  • the primary network node 101 may be a combination of gNB and TRP.
  • the gNB can complete the resource configuration function of the primary network node 101 (or the secondary network node 103), and the TRP completes the primary network node 101 ( Or the transmitting and receiving function of the auxiliary network node 103).
  • the examples are just some of the implementation methods provided in this application, and may be different in practical applications, and should not constitute a limitation.
  • the access network device 200 shown in FIG. 17 is only an implementation manner provided in this application. In actual applications, the access network device 200 may further include more or fewer components, which is not limited herein.
  • FIG. 18 illustrates a core network device 300 provided by some embodiments of the present application.
  • the core network device 300 may include one or more processors 301, a memory 303, and a communication interface 305. These components may be connected through the bus 304 or in other manners, and FIG. 18 takes the connection through the bus as an example. among them:
  • the communication interface 305 may be used for the core network device 300 to communicate with other communication devices, such as an access network device.
  • the access network device may be the access network device 200 shown in FIG. 17.
  • the communication interface 305 may include a wired communication interface, such as a wide area network (WAN) interface, a local area access network (LAN) interface, and the like.
  • the communication interface 305 is not limited to a wired communication interface.
  • the communication interface 305 may further include a wireless communication interface, such as a wireless local area network (WLAN) interface.
  • WLAN wireless local area network
  • the memory 303 is coupled to the processor 301 and is configured to store various software programs and / or multiple sets of instructions.
  • the memory 303 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 303 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as uCOS, VxWorks, and RTLinux.
  • the memory 303 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 303 may be used to store an implementation program of the signal transmission method provided by one or more embodiments of the present application on the core network device 300 side.
  • the implementation of the signal transmission method provided by one or more embodiments of this application please refer to the subsequent embodiments.
  • the processor 301 may be used to read and execute computer-readable instructions. Specifically, the processor 301 may be used to call a program stored in the memory 305, such as an implementation program of the signal transmission method provided by one or more embodiments of the present application on the core network device 300 side, and execute instructions included in the program.
  • a program stored in the memory 305 such as an implementation program of the signal transmission method provided by one or more embodiments of the present application on the core network device 300 side, and execute instructions included in the program.
  • the core network device 300 may be a core network device in the communication system 100 shown in FIG. 2 and may be implemented as an MME, an SGW, a PGW in the EPC, or an AMF, an SMF, a UPF in the 5GC, or the like.
  • the core network device 300 shown in FIG. 18 is only an implementation manner of the embodiment of the present application. In practical applications, the core network device 300 may further include more or fewer components, which is not limited herein.
  • FIG. 19 illustrates a communication system and a network device provided by the present application.
  • the communication system 40 may include the following network devices: at least one access network device 50 and at least one core network device 60.
  • the access network device 50 may be the access network device 50 in the foregoing method embodiment, and may be the main base station 101 in the wireless communication system shown in FIG. 2.
  • the access network device 50 may be an LTE base station, an NR base station, or a base station in a future communication system.
  • the communication system 40 and the network equipment therein can implement the signal transmission method provided in the present application. Expand the description below.
  • the core network device 60 may include: a sending unit 603 and a receiving unit 601. among them:
  • the sending unit 603 may be configured to send the first QoS parameter and the second QoS parameter to the access network device 50.
  • the air interface rate required by the first QoS parameter is smaller than the air interface rate required by the second QoS parameter.
  • the receiving unit 601 may be configured to receive a first instruction sent by the access network device 50, and the first instruction is used to instruct the access network device 50 to select a QoS parameter from a first QoS parameter and a second QoS parameter.
  • the access network device 50 may include a sending unit 501 and a receiving unit 503. among them:
  • the receiving unit 503 may be configured to receive the first QoS parameter and the second QoS parameter sent by the core network device 60.
  • the air interface rate required by the first QoS parameter is smaller than the air interface rate required by the second QoS parameter.
  • the sending unit 501 may be configured to send a first instruction to the core network device 60.
  • the first instruction is used to instruct the access network device 50 to select a QoS parameter from the first QoS parameter and the second QoS parameter.
  • the two sets of QoS parameters, the first QoS parameter and the second QoS parameter, are delivered to the access network device 50 through the core network device 60.
  • the access network device 50 selects a set of QoS parameters from the two sets of QoS parameters and sends them to the core.
  • the network device 60 indicates the selected set of QoS parameters.
  • the air interface rate required by this set of QoS parameters can be supported by related UEs or related bearers or related PDU sessions or related data flows. In this way, the QoS parameters applied to the related UE or related bearer or related PDU session or related data flow can be effectively determined, and the ability of the single board of the main base station to be upgraded is avoided.
  • the core network can set corresponding QoS management policies, such as rate adjustment policies, based on the QoS parameters selected by the RAN side, to facilitate data transmission between the UE and the core network.
  • the manner in which the access network device 50 selects a QoS parameter may include, but is not limited to:
  • the access network device 50 may select the second QoS parameter to be applied to the relevant UE or related bearer or related PDU session. Or related QoS flow.
  • the air interface transmission capability of the access network device 50 supporting the air interface rate required by the second QoS parameter may mean that the access network device 50 is an NR base station, or the access network device 50 is an LTE base station after hardware upgrade.
  • the access network device 50 may choose The first QoS parameter is applied to the related UE or related bearer or related PDU session or related QoS flow:
  • the related UE is not configured with the first dual connection.
  • the first dual connection associates the access network device 50 and the second access network device, wherein the air interface transmission capability of the second access network device supports the air interface rate required by the second QoS parameter.
  • the first dual connection-associated access network device 50 and the second access network device mean that the first dual connection needs to use the air interface resources of the access network device 50 and the second access network device.
  • the related EPS bearer / E-RAB is not configured to the first bearer.
  • the access network device where the PDCP anchor point of the first bearer supports the air interface rate required by the second QoS parameter.
  • the access network device where the PDCP anchor point of the first bearer is an NR base station or an LTE base station after hardware upgrade.
  • the first bearer may be a bearer terminated at the MN, such as an MCG bearer terminated at the MN, an SCG bearer terminated at the MN, or a split bearer terminated at the MN (ie, an MCG split bearer) One or more.
  • the first bearer may be a bearer terminated at the SN, such as an MCG bearer terminated at the SN, an SCG bearer terminated at the SN, or a split bearer terminated at the SN (that is, an SCG split bearer).
  • a bearer terminated at the SN such as an MCG bearer terminated at the SN, an SCG bearer terminated at the SN, or a split bearer terminated at the SN (that is, an SCG split bearer).
  • the related data flow (such as QoS flow) is not configured to the first bearer.
  • QoS flow For the description of the first bearer, reference may be made to related content in the above 2 and will not be repeated here.
  • the related PDU session is not configured to the first bearer.
  • first bearer reference may be made to related content in the above 2 and will not be repeated here.
  • the air interface transmission capability of the access network device 50 cannot support the air interface rate required by the second QoS parameter may mean that the access network device 50 is an LTE base station.
  • the air interface transmission capability of the second access network device supporting the air interface rate required by the second QoS parameter may mean that the access network device 50 is an NR base station, or the second access network device is an LTE base station after hardware upgrade.
  • the access network device 50 may select the second QoS parameter to be applied to the relevant UE or related bearer or regardless of the air interface transmission capability of the access network device 50.
  • the relevant UE is configured to the first dual connection.
  • the related EPS bearer / E-RAB is not configured to the first bearer.
  • the related data flow (such as QoS flow) is not configured to the first bearer.
  • the related PDU session is not configured to the first bearer.
  • the first QoS parameter and the second QoS parameter may be carried in one or more of the following signaling: UE context establishment request or UE context modification request, bearer establishment request or bearer modification request, PDU session resource establishment request, or PDU session resource modification request.
  • the first QoS parameter and the second QoS parameter may also carry other signaling or newly defined signaling.
  • the first indication may be implemented as indication information carried in specific signaling, such as bits, fields, information elements (IE), and the like.
  • the first instruction may be referred to as first instruction information.
  • the first indication may be carried in one or more of the following signaling: UE context establishment response or UE context modification response, bearer establishment response or bearer modification response, bearer modification indication, PDU session resource establishment response or PDU session resource modification response, PDU session resource modification indication.
  • the first indication information may also carry other signaling or newly defined signaling.
  • the first instruction may also be implemented as an independent instruction message.
  • the first instruction may be referred to as a first instruction message.
  • the first indication message may include information indicating a first QoS parameter and information indicating a second QoS parameter. If the information indicating the first QoS parameter (or the information indicating the second QoS parameter) takes a specific value, it indicates that the QoS parameter selected by the first access network device is the first QoS parameter (or the second QoS parameter).
  • the first indication message includes specific information (such as a specific bit, a specific field, a specific IE, etc.), it indicates that the QoS parameter selected by the first access network device is the first QoS parameter.
  • the first indication message When the first indication message does not include the specific information, it indicates that the QoS parameter selected by the first access network device is the second QoS parameter. In still other implementation manners, when the first indication message includes specific information (such as a specific bit, a specific field, a specific IE, etc.), it indicates that the QoS parameter selected by the first access network device is the second QoS parameter. When the first indication message does not include the specific information, it indicates that the QoS parameter selected by the first access network device is the first QoS parameter.
  • specific information such as a specific bit, a specific field, a specific IE, etc.
  • the RAN side configuration may change.
  • the sending unit 501 in the access network device 50 may be further configured to send a second instruction to the core network device, and the second instruction is used to instruct the first access network device from the first A QoS parameter reselected from a QoS parameter and a second QoS parameter.
  • the receiving unit 503 in the core network device 60 may be further configured to receive a second instruction sent by the access network device 50. In this way, the core network device 60 can adjust the QoS management policy for the related UE or related bearer or related PDU session or related data flow, so as to adjust the data transmission between the UE and the core network accordingly.
  • the core network may not issue the first QoS parameter and the second QoS parameter.
  • the sending unit 501 in the access network device 50 may be further configured to send an instruction to the core network device to indicate the RAN side configuration.
  • the RAN side configuration includes, but is not limited to, one or more of the following: whether the relevant UE is configured with a first dual connection, whether the relevant bearer is configured to the first bearer, whether the relevant PDU session is configured to the first bearer, and the relevant data stream Whether it is configured to the first bearer.
  • this instruction may be referred to as a third instruction.
  • the core network device 60 can determine the QoS parameter applied to the relevant UE / relevant bearer / relevant PDU / session / relevant data flow according to the third instruction, and deliver the QoS parameter to the first access network device.
  • the access network device 50 in the communication system 40 shown in FIG. 19 may be implemented as the master base station 101 in the wireless communication system 100 shown in FIG. 2.
  • the core network device 60 in the communication system 40 shown in FIG. 19 may be implemented as an MME, SGW, etc. in an EPC, or may be implemented as AMF, UPF, SMF, etc. in a 5GC.
  • the access network device 50 in the communication system 40 shown in FIG. 19 may also be implemented as the access network device 200 shown in FIG. 17.
  • the core network device 60 in the communication system 40 shown in FIG. 19 may also be implemented as the core network device 300 shown in FIG. 18.
  • the implementation of the technical solution provided in this application can effectively determine the QoS parameters applied to related UEs, related bearers, related PDU sessions, or related QoS flows, without the need to upgrade the board capabilities of the LTE base station.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the device structure diagrams given in the various device embodiments of the present application show only a simplified design of the corresponding device.
  • the device may include any number of transmitters, receivers, processors, memories, etc. to implement the functions or operations performed by the device in the embodiments of the devices of the present application, and all devices that can implement the present application All are within the scope of protection of this application.
  • the names of the messages / frames / instructions, modules, or units provided in the embodiments of the present application are merely examples, and other names may be used as long as the functions of the messages / frames / instructions, modules, or units are the same.
  • the processes may be completed by hardware instructed by a computer program.
  • the program may be stored in a computer-readable storage medium. When the program is executed, It may include the processes of the foregoing method embodiments.
  • the foregoing storage media include: ROM or random storage memory RAM, magnetic disks, or optical discs, which can store various program code media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法,该方法可包括:核心网向接入网设备下发两套QoS参数,接入网设备从这两套QoS参数中选择出一套QoS参数,并向核心网指示选择出的这一套QoS参数。这一套QoS参数要求的空口速率能够被RAN支持。这样,可有效确定出应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数,无需对LTE基站的单板能力进行升级。而且,核心网可基于RAN侧选择的QoS参数来设置相应的QoS管理策略,如速率调整策略,便于UE与核心网之间的数据传输。

Description

信号传输方法、网络设备及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及信号传输方法、网络设备及系统。
背景技术
第五代(5th Generation,5G)移动通信技术是对第四代(the 4 Generation,4G)移动通讯技术的延伸。因此,5G通信系统被称为“超4G网络”或“后长期演进(long term evolution,LTE)系统”或者新空口(new radio,NR)。
现有的演进型的统一陆地无线接入网络(evolved universal terrestrial radio access network,E-UTRAN)标准支持多无线接入技术双连接(Multi-RAT Dual Connectivity,MR-DC),即一个配置有多Rx/Tx的用户设备(user equipment,UE)在RRC_CONNECTED状态时可以利用2个基站调度的无线资源。这2个基站通过X2接口上的非理想回程(non-ideal backhaul)彼此相连接,其中,一个基站作为主基站(master node,MN),一个作为辅基站(secondary node,SN)。
在NR中,多无线接入技术双连接(MR-DC)定义了不同的双连接类型,如E-UTRA-NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)、NGEN-DC双连接(NG-RAN E-UTRA-NR Dual Connectivity,NGEN-DC)、NE双连接(NR-E-UTRA Dual Connectivity,NE-DC),并定义了如图1所示的多种承载类型:终结在MN的MCG承载(MN terminated MCG bearer),终结在MN的SCG承载(MN terminated SCG bearer),终结在MN的分割承载(MN terminated split bearer),终结在SN的MCG承载(SN terminated MCG bearer),终结在SN的SCG承载(SN terminated SCG bearer),终结在SN的分割承载(SN terminated split bearer)。
其中,MCG承载是指只涉及MCG空口资源的承载,SCG承载是指只涉及SCG空口资源的承载,split承载是指MCG空口资源和SCG空口资源都涉及的承载。终结在MN是指分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)锚点处在MN,终结在SN是指PDCP锚点处在SN。
针对MR-DC架构,考虑到NR基站能够支持更高的空口速率,因此,标准将系统支持的空口速率从原来的10Gbps提升到了4Tbps。在实际应用场景中,核心网依据UE的开户/注册信息确定应用于UE的聚合最大比特速率(Aggregate Maximum Bit Rate,AMBR)或应用于E-RAB的保证比特速率(Guaranteed Bit Rate,GBR)。例如,在EN-DC架构中,如果UE开户/注册信息表明UE订阅了EN-DC服务,即订阅了NR空口服务,则核心网会向LTE基站下发空口速率要求更高的QoS参数,如应用于UE的AMBR为4Tbps。但是,LTE基站支持的空口速率不能达到4Tbps,需要对LTE基站的单板能力进行升级,这为实际部署带来巨大挑战。
发明内容
本申请提供了数据传输方法、网络设备及系统,可有效确定出应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数,无需对LTE基站的单板能力进行升 级。
第一方面,本申请提供了一种信号传输方法,应用于接入网设备侧,该方法可包括:第一接入网设备接收核心网设备发送的第一QoS参数和第二QoS参数,第一QoS参数要求的空口速率小于第二QoS参数要求的空口速率。第一接入网设备向核心网设备发送第一指示,第一指示用于指示第一接入网设备从第一QoS参数和第二QoS参数中选择的QoS参数。
具体的,在空口速率要求高的QoS参数不能被RAN支持的条件下,RAN侧可以从核心网下发的两套参数中选择第一QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow;在空口速率要求高的QoS参数能被RAN支持的条件下,RAN侧可以从核心网下发的两套参数中选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow。
第二方面,本申请提供了一种信号传输方法,应用于核心网设备侧,该方法可包括:核心网设备向第一接入网设备发送第一QoS参数和第二QoS参数,第一QoS参数要求的空口速率小于第二QoS参数要求的空口速率。核心网设备接收第一接入网设备发送的第一指示,第一指示用于指示第一接入网设备从第一QoS参数和第二QoS参数中选择的QoS参数。
实施第一方面和第二方面描述的方法,通过核心网向接入网设备下发两套QoS参数,接入网设备从这两套QoS参数中选择出应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数,并向核心网指示选择出的QoS参数。选择出的QoS参数要求的空口速率能够被RAN支持。这样,可有效确定出应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数,无需对LTE基站的单板能力进行升级。而且,核心网可基于RAN侧选择的QoS参数来设置相应的QoS管理策略,如速率调整策略,便于UE与核心网之间的数据传输。
而且,由于应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数由RAN侧选择并指示给核心网,而不是仅由核心网依据UE的开户/注册信息来确定,因此,可避免因RAN侧不能支持核心网下发的QoS参数而拒绝建立业务流的问题,或RAN侧的空口负荷超载问题。这里,拒绝建立业务流可以但不限于体现在:拒绝建立初始上下文、拒绝建立E-RAB、拒绝建立PDU session、拒绝建立QoS flow等。
本申请中,QoS参数可包括以下一项或多项:用户设备UE级QoS参数、承载级QoS参数、数据流级QoS参数、分组数据单元PDU会话级QoS参数。
本申请中,核心网下发的第一QoS参数和第二QoS参数均可包括以下一项或多项:保证比特速率GBR、聚合最大比特速率AMBR。
在一些可选的实施例中,第一QoS参数和第二QoS参数可以分别是现有协议定义的GBR QoS IE中的必选IE和可选IE,也可以分别是现有协议定义的AMBR QoS IE中的必选IE和可选IE。与现有协议不同的是,在存在可选IE的情况下,本申请中的第一接入网设备会保存必选IE指示的基线AMBR(或GBR),而不是忽略必选IE指示的扩展AMBR(或GBR),并从必选IE指示的基线AMBR(或GBR)和可选IE指示的扩展AMBR(或GBR)中选择出合适的AMBR(或GBR)。
结合第一方面或第二方面,在一些可选的实施例中,第一接入网设备选择QoS参数的方式可包括但不限于:
第一种方式,在第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率的条件下,第一接入网设备可以选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow。也即是说,第一指示所指示的QoS参数为第二QoS参数。这里,第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率可以是指第一接入网设备是NR基站,或者第一接入网设备是进行硬件升级后的LTE基站。
第二种方式,在第一接入网设备的空口传输能力不能支持第二QoS参数要求的空口速率的条件下,如果存在下述情况中的一项或多项,则第一接入网设备可以选择第一QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow(即第一指示所指示的QoS参数为第一QoS参数):
1.相关UE未被配置第一双连接。第一双连接关联第一接入网设备和第二接入网设备,其中,第二接入网设备的空口传输能力支持第二QoS参数要求的空口速率。这里,第一双连接关联第一接入网设备和第二接入网设备是指第一双连接需要使用第一接入网设备和第二接入网设备的空口资源。
2.相关EPS承载/E-RAB未被配置到第一承载。第一承载的PDCP锚点所在的接入网设备支持第二QoS参数要求的空口速率。这里,第一承载的PDCP锚点所在的接入网设备可以是NR基站或者进行硬件升级后的LTE基站。具体的,当第一承载的PDCP锚点所在的接入网设备是SN时,第一承载可以是终结在SN的bearer,如终结在SN的MCG bearer、终结在SN的SCG bearer或终结在SN的split bearer(即SCG split bearer)中的一项或多项。
3.相关QoS flow未被配置到第一承载。关于第一承载的说明可参考上述2中的相关内容,这里不再赘述。
4.相关PDU session未被配置到第一承载。关于第一承载的说明可参考上述2中的相关内容,这里不再赘述。
其中,第一接入网设备的空口传输能力不能支持第二QoS参数要求的空口速率可以是指第一接入网设备是LTE基站。这里,第二接入网设备的空口传输能力支持第二QoS参数要求的空口速率可以是指第一接入网设备是NR基站,或者第二接入网设备是进行硬件升级后的LTE基站。
第三种方式,如果存在下述情况中的一项或多项,则不管第一接入网设备的空口传输能力如何,第一接入网设备可以选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow(即第一指示所指示的QoS参数为第二QoS参数):
1.相关UE被配置到第一双连接。
2.相关EPS承载/E-RAB被配置到第一承载。
3.相关QoS flow被配置到第一承载。
4.相关PDU session被配置到第一承载。
结合第一方面或第二方面,在一些可选的实施例中,第一QoS参数和第二QoS参数可以携带在以下一项或多项信令中:UE上下文建立请求或UE上下文修改请求、承载建立请求或承载修改请求、PDU会话资源建立请求或PDU会话资源修改请求。不限于此,第一 QoS参数和第二QoS参数也可以携带其他信令或新定义的信令中。
结合第一方面或第二方面,在一些可选的实施例中,第一指示可以通过下述方式实现:
1.第一指示可以实施成携带在特定信令中的指示信息,如比特、字段、信息单元(information element,IE)等。此时,可以将第一指示称为第一指示信息。
第一指示可以携带在以下一项或多项信令中:UE上下文建立响应或UE上下文修改响应、承载建立响应或承载修改响应、承载修改指示、PDU会话资源建立响应或PDU会话资源修改响应、PDU会话资源修改指示。不限于此,第一指示也可以携带其他信令或新定义的信令中。
2.第一指示也可以实施成独立的指示消息。此时,可以将第一指示称为第一指示消息。
在一些实现方式中,第一指示消息可包括指示第一QoS参数的信息和指示第二QoS参数的信息。如果指示第一QoS参数的信息(或指示第二QoS参数的信息)取特定值,则表明第一接入网设备选择的QoS参数为第一QoS参数(或第二QoS参数)。
在另一些实现方式中,当第一指示消息包括特定信息(如特定比特、特定字段、特定IE等)时,表示第一接入网设备选择的QoS参数为第一QoS参数。当第一指示消息没有包括该特定信息时,表示第一接入网设备选择的QoS参数为第二QoS参数。
在再一些实现方式中,当第一指示消息包括特定信息(如特定比特、特定字段、特定IE等)时,表示第一接入网设备选择的QoS参数为第二QoS参数。当第一指示消息没有包括该特定信息时,表示第一接入网设备选择的QoS参数为第一QoS参数。
结合第一方面或第二方面,在一些可能的情况下,RAN侧配置可能会发生变化。对此,第一接入网设备可以根据变化后的RAN侧配置从第一QoS参数和第二QoS参数中重新选择一套QoS参数,并向核心网重新发送第二指示,以指示RAN侧重新选择的QoS参数。
在一些可选的实施例中,第一接入网设备重新选择QoS参数的方式可包括但不限于:
第一种方式,如果存在但不限于下述情况中的一项或多项,则第一接入网设备可以重新选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE从未被配置第一双连接变为被配置到第一双连接。关于第一双连接,可参考前述内容中的相关描述,这里不再赘述。
2.相关EPS承载/E-RAB从未被配置第一承载变为被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
3.相关QoS flow从未被配置第一承载变为被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
4.相关PDU session从未被配置第一承载变为被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
第二种方式,如果存在但不限于下述情况中的一项或多项,则第一接入网设备可以重新选择第一QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE从被配置第一双连接变为未被配置到第一双连接。关于第一双连接,可参考前述内容中的相关描述,这里不再赘述。
2.相关EPS承载/E-RAB从被配置第一承载变为未被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
3.相关QoS flow从被配置第一承载变为未被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
4.相关PDU session从被配置第一承载变为未被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
在一些可选的实施例中,第二指示可以实施成携带在特定信令中的指示信息,如比特、字段、信息单元(information element,IE)等,此时第二指示可以称为第二指示信息。第二指示也可以实施成单独的指示消息,此时第二指示可以称为第二指示消息。
当第二指示实施成携带在特定信令中的第二指示信息时,第二指示可以携带在一下一项或多项信令中:初始上下文建立响应、UE上下文修改响应、UE上下文修改指示、承载建立响应、承载修改响应、E-RAB修改指示、PDU会话资源建立响应、PDU会话资源修改响应、PDU session修改指示。不限于此,第二指示还可以携带在其他信令或新定义的信令中。
第三方面,本申请提供了一种信号传输方法,应用于接入网设备侧,该方法可包括:第一接入网设备向核心网设备发送指示,该指示可以称为第三指示,用于指示以下以下一项或多项:用户设备是否被配置第一双连接、承载或QoS flow或PDU会话是否被配置到第一承载。第一接入网设备接收核心网设备发送QoS参数,QoS参数是根据指示信息确定的。
第四方面,本申请提供了一种信号传输方法,应用于核心网设备侧,该方法可包括:核心网设备接收第一接入网设备发送的指示,该指示可以称为第三指示,用于指示以下以下一项或多项:用户设备是否被配置第一双连接、承载或QoS flow或PDU会话是否被配置到第一承载。核心网设备向第一接入网设备发送QoS参数,QoS参数是根据指示信息确定的。
在第三方面或第四方面中,第一双连接关联第一接入网设备和第二接入网设备;第二接入网设备的空口传输能力支持第二QoS参数要求的空口速率。第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持第二QoS参数要求的空口速率。
结合第三方面或第四方面,在一些可选的实施例中,指示信息携带在以下一项或多项信令中:初始上下文建立响应、UE上下文修改响应、承载建立响应、承载修改响应、PDU会话资源建立响应或PDU会话资源修改响应。不限于此,该指示信息还可以携带在其他信令或新定义的信令中。
第五方面,本申请提供了一种信号传输方法,应用于用户设备侧,该方法可包括:用户设备向核心网设备发送指示,该指示可以称为第四指示,用于指示以下至少一项:用户设备是否被配置第一双连接、相关的数据流或相关的承载或相关的PDU会话是否被配置到第一承载。指示信息用于核心网设备确定出发送给第一接入网设备的QoS参数。
第六方面,本申请提供了一种信号传输方法,应用于核心网设备侧,该方法可包括:核心网设备接收用户设备发送的指示,该指示可以称为第四指示,用于指示以下至少一项:用户设备是否被配置第一双连接、相关的数据流或相关的承载或相关的PDU会话是否被配置到第一承载。指示信息用于核心网设备确定出发送给第一接入网设备的QoS参数。
在第五方面或第六方面中,第一双连接关联第一接入网设备和第二接入网设备;第二 接入网设备的空口传输能力支持第二QoS参数要求的空口速率。第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持第二QoS参数要求的空口速率。
结合第五方面或第六方面,在一些可选的实施例中,该指示可以携带在NAS信令中。
第七方面,本申请提供了一种网络设备,包括多个功能单元,用于相应的执行第一方面或第三方面可能的实施方式中的任意一种所提供的方法。该网络设备可实施为第一方面或第三方面中的第一接入网设备。
第八方面,本申请提供了一种网络设备,包括多个功能单元,用于相应的执行第二方面或第四方面或第六方面可能的实施方式中的任意一种所提供的方法。该网络设备可实施为第二方面或第四方面或第六方面中的核心网设备。
第九方面,本申请提供了一种用户设备,包括多个功能单元,用于相应的执行第五方面可能的实施方式中的任意一种所提供的方法。
第十方面,本申请提供了一种接入网设备,用于执行第一方面或第三方面可能的实施方式中的任意一种所描述的信号传输方法。该接入网设备可实施为第一方面或第三方面中的第一接入网设备。该接入网设备可包括:存储器以及与存储器耦合的处理器、收发器,其中:收发器用于与其他通信设备(如核心网设备、UE)通信。存储器用于存储第一方面或第三方面可能的实施方式中的任意一种所描述的信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第一方面或第三方面可能的实施方式中的任意一种所提供的方法。
第十一方面,本申请提供了一种核心网设备,用于执行第二方面或第四方面或第六方面可能的实施方式中的任意一种所描述的信号传输方法。该核心网设备可包括:存储器以及与存储器耦合的处理器、收发器,其中:收发器用于与其他通信设备(如接入网设备)通信。存储器用于存储第二方面或第四方面或第六方面可能的实施方式中的任意一种所描述的信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第二方面或第四方面或第六方面可能的实施方式中的任意一种所提供的方法。
第十二方面,本申请提供了一种用户设备,用于执行第五方面可能的实施方式中的任意一种所描述的信号传输方法。该用户设备可包括:存储器以及与存储器耦合的处理器、收发器,其中:收发器用于与其他通信设备(如接入网设备)通信。存储器用于存储第五方面可能的实施方式中的任意一种所描述的信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第五方面可能的实施方式中的任意一种所提供的方法。
第十三方面,本申请提供了一种通信系统,通信系统包括:接入网设备和核心网网设备,其中:该接入网设备可以是第七方面或第十方面描述的接入网设备。该核心网设备可以是第八方面或第十一方面描述的核心网设备。
第十四方面,本申请提供了一种通信系统,通信系统包括:用户设备、接入网设备和核心网网设备,其中:该用户设备可以是第九方面或第十二方面描述的用户设备。该接入网设备可以是第七方面或第十方面描述的接入网设备。该核心网设备可以是第八方面或第十一方面描述的核心网设备。
第十五方面,本申请提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一项描述的信号传 输方法。
第十六方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一项描述的信号传输方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1示出了DC架构下的多种承载类型;
图2示出了本申请涉及的无线通信系统的系统架构;
图3A-图3C示出了几种典型的MR-DC架构;
图4A-图4B示出了本申请涉及的将E-RAB配置成SCG split bearer的几种流程;
图5示出了本申请涉及的EPS承载业务架构;
图6示出了本申请涉及的5GC下的QoS架构;
图7示出了本申请提供的信号传输方法的总体流程;
图8示出了本申请中QoS参数在UE与核心网之间进行交互的一种流程;
图9示出了本申请中QoS参数在UE与核心网之间进行交互的另一种流程;
图10示出了本申请中QoS参数在UE与核心网之间进行交互的再一种流程;
图11示出了本申请中QoS参数在UE与核心网之间进行交互的再一种流程;
图12示出了本申请中QoS参数在UE与核心网之间进行交互的再一种流程;
图13示出了本申请中QoS参数在UE与核心网之间进行交互的再一种流程;
图14示出了本申请中QoS参数在UE与核心网之间进行交互的再一种流程;
图15示出了本申请中QoS参数在UE与核心网之间进行交互的再一种流程;
图16示出了本申请中QoS参数在UE与核心网之间进行交互的再一种流程;
图17示出了本申请中的接入网设备的架构;
图18示出了本申请中的核心网设备的架构;
图19示出了本申请提供的无线通信系统及网络设备的功能结构。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图2示出了本申请涉及的无线通信系统。所述无线通信系统可以工作在高频频段上,不限于长期演进(LTE)系统,还可以是未来演进的第五代移动通信(5G)系统、新空口(NR)系统,机器与机器通信(Machine to Machine,M2M)系统等。如图2所示,无线通信系统100可包括:主网络节点(Master Node,MN)101、辅网络节点(Secondary Node,SN)103、一个或多个终端设备107,以及核心网105。其中,终端设备107与主网络节点101、辅网络节点103分别建立连接。
主网络节点101、辅网络节点103为接入网设备。具体的,主网络节点101(或辅网络节点103)可以为时分同步码分多址(Time Division Synchronous Code Division Multiple  Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的gNB。另外,主网络节点101(或辅网络节点103)也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端设备107可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端设备107可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
图2所示的无线通信系统100中的通信接口实现如下:
(1)网络节点和核心网之间的通信接口
主网络节点101与核心网105之间可以通过回程(blackhaul)接口111(如S1接口)传输控制信息或者用户数据,辅网络节点103与核心网105之间可以通过回程(blackhaul)接口112(如S1接口)传输用户数据。
(2)主网络节点和辅网络节点之间的通信接口
主网络节点101和辅网络节点103之间可以通过非理想型(Non-ideal)回程(blackhaul)接口113直接地或者间接地相互通信。
(3)网络节点和终端设备之间的通信接口
主网络节点101通过无线接口114与终端设备107进行交互,辅网络节点103通过无线接口115与终端设备107交互。具体的,接口114、接口115可以为Uu接口。
图2所示的无线通信系统100可以采用下述几种典型的MR-DC架构。
(1)图3A所示的EN-DC架构。
如图3A所示,在EN-DC架构中,核心网为演进分组核心网(Evolved Packet Core,EPC),主网络节点101为LTE基站(如eNB),辅网络节点103为NR基站(如gNB)。其中,核心网105可以包含移动性管理实体(Mobility Management Entity,MME)、服务网关(Service Gateway,S-GW)等网络单元。eNB通过S1-C接口与MME连接。可选的,eNB还可以通过S1-U接口与SGW连接。即,主网络节点101与核心网105之间的回程接口111可以包含控制面接口S1-C和数据面接口S1-U。辅网络节点103与核心网105之间的回程接口112为数据面接口S1-U。主网络节点101和辅网络节点103之间的非理想型回程接口113可以为X2接口。
在图3A所示的EN-DC架构中,LTE eNB可以通过至少一个LTE小区为UE提供空口资源,这至少一个LTE小区称为MCG;NR gNB可以通过至少一个NR小区为UE提供空口资源,这至少一个NR小区称为SCG。
(2)图3B所示的NGEN-DC架构。
如图3B所示,在NGEN-DC架构中,核心网为5GC(5G Core),主网络节点101为LTE基站(如eNB),辅网络节点103为NR基站(如gNB)。其中,核心网105可以包含AMF、UPF和SMF等网络单元。eNB通过NG-C接口与AMF连接。可选的,eNB还可以通过NG-U接口与UPF/SMF连接。即,主网络节点101与核心网105之间的回程接口111可以包含控制面接口NG-C,可选的包含数据面接口NG-U。辅网络节点103与核心网105 之间的回程接口112可以为数据面接口NG-U。主网络节点101和辅网络节点103之间的非理想型回程接口113可以为Xn接口。
在图3B所示的EN-DC架构中,LTE eNB可以通过至少一个LTE小区为UE提供空口资源,这至少一个LTE小区称为MCG;NR gNB可以通过至少一个NR小区为UE提供空口资源,这至少一个NR小区称为SCG。
(3)图3C所示的NE-DC架构。
如图3C所示,在NE-DC架构中,核心网为5GC(5G Core),主网络节点101为NR基站(如gNB),辅网络节点103为LTE基站(如eNB)。其中,核心网105可以包含AMF、UPF和SMF等网络单元。gNB通过NG-C接口与AMF连接。可选的,gNB还可以通过NG-U接口与UPF/SMF连接。即,主网络节点101与核心网105之间的回程接口111可以包含控制面接口NG-C,可选的包含数据面接口NG-U。辅网络节点103与核心网105之间的回程接口112可以为数据面接口NG-U。主网络节点101和辅网络节点103之间的非理想型回程接口113可以为Xn接口。
在图3C所示的EN-DC架构中,NR gNB可以通过至少一个NR小区为UE提供空口资源,这至少一个NR小区称为MCG;LTE eNB可以通过至少一个LTE小区为UE提供空口资源,这至少一个LTE小区称为SCG。
除了图3A-图3C所示的DC架构,图2所示的无线通信系统100还可以采用其他DC架构,如LTE DC架构(MN、SN都是LTE基站,核心网是EPC/5GC)、NR DC架构(MN、SN都是NR基站,核心网是EPC/5GC)。
针对MR-DC架构,考虑到NR基站能够支持更高的空口速率,因此,标准将系统支持的空口速率从原来的10Gbps提升到了4Tbps。为了解决终结在LTE基站的承载需要支持4Tbps的问题,需要对LTE基站的单板能力进行升级,这为实际部署带来巨大挑战。
为了避免通过升级LTE基站硬件(即背景技术中提及的主板能力)来支持EN-DC架构,标准引入了终结在SN的split bearer(或称为SCG split bearer)。
在EN-DC架构中,SCG split bearer的PDCP锚点处于NR基站。以下行数据传输为例,NR基站接收来自核心网的数据,并进行数据分流,其中,一部分数据分到LTE基站,由LTE基站向UE发送;另一部分数据由NR基站发送给UE。由于NR基站的单板能力支持更高的空口速率,默认是足够大的,因此,SCG split bearer能够避免升级LTE基站硬件。
实际应用中,EN-DC架构中的LTE基站可以把空口速率要求高的演进的无线接入承载(Evolved Radio Access Bearer,E-RAB)配置成SCG split bearer。具体可以采用下述两种配置方式:
一种实现方式中,E-RAB最初可配置成终结在MN的MCG bearer,MN不能支持E-RAB所要求的高空口速率。如图4A所示,在给UE配置DC之后,LTE基站可以将该E-RAB修改成其他承载类型,如终结在SN的分割承载(即SCG split bearer)。其中:S101-S102示出了主基站添加辅基站的过程;S103-S104示出了主基站重配UE的过程,具体为UE配置辅基站的空口配置;S105示出了主基站通知辅基站:UE已经被成功配置了辅基站的空口配置;S106示出了UE接入辅基站的过程;S107-S108示出了主基站请求核心网对E-RAB应用修改的过程,该修改具体可以是将E-RAB配置到终结在MN的bearer修改成将E-RAB 配置到SCG split bearer。这样,修改后的E-RAB所要求的空口速率能够被SN(即NR基站)很好的支持。
另一种实现方式中,如图4B所示,LTE基站也可以直接在初始上下文建立过程(initial context setup procedure)中将E-RAB配置到终结在SN的bearer上。其中:S201,核心网发起初始上下文的建立过程,该过程的目的是建立必要的全面的初始UE上下文,初始UE上下文可包括E-RAB上下文、安全密钥、切换限制列表(handover restriction list)、UE空口能力和UE安全能力等;S202-S203示出了主基站添加辅基站的过程;S204-S205示出了主基站重配UE的过程,具体为UE配置辅基站的空口配置;S206示出了主基站通知辅基站:UE已经被成功配置了辅基站的空口配置;S207示出了UE接入辅基站的过程;S208示出了MN向核心网反馈初始上下文建立结果。这样,可实现直接将E-RAB配置成终结在SN(即NR基站)的承载,E-RAB所要求的空口速率能够被SN很好的支持。
在EN-DC架构中引入SCG split bearer确实可以支持更高的空口速率,避免对LTE基站进行硬件升级。但是,核心网并不了解RAN侧配置,如LTE基站(即MN)是否支持高空口速率,或UE是否被配置了DC,或E-RAB是否被配置了SCG split bearer。现有技术中,核心网依据UE的开户/注册信息确定应用于UE或E-RAB的QoS参数,并下发该QoS参数到LTE基站。下发的QoS参数可以携带在初始上下建立请求(initial context setup request)、UE上下文修改请求(UE context modification request)、E-RAB建立请求(E-RAB setup request)、E-RAB修改请求(E-RAB modify request)等信令中。如果UE开户/注册信息表明UE支持涉及NR基站的DC,则核心网会向LTE基站下发空口速率要求更高的QoS参数。而此时LTE基站可能没有进行硬件升级,而且LTE基站可能还没有为UE配置DC或没有为E-RAB配置SCG split bearer,LTE基站会拒绝初始上下建立请求或者E-RAB建立请求。同时,LTE基站可以向核心网反馈拒绝原因。可选的,核心网可以根据LTE基站反馈的拒绝原因来调整下发的QoS参数,并重新发起初始上下文建立过程或E-RAB建立过程。但是这样会严重影响数据传输效率。
本申请提供的技术方案可有效确定出应用于UE或承载的QoS参数,无需对LTE基站的单板能力进行升级。具体方案将在后续内容中详细描述,这里先不赘述。
需要说明的,图2示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
本申请提供了一种信号传输方法,可有效确定出应用于UE或承载的QoS参数,无需对LTE基站的单板能力进行升级。
首先,介绍本申请涉及的基本概念。
(1)QoS参数
QoS参数可包括EPC架构下的UE级QoS参数和承载级QoS参数中的一项或多项。其中,UE级QoS参数包括AMBR,每个UE对应一个AMBR取值,表示这个UE上所有的non-GBR承载的(上行或下行)数据传输速率之和最大可以达到该AMBR的取值。承载级QoS参数包括GBR,GBR是指系统保证承载的(上行或下行)最小比特速率,即使 在网络资源紧张的情况下,该最小比特速率也能够保证。
QoS参数也可包括5GC架构下的数据流级QoS参数和分组数据单元会话(packet data unit session,PDU session)级QoS参数中的一项或多项。其中,PDU会话级QoS参数包括AMBR,是指一组QoS flow的(上行或下行)数据传输速率之和最大可达到的该AMBR的取值。承载级QoS参数包括GBR,GBR是指系统保证QoS flow的(上行或下行)最小比特速率,即使在网络资源紧张的情况下,该最小比特速率也能够保证。
在EPC下,UE级QoS参数(UE AMBR)限制的是non-GBR承载的比特率。在5GC下,PDU会话级QoS参数(PDU session AMBR)和UE级QoS参数(UE AMBR)限制的是non-GBR QoS flow的比特率。在EPC下,承载级QoS参数(GBR)限制的是GBR承载的比特率。在5GC下,数据流级的QoS参数(GBR)限制的是GBR QoS flow的比特率。GBR承载是指专用的网络资源在承载建立/修改的时候被永久分配,即使在网络资源紧张时也可以使用保证速率。而non-GBR承载正相反,是没有保证速率的承载,在网络资源紧张时业务速率可以被降速。
(2)演进的分组系统(evolved packet system,EPS)承载/演进的无线接入承载(evolved radio access bearer,E-RAB)
如图5所示的EPS承载业务架构,通过不同层内和层间的绑定关系,EPS承载通过无线承载、S1承载和S5/S8承载的级联实现了终端与PDNGW之间的业务连接。
在上行方向,终端使用一个上行业务流模版将一个业务数据流绑定到一个EPS承载上。通过业务流模版中的多个分组包过滤器,可以将多个业务数据流复用到一个EPS承载上。
在下行方向,PDNGW使用一个下行业务流模版将一个业务数据流绑定到一个EPS承载上。同样,通过业务流模版中的多个分组包过滤器,可以将多个业务数据流复用到一个EPS承载上。
一个E-RAB用于在终端和EPC间传输一个EPS承载的分组包。E-RAB和EPS承载间是一一对应关系。
一个无线承载用于在终端和eNodeB间传输一个E-RAB承载的分组包。无线承载和E-RAB/EPS承载间存在一一对应关系。
一个S1承载用于在eNodeB和一个S-GW间传输一个E-RAB承载的分组包。
一个S5/S8承载用于在S-GW和PDNGW间传输一个EPS承载的分组包。
终端存储上行分组包过滤器和无线承载之间的映射关系,以形成上行方向上业务数据流和无线承载之间的绑定。
PDNGW存储下行分组包过滤器和S5/S8a承载之间的映射关系,以形成下行方向上业务数据流和S5/S8a承载之间的绑定。
eNodeB存储无线承载和S1承载之间的一一映射关系,以形成包括上下行方向上的无线承载和S1承载之间的绑定。
S-GW存储S1承载和S5/S8a承载之间的一一映射关系,以形成包括上下行方向上的S1承载和S5/S8a承载之间的绑定。
关于EPS承载和E-RAB的详细说明,还可具体参考协议3GPP TS 36.300。
(3)PDU session和QoS flow
如图6所示NG-RAN下的QoS架构,针对NR连接到5GC以及E-UTRA连接到5GC,具体描述如下:
对每一个UE,5GC建立一个或多个PDU session,每个PDU session会包括一个或多个QoS flow。
对每一个UE,NG-RAN为每个PDU session建立一个或多个数据无线承载(data radio bearer,DRB),每个DRB包括一个或多个QoS flow。可选的,NG-RAN可以为每一个PDU session建立至少一个默认DRB,用于传输那些没有配置映射关系的QoS flow的数据。
UE中的NAS层的分组包过滤器和5GC中的NAS层的分组包过滤器将上行和下行数据包与QoS flow关联。
QoS flow是PDU session中区分QoS的最细粒度。PDU session中的QoS flow由NG-U连接传输的封装头中携带的QoS flow ID(QFI)来标识。
5GC通过将数据包映射到合适的QoS flow来保证QoS,NG-RAN通过将数据包映射到合适的DRB来保证QoS。因此,存在IP-flow到QoS flow和QoS flow到DRB这两步映射。
在DC架构下,属于同一个PDU session的QoS flow可以被映射到不同的承载类型,因此可以存在两个不同的SDAP实体配置给同一个PDU session,其中一个对应主基站,另一个对应辅站(如当一个MN terminated MCG bearer和一个SN terminated SCG bearer应用于同一个PDU session的两个不同的QoS flow)。
关于PDU session和QoS flow的详细说明,还可具体参考协议3GPP TS 38.300。
其次,本申请的主要发明原理可包括:核心网向接入网设备下发两套QoS参数,接入网设备从这两套QoS参数中选择出应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数,并向核心网指示选择出的QoS参数。选择出的QoS参数要求的空口速率能够被RAN支持。这样,可有效确定出应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数,无需对LTE基站的单板能力进行升级。而且,核心网可基于RAN侧选择的QoS参数来设置相应的QoS管理策略,如速率调整策略,便于UE与核心网之间的数据传输。
本申请中,选择出的QoS参数要求的空口速率能够被RAN支持包括以下一项或多项含义:应用于UE的QoS参数要求的空口速率能够被RAN支持是指UE与核心网之间的数据传输涉及空口传输能力高的接入网设备(如NR基站)、应用于承载/PDU session/QoS flow的QoS参数要求的空口速率能够被RAN支持是指承载/PDU session/QoS flow被配置到终结在空口传输能力高的接入网设备(如NR基站)的承载。
本申请中,在核心网下发的两套QoS参数中,一套QoS参数要求的空口速率较低,另一套QoS参数要求的空口速率较高。这里,可以将对空口速率要求较低的一套QoS参数称为第一QoS参数,可以将对空口速率要求较高的一套QoS参数称为第二QoS参数。即,第一QoS参数要求的空口速率小于所述第二QoS参数要求的空口速率。
具体的,在空口速率要求高的QoS参数不能被RAN支持的条件下,RAN侧可以从核心网下发的两套参数中选择第一QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow;在空口速率要求高的QoS参数能被RAN支持的条件下,RAN侧可以从核心网下发的两套参数中选择第二QoS参数应用于相关UE或相关承载或相关PDU session 或相关QoS flow。
本申请中,由于应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数由RAN侧选择并指示给核心网,而不是仅由核心网依据UE的开户/注册信息来确定,因此,可避免因RAN侧不能支持核心网下发的QoS参数而拒绝建立业务流的问题,或RAN侧的空口负荷超载问题。这里,拒绝建立业务流可以但不限于体现在:拒绝建立初始上下文、拒绝建立E-RAB、拒绝建立PDU session、拒绝建立QoS flow等。
本申请中,相关UE是指与核心网之间进行业务流传输的UE,相关承载是指UE与核心网之间传输的业务流映射到的EPS承载/E-RAB,相关PDU session是指UE与核心网之间传输的业务流映射到的PDU session,相关QoS flow是指UE与核心网之间传输的业务流映射到的QoSflow。
基于上述主要发明原理,下面说明本申请提供的信号传输方法的总体流程。如图7所示,本申请提供的数据传输方法可包括:
S301,核心网设备向第一接入网设备发送第一QoS参数和第二QoS参数。相应的,第一接入网设备接收核心网设备发送的第一QoS参数和第二QoS参数。这里,第一接入网设备与核心网设备之间存在控制面连接(如S1-C连接、NG-C连接),可以是DC架构中的主基站(MN)。
S302,第一接入网设备从第一QoS参数和第二QoS参数选择出一套QoS参数。
具体的,第一接入网设备选择QoS参数的方式可包括但不限于:
第一种方式,在第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率的条件下,第一接入网设备可以选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow。这里,第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率可以是指第一接入网设备是NR基站,或者第一接入网设备是进行硬件升级后的LTE基站。
第二种方式,在第一接入网设备的空口传输能力不能支持第二QoS参数要求的空口速率的条件下,如果存在下述情况中的一项或多项,则第一接入网设备可以选择第一QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE未被配置第一双连接。第一双连接关联第一接入网设备和第二接入网设备,其中,第二接入网设备的空口传输能力支持第二QoS参数要求的空口速率。这里,第一双连接关联第一接入网设备和第二接入网设备是指第一双连接需要使用第一接入网设备和第二接入网设备的空口资源。
2.相关EPS承载/E-RAB未被配置到第一承载。第一承载的PDCP锚点所在的接入网设备支持第二QoS参数要求的空口速率。这里,第一承载的PDCP锚点所在的接入网设备可以是NR基站或者进行硬件升级后的LTE基站。具体的,当第一承载的PDCP锚点所在的接入网设备是SN时,第一承载可以是终结在SN的bearer,如终结在SN的MCG bearer、终结在SN的SCG bearer或终结在SN的split bearer(即SCG split bearer)中的一项或多项。
3.相关QoS flow未被配置到第一承载。关于第一承载的说明可参考上述2中的相关内容,这里不再赘述。
4.相关PDU session未被配置到第一承载。关于第一承载的说明可参考上述2中的相关 内容,这里不再赘述。
其中,第一接入网设备的空口传输能力不能支持第二QoS参数要求的空口速率可以是指第一接入网设备是LTE基站。这里,第二接入网设备的空口传输能力支持第二QoS参数要求的空口速率可以是指第一接入网设备是NR基站,或者第二接入网设备是进行硬件升级后的LTE基站。
第三种方式,如果存在下述情况中的一项或多项,则不管第一接入网设备的空口传输能力如何,第一接入网设备可以选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE被配置到第一双连接。
2.相关EPS承载/E-RAB被配置到第一承载。
3.相关QoS flow被配置到第一承载。
4.相关PDU session被配置到第一承载。
关于第一接入网设备选择QoS参数的上述几种方式,后续实施例还会进一步详细描述,这里先不展开。
S303,第一接入网设备向核心网设备发送指示,该指示用于指示第一接入网设备从第一QoS参数和第二QoS参数中选择的QoS参数。本申请中,可以将该指示称为第一指示。这样,核心网便可基于RAN侧选择的QoS参数来设置相应的QoS管理策略,如速率调整策略,便于UE与核心网之间的数据传输。
本申请中,第一QoS参数和第二QoS参数可以携带在以下一项或多项信令中:UE上下文建立请求或UE上下文修改请求、承载建立请求或承载修改请求、PDU会话资源建立请求或PDU会话资源修改请求。不限于此,第一QoS参数和第二QoS参数也可以携带其他信令或新定义的信令中。
本申请中,第一指示可以通过下述方式实现:
1.第一指示可以实施成携带在特定信令中的指示信息,如比特、字段、信息单元(information element,IE)等。此时,可以将第一指示称为第一指示信息。
第一指示可以携带在以下一项或多项信令中:UE上下文建立响应或UE上下文修改响应、承载建立响应或承载修改响应、承载修改指示、PDU会话资源建立响应或PDU会话资源修改响应、PDU会话资源修改指示。不限于此,第一指示信息也可以携带其他信令或新定义的信令中。
2.第一指示也可以实施成独立的指示消息。此时,可以将第一指示称为第一指示消息。
在一些实现方式中,第一指示消息可包括指示第一QoS参数的信息和指示第二QoS参数的信息。如果指示第一QoS参数的信息(或指示第二QoS参数的信息)取特定值,则表明第一接入网设备选择的QoS参数为第一QoS参数(或第二QoS参数)。
在另一些实现方式中,当第一指示消息包括特定信息(如特定比特、特定字段、特定IE等)时,表示第一接入网设备选择的QoS参数为第一QoS参数。当第一指示消息没有包括该特定信息时,表示第一接入网设备选择的QoS参数为第二QoS参数。
在再一些实现方式中,当第一指示消息包括特定信息(如特定比特、特定字段、特定IE等)时,表示第一接入网设备选择的QoS参数为第二QoS参数。当第一指示消息没有 包括该特定信息时,表示第一接入网设备选择的QoS参数为第一QoS参数。
另外,不限于NR基站或进行硬件升级过的LTE基站,本申请中提及的支持第二QoS参数要求的空口速率的接入网设备还可以是指空口传输能力达到特定程度(如特定取值的空口速率)的NR基站或LTE基站。该特定程度可以依据实际需求来设置,本申请对此不作限制。也即是说,不限于现有的几种典型MR-DC架构,本申请提供的技术方案还可以应用在NR DC架构、LTE DC架构以及未来其他类型的DC架构中。例如,在NR DC架构中,该特定程度可以高于4Tbps,即支持第二QoS参数要求的空口速率的接入网设备可以为增强型NR基站,其空口传输能力高于现有NR基站的空口传输能力。又例如,在LTE DC架构中,该特定程度可以低于10Gbps,此时第二QoS参数要求的空口速率可以低于10Gbps,第一QoS参数要求的空口速率则更低。示例仅仅用于解释本申请,不应构成限定。
下面通过实施例来详细说明本申请提供的信号传输方法。
(一)实施例一
在EPC下,QoS参数可包括承载级QoS参数,如针对GBR承载存在GBR QoS信息。GBR QoS信息具体包括承载的下行最大比特率、上行最大比特率,下行保证比特率、上行保证比特率。QoS参数还可包括UE级QoS参数,如AMBR。AMBR表示这个UE上所有的non-GBR承载的数据传输速率之和最大可以达到该AMBR的取值,同样也区分上行和下行。
1.在采用UE级QoS参数的情况下,空口速率以UE为粒度。
核心网下发的两套QoS参数可以是两种AMBR,其中一种是基线AMBR,另一种是扩展AMBR。基线AMBR要求的空口速率低于扩展AMBR要求的空口速率。本实施例中,基线AMBR可以为第一QoS参数,扩展AMBR可以为第二QoS参数。
具体的,基线AMBR是在第一接入网设备的空口传输能力不支持第二QoS参数要求的空口速率且相关UE没有被配置到第一双连接的情况下应用到该相关UE的。扩展AMBR是在第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率,和/或相关UE被配置到第一双连接的情况下应用到该相关UE的。关于第一双连接,可以参考前述内容中相关说明,这里不再赘述。在选择出应用于相关UE的AMBR之后,第一接入网设备可以向核心网发送第一指示,以指示选择出的应用于相关UE的AMBR。这样,核心网便可以根据第一接入网设备指示的AMBR对该相关UE进行QoS管理,如速率调整策略。
如图8所示,UE级QoS参数在核心网和接入网设备间的交互可以发生在初始上下文建立过程(initial context setup procedure)中。具体的,基线AMBR和扩展AMBR可以携带在初始上下文建立请求中。第一接入网设备可通过初始上下文建立响应向核心网指示所选择的AMBR,即第一接入网设备选择的AMBR可以携带在初始上下文建立响应中。
如图9所示,UE级QoS参数在核心网和接入网设备间的交互也可以如图发送在UE上下文修改过程(UE context modification procedure)中。具体的,基线AMBR和扩展AMBR可以携带在UE上下文修改请求中。第一接入网设备可通过UE上下文修改响应(或称为UE上下文修改确认)向核心网指示所选择的AMBR,即第一接入网设备选择的AMBR可以携带在UE上下文修改响应(或称为UE上下文修改确认)中。
不限于图8-图9所示,UE级QoS参数在核心网和接入网设备间的交互还可以发生在其他流程,例如承载修改指示流程,或新定义的流程中。
2.在采用承载级QoS参数的情况下,空口速率以bearer为粒度。
核心网下发的两套QoS参数可以是两种GBR QoS信息,其中一种是基线GBR QoS信息,另一种是扩展GBR QoS信息。基线GBR QoS信息要求的空口速率低于扩展GBR QoS信息要求的空口速率。本实施例中,基线GBR QoS信息可以为第一QoS参数,扩展GBR QoS信息可以为第二QoS参数。
具体的,基线GBR QoS信息是在第一接入网设备的空口传输能力不支持第二QoS参数要求的空口速率且相关承载没有被配置成第一承载的情况下应用到该相关承载的。扩展GBR QoS信息是在第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率,和/或相关承载被配置成第一承载的情况下应用到该相关承载的。关于第一承载,可以参考前述内容中相关说明,这里不再赘述。在选择出应用于相关承载的GBR QoS信息之后,第一接入网设备可以向核心网发送第一指示,以指示选择出的应用于相关承载的GBR。这样,核心网便可以根据第一接入网设备指示的GBR QoS信息对该相关承载进行QoS管理,如速率调整策略。
同样的,可参考图8或图9,承载级QoS参数在核心网和接入网设备间的交互也可以发生在初始上下文建立过程(initial context setup procedure)中或UE上下文修改过程(UE context modification procedure)中。
可选的,如图10所示,承载级QoS参数在核心网和接入网设备间的交互还可以发生在承载建立过程(如E-RAB setup procedure)中。具体的,基线GBR和扩展GBR可以携带在承载建立请求中。第一接入网设备可通过承载建立响应向核心网指示所选择的GBR,即第一接入网设备选择的GBR可以携带在承载建立响应中。
可选的,如图11所示,承载级QoS参数在核心网和接入网设备间的交互还可以发生在承载修改过程(如E-RAB modify procedure)中。具体的,基线GBR和扩展GBR可以携带在承载修改请求中。第一接入网设备可通过承载修改响应(或称为承载修改确认)向核心网指示所选择的GBR,即第一接入网设备选择的GBR可以携带在承载修改响应(或称为承载修改确认)中。
不限于图8-图11所示,承载级QoS参数在核心网和接入网设备间的交互还可以发生在其他流程,例如承载修改指示流程,或新定义的流程中。
采用实施例一,通过核心网设备和第一接入网设备之间的交互来选择合适的QoS参数,可避免因第一接入网设备无法满足QoS参数所要求的空口速率而出现的接入网设备拒绝UE上下文建立/承载建立的问题。
本实施例中,基线GBR QoS信息、扩展GBR QoS信息可以复用现有协议定义的GBR QoS信息单元(information element,IE)。该IE指示GBR承载的下行最大比特率、上行最大比特率、下行保证比特率、上行保证比特率,具体可如表1所示:
信息单元/组名称(IE/Group Name) 状态(Presence)
E-RAB Maximum Bit Rate Downlink M
E-RAB Maximum Bit Rate Uplink M
E-RAB Guaranteed Bit Rate Downlink M
E-RAB Guaranteed Bit Rate Uplink M
Extended E-RAB Maximum Bit Rate Downlink O
Extended E-RAB Maximum Bit Rate Uplink O
Extended E-RAB Guaranteed Bit Rate Downlink O
Extended E-RAB Guaranteed Bit Rate Uplink O
表1
其中,“M”表示必选,“O”表示可选。必选IE可以指示基线GBR,可选IE可以指示扩展GBR。““E-RAB Maximum Bit Rate Downlink”表示下行最大比特率、“E-RAB Maximum Bit Rate Uplink”表示上行最大比特率、“E-RAB Guaranteed Bit Rate Downlink”表示下行保证比特率、“E-RAB Guaranteed Bit Rate Uplink”表示上行保证比特率。“Extended E-RAB Maximum Bit Rate Downlink”表示扩展的下行最大比特率、“Extended E-RAB Maximum Bit Rate Uplink”表示扩展的上行最大比特率、“Extended E-RAB Guaranteed Bit Rate Downlink”表示扩展的下行保证比特率、“Extended E-RAB Guaranteed Bit Rate Uplink”表示扩展的上行保证比特率。
在现有协议定义的GBR QoS信息单元中,表1中的可选IE是为了适应LTE-NR DC支持的4Tbps高空口速率而引入的。现有协议规定,在GBR QoS信息单元中出现可选IE的条件下,GBR QoS信息单元中原有的必选IE被忽略,不再有效。与此不同的是,本申请中的第一接入网设备会保存必选IE指示的基线GBR QoS信息,也会保存可选IE指示的扩展GBR QoS信息,并从必选IE指示的基线GBR QoS信息和可选IE指示的扩展GBR QoS信息中选择出应用于相关承载的GBR QoS信息。也即是说,本申请中,表1中的必选IE和可选IE都是有效的。
类似的,基线AMBR、扩展AMBR可以复用现有协议定义的AMBR QoS IE。该IE指示应用于一个UE上的所有non-GBR承载的下行最大比特率、上行最大比特率,具体可如表2所示:
信息单元/组名称(IE/Group Name) 状态(Presence)
UE Aggregate Maximum Bit Rate Downlink M
UE Aggregate Maximum Bit Rate Uplink M
Extended UE Aggregate Maximum Bit Rate Downlink O
Extended UE Aggregate Maximum Bit Rate Uplink O
表2
其中,“M”表示必选,“O”表示可选。必选IE可以指示基线AMBR,可选IE可以指示扩展AMBR。““UE Aggregate Maximum Bit Rate Downlink”表示下行最大比特率、“UE Aggregate Maximum Bit Rate Uplink”表示上行最大比特率。“Extended UE Aggregate Maximum Bit Rate Downlink”表示扩展的下行最大比特率、“ExtendedUE Aggregate Maximum Bit Rate Uplink”表示扩展的上行最大比特率。
在现有协议定义的AMBR QoS信息单元中,表2中的可选IE是为了适应LTE-NR DC 支持的4Tbps高空口速率而引入的。现有协议规定,在AMBR QoS信息单元中出现可选IE的条件下,AMBR QoS信息单元中原有的必选IE被忽略,不再有效。与此不同的是,本申请中的第一接入网设备会保存必选IE指示的基线AMBR,也会保存可选IE指示的扩展AMBR,并从必选IE指示的基线AMBR和可选IE指示的扩展AMBR中选择出应用于相关UE的AMBR。也即是说,本申请中,表2中的必选IE和可选IE都是有效的。
(二)实施例二
在5GC或NGC下,QoS参数可包括数据流级QoS参数,如GBR QoS信息。GBR QoS信息具体包括QoS flow的下行最大比特率、上行最大比特率,下行保证比特率、上行保证比特率。QoS参数还可包括PDU会话级QoS参数,如AMBR。AMBR表示non-GBR QoS flow的数据传输速率之和最大可达到的该AMBR的取值,同样也区分上行和下行。
1.在采用PDU会话级QoS参数的情况下,空口速率以PDU会话为粒度。
核心网下发的两套QoS参数可以是两种AMBR,其中一种是基线AMBR,另一种是扩展AMBR。基线AMBR要求的空口速率低于扩展AMBR要求的空口速率。本实施例中,基线AMBR可以为第一QoS参数,扩展AMBR可以为第二QoS参数。
具体的,基线AMBR是在第一接入网设备的空口传输能力不支持第二QoS参数要求的空口速率且相关PDU session没有被配置到第一承载的情况下应用到该相关PDU session的。扩展AMBR是在第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率,和/或相关PDU session被配置到第一承载的情况下应用到该相关PDU session的。关于第一承载,可以参考前述内容中相关说明,这里不再赘述。在选择出应用于相关PDU session的AMBR之后,第一接入网设备可以向核心网发送第一指示,以指示选择出的应用于相关PDU session的AMBR。这样,核心网便可以根据第一接入网设备指示的AMBR对该相关PDU session进行QoS管理,如速率调整策略。
如图12所示,PDU会话级QoS参数在核心网和接入网设备间的交互可以发生在PDU会话资源建立过程(PDU session resource setup procedure)中。具体的,基线AMBR和扩展AMBR可以携带在PDU会话资源建立请求中。第一接入网设备可通过PDU会话资源建立响应向核心网指示所选择的AMBR,即第一接入网设备选择的AMBR可以携带在PDU会话资源建立响应中。
如图13所示,PDU会话级QoS参数在核心网和接入网设备间的交互也可以如图发送在PDU会话资源修改过程(PDU session resource modification procedure)中。具体的,基线AMBR和扩展AMBR可以携带在PDU会话资源修改请求中。第一接入网设备可通过PDU会话资源修改响应(或称为PDU会话资源修改确认)向核心网指示所选择的AMBR,即第一接入网设备选择的AMBR可以携带在PDU会话资源修改响应(或称为PDU会话资源修改确认)中。
不限于图12或图13所示,PDU会话级QoS参数在核心网和接入网设备间的交互还可以发生在其他流程,例如PDU会话修改指示流程,或新定义的流程中。
2.在采用数据流级QoS参数的情况下,空口速率以QoS flow为粒度。
核心网下发的两套QoS参数可以是两种GBR,其中一种是基线GBR QoS信息,另一 种是扩展GBR QoS信息。基线GBR QoS信息要求的空口速率低于扩展GBR QoS信息要求的空口速率。本实施例中,基线GBR QoS信息可以为第一QoS参数,扩展GBR QoS信息可以为第二QoS参数。
具体的,基线GBR QoS信息是在第一接入网设备的空口传输能力不支持第二QoS参数要求的空口速率且相关QoS flow没有被配置成第一承载的情况下应用到该相关QoS flow的。扩展GBR QoS信息是在第一接入网设备的空口传输能力支持第二QoS参数要求的空口速率,和/或相关QoS flow被配置成第一承载的情况下应用到该相关QoS flow的。关于第一承载,可以参考前述内容中相关说明,这里不再赘述。在选择出应用于相关QoS flow的GBR QoS信息之后,第一接入网设备可以向核心网发送第一指示,以指示选择出的应用于相关QoS flow的GBR QoS信息。这样,核心网便可以根据第一接入网设备指示的GBR QoS信息对该相关QoS flow进行QoS管理,如速率调整策略。
同样的,可参考图12或图13,数据流级QoS参数在核心网和接入网设备间的交互也可以发生在PDU会话资源建立过程(PDU session resource setup procedure)中或PDU会话资源修改过程(PDU session resource modification procedure)中。
不限于图12或图13所示,数据流级QoS参数在核心网和接入网设备间的交互还可以发生在其他流程,例如PDU会话修改指示流程,或新定义的流程中。
采用实施例二,通过核心网设备和第一接入网设备之间的交互来选择合适的QoS参数,可避免因第一接入网设备无法满足QoS参数所要求的空口速率而出现的接入网设备拒绝PDU会话建立的问题。
(三)实施例三
基于实施例一或实施例二,RAN侧配置可能会发生变化。例如,LTE基站基于后续信道测量添加了NR基站作为SN,并为UE配置了EN-DC双连接。该RAN侧配置的变化表明该UE能够支持的空口速率变得更高,可以配置空口速率要求更高的QoS参数给该UE。又例如,初始为UE配置了EN-DC双连接,由于该UE移动等原因,该UE与SN(即NR基站)之间的连接被释放。该RAN侧配置的变化表明该UE能够支持的空口速率变得更低,需要配置空口速率要求更低的QoS参数给该UE。示例仅仅用于解释本申请,不应构成限定。
本实施例中,RAN侧配置可包括但不限于:相关UE或相关承载或相关PDU session或相关QoS flow的配置。例如UE是否被配置了EN-DC,或E-RAB(PDU session或QoS flow)是否被配置为了终结在NR基站的bearer。
在RAN侧配置可能会发生变化的情况下,第一接入网设备可以根据变化后的RAN侧配置从第一QoS参数和第二QoS参数中重新选择一套QoS参数,并向核心网重新发送指示,以指示RAN侧重新选择的QoS参数。本申请中,该重新发送的指示可以称为第二指示。例如,在初始上下文建立过程中,第一接入网设备接收到核心网设备发送的第一QoS参数和第二QoS参数,并仅选择了其中一套QoS参数向核心网进行指示,而另一套QoS参数虽然没有选,但仍然会保留。在后续RAN侧配置发生更改的情况下,第一接入网设备可能需要向核心网重新指示另外一套QoS参数。示例仅仅用于解释本申请,不应构成限定。
具体的,第一接入网设备重新选择QoS参数的方式可包括但不限于:
第一种方式,如果存在但不限于下述情况中的一项或多项,则第一接入网设备可以重新选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE从未被配置第一双连接变为被配置到第一双连接。关于第一双连接,可参考前述内容中的相关描述,这里不再赘述。
2.相关EPS承载/E-RAB从未被配置第一承载变为被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
3.相关QoS flow从未被配置第一承载变为被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
4.相关PDU session从未被配置第一承载变为被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
第二种方式,如果存在但不限于下述情况中的一项或多项,则第一接入网设备可以重新选择第一QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE从被配置第一双连接变为未被配置到第一双连接。关于第一双连接,可参考前述内容中的相关描述,这里不再赘述。
2.相关EPS承载/E-RAB从被配置第一承载变为未被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
3.相关QoS flow从被配置第一承载变为未被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
4.相关PDU session从被配置第一承载变为未被配置到第一承载。关于第一承载,可参考前述内容中的相关描述,这里不再赘述。
第二指示的具体实现可参考第一指示的实现方式。即第二指示可以实施成携带在特定信令中的指示信息,如比特、字段、信息单元(information element,IE)等,此时第二指示可以称为第二指示信息。第二指示也可以实施成单独的指示消息,此时第二指示可以称为第二指示消息。
当第二指示实施成携带在特定信令中的第二指示信息时,第二指示的具体信令实现可以包括如下几种方式:
1.UE级QoS参数在核心网和接入网设备间的重新交互可以发生在初始上下文建立过程(initial context setup procedure)中或UE上下文修改过程(UE context modification procedure)中。即第二指示可以携带在初始上下文建立响应或UE上下文修改响应中。具体可参考图8-图9。UE级QoS参数在核心网和接入网设备间的重新交互还可以发生在UE上下文修改指示过程中。即第二指示可以携带在UE上下文修改指示(UE context modification indication)中。具体可参考图14。
2.承载级QoS参数在核心网和接入网设备间的重新交互同样可以发生在初始上下文建立过程(initial context setup procedure)中或UE上下文修改过程(UE context modification procedure)中。具体可参考图8-图9。承载级QoS参数在核心网和接入网设备间的重新交互还可以发生在承载建立过程(如E-RAB setup procedure)中或承载修改过程(如E-RAB modify procedure)中。即,第二指示信息还可以携带在承载建立响应或承载修改响应中。 具体可参考图10-图11。承载级QoS参数在核心网和接入网设备间的重新交互还可以发生在UE上下文修改指示过程中。即第二指示可以携带在UE上下文修改指示(UE context modification indication)中。具体可参考图14。承载级QoS参数在核心网和接入网设备间的重新交互还可以发生在E-RAB修改指示过程中。即第二指示可以携带在E-RAB修改指示(E-RAB modification indication)中。具体可参考图15。
3.PDU会话级QoS参数在核心网和接入网设备间的重新交互可以发生PDU会话资源建立过程(PDU session resource setup procedure)中或PDU会话资源修改过程(PDU session resource modification procedure)中。即,第二指示可以携带在PDU会话资源建立响应或PDU会话资源修改响应中。具体可参考图12-图13。承载级QoS参数在核心网和接入网设备间的重新交互还可以发生在PDU session修改指示过程中。即第二指示可以携带在PDU session修改指示(PDU session modification indication)中。具体可参考图16。
4.数据流级QoS参数在核心网和接入网设备间的重新交互同样可以发生在PDU会话资源建立过程(PDU session resource setup procedure)中或PDU会话资源修改过程(PDU session resource modification procedure)中。具体可参考图12-图13。数据流级QoS参数在核心网和接入网设备间的重新交互还可以发生在PDU session修改指示过程中。即第二指示可以携带在PDU session修改指示(PDU session modification indication)中。具体可参考图16。
不限于上述1-4中提及的信令,第二指示信息还可以携带在其他信令或新定义的信令中。
可选的,第二指示信息可以仅仅是个变更指示,而不是重新选择的第一QoS参数或第二QoS参数。这样,可节约第二指示信息的信令开销。
采用实施例三,在后续RAN侧配置发生变化情况下,接入网设备重新指示所选择的QoS参数给核心网,以使核心网能够随之调整针对相关UE或相关承载或相关PDU session或相关QoS flow的QoS管理策略,便于相适应的调整UE与核心网之间的数据传输。
(四)实施例四
与前述实施例描述的方案不同的是,核心网不下发2套QoS参数。第一接入网设备将RAN侧配置告知核心网,让核心网能够根据RAN侧确定应用于相关UE/相关承载/相关PDU session/相关QoS flow的QoS参数。
具体的,第一接入网设备可以向核心网设备发送指示,以指示RAN侧配置。该RAN侧配置包括但不限于以下一项或多项:相关UE是否被配置了第一双连接、相关承载是否被配置到第一承载、相关PDU session是否被配置到第一承载、相关QoS flow是否被配置到第一承载。本申请中,可以将该指示称为第三指示。这样,核心网就能够根据第三指示确定应用于相关UE/相关承载/相关PDU session/相关QoS flow的QoS参数,并向第一接入网设备下发该QoS参数。关于第一双连接、第一承载,可参考前述内容中的相关描述,这里不再赘述。
第三指示的具体实现可参考第一指示的实现方式。即第三指示可以实施成携带在特定信令中的指示信息,如比特、字段、信息单元(information element,IE)等,此时第三指示 可以称为第三指示信息。第三指示也可以实施成单独的指示消息,此时第三指示可以称为第三指示消息。
当第三指示实施成携带在特定信令中的第三指示信息时,第三指示信息的具体信令实现可以包括如下几种方式:
1.相关UE的配置(如UE是否被配置了第一双连接)在核心网和接入网设备间的交互可以发生在初始上下文建立过程(initial context setup procedure)中或UE上下文修改过程(UE context modification procedure)中。即第三指示可以携带在初始上下文建立响应或UE上下文修改响应中。具体可参考图8-图9。
2.相关承载的配置(如E-RAB是否被配置了第一承载)在核心网和接入网设备间的交互同样可以发生在初始上下文建立过程(initial context setup procedure)中或UE上下文修改过程(UE context modification procedure)中。具体可参考图8-图9。相关承载的配置在核心网和接入网设备间的重新交互还可以发生在承载建立过程(如E-RAB setup procedure)中或承载修改过程(如E-RAB modify procedure)中。即,第三指示信息还可以携带在承载建立响应或承载修改响应中。具体可参考图10-图11。
3.相关PDU session的配置(如PDU session是否被配置了第一承载)在核心网和接入网设备间的交互可以发生PDU会话资源建立过程(PDU session resource setup procedure)中或PDU会话资源修改过程(PDU session resource modification procedure)中。即,第三指示可以携带在PDU会话资源建立响应或PDU会话资源修改响应中。具体可参考图12-图13。
4.相关QoS flow的配置(如QoS flow是否被配置了第一承载)在核心网和接入网设备间的重新交互同样可以发生在PDU会话资源建立过程(PDU session resource setup procedure)中或PDU会话资源修改过程(PDU session resource modification procedure)中。具体可参考图12-图13。
不限于上述1-4中提及的信令,第三指示信息还可以携带在其他信令或新定义的信令中。
在一些可能的实现方式中,核心网在收到第三指示之后,可以不调整应用于相关UE/相关承载/相关PDU session/相关QoS flow的QoS参数,而只是适应性地调整针对相关UE/相关承载/相关PDU session/相关QoS flow的比特率。
(五)实施例五
本实施例中,核心网不下发2套QoS参数。UE将RAN侧配置告知核心网,让核心网能够根据RAN侧确定应用于相关UE/相关承载/相关PDU session/相关QoS flow的QoS参数。
具体的,UE可以向核心网设备发送指示,以指示RAN侧配置。本申请中,可以将该指示称为第四指示。这样,核心网就能够根据第四指示确定应用于相关UE/相关承载/相关PDU session/相关QoS flow的QoS参数,并向第一接入网设备下发该QoS参数。关于RAN侧配置,可参考前述内容中的相关描述,这里不再赘述。
第四指示可以实施成携带在特定信令(如特定非接入层(non-access stratum,NAS)信 令)中的指示信息,如比特、字段、信息单元(information element,IE)等,此时第四指示可以称为第四指示信息。第四指示也可以实施成单独的指示消息(如NAS信令),此时第四指示可以称为第四指示消息。
第四指示所指示的内容与实施例四中的第三指示所指示的内容相同,具体可参考实施例四中的相关描述。
在一些可能的实现方式中,核心网在收到第四指示信息之后,可以不调整应用于相关UE/相关承载/相关PDU session/相关QoS flow的QoS参数,而只是适应性地调整针对相关UE/相关承载/相关PDU session/相关QoS flow的比特率。
参考图17,图17示出了本申请的一些实施例提供的接入网设备200。如图17所示,接入网设备200可包括:一个或多个接入网设备处理器201、存储器202、发射器205、接收器206、耦合器207和天线208。这些部件可通过总线204或者其他式连接,图17以通过总线连接为例。其中:
发射器205可用于对接入网设备处理器201输出的信号进行发射处理,例如信号调制。接收器206可用于对天线208接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器205和接收器206可看作一个无线调制解调器。在接入网设备200中,发射器205和接收器206的数量均可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207可用于将移动通信号分成多路,分配给多个的接收器206。
存储器202与接入网设备处理器201耦合,用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个接入网设备进行通信。
接入网设备处理器201可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的用户提供小区切换控制等。具体的,接入网设备处理器201可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请中,接入网设备处理器201可用于读取和执行计算机可读指令。具体的,接入网设备处理器201可用于调用存储于存储器202中的程序,例如本申请的一个或多个实施例提供的数据传输方法在接入网设备200侧的实现程序,并执行该程序包含的指令。
可以理解的,接入网设备200可以是图2示出的无线通信系统100中的主网络节点101,也可以是图2示出的无线通信系统100中的辅网络节点103。接入网设备200可实施为gNB、新型无线电基站(New radio eNB)、传输点(TRP)、宏基站、微基站、高频基站、LTE宏或微eNB、客户终端设备(Customer Premise Equipment,CPE)、接入点AP)、WLAN GO 等中的任一种或者某几种的组合。例如,主网络节点101(或者辅网络节点103)可以为一个gNB,由该gNB完成本申请中主网络节点101(或者辅网络节点103)所涉及的功能。又例如,主网络节点101(或者辅网络节点103)可以为gNB与TRP的组合,可以由gNB完成主网络节点101(或者辅网络节点103)的资源配置功能,由TRP完成主网络节点101(或者辅网络节点103)的收发功能。示例仅仅是本申请提供的一些实现方式,实际应用中还可以不同,不应构成限定。
需要说明的,图17所示的接入网设备200仅仅是本申请提供的一种实现方式,实际应用中,接入网设备200还可以包括更多或更少的部件,这里不作限制。
参考图18,图18示出了本申请的一些实施例提供的核心网设备300。如图18所示,核心网设备300可包括:一个或多个处理器301、存储器303、通信接口305。这些部件可通过总线304或者其他方式连接,图18以通过总线连接为例。其中:
通信接口305可用于核心网设备300与其他通信设备,例如接入网设备,进行通信。具体的,该接入网设备可以是图17所示的接入网设备200。具体的,通信接口305可以包括有线通信接口,例如广域网(WAN)接口、局域接入网(LAN)接口等。不限于有线通信接口,在一些可能的实施例中,通信接口305还可包括无线通信接口,如无线局域网(WLAN)接口等。
存储器303与处理器301耦合,用于存储各种软件程序和/或多组指令。具体的,存储器303可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器303可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器303还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
在本申请的一些实施例中,存储器303可用于存储本申请的一个或多个实施例提供的信号传输方法在核心网设备300侧的实现程序。关于本申请的一个或多个实施例提供的信号传输方法的实现,请参考后续实施例。
处理器301可用于读取和执行计算机可读指令。具体的,处理器301可用于调用存储于存储器305中的程序,例如本申请的一个或多个实施例提供的信号传输方法在核心网设备300侧的实现程序,并执行该程序包含的指令。
可以理解的,核心网设备300可以是图2示出的通信系统100中的核心网设备,可实施为EPC中MME、SGW、PGW或5GC中的AMF、SMF、UPF等等。图18所示的核心网设备300仅仅是本申请实施例的一种实现方式,实际应用中,核心网设备300还可以包括更多或更少的部件,这里不作限制。
参考图19,图19示出了本申请提供一种通信系统及网络设备。通信系统40可包括如下网络设备:至少一个接入网设备50和至少一个核心网设备60。接入网设备50可以为上述方法实施例中的接入网设备50,可以是图2所示的无线通信系统中的主基站101。接入网设备50可以是LTE基站,也可以是NR基站,还可以是未来通信系统中的基站。通信系 统40以及其中的网络设备可以实施本申请提供的信号传输方法。下面展开描述。
如图19所示,核心网设备60可包括:发送单元603和接收单元601。其中:
发送单元603可用于向接入网设备50发送第一QoS参数和第二QoS参数,第一QoS参数要求的空口速率小于第二QoS参数要求的空口速率。
接收单元601可用于接收接入网设备50发送的第一指示,第一指示用于指示接入网设备50从第一QoS参数和第二QoS参数中选择的QoS参数。
如图19所示,接入网设备50可包括:发送单元501和接收单元503。其中:
接收单元503可用于接收核心网设备60发送的第一QoS参数和第二QoS参数,第一QoS参数要求的空口速率小于第二QoS参数要求的空口速率。
发送单元501可用于向核心网设备60发送第一指示,第一指示用于指示接入网设备50从第一QoS参数和第二QoS参数中选择的QoS参数。
通过核心网设备60向接入网设备50下发第一QoS参数和第二QoS参数这两套QoS参数,接入网设备50从这两套QoS参数中选择出一套QoS参数,并向核心网设备60指示选择出的这一套QoS参数。这一套QoS参数要求的空口速率能够被相关UE或相关承载或相关PDU session或相关数据流支持。这样,可有效确定出应用于相关UE或相关承载或相关PDU session或相关数据流的QoS参数,避免对主基站的单板能力进行升级。而且,核心网可基于RAN侧选择的QoS参数来设置相应的QoS管理策略,如速率调整策略,便于UE与核心网之间的数据传输。
具体的,接入网设备50选择QoS参数的方式可包括但不限于:
第一种方式,在接入网设备50的空口传输能力支持第二QoS参数要求的空口速率的条件下,接入网设备50可以选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow。这里,接入网设备50的空口传输能力支持第二QoS参数要求的空口速率可以是指接入网设备50是NR基站,或者接入网设备50是进行硬件升级后的LTE基站。
第二种方式,在接入网设备50的空口传输能力不能支持第二QoS参数要求的空口速率的条件下,如果存在下述情况中的一项或多项,则接入网设备50可以选择第一QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE未被配置第一双连接。第一双连接关联接入网设备50和第二接入网设备,其中,第二接入网设备的空口传输能力支持第二QoS参数要求的空口速率。这里,第一双连接关联接入网设备50和第二接入网设备是指第一双连接需要使用接入网设备50和第二接入网设备的空口资源。
2.相关EPS承载/E-RAB未被配置到第一承载。第一承载的PDCP锚点所在的接入网设备支持第二QoS参数要求的空口速率。这里,第一承载的PDCP锚点所在的接入网设备可以是NR基站或者进行硬件升级后的LTE基站。当该接入网设备是MN时,第一承载可以是终结在MN的bearer,如终结在MN的MCG bearer、终结在MN的SCG bearer或终结在MN的split bearer(即MCG split bearer)中的一项或多项。当该接入网设备是SN时,第一承载可以是终结在SN的bearer,如终结在SN的MCG bearer、终结在SN的SCG bearer或终结在SN的split bearer(即SCG split bearer)中的一项或多项。
3.相关数据流(如QoS flow)未被配置到第一承载。关于第一承载的说明可参考上述2中的相关内容,这里不再赘述。
4.相关PDU session未被配置到第一承载。关于第一承载的说明可参考上述2中的相关内容,这里不再赘述。
其中,接入网设备50的空口传输能力不能支持第二QoS参数要求的空口速率可以是指接入网设备50是LTE基站。这里,第二接入网设备的空口传输能力支持第二QoS参数要求的空口速率可以是指接入网设备50是NR基站,或者第二接入网设备是进行硬件升级后的LTE基站。
第三种方式,如果存在下述情况中的一项或多项,则不管接入网设备50的空口传输能力如何,接入网设备50可以选择第二QoS参数应用于相关UE或相关承载或相关PDU session或相关QoS flow:
1.相关UE被配置到第一双连接。
2.相关EPS承载/E-RAB未被配置到第一承载。
3.相关数据流(如QoS flow)未被配置到第一承载。
4.相关PDU session未被配置到第一承载。
本申请中,第一QoS参数和第二QoS参数可以携带在以下一项或多项信令中:UE上下文建立请求或UE上下文修改请求、承载建立请求或承载修改请求、PDU会话资源建立请求或PDU会话资源修改请求。不限于此,第一QoS参数和第二QoS参数也可以携带其他信令或新定义的信令中。
本申请中,第一指示可以实施成携带在特定信令中的指示信息,如比特、字段、信息单元(information element,IE)等。此时,可以将第一指示称为第一指示信息。第一指示可以携带在以下一项或多项信令中:UE上下文建立响应或UE上下文修改响应、承载建立响应或承载修改响应、承载修改指示、PDU会话资源建立响应或PDU会话资源修改响应、PDU会话资源修改指示。不限于此,第一指示信息也可以携带其他信令或新定义的信令中。
本申请中,第一指示也可以实施成独立的指示消息。此时,可以将第一指示称为第一指示消息。在一些实现方式中,第一指示消息可包括指示第一QoS参数的信息和指示第二QoS参数的信息。如果指示第一QoS参数的信息(或指示第二QoS参数的信息)取特定值,则表明第一接入网设备选择的QoS参数为第一QoS参数(或第二QoS参数)。在另一些实现方式中,当第一指示消息包括特定信息(如特定比特、特定字段、特定IE等)时,表示第一接入网设备选择的QoS参数为第一QoS参数。当第一指示消息没有包括该特定信息时,表示第一接入网设备选择的QoS参数为第二QoS参数。在再一些实现方式中,当第一指示消息包括特定信息(如特定比特、特定字段、特定IE等)时,表示第一接入网设备选择的QoS参数为第二QoS参数。当第一指示消息没有包括该特定信息时,表示第一接入网设备选择的QoS参数为第一QoS参数。
在一些可能的情况下,RAN侧配置可能会发生变化。对此,在一些可选的实施例中,接入网设备50中的发送单元501还可用于向所述核心网设备发送第二指示,第二指示用于指示第一接入网设备从第一QoS参数和第二QoS参数中重新选择出的QoS参数。相应的,核心网设备60中的接收单元503还可用于接收接入网设备50发送的第二指示。这样,使 得核心网设备60能够随之调整针对相关UE或相关承载或相关PDU session或相关数据流的QoS管理策略,便于相适应的调整UE与核心网之间的数据传输。
在一些可选的实施例中,核心网可以不下发第一QoS参数和第二QoS参数。接入网设备50中的发送单元501还可用于向所述核心网设备发送指示,以指示RAN侧配置。该RAN侧配置包括但不限于以下一项或多项:相关UE是否被配置了第一双连接、相关承载是否被配置到第一承载、相关PDU session是否被配置到第一承载、相关数据流是否被配置到第一承载。本申请中,可以将该指示称为第三指示。这样,核心网设备60就能够根据第三指示确定应用于相关UE/相关承载/相关PDU session/相关数据流的QoS参数,并向第一接入网设备下发该QoS参数。
可以理解的,关于接入网设备50的各个功能单元的具体实现以及核心网设备60的各个功能单元的具体实现可参考前述方法实施例,这里不再赘述。
图19所示的通信系统40中的接入网设备50可以实施成图2所示的无线通信系统100中的的主基站101。图19所示的通信系统40中的核心网设备60可以实施成EPC中的MME、SGW等,也可以实施成5GC中的AMF、UPF、SMF等。图19所示的通信系统40中的接入网设备50还可以实施成图17所示的接入网设备200。图19所示的通信系统40中的核心网设备60还可以实施成图18所示的核心网设备300。
综上,实施本申请提供的技术方案,可有效确定出应用于相关UE或相关承载或相关PDU session或相关QoS flow的QoS参数,无需对LTE基站的单板能力进行升级。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请各方法实施例之间部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考的方法实施例中的部分进行理解。
本申请各装置实施例中给出的装置结构图仅示出了对应的装置的简化设计。在实际应用中,该装置可以包含任意数量的发射器,接收器,处理器,存储器等,以实现本申请各 装置实施例中该装置所执行的功能或操作,而所有可以实现本申请的装置都在本申请的保护范围之内。
本申请各实施例中提供的消息/帧/指示信息、模块或单元等的名称仅为示例,可以使用其他名称,只要消息/帧/指示信息、模块或单元等的作用相同即可。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (30)

  1. 一种信号传输方法,其特征在于,包括:
    第一接入网设备接收核心网设备发送的第一QoS参数和第二QoS参数,所述第一QoS参数要求的空口速率小于所述第二QoS参数要求的空口速率;
    所述第一接入网设备向所述核心网设备发送第一指示,所述第一指示用于指示所述第一接入网设备从所述第一QoS参数和所述第二QoS参数中选择的QoS参数。
  2. 如权利要求1所述的方法,其特征在于,还包括:所述第一接入网设备向所述核心网设备发送第二指示,所述第二指示用于指示所述第一接入网设备从所述第一QoS参数和所述第二QoS参数中重新选择出的QoS参数。
  3. 一种信号传输方法,其特征在于,包括:
    核心网设备向第一接入网设备发送第一QoS参数和第二QoS参数;所述第一QoS参数要求的空口速率小于所述第二QoS参数要求的空口速率;
    所述核心网设备接收所述第一接入网设备发送的第一指示,所述第一指示用于指示所述第一接入网设备从所述第一QoS参数和所述第二QoS参数中选择的QoS参数。
  4. 如权利要求1所述的方法,其特征在于,还包括:所述核心网设备接收所述第一接入网设备发送的第二指示,所述第二指示用于指示所述第一接入网设备从所述第一QoS参数和所述第二QoS参数中重新选择出的QoS参数。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述第一指示所指示的QoS参数包括以下一项或多项:用户设备UE级QoS参数、承载级QoS参数、数据流级QoS参数、分组数据单元PDU会话级QoS参数。
  6. 如权利要求1-4中任一项所述的方法,其特征在于,在所述第一接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率的条件下,所述第一指示所指示的QoS参数为所述第二QoS参数。
  7. 如权利要求5所述的方法,其特征在于,
    在用户设备被配置到第一双连接的条件下,所述第一指示所指示的UE级QoS参数为所述第二QoS参数;
    和/或,
    在承载被配置到第一承载的条件下,所述第一指示所指示的承载级QoS参数为所述第二QoS参数;
    和/或,
    在QoS flow被配置到所述第一承载的条件下,所述第一指示所指示的数据流级QoS 参数为所述第二QoS参数;
    和/或,
    在PDU会话被配置到所述第一承载的条件下,所述第一指示所指示的PDU会话级QoS参数为所述第二QoS参数;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  8. 如权利要求5或7所述的方法,其特征在于,所述第一接入网设备的空口传输能力不支持所述第二QoS参数要求的空口速率;
    如果用户设备未被配置第一双连接,则所述第一指示所指示的UE级QoS参数为所述第一QoS参数;
    和/或,
    如果承载未被配置到第一承载,则所述第一指示所指示的承载级QoS参数为所述第一QoS参数;
    和/或,
    如果QoS flow未被配置到所述第一承载,则所述第一指示所指示的数据流级QoS参数为所述第一QoS参数;
    和/或,
    如果PDU会话未被配置到所述第一承载,则所述第一指示所指示的PDU会话级QoS参数为所述第一QoS参数;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述第一QoS参数和所述第二QoS参数携带在以下一项或多项信令中:初始上下文建立请求、UE上下文修改请求、承载建立请求、承载修改请求、PDU会话资源建立请求或PDU会话资源修改请求。
  10. 如权利要求1-9中任一项所述的方法,其特征在于,所述第一指示携带在以下一项或多项信令中:初始上下文建立响应、UE上下文修改响应、承载建立响应、承载修改响应、PDU会话资源建立响应、PDU会话资源修改响应。
  11. 如权利要求1-10中任一项所述的方法,其特征在于,所述第一QoS参数、所述第二QoS参数均包括以下一项或多项:保证比特速率GBR、聚合最大比特速率AMBR。
  12. 一种信号传输方法,其特征在于,包括:
    第一接入网设备向核心网设备发送指示,所述指示用于指示以下以下一项或多项:用 户设备是否被配置第一双连接、承载或QoS flow或PDU会话是否被配置到第一承载;
    所述第一接入网设备接收所述核心网设备发送QoS参数,所述QoS参数是根据所述指示确定的;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  13. 一种信号传输方法,其特征在于,包括:
    核心网设备接收第一接入网设备发送的指示,所述指示用于指示以下以下一项或多项:用户设备是否被配置第一双连接、承载或QoS flow或PDU会话是否被配置到第一承载;
    所述核心网设备向所述第一接入网设备发送QoS参数,所述QoS参数是根据所述指示确定的;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  14. 如权利要求12或13所述的方法,其特征在于,所述指示携带在以下一项或多项信令中:初始上下文建立响应、UE上下文修改响应、承载建立响应、承载修改响应、PDU会话资源建立响应或PDU会话资源修改响应。
  15. 一种网络设备,其特征在于,包括:
    接收单元,用于接收核心网设备发送的第一QoS参数和第二QoS参数,所述第一QoS参数要求的空口速率小于所述第二QoS参数要求的空口速率;
    发送单元,用于向所述核心网设备发送第一指示,所述第一指示用于指示所述第一接入网设备从所述第一QoS参数和所述第二QoS参数中选择的QoS参数。
  16. 如权利要求15所述的网络设备,其特征在于,所述发送单元,还用于向所述核心网设备发送第二指示,所述第二指示用于指示所述第一接入网设备从所述第一QoS参数和所述第二QoS参数中重新选择出的QoS参数。
  17. 一种网络设备,其特征在于,包括:
    发送单元,用于向第一接入网设备发送第一QoS参数和第二QoS参数;所述第一QoS参数要求的空口速率小于所述第二QoS参数要求的空口速率;
    接收单元,用于接收所述第一接入网设备发送的第一指示,所述第一指示用于指示所述第一接入网设备从所述第一QoS参数和所述第二QoS参数中选择的QoS参数。
  18. 如权利要求17所述的网络设备,其特征在于,所述接收单元,还用于接收所述第一接入网设备发送的第二指示,所述第二指示用于指示所述第一接入网设备从所述第一 QoS参数和所述第二QoS参数中重新选择出的QoS参数。
  19. 如权利要求15-18中任一项所述的网络设备,其特征在于,所述第一指示所指示的QoS参数包括以下一项或多项:用户设备UE级QoS参数、承载级QoS参数、数据流级QoS参数、分组数据单元PDU会话级QoS参数。
  20. 如权利要求15-18中任一项所述的网络设备,其特征在于,在所述第一接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率的条件下,所述第一指示所指示的QoS参数为所述第二QoS参数。
  21. 如权利要求19所述的网络设备,其特征在于,在用户设备被配置到第一双连接的条件下,所述第一指示所指示的UE级QoS参数为所述第二QoS参数;
    和/或,
    在承载被配置到第一承载的条件下,所述第一指示所指示的承载级QoS参数为所述第二QoS参数;
    和/或,
    在QoS flow被配置到所述第一承载的条件下,所述第一指示所指示的数据流级QoS参数为所述第二QoS参数;
    和/或,
    在PDU会话被配置到所述第一承载的条件下,所述第一指示所指示的PDU会话级QoS参数为所述第二QoS参数;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  22. 如权利要求19或21所述的网络设备,其特征在于,所述第一接入网设备的空口传输能力不支持所述第二QoS参数要求的空口速率;
    如果用户设备未被配置第一双连接,则所述第一指示所指示的UE级QoS参数为所述第一QoS参数;
    和/或,
    如果承载未被配置到第一承载,则所述第一指示所指示的承载级QoS参数为所述第一QoS参数;
    和/或,
    如果QoS flow未被配置到所述第一承载,则所述第一指示所指示的数据流级QoS参数为所述第一QoS参数;
    和/或,
    如果PDU会话未被配置到所述第一承载,则所述第一指示所指示的PDU会话级QoS参数为所述第一QoS参数;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  23. 如权利要求15-22中任一项所述的网络设备,其特征在于,所述第一QoS参数和所述第二QoS参数携带在以下一项或多项信令中:初始上下文建立请求、UE上下文修改请求、承载建立请求、承载修改请求、PDU会话资源建立请求或PDU会话资源修改请求。
  24. 如权利要求15-23中任一项所述的网络设备,其特征在于,所述第一指示携带在以下一项或多项信令中:初始上下文建立响应、UE上下文修改响应、承载建立响应、承载修改响应、PDU会话资源建立响应、PDU会话资源修改响应。
  25. 如权利要求15-24中任一项所述的网络设备,其特征在于,所述第一QoS参数、所述第二QoS参数均包括以下一项或多项:保证比特速率GBR、聚合最大比特速率AMBR。
  26. 一种网络设备,其特征在于,包括:
    发送单元,用于向核心网设备发送指示,所述指示用于指示以下以下一项或多项:用户设备是否被配置第一双连接、承载或QoS flow或PDU会话是否被配置到第一承载;
    接收单元,用于接收所述核心网设备发送QoS参数,所述QoS参数是根据所述指示确定的;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  27. 一种网络设备,其特征在于,包括:
    接收单元,用于接收第一接入网设备发送的指示,所述指示用于指示以下以下一项或多项:用户设备是否被配置第一双连接、承载或QoS flow或PDU会话是否被配置到第一承载;
    发送单元,用于向所述第一接入网设备发送QoS参数,所述QoS参数是根据所述指示确定的;
    其中,所述第一双连接关联所述第一接入网设备和第二接入网设备;所述第二接入网设备的空口传输能力支持所述第二QoS参数要求的空口速率;所述第一承载的分组数据汇聚协议PDCP锚点所在的接入网设备支持所述第二QoS参数要求的空口速率。
  28. 如权利要求26或27所述的网络设备,其特征在于,所述指示携带在以下一项或多项信令中:初始上下文建立响应、UE上下文修改响应、承载建立响应、承载修改响应、PDU会话资源建立响应或PDU会话资源修改响应。
  29. 一种通信系统,其特征在于,包括:第一网络设备和第二网络设备,其中:所述第一网络设备为权利要求15-16、19-24中任一项所述的网络设备;
    所述第二网络设备为权利要求17-24中任一项所述的网络设备。
  30. 一种通信系统,其特征在于,包括:第一网络设备和第二网络设备,其中:所述第一网络设备为权利要求26或28所述的网络设备;
    所述第二网络设备为权利要求27或28所述的网络设备。
PCT/CN2019/092180 2018-06-22 2019-06-21 信号传输方法、网络设备及系统 WO2019242708A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217001632A KR102569090B1 (ko) 2018-06-22 2019-06-21 신호 전송 방법, 네트워크 디바이스, 및 시스템
EP19822872.8A EP3806536B1 (en) 2018-06-22 2019-06-21 Signal transmission method, network device, and system
EP22196758.1A EP4178255B1 (en) 2018-06-22 2019-06-21 Quality of service related signaling
US17/131,247 US11678213B2 (en) 2018-06-22 2020-12-22 Signal transmission method, network device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810657293.9 2018-06-22
CN201810657293.9A CN110635880B (zh) 2018-06-22 2018-06-22 信号传输方法、网络设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/131,247 Continuation US11678213B2 (en) 2018-06-22 2020-12-22 Signal transmission method, network device, and system

Publications (1)

Publication Number Publication Date
WO2019242708A1 true WO2019242708A1 (zh) 2019-12-26

Family

ID=68967805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092180 WO2019242708A1 (zh) 2018-06-22 2019-06-21 信号传输方法、网络设备及系统

Country Status (5)

Country Link
US (1) US11678213B2 (zh)
EP (2) EP4178255B1 (zh)
KR (1) KR102569090B1 (zh)
CN (1) CN110635880B (zh)
WO (1) WO2019242708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709807A (zh) * 2020-05-22 2021-11-26 苹果公司 用于无线切片的动态数据速率调整的装置和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925246B1 (en) * 2019-02-13 2023-04-05 Telefonaktiebolaget LM Ericsson (publ) Method and apparatuses for handling of wireless device subscribed aggregate maximum bitrate (ambr) in wireless communication networks
WO2020165503A1 (en) * 2019-02-15 2020-08-20 Nokia Technologies Oy Method and apparatus for handling redundant protocol data unit sessions in a communication system
US11470665B2 (en) * 2019-08-15 2022-10-11 Apple Inc. Negotiation on bearer type configurations
US11653268B2 (en) 2021-06-15 2023-05-16 Microsoft Technology Licensing, Llc Dynamically adjusting the bandwidth of downlink transmissions based on a radio access technology used by a radio access network
WO2023019550A1 (en) * 2021-08-20 2023-02-23 Lenovo (Beijing) Limited Methods and apparatuses for supporting connectivity of multiple sns in mr-dc scenario
CN116017720A (zh) * 2021-10-19 2023-04-25 华为技术有限公司 一种无线调度方法、装置和系统
CN116887341A (zh) * 2022-03-28 2023-10-13 华为技术有限公司 通信方法、通信装置和通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730311A (zh) * 2008-10-22 2010-06-09 华为技术有限公司 一种无线接入承载管理方法、装置和系统
US20140128075A1 (en) * 2012-11-02 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Methods for Coordinating Inter-RAT Mobility Settings
CN105379351A (zh) * 2013-07-01 2016-03-02 高通股份有限公司 用于在WLAN上针对与蜂窝网络上的承载相关的话务启用服务质量(QoS)的技术
CN107734562A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种业务传输控制方法、相关设备及通信系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668176B2 (en) * 2001-01-18 2010-02-23 Alcatel-Lucent Usa Inc. Universal mobile telecommunications system (UMTS) quality of service (QoS) supporting variable QoS negotiation
WO2007043180A1 (ja) * 2005-10-14 2007-04-19 Fujitsu Limited アクセスネットワーク選択方法
TWI328373B (en) * 2006-11-08 2010-08-01 Ind Tech Res Inst Method and system for guaranteeing qos between different radio networks
US8064382B2 (en) * 2007-09-28 2011-11-22 Wireless Technology Solutions Llc Apparatus and method for scheduling in a wireless communication system
US8213310B2 (en) 2009-02-25 2012-07-03 Qualcomm Incorporated High-priority communications session within a wireless communications system
CN104023376B (zh) * 2010-07-26 2018-06-26 华为技术有限公司 多个无线接入网聚合系统及其实现方法和接入网网元
CN103621167B (zh) * 2011-04-13 2017-05-03 英派尔科技开发有限公司 基于与移动装置关联的网络地址调整服务质量
CN103491643B (zh) * 2012-06-12 2018-03-27 电信科学技术研究院 组通信连接的建立方法和设备
WO2014088356A1 (ko) 2012-12-06 2014-06-12 주식회사 팬택 이종 네트워크 무선 통신 시스템에서 확장 베어러 제어 방법 및 그 장치
US8913494B1 (en) * 2013-01-22 2014-12-16 Sprint Spectrum L.P. Dynamic allocation of backhaul bearer services based on loading conditions
US9722929B2 (en) * 2013-04-08 2017-08-01 Telefonaktiebolaget Lm Ericsson (Publ) Congestion aware throughput targets
US10536386B2 (en) * 2014-05-16 2020-01-14 Huawei Technologies Co., Ltd. System and method for dynamic resource allocation over licensed and unlicensed spectrums
EP3198931B1 (en) * 2014-09-23 2020-10-21 Nokia Solutions and Networks Oy Transmitting data based on flow input from base station
US9706521B1 (en) 2014-11-11 2017-07-11 Sprint Spectrum L.P. Designation of paging occasions based upon quality of service level
CN107667546B (zh) * 2015-06-02 2020-11-24 瑞典爱立信有限公司 通过ue指示来适配具有两个相关联的qos的无线电承载的qos
KR102220539B1 (ko) 2016-07-04 2021-02-25 엘지전자 주식회사 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
KR102325344B1 (ko) * 2016-09-30 2021-11-12 삼성전자주식회사 신규 무선 통신 아키텍쳐에서 듀얼-커넥티비티를 성립하여 데이터를 송신하는 방법 및 장치
CN109257827B (zh) 2016-09-30 2020-09-18 华为技术有限公司 通信方法、装置、系统、终端和接入网设备
WO2018062949A1 (en) * 2016-09-30 2018-04-05 Samsung Electronics Co., Ltd. Method and apparatus for establishing dual-connectivity to transmit data in new radio communication architecture
CN108024284B (zh) * 2016-11-04 2020-09-08 华为技术有限公司 无线通信方法、用户设备接入网设备、和核心网设备
US11057955B2 (en) * 2017-01-05 2021-07-06 Nec Corporation Radio access network node, radio terminal, core network node, and methods and non-transitory computer-readable media therefor
CN116669112A (zh) * 2017-01-26 2023-08-29 中兴通讯股份有限公司 通信方法、网络设备、计算机存储介质
CN109246844B (zh) * 2017-06-16 2022-07-15 中兴通讯股份有限公司 无线承载的配置方法及系统
US11190968B2 (en) * 2017-06-16 2021-11-30 Samsung Electronics Co., Ltd Apparatus and method for managing connections in wireless communication system
US10798754B2 (en) * 2017-07-24 2020-10-06 Asustek Computer Inc. Method and apparatus for serving quality of service (QOS) flow in a wireless communication system
CN111279773B (zh) * 2017-11-20 2024-10-18 Oppo广东移动通信有限公司 业务配置方法及相关产品
RU2750155C1 (ru) * 2018-04-04 2021-06-22 Зтэ Корпорейшн Способ и системы обмена сообщениями в сети беспроводной связи

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730311A (zh) * 2008-10-22 2010-06-09 华为技术有限公司 一种无线接入承载管理方法、装置和系统
US20140128075A1 (en) * 2012-11-02 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Methods for Coordinating Inter-RAT Mobility Settings
CN105379351A (zh) * 2013-07-01 2016-03-02 高通股份有限公司 用于在WLAN上针对与蜂窝网络上的承载相关的话务启用服务质量(QoS)的技术
CN107734562A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种业务传输控制方法、相关设备及通信系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.300
3GPP TS 38.300

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709807A (zh) * 2020-05-22 2021-11-26 苹果公司 用于无线切片的动态数据速率调整的装置和方法

Also Published As

Publication number Publication date
US20210120450A1 (en) 2021-04-22
EP4178255A1 (en) 2023-05-10
EP4178255B1 (en) 2024-09-18
KR20210020150A (ko) 2021-02-23
EP3806536A1 (en) 2021-04-14
EP3806536A4 (en) 2021-08-18
US11678213B2 (en) 2023-06-13
CN110635880B (zh) 2021-12-21
EP4178255C0 (en) 2024-09-18
KR102569090B1 (ko) 2023-08-21
EP3806536B1 (en) 2022-10-26
CN110635880A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019242708A1 (zh) 信号传输方法、网络设备及系统
US10925106B2 (en) Mobile communication system, control apparatus, base station, and user terminal supporting dual connectivity
JP7243873B2 (ja) 無線アクセスネットワークノード及び無線端末並びにこれらの方法
CN110999520B (zh) 无线接入网节点、核心网节点和无线终端及其方法
CN110383895B (zh) 在切换过程期间获取按需系统信息的方法
WO2018028694A1 (zh) 设备直通系统的通信方法及装置、通信系统
EP3051876B1 (en) Small cell switching method, enb and computer storage medium
JP5970614B2 (ja) マルチネットワークジョイント伝送に基づくオフロード方法、システム及びアクセスネットワーク要素
JP7147883B2 (ja) gNB-CU-UPにおける完全性保護のハンドリング
JP2022095657A (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
EP2744260B1 (en) Data transmission method and device
KR101501190B1 (ko) 계층화된 클라우드 컴퓨팅에 기반한 모바일 셀룰러 네트워크
EP3627889B1 (en) Communication method and access network device
CN107079382B (zh) 支持多无线电接入技术的方法和装置
KR102433768B1 (ko) 무선 통신 시스템에서 측정을 위한 장치 및 방법
CN109429267B (zh) 数据传输方法、相关装置及系统
JP2023515782A (ja) 無線通信システムにおけるダイナミックスペクトラムシェアリング
EP3107342B1 (en) Relay node (rn), donor enodeb (denb) and communication method
WO2014169718A1 (zh) 一种无线资源管理方法、宏基站及低功率节点
US20190104511A1 (en) Method for establishing evolved packet system bearer and base station
WO2022183945A1 (zh) 电子设备、无线通信方法以及计算机可读存储介质
RU2782866C2 (ru) Архитектура с агрегированием технологий для систем связи стандарта долгосрочного развития
WO2019140634A1 (zh) 参数调整方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001632

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019822872

Country of ref document: EP

Effective date: 20210105