[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019242407A1 - 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法 - Google Patents

一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法 Download PDF

Info

Publication number
WO2019242407A1
WO2019242407A1 PCT/CN2019/084694 CN2019084694W WO2019242407A1 WO 2019242407 A1 WO2019242407 A1 WO 2019242407A1 CN 2019084694 W CN2019084694 W CN 2019084694W WO 2019242407 A1 WO2019242407 A1 WO 2019242407A1
Authority
WO
WIPO (PCT)
Prior art keywords
buck
asynchronous motor
matrix converter
boost matrix
control
Prior art date
Application number
PCT/CN2019/084694
Other languages
English (en)
French (fr)
Inventor
张小平
刘继
张瑞瑞
Original Assignee
湖南科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南科技大学 filed Critical 湖南科技大学
Publication of WO2019242407A1 publication Critical patent/WO2019242407A1/zh
Priority to US16/926,369 priority Critical patent/US10804830B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/16Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Definitions

  • the invention relates to the field of asynchronous motor control, in particular to a control method of an asynchronous motor speed regulating system based on a Buck-Boost matrix converter.
  • Buck-Boost matrix converter is a "green" inverter with a simple topology and a series of ideal electrical characteristics. It is suitable for variable frequency speed control systems of asynchronous motors.
  • the invention patent "A Vector Control Device and Method for Asynchronous Motor” proposes a double closed loop based on PID control Control method.
  • this control method can achieve general speed control of asynchronous motors, it has the problems of low accuracy and dynamic performance of steady-state speed control, and it is difficult to meet the control requirements of high-performance speed control systems.
  • the present invention provides a control method of an asynchronous motor speed regulating system based on a Buck-Boost matrix converter.
  • the vector control algorithm is used to obtain the given voltage of the asynchronous motor
  • step (3) The given voltage of the asynchronous motor obtained in step (3) is used as the reference output voltage of the Buck-Boost matrix converter, and the capacitor voltage and inductor current in the Buck-Boost matrix converter are used as system control variables to establish Buck-Boost State differential equation of matrix converter;
  • step (8) According to the duty cycle of the power switch in the Buck-Boost matrix converter obtained in step (8), control the corresponding power switch in the Buck-Boost matrix converter, and obtain the same at the output of the Buck-Boost matrix converter. With reference to the output voltage with the same output voltage, the actual speed of the asynchronous motor can be accurately tracked to the given speed.
  • the beneficial effect of the present invention is that: according to a given speed of the asynchronous motor, the present invention simultaneously detects its actual speed, obtains a given voltage of the asynchronous motor through a vector control algorithm based on PI-IP control, and uses the given voltage as the BBMC's Reference output voltage; the capacitor voltage and inductor current in the BBMC are used as system control variables, and the duty cycle of the corresponding power switch in the BBMC is obtained through a finite time control algorithm; and then the BBMC is controlled according to the duty cycle and the corresponding switching cycle output control signal Corresponding to the on-time of the power switch in China, so that the output voltage at the BBMC output can be consistent with its reference output voltage.
  • the invention can realize the accurate tracking of the given rotation speed of the asynchronous motor and achieve the accurate control of the rotation speed of the asynchronous motor.
  • FIG. 1 is a main circuit topology diagram of a BBMC in the present invention.
  • FIG. 2 is a flowchart of the present invention.
  • FIG. 3 is a principle block diagram of a speed control outer loop based on PI-IP control of the present invention.
  • FIG. 4 is a flowchart of a BBMC limited time control algorithm in the present invention.
  • FIG. 1 is a main circuit topology structure diagram of the BBMC of the present invention.
  • the BBMC includes two parts: a rectifier stage and an inverter stage. Its rectification stage is a three-phase PWM rectifier circuit, which rectifies three-phase AC into a PWM-modulated DC voltage.
  • the inverter stage is a three-phase Buck-Boost inverter. It consists of three Buck-Boost DC / DC converters with the same structure. Since the output voltage of the BBMC mainly depends on the control of the Buck-Boost inverter, a separate control unit will be constructed for each phase of the Buck-Boost DC / DC converter in the control of the three-phase Buck-Boost inverter.
  • the capacitor voltage and the inductor current in each control unit are used as system control variables, and a limited time control algorithm is used to control these two system control variables, so that the actual output voltage of the BBMC is consistent with its reference output voltage.
  • FIG. 2 is a flowchart of the present invention.
  • the control process of the present invention is as follows:
  • step (3) The given voltage of the asynchronous motor obtained in step (3) is used as the reference output voltage of the Buck-Boost matrix converter, and the capacitor voltage and inductor current in the Buck-Boost matrix converter are used as system control variables to establish Buck-Boost State differential equation of matrix converter;
  • step (8) According to the duty cycle of the power switch in the Buck-Boost matrix converter obtained in step (8), the corresponding power switch in the Buck-Boost matrix converter is controlled, and it is obtained at the output of the Buck-Boost matrix converter. With reference to the output voltage with the same output voltage, the actual speed of the asynchronous motor can be accurately tracked to the given speed.
  • FIG. 3 it is a principle block diagram of an outer loop of a speed control based on PI-IP control in the present invention.
  • the invention adopts PI-IP control-based vector control method for asynchronous motors for control, including PI-IP control-based speed control outer loop and vector-control-based torque control inner loop, among which PI-
  • the IP control algorithm is specifically:
  • k pi , k i , k ip are control parameters, which can be obtained by engineering trial and error method or optimization algorithm.
  • FIG. 4 it is a flowchart of the BBMC limited time control algorithm of the present invention.
  • the capacitor voltage and inductor current in the BBMC are used as system control variables, and the duty cycle of the corresponding power switch in the BBMC is obtained through a finite time control algorithm. Then, the corresponding power switch in the BBMC is controlled according to the duty cycle. This allows the BBMC's actual output voltage to accurately track its reference output voltage. It includes the following steps:
  • circuit components in the BBMC are ideal devices and the input power source is an ideal power source; the circuit components include: a power switch, a diode, an inductor, and a capacitor.
  • u D is the DC side voltage of BBMC
  • u C is the capacitor voltage
  • i L is the inductor current
  • i 1 is the output current of BBMC
  • L and C are the BBMC inverter level inductance parameters and capacitance parameters
  • d is the BBMC inverse The duty cycle of the power switch in the change stage, d ⁇ [0,1].
  • u DZ is the common terminal voltage of the three-phase stator winding of the asynchronous motor
  • R and L 1 are the equivalent resistance and equivalent inductance of the single-phase winding of the asynchronous motor stator, respectively.
  • the process of transmitting electrical energy from the DC input side to the output end is: first control the power switch T 1 to be turned on, then the input side DC power source charges the inductor L 1 through T 1 , and after a period of time, T 1 turns off Then, the electric energy stored in the inductor L 1 is discharged to the capacitor C 1 through the free-wheeling diode D 2 , and the capacitor C 1 supplies power to the load motor.
  • the load current i and an average current of the diode D is equal to 2
  • the average current of the diode D and T is equal to the average current switch turn-off inductor 1, there are:
  • u is the control function.
  • sat is a saturation function
  • k 1 , k 2 , ⁇ 1 , ⁇ 2 are control parameters
  • step b) From the relationship obtained in step a), and according to the system dynamic error equation (14), the system control function u can be obtained:
  • the corresponding power switch in the BBMC is controlled according to the duty cycle function of the system, so that the actual output voltage of the BBMC can accurately track its reference output voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法。其步骤为:根据异步电机的给定转速,同时检测其实际转速,经基于PI-IP控制的矢量控制算法获得异步电机的给定电压,并以该给定电压作为Buck-Boost矩阵变换器(BBMC)的参考输出电压;再以BBMC中电容电压与电感电流作为系统控制变量,经有限时间控制算法得到BBMC中对应功率开关的占空比;再根据该占空比及相应的开关周期输出控制信号控制BBMC中对应功率开关的开通时间,由此可在BBMC输出端获得与其参考输出一致的输出电压,从而实现异步电机实际转速对其给定转速的准确跟踪,达到对异步电机转速进行准确控制的目的。本发明具有控制精度高、鲁棒性强、跟踪误差小、动态性能好、抗干扰能力强等优点。

Description

一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法 技术领域
本发明涉及异步电机控制领域,特别涉及一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法。
背景技术
Buck-Boost矩阵变换器是一种具有简单拓扑结构和一系列理想电气特性的“绿色”变频器,适合应用于异步电机的变频调速系统中。
目前在有关Buck-Boost矩阵变换器应用于异步电机调速系统的控制方法方面,发明专利“一种异步电机矢量控制装置及方法”(申请号:201310460536.7)提出了一种基于PID控制的双闭环控制方法,该控制方法虽可实现异步电机的一般调速控制,但存在稳态调速控制精度及动态性能不高的问题,难以满足高性能调速系统的控制要求。
发明内容
为了解决上述技术问题,本发明提供一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法。
本发明解决上述技术问题的技术方案包括以下步骤:
(1)根据异步电机的给定转速,同时检测其实际转速,得到相应的转速偏差;
(2)根据异步电机的转速偏差,经PI-IP控制算法处理后,得到异步电机的参考转矩;
(3)根据异步电机的参考转矩,采用矢量控制算法处理得到异步电机的给定电压;
(4)将步骤(3)中获得的异步电机给定电压作为Buck-Boost矩阵变换器的参考输出电压,以Buck-Boost矩阵变换器中电容电压与电感电流作为系统控制变量,建立Buck-Boost矩阵变换器的状态微分方程;
(5)根据异步电机定子单相绕组等效电路,建立异步电机定子单相绕组的状态微分方程;
(6)根据Buck-Boost矩阵变换器和异步电机定子单相绕组的状态微分方程,得到系统的动态方程;
(7)根据系统的动态方程设计系统的控制函数;
(8)根据系统动态方程和控制函数,得到Buck-Boost矩阵变换器中对应功率开关的 占空比;
(9)根据步骤(8)中获得的Buck-Boost矩阵变换器中功率开关的占空比,对Buck-Boost矩阵变换器中对应功率开关进行控制,在Buck-Boost矩阵变换器输出端获得与其参考输出电压一致的输出电压,实现异步电机实际转速对给定转速的准确跟踪。
本发明的有益效果在于:本发明根据异步电机的给定转速,同时检测其实际转速,经基于PI-IP控制的矢量控制算法获得异步电机的给定电压,并以该给定电压作为BBMC的参考输出电压;再以BBMC中电容电压与电感电流作为系统控制变量,经有限时间控制算法得到BBMC中对应功率开关的占空比;再根据该占空比及相应的开关周期输出控制信号控制BBMC中对应功率开关的开通时间,由此可在BBMC输出端获得与其参考输出电压一致的输出电压。本发明可实现异步电机给定转速的准确跟踪,达到对异步电机转速的准确控制。
附图说明
图1为本发明中BBMC的主电路拓扑结构图。
图2为本发明的流程图。
图3为本发明基于PI-IP控制的转速控制外环的原理框图。
图4为本发明中BBMC有限时间控制算法的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图1所示,图1为本发明BBMC的主电路拓扑结构图。BBMC包括整流级和逆变级两部分,其整流级为一个三相PWM整流电路,它将三相交流整流成PWM调制的直流电压;而逆变级则为一个三相Buck-Boost逆变器,它由三个结构相同的Buck-Boost DC/DC变换器构成。鉴于BBMC的输出电压主要取决于对Buck-Boost逆变器进行控制,因而在针对三相Buck-Boost逆变器的控制中将针对每相Buck-Boost DC/DC变换器构建一个单独的控制单元,并以每个控制单元中电容电压与电感电流为系统控制变量,且针对这两个系统控制变量采用有限时间控制算法进行控制,从而使BBMC的实际输出电压与其参考输出电压保持一致。
如图2所示,图2为本发明的流程图,本发明的控制过程如下:
(1)根据异步电机的给定转速,同时检测其实际转速,得到相应的转速偏差;
(2)根据异步电机的转速偏差,经PI-IP控制算法处理后,得到异步电机的参考转矩;
(3)根据异步电机的参考转矩,采用矢量控制算法处理得到异步电机的给定电压u ref
(4)将步骤(3)中获得的异步电机给定电压作为Buck-Boost矩阵变换器的参考输出电压,以Buck-Boost矩阵变换器中电容电压与电感电流作为系统控制变量,建立Buck-Boost矩阵变换器的状态微分方程;
(5)根据异步电机定子单相绕组等效电路,建立异步电机定子单相绕组的状态微分方程;
(6)根据Buck-Boost矩阵变换器和异步电机定子单相绕组的状态微分方程,得到系统的动态方程;
(7)根据系统的动态方程设计系统的控制函数;
(8)根据系统动态方程和控制函数,得到Buck-Boost矩阵变换器中对应功率开关的占空比;
(9)根据步骤(8)中获得的Buck-Boost矩阵变换器中功率开关的占空比,对Buck-Boost矩阵变换器中对应功率开关进行控制,在Buck-Boost矩阵变换器输出端获得与其参考输出电压一致的输出电压,实现异步电机实际转速对给定转速的准确跟踪。
如图3所示,为本发明中基于PI-IP控制的转速控制外环原理框图。本发明针对异步电机采用基于PI-IP控制的矢量控制方法进行控制,包括基于PI-IP控制的转速控制外环和基于矢量控制的转矩控制内环,其中转速控制外环所采用的PI-IP控制算法具体为:
1)根据异步电机的给定转速n*,同时检测其实际转速n,得到相应的转速偏差,如式(1)所示:
e=n*-n          (1)
2)根据式(1)所得转速偏差e,经PI-IP控制算法处理后,得到异步电机参考转矩
Figure PCTCN2019084694-appb-000001
的增量式表达式,具体步骤如下:
a)根据异步电机的给定转速n*及其实际转速n,以及相应的转速偏差e,由PI-IP控制算法,得到相应的时域表达式为:
Figure PCTCN2019084694-appb-000002
b)将式(2)用增量式表示,如式(3)所示:
Figure PCTCN2019084694-appb-000003
式中:k pi、k i、k ip为控制参数,可采用工程试凑法或优化算法得到。
3)以式(3)所得参考转矩作为电机转矩控制内环的参考转矩,并针对转矩控制内环采用矢量控制算法进行控制,从而使电机实际转矩与该参考转矩保持一致,并由此获得 电机相应的输入给定电压,并以该给定电压作为BBMC的参考输出电压。
如图4所示,为本发明BBMC有限时间控制算法流程图。在该控制算法中,以BBMC中电容电压与电感电流作为系统控制变量,经有限时间控制算法得到BBMC中对应功率开关的占空比,再根据该占空比对BBMC中对应功率开关实施控制,由此可实现BBMC实际输出电压对其参考输出电压的准确跟踪。具体包括如下步骤:
1)建立BBMC的状态微分方程。
a)假设BBMC中所有电路元器件均为理想器件,输入电源为理想电源;所述电路元器件包括:功率开关管、二极管、电感及电容。
b)根据BBMC中功率开关分别处于导通和关断两种状态并根据基尔霍夫定律,建立BBMC的状态微分方程,如式(4)所示:
Figure PCTCN2019084694-appb-000004
式中:u D为BBMC直流侧电压,u C为电容电压,i L为电感电流,i 1为BBMC的输出电流,L和C分别为BBMC逆变级电感参数和电容参数,d为BBMC逆变级中功率开关的占空比,d∈[0,1]。
2)建立异步电机定子单相绕组等效电路的状态微分方程,如式(5)所示:
Figure PCTCN2019084694-appb-000005
式中:u DZ为异步电机三相定子绕组公共端电压,R和L 1分别为异步电机定子单相绕组的等效电阻与等效电感。
3)对于Buck-Boost DC/DC变换器来说,当系统达到稳态时,其电容电压u C与输入直流电压u D的关系有:
Figure PCTCN2019084694-appb-000006
对于该变换器,其电能由直流输入侧传送到输出端的过程是:首先控制功率开关T 1导通,则输入侧直流电源通过T 1向电感L 1充电,经过一段时间后,T 1关断,则电感L 1所储电能通过续流二极管D 2向电容C 1放电,并由电容C 1向负载电机供电。因此,负载电流i 1与二极管D 2的平均电流相等,而二极管D 2的平均电流又等于开关管T 1关断时电感的平均电流,则有:
i 1=(1-d)i L        (7)
由式(6)和式(7)可得:
Figure PCTCN2019084694-appb-000007
而其中
Figure PCTCN2019084694-appb-000008
所以有:
Figure PCTCN2019084694-appb-000009
当电容电压u C达到其参考值u Cref时,可得电感电流i L的参考值i Lref为:
Figure PCTCN2019084694-appb-000010
4)由步骤1)所得BBMC的状态微分方程和步骤2)所得负载电机的状态微分方程得到系统的动态方程,具体步骤如下:
a)建立系统储能函数,为:
Figure PCTCN2019084694-appb-000011
b)分别针对式(10)所述储能函数求一阶和二阶导数,得:
Figure PCTCN2019084694-appb-000012
Figure PCTCN2019084694-appb-000013
由式(11)和式(12)及系统输出方程,即构成了系统动态方程,如式(13)所示:
Figure PCTCN2019084694-appb-000014
5)由系统动态方程设计系统控制函数,方法如下:
a)分别以系统储能函数x 1与其参考变量x 1ref的偏差及其一阶导数x 2与其参考变量x 2ref的偏差为目标变量,即λ 1=x 1-x 1ref,λ 2=x 2-x 2ref,分别针对目标变量λ 1和λ 2求导数,建立系统动态误差方程,如式(14)所示:
Figure PCTCN2019084694-appb-000015
其中:u为控制函数。
b)由目标变量λ 1和λ 2及式(14),并根据有限时间控制原理,确定系统控制函数u,如式(15)所示:
Figure PCTCN2019084694-appb-000016
其中:sat为饱和函数,k 1,k 2,α 1,α 2为控制参数;
具体地
Figure PCTCN2019084694-appb-000017
6)根据系统动态误差方程式(14)和控制函数式(15),可得BBMC中对应功率开关的占空比关系式,具体步骤如下:
a)由λ 2=x 2-x 2ref及系统动态方程得:
Figure PCTCN2019084694-appb-000018
b)由步骤a)所得关系式,同时根据系统动态误差方程式(14),可得系统控制函数u:
Figure PCTCN2019084694-appb-000019
c)由步骤b)所得控制函数u的关系式,同时根据式(15),可得系统的占空比函数,如式(17)所示:
Figure PCTCN2019084694-appb-000020
根据系统的占空比函数对BBMC中对应功率开关实施控制,由此可实现BBMC实际输出电压对其参考输出电压的准确跟踪。

Claims (6)

  1. 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法,其特征在于,包括以下步骤:
    (1)根据异步电机的给定转速,同时检测其实际转速,得到相应的转速偏差;
    (2)根据异步电机的转速偏差,经PI-IP控制算法处理后,得到异步电机的参考转矩;
    (3)根据异步电机的参考转矩,采用矢量控制算法处理得到异步电机的给定电压;
    (4)将步骤(3)中获得的异步电机给定电压作为Buck-Boost矩阵变换器的参考输出电压,以Buck-Boost矩阵变换器中电容电压与电感电流作为系统控制变量,建立Buck-Boost矩阵变换器的状态微分方程;
    (5)根据异步电机定子单相绕组等效电路,建立异步电机定子单相绕组的状态微分方程;
    (6)根据Buck-Boost矩阵变换器和异步电机定子单相绕组的状态微分方程,得到系统的动态方程;
    (7)根据系统的动态方程设计系统的控制函数;
    (8)根据系统动态方程和控制函数,得到Buck-Boost矩阵变换器中对应功率开关的占空比;
    (9)根据步骤(8)中获得的Buck-Boost矩阵变换器中功率开关的占空比,对Buck-Boost矩阵变换器中对应功率开关进行控制,在Buck-Boost矩阵变换器输出端获得与其参考输出电压一致的输出电压,实现异步电机实际转速对给定转速的准确跟踪。
  2. 根据权利要求1所述的基于Buck-Boost矩阵变换器的异步电机调速系统控制方法,其特征在于,所述步骤(4)中Buck-Boost矩阵变换器的状态微分方程如下:
    Figure PCTCN2019084694-appb-100001
    式中:u D为Buck-Boost矩阵变换器直流侧电压,u C为电容电压,i L为电感电流,i 1为Buck-Boost矩阵变换器输出电流,L和C分别为Buck-Boost矩阵变换器逆变级电感参数和电容参数,d为Buck-Boost矩阵变换器中功率开关的占空比,d∈[0,1]。
  3. 根据权利要求1所述的基于Buck-Boost矩阵变换器的异步电机调速系统控制方 法,其特征在于,所述步骤(5)异步电机定子单相绕组等效电路的状态微分方程如下:
    Figure PCTCN2019084694-appb-100002
    式中:u DZ为异步电机三相定子绕组公共端电压,R和L 1分别为异步电机单相绕组的等效电阻与等效电感,u C为电容电压,i 1为Buck-Boost矩阵变换器输出电流。
  4. 根据权利要求1所述的基于Buck-Boost矩阵变换器的异步电机调速系统控制方法,其特征在于,所述步骤(6)中由所得Buck-Boost矩阵变换器的状态微分方程和负载电机状态微分方程得到系统动态方程的步骤如下:
    a)建立系统储能函数,为:
    Figure PCTCN2019084694-appb-100003
    b)分别对上述储能函数求一阶和二阶导数,得:
    Figure PCTCN2019084694-appb-100004
    Figure PCTCN2019084694-appb-100005
    由上述储能函数的一阶和二阶导数及系统输出方程构成系统的动态方程:
    Figure PCTCN2019084694-appb-100006
    上述公式中,L和C分别为Buck-Boost矩阵变换器逆变级电感参数和电容参数,u C为电容电压,i L为电感电流,u D为Buck-Boost矩阵变换器直流侧的电压,i 1为Buck-Boost矩阵变换器的输出电流,d为Buck-Boost矩阵变换器中功率开关的占空比,u DZ为异步电机三相定子绕组公共端电压,R和L 1分别为异步电机单相绕组的等效电阻与等效电感。
  5. 根据权利要求1所述的基于Buck-Boost矩阵变换器的异步电机调速系统控制方法,其特征在于,所述步骤(7)根据系统的动态方程设计系统的控制函数,方法如下:
    a)分别以系统储能函数x 1与其参考变量x 1ref的偏差及其一阶导数x 2与其参考变量x 2ref的偏差作为目标变量,即λ 1=x 1-x 1ref,λ 2=x 2-x 2ref,分别针对目标变量λ 1和λ 2求导数,得到系统动态误差方程:
    Figure PCTCN2019084694-appb-100007
    其中:u为控制函数。
    b)由目标变量λ 1和λ 2及上述系统动态误差方程,根据有限时间控制原理确定系统控制函数u,具体为:
    u=-k 1[satα 11)+λ 1]-k 2[satα 22)+λ 2]
    其中:sat为饱和函数,k 1,k 2,α 1,α 2为控制参数。
  6. 根据权利要求1所述的基于Buck-Boost矩阵变换器的异步电机调速系统控制方法,其特征在于,所述步骤(8)中占空比的表达式为:
    Figure PCTCN2019084694-appb-100008
    上述公式中,L和C分别为Buck-Boost矩阵变换器逆变级电感参数和电容参数,u C为电容电压,i L为电感电流,u D为Buck-Boost矩阵变换器直流侧的电压,i 1为Buck-Boost矩阵变换器的输出电流,d为Buck-Boost矩阵变换器中功率开关的占空比,u DZ为异步电机三相定子绕组公共端电压,R和L 1分别为异步电机单相绕组的等效电阻与等效电感。
PCT/CN2019/084694 2018-06-22 2019-04-27 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法 WO2019242407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/926,369 US10804830B1 (en) 2018-06-22 2020-07-10 Method for controlling speed regulation system of asynchronous motor based on buck-boost matrix converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810652769.XA CN108809176B (zh) 2018-06-22 2018-06-22 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法
CN201810652769.X 2018-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/926,369 Continuation US10804830B1 (en) 2018-06-22 2020-07-10 Method for controlling speed regulation system of asynchronous motor based on buck-boost matrix converter

Publications (1)

Publication Number Publication Date
WO2019242407A1 true WO2019242407A1 (zh) 2019-12-26

Family

ID=64084666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084694 WO2019242407A1 (zh) 2018-06-22 2019-04-27 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法

Country Status (3)

Country Link
US (1) US10804830B1 (zh)
CN (1) CN108809176B (zh)
WO (1) WO2019242407A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117911195A (zh) * 2024-03-18 2024-04-19 国网山西省电力公司电力科学研究院 一种异步电动机机群等效模型参数辨识方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018011010A (es) 2016-03-11 2019-03-07 Itt Mfg Enterprises Llc Unidad de motor para accionar una bomba o dispositivo rotatorio que tiene un plano de alimentacion con alimentacion de multiples capas y una unidad de placa de circuito impreso de control.
CN108809176B (zh) * 2018-06-22 2019-04-30 湖南科技大学 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法
CN109635492B (zh) * 2018-12-27 2019-12-13 湖南科技大学 基于电流定额自适应的bbmc主电路参数优选方法
CN109842344B (zh) * 2019-03-07 2019-12-13 湖南科技大学 Bbmc异步电机调速系统控制参数自适应调整方法
CN110690842B (zh) * 2019-10-31 2021-09-28 湖南科技大学 三相异步电机调速系统主电路参数稳定域确定方法
CN111181468B (zh) * 2020-01-20 2022-01-04 湖南科技大学 有限时间控制bbmc调速系统控制参数稳定域确定方法
US11451156B2 (en) 2020-01-21 2022-09-20 Itt Manufacturing Enterprises Llc Overvoltage clamp for a matrix converter
US11722090B2 (en) 2021-04-21 2023-08-08 Emerson Electric Co. Control circuits for compressor motors including multiple capacitors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225280A1 (en) * 2004-04-09 2005-10-13 Visteon Global Technologies, Inc. Configuration of converter switches and machine coils of a switched reluctance machine
CN103414337A (zh) * 2013-08-23 2013-11-27 中国矿业大学 一种电动车开关磁阻电机功率变换器拓扑结构
CN103475298A (zh) * 2013-09-30 2013-12-25 湖南科技大学 一种异步电机矢量控制装置及方法
CN105871212A (zh) * 2016-06-15 2016-08-17 晶傲威电气(常州)有限公司 一种应用于高速飞轮储能系统的电力变换装置
CN106487287A (zh) * 2016-09-18 2017-03-08 天津大学 一种无刷直流电机换相转矩波动抑制方法
CN108809176A (zh) * 2018-06-22 2018-11-13 湖南科技大学 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614481B1 (fr) * 1987-02-13 1990-08-31 Pk I Procede de commande d'un moteur asynchrone et entrainement electrique mettant ce procede en application
US9376025B2 (en) * 2013-02-06 2016-06-28 Lg Electronics Inc. Charging apparatus and electric vehicle including the same
US9985565B2 (en) * 2016-04-18 2018-05-29 Rockwell Automation Technologies, Inc. Sensorless motor drive vector control with feedback compensation for filter capacitor current

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225280A1 (en) * 2004-04-09 2005-10-13 Visteon Global Technologies, Inc. Configuration of converter switches and machine coils of a switched reluctance machine
CN103414337A (zh) * 2013-08-23 2013-11-27 中国矿业大学 一种电动车开关磁阻电机功率变换器拓扑结构
CN103475298A (zh) * 2013-09-30 2013-12-25 湖南科技大学 一种异步电机矢量控制装置及方法
CN105871212A (zh) * 2016-06-15 2016-08-17 晶傲威电气(常州)有限公司 一种应用于高速飞轮储能系统的电力变换装置
CN106487287A (zh) * 2016-09-18 2017-03-08 天津大学 一种无刷直流电机换相转矩波动抑制方法
CN108809176A (zh) * 2018-06-22 2018-11-13 湖南科技大学 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117911195A (zh) * 2024-03-18 2024-04-19 国网山西省电力公司电力科学研究院 一种异步电动机机群等效模型参数辨识方法及装置

Also Published As

Publication number Publication date
CN108809176B (zh) 2019-04-30
US20200343843A1 (en) 2020-10-29
CN108809176A (zh) 2018-11-13
US10804830B1 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2019242407A1 (zh) 一种基于Buck-Boost矩阵变换器的异步电机调速系统控制方法
Fang A novel Z-source dc-dc converter
RU2013138457A (ru) Устройство преобразования мощности
CN106655911B (zh) 一种抑制无刷直流电机换相转矩波动的pwm调制方法
CN106655914B (zh) 抑制无刷直流电机转矩脉动控制系统及转矩脉动抑制方法
CN101764529A (zh) 直驱式风电系统中三电平逆变器中点电位漂移抑制方法
Meena Devi et al. Soft computing technique of bridgeless SEPIC converter for PMBLDC motor drive
Mondal et al. Comparative study of three different bridge-less converters for reduction of harmonic distortion in brushless DC motor
Cho A low cost single-switch bridgeless boost PFC converter
CN116404942B (zh) 一种用于多相开关磁阻电机的变结构驱动电路、装置和控制方法
CN106549610B (zh) 一种抑制无刷直流电机转矩脉动控制系统及方法
Arunraj et al. A novel zeta converter with pi controller for power factor correction in induction motor
Jayaraj et al. KY based DC-DC converter for standalone photovoltaic water pumping system employing four switch BLDC drive
Hawkins et al. Nonlinear control for power factor correction of a dual-boost bridgeless circuit
Zhu et al. Analysis of the startup method for building up DC voltage via body diode rectifying in Dual Active Bridge converter
Mahendran et al. Fuzzy based power factor correction for BLDC motor using hybrid inverter
Xu et al. Design and experimental verification of on-board charger for electric vehicle
Umayal et al. Modeling and simulation of pfc sepic converter fed pmbldc drive for mining application
Li et al. Current predictive control of three-phase PWM rectifier
Jyothi et al. Power Factor corrected (PFC) zeta converter fed BLDC motor
Dhanasekar et al. Improved Source End Power Factor Enhancement of BLDC Motor Using Bridgeless-Landsman Converter
Maheswari et al. A modified bridgeless converter for SRM drive with reduced ripple current
SNEHA et al. Fuzzy Based Control of PMBLDCM Drive with Power Quality Improvement
Liu et al. A Modeling Method for Extended Phase-Shift Control of CLLC Resonant Converter Based on Simplified Time-Domain Analysis
Singh et al. Analysis and Comparison of Performance of Various DC-DC Converters using MATLAB SIMULINK

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823409

Country of ref document: EP

Kind code of ref document: A1