WO2019139397A1 - Cathode slurry composition, cathode manufactured using same, and battery including same - Google Patents
Cathode slurry composition, cathode manufactured using same, and battery including same Download PDFInfo
- Publication number
- WO2019139397A1 WO2019139397A1 PCT/KR2019/000442 KR2019000442W WO2019139397A1 WO 2019139397 A1 WO2019139397 A1 WO 2019139397A1 KR 2019000442 W KR2019000442 W KR 2019000442W WO 2019139397 A1 WO2019139397 A1 WO 2019139397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- alcohol
- weight
- electrode
- slurry composition
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode composition, a positive electrode prepared using the same, and a battery comprising the same.
- Li-S batteries have a high energy density and are becoming popular as next-generation secondary batteries that can replace lithium-ion batteries.
- a lithium-sulfur battery includes a positive electrode containing a sulfur-carbon composite as an electrode active material, a negative electrode including a lithium metal or a lithium alloy, and a separator interposed between the positive electrode and the separator.
- the positive electrode of such a lithium-sulfur battery is generally prepared by coating a positive electrode slurry on a metal foil.
- the positive electrode slurry includes a positive electrode active material for storing energy, a conductive material for imparting electrical conductivity, (PVdF) is mixed with a solvent such as water and NMP (N-methyl pyrrolidone).
- the dispersibility of the positive electrode active material and / or the conductive material significantly affects the processability of the electrode and the characteristics of the electrode formed thereby. Therefore, various methods for improving the dispersibility of the cathode active material and / or the conductive material in the cathode slurry have been studied.
- Korean Patent Publication No. 10-2015-0025665 discloses a positive electrode active material, a conductive material, a binder, a dispersant and an aqueous solvent, wherein the dispersant includes a main chain of ionic characteristics and a side chain of nonionic surfactant characteristic Quot; positive electrode slurry for a secondary battery "
- the present invention has been conceived to overcome the above-described problems of the prior art, and an object of the present invention is to provide a positive electrode manufacturing slurry which significantly improves the dispersibility of the positive electrode active material and the conductive material, reduces roughness of the electrode surface, And to provide a composition.
- Another object of the present invention is to provide a slurry composition for cathode preparation, which has excellent dispersibility without using a separate dispersant and suppresses curling of the electrode, thereby having an advantage in a battery manufacturing process.
- a positive electrode slurry composition comprising a positive electrode active material, a binder, an alcohol and water, wherein the content of the alcohol is 0.1 to 10% by weight based on the total weight of the composition.
- a positive electrode prepared by applying the positive electrode slurry composition of the present invention onto a current collector is provided.
- the positive electrode of the present invention is the positive electrode of the present invention.
- a negative electrode comprising lithium metal or a lithium alloy as a negative electrode active material
- a separator provided between the anode and the cathode
- the slurry composition for preparing an anode of the present invention greatly improves the dispersibility of the cathode active material and the conductive material, reduces the roughness of the electrode surface, and significantly reduces the curling of the electrode. It also provides economic advantages in that no dispersant is used or usage is greatly reduced.
- the battery including the positive electrode prepared from the slurry composition for positive electrode production provides the effect of greatly improving the capacity, lifetime characteristics, and economical efficiency.
- Fig. 1 is a photograph showing the electrode curling state of the electrodes of Examples 5 to 8 and Comparative Examples 4 and 5 confirmed by Test Example 1.
- the present invention relates to a positive electrode slurry composition
- a positive electrode slurry composition comprising a positive electrode active material, a binder, an alcohol and water, wherein the content of the alcohol is 0.1 to 10% by weight based on the total weight of the composition.
- the present inventors have paid attention to the reason why the positive electrode active material and the conductive material of the battery do not mix well with a binder or water having a high polarity in an aqueous slurry. That is, materials having extremely low polarity are used as the cathode active material and the conductive material, so that they do not mix well with the polar binder or water in the aqueous slurry. Accordingly, the present invention provides a solution to the above problem. That is, in the present invention, the technical feature is to improve the dispersibility of carbon and sulfur particles having low polarity by adding an alcohol solvent having an amphipathic nature. Since the alcohol solvent evaporates during the drying process and does not remain in the electrode, it does not increase the weight of the electrode and does not increase the resistance, so that the energy density of the electrode does not decrease.
- a C1-C5 lower alcohol aqueous solution may be used as the alcohol aqueous solution.
- the solid content in the slurry may be reduced during the slurry production due to the rapid evaporation rate.
- the drying speed is slow, have.
- an aqueous propanol solution is more preferably used. This is because the aqueous solution has a vapor pressure similar to that of water at a temperature range of 20 to 80 ° C.
- aqueous propanol solution examples include 1-propanol aqueous solution.
- the alcohol may be contained in an amount of 0.1 to 10% by weight, more preferably 1 to 7% by weight based on the total weight of the composition.
- the content of the aqueous alcohol solution contained in the positive electrode slurry composition is within the range described above, the dispersibility of the positive electrode active material and / or the conductive material is greatly improved, the roughness of the electrode surface is reduced, do.
- the electrode is dried during manufacturing of the electrode, cracks may be generated in the electrode during the process of manufacturing the battery, or the electrode may be removed from the current collector, so that the process age and cost are increased.
- the improvement provides significant advantages in the electrode manufacturing process.
- the content of the alcohol is less than 0.1% by weight, it is difficult to expect the above-mentioned objective effect. If the content of the alcohol is more than 10% by weight, the solubility of the binder in alcohol is lowered, .
- the positive electrode slurry composition may include, but is not limited to, 10-78 wt% of a positive electrode active material, 1-50 wt% of a binder, 0.1-10 wt% of an alcohol, and residual water, based on the total weight of the composition.
- composition may further comprise 0.1 to 10% by weight of a conductive material.
- the positive electrode slurry composition of the present invention may contain alcohol in an amount of 2 to 45 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the positive electrode active material and the conductive material.
- the positive electrode slurry composition of the present invention may contain 0.1-15 wt% of alcohol and 85-99.9 wt% of water based on the total weight of alcohol and water, more preferably 0.5-10 wt% of alcohol % Of water and 90 to 99.5% by weight of water, more preferably 1 to 7% by weight of alcohol, and 93 to 99% by weight of water.
- the content ratio of the alcohol contained in the positive electrode slurry composition satisfies the respective ranges described above, the dispersibility of the positive electrode active material and / or the conductive material is greatly improved, the roughness of the electrode surface is reduced, .
- the electrode is dried during manufacturing of the electrode, cracks may be generated in the electrode during the process of manufacturing the battery, or the electrode may be removed from the current collector, so that the process age and cost are increased.
- the improvement provides significant advantages in the electrode manufacturing process.
- the positive electrode slurry composition of the present invention has a very excellent dispersibility of the positive electrode active material and / or the conductive material without using a dispersant.
- the positive electrode slurry composition of the present invention can be preferably used for producing a positive electrode of a lithium-sulfur battery.
- a sulfur-carbon composite may be preferably used as the cathode active material.
- a positive electrode prepared by applying the positive electrode slurry composition of the present invention onto a current collector.
- the current collector those known in the art may be used, and the method of manufacturing the positive electrode may be performed according to a known method.
- the positive electrode of the present invention provides a very good effect on the energy density of the electrode.
- the positive electrode of the present invention is the positive electrode of the present invention.
- a negative electrode comprising lithium metal or a lithium alloy as a negative electrode active material
- a separator provided between the anode and the cathode
- the battery may be a lithium-sulfur battery.
- the above-described contents can be directly applied.
- a negative electrode known in the art as a negative electrode containing lithium metal or a lithium alloy as the negative electrode active material can be used without limitation.
- lithium and an alloy of a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn may be used as the negative electrode active material.
- the separator positioned between the positive and negative electrodes separates or insulates the positive and negative electrodes from each other and enables lithium ion transport between the positive and negative electrodes.
- the separator may be made of a porous nonconductive or insulating material, but is not limited thereto, Separators known in the art can be used.
- the separator may be an independent member such as a film, or may be a coating layer added to the anode and / or the cathode.
- the material of the separator includes, for example, a polyolefin such as polyethylene and polypropylene, a glass fiber filter paper, and a ceramic material, but is not limited thereto.
- the thickness of the separator is about 5 ⁇ to about 50 ⁇ , Lt; / RTI >
- electrolyte those known in the art may be used, and for example, an electrolyte including a lithium salt and an organic solvent may be used.
- the electrolyte may be impregnated into a negative electrode, a positive electrode and a separator.
- the organic solvent contained in the electrolyte for example, a single solvent or a mixed organic solvent of two or more may be used.
- at least one solvent may be selected from two or more of the weak polar solvent group, the strong polar solvent group, and the lithium metal protective solvent group.
- said weak polar solvent is defined as a solvent having a dielectric constant of less than 15 that is capable of dissolving a sulfur element in an aryl compound, bicyclic ether, or acyclic carbonate, said strong polar solvent being selected from the group consisting of bicyclic carbonates, sulfoxide compounds,
- a lithium metal protective solvent is defined as a solvent having a dielectric constant higher than 15 that is capable of dissolving lithium polysulfide in a compound, a ketone compound, an ester compound, a sulfate compound, or a sulfite compound, and the lithium metal protective solvent is a saturated ether compound, an unsaturated ether compound, , A cyclic compound having a cyclic efficiency of not less than 50% to form a stable SEI (Solid Electrolyte Interface) on a lithium metal such as a heterocyclic compound containing O, S, or a combination thereof.
- SEI Solid Electrolyte Interface
- the weak polar solvent examples include xylene, dimethoxyethane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, toluene, dimethyl ether, diethyl ether, diglyme and tetraglyme.
- the present invention is not limited thereto.
- the strong polar solvent include hexamethyl phosphoric triamide,? -Butyrolactone, acetonitrile, ethylene carbonate, propylene carbonate, N-methylpyrrolidone, 3-methyl- But are not limited to, zolyidone, dimethylformamide, sulfolane, dimethylacetamide, dimethylsulfoxide, dimethylsulfate, ethylene glycol diacetate, dimethylsulfite, ethylene glycol sulfite and the like.
- lithium protecting solvent examples include tetrahydrofuran, ethylene oxide, dioxolane, 3,5-dimethylisoxazole, furan, 2-methylfuran, 1,4-oxane and 4-methyldioxolane. But is not limited thereto.
- the battery may be constructed by applying techniques known in the art, except for the characteristic features of the present invention described above.
- Example 1 Preparation of slurry composition for cathode preparation
- Sulfur (product of sigma-aldrich) and CNT (carbon nanotube) were mixed and heat-treated at 155 ° C to prepare a sulfur-carbon composite.
- VGCF vapor-grown carbon fiber
- the binder a solution of 3% aqueous solution of two kinds of polyacrylic acids (sigma Aldrich product having a molecular weight of 450,000 and 1,250,000 5: 2 weight ratio) completely neutralized with lithium hydroxide (Sigma-aldrich product) was used.
- the above-described sulfur-carbon composite, conductive material, and binder solution were mixed in an aqueous 1-propanol solution to prepare a slurry composition for producing a positive electrode.
- the ratio of the solid content: solvent (1-propanol and water) in the weight ratio was 23:77, the content of 1-propanol in the slurry was 1: 0.77% by weight
- Example 2 Preparation of slurry composition for cathode preparation
- a slurry composition for preparing a cathode was prepared in the same manner as in Example 1, except that the content of 1-propanol in the slurry in Example 1 was 3.85 wt%.
- Example 3 Preparation of slurry composition for cathode preparation
- a slurry composition for preparing a positive electrode was prepared in the same manner as in Example 1, except that the content of 1-propanol in the slurry was changed to 7.7% by weight in Example 1.
- Example 4 Preparation of slurry composition for cathode preparation
- Example 1 ethanol was used instead of 1-propanol in the slurry, and a slurry composition for preparing a cathode was prepared in the same manner as in Example 1, except that the content of ethanol was 3.85 wt%.
- Comparative Example 1 Preparation of a slurry composition for preparing an anode
- a slurry composition for preparing a positive electrode was prepared in the same manner as in Example 1, except that water was used in place of the 1-propanol aqueous solution as the solvent in Example 1.
- the sulfur-carbon composite material, the conductive material and the binder used in Comparative Example 1 were further mixed with a dispersant (PVA poly vinyl alcohol) so that the ratio was 87: 5: 7: 1 by weight, and the ratio of solid content: water was 25 : ≪ / RTI > 75 by weight.
- a dispersant PVA poly vinyl alcohol
- a slurry composition for preparing a cathode was prepared in the same manner as in Example 1, except that the content of 1-propanol in the slurry was changed to 11.55 wt% in Example 1. However, since the solubility of the binder deteriorated, the viscosity of the slurry was increased to such an extent that mixing could not be performed, and the slurry could not be normally produced.
- the slurry composition for preparing an anode prepared in Example 1 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
- the slurry composition for preparing an anode prepared in Example 2 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
- the slurry composition for preparing an anode prepared in Example 3 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
- the slurry composition for preparing an anode prepared in Example 4 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
- the slurry composition for preparing an anode prepared in Comparative Example 1 was coated on the aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
- the slurry composition for preparing an anode prepared in Comparative Example 2 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
- Example 5 Preparation Anode (prepared as the slurry of Example 1 (using 0.77 wt% of 1-propanol)
- Example 10 Example 6 Production anode (prepared from slurry of Example 2 (using 3.85 wt% of 1-propanol))
- Example 11 Example 7 Preparation Anode (prepared from slurry of Example 3 (using 7.7 wt% of 1-propanol))
- Example 12 Example 8 Production anode (prepared as the slurry of Example 4 (using 3.85 wt% ethanol)) Comparative Example 6
- COMPARATIVE EXAMPLE 4 Production anode (prepared as a slurry of Comparative Example 1 (only water as a solvent))
- Comparative Example 7 COMPARATIVE EXAMPLE 5 Production anode (prepared as a slurry of Comparative Example 2 (using water as a solvent + dispersant))
- Test Example 1 Physical properties and morphological evaluation of an electrode made of a slurry composition for preparing an anode
- the surface roughness (roughness) of the positive electrode prepared in Examples 5 to 8 and Comparative Examples 4 and 5 was measured and the shape of the electrode after drying was visually confirmed. The results are shown in Table 2 below.
- the electrode curl after drying of the electrodes of Examples 5 to 8 of the present invention was remarkably improved as compared with the electrode of Comparative Example 4 using only water as a solvent, and showed an improvement equal to or better than Comparative Example 5 using a dispersant.
- Test Example 2 Evaluation of energy density of a battery
- the energy density of the batteries prepared in Examples 9 to 12 and Comparative Example 7 was measured by the following method.
- the energy of the measured cell was divided by the weight of the anode except the current collector, and the energy density was obtained.
- Example 9 1-propanol 0.77% (Examples 1 and 5) 1416
- Example 10 1-propanol 3.85% (Examples 2 and 6) 1381
- Example 11 1-propanol 7.7% (Examples 3 and 7)
- Example 12 Ethanol 3.85% (Examples 4 and 8)
- the batteries of Examples 9 to 12 of the present invention exhibited higher energy densities than the batteries of Comparative Example 7 using the dispersing agent, although no separate dispersing agent was used.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention provides: a cathode slurry composition comprising a cathode active material, a binder, alcohol, and water, wherein the content of the alcohol is 0.1 to 10 wt%, based on the total weight of the composition; an electrode manufactured using same; and a battery including the electrode. The slurry composition for manufacture of a cathode according to the present invention has advantages in that: the dispersibility of a cathode active material and a conductive material is greatly improved; the surface roughness of an electrode is reduced; and the curling tendency of the electrode is significantly reduced. In addition, the slurry composition has an economic advantage in that there is no need to use a dispersant or the usage thereof can be significantly reduced.
Description
본 출원은 2018년 1월 11일자 한국 특허 출원 제10-2018-0003656호 및 2019년 1월 11일자 한국 특허 출원 제10-2019-0003703호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0003656, filed on January 11, 2018, and Korean Patent Application No. 10-2019-0003703, filed on January 11, 2019, All of which are incorporated herein by reference.
본 발명은 양극 러리 조성물, 이를 사용하여 제조된 양극, 및 이를 포함하는 전지에 관한 것이다. The present invention relates to a positive electrode composition, a positive electrode prepared using the same, and a battery comprising the same.
에너지 저장 기술의 적용분야가 휴대폰, 태블릿(tablet), 랩탑(laptop) 및 캠코더, 나아가서는 전기 자동차(EV) 및 하이브리드 전기 자동차(HEV)에까지 확대되면서, 에너지 저장용 전기화학소자에 대한 연구 및 개발이 증가하고 있다. As the application fields of energy storage technology extend to mobile phones, tablets, laptops and camcorders, electric vehicles (EV) and hybrid electric vehicles (HEV), research and development of electrochemical devices for energy storage Is increasing.
특히, 충·방전이 가능한 리튬-황 전지 등의 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이차전지의 용량 밀도 및 비 에너지를 향상시키기 위하여, 새로운 전극과 전지의 설계에 대한 연구개발이 활발히 이루어지고 있다.In particular, the development of secondary batteries such as lithium-sulfur batteries capable of charging and discharging has become a focus of attention. In recent years, research and development on the design of new electrodes and batteries have been carried out in order to improve the capacity density and specific energy of secondary batteries. .
리튬-황(Li-S) 전지는 높은 에너지 밀도를 가져, 리튬이온전지를 대체할 수 있는 차세대 이차전지로 각광받고 있다. 일반적으로 리튬-황 전지는 전극 활물질로서 황-탄소 복합체를 포함하는 양극과 리튬 금속 또는 리튬 합금을 포함하는 음극 및 분리막으로 이루어진 전극조립체에 리튬 전해질이 함침되어 있는 구조로 이루어져 있다.Lithium-sulfur (Li-S) batteries have a high energy density and are becoming popular as next-generation secondary batteries that can replace lithium-ion batteries. Generally, a lithium-sulfur battery includes a positive electrode containing a sulfur-carbon composite as an electrode active material, a negative electrode including a lithium metal or a lithium alloy, and a separator interposed between the positive electrode and the separator.
이러한 리튬-황 전지의 양극은 일반적으로 금속 호일에 양극 슬러리를 코팅하여 제조하는 바, 상기 양극 슬러리는 에너지를 저장하기 위한 양극활물질과, 전기전도성을 부여하기 위한 도전재, 및 이를 전극 호일에 접착하기 위한 바인더(PVdF)로 구성된 전극 합제를 물 및 NMP(N-methyl pyrrolidone) 등의 용매에 혼합하여 제조된다.The positive electrode of such a lithium-sulfur battery is generally prepared by coating a positive electrode slurry on a metal foil. The positive electrode slurry includes a positive electrode active material for storing energy, a conductive material for imparting electrical conductivity, (PVdF) is mixed with a solvent such as water and NMP (N-methyl pyrrolidone).
상기 양극 슬러리에 있어서, 양극활물질 및/또는 도전재의 분산성은 전극 제조의 공정성 및 그에 의해 형성되는 전극의 특성에 중요한 영향을 미친다. 따라서 양극 슬러리에서 양극활물질 및/또는 도전재의 분산성을 개선하기 위한 다양한 방법들이 연구되고 있다. In the positive electrode slurry, the dispersibility of the positive electrode active material and / or the conductive material significantly affects the processability of the electrode and the characteristics of the electrode formed thereby. Therefore, various methods for improving the dispersibility of the cathode active material and / or the conductive material in the cathode slurry have been studied.
예를 들어, 대한민국 공개특허 제10-2015-0025665호는 “양극 활물질, 도전재, 바인더, 분산제 및 수계 용매를 포함하며, 상기 분산제는 이온 특성의 주쇄와, 비이온성 계면활성제 특성의 측쇄를 포함하는 공중합체인 것을 특징으로 하는 이차전지용 양극 슬러리”에 관하여 개시하고 있다.For example, Korean Patent Publication No. 10-2015-0025665 discloses a positive electrode active material, a conductive material, a binder, a dispersant and an aqueous solvent, wherein the dispersant includes a main chain of ionic characteristics and a side chain of nonionic surfactant characteristic Quot; positive electrode slurry for a secondary battery "
그러나, 상기 특허문헌에 소개된 바와 같이 별도의 분산제를 사용하는 경우 전극의 제조공정이 복잡해지고, 전극의 제조원가가 상승되므로 경제적으로도 바람직하지 않다. However, as disclosed in the above patent documents, the use of a separate dispersant makes the manufacturing process of the electrode complicated and increases the manufacturing cost of the electrode, which is not economically preferable.
그러므로 별도의 분산제를 사용하지 않고 양극활물질 및/또는 도전재의 분산성을 개선시킬 수 있는 방법에 대한 연구가 요구되고 있다. Therefore, there is a need for research on a method for improving the dispersibility of a cathode active material and / or a conductive material without using a separate dispersant.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
대한민국 공개특허 제10-2015-0025665호Korean Patent Publication No. 10-2015-0025665
본 발명은 종래 기술의 상기와 같은 문제를 해소하기 위하여 안출된 것으로서, 양극 활물질과 도전재의 분산성을 크게 개선시키며, 전극 표면의 거칠기를 감소시키며, 전극의 말림 현상을 현저하게 감소시키는 양극 제조용 슬러리 조성물을 제공하는 것을 목적으로 한다.The present invention has been conceived to overcome the above-described problems of the prior art, and an object of the present invention is to provide a positive electrode manufacturing slurry which significantly improves the dispersibility of the positive electrode active material and the conductive material, reduces roughness of the electrode surface, And to provide a composition.
또한, 본 발명은 별도의 분산제를 사용하지 않으면서도 분산성이 우수하며 전극의 말림 현상이 억제되어 전지 제조 공정상 이점을 갖는 양극 제조용 슬러리 조성물을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a slurry composition for cathode preparation, which has excellent dispersibility without using a separate dispersant and suppresses curling of the electrode, thereby having an advantage in a battery manufacturing process.
또한, 본 발명은 상기 양극 제조용 슬러리 조성물로 제조된 전지의 양극 및 상기 양극을 포함하는 전지를 제공하는 것을 목적으로 한다. It is another object of the present invention to provide a positive electrode of a battery made of the slurry composition for preparing a positive electrode and a battery including the positive electrode.
상기 목적을 달성하기 위하여, 본 발명은, In order to achieve the above object,
양극활물질, 바인더, 알코올 및 물을 포함하는 양극 슬러리 조성물로서, 상기 알코올의 함량이 조성물 총 중량에 대하여 0.1 내지 10 중량%인 것을 특징으로 하는 양극 슬러리 조성물을 제공한다.A positive electrode slurry composition comprising a positive electrode active material, a binder, an alcohol and water, wherein the content of the alcohol is 0.1 to 10% by weight based on the total weight of the composition.
또한, 본 발명은,Further, according to the present invention,
본 발명의 양극 슬러리 조성물을 집전체 상에 도포하여 제조된 양극을 제공한다. A positive electrode prepared by applying the positive electrode slurry composition of the present invention onto a current collector is provided.
또한, 본 발명은,Further, according to the present invention,
본 발명의 양극; The positive electrode of the present invention;
음극 활물질로서 리튬 금속 또는 리튬 합금을 포함하는 음극;A negative electrode comprising lithium metal or a lithium alloy as a negative electrode active material;
상기 양극과 음극 사이에 구비되는 세퍼레이터; 및A separator provided between the anode and the cathode; And
전해질;을 포함하는 전지를 제공한다.And an electrolyte.
본 발명의 양극 제조용 슬러리 조성물은 양극 활물질과 도전재의 분산성을 크게 개선시키며, 전극 표면의 거칠기를 감소시키며, 전극의 말림 현상을 현저하게 감소시키는 효과를 제공한다. 또한, 분산제를 사용하지 않거나 사용량을 크게 줄일 수 있는 경제적 이점을 제공한다. The slurry composition for preparing an anode of the present invention greatly improves the dispersibility of the cathode active material and the conductive material, reduces the roughness of the electrode surface, and significantly reduces the curling of the electrode. It also provides economic advantages in that no dispersant is used or usage is greatly reduced.
상기 양극 제조용 슬러리 조성물로 제조된 양극을 포함하는 전지는 용량, 수명특성, 및 경제성을 크게 향상시키는 효과를 제공한다. The battery including the positive electrode prepared from the slurry composition for positive electrode production provides the effect of greatly improving the capacity, lifetime characteristics, and economical efficiency.
도 1은 시험예 1에 의해 확인된 실시예 5 내지 8, 및 비교예 4 및 5의 전극의 전극 말림 상태를 촬영하여 나타낸 사진이다. Fig. 1 is a photograph showing the electrode curling state of the electrodes of Examples 5 to 8 and Comparative Examples 4 and 5 confirmed by Test Example 1. Fig.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 양극활물질, 바인더, 알코올 및 물을 포함하는 양극 슬러리 조성물로서, 상기 알코올의 함량이 조성물 총 중량에 대하여 0.1 내지 10 중량%인 것을 특징으로 하는 양극 슬러리 조성물에 관한 것이다.The present invention relates to a positive electrode slurry composition comprising a positive electrode active material, a binder, an alcohol and water, wherein the content of the alcohol is 0.1 to 10% by weight based on the total weight of the composition.
본 발명자들은 전지의 양극활물질과 도전재가 수계 슬러리 상에서 극성이 높은 바인더나 물과 잘 섞이지 않는 이유에 주목하였다. 즉, 양극 활물질과 도전재 로는 극성이 매우 낮은 물질들이 사용되므로, 수계 슬러리 상에서 극성이 높은 바인더나 물과 잘 섞이지 않는다. 따라서 본 발명은 상기와 같은 문제에 대한 해결방안을 제시하는 것을 특징으로 한다. 즉, 본 발명에서는 양친매성을 가지는 알코올 용매를 첨가하여 극성이 낮은 탄소, 황 입자의 분산성을 향상시키는 것을 기술적 특징으로 한다. 상기 알코올 용매는 건조과정에서 증발하여 전극 내에 잔존하지 않으므로 전극의 무게를 증가시키지 않으며, 저항을 증가시키지 않기 때문에 전극의 에너지 밀도를 저하시키지 않는다.The present inventors have paid attention to the reason why the positive electrode active material and the conductive material of the battery do not mix well with a binder or water having a high polarity in an aqueous slurry. That is, materials having extremely low polarity are used as the cathode active material and the conductive material, so that they do not mix well with the polar binder or water in the aqueous slurry. Accordingly, the present invention provides a solution to the above problem. That is, in the present invention, the technical feature is to improve the dispersibility of carbon and sulfur particles having low polarity by adding an alcohol solvent having an amphipathic nature. Since the alcohol solvent evaporates during the drying process and does not remain in the electrode, it does not increase the weight of the electrode and does not increase the resistance, so that the energy density of the electrode does not decrease.
상기 알코올 수용액으로는 C1~C5의 저급 알코올 수용액이 사용될 수 있다. 증기압이 너무 낮은 알코올의 경우 빠른 증발 속도로 인해 슬러리 제조 과정에서 슬러리 내 고형분이 감소할 수 있으며, 증기압이 너무 높은 알코올의 경우 건조 속도가 느리기 때문에 건조 온도를 높이거나 혹은 건조 시간을 늘려야 하는 문제가 있다. 상기 C1~C5의 저급 알코올 수용액 중에서도 프로판올 수용액이 더욱 바람직하게 사용될 수 있다. 왜냐하면, 수용액이 슬러리 제조 및 전극 건조가 진행되는 20 ~ 80℃ 사이 온도 범위에서 물과 유사한 증기압을 가지고 있어, 슬러리 제조시 알코올의 증발로 인한 분산 효과 감소 및 슬러리 내 고형분 변화 가능성이 적으며, 기존 전극 건조 공정에 큰 변화 없이 적용 가능한 면에서 바람직하기 때문이다. 상기 프로판올 수용액으로는 1-프로판올 수용액을 들 수 있다.As the alcohol aqueous solution, a C1-C5 lower alcohol aqueous solution may be used. In the case of alcohol having a too low vapor pressure, the solid content in the slurry may be reduced during the slurry production due to the rapid evaporation rate. In the case of alcohol having a too high vapor pressure, the drying speed is slow, have. Of the C1-C5 lower alcohol aqueous solutions, an aqueous propanol solution is more preferably used. This is because the aqueous solution has a vapor pressure similar to that of water at a temperature range of 20 to 80 ° C. at which the slurry preparation and the electrode drying proceed, so that the dispersion effect due to the evaporation of alcohol during slurry production and the possibility of a change in solid content in the slurry are small, This is preferable because it can be applied without greatly changing the electrode drying process. Examples of the aqueous propanol solution include 1-propanol aqueous solution.
본 발명에서 상기 알코올은 조성물 총 중량에 대하여 0.1 내지 10 중량%로 포함될 수 있으며, 더욱 바람직하게는 1 내지 7 중량%로 포함될 수 있다. In the present invention, the alcohol may be contained in an amount of 0.1 to 10% by weight, more preferably 1 to 7% by weight based on the total weight of the composition.
상기 양극 슬러리 조성물에 포함되는 알코올 수용액의 함량이 상술한 범위로 포함되는 경우, 양극 활물질 및/또는 도전재의 분산성이 크게 개선되며, 전극 표면의 거칠기가 감소되며, 전극의 말림 현상이 현저하게 감소된다. 특히, 전극 제조시 전극이 말리게 되면, 전지 제작 과정 중 전극을 펴는 과정에서 전극에 크랙이 생성되거나, 집전체로부터 전극이 탈리되는 현상이 나타날 수 있기 때문에 공정 나이도와 비용이 상승하게 되므로 이에 대한 개선은 전극제조 공정상 큰 이점을 제공한다. When the content of the aqueous alcohol solution contained in the positive electrode slurry composition is within the range described above, the dispersibility of the positive electrode active material and / or the conductive material is greatly improved, the roughness of the electrode surface is reduced, do. Particularly, when the electrode is dried during manufacturing of the electrode, cracks may be generated in the electrode during the process of manufacturing the battery, or the electrode may be removed from the current collector, so that the process age and cost are increased. The improvement provides significant advantages in the electrode manufacturing process.
상기 알코올의 함량이 0.1 중량% 미만으로 포함되는 경우에는 상기와 같은 목적효과를 기대하기 어려우며, 10 중량%를 초과하는 경우에는 알코올에 대한 바인더의 용해도가 떨어지므로 슬러리 제조가 어려워지는 문제가 발생할 수 있어서 바람직하지 않다. When the content of the alcohol is less than 0.1% by weight, it is difficult to expect the above-mentioned objective effect. If the content of the alcohol is more than 10% by weight, the solubility of the binder in alcohol is lowered, .
상기 양극 슬러리 조성물은 조성물 총 중량에 대하여 양극활물질 10 ~ 78 중량%, 바인더 1 ~ 50 중량%, 알코올 0.1 ~ 10 중량%, 및 잔량의 물을 포함할 수 있으나, 이에 한정되는 것은 아니다. The positive electrode slurry composition may include, but is not limited to, 10-78 wt% of a positive electrode active material, 1-50 wt% of a binder, 0.1-10 wt% of an alcohol, and residual water, based on the total weight of the composition.
또한, 상기 조성물은 도전재 0.1 ~ 10 중량%를 더 포함할 수 있다. The composition may further comprise 0.1 to 10% by weight of a conductive material.
본 발명의 양극 슬러리 조성물은 양극활물질 및 도전재 합산 100 중량부를 기준으로 알코올을 2 내지 45 중량부, 더욱 바람직하게는 5 내지 30 중량부로 포함할 수 있다.The positive electrode slurry composition of the present invention may contain alcohol in an amount of 2 to 45 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the positive electrode active material and the conductive material.
또한, 본 발명의 양극 슬러리 조성물은 알코올과 물의 총 중량을 기준으로 알코올을 0.1 내지 15 중량%로 포함하고 물을 85 내지 99.9 중량%로 포함할 수 있으며, 더욱 바람직하게는 알코올을 0.5 내지 10 중량%로 포함하고 물을 90 내지 99.5 중량%로 포함할 수 있으며, 더 더욱 바람직하게는 알코올을 1 내지 7 중량%로 포함하고, 물을 93 내지 99 중량%로 포함할 수 있다. The positive electrode slurry composition of the present invention may contain 0.1-15 wt% of alcohol and 85-99.9 wt% of water based on the total weight of alcohol and water, more preferably 0.5-10 wt% of alcohol % Of water and 90 to 99.5% by weight of water, more preferably 1 to 7% by weight of alcohol, and 93 to 99% by weight of water.
상기 양극 슬러리 조성물에 포함되는 알코올의 함량비가 상술한 각각의 범위를 충족하는 경우, 양극 활물질 및/또는 도전재의 분산성이 크게 개선되며, 전극 표면의 거칠기가 감소되며, 전극의 말림 현상이 현저하게 감소된다. 특히, 전극 제조시 전극이 말리게 되면, 전지 제작 과정 중 전극을 펴는 과정에서 전극에 크랙이 생성되거나, 집전체로부터 전극이 탈리되는 현상이 나타날 수 있기 때문에 공정 나이도와 비용이 상승하게 되므로 이에 대한 개선은 전극제조 공정상 큰 이점을 제공한다.When the content ratio of the alcohol contained in the positive electrode slurry composition satisfies the respective ranges described above, the dispersibility of the positive electrode active material and / or the conductive material is greatly improved, the roughness of the electrode surface is reduced, . Particularly, when the electrode is dried during manufacturing of the electrode, cracks may be generated in the electrode during the process of manufacturing the battery, or the electrode may be removed from the current collector, so that the process age and cost are increased. The improvement provides significant advantages in the electrode manufacturing process.
본 발명의 양극 슬러리 조성물은 분산제를 사용하지 않으면서도 양극활물질 및/또는 도전재의 분산성이 매우 우수한 특징을 갖는다.The positive electrode slurry composition of the present invention has a very excellent dispersibility of the positive electrode active material and / or the conductive material without using a dispersant.
본 발명의 양극 슬러리 조성물은 리튬-황 전지의 양극 제조용으로 바람직하게 사용될 수 있다. 그리고 이 때, 양극활물질로는 황-탄소 복합체가 바람직하게 사용될 수 있다. The positive electrode slurry composition of the present invention can be preferably used for producing a positive electrode of a lithium-sulfur battery. At this time, as the cathode active material, a sulfur-carbon composite may be preferably used.
또한, 본 발명은In addition,
본 발명의 양극 슬러리 조성물을 집전체 상에 도포하여 제조된 양극에 관한 것이다.And a positive electrode prepared by applying the positive electrode slurry composition of the present invention onto a current collector.
상기 집전체로는 이 분야에서 공지된 것이 사용될 수 있으며, 상기 양극의 제조방법도 공지의 방법에 따라 수행될 수 있다. As the current collector, those known in the art may be used, and the method of manufacturing the positive electrode may be performed according to a known method.
상기 본 발명의 양극은 전극의 에너지 밀도에 있어서 매우 우수한 효과를 제공한다. The positive electrode of the present invention provides a very good effect on the energy density of the electrode.
또한, 본 발명은In addition,
상기 본 발명의 양극;The positive electrode of the present invention;
음극 활물질로서 리튬 금속 또는 리튬 합금을 포함하는 음극;A negative electrode comprising lithium metal or a lithium alloy as a negative electrode active material;
상기 양극과 음극 사이에 구비되는 세퍼레이터; 및A separator provided between the anode and the cathode; And
전해질;을 포함하는 전지에 관한 것이다. And an electrolyte.
상기 전지는 리튬-황 전지일 수 있다. The battery may be a lithium-sulfur battery.
상기 양극에 관해서는 전술된 내용이 그대로 적용될 수 있다. As for the positive electrode, the above-described contents can be directly applied.
본 발명의 전지의 음극으로는 음극 활물질로서 리튬 금속 또는 리튬 합금을 포함하는 음극으로서 이 분야에 공지된 음극이 제한 없이 사용될 수 있다.As the negative electrode of the battery of the present invention, a negative electrode known in the art as a negative electrode containing lithium metal or a lithium alloy as the negative electrode active material can be used without limitation.
상기 음극 활물질로서 리튬 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn 등으로 이루어지는 군에서 선택되는 금속의 합금이 사용될 수 있다. As the lithium alloy, lithium and an alloy of a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn may be used as the negative electrode active material.
상기 양극과 음극 사이에 위치하는 세퍼레이터는 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있으나, 이에 한정되는 것은 아니며, 이 분야에 공지된 세퍼레이터가 사용될 수 있다. The separator positioned between the positive and negative electrodes separates or insulates the positive and negative electrodes from each other and enables lithium ion transport between the positive and negative electrodes. The separator may be made of a porous nonconductive or insulating material, but is not limited thereto, Separators known in the art can be used.
상기 세퍼레이터는 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다. 상기 세퍼레이터를 이루는 물질은 예를 들어 폴리에틸렌 및 폴리프로필렌 등의 폴리올레핀, 유리 섬유 여과지 및 세라믹 물질이 포함되나, 이에 한정되지 않고, 그 두께는 약 5㎛ 내지 약 50㎛, 상세하게는 약 5㎛ 내지 약 25㎛일 수 있다.The separator may be an independent member such as a film, or may be a coating layer added to the anode and / or the cathode. The material of the separator includes, for example, a polyolefin such as polyethylene and polypropylene, a glass fiber filter paper, and a ceramic material, but is not limited thereto. The thickness of the separator is about 5 탆 to about 50 탆, Lt; / RTI >
상기 전해질로는 이 분야에 공지된 것이 사용될 수 있으며, 예를 들어, 리튬염과 유기 용매를 포함하는 형태의 전해질이 사용될 수 있다. 상기 전해질은 음극, 양극 및 세퍼레이터에 함침된 형태로 구성될 수 있다. As the electrolyte, those known in the art may be used, and for example, an electrolyte including a lithium salt and an organic solvent may be used. The electrolyte may be impregnated into a negative electrode, a positive electrode and a separator.
상기 전해질에 포함되는 유기 용매로는 예를 들어, 단일 용매 또는 2 이상의 혼합 유기 용매가 사용될 수 있다. 상기 2 이상의 혼합 유기 용매를 사용하는 경우 약한 극성 용매 그룹, 강한 극성 용매 그룹, 및 리튬 메탈 보호 용매 그룹 중 두 개 이상의 그룹에서 하나 이상의 용매를 선택하여 사용할 수 있다. 상기 약한 극성 용매는 아릴 화합물, 바이사이클릭 에테르, 비환형 카보네이트 중에서 황 원소를 용해시킬 수 있는 유전 상수가 15보다 작은 용매로 정의되고, 상기 강한 극성 용매는 비사이클릭 카보네이트, 설폭사이드 화합물, 락톤 화합물, 케톤 화합물, 에스테르 화합물, 설페이트 화합물, 설파이트 화합물 중에서 리튬 폴리설파이드를 용해시킬 수 있는 유전 상수가 15보다 큰 용매로 정의되며, 리튬 메탈 보호용매는 포화된 에테르 화합물, 불포화된 에테르 화합물, N, O, S 또는 이들의 조합이 포함된 헤테로 고리 화합물과 같은 리튬 금속에 안정한 SEI(Solid Electrolyte Interface)를 형성하는 충방전 사이클 효율(cycle efficiency)이 50% 이상인 용매로 정의된다.As the organic solvent contained in the electrolyte, for example, a single solvent or a mixed organic solvent of two or more may be used. When two or more mixed organic solvents are used, at least one solvent may be selected from two or more of the weak polar solvent group, the strong polar solvent group, and the lithium metal protective solvent group. Wherein said weak polar solvent is defined as a solvent having a dielectric constant of less than 15 that is capable of dissolving a sulfur element in an aryl compound, bicyclic ether, or acyclic carbonate, said strong polar solvent being selected from the group consisting of bicyclic carbonates, sulfoxide compounds, A lithium metal protective solvent is defined as a solvent having a dielectric constant higher than 15 that is capable of dissolving lithium polysulfide in a compound, a ketone compound, an ester compound, a sulfate compound, or a sulfite compound, and the lithium metal protective solvent is a saturated ether compound, an unsaturated ether compound, , A cyclic compound having a cyclic efficiency of not less than 50% to form a stable SEI (Solid Electrolyte Interface) on a lithium metal such as a heterocyclic compound containing O, S, or a combination thereof.
상기 약한 극성 용매의 구체적인 예로는, 자일렌(xylene), 디메톡시에탄, 2-메틸테트라하이드로퓨란, 디에틸 카보네이트, 디메틸 카보네이트, 톨루엔, 디메틸 에테르, 디에틸 에테르, 디글라임, 테트라글라임 등이 있으나, 이에만 한정되는 것은 아니다.Specific examples of the weak polar solvent include xylene, dimethoxyethane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, toluene, dimethyl ether, diethyl ether, diglyme and tetraglyme. However, the present invention is not limited thereto.
상기 강한 극성 용매의 구체적인 예로는, 헥사메틸 포스포릭 트리아마이드(hexamethyl phosphoric triamide), γ-부티로락톤, 아세토니트릴, 에틸렌 카보네이트, 프로필렌 카보네이트, N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 디메틸 포름아마이드, 설포란, 디메틸 아세트아마이드, 디메틸 설폭사이드, 디메틸 설페이트, 에틸렌 글리콜 디아세테이트, 디메틸 설파이트, 에틸렌 글리콜 설파이트 등이 있으나, 이에만 한정되는 것은 아니다.Specific examples of the strong polar solvent include hexamethyl phosphoric triamide,? -Butyrolactone, acetonitrile, ethylene carbonate, propylene carbonate, N-methylpyrrolidone, 3-methyl- But are not limited to, zolyidone, dimethylformamide, sulfolane, dimethylacetamide, dimethylsulfoxide, dimethylsulfate, ethylene glycol diacetate, dimethylsulfite, ethylene glycol sulfite and the like.
상기 리튬 보호용매의 구체적인 예로는 테트라하이드로 퓨란, 에틸렌 옥사이드, 디옥솔란, 3,5-디메틸이속사졸, 퓨란, 2-메틸 퓨란, 1,4-옥산, 4-메틸디옥솔란 등이 있으나, 이에만 한정되는 것은 아니다.Specific examples of the lithium protecting solvent include tetrahydrofuran, ethylene oxide, dioxolane, 3,5-dimethylisoxazole, furan, 2-methylfuran, 1,4-oxane and 4-methyldioxolane. But is not limited thereto.
상기 전지는 상기에서 기술된 본 발명의 특징적인 기술을 제외하고는 이 분야에 공지된 기술들을 적용하여 구성될 수 있다. The battery may be constructed by applying techniques known in the art, except for the characteristic features of the present invention described above.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as set forth in the appended claims. Such changes and modifications are intended to be within the scope of the appended claims.
실시예 1: 양극 제조용 슬러리 조성물의 제조Example 1: Preparation of slurry composition for cathode preparation
황(sigma-aldrich 제품)과 CNT(carbon nanotube)를 섞은 후 155℃에서 열처리하여 황-탄소 복합체를 제조하였다. 도전재로는 VGCF(vapor-grown carbon fiber)를 사용하였다. 바인더로는 2종의 폴리아크릴산(sigma Aldrich 제품 분자량 450,000, 1,250,000 5:2 중량비 혼합)을 수산화 리튬(sigma-aldrich 제품)으로 완전히 중화한 3% 수용액 상태의 것을 사용하였다. 상기 서술한 황-탄소 복합체, 도전재, 바인더 용액을 1-프로판올 수용액에 섞어 양극 제조용 슬러리 조성물을 제조하였다. 슬러리 내 황-탄소 복합체, 도전재, 바인더의 비율은 중량비로 88:5:7 이었으며, 고형분:용매(1-프로판올 및 물)의 비율은 중량비로 23:77, 슬러리 내 1-프로판올의 함량은 0.77 중량% 가 되도록 하Sulfur (product of sigma-aldrich) and CNT (carbon nanotube) were mixed and heat-treated at 155 ° C to prepare a sulfur-carbon composite. VGCF (vapor-grown carbon fiber) was used as the conductive material. As the binder, a solution of 3% aqueous solution of two kinds of polyacrylic acids (sigma Aldrich product having a molecular weight of 450,000 and 1,250,000 5: 2 weight ratio) completely neutralized with lithium hydroxide (Sigma-aldrich product) was used. The above-described sulfur-carbon composite, conductive material, and binder solution were mixed in an aqueous 1-propanol solution to prepare a slurry composition for producing a positive electrode. The ratio of the solid content: solvent (1-propanol and water) in the weight ratio was 23:77, the content of 1-propanol in the slurry was 1: 0.77% by weight
실시예 2: 양극 제조용 슬러리 조성물의 제조Example 2: Preparation of slurry composition for cathode preparation
상기 실시예 1에서 슬러리 내 1-프로판올의 함량이 3.85 중량%가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 제조용 슬러리 조성물을 제조하였다. A slurry composition for preparing a cathode was prepared in the same manner as in Example 1, except that the content of 1-propanol in the slurry in Example 1 was 3.85 wt%.
실시예 3: 양극 제조용 슬러리 조성물의 제조Example 3: Preparation of slurry composition for cathode preparation
상기 실시예 1에서 슬러리 내 1-프로판올의 함량이 7.7 중량%가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 제조용 슬러리 조성물을 제조하였다.A slurry composition for preparing a positive electrode was prepared in the same manner as in Example 1, except that the content of 1-propanol in the slurry was changed to 7.7% by weight in Example 1.
실시예 4: 양극 제조용 슬러리 조성물의 제조Example 4: Preparation of slurry composition for cathode preparation
상기 실시예 1에서 슬러리 내 1-프로판올 대신 에탄올을 사용하였으며, 에탄올의 함량이 3.85 중량%가 되게 한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 제조용 슬러리 조성물을 제조하였다.In Example 1, ethanol was used instead of 1-propanol in the slurry, and a slurry composition for preparing a cathode was prepared in the same manner as in Example 1, except that the content of ethanol was 3.85 wt%.
비교예 1: 양극 제조용 슬러리 조성물의 제조Comparative Example 1: Preparation of a slurry composition for preparing an anode
상기 실시예 1에서 용매로서 1-프로판올 수용액 대신 물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 제조용 슬러리 조성물을 제조하였다. A slurry composition for preparing a positive electrode was prepared in the same manner as in Example 1, except that water was used in place of the 1-propanol aqueous solution as the solvent in Example 1.
비교예 2: 양극 제조용 슬러리 조성물의 제조Comparative Example 2: Preparation of slurry composition for cathode preparation
상기 비교예 1에서 사용한 황-탄소 복합체, 도전재, 바인더에 분산제(PVA poly vinyl alcohol)를 추가로 섞어주어 각각의 비율이 중량비로 87:5:7:1이 되도록 하였으며 고형분:물의 비율이 25:75의 중량비가 되도록 양극 제조용 슬러리 조성물을 제조하였다.The sulfur-carbon composite material, the conductive material and the binder used in Comparative Example 1 were further mixed with a dispersant (PVA poly vinyl alcohol) so that the ratio was 87: 5: 7: 1 by weight, and the ratio of solid content: water was 25 : ≪ / RTI > 75 by weight.
비교예 3: 양극 제조용 슬러리 조성물의 제조Comparative Example 3: Preparation of slurry composition for cathode preparation
상기 실시예 1에서 슬러리 내 1-프로판올의 함량이 11.55 중량%가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 제조용 슬러리 조성물을 제조하였다. 하지만, 바인더의 용해도 저하로 인해 믹싱이 불가능할 정도로 슬러리의 점성이 높아져서 슬러리를 정상적으로 제조할 수 없었다.A slurry composition for preparing a cathode was prepared in the same manner as in Example 1, except that the content of 1-propanol in the slurry was changed to 11.55 wt% in Example 1. However, since the solubility of the binder deteriorated, the viscosity of the slurry was increased to such an extent that mixing could not be performed, and the slurry could not be normally produced.
실시예 5: 양극의 제조Example 5: Preparation of positive electrode
상기 실시예 1에서 제조된 양극 제조용 슬러리 조성물을 알루미늄 집전체 상에 11.4 mg/cm2 로 코팅하여 양극을 제조하였다. The slurry composition for preparing an anode prepared in Example 1 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
실시예 6: 양극의 제조Example 6: Preparation of positive electrode
상기 실시예 2에서 제조된 양극 제조용 슬러리 조성물을 알루미늄 집전체 상에 11.4 mg/cm2 로 코팅하여 양극을 제조하였다. The slurry composition for preparing an anode prepared in Example 2 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
실시예 7: 양극의 제조Example 7: Preparation of positive electrode
상기 실시예 3에서 제조된 양극 제조용 슬러리 조성물을 알루미늄 집전체 상에 11.4 mg/cm2 로 코팅하여 양극을 제조하였다. The slurry composition for preparing an anode prepared in Example 3 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
실시예 8: 양극의 제조Example 8: Preparation of positive electrode
상기 실시예 4에서 제조된 양극 제조용 슬러리 조성물을 알루미늄 집전체 상에 11.4 mg/cm2 로 코팅하여 양극을 제조하였다. The slurry composition for preparing an anode prepared in Example 4 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
비교예 4: 양극의 제조Comparative Example 4: Preparation of positive electrode
상기 비교예 1에서 제조된 양극 제조용 슬러리 조성물을 알루미늄 집전체 상에 11.4 mg/cm2 로 코팅하여 양극을 제조하였다. The slurry composition for preparing an anode prepared in Comparative Example 1 was coated on the aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
비교예 5: 양극의 제조Comparative Example 5: Preparation of positive electrode
상기 비교예 2에서 제조된 양극 제조용 슬러리 조성물을 알루미늄 집전체 상에 11.4 mg/cm2 로 코팅하여 양극을 제조하였다. The slurry composition for preparing an anode prepared in Comparative Example 2 was coated on an aluminum current collector at 11.4 mg / cm 2 to prepare a positive electrode.
실시예 9~12 및 비교예 6~7: 전지의 제조Examples 9 to 12 and Comparative Examples 6 to 7: Manufacture of batteries
상기 실시예 5 및 8 및 비교예 4 및 5에서 제조된 각각의 양극; 음극으로서 약 45㎛ 두께를 갖는 리튬 호일; 에테르계 용매에 1M의 LiTFSI와 1 중량%의 LiNO3를 첨가한 전해액; 및 세퍼레이터로 20 마이크론 폴리올레핀을 사용하여 실시예 9 내지 12, 및 비교예 6 및 7의 리튬-황 이차 전지를 제조하였다. 구체적인 내용은 하기 표 1에 나타내었다. Each of the positive electrodes prepared in Examples 5 and 8 and Comparative Examples 4 and 5; A lithium foil having a thickness of about 45 mu m as a cathode; 1 M LiTFSI and 1 wt% LiNO 3 in an ether solvent; And 20 micron polyolefin as a separator were used in Examples 9 to 12 and Comparative Examples 6 and 7 Lithium-sulfur secondary A battery was prepared. Specific details are shown in Table 1 below.
전지battery | 사용양극Used anode |
실시예 9Example 9 | 실시예 5 제조 양극(실시예 1의 슬러리로 제조됨(1-프로판올 0.77 wt% 사용))Example 5 Preparation Anode (prepared as the slurry of Example 1 (using 0.77 wt% of 1-propanol) |
실시예 10Example 10 | 실시예 6 제조 양극(실시예 2의 슬러리로 제조됨(1-프로판올 3.85 wt % 사용))Example 6 Production anode (prepared from slurry of Example 2 (using 3.85 wt% of 1-propanol)) |
실시예 11Example 11 | 실시예 7 제조 양극(실시예 3의 슬러리로 제조됨(1-프로판올 7.7 wt% 사용))Example 7 Preparation Anode (prepared from slurry of Example 3 (using 7.7 wt% of 1-propanol)) |
실시예 12Example 12 | 실시예 8 제조 양극(실시예 4의 슬러리로 제조됨(에탄올 3.85 wt% 사용))Example 8 Production anode (prepared as the slurry of Example 4 (using 3.85 wt% ethanol)) |
비교예 6Comparative Example 6 | 비교예 4 제조 양극(비교예 1의 슬러리로 제조됨(용매로 물만 사용))COMPARATIVE EXAMPLE 4 Production anode (prepared as a slurry of Comparative Example 1 (only water as a solvent)) |
비교예 7Comparative Example 7 | 비교예 5 제조 양극(비교예 2의 슬러리로 제조됨(용매로 물 사용 + 분산제 사용))COMPARATIVE EXAMPLE 5 Production anode (prepared as a slurry of Comparative Example 2 (using water as a solvent + dispersant)) |
시험예 1: 양극 제조용 슬러리 조성물로 제조된 전극의 물성 및 형태 평가Test Example 1: Physical properties and morphological evaluation of an electrode made of a slurry composition for preparing an anode
상기 실시예 5 내지 8, 및 비교예 4 및 5에서 제조된 양극의 표면조도(거칠기)를 측정하고, 건조 후 전극의 형태를 육안으로 확인하여 그 결과를 하기 표 2에 나타내었다. The surface roughness (roughness) of the positive electrode prepared in Examples 5 to 8 and Comparative Examples 4 and 5 was measured and the shape of the electrode after drying was visually confirmed. The results are shown in Table 2 below.
상기 표 2로부터 확인되는 바와 같이, 본 발명의 실시예 5 내지 8 전극의 표면거칠기는 용매로 물만을 사용한 비교예 4의 전극과 동등하거나 크게 개선된 것을 알 수 있다.As can be seen from the above Table 2, it can be seen that the surface roughnesses of the electrodes of Examples 5 to 8 of the present invention were improved to be equivalent or greatly improved as compared with the electrode of Comparative Example 4 using only water as a solvent.
또한, 본 발명의 실시예 5 내지 8 전극의 건조 후 전극 말림은 용매로 물만을 사용한 비교예 4의 전극과 비교하여 현저히 개선되었으며, 분산제를 사용한 비교예 5와 동등 이상의 개선을 나타냈다. In addition, the electrode curl after drying of the electrodes of Examples 5 to 8 of the present invention was remarkably improved as compared with the electrode of Comparative Example 4 using only water as a solvent, and showed an improvement equal to or better than Comparative Example 5 using a dispersant.
또한, 용매로 물만을 사용한 비교예 4의 전극은 말려 있는 전극을 펴는 과정에서 전극에 크랙이 생성되고, 전극이 탈리되는 문제가 발생하였으나, 본 발명의 실시예 5 내지 8 전극에서는 크랙이나 탈리가 발생하지 않았다. Also, in the electrode of Comparative Example 4 using only water as a solvent, cracks were generated in the electrode during the process of spreading the dried electrode, and the electrode was desorbed. In Examples 5 to 8 of the present invention, Did not occur.
시험예 2: 전지의 에너지 밀도 평가Test Example 2: Evaluation of energy density of a battery
상기 실시예 9 내지 12, 및 비교예 7에서 제조된 전지의 에너지 밀도를 다음과 같은 방법으로 측정하였다.The energy density of the batteries prepared in Examples 9 to 12 and Comparative Example 7 was measured by the following method.
<분석 조건><Analysis condition>
-기기: 100mA 급 충방전기- Device: 100mA charge / discharge unit
-방전: 0.1C, 정전류 모드, 1.8V 전압 도달시 방전 종료- Discharge: 0.1C, constant current mode, discharge termination when 1.8V voltage is reached
-온도: 25oC- Temperature: 25 o C
방전 후 측정된 전지의 에너지를 집전체를 제외한 양극의 무게로 나누어 에너지 밀도를 구하였으며, 각 조건별 3개씩 동일한 전지를 만들어 평균 값으로 결과를 나타내었다. After discharging, the energy of the measured cell was divided by the weight of the anode except the current collector, and the energy density was obtained.
시험 전지Test cell | 조건Condition | 에너지 밀도 (Wh/kg)Energy density (Wh / kg) |
실시예 9Example 9 | 1-프로판올 0.77% (실시예1,5)1-propanol 0.77% (Examples 1 and 5) | 14161416 |
실시예 10Example 10 | 1-프로판올 3.85% (실시예2,6)1-propanol 3.85% (Examples 2 and 6) | 13811381 |
실시예 11Example 11 | 1-프로판올 7.7% (실시예3,7)1-propanol 7.7% (Examples 3 and 7) | 14291429 |
실시예 12Example 12 | 에탄올 3.85% (실시예4,8)Ethanol 3.85% (Examples 4 and 8) | 14261426 |
비교예 7Comparative Example 7 | 물, 분산제(비교예2,5)Water, dispersant (Comparative Examples 2 and 5) | 13481348 |
상기 표 3으로부터 확인되는 바와 같이, 본 발명의 실시예 9 내지 12의 전지는 별도의 분산제를 사용하지 않았음에도 불구하고, 분산제를 사용한 비교예 7의 전지보다 우수한 에너지 밀도를 나타냈다. As can be seen from the above Table 3, the batteries of Examples 9 to 12 of the present invention exhibited higher energy densities than the batteries of Comparative Example 7 using the dispersing agent, although no separate dispersing agent was used.
Claims (12)
- 양극활물질, 바인더, 알코올 및 물을 포함하는 양극 슬러리 조성물로서, 상기 알코올의 함량이 조성물 총 중량에 대하여 0.1 내지 10 중량%인 것을 특징으로 하는 양극 슬러리 조성물.A positive electrode slurry composition comprising a positive electrode active material, a binder, an alcohol and water, wherein the content of the alcohol is 0.1 to 10% by weight based on the total weight of the composition.
- 제1항에 있어서, The method according to claim 1,상기 조성물은 알코올과 물의 총 중량을 기준으로 알코올을 0.1 내지 15 중량%로 포함하고 물을 85 내지 99.9 중량%로 포함하는 것을 특징으로 하는 양극 슬러리 조성물.Wherein the composition comprises from 0.1 to 15% by weight of alcohol, based on the total weight of the alcohol and water, and from 85 to 99.9% by weight of water.
- 제1항에 있어서, The method according to claim 1,상기 알코올은 C1~C5의 저급 알코올인 것을 특징으로 하는 양극 슬러리 조성물.Wherein the alcohol is a C1 to C5 lower alcohol.
- 제3항에 있어서, The method of claim 3,상기 C1~C5의 저급 알코올은 프로판올인 것을 특징으로 하는 양극 슬러리 조성물.Wherein the C1 to C5 lower alcohol is propanol.
- 제1항에 있어서, The method according to claim 1,상기 양극활물질 10 ~ 78 중량%, 바인더 1 ~ 50 중량%, 알코올 0.1~10 중량%, 및 잔량의 물을 포함하는 것을 특징으로 하는 양극 슬러리 조성물.Wherein the positive electrode slurry composition comprises 10 to 78% by weight of the positive electrode active material, 1 to 50% by weight of a binder, 0.1 to 10% by weight of an alcohol and residual water.
- 제5항에 있어서, 6. The method of claim 5,상기 조성물은 도전재 0.1 ~ 10 중량%를 더 포함하는 것을 특징으로 하는 양극 슬러리 조성물.Wherein the composition further comprises 0.1 to 10% by weight of a conductive material.
- 제6항에 있어서, The method according to claim 6,상기 조성물은 양극활물질 및 도전재 합산 100 중량부를 기준으로 알코올을 2 내지 45 중량부로 포함하는 것을 특징으로 하는 양극 슬러리 조성물.Wherein the composition comprises 2 to 45 parts by weight of an alcohol based on 100 parts by weight of the cathode active material and the conductive material.
- 제1항에 있어서, The method according to claim 1,상기 조성물은 리튬-황 전지의 양극 제조용인 것을 특징으로 하는 양극 슬러리 조성물.Wherein the composition is for preparing a positive electrode of a lithium-sulfur battery.
- 제8항에 있어서, 9. The method of claim 8,상기 양극활물질은 황-탄소 복합체인 것을 특징으로 하는 양극 슬러리 조성물.Wherein the cathode active material is a sulfur-carbon composite.
- 제1항의 양극 슬러리 조성물을 집전체 상에 도포하여 제조된 양극.A positive electrode prepared by applying the positive electrode slurry composition of claim 1 onto a current collector.
- 제10항의 양극; A positive electrode of claim 10;음극 활물질로서 리튬 금속 또는 리튬 합금을 포함하는 음극;A negative electrode comprising lithium metal or a lithium alloy as a negative electrode active material;상기 양극과 음극 사이에 구비되는 세퍼레이터; 및A separator provided between the anode and the cathode; And전해질;을 포함하는 전지.A battery comprising: an electrolyte;
- 제11항에 있어서, 12. The method of claim 11,상기 리튬 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군에서 선택되는 금속의 합금인 것을 특징으로 하는 전지.Wherein the lithium alloy is an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020537476A JP7062771B2 (en) | 2018-01-11 | 2019-01-11 | Positive electrode slurry composition, positive electrode manufactured using the positive electrode slurry composition, and a battery containing the positive electrode slurry composition. |
EP19739062.8A EP3723165A4 (en) | 2018-01-11 | 2019-01-11 | Cathode slurry composition, cathode manufactured using same, and battery including same |
US16/958,599 US11777091B2 (en) | 2018-01-11 | 2019-01-11 | Cathode slurry composition, cathode manufactured using same, and battery including same |
CN201980006826.XA CN111542947A (en) | 2018-01-11 | 2019-01-11 | Positive electrode slurry composition, positive electrode manufactured using the same, and battery including the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0003656 | 2018-01-11 | ||
KR20180003656 | 2018-01-11 | ||
KR1020190003703A KR102160714B1 (en) | 2018-01-11 | 2019-01-11 | Slurry composition for forming cathode, cathode manufactured thereby, and battery comprising the same |
KR10-2019-0003703 | 2019-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019139397A1 true WO2019139397A1 (en) | 2019-07-18 |
Family
ID=67219821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/000442 WO2019139397A1 (en) | 2018-01-11 | 2019-01-11 | Cathode slurry composition, cathode manufactured using same, and battery including same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019139397A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114631203A (en) * | 2020-07-01 | 2022-06-14 | 株式会社Lg新能源 | Positive electrode for lithium-sulfur battery and method for producing same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001176516A (en) * | 1999-12-15 | 2001-06-29 | Sumitomo Chem Co Ltd | Positive electrode mix paste for lithium secondary battery and lithium secondary battery |
KR20050087977A (en) * | 2004-02-28 | 2005-09-01 | 주식회사 이스퀘어텍 | Manufacturing method for cathode of lithium rechargeable battery |
KR20150025665A (en) | 2013-08-30 | 2015-03-11 | 주식회사 엘지화학 | Cathode Slurry for Secondary Battery Comprising Dispersing Agent with Excellent Dispersibility and Secondary Battery Comprising the Same |
KR20150037071A (en) * | 2013-09-30 | 2015-04-08 | 주식회사 엘지화학 | Method for Preparation of Cathode Mixture and Secondary Battery Prepared by the Same |
KR20170081840A (en) * | 2016-01-05 | 2017-07-13 | 주식회사 엘지화학 | Preparation method of positive eletrode slurry for lithium secondary battery |
KR20170084478A (en) * | 2016-01-12 | 2017-07-20 | 주식회사 엘지화학 | Method of removing moisture in cathode for Lithium-Sulfur battery |
KR20180003656A (en) | 2016-06-30 | 2018-01-10 | 엘지디스플레이 주식회사 | Organic Light Emitting Diode Display |
KR20190003703A (en) | 2016-05-02 | 2019-01-09 | 노벨리스 인크. | Aluminum alloys with enhanced formability and related methods |
-
2019
- 2019-01-11 WO PCT/KR2019/000442 patent/WO2019139397A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001176516A (en) * | 1999-12-15 | 2001-06-29 | Sumitomo Chem Co Ltd | Positive electrode mix paste for lithium secondary battery and lithium secondary battery |
KR20050087977A (en) * | 2004-02-28 | 2005-09-01 | 주식회사 이스퀘어텍 | Manufacturing method for cathode of lithium rechargeable battery |
KR20150025665A (en) | 2013-08-30 | 2015-03-11 | 주식회사 엘지화학 | Cathode Slurry for Secondary Battery Comprising Dispersing Agent with Excellent Dispersibility and Secondary Battery Comprising the Same |
KR20150037071A (en) * | 2013-09-30 | 2015-04-08 | 주식회사 엘지화학 | Method for Preparation of Cathode Mixture and Secondary Battery Prepared by the Same |
KR20170081840A (en) * | 2016-01-05 | 2017-07-13 | 주식회사 엘지화학 | Preparation method of positive eletrode slurry for lithium secondary battery |
KR20170084478A (en) * | 2016-01-12 | 2017-07-20 | 주식회사 엘지화학 | Method of removing moisture in cathode for Lithium-Sulfur battery |
KR20190003703A (en) | 2016-05-02 | 2019-01-09 | 노벨리스 인크. | Aluminum alloys with enhanced formability and related methods |
KR20180003656A (en) | 2016-06-30 | 2018-01-10 | 엘지디스플레이 주식회사 | Organic Light Emitting Diode Display |
Non-Patent Citations (1)
Title |
---|
See also references of EP3723165A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114631203A (en) * | 2020-07-01 | 2022-06-14 | 株式会社Lg新能源 | Positive electrode for lithium-sulfur battery and method for producing same |
EP4040526A4 (en) * | 2020-07-01 | 2023-01-25 | LG Energy Solution, Ltd. | Positive electrode for lithium-sulfur battery and method for manufacturing same |
JP2023505468A (en) * | 2020-07-01 | 2023-02-09 | エルジー エナジー ソリューション リミテッド | Cathode for lithium-sulphur battery and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019108039A2 (en) | Anode and secondary battery comprising same | |
WO2012165758A1 (en) | Lithium secondary battery | |
WO2011019187A2 (en) | Lithium secondary battery | |
WO2015023154A1 (en) | Anode for lithium-sulfur battery and preparation method therefor | |
WO2019078544A1 (en) | Negative electrode for lithium secondary battery, and lithium secondary battery comprising same | |
WO2012150813A2 (en) | Electrode having multi-layered electrode active material layer and secondary battery including same | |
WO2018016785A1 (en) | Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby | |
WO2012074300A2 (en) | Lithium secondary battery | |
WO2018212481A1 (en) | Method for manufacturing anode for lithium secondary battery | |
WO2020185014A1 (en) | Negative electrode and secondary battery comprising same | |
WO2018038524A1 (en) | Separation film for lithium metal battery, lithium metal battery comprising same | |
WO2019078505A1 (en) | Binder, and electrode and lithium secondary battery comprising same | |
WO2019103409A1 (en) | Method for manufacture of sulfur-carbon composite | |
WO2019216713A1 (en) | Lithium metal secondary battery with improved safety, and battery module including same | |
WO2019103311A1 (en) | Positive electrode for all-solid state lithium-polymer secondary battery, method for manufacturing same, and secondary battery comprising same | |
WO2019088628A2 (en) | Sulfur-carbon composite, method for preparing same and lithium secondary battery comprising same | |
WO2019093709A1 (en) | Electrolyte composite for lithium-sulfur battery, electrochemical device comprising same, and preparation method therefor | |
WO2019059637A2 (en) | Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same | |
WO2020105981A1 (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same | |
WO2019221410A1 (en) | Negative electrode including electrode protective layer, and lithium secondary battery employing same | |
WO2019059619A2 (en) | Method for designing electrode for lithium secondary battery and method for manufacturing electrode for lithium secondary battery including same | |
WO2020122459A1 (en) | Anode active material for lithium secondary battery and secondary battery comprising same | |
KR102160714B1 (en) | Slurry composition for forming cathode, cathode manufactured thereby, and battery comprising the same | |
WO2020159263A1 (en) | Method for manufacturing anode for secondary battery | |
WO2016122196A1 (en) | Electrode, and method for producing battery and electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19739062 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020537476 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019739062 Country of ref document: EP Effective date: 20200707 |