[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019134568A1 - 有机晶体管及其制备方法、阵列基板、显示装置 - Google Patents

有机晶体管及其制备方法、阵列基板、显示装置 Download PDF

Info

Publication number
WO2019134568A1
WO2019134568A1 PCT/CN2018/123898 CN2018123898W WO2019134568A1 WO 2019134568 A1 WO2019134568 A1 WO 2019134568A1 CN 2018123898 W CN2018123898 W CN 2018123898W WO 2019134568 A1 WO2019134568 A1 WO 2019134568A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
single crystal
photoresist
insulating layer
Prior art date
Application number
PCT/CN2018/123898
Other languages
English (en)
French (fr)
Inventor
张骥
胡威威
陈亮
高锦成
惠官宝
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/484,150 priority Critical patent/US10985320B2/en
Publication of WO2019134568A1 publication Critical patent/WO2019134568A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present disclosure relates to the field of related technologies, and in particular, to an organic transistor, a method for fabricating the same, an array substrate, and a display device.
  • the glass substrate is the basic raw material.
  • ultra-thin glass is fragile and costly, which is not conducive to the manufacture of large-area flexible displays.
  • the use of organic flexible substrates is a good alternative.
  • organic substrates are often unable to withstand high temperatures (>200 ° C), which makes silicon-based plasma enhanced chemical vapor deposition (PECVD, temperature range close to 300 ° C) can not be carried out on organic substrates, so the traditional a-Si, LTPS, SiNx It is difficult to obtain a high quality film on an organic substrate.
  • PECVD silicon-based plasma enhanced chemical vapor deposition
  • an oxide semiconductor material typified by an amorphous oxide semiconductor (IGZO: In-Ga-Zn-O)
  • IGZO amorphous oxide semiconductor
  • an indispensable annealing process is required to obtain a high quality film.
  • a high temperature of 300 ° C or higher is required.
  • Organic thin film transistors have been used to achieve high resolution electronic paper with good results.
  • the product is made of an organic polymer semiconductor
  • the semiconductor has a low mobility and the response time is too long, so it can only be used for electronic paper reading.
  • organic single crystals have not been related to the process products. Although some proposals have been made for the preparation of single crystals, the actual production efficiency is still low and cannot be satisfied in large-scale preparation.
  • a method for preparing an organic single crystal layer includes: adding a solution of an organic semiconductor material and an orthogonal solvent in a confinement well; volatilizing the orthogonal solvent by an annealing process to induce an organic A single crystal of a semiconductor material is directionally grown in the confinement well to obtain an organic single crystal layer.
  • the organic semiconductor material is 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene.
  • a method of fabricating an organic transistor comprising: applying a photoresist on one side of an organic insulating layer; patterning the photoresist to form a confinement well; and in the confinement well Adding a solution of an organic semiconductor material and an orthogonal solvent; volatilizing the orthogonal solvent by an annealing process, inducing a single crystal of the organic semiconductor material to be directionally grown in the confinement well to obtain an organic single crystal layer; and removing remaining photolithography
  • the glue is used as the active layer.
  • the method before applying the photoresist on one side of the organic insulating layer, the method further comprises: forming an organic polymer layer on the surface of the organic insulating layer.
  • the forming the organic polymer layer on the surface of the organic insulating layer further comprises: performing a hydrophilic treatment and a hydrophobic treatment on the surface of the organic polymer layer in sequence.
  • the method further includes: the organic The solution of the semiconductor material is hydrophilic, and the surface of the organic polymer layer not covered by the photoresist is subjected to a hydrophilic treatment.
  • the method further includes: the organic The solution of the semiconductor material is hydrophobic, and the surface of the organic polymer layer not covered by the photoresist is subjected to hydrophilic treatment and hydrophobic treatment in sequence.
  • the forming the organic polymer layer on the surface of the organic insulating layer comprises: preparing the organic polymer layer by using a polysiloxane-based organic polymeric material on a surface of the organic insulating layer.
  • the organic insulating layer is prepared by using one or more materials selected from the group consisting of polyacrylonitrile, polypropylene oxide, and polymethyl methacrylate.
  • an organic transistor in a third aspect of the present disclosure, includes an organic insulating layer and an organic single crystal layer disposed on the organic insulating layer; wherein the organic single crystal layer functions as an active layer; and the organic single crystal layer is according to any of the above embodiments
  • the preparation method is prepared.
  • the organic transistor further includes an organic polymer layer disposed between the organic single crystal layer and the organic insulating layer.
  • the material of the organic polymer layer is a polysiloxane-based organic polymer.
  • the material of the organic insulating layer comprises one or more of polyacrylonitrile, polypropylene oxide, and polymethyl methacrylate.
  • an array substrate is provided.
  • the array substrate includes the organic transistor described in any of the above embodiments.
  • a display device in a fifth aspect of the present disclosure, includes the array substrate described in the above embodiments.
  • the organic transistor, the array substrate, the display device and the related preparation method provided by the present disclosure prepare a directionally grown organic single crystal layer in a pre-formed confinement well by using an orthogonal solvent and a semiconductor solution, thereby providing A highly efficient and stable method for preparing an organic single crystal layer.
  • the above-described organic single crystal can be directionally grown in the confinement well constructed by the photoresist, thereby preparing an accurate organic single crystal layer and serving as an active layer. Due to the better mobility and stability of the single crystal, the prepared organic transistor has better display quality.
  • the organic transistor, the array substrate, the display device, and the related preparation method of the present disclosure can provide not only an efficient and reliable method for preparing an organic single crystal layer, but also can prepare an organic single crystal layer at a low temperature in a flexible display device and have The source layer gives an organic transistor with higher mobility and stability.
  • FIG. 1 is a flow chart of a method for preparing an organic single crystal layer according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for fabricating an organic transistor according to an embodiment of the present disclosure
  • 3a-6b illustrate structures implemented by various steps of a method of fabricating an organic transistor provided by an embodiment of the present disclosure
  • FIG. 7a shows a cross-sectional view of a packaged organic transistor provided by an embodiment of the present disclosure
  • FIG. 7b is a schematic structural diagram of a packaged organic transistor according to an embodiment of the present disclosure.
  • An object of the present disclosure is to provide an organic transistor, an array substrate, a display device, and related fabrication methods. With the embodiments of the present disclosure, it is possible to provide not only an efficient and reliable method for preparing an organic single crystal layer, but also a low-temperature preparation of an organic single crystal layer in a flexible display device and as an active layer, resulting in higher mobility and stability. Organic transistor.
  • the present disclosure is directed to the problem that the mobility and stability of the current semiconductor layer structure are not high, and a design using an organic single crystal as an active layer is proposed.
  • an improved method for preparing an organic single crystal layer has been proposed due to the current lack of a corresponding process for preparing an organic single crystal layer, especially for preparing an organic single crystal in a flexible display related device.
  • the present disclosure first requires an improvement in the preparation of an organic single crystal layer.
  • the active layer is usually prepared by vacuum evaporation or coating, and all of them form an amorphous film, and the performance is far less than that of the corresponding single crystal. Therefore, it is necessary to consider how to form an oriented single crystal layer.
  • the present embodiment provides a method for preparing an organic single crystal layer by using an orthogonal solvent.
  • FIG. 1 a flow of a method for preparing an organic single crystal layer according to an embodiment of the present disclosure is provided. Figure. The method for preparing the organic single crystal layer includes the following steps.
  • a solution of an organic semiconductor material and an orthogonal solvent are added to the confinement well.
  • the confinement well may be a trench structure having a predetermined shape for forming an organic single crystal formed in the confinement well to form a predetermined shape, thereby obtaining an organic single crystal layer having a desired shape.
  • the solution of the organic semiconductor material is a raw material for preparing an organic single crystal, and only a solution of the corresponding organic semiconductor material corresponding to the desired single crystal is required.
  • the orthogonal solvent is a solvent of an insoluble organic semiconductor material, which is used to help the solution of the organic semiconductor material to rapidly precipitate the organic single crystal, thereby improving the preparation efficiency.
  • the material used to prepare the organic single crystal layer may be an alkyl-substituted benzothiophene compound such as 2,7-dioctyl[1]benzothieno[3,2-b]benzene.
  • thiophene (2,7-diocty [1] benzothieno [3,2-b] benzothiophene, C8-BTBT).
  • 2,7-Dioctyl[1]benzothieno[3,2-b]benzothiophene can be dissolved in, for example, toluene to form a solution of an organic semiconductor material.
  • step S2 the orthogonal solvent is volatilized by an annealing process, and a single crystal of the organic semiconductor material is induced to grow in the confinement well to obtain an organic single crystal layer.
  • a single crystal of the organic semiconductor material is induced to grow in the confinement well to obtain an organic single crystal layer.
  • the present disclosure utilizes an orthogonal solvent to prepare an organic single crystal layer by an orthogonal solution method, which can not only prepare an oriented ordered organic single crystal layer structure, but also greatly improve the preparation efficiency of the organic single crystal layer. .
  • the organic single crystal layer in the above embodiment can be used as an active layer in an organic transistor, thereby obtaining an organic transistor having higher mobility and more stable performance.
  • FIG. 2 is a flowchart of a method for fabricating an organic transistor according to an embodiment of the present disclosure.
  • the method of preparing the organic transistor includes the following steps.
  • step S11 an organic polymer layer is formed on the surface of the organic insulating layer.
  • the orthogonal solvent in order to be able to prepare an organic single crystal in an organic transistor and as an active layer, it is necessary to use the orthogonal solvent in the above embodiment, and usually the organic insulating layer is in contact with the active layer, that is, the orthogonal solvent will be The organic insulating layer is destroyed.
  • the present disclosure proposes to prepare an organic polymer layer on the organic insulating layer to insulate the damage of the organic insulating layer by the subsequent orthogonal solvent, and protect the organic insulating layer from damage.
  • the material of the organic insulating layer may be one or a combination of polyacrylonitrile (PAN), polypropylene oxide (PPO), and polymethyl methacrylate (PMMA).
  • the material of the organic polymer layer may be a polysiloxane-based organic polymeric material.
  • the material of the organic polymer layer is polymethylsilsesquioxane (PMSQ).
  • PMSQ polymethylsilsesquioxane
  • the method before the step of forming an organic polymer layer on the surface of the organic insulating layer, the method further comprises: preparing a gate layer on the substrate substrate and patterning the gate layer. As shown in FIGS. 3a and 3b, a gate layer is formed on the substrate 1 and the gate layer is patterned to obtain the gate electrode 2.
  • Figure 3b is a plan view of the structure achieved in this step, and Figure 3a shows a cross-sectional view of the structure of Figure 3b taken along line A-A'.
  • the patterning process includes one or more combinations of photolithography, nanoimprinting, and inkjet printing. Of course, the present disclosure does not limit which patterning process is employed.
  • the gate layer is a combination of one or more of a magnetron sputtering metal material, an organic conductive material, or a metal nano material.
  • the organic insulating layer 3 is then formed on the patterned gate layer.
  • the method for preparing the organic transistor of the present disclosure further includes: adding a water-oxygen barrier layer on both sides of the gate layer. In this way, it is possible to prevent external water and oxygen from causing damage to the gate and improve the stability of the entire device.
  • the method further includes: step S12, annealing the organic insulating layer and the organic polymer layer.
  • step S12 annealing the organic insulating layer and the organic polymer layer.
  • the organic insulating layer and the organic polymer layer can respectively form a stable chemical film, thereby improving the corrosion resistance of the film to the subsequent process.
  • the present disclosure does not limit the time and sequence of the annealing process.
  • the organic insulating layer and the organic polymer layer may be annealed together after the organic polymer layer is prepared; or the organic insulating layer may be annealed, and then the organic polymer layer is prepared and then organically The polymer layer is annealed.
  • step S13 the surface of the organic polymer layer is subjected to a hydrophilic treatment and a hydrophobic treatment in this order.
  • the surface of the organic polymer layer is treated sequentially using plasma hydrophilic treatment and plasma hydrophobic treatment.
  • FIGS. 4a and 4b an organic insulating layer 3 and an organic polymer layer 4 are coated on the gate 2.
  • Fig. 4b is a plan view of the structure realized in this step, and Fig. 4a shows a cross-sectional view of the structure in Fig. 4b taken along line B-B'. As can be seen from FIG.
  • the organic polymer layer 4 is located above the organic insulating layer 3 and as a layer in contact with the photoresist, by subjecting the surface of the organic polymer layer 4 to hydrophobic treatment, the organic polymer can be enhanced.
  • hydrophobic treatment is required; however, the hydrophobic treatment of the organic polymer layer is not effective. Therefore, the present disclosure proposes that the organic polymer layer is subjected to a hydrophilic treatment and then subjected to a hydrophobic treatment to obtain a surface favorable for adhesion of the photoresist.
  • Step S14 applying a photoresist (PR) on one side of the organic insulating layer (for example, on the organic polymer layer), and patterning the photoresist (for example, using a photolithography process) to form a confinement well.
  • a photoresist PR
  • a photoresist is applied over the organic polymer layer and a confinement well is formed.
  • Figure 5b is a plan view of the structure achieved in this step
  • Figure 5a shows a cross-sectional view of the structure in Figure 5b taken along line C-C'.
  • the confinement well 51 is prepared by the photoresist 5 (that is, the trench structure is formed by using the organic polymer layer 4 and the photoresist 5 to form a predetermined shape), thereby enabling the subsequent preparation of the organic single crystal to be limited to In the confinement well 51, an organic single crystal layer of a predetermined structure is obtained, and it can be used as an active layer directly.
  • an organic single crystal layer 6 is prepared in the confinement well 51.
  • Figure 6b is a top plan view of the structure achieved in this step, and Figure 6a shows a cross-sectional view of the structure in Figure 6b along the line D-D'.
  • an organic single crystal formed by a solution of an organic semiconductor material is grown in the confinement well 51, and an organic single crystal of a predetermined shape can be obtained, that is, an organic single crystal layer 6 serving as an active layer is obtained.
  • the solution of the organic semiconductor material is hydrophilic, after the patterning the photoresist to form a confinement well and in the solution and orthogonality of adding an organic semiconductor material in the confinement well
  • the method further includes: step S15, performing a hydrophilic treatment on the surface of the organic polymer layer 4 not covered by the photoresist 5. This can remove organic matter that may remain during development, so that the surface of the exposed organic polymer layer reforms a hydrophilic surface having a high hydroxyl density.
  • Step S16 according to the hydrophilicity or hydrophobicity of the semiconductor solution, correspondingly determining whether the surface of the organic polymer layer needs to be subjected to hydrophobic treatment. Specifically, the following judgment principle can be utilized.
  • the surface of the organic polymer layer not covered by the photoresist is subjected to a hydrophilic treatment without hydrophobic treatment; if the solution of the organic semiconductor material If it is hydrophobic, the surface of the organic polymer layer not covered by the photoresist is subjected to hydrophilic treatment and hydrophobic treatment in sequence. In this way, the surface of the confinement well facilitates the adhesion of the subsequently added semiconductor solution, ultimately improving the growth efficiency of the organic single crystal.
  • the surface of the organic polymer layer adsorbs organic molecules in the developer, and forms a surface having a non-hydrophobic surface in the cleaning process; therefore, after the subsequent addition of the semiconductor solution, surface adsorption is performed everywhere.
  • Different forces will affect the overall process uniformity.
  • the present disclosure increases the hydrophobic and hydrophobic treatment process after the development step, and is also capable of achieving synergy with the confinement well, improving the reliability and stability of the overall process.
  • Step S17 adding a solution of an organic semiconductor material and an orthogonal solvent to the confinement well.
  • the solution of the organic semiconductor material and the orthogonal solvent are separately added to the confinement well by an inkjet printing process.
  • Step S18 the orthogonal solvent is volatilized by an annealing process, and a single crystal of the organic semiconductor material is induced to grow in the confinement well to obtain an organic single crystal layer.
  • steps 17 and 18 may be repeated a plurality of times until an organic single crystal layer of a predetermined size is obtained. That is, an organic single crystal layer having a desired thickness can be obtained by a plurality of processes for preparing an organic single crystal.
  • step S19 the remaining photoresist is removed and the organic single crystal layer is used as an active layer.
  • the organic transistor in which an organic single crystal layer is used as an active layer can be obtained, so that the obtained organic transistor has better mobility and stability.
  • the above-mentioned preparation of the organic transistor may further include the step S20, preparing the source-drain electrode layer and packaging the organic transistor.
  • the source/drain electrode layer 7 is prepared and packaged.
  • 7b is a schematic structural view of a packaged organic transistor according to an embodiment of the present disclosure
  • FIG. 7a is a cross-sectional view of the structure of FIG. 7b taken along line E-E'.
  • the source/drain electrode layer 7 is in partial contact with the organic single crystal layer 6 and forms a certain shape in the upper layer, and finally the package is realized by the encapsulation layer 8.
  • the directional growth of the organic single crystal can be prepared as an active layer in the preparation process of the organic transistor by the orthogonal solvent, and the performance of the organic transistor is greatly improved.
  • the method for preparing an organic transistor prepares a directionally grown single crystal layer by using an orthogonal solvent and a semiconductor solution in a preformed confinement well, thereby providing an efficient and stable organic single crystal layer. Preparation.
  • the organic single crystal can be directionally grown in the confinement well constructed by the photoresist, thereby preparing an accurate organic
  • the single crystal layer is also used as an active layer. Since the single crystal has better mobility and stability, the prepared organic transistor has better display quality.
  • the present disclosure can provide not only an efficient and reliable method for preparing an organic single crystal layer, but also can prepare an organic single crystal at a low temperature in a flexible display device and serve as an active layer to improve the corresponding mobility and stability of the product.
  • the above process utilizes the hydrophilicity of the solution and repeatedly processes the interface, the difficulty of the orthogonal solution process can be reduced.
  • the present disclosure can be applied to an organic substrate, and an organic single crystal semiconductor having high mobility is used as a process basis, and there is a huge field in the flexible display field. Potential application value.
  • an organic transistor is provided.
  • the organic transistor includes an organic insulating layer 3 and an organic single crystal layer 6 disposed on the organic insulating layer 3; wherein the organic single crystal layer 6 serves as an active layer.
  • the organic single crystal layer is obtained by the method for preparing an organic single crystal layer described in any of the above embodiments.
  • the organic transistor has higher mobility and stability.
  • the organic transistor further includes an organic polymer layer 4 disposed between the organic single crystal layer 6 and the organic insulating layer 3.
  • the organic polymer layer 4 can protect the organic insulating layer 3 from attack by orthogonal solvents. Thereby improving the stability and reliability of the preparation process.
  • the material of the organic polymer layer is a polysiloxane-based organic polymer.
  • the material of the organic polymer layer is polymethylsilsesquioxane.
  • the material of the organic insulating layer comprises one or more of polyacrylonitrile, polypropylene oxide, and polymethyl methacrylate.
  • an array substrate is also provided.
  • the array substrate includes the organic transistor described in the above embodiments.
  • a display device is also provided.
  • the display device includes the array substrate described in the above embodiments.
  • the organic transistor, the array substrate, and the display device each include the organic transistor obtained by the above-described method for preparing an organic transistor, and thus have the same technical effects, which will not be repeatedly described in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本公开提供了一种有机晶体管及其制备方法、阵列基板、显示装置。所述有机晶体管的制备方法包括:在有机绝缘层的一侧施加光刻胶;图案化所述光刻胶以形成限制阱;在所述限制阱中加入有机半导体材料的溶液和正交溶剂;通过退火工艺使得所述正交溶剂挥发,诱导有机半导体材料的单晶在所述限制阱中定向生长从而得到有机单晶层;以及清除剩余的光刻胶并将所述有机单晶层作为有源层。本公开实施例能够在柔性显示设备中低温制备有机单晶并作为有源层,得到迁移率和稳定性更高的有机晶体管。

Description

有机晶体管及其制备方法、阵列基板、显示装置
相关申请
本申请要求保护在2018年1月5日提交的申请号为201810012058.6的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本公开涉及显示器相关技术领域,尤其涉及一种有机晶体管及其制备方法、阵列基板、显示装置。
背景技术
在传统平板显示领域,玻璃基板是基础原材料。然而超薄玻璃易碎且成本高昂,不利于制造大面积柔性显示器。采用有机柔性基底是一个很好的替代方案。然而有机基底往往不能承受高温(>200℃),这就使得硅基的等离子增强化学气相沉积(PECVD,温度范围接近300℃)不能在有机基底上进行,因此传统的a-Si、LTPS、SiNx等很难在有机基底上得到高质量薄膜。同时,以非结晶氧化物半导体(IGZO:In-Ga-Zn-O)为代表的氧化物半导体材料虽然磁控溅射工艺不需要高温,但要得到高质量薄膜,必不可少的退火工序也需要300℃以上的高温。
如果要实现完全的柔性显示,得到诸如电子纸、电子皮肤、可打印显示器等功能器件,那么就必须抛弃传统的硅基工艺,采用柔性且可低温沉积的有机材料来构筑器件。目前有机绝缘层和封装层使用有机材料来制作难度已经不大,核心问题在于半导体层的构筑。传统的有机薄膜晶体管虽然已经研究超过30年(1986年首次报道),但较低的迁移率和不稳定的阈值电压仍然是难以克服的问题。有机单晶成为了一种替代方案,虽然单晶制备起来较为复杂,但控制好工艺条件也并非不能做到。而且单晶先天具有很低的载流子陷阱和晶格缺陷,使得构筑的TFT器件性能要优秀很多。
有机薄膜晶体管已经用于实现高分辨率的电子纸,并具有不错的效果。但该产品由于采用有机聚合物半导体制作晶体管,半导体迁移 率低使得响应时间太长,故只能用于电子纸阅读。目前,有机单晶尚未有相关的工艺产品,虽然有人提出了制备单晶的方案,但是实际生产的效率还是较低,无法满足大批量制备。
公开内容
在本公开的第一方面,提供了一种有机单晶层的制备方法,包括:在限制阱中加入有机半导体材料的溶液和正交溶剂;通过退火工艺使得所述正交溶剂挥发,诱导有机半导体材料的单晶在所述限制阱中定向生长从而得到有机单晶层。
可选的,所述有机半导体材料是2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩。
在本公开的第二方面,提供了一种有机晶体管的制备方法,包括:在有机绝缘层的一侧施加光刻胶;图案化所述光刻胶以形成限制阱;在所述限制阱中加入有机半导体材料的溶液和正交溶剂;通过退火工艺使得所述正交溶剂挥发,诱导有机半导体材料的单晶在所述限制阱中定向生长从而得到有机单晶层;以及清除剩余的光刻胶并将所述有机单晶层作为有源层。
可选的,在有机绝缘层的一侧施加光刻胶之前,所述方法还包括:在所述有机绝缘层的表面形成有机聚合物层。
可选的,所述在所述有机绝缘层的表面形成有机聚合物层还包括:依次对所述有机聚合物层的表面进行亲水处理和疏水处理。
可选的,在所述图案化所述光刻胶以形成限制阱之后且在所述在所述限制阱中加入有机半导体材料的溶液和正交溶剂之前,所述方法还包括:所述有机半导体材料的溶液具有亲水性,对未被所述光刻胶覆盖的所述有机聚合物层的表面进行亲水处理。
可选的,在所述图案化所述光刻胶以形成限制阱之后且在所述在所述限制阱中加入有机半导体材料的溶液和正交溶剂之前,所述方法还包括:所述有机半导体材料的溶液具有疏水性,对未被所述光刻胶覆盖的所述有机聚合物层的表面依次进行亲水处理和疏水处理。
可选的,所述在所述有机绝缘层的表面形成有机聚合物层包括:在所述有机绝缘层的表面采用基于聚硅氧烷的有机聚合材料制备所述有机聚合物层。
可选的,所述有机绝缘层采用聚丙烯氰、聚丙烯氧化物、聚甲基丙烯酸甲酯中的一种或多种材料制备。
在本公开的第三方面,提供了一种有机晶体管。所述有机晶体管包括有机绝缘层以及设置于所述有机绝缘层上的有机单晶层;其中,所述有机单晶层作为有源层;所述有机单晶层根据上述任一实施例所述制备方法制备获得。
可选的,所述有机晶体管还包括设置在所述有机单晶层与所述有机绝缘层之间的有机聚合物层。
可选的,所述有机聚合物层的材料为基于聚硅氧烷的有机聚合物。
可选的,所述有机绝缘层的材料包括:聚丙烯氰、聚丙烯氧化物、聚甲基丙烯酸甲酯中的一种或多种。
在本公开的第四方面,提供了一种阵列基板。所述阵列基板包括上述任一实施例所述的有机晶体管。
在本公开的第五方面,提供了一种显示装置。所述显示装置包括以上实施例所述的阵列基板。
从上面所述可以看出,本公开提供的有机晶体管、阵列基板、显示装置及相关制备方法,通过正交溶剂与半导体溶液在预制的限制阱中制备得到定向生长的有机单晶层,进而提供了一种高效稳定的有机单晶层制备方法。通过在光刻胶中构筑限制阱,使得上述有机单晶能够在光刻胶构建的限制阱中定向生长,进而制备得到准确的有机单晶层并且作为有源层。由于单晶具有更好的迁移率和稳定性,使得制备得到的有机晶体管具有更好的显示质量。因此,本公开所述有机晶体管、阵列基板、显示装置及相关制备方法不仅能够提供一种高效可靠的有机单晶层的制备方法,而且能够在柔性显示设备中低温制备有机单晶层并作为有源层,得到迁移率和稳定性更高的有机晶体管。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种有机单晶层制备方法的流程图;
图2为本公开实施例提供的一种有机晶体管的制备方法的流程图;以及
图3a-6b示出了本公开实施例提供的制作有机晶体管的方法的各个步骤所实现的结构;
图7a示出了本公开实施例提供的封装后的有机晶体管的截面图;以及
图7b示出了本公开实施例提供的封装后的有机晶体管的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
需要说明的是,本公开实施例中所有使用“第一”和“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本公开实施例的限定,后续实施例对此不再一一说明。
本公开的目的在于提出一种有机晶体管、阵列基板、显示装置及相关制备方法。利用本公开的实施例,不仅能够提供一种高效可靠的有机单晶层的制备方法,而且能够在柔性显示设备中低温制备有机单晶层并作为有源层,得到迁移率和稳定性更高的有机晶体管。
本公开针对于当前半导体层结构迁移率及稳定性均不高的问题,提出采用有机单晶作为有源层的设计。同时,由于当前缺乏相应的制备有机单晶层,尤其是在柔性显示器相关设备中制备有机单晶的工艺,因此提出了一种改进的有机单晶层制备方法。由此,不仅能够高效稳定的实现有机单晶层的制备,而且能够应用到有机晶体管中,进而得到更好显示效果的柔性显示设备。因此,本公开首先需要对有机单晶层的制备进行改进。目前有源层通常采用真空蒸镀或涂布的方式制备,均会形成无定形薄膜,性能远不如相应的单晶。因此需要考虑如何形成定向单晶层。
考虑到单晶生长特性,本实施例提出一种利用正交溶剂实现对有机单晶层的制备方法,参照图1所示,为本公开实施例提供的一种有 机单晶层制备方法的流程图。所述有机单晶层的制备方法包括以下步骤。
步骤S1,在限制阱中加入有机半导体材料的溶液和正交溶剂(orthogonal solvent)。例如,所述限制阱可以为具有预设形状的沟槽结构,用于使得在限制阱中形成的有机单晶形成预设的形状,进而得到具有希望的形状的有机单晶层。所述有机半导体材料的溶液为制备有机单晶的原材料,只需要根据所要的单晶相应的配比有机半导体材料的溶液即可。所述正交溶剂为不溶有机半导体材料的溶剂,用于帮助有机半导体材料的溶液快速析出有机单晶,进而提高制备效率。在一些实施例中,用于制备有机单晶层的材料可以是烷基取代的苯并噻吩类化合物,例如2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩(2,7-diocty[1]benzothieno[3,2-b]benzothiophene,C8-BTBT)。2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩可以溶解在例如甲苯中形成有机半导体材料的溶液。
步骤S2,通过退火工艺使得所述正交溶剂挥发,诱导有机半导体材料的单晶在所述限制阱中定向生长从而得到有机单晶层。通过将所述正交溶剂挥发,使得所述限制阱中只保留有机单晶层,进而得到高质量的有机单晶层。
由上述实施例可知,本公开利用正交溶剂,通过正交溶液法制备得到有机单晶层,不仅能够制备得到定向有序的有机单晶层结构,而且大大提高了有机单晶层的制备效率。
上述实施例中的有机单晶层能够作为有机晶体管中的有源层,进而得到迁移率更高、性能更加稳定的有机晶体管。
本公开进一步提出了一种机晶体管制备方法,其中采用有机单晶作为有源层。图2为本公开实施例提供的一种有机晶体管的制备方法的流程图。所述有机晶体管的制备方法包括以下步骤。
步骤S11,在有机绝缘层的表面形成有机聚合物层。其中,为了能够在有机晶体管中制备有机单晶并且作为有源层,需要采用上述实施例中的正交溶剂,而通常有机绝缘层与有源层是接触的,也即正交溶剂将会对有机绝缘层进行破坏,针对于此,本公开提出在有机绝缘层上制备有机聚合物层来隔绝后续正交溶剂对有机绝缘层的损伤,保护有机绝缘层不受破坏。所述有机绝缘层的材料可选为聚丙烯氰(PAN)、 聚丙烯氧化物(PPO)、聚甲基丙烯酸甲酯(PMMA)中的一种或多种组合。所述有机聚合物层的材料可以是基于聚硅氧烷的有机聚合材料。可选地,所述有机聚合物层的材料为聚甲基硅倍半环氧乙烷(PMSQ)。需要说明的是,在有机绝缘层的表面形成有机聚合物层的步骤是可选的,也可以根据有机绝缘层对正交溶剂的抗性,直接在有机绝缘层上制备光刻胶,而无需制备有机聚合物层。
在本公开一些可选的实施例中,在有机绝缘层的表面形成有机聚合物层的步骤之前还包括:在衬底基板上制备栅极层并且对所述栅极层进行图案化处理。图3a和3b所示,在基板1上制备栅极层并图案化该栅极层,从而获得栅极2。图3b为该步骤所实现的结构的俯视图,图3a示出了图3b中的结构沿着A-A′线的截面图。可选的,所述图案化处理工艺包括光刻、纳米压印、喷墨打印中的一种或多种组合。当然,本公开并不限制采用哪一种图案化处理工艺。
进一步,所述栅极层采用磁控溅射金属材料、有机导电材料或者金属纳米材料中的一种或多种组合。
然后在图案化处理后的栅极层上制备有机绝缘层3。
可选的,为了进一步提高上述晶体管及相应器件对水氧的抗干扰特性,本公开所述有机晶体管的制备方法还包括:在所述栅极层的两侧分别增加水氧阻挡层。这样,能够避免外部的水氧对栅极造成破坏,提高整个器件的稳定性。
在本公开一些可选的实施例中,在步骤S11之后还可以包括:步骤S12,对所述有机绝缘层和所述有机聚合物层进行退火处理。通过退火工艺能够使得有机绝缘层和有机聚合物层分别形成稳定的化学薄膜,提高薄膜对后续工艺的抗蚀性。需要说明的是,本公开并不限制退火处理的时间和顺序。例如,既可以是在制备得到有机聚合物层之后一起对有机绝缘层和有机聚合物层进行退火处理;也可以是先对有机绝缘层进行退火处理,然后制备得到有机聚合物层后再对有机聚合物层进行退火处理。
步骤S13,依次对所述有机聚合物层的表面进行亲水处理和疏水处理。可选地,采用等离子体亲水处理和等离子体疏水处理依次对所述有机聚合物层的表面进行处理。如图4a和4b所示,在栅极2上涂布有机绝缘层3和有机聚合物层4。图4b为该步骤所实现的结构的俯视 图,图4a示出了图4b中的结构沿着B-B′线的截面图。由图4a可知,有机聚合物层4位于有机绝缘层3上方并且作为与光刻胶接触的层,通过对所述有机聚合物层的4表面进行亲疏水处理,使得能够增强所述有机聚合物层4的表面的化学修饰效果,以利于后续光刻胶的粘附。由此,提高制备工序的稳定性和产品质量。需要说明的是,为了提高光刻胶的粘附效果,需要进行疏水处理;但直接对有机聚合物层进行疏水处理效果不佳。因此,本公开提出先对有机聚合物层进行亲水处理,然后再进行疏水处理,得到有利于光刻胶粘附的表面。
步骤S14,在有机绝缘层的一侧(例如,在所述有机聚合物层上)施加光刻胶(PR),(例如利用光刻工艺)图案化所述光刻胶以形成限制阱。
如图5a和5b所示,在有机聚合物层上涂布光刻胶并形成限制阱。图5b为该步骤所实现的结构的俯视图,图5a示出了图5b中的结构沿着C-C′线的截面图。由图5a可知,通过光刻胶5制备限制阱51(即,利用有机聚合物层4和光刻胶5形成一个预定形状的沟槽结构),进而能够使得后续制备得到的有机单晶限定于限制阱51中,得到预定结构的有机单晶层,且能够直接作为有源层使用。
如图6a和6b所示,在限制阱51中制备有机单晶层6。图6b为该步骤所实现的结构的俯视图,图6a示出了图6b中的结构沿着D-D′线的截面图。由图6a可知,有机半导体材料的溶液形成的有机单晶定向生长于限制阱51中,进而能够得到预定形状的有机单晶,也即得到用作有源层的有机单晶层6。
可选的,所述有机半导体材料的溶液具有亲水性,在所述图案化所述光刻胶以形成限制阱之后且在所述在所述限制阱中加入有机半导体材料的溶液和正交溶剂之前,所述方法还包括:步骤S15,对未被所述光刻胶5覆盖的所述有机聚合物层4的表面进行亲水处理。这样能够除去显影过程中可能残留的有机物,使得露在外面的有机聚合物层的表面重新形成具有高羟基密度的亲水性表面。
步骤S16,依据所述半导体溶液的亲水性或疏水性,相应的确定是否需要对有机聚合物层的表面进行疏水处理。具体的,可以利用如下判断原则。
若所述有机半导体材料的溶液具有亲水性,则对未被所述光刻胶 覆盖的所述有机聚合物层的表面进行亲水处理,不进行疏水处理;若所述有机半导体材料的溶液具有疏水性,则对未被光刻胶覆盖的所述有机聚合物层的表面依次进行亲水处理和疏水处理。这样,使得所述限制阱的表面有利于后续添加的半导体溶液的粘附,最终提高有机单晶的生长效率。上述显影过程之后,有机聚合物层的表面会吸附显影液中的有机分子,并在清洗过程中形成各处亲疏水性不均一的表面;因此,在后续加入半导体溶液后,由于各处的表面吸附力不同,将会影响最后整体的工艺均一性。本公开在显影步骤之后增加亲疏水处理过程,还能够与限制阱实现协同作用,提高整体工艺的可靠性和稳定性。
步骤S17,在所述限制阱中加入有机半导体材料的溶液和正交溶剂。可选地,通过喷墨打印工艺将所述有机半导体材料的溶液和正交溶剂分别加入到限制阱中。
步骤S18,通过退火工艺使得所述正交溶剂挥发,诱导有机半导体材料的单晶在所述限制阱中定向生长从而得到有机单晶层。
可选地,可以多次重复步骤17和步骤18,直到得到预设尺寸的有机单晶层。也即,通过多次实现有机单晶的制备过程可以得到所要厚度的有机单晶层。
步骤S19,清除剩余的光刻胶并将所述有机单晶层作为有源层。这样,能够得到有机单晶层作为有源层的有机晶体管,使得得到的有机晶体管具有更好的迁移率和稳定性。
此外,可以理解的是,上述制备有机晶体管还可以包括步骤S20,制备源漏电极层并封装有机晶体管。如图7a和7b所示,制备源漏电极层7并进行封装。图7b示出了本公开实施例提供的封装后的有机晶体管的结构示意图,图7a示出了图7b中的结构沿着E-E′线的截面图。其中,源漏电极层7与有机单晶层6局部接触并且在上层形成一定的形状,最后通过封装层8实现封装。这样,通过正交溶剂能够在有机晶体管的制备过程中制备得到定向生长的有机单晶作为有源层,大大提高了有机晶体管的性能。
由上述实施例可知,本公开提供的有机晶体管的制备方法,通过正交溶剂与半导体溶液在预制的限制阱中制备得到定向生长的单晶层,进而提供了一种高效稳定的有机单晶层制备方法。通过在光刻胶 中构筑限制阱并且在有机绝缘层上制备用于隔绝保护的有机聚合物层,使得上述有机单晶能够在光刻胶构建的限制阱中定向生长,进而制备得到准确的有机单晶层并且作为有源层。由于单晶具有更好的迁移率和稳定性,因而使得制备得到的有机晶体管具有更好的显示质量。因此,本公开不仅能够提供一种高效可靠的有机单晶层制备方法,而且能够在柔性显示设备中低温制备有机单晶并作为有源层,提高产品相应的迁移率和稳定性。另一方面,由于上述过程利用溶液的亲疏水性,反复对界面进行处理,可降低正交溶液法工艺实现的难度。
此外,由于上述整个工艺过程可在不高于150摄氏度的环境下进行,使得本公开方案可应用于有机基板上,以具有高迁移率的有机单晶半导体为工艺基础,在柔性显示领域有巨大的潜在应用价值。
在本公开一些可选的实施例中,提供了一种有机晶体管。参照图6a所示,所述有机晶体管包括有机绝缘层3以及设置于所述有机绝缘层3上的有机单晶层6;其中,所述有机单晶层6作为有源层。可选的,所述有机单晶层通过上述任一项实施例所述的有机单晶层的制备方法获得。这样,通过将有机单晶层6作为有源层,使得有机晶体管具有更高的迁移率和稳定性。
可选地,所述有机晶体管还包括设置在所述有机单晶层6与所述有机绝缘层3之间的有机聚合物层4。这样,在通过正交溶剂法制备所述有机单晶层6的过程中,所述有机聚合物层4能够保护有机绝缘层3不受到正交溶剂的侵蚀。进而提高制备过程的稳定性和可靠性。
在本公开一些可选的实施例中,所述有机聚合物层的材料为基于聚硅氧烷的有机聚合物。可选地,所述有机聚合物层的材料为聚甲基硅倍半环氧乙烷。
在本公开一些可选的实施例中,所述有机绝缘层的材料包括:聚丙烯氰、聚丙烯氧化物、聚甲基丙烯酸甲酯中的一种或多种。
在本公开一些可选的实施例中,还提供了一种阵列基板。所述阵列基板包括以上实施例所述的有机晶体管。
在本公开一些可选的实施例中,还提供了一种显示装置。所述显示装置包括以上实施例所述的阵列基板。
其中,由于所述有机晶体管、阵列基板以及显示装置均包含通过上述制备有机晶体管的制备方法得到的有机晶体管,因此具有同样的 技术效果,本实施例对此不再重复赘述。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本公开的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本公开的不同方面的许多其它变化,为了简明它们没有在细节中提供。
本公开的实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本公开的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种有机单晶层的制备方法,包括:
    在限制阱中加入有机半导体材料的溶液和正交溶剂;
    通过退火工艺使得所述正交溶剂挥发,诱导有机半导体材料的单晶在所述限制阱中定向生长从而得到有机单晶层。
  2. 根据权利要求1所述的制备方法,其中,所述有机半导体材料是2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩。
  3. 一种有机晶体管的制备方法,包括:
    在有机绝缘层的一侧施加光刻胶;
    图案化所述光刻胶以形成限制阱;
    在所述限制阱中加入有机半导体材料的溶液和正交溶剂;
    通过退火工艺使得所述正交溶剂挥发,诱导有机半导体材料的单晶在所述限制阱中定向生长从而得到有机单晶层;以及
    清除剩余的光刻胶并将所述有机单晶层作为有源层。
  4. 根据权利要求3所述的制备方法,其中,在有机绝缘层的一侧施加光刻胶之前,所述方法还包括:在所述有机绝缘层的表面形成有机聚合物层。
  5. 根据权利要求4所述的制备方法,其中,所述在所述有机绝缘层的表面形成有机聚合物层还包括:
    依次对所述有机聚合物层的表面进行亲水处理和疏水处理。
  6. 根据权利要求4所述的制备方法,其中,在所述图案化所述光刻胶以形成限制阱之后且在所述在所述限制阱中加入有机半导体材料的溶液和正交溶剂之前,所述方法还包括:
    所述有机半导体材料的溶液具有亲水性,对未被所述光刻胶覆盖的所述有机聚合物层的表面进行亲水处理。
  7. 根据权利要求4所述的制备方法,其中,在所述图案化所述光刻胶以形成限制阱之后且在所述在所述限制阱中加入有机半导体材料的溶液和正交溶剂之前,所述方法还包括:
    所述有机半导体材料的溶液具有疏水性,对未被所述光刻胶覆盖的所述有机聚合物层的表面依次进行亲水处理和疏水处理。
  8. 根据权利要求4所述的制备方法,其中,所述在所述有机绝缘 层的表面形成有机聚合物层包括:在所述有机绝缘层的表面采用基于聚硅氧烷的有机聚合材料制备所述有机聚合物层。
  9. 根据权利要求3-8任一项所述的制备方法,其中,所述有机绝缘层采用聚丙烯氰、聚丙烯氧化物、聚甲基丙烯酸甲酯中的一种或多种材料制备。
  10. 一种有机晶体管,包括有机绝缘层以及设置于所述有机绝缘层上的有机单晶层;其中,所述有机单晶层作为有源层;所述有机单晶层根据权利要求1所述制备方法获得。
  11. 根据权利要求10所述的有机晶体管,还包括设置在所述有机单晶层与所述有机绝缘层之间的有机聚合物层。
  12. 根据权利要求10所述的有机晶体管,其中,所述有机聚合物层的材料为基于聚硅氧烷的有机聚合物。
  13. 根据权利要求10-12任一项所述的有机晶体管,其中,所述有机绝缘层的材料包括:聚丙烯氰、聚丙烯氧化物、聚甲基丙烯酸甲酯中的一种或多种。
  14. 一种阵列基板,包括权利要求10-13任一项所述的有机晶体管。
  15. 一种显示装置,包括权利要求14所述的阵列基板。
PCT/CN2018/123898 2018-01-05 2018-12-26 有机晶体管及其制备方法、阵列基板、显示装置 WO2019134568A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/484,150 US10985320B2 (en) 2018-01-05 2018-12-26 Organic transistor and manufacturing method thereof, array substrate, display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810012058.6A CN108183165B (zh) 2018-01-05 2018-01-05 有机晶体管、阵列基板、显示装置及相关制备方法
CN201810012058.6 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019134568A1 true WO2019134568A1 (zh) 2019-07-11

Family

ID=62550082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123898 WO2019134568A1 (zh) 2018-01-05 2018-12-26 有机晶体管及其制备方法、阵列基板、显示装置

Country Status (3)

Country Link
US (1) US10985320B2 (zh)
CN (1) CN108183165B (zh)
WO (1) WO2019134568A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183165B (zh) 2018-01-05 2020-05-08 京东方科技集团股份有限公司 有机晶体管、阵列基板、显示装置及相关制备方法
CN109841737B (zh) * 2019-02-27 2022-04-22 苏州大学 一种有机半导体阵列晶体的制备方法
CN113644202B (zh) * 2021-08-05 2023-10-20 电子科技大学 一种自发定向成膜法制备的有机太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931052A (zh) * 2010-08-17 2010-12-29 中国科学院苏州纳米技术与纳米仿生研究所 有机单晶场效应晶体管的制备方法
CN103907178A (zh) * 2011-11-04 2014-07-02 索尼公司 有机半导体元件的制造方法、有机半导体元件、有机单晶体薄膜的成长方法、有机单晶体薄膜、电子设备及有机单晶体薄膜组
CN106159091A (zh) * 2015-03-31 2016-11-23 中国科学院苏州纳米技术与纳米仿生研究所 有机单晶薄膜晶体管及其制备方法
CN108183165A (zh) * 2018-01-05 2018-06-19 京东方科技集团股份有限公司 有机晶体管、阵列基板、显示装置及相关制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972728B2 (ja) * 2005-08-30 2012-07-11 日本電信電話株式会社 有機材料層形成方法
US9112161B2 (en) * 2011-03-29 2015-08-18 Inha-Industry Partnership Institute Hybrid layer including oxide layer or organic layer and organic polymer layer and manufacturing method thereof
CN105098074B (zh) * 2015-06-26 2018-12-28 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板、显示面板及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931052A (zh) * 2010-08-17 2010-12-29 中国科学院苏州纳米技术与纳米仿生研究所 有机单晶场效应晶体管的制备方法
CN103907178A (zh) * 2011-11-04 2014-07-02 索尼公司 有机半导体元件的制造方法、有机半导体元件、有机单晶体薄膜的成长方法、有机单晶体薄膜、电子设备及有机单晶体薄膜组
CN106159091A (zh) * 2015-03-31 2016-11-23 中国科学院苏州纳米技术与纳米仿生研究所 有机单晶薄膜晶体管及其制备方法
CN108183165A (zh) * 2018-01-05 2018-06-19 京东方科技集团股份有限公司 有机晶体管、阵列基板、显示装置及相关制备方法

Also Published As

Publication number Publication date
US10985320B2 (en) 2021-04-20
CN108183165B (zh) 2020-05-08
US20200006662A1 (en) 2020-01-02
CN108183165A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
US9502448B2 (en) Method for fabricating an array substrate with improved driving ability
WO2018006441A1 (zh) 薄膜晶体管、阵列基板及其制备方法
US10236388B2 (en) Dual gate oxide thin-film transistor and manufacturing method for the same
WO2019000493A1 (zh) 薄膜晶体管阵列基板及其制备方法、oled显示装置
CN105762195B (zh) 金属氧化物薄膜晶体管及其制备方法
WO2019134568A1 (zh) 有机晶体管及其制备方法、阵列基板、显示装置
WO2015089964A1 (zh) 薄膜晶体管及其制备方法、阵列基板及其制备方法、以及显示装置
WO2014127645A1 (zh) 薄膜晶体管及其制作方法和显示器件
WO2016165187A1 (zh) 双栅极氧化物半导体tft基板的制作方法及其结构
WO2015165174A1 (zh) 一种薄膜晶体管及其制作方法、显示基板、显示装置
US10699905B2 (en) Low-temperature polysilicon (LTPS), thin film transistor (TFT), and manufacturing method of array substrate
WO2013139128A1 (zh) 顶栅型n-tft、阵列基板及其制备方法和显示装置
CN103151305A (zh) 一种薄膜晶体管阵列基板、制备方法以及显示装置
KR20190077570A (ko) 어레이 기판, 그 제조 방법 및 표시 장치
WO2013104226A1 (zh) 薄膜晶体管及其制造方法、阵列基板和显示器件
KR102190783B1 (ko) Tft 기판의 제조방법
WO2015192418A1 (zh) 氧化物薄膜晶体管结构的制作方法及氧化物薄膜晶体管结构
CN108346620A (zh) 阵列基板及其制作方法、显示装置
WO2016201725A1 (zh) 低温多晶硅tft基板的制作方法及低温多晶硅tft基板
WO2015192397A1 (zh) 薄膜晶体管基板的制造方法
WO2016011755A1 (zh) 薄膜晶体管及其制备方法、显示基板和显示设备
WO2021026990A1 (zh) 一种阵列基板及其制作方法
WO2019095408A1 (zh) 阵列基板及其制作方法、显示面板
WO2015096239A1 (zh) 一种薄膜电晶体场效应管及其制造方法
US10153354B2 (en) TFT substrate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18898385

Country of ref document: EP

Kind code of ref document: A1