[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019132266A1 - Carbon nanotube composition and manufacturing method therefor - Google Patents

Carbon nanotube composition and manufacturing method therefor Download PDF

Info

Publication number
WO2019132266A1
WO2019132266A1 PCT/KR2018/014740 KR2018014740W WO2019132266A1 WO 2019132266 A1 WO2019132266 A1 WO 2019132266A1 KR 2018014740 W KR2018014740 W KR 2018014740W WO 2019132266 A1 WO2019132266 A1 WO 2019132266A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
nanotube composition
carbon
acid
precursor
Prior art date
Application number
PCT/KR2018/014740
Other languages
French (fr)
Korean (ko)
Inventor
김성진
윤재근
조동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180146926A external-priority patent/KR102379595B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880041613.6A priority Critical patent/CN110785378B/en
Priority to EP18896593.3A priority patent/EP3628641A4/en
Priority to US16/624,743 priority patent/US11565938B2/en
Publication of WO2019132266A1 publication Critical patent/WO2019132266A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes

Definitions

  • the present invention relates to a carbon nanotube composition and a method of manufacturing the carbon nanotube composition. More particularly, the present invention relates to a carbon nanotube composition improved in dispersibility and conductivity by controlling the ratio of specific surface area to bulk density.
  • Carbon nanotubes which are one kind of fine carbon fibers, are tubular carbon having an average diameter of 1 ⁇ m or less. It is expected to be applied to various fields due to its high conductivity, tensile strength and heat resistance due to its specific structure. However, despite the availability of such carbon nanotubes, the use of carbon nanotubes is limited due to their low solubility and dispersibility.
  • the carbon nanotubes were linearly dispersed in a dispersion medium, and a conductive material dispersion was prepared and used. However, carbon nanotubes are not stable in dispersion medium due to strong Van der Waals attraction between them, and coagulation phenomenon occurs.
  • An object of the present invention is to provide a carbon nanotube composition excellent in dispersibility and conductivity and a method for producing the same.
  • X is a number representing the specific surface area (unit: m2 / g) of the carbon nanotube composition
  • Y is a number representing the bulk density (unit: kg / m 3) of the carbon nanotube composition.
  • the present invention also relates to a process for preparing a mixture comprising mixing an organic acid and a vanadium precursor in a molar ratio of 1: 0.088 to 1: 0.605 to prepare a mixture; Mixing the mixture with a cobalt precursor to produce a catalyst precursor; Subjecting the aluminum hydroxide to a first heat treatment to produce a support; Supporting a catalyst precursor on the support, and then performing a second heat treatment to produce a supported catalyst; And reacting the supported catalyst with a carbon-based compound.
  • the present invention also provides a method for producing a carbon nanotube composition.
  • the carbon nanotube composition of the present invention is excellent in dispersibility and conductivity and can be contained at a high concentration in the conductive material dispersion.
  • the productivity is excellent.
  • a carbon nanotube refers to a pristine carbon nanotube that has not been subjected to any further processing.
  • the entangled carbon nanotubes refer to a secondary structure in which a plurality of carbon nanotubes are entangled without a uniform shape such as a bundle or a rope.
  • the bundle-type carbon nanotubes are formed by arranging a plurality of carbon nanotube unit pieces in a bundle or a rope ) ≪ / RTI > shape.
  • the unit of carbon nanotubes is a graphite sheet having a nano-sized diameter cylinder shape and has an sp 2 bonding structure. At this time, depending on the angle and structure of the graphite surface, the characteristics of the conductor or semiconductor may be exhibited.
  • the unit of the carbon nanotube may be a single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT), or a multi-walled carbon nanotube (DWCNT) according to the number of walls MWCNT, and multi-walled carbon nanotubes. The thinner the wall thickness, the lower the resistance.
  • the specific surface area of the carbon nanotube composition is measured by the BET method. For example, it can be calculated from the amount of nitrogen gas adsorbed at a liquid nitrogen temperature (77K) using BEL Japan's BELSORP-mino II have.
  • the bulk density of the carbon nanotubes can be measured according to ASTM B329, specifically, according to ASTM B329-06.
  • the bulk density can be measured using a Scott volumeter (Version USP 616).
  • the bulk density of the carbon nanotube composition can be measured in accordance with the laboratory conditions, and substantially the same result as the result based on the above rule can be obtained.
  • the average diameter and length of the carbon nanotube unit can be measured using an electric field-type scanning electron microscope.
  • the carbon nanotube composition according to an embodiment of the present invention is a carbon nanotube composition including an entangled carbon nanotube and a bundled carbon nanotube.
  • the carbon nanotube composition has a specific surface area of 190 to 240 m < 2 > / g, The following formula 1 is satisfied:
  • X is a number representing the specific surface area (unit: m2 / g) of the carbon nanotube composition
  • Y is a number representing the bulk density (unit: kg / m 3) of the carbon nanotube composition.
  • the carbon nanotube composition has a specific surface area of 190 to 240 m < 2 > / g.
  • the specific surface area of the carbon nanotube composition may be from 193 to 239 m 2 / g, from 195 to 239 m 2 / g, from 200 m 2 / g to 238 m 2 / g, or from 200 to 235 m 2 / g, g is preferable.
  • the conductivity is excellent and can be advantageous for high-concentration dispersion. If it is less than the above-mentioned range, the conductivity is remarkably lowered, and if it exceeds the above-mentioned range, it can not be dispersed at a high concentration in the conductive material dispersion.
  • Equation 1 is an index showing the dispersion concentration when the conductive material dispersion is prepared from the carbon nanotube composition, and the value of the formula 1 is 0.1 to 5.29.
  • the value of the formula 1 may be from 1 to 5.14, from 1.5 to 5, or from 1.7 to 2.5, preferably from 1.7 to 2.5.
  • the carbon nanotubes can be dispersed at a higher concentration in the conductive material dispersion.
  • the value of the formula (1) is less than the above-mentioned range, the diameter of the carbon nanotube unit becomes very large and it is difficult to apply it as a conductive material. If it exceeds the above-mentioned range, it is difficult to disperse at a high concentration in the conductive material dispersion.
  • the bulk density of the carbon nanotube composition may be 25 to 150 kg / m 3, 35 to 130 kg / m 3, 40 to 125 kg / m 3, 50 to 125 kg / m 3 or 90 to 115 kg / To 115 kg / m < 3 >.
  • the dispersion can be dispersed at a high concentration since the dispersion gradually occurs during production of the conductive material dispersion
  • the carbon nanotube composition is prepared by mixing the entangled carbon nanotubes and the bundled carbon nanotubes in a ratio of 1: 0.01 to 1: 0.5, preferably 1: 0.02 to 1: 0.3, more preferably 1: 0.05 to 1: 0.2. Weight ratio. When the above-mentioned range is satisfied, there is an advantage of excellent conductivity.
  • the average diameter of the carbon nanotubes in the carbon nanotube composition may preferably be 30 nm or less, more preferably 10 to 30 nm. When the above-mentioned range is satisfied, the dispersibility and the conductivity can be improved.
  • the average length of the carbon nanotubes may preferably be 0.5 to 200 mu m, more preferably 10 to 60 mu m. When the above-mentioned range is satisfied, it is excellent in electrical conductivity and strength, and stable at room temperature and high temperature.
  • the carbon nanotube unit preferably has an aspect ratio defined by the ratio of the length of the carbon nanotube unit (the length of the long axis passing through the center of the unit) to the diameter (the length of the minor axis passing through the center of the unit and perpendicular to the long axis) To 50,000, and more preferably from 10 to 20,000.
  • the carbon nanotube layer surface per unit interval is a carbon crystal obtained by X-ray diffraction method (d 002) and to the O.335 O.342 nm, layer surface spacing (d 002) ⁇ O.3448 - 0.0028 (log ⁇ ) ( wherein , and? is the average diameter of the carbon nanotube unit), and the thickness Lc of the crystal in the C axis direction may be 40 nm or less.
  • the interplanar spacing (d 002 ) may preferably be less than 0.3444-0.0028 (1og ⁇ ), and more preferably less than 0.3441-0.0028 (log ⁇ ).
  • the crystallinity of the carbon nanotube unit is improved, so that the conductivity of the entangled carbon nanotube including the same can be further improved.
  • the carbon nanotube composition according to an embodiment of the present invention comprises: 1) mixing an organic acid and a vanadium precursor in a molar ratio of 1: 0.088 to 1: 0.605 to prepare a mixture; 2) preparing a catalyst precursor by mixing the mixture with a cobalt precursor; 3) subjecting the aluminum hydroxide to a first heat treatment to produce a support; 4) supporting a catalyst precursor on the support, and then performing a second heat treatment to produce a supported catalyst; And 5) reacting the supported catalyst with the carbon-based compound.
  • an organic acid and a vanadium precursor are mixed in a molar ratio of 1: 0.088 to 1: 0.605 to prepare a mixture.
  • the organic acid and the vanadium precursor are preferably mixed in a molar ratio of 1: 0.09 to 1: 0.6.
  • a carbon nanotube composition that can be dispersed at a high concentration in the conductive material dispersion can be produced.
  • a carbon nanotube composition including an entangled carbon nanotube having a low bulk density and a bundled carbon nanotube having a high bulk density can be produced. If it is less than the above-mentioned range, only the entangled carbon nanotubes are produced without producing the bundled carbon nanotubes. Above the above-mentioned range, bundle-type carbon nanotubes are produced, or the bulk density of the carbon nanotube composition is decreased, so that high-concentration dispersion is difficult.
  • the organic acid may be at least one member selected from the group consisting of citric acid, tartaric acid, fumaric acid, malic acid, acetic acid, butyric acid, palmitic acid and oxalic acid, of which citric acid is preferable.
  • the vanadium precursor may be a salt of a vanadium compound, preferably at least one selected from the group consisting of NH 4 VO 3 , NaVO 3 , V 2 O 5 and V (C 5 H 7 O 2 ) 3 , NH 4 VO 3 is more preferable.
  • the mixture and the cobalt precursor are then mixed to produce a catalyst precursor.
  • the mixture and the cobalt precursor may be mixed so that the molar ratio of vanadium and cobalt is 1: 1 to 1: 100, preferably 1: 5 to 1:20.
  • the mixture and the cobalt precursor that is, the organic acid, the vanadium precursor, and the cobalt precursor can be used in the form of a solution dissolved in a solvent, and the solvent can be at least one kind selected from the group consisting of water, methanol and ethanol, desirable.
  • the concentration of the citric acid, vanadium precursor and cobalt precursor in the solution may be preferably 0.1 to 3 g / ml, more preferably 0.5 to 2 g / ml, even more preferably 0.7 to 1.5 g / ml .
  • Al (OH) 3 aluminum hydroxide (Al (OH) 3 ) is subjected to a first heat treatment to produce a support.
  • the aluminum hydroxide may be pretreated before performing the first heat treatment.
  • the pretreatment may be carried out at 50 to 150 ° C for 1 to 24 hours. By performing the pretreatment, the residual solvent or impurities that may be present on the surface of the aluminum hydroxide can be removed.
  • the aluminum hydroxide may have an average particle diameter of 20 to 200 ⁇ ⁇ , a porosity of 0.1 to 1.0 cm3 / g, and a specific surface area of less than 1 m2 / g.
  • the first heat treatment may be performed at 250 to 500 ° C, preferably 400 to 500 ° C. Also, the first heat treatment may be performed in an air atmosphere.
  • Aluminum (OH) 3 is contained in an amount of 30 wt% or more, Al (OH) 3 is 70 wt% or less, specifically, AlO (OH) 3 is contained in an amount of 60% by weight or less, but does not contain Al 2 O 3 .
  • the support may further include a metal oxide such as ZrO 2 , MgO, and SiO 2 .
  • the shape of the support is not particularly limited, but may be spherical or potato-shaped.
  • the support may have a porous structure, a molecular sieve structure, a honeycomb structure, or the like so as to have a relatively high surface area per unit mass or unit volume.
  • a catalyst precursor is supported on the support and then subjected to a second heat treatment to produce a supported catalyst.
  • the support may be such that the support and the catalyst precursor are uniformly mixed and aged for a predetermined time.
  • the mixing can be carried out specifically by rotating or stirring at a temperature of 45 to 80 ⁇ ⁇ .
  • the aging can be carried out for 3 to 60 minutes.
  • the catalyst precursor may be supported on the support and then dried.
  • the drying may be carried out at 60 to 200 ° C for 4 to 16 hours.
  • the second heat treatment may be carried out under an additional pressure of from 0.1 to 2 bar or from 0.5 to 1.5 bar, preferably from 0.5 to 1.5 bar.
  • the second heat treatment is performed under the above-described pressure, the bulk density of the carbon nanotube composition can be more appropriately maintained, so that high-concentration dispersion can be facilitated.
  • the additional pressure of 0.1 to 2 bar during the second heat treatment may be the internal pressure of the container for performing the second heat treatment (hereinafter referred to as the second heat treatment container), that is, the pressure further applied at the atmospheric pressure.
  • the second heat treatment container the internal pressure of the container for performing the second heat treatment
  • the lid of the second heat treatment vessel is partially opened by the internal pressure, so that the gas in the vessel can be discharged to the outside.
  • the lid may be closed again. The second heat treatment may be performed while repeating this process.
  • the second heat treatment may be performed in an air atmosphere for 1 to 6 hours.
  • the second heat treatment may be performed at 500 to 800 ° C, preferably 700 to 800 ° C.
  • a supported catalyst in which the catalyst precursor is present in a state coated on the surface and the pores of the support is produced.
  • the carbon nanotube composition as a final product manufactured using the supported catalyst satisfies the above-described bulk density and formula (1).
  • the supported catalyst is reacted with the carbon-based compound.
  • the reaction of the supported catalyst with the carbon-based compound can be carried out by a chemical vapor synthesis method.
  • the supported catalyst is fed into a horizontal fixed bed reactor or a fluidized bed reactor, and the temperature of the catalyst is maintained at a temperature not lower than the pyrolysis temperature of the carbon-based compound in the gaseous state (hereinafter referred to as').
  • the gas-phase carbon compound or a gas mixture of the gas-phase carbon compound and a reducing gas (for example, hydrogen) and a carrier gas (for example, nitrogen) is injected to decompose the gas- And then growing the carbon nanotubes.
  • the carbon nanotubes produced by the chemical vapor synthesis method as described above have a crystal growth direction nearly parallel to the tube axis and a high crystallinity of the graphite structure in the tube length direction. As a result, the diameter of the unit is small, and the electrical conductivity and strength are high.
  • the carbon nanotube composition may be prepared at 500 to 800 ° C, preferably at 550 to 750 ° C. In the reaction temperature range, the weight of the carbon nanotubes is maintained while maintaining the bulk size of the carbon nanotubes while minimizing the generation of amorphous carbon, so that the dispersibility according to the reduction of the bulk density can be further improved.
  • the heat source for the heat treatment induction heating, radiation heat, laser, IR, microwave, plasma, surface plasmon heating and the like can be used.
  • the carbon-based compound can supply carbon, and can be used without limitation, as long as it can exist in a vapor state at a temperature of 300 ° C or higher.
  • the carbon-based compound may be a carbon-based compound having a carbon number of 6 or less, and may be a carbon-based compound such as carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, And toluene are preferable.
  • the production method of the present invention can selectively carry out a removal step for removing metal impurities from the metal catalyst remaining in the carbon nanotube composition.
  • the metal impurity removing step may be performed according to a conventional method such as washing and acid treatment.
  • Aluminum hydroxide (Al (OH) 3 ) as an aluminum-based support precursor was first heat-treated at 450 DEG C for 4 hours in an air atmosphere to prepare an aluminum-based support containing AlO (OH) in an amount of 40 wt% or more.
  • NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 in water at a molar ratio of 1: 0.09 and dissolving them.
  • Co V molar ratio of 10: Co so that the 1 (NO 3) 2 ⁇ 6H 2 O and NH 4 VO 3 Aqueous solution to prepare a clear aqueous solution of catalyst precursor aqueous solution.
  • the support and the catalyst precursor aqueous solution were mixed such that the Co and Al contents of the catalyst precursor aqueous solution were 23 moles and 2.3 moles, respectively, based on 100 moles of Al in the support.
  • the catalyst precursor aqueous solution was supported on the support in a thermostatic chamber at 60 DEG C for 5 minutes and then dried in an air atmosphere at 120 DEG C for 12 hours. Subsequently, the supported catalyst was subjected to a second heat treatment at 720 ⁇ ⁇ for 4 hours in an air atmosphere to prepare a supported catalyst.
  • a carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.096 to water and dissolving them to prepare an NH 4 VO 3 aqueous solution.
  • Citrate and NH 4 VO 3 1 a molar ratio of 0.115 was added to the water and dissolved NH 4 VO 3 Carbon nanotube composition was prepared in the same manner as in Example 1, except that an aqueous solution was prepared.
  • a carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 in water at a molar ratio of 1: 0.144 and dissolving them to prepare an NH 4 VO 3 aqueous solution.
  • Aluminum hydroxide (Al (OH) 3 ) as an aluminum-based support precursor was first heat-treated at 450 DEG C for 4 hours in an air atmosphere to prepare an aluminum-based support containing AlO (OH) in an amount of 40 wt% or more.
  • NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 in water at a molar ratio of 1: 0.58 and dissolving them.
  • Co V molar ratio of 10: Co so that the 1 (NO 3) 2 ⁇ 6H 2 O and NH 4 VO 3 Aqueous solution to prepare a clear aqueous solution of catalyst precursor aqueous solution.
  • the support and the catalyst precursor aqueous solution were mixed such that the Co and Al contents of the catalyst precursor aqueous solution were 16 moles and 1.6 moles, respectively, based on 100 moles of Al in the support.
  • the catalyst precursor aqueous solution was supported on the support in a thermostatic chamber at 60 DEG C for 5 minutes and then dried in an air atmosphere at 120 DEG C for 12 hours. Subsequently, the catalyst was subjected to a second heat treatment under air at 720 ° C for 4 hours under 1.0 bar to prepare a supported catalyst.
  • the pressure applied during the second heat treatment means the internal pressure in the second heat treatment vessel.
  • the lid of the second heat treatment vessel is partially opened by the internal pressure,
  • the lid is closed again. This process was repeated for 4 hours, and the second heat treatment was performed.
  • a carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 to water at a molar ratio of 1: 0.6 and dissolving the solution.
  • a carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.085 to water and dissolving them to prepare an NH 4 VO 3 aqueous solution.
  • a carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.61 to water and dissolving them to prepare an NH 4 VO 3 aqueous solution.
  • Citric acid and NH 4 VO 3 were added to water at a molar ratio of 1: 2.3 and dissolved to form NH 4 VO 3 was prepared in the same manner as in Example 1 except that the support and the catalyst precursor aqueous solution were mixed so that the amount of Co and the amount of V in the catalyst precursor aqueous solution were 14 moles and 1.4 moles, respectively, per 100 moles of Al in the support.
  • a carbon nanotube composition was prepared in the same manner as in Comparative Example 1, except that aluminum hydroxide (Al (OH) 3 ) as an aluminum-based support precursor was subjected to a first heat treatment at 800 ⁇ ⁇ for 4 hours in an air atmosphere.
  • Al (OH) 3 aluminum hydroxide
  • BET specific surface area The amount of nitrogen gas adsorbed at a temperature of liquid nitrogen (77K) was measured using BEL Japan's BELSORP-mino II.
  • Powder resistance value (ohm-cm @ 1 g / cc):
  • the carbon nanotube was filled into an insulating mold so as to have a density of 1 g / cc and pressurized.
  • Loresta-GX (trade name: MITSUBISHI CHEMICAL ANALYTECH) The surface current and voltage were measured with four probes and the powder resistance was calculated.
  • Comparative Example 1 prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.085, the specific surface area to bulk density was 1.85, and the specific surface area was 185 m 2 / g. It was confirmed that it is not suitable for use as a conductive material dispersion.
  • Comparative Example 2 prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.61, the specific surface area to the bulk density was 5.58, so the powder resistance was low and the conductivity was excellent. However, It was confirmed that it was not suitable for use as a conductive material dispersion.
  • Comparative Examples 3 and 4 prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 2.3 are bundle-type carbon nanotubes, and the specific surface area to bulk density is 9.47 and 10.5, respectively.
  • the conductivity was excellent, but the dispersion concentration was too low to confirm that it was not suitable for the conductive material dispersion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a carbon nanotube composition containing an entangled type of carbon nanotubes and a bundled type of carbon nanotubes, wherein the carbon nanotube composition has a specific surface area of 190-240 m2/g and a ratio of specific surface area to bulk density of 0.1-5.29.

Description

탄소나노튜브 조성물 및 이의 제조방법Carbon Nanotube Composition and Manufacturing Method Thereof
[관련출원과의 상호인용][Mutual quotation with related application]
본 발명은 2017.12.26에 출원된 한국 특허 출원 제10-2017-0179769호 및 2018.11.26에 출원된 한국 특허 출원 제10-2018-0146926호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.The present invention claims the benefit of priority based on Korean Patent Application No. 10-2017-0179769 filed on December 27, 2017, and Korean Patent Application No. 10-2018-0146926 filed on August 31, 2016, The disclosure of which is incorporated herein by reference in its entirety.
[기술분야][TECHNICAL FIELD]
본 발명은 탄소나노튜브 조성물 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 벌크 밀도에 대한 비표면적의 비율을 조절하여 분산성 및 도전성을 향상시킨 탄소나노튜브 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon nanotube composition and a method of manufacturing the carbon nanotube composition. More particularly, the present invention relates to a carbon nanotube composition improved in dispersibility and conductivity by controlling the ratio of specific surface area to bulk density.
미세 탄소섬유의 일종인 탄소나노튜브는 1 ㎛ 이하의 평균직경을 갖는 튜브형 탄소로서, 그 특이적 구조에 기인한 높은 도전성, 인장 강도 및 내열성 등으로 인해 다양한 분야로의 적용이 기대되고 있다. 그러나, 이와 같은 탄소나노튜브의 유용성에도 불구하고, 탄소나노튜브는 낮은 용해성과 분산성으로 인해 그 사용에 한계가 있다. 이에 탄소나노튜브를 분산매에 선분산시킨 후 도전재 분산액을 제조하여 사용하였다. 그러나, 탄소나노튜브는 서로 간의 강한 반데르발스 인력에 의해 분산매 중에 안정적인 분산 상태를 이루지 못하고 응집 현상이 일어나는 문제가 있다.Carbon nanotubes, which are one kind of fine carbon fibers, are tubular carbon having an average diameter of 1 μm or less. It is expected to be applied to various fields due to its high conductivity, tensile strength and heat resistance due to its specific structure. However, despite the availability of such carbon nanotubes, the use of carbon nanotubes is limited due to their low solubility and dispersibility. The carbon nanotubes were linearly dispersed in a dispersion medium, and a conductive material dispersion was prepared and used. However, carbon nanotubes are not stable in dispersion medium due to strong Van der Waals attraction between them, and coagulation phenomenon occurs.
이러한 문제점을 해결하기 위하여 다양한 시도가 있어 왔다. 구체적으로 초음파 처리 등의 기계적 분산 처리를 통해 탄소나노튜브를 분산매 중에 분산시키는 방법이 제안된 바 있다. 그러나, 이 방법의 경우 초음파를 조사하고 있는 동안은 분산성이 우수하지만, 초음파 조사가 종료되면 탄소나노튜브의 응집이 시작되는 문제가 있다. 또, 다양한 분산제를 이용하여 탄소나노튜브를 분산 안정화하는 방법이 제안되고 있다. 그러나, 이들 방법 역시 탄소나노튜브를 분산매 중에 고농도로 분산시킬 경우, 점도 상승으로 인해 취급이 어렵게 되는 문제가 있다.Various attempts have been made to solve these problems. Specifically, a method of dispersing carbon nanotubes in a dispersion medium through a mechanical dispersion treatment such as an ultrasonic treatment has been proposed. However, this method has excellent dispersibility during the irradiation of ultrasonic waves, but there is a problem that aggregation of carbon nanotubes starts when the ultrasonic irradiation is finished. In addition, a method of dispersing and stabilizing carbon nanotubes by using various dispersants has been proposed. However, these methods also have a problem in that when the carbon nanotubes are dispersed in the dispersion medium at a high concentration, the handling becomes difficult due to an increase in viscosity.
이에 따라, 도전성의 저하 없이 분산성이 향상된 탄소나노튜브의 개발이 요구되고 있다.Accordingly, development of carbon nanotubes with improved dispersibility without deterioration of conductivity is required.
본 발명의 목적은 분산성 및 도전성이 우수한 탄소나노튜브 조성물 및 이의 제조방법을 제공하는 것이다.An object of the present invention is to provide a carbon nanotube composition excellent in dispersibility and conductivity and a method for producing the same.
상기 과제를 해결하기 위하여, 본 발명은 인탱글형 탄소나노튜브 및 번들형 탄소나노튜브를 포함하는 탄소나노튜브 조성물이며, 상기 탄소나노튜브 조성물은 비표면적이 190 내지 240 ㎡/g이고, 하기 식 1을 만족하는 탄소나노튜브 조성물을 제공한다: In order to solve the above problems, the present invention provides a carbon nanotube composition comprising an entangled carbon nanotube and a bundled carbon nanotube, wherein the carbon nanotube composition has a specific surface area of 190 to 240 m 2 / g, Lt; RTI ID = 0.0 > of: < / RTI &
<식 1><Formula 1>
0.1 ≤ X/Y≤ 5.290.1? X / Y? 5.29
상기 식 1에서, In Equation (1)
X는 상기 탄소나노튜브 조성물의 비표면적(단위: ㎡/g)을 나타내는 수이고,X is a number representing the specific surface area (unit: m2 / g) of the carbon nanotube composition,
Y는 상기 탄소나노튜브 조성물의 벌크 밀도(단위: ㎏/㎥)를 나타내는 수임.Y is a number representing the bulk density (unit: kg / m 3) of the carbon nanotube composition.
또한, 본 발명은 유기산과 바나듐 전구체를 1:0.088 내지 1:0.605의 몰비로 혼합하여 혼합물을 제조하는 단계; 상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조하는 단계; 수산화알루미늄을 제1 열처리하여 지지체를 제조하는 단계; 상기 지지체에 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조하는 단계; 및 상기 담지 촉매와 탄소계 화합물을 반응시키는 단계;를 포함하는 탄소나노튜브 조성물의 제조방법을 제공한다.The present invention also relates to a process for preparing a mixture comprising mixing an organic acid and a vanadium precursor in a molar ratio of 1: 0.088 to 1: 0.605 to prepare a mixture; Mixing the mixture with a cobalt precursor to produce a catalyst precursor; Subjecting the aluminum hydroxide to a first heat treatment to produce a support; Supporting a catalyst precursor on the support, and then performing a second heat treatment to produce a supported catalyst; And reacting the supported catalyst with a carbon-based compound. The present invention also provides a method for producing a carbon nanotube composition.
본 발명의 탄소나노튜브 조성물은 분산성 및 도전성이 우수하여 도전재 분산액 내에 고농도로 포함될 수 있다. 또한, 탄소나노튜브 조성물에 포함된 인탱글형 탄소나노튜브와 번들형 탄소나노튜브를 동시에 제조할 수 있으므로 생산성이 우수하다.The carbon nanotube composition of the present invention is excellent in dispersibility and conductivity and can be contained at a high concentration in the conductive material dispersion. In addition, since the entangled carbon nanotubes and the bundled carbon nanotubes included in the carbon nanotube composition can be simultaneously produced, the productivity is excellent.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
본 발명에서 탄소나노튜브는 별도의 가공 처리를 하지 않은 프리스틴 탄소나노튜브(pristine carbonnanotube)를 의미한다.In the present invention, a carbon nanotube refers to a pristine carbon nanotube that has not been subjected to any further processing.
본 발명에서 인탱글형 탄소나노튜브는 복수 개의 탄소나노튜브의 단위체가 다발 혹은 로프 형태와 같은 일정한 형상이 없이 뒤엉켜 있는 2차 구조 형상을 지칭한다.In the present invention, the entangled carbon nanotubes refer to a secondary structure in which a plurality of carbon nanotubes are entangled without a uniform shape such as a bundle or a rope.
본 발명에서 번들형 탄소나노튜브는 복수 개의 탄소나노튜브의 단위체들이 단위체 길이 방향의 축이 실질적으로 동일한 방향으로 나란하게 배열되거나, 배열된 후 꼬여있거나 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다.In the present invention, the bundle-type carbon nanotubes are formed by arranging a plurality of carbon nanotube unit pieces in a bundle or a rope ) &Lt; / RTI &gt; shape.
본 발명에서 탄소나노튜브의 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 상기 탄소나노튜브의 단위체는 벽을 이루고 있는 결합수에 따라서 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 이중벽 탄소나노튜브(DWCNT, double-walled carbon nanotube) 및 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube)로 분류될 수 있으며, 벽 두께가 얇을수록 저항이 낮다. In the present invention, the unit of carbon nanotubes is a graphite sheet having a nano-sized diameter cylinder shape and has an sp 2 bonding structure. At this time, depending on the angle and structure of the graphite surface, the characteristics of the conductor or semiconductor may be exhibited. The unit of the carbon nanotube may be a single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT), or a multi-walled carbon nanotube (DWCNT) according to the number of walls MWCNT, and multi-walled carbon nanotubes. The thinner the wall thickness, the lower the resistance.
본 발명에서 탄소나노튜브 조성물의 비표면적은 BET법에 의해 측정한 것으로서, 예를 들면, BEL Japan사 BELSORP-mino Ⅱ를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.In the present invention, the specific surface area of the carbon nanotube composition is measured by the BET method. For example, it can be calculated from the amount of nitrogen gas adsorbed at a liquid nitrogen temperature (77K) using BEL Japan's BELSORP-mino II have.
본 발명에서 탄소나노튜브의 벌크 밀도는 ASTM B329에 의거하여 측정할 수 있고, 구체적으로는 ASTM B329-06에 의거하여 측정할 수 있다. 그리고 벌크 밀도는 Scott volumeter(Version USP 616)를 이용하여 측정할 수 있다.In the present invention, the bulk density of the carbon nanotubes can be measured according to ASTM B329, specifically, according to ASTM B329-06. The bulk density can be measured using a Scott volumeter (Version USP 616).
본 발명에서 탄소나노튜브 조성물의 벌크 밀도는 실험실 상황에 맞추어 측정할 수 있고, 상기 규정에 의거한 결과와 실질적으로 동일한 결과가 도출될 수 있다. In the present invention, the bulk density of the carbon nanotube composition can be measured in accordance with the laboratory conditions, and substantially the same result as the result based on the above rule can be obtained.
실험실에서 측정할 경우, 5 ㎖ 실린더(제조사: DURAN, 재질: 유리) 또는 32 ㎖ 스테인리스 용기(제조사: SCOTT) 를 저울에 올린 후 0점을 맞춘 후, 탄소나토튜브 조성물을 넣고, 탄소나노튜브 조성물의 높이와 눈높이를 맞춰 눈금을 읽어 부피를 측정하고, 저울에 올려 무게를 측정한 후, 하기 식에 의해 벌크 밀도를 계산할 수 있다.For measurement in the laboratory, a 5 ml cylinder (manufacturer: DURAN, material: glass) or 32 ml stainless steel container (manufacturer: SCOTT) was put on a balance and after 0 points, the carbon nano tube composition was put, The volume is measured by reading the scale with the height of the eye and the height of the eye, the weight is measured on the scale, and then the bulk density can be calculated by the following formula.
벌크 밀도(㎏/㎥)= 탄소나노튜브의 중량(㎏)/ 탄소나노튜브의 부피(㎥)Bulk density (kg / m 3) = Weight of carbon nanotube (kg) / Volume of carbon nanotube (m 3)
본 발명에서 탄소나노튜브 단위체의 평균직경 및 길이는 전계 방사형 주사전자 현미경을 이용하여 측정할 수 있다. In the present invention, the average diameter and length of the carbon nanotube unit can be measured using an electric field-type scanning electron microscope.
1. 탄소나노튜브 조성물1. Carbon Nanotube Composition
본 발명의 일실시예에 따른 탄소나노튜브 조성물은 인탱글형 탄소나노튜브 및 번들형 탄소나노튜브를 포함하는 탄소나노튜브 조성물이고, 상기 탄소나노튜브 조성물은 비표면적이 190 내지 240 ㎡/g이고, 하기 식 1을 만족한다:The carbon nanotube composition according to an embodiment of the present invention is a carbon nanotube composition including an entangled carbon nanotube and a bundled carbon nanotube. The carbon nanotube composition has a specific surface area of 190 to 240 m &lt; 2 &gt; / g, The following formula 1 is satisfied:
<식 1><Formula 1>
0.1 ≤ X/Y≤ 5.290.1? X / Y? 5.29
상기 식 1에서, In Equation (1)
X는 상기 탄소나노튜브 조성물의 비표면적(단위: ㎡/g)을 나타내는 수이고,X is a number representing the specific surface area (unit: m2 / g) of the carbon nanotube composition,
Y는 상기 탄소나노튜브 조성물의 벌크 밀도(단위: ㎏/㎥)를 나타내는 수임.Y is a number representing the bulk density (unit: kg / m 3) of the carbon nanotube composition.
상기 탄소나노튜브 조성물의 비표면적은 190 내지 240 ㎡/g이다. 상기 탄소나노튜브 조성물의 비표면적은 193 내지 239 ㎡/g, 195 내지 239 ㎡/g, 200 ㎡/g 내지 238 ㎡/g 또는 200 내지 235 ㎡/g 일 수 있고, 이 중 200 내지 235 ㎡/g이 바람직하다. 상술한 범위를 만족하면, 도전성이 우수하면서, 고농도 분산에 유리할 수 있다. 상술한 범위를 미만이면, 도전성이 현저하게 저하되고, 상술한 범위를 초과하면, 도전재 분산액에 고농도로 분산될 수 없다.The carbon nanotube composition has a specific surface area of 190 to 240 m &lt; 2 &gt; / g. The specific surface area of the carbon nanotube composition may be from 193 to 239 m 2 / g, from 195 to 239 m 2 / g, from 200 m 2 / g to 238 m 2 / g, or from 200 to 235 m 2 / g, g is preferable. When the above-mentioned range is satisfied, the conductivity is excellent and can be advantageous for high-concentration dispersion. If it is less than the above-mentioned range, the conductivity is remarkably lowered, and if it exceeds the above-mentioned range, it can not be dispersed at a high concentration in the conductive material dispersion.
상기 식 1는 상기 탄소나노튜브 조성물로 도전재 분산액을 제조할 때에, 분산 농도를 나타내는 지표로서, 상기 식 1의 값은 0.1 내지 5.29이다. 상기 식 1의 값은 1 내지 5.14, 1.5 내지 5 또는 1.7 내지 2.5일 수 있고, 이 중 1.7 내지 2.5가 바람직하다. 상기 식 1의 값을 만족하면, 도전재 분산액 내에서 탄소나노튜브가 보다 고농도로 분산될 수 있다. 상기 식 1의 값이 상술한 범위 미만이면, 탄소나노튜브 단위체의 직경이 매우 커져서 도전재로 적용하기 어려운 문제점이 있다. 상술한 범위를 초과하면, 도전재 분산액 내에서 고농도로 분산되기 어렵다.Equation 1 is an index showing the dispersion concentration when the conductive material dispersion is prepared from the carbon nanotube composition, and the value of the formula 1 is 0.1 to 5.29. The value of the formula 1 may be from 1 to 5.14, from 1.5 to 5, or from 1.7 to 2.5, preferably from 1.7 to 2.5. When the value of the above formula (1) is satisfied, the carbon nanotubes can be dispersed at a higher concentration in the conductive material dispersion. When the value of the formula (1) is less than the above-mentioned range, the diameter of the carbon nanotube unit becomes very large and it is difficult to apply it as a conductive material. If it exceeds the above-mentioned range, it is difficult to disperse at a high concentration in the conductive material dispersion.
상기 탄소나노튜브 조성물의 벌크 밀도는 25 내지 150 ㎏/㎥, 35 내지 130 ㎏/㎥, 40 내지 125 ㎏/㎥, 50 내지 125 ㎏/㎥ 또는 90 내지 115 ㎏/㎥일 수 있고, 이 중 90 내지 115 ㎏/㎥인 것이 바람직하다. 상술한 범위를 만족하면, 충분한 입자성을 가질 수 있으므로, 도전재 분산액 제조 시 분산이 서서히 일어나므로 고농도로 분산될 수 있다The bulk density of the carbon nanotube composition may be 25 to 150 kg / m 3, 35 to 130 kg / m 3, 40 to 125 kg / m 3, 50 to 125 kg / m 3 or 90 to 115 kg / To 115 kg / m &lt; 3 &gt;. When the above-mentioned range is satisfied, since it is possible to have sufficient particulate property, the dispersion can be dispersed at a high concentration since the dispersion gradually occurs during production of the conductive material dispersion
상기 탄소나노튜브 조성물은 상기 인탱글형 탄소나노튜브와 번들형 탄소나노튜브를 1:0.01 내지 1:0.5, 바람직하게는 1:0.02 내지 1:0.3, 보다 바람직하게는 1:0.05 내지 1:0.2의 중량비로 포함할 수 있다. 상술한 범위를 만족하면, 도전성이 우수한 이점이 있다.The carbon nanotube composition is prepared by mixing the entangled carbon nanotubes and the bundled carbon nanotubes in a ratio of 1: 0.01 to 1: 0.5, preferably 1: 0.02 to 1: 0.3, more preferably 1: 0.05 to 1: 0.2. Weight ratio. When the above-mentioned range is satisfied, there is an advantage of excellent conductivity.
상기 탄소나노튜브 조성물 내 탄소나노튜브의 단위체의 평균직경은 바람직하게는 30 ㎚ 이하, 보다 바람직하게는 10 내지 30 ㎚일 수 있다. 상술한 범위를 만족하면, 분산성 및 도전성이 향상될 수 있다. 상기 탄소나노튜브의 단위체의 평균 길이는 바람직하게는 0.5 ㎛ 내지 200 ㎛, 보다 바람직하게는 10 내지 60 ㎛일 수 있다. 상술한 범위를 만족하면, 전기전도성 및 강도가 우수하고, 상온 및 고온에서 모두 안정적이다. The average diameter of the carbon nanotubes in the carbon nanotube composition may preferably be 30 nm or less, more preferably 10 to 30 nm. When the above-mentioned range is satisfied, the dispersibility and the conductivity can be improved. The average length of the carbon nanotubes may preferably be 0.5 to 200 mu m, more preferably 10 to 60 mu m. When the above-mentioned range is satisfied, it is excellent in electrical conductivity and strength, and stable at room temperature and high temperature.
상기 탄소나노튜브 단위체는 탄소나노튜브 단위체의 길이(단위체의 중심을 지나는 장축의 길이)와 직경(단위체의 중심을 지나며, 상기 장축에 수직하는 단축의 길이)의 비로 정의되는 종횡비가 바람직하게는 5 내지 50,000 일 수 있으며, 보다 바람직하게는 10 내지 20,000 일 수 있다. The carbon nanotube unit preferably has an aspect ratio defined by the ratio of the length of the carbon nanotube unit (the length of the long axis passing through the center of the unit) to the diameter (the length of the minor axis passing through the center of the unit and perpendicular to the long axis) To 50,000, and more preferably from 10 to 20,000.
상기 탄소나노튜브 단위체는 X선 회절법으로 구한 탄소결정의 층면간격(d002)이 O.335 내지 O.342 nm 이고, 층면간격(d002)<O.3448 - 0.0028(logφ)(식 중, φ는 탄소나노튜브 단위체의 평균직경이다.)를 만족하며, 결정의 C축 방향의 두께(Lc)가 40 nm이하일 수 있다.The carbon nanotube layer surface per unit interval is a carbon crystal obtained by X-ray diffraction method (d 002) and to the O.335 O.342 nm, layer surface spacing (d 002) <O.3448 - 0.0028 (logφ) ( wherein , and? is the average diameter of the carbon nanotube unit), and the thickness Lc of the crystal in the C axis direction may be 40 nm or less.
층면간격(d002)은 바람직하게는 0.3444-0.0028(1ogφ) 미만일 수 있고, 보다 바람직하게는 0.3441-0.0028(logφ) 미만일 수 있다. The interplanar spacing (d 002 ) may preferably be less than 0.3444-0.0028 (1og φ), and more preferably less than 0.3441-0.0028 (log φ).
상술한 범위를 만족하면, 탄소나노튜브 단위체의 결정성이 향상되므로, 이를 포함하는 인탱글형 탄소나노튜브의 도전성이 보다 향상될 수 있다.When the above range is satisfied, the crystallinity of the carbon nanotube unit is improved, so that the conductivity of the entangled carbon nanotube including the same can be further improved.
2. 탄소나노튜브 조성물의 제조방법2. Manufacturing method of carbon nanotube composition
본 발명의 일실시예를 따른 탄소나노튜브 조성물은 1) 유기산과 바나듐 전구체를 1:0.088 내지 1:0.605의 몰비로 혼합하여 혼합물을 제조하는 단계; 2) 상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조하는 단계; 3) 수산화알루미늄을 제1 열처리하여 지지체를 제조하는 단계; 4) 상기 지지체에 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조하는 단계; 및 5) 상기 담지 촉매와 탄소계 화합물을 반응시키는 단계;를 포함하는 제조방법으로 제조된다.The carbon nanotube composition according to an embodiment of the present invention comprises: 1) mixing an organic acid and a vanadium precursor in a molar ratio of 1: 0.088 to 1: 0.605 to prepare a mixture; 2) preparing a catalyst precursor by mixing the mixture with a cobalt precursor; 3) subjecting the aluminum hydroxide to a first heat treatment to produce a support; 4) supporting a catalyst precursor on the support, and then performing a second heat treatment to produce a supported catalyst; And 5) reacting the supported catalyst with the carbon-based compound.
이하, 본 발명의 일실시예에 따른 탄소나노튜브 조성물의 제조방법의 각 단계를 보다 구체적으로 설명한다.Hereinafter, each step of the method for producing a carbon nanotube composition according to an embodiment of the present invention will be described in more detail.
1) 혼합물을 제조하는 단계1) Step of preparing the mixture
먼저, 유기산과 바나듐 전구체를 1:0.088 내지 1:0.605의 몰비로 혼합하여 혼합물을 제조한다.First, an organic acid and a vanadium precursor are mixed in a molar ratio of 1: 0.088 to 1: 0.605 to prepare a mixture.
상기 유기산과 바나듐 전구체는 1:0.09 내지 1:0.6의 몰비로 혼합하는 것이 바람직하다.The organic acid and the vanadium precursor are preferably mixed in a molar ratio of 1: 0.09 to 1: 0.6.
상술한 범위를 만족하면, 도전재 분산액 내에서 고농도로 분산할 수 있는 탄소나노튜브 조성물을 제조할 수 있다. 또한, 벌크 밀도가 낮은 인탱글형 탄소나노튜브와 벌크 밀도가 높은 번들형 탄소나노튜브를 포함하는 탄소나노튜브 조성물을 제조할 수 있다. 상술한 범위 미만이면, 번들형 탄소나노튜브가 제조되지 않고 인탱글형 탄소나노튜브만 제조된다. 상술한 범위를 초과하면, 번들형 탄소나노튜브가 제조되거나, 탄소나노튜브 조성물의 벌크 밀도가 감소하여 고농도 분산이 어렵다.When the above-mentioned range is satisfied, a carbon nanotube composition that can be dispersed at a high concentration in the conductive material dispersion can be produced. In addition, a carbon nanotube composition including an entangled carbon nanotube having a low bulk density and a bundled carbon nanotube having a high bulk density can be produced. If it is less than the above-mentioned range, only the entangled carbon nanotubes are produced without producing the bundled carbon nanotubes. Above the above-mentioned range, bundle-type carbon nanotubes are produced, or the bulk density of the carbon nanotube composition is decreased, so that high-concentration dispersion is difficult.
상기 유기산은 시트르산, 타르타르산, 퓨마르산, 말산(malic acid), 아세트산, 뷰티르산, 팔미트산 및 옥살산으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 시트르산이 바람직하다.The organic acid may be at least one member selected from the group consisting of citric acid, tartaric acid, fumaric acid, malic acid, acetic acid, butyric acid, palmitic acid and oxalic acid, of which citric acid is preferable.
상기 바나듐 전구체는 바나듐 화합물의 염일 수 있으며, 바람직하게는 NH4VO3, NaVO3, V2O5 및 V(C5H7O2)3으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 NH4VO3가 보다 바람직하다.The vanadium precursor may be a salt of a vanadium compound, preferably at least one selected from the group consisting of NH 4 VO 3 , NaVO 3 , V 2 O 5 and V (C 5 H 7 O 2 ) 3 , NH 4 VO 3 is more preferable.
2) 촉매 전구체를 제조하는 단계2) Step of preparing catalyst precursor
이어서, 상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조한다.The mixture and the cobalt precursor are then mixed to produce a catalyst precursor.
상기 혼합물과 코발트 전구체는 바나듐과 코발트의 몰비가 1:1 내지 1:100이 되도록 혼합할 수 있고, 바람직하게는 1:5 내지 1:20이 되도록 혼합할 수 있다.The mixture and the cobalt precursor may be mixed so that the molar ratio of vanadium and cobalt is 1: 1 to 1: 100, preferably 1: 5 to 1:20.
상술한 범위를 만족하면, 수율이 증가하는 이점이 있다. When the above-mentioned range is satisfied, there is an advantage that the yield is increased.
상기 코발트 전구체는 코발트 화합물의 염일 수 있으며, 바람직하게는 Co(NO3)6H2O, CoCl2·6H2O, Co2(CO)8, [Co2(CO)6(t-BuC=CH)]로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 Co(NO3)2 ·6H2O가 보다 바람직하다.The cobalt precursor may be a salt of the cobalt compound, preferably Co (NO 3) 2 · 6H 2 O, CoCl 2 · 6H 2 O, Co 2 (CO) 8, [Co 2 (CO) 6 (t-BuC = CH)] may be at least one selected from the group consisting, of which more preferably Co (NO 3) 2 · 6H 2 O (a)
상기 혼합물과 코발트 전구체, 즉 상기 유기산과 바나듐 전구체와 코발트 전구체는 용매에 용해된 용액 형태로 사용될 수 있으며, 상기 용매는 물, 메탄올 및 에탄올로 이루어진 군에서 1종 이상 일 수 있고, 이 중 물이 바람직하다.The mixture and the cobalt precursor, that is, the organic acid, the vanadium precursor, and the cobalt precursor can be used in the form of a solution dissolved in a solvent, and the solvent can be at least one kind selected from the group consisting of water, methanol and ethanol, desirable.
상기 용액 내, 상기 시트르산과 바나듐 전구체와 코발트 전구체의 농도는 바람직하게는 0.1 내지 3 g/㎖, 보다 바람직하게는 0.5 내지 2 g/㎖, 보다 더 바람직하게는 0.7 내지 1.5 g/㎖일 수 있다.The concentration of the citric acid, vanadium precursor and cobalt precursor in the solution may be preferably 0.1 to 3 g / ml, more preferably 0.5 to 2 g / ml, even more preferably 0.7 to 1.5 g / ml .
3) 지지체를 제조하는 단계3) Step of preparing the support
이어서, 수산화알루미늄(Al(OH)3)을 제1 열처리하여 지지체를 제조한다.Then, aluminum hydroxide (Al (OH) 3 ) is subjected to a first heat treatment to produce a support.
상기 수산화알루미늄은 상기 제1 열처리를 수행하기 전에 전처리할 수 있다.The aluminum hydroxide may be pretreated before performing the first heat treatment.
상기 전처리는 50 내지 150 ℃로 1 내지 24 시간 동안 수행할 수 있다. 상기 전처리를 수행하면, 수산화알루미늄의 표면에 존재할 수 있는 잔존 용매 또는 불순물을 제거할 수 있다.The pretreatment may be carried out at 50 to 150 ° C for 1 to 24 hours. By performing the pretreatment, the residual solvent or impurities that may be present on the surface of the aluminum hydroxide can be removed.
상기 수산화알루미늄은 평균 입경이 20 내지 200 ㎛, 기공율이 0.1 내지 1.0 ㎤/g, 비표면적이 1 ㎡/g 미만일 수 있다. The aluminum hydroxide may have an average particle diameter of 20 to 200 占 퐉, a porosity of 0.1 to 1.0 cm3 / g, and a specific surface area of less than 1 m2 / g.
상기 제1 열처리는 250 내지 500 ℃로 수행될 수 있고, 바람직하게는 400 내지 500 ℃에서 수행될 수 있다. 또한, 상기 제1 열처리는 공기 분위기 하에서 수행될 수 있다. 상술한 조건을 만족하면, 수산화알루미늄이 전환되어 AlO(OH)를 30중량% 이상, Al(OH)3을 70중량% 이하, 구체적으로는 AlO(OH)를 40중량% 이상, Al(OH)3을 60중량% 이하 포함하나, Al2O3는 포함하지 않는 지지체를 제조할 수 있다. The first heat treatment may be performed at 250 to 500 ° C, preferably 400 to 500 ° C. Also, the first heat treatment may be performed in an air atmosphere. Aluminum (OH) 3 is contained in an amount of 30 wt% or more, Al (OH) 3 is 70 wt% or less, specifically, AlO (OH) 3 is contained in an amount of 60% by weight or less, but does not contain Al 2 O 3 .
상기 지지체는 ZrO2, MgO 및 SiO2 등의 금속 산화물을 더 포함할 수 있다.The support may further include a metal oxide such as ZrO 2 , MgO, and SiO 2 .
상기 지지체의 형상은 특별히 한정하지 않으나, 구형 또는 포테이토형일 수 있다. 또한, 상기 지지체는 단위 질량 또는 단위 부피당 비교적 높은 표면적을 갖도록 다공성 구조, 분자체 구조, 벌집 구조 등을 가질 수 있다. The shape of the support is not particularly limited, but may be spherical or potato-shaped. In addition, the support may have a porous structure, a molecular sieve structure, a honeycomb structure, or the like so as to have a relatively high surface area per unit mass or unit volume.
4) 담지 촉매를 제조하는 단계4) Step of preparing supported catalyst
이어서, 상기 지지체에 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조한다.Subsequently, a catalyst precursor is supported on the support and then subjected to a second heat treatment to produce a supported catalyst.
상기 담지는 상기 지지체와 상기 촉매 전구체를 균일하게 혼합한 후, 일정시간 동안 숙성시키는 것일 수 있다. 상기 혼합은 구체적으로는 45 내지 80 ℃ 온도 하에서 회전 또는 교반에 의해 수행될 수 있다. 상기 숙성은 3 내지 60 분 동안 수행될 수 있다. The support may be such that the support and the catalyst precursor are uniformly mixed and aged for a predetermined time. The mixing can be carried out specifically by rotating or stirring at a temperature of 45 to 80 占 폚. The aging can be carried out for 3 to 60 minutes.
상기 촉매 전구체는 상기 지지체에 담지된 후, 건조하는 단계를 더 포함할 수 있다. 상기 건조는 60 내지 200 ℃로 4 내지 16 시간 동안 수행될 수 있다.The catalyst precursor may be supported on the support and then dried. The drying may be carried out at 60 to 200 ° C for 4 to 16 hours.
상기 제2 열처리가 0.1 내지 2bar 또는 0.5bar 내지 1.5 bar의 추가 압력 하에서 수행될 수 있고, 이 중 0.5bar 내지 1.5bar의 압력 하에서 수행되는 것이 바람직하다. 상술한 압력하에서 제2 열처리가 수행되면, 탄소나노튜브 조성물의 벌크 밀도가 보다 적절하게 유지되어 고농도 분산이 용이할 수 있다.The second heat treatment may be carried out under an additional pressure of from 0.1 to 2 bar or from 0.5 to 1.5 bar, preferably from 0.5 to 1.5 bar. When the second heat treatment is performed under the above-described pressure, the bulk density of the carbon nanotube composition can be more appropriately maintained, so that high-concentration dispersion can be facilitated.
한편, 상기 제2 열처리시 추가 압력인 0.1 내지 2 bar는 제2 열처리를 수행하는 용기(이하 제2 열처리 용기라 함)의 내부 압력, 즉 상압에서 추가로 가해지는 압력을 측정한 것일 수 있다. 상기 제2 열처리에 의해 제2 열처리 용기의 내부 압력이 상술한 범위보다 증가하게 되면, 제2 열처리 용기의 뚜껑이 내부 압력에 의하여 부분적으로 열리면서 용기 내 가스가 외부로 방출될 수 있다. 가스가 방출된 후에 제2 열처리 용기의 내부 압력이 상술한 범위 내로 다시 돌아오게 되면 다시 뚜껑이 닫히게 될 수 있다. 상기 제2 열처리는 이러한 과정을 반복하면서 수행될 수 있다.Meanwhile, the additional pressure of 0.1 to 2 bar during the second heat treatment may be the internal pressure of the container for performing the second heat treatment (hereinafter referred to as the second heat treatment container), that is, the pressure further applied at the atmospheric pressure. When the internal pressure of the second heat treatment vessel is increased beyond the above range by the second heat treatment, the lid of the second heat treatment vessel is partially opened by the internal pressure, so that the gas in the vessel can be discharged to the outside. When the internal pressure of the second heat treatment vessel returns to the above-mentioned range after the gas is released, the lid may be closed again. The second heat treatment may be performed while repeating this process.
상기 제2 열처리는 공기 분위기 하에서 1 내지 6 시간 동안 수행될 수 있다. 상기 제2 열처리는 500 내지 800 ℃, 바람직하게는 700 내지 800 ℃로 수행될 수 있다. 상술한 조건을 만족하면, 상기 촉매 전구체가 상기 지지체의 표면 및 세공에 코팅된 상태로 존재하는 담지 촉매가 제조된다. 또한, 상기 담지 촉매를 이용하여 제조된 최종 생산품인 탄소나노튜브 조성물이 상술한 벌크 밀도 및 식 1을 만족한다.The second heat treatment may be performed in an air atmosphere for 1 to 6 hours. The second heat treatment may be performed at 500 to 800 ° C, preferably 700 to 800 ° C. When the above-mentioned conditions are satisfied, a supported catalyst in which the catalyst precursor is present in a state coated on the surface and the pores of the support is produced. In addition, the carbon nanotube composition as a final product manufactured using the supported catalyst satisfies the above-described bulk density and formula (1).
5) 담지 촉매와 탄소계 화합물의 반응 단계5) Reaction step of supported catalyst with carbon-based compound
이어서, 상기 담지 촉매와 탄소계 화합물을 반응시킨다.Then, the supported catalyst is reacted with the carbon-based compound.
상기 담지 촉매와 탄소계 화합물을 반응은 화학 기상 합성법에 의해 수행될 수 있다. The reaction of the supported catalyst with the carbon-based compound can be carried out by a chemical vapor synthesis method.
구체적으로, 상기 담지 촉매를 수평 고정층 반응기 또는 유동층 반응기 내에 투입하고, 상기 기체 상태(이하 ‘기상’이라 함)인 탄소계 화합물의 열분해 온도 이상 내지 상기 담지 촉매에 담지된 촉매의 융점 이하의 온도에서 상기 기상 탄소계 화합물, 또는 상기 기상 탄소계 화합물과 환원가스(예를 들면 수소 등) 및 운반가스(예를 들면 질소 등)의 혼합가스를 주입하여 기상 탄소계 화합물의 분해를 통해 화학적 기상 합성법으로 탄소나노튜브를 성장시킴으로써 수행될 수 있다. 상기와 같은 화학 기상 합성법에 의해 제조되는 탄소나노튜브는 결정의 성장방향이 튜브축과 거의 평행하고, 튜브 길이 방향으로 흑연 구조의 결정성이 높다. 그 결과, 단위체의 직경이 작고, 전기전도성 및 강도가 높다. Specifically, the supported catalyst is fed into a horizontal fixed bed reactor or a fluidized bed reactor, and the temperature of the catalyst is maintained at a temperature not lower than the pyrolysis temperature of the carbon-based compound in the gaseous state (hereinafter referred to as' The gas-phase carbon compound or a gas mixture of the gas-phase carbon compound and a reducing gas (for example, hydrogen) and a carrier gas (for example, nitrogen) is injected to decompose the gas- And then growing the carbon nanotubes. The carbon nanotubes produced by the chemical vapor synthesis method as described above have a crystal growth direction nearly parallel to the tube axis and a high crystallinity of the graphite structure in the tube length direction. As a result, the diameter of the unit is small, and the electrical conductivity and strength are high.
또, 상기 탄소나노튜브 조성물의 제조는 500 내지 800 ℃, 바람직하게는 550℃ 내지 750℃로 수행될 수 있다. 상기 반응온도 범위 내에서는 비결정성 탄소의 발생을 최소화하면서 생성되는 탄소나노튜브의 벌크 크기를 그대로 유지하면서 중량이 낮아지므로, 벌크 밀도 감소에 따른 분산성이 더욱 향상될 수 있다. 상기 열처리를 위한 열원으로서는 유도 가열(induction heating), 복사열, 레이저, IR, 마이크로파, 플라즈마, 표면 플라즈몬 가열 등이 이용될 수 있다. The carbon nanotube composition may be prepared at 500 to 800 ° C, preferably at 550 to 750 ° C. In the reaction temperature range, the weight of the carbon nanotubes is maintained while maintaining the bulk size of the carbon nanotubes while minimizing the generation of amorphous carbon, so that the dispersibility according to the reduction of the bulk density can be further improved. As the heat source for the heat treatment, induction heating, radiation heat, laser, IR, microwave, plasma, surface plasmon heating and the like can be used.
또, 상기 탄소계 화합물으로는 탄소를 공급할 수 있으며, 300℃ 이상의 온도에서 기상으로 존재할 수 있는 것이라면 특별한 제한없이 사용 가능하다.The carbon-based compound can supply carbon, and can be used without limitation, as long as it can exist in a vapor state at a temperature of 300 ° C or higher.
상기 탄소계 화합물은 탄소수 6 이하의 탄소계 화합물일 수 있으며, 일산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 및 톨루엔으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.The carbon-based compound may be a carbon-based compound having a carbon number of 6 or less, and may be a carbon-based compound such as carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, And toluene are preferable.
본 발명의 제조방법은 탄소나노튜브 조성물 내에 잔류하는, 금속 촉매 유래 금속불순물을 제거하기 위한 제거 공정이 선택적으로 수행할 수 있다. 이때 상기 금속불순물 제거 공정은 세척, 산처리 등의 통상의 방법에 따라 수행될 수 있다.The production method of the present invention can selectively carry out a removal step for removing metal impurities from the metal catalyst remaining in the carbon nanotube composition. At this time, the metal impurity removing step may be performed according to a conventional method such as washing and acid treatment.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
<탄소나노튜브 조성물의 제조>&Lt; Preparation of carbon nanotube composition >
실시예Example 1 One
알루미늄계 지지체 전구체로서 수산화알루미늄(Al(OH)3)를 공기 분위기에서 450 ℃로 4 시간 동안 제1 열처리하여, AlO(OH)를 40 중량% 이상 포함하는 알루미늄계 지지체를 제조하였다.Aluminum hydroxide (Al (OH) 3 ) as an aluminum-based support precursor was first heat-treated at 450 DEG C for 4 hours in an air atmosphere to prepare an aluminum-based support containing AlO (OH) in an amount of 40 wt% or more.
별도로, 시트르산과 NH4VO3을 1:0.09의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조하였다. Co:V의 몰비가 10:1이 되도록 Co(NO3)2 ·6H2O과 NH4VO3 수용액을 혼합하여 맑은 수용액인 촉매 전구체 수용액을 제조하였다.Separately, NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 in water at a molar ratio of 1: 0.09 and dissolving them. Co: V molar ratio of 10: Co so that the 1 (NO 3) 2 · 6H 2 O and NH 4 VO 3 Aqueous solution to prepare a clear aqueous solution of catalyst precursor aqueous solution.
상기 지지체 내 Al 100 몰에 대하여, 상기 촉매 전구체 수용액 내 Co가 23 몰, V가 2.3 몰이 되도록, 상기 지지체와 상기 촉매 전구체 수용액을 혼합하였다.The support and the catalyst precursor aqueous solution were mixed such that the Co and Al contents of the catalyst precursor aqueous solution were 23 moles and 2.3 moles, respectively, based on 100 moles of Al in the support.
상기 지지체에 촉매 전구체 수용액을 60 ℃의 항온조에서 5 분 동안 담지시킨 후, 공기 분위기에서 120 ℃로 12 시간 동안 건조하였다. 이어서, 공기 분위기에서 720 ℃로 4 시간 동안 제2 열처리하여 담지 촉매를 제조하였다. The catalyst precursor aqueous solution was supported on the support in a thermostatic chamber at 60 DEG C for 5 minutes and then dried in an air atmosphere at 120 DEG C for 12 hours. Subsequently, the supported catalyst was subjected to a second heat treatment at 720 占 폚 for 4 hours in an air atmosphere to prepare a supported catalyst.
상기 담지 촉매 2 g을 유동층 반응장치 내에 위치하는 직경 55 ㎜의 내경을 갖는 석영관의 하단부에 장착하였다. 유동층 반응장치의 내부를 질소 분위기에서 670 ℃까지 승온한 다음 유지시키고, 질소와 에틸렌 가스의 부피비를 3:1로 하여 3.2 ℓ/분 흘리면서 100 분 동안 합성하여 탄소나노튜브 조성물을 수득하였다.2 g of the supported catalyst was attached to the lower end of a quartz tube having an inner diameter of 55 mm and located in the fluidized bed reactor. The inside of the fluidized bed reactor was heated to 670 캜 in a nitrogen atmosphere, and then maintained. The carbon nanotube composition was obtained by mixing the mixture at a flow rate of 3.2 ℓ / min with a volume ratio of nitrogen and ethylene gas of 3: 1 for 100 minutes.
실시예Example 2 2
시트르산과 NH4VO3을 1:0.096의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.A carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.096 to water and dissolving them to prepare an NH 4 VO 3 aqueous solution.
실시예Example 3 3
시트르산과 NH4VO3을 1:0.115의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.Citrate and NH 4 VO 3 1: a molar ratio of 0.115 was added to the water and dissolved NH 4 VO 3 Carbon nanotube composition was prepared in the same manner as in Example 1, except that an aqueous solution was prepared.
실시예Example 4 4
시트르산과 NH4VO3을 1:0.144의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.A carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 in water at a molar ratio of 1: 0.144 and dissolving them to prepare an NH 4 VO 3 aqueous solution.
실시예Example 5 5
알루미늄계 지지체 전구체로서 수산화알루미늄(Al(OH)3)를 공기 분위기에서 450 ℃로 4 시간 동안 제1 열처리하여, AlO(OH)를 40 중량% 이상 포함하는 알루미늄계 지지체를 제조하였다.Aluminum hydroxide (Al (OH) 3 ) as an aluminum-based support precursor was first heat-treated at 450 DEG C for 4 hours in an air atmosphere to prepare an aluminum-based support containing AlO (OH) in an amount of 40 wt% or more.
별도로, 시트르산과 NH4VO3을 1:0.58의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조하였다. Co:V의 몰비가 10:1이 되도록 Co(NO3)2 ·6H2O과 NH4VO3 수용액을 혼합하여 맑은 수용액인 촉매 전구체 수용액을 제조하였다.Separately, NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 in water at a molar ratio of 1: 0.58 and dissolving them. Co: V molar ratio of 10: Co so that the 1 (NO 3) 2 · 6H 2 O and NH 4 VO 3 Aqueous solution to prepare a clear aqueous solution of catalyst precursor aqueous solution.
상기 지지체 내 Al 100 몰에 대하여, 상기 촉매 전구체 수용액 내 Co가 16 몰, V가 1.6 몰이 되도록, 상기 지지체와 상기 촉매 전구체 수용액을 혼합하였다.The support and the catalyst precursor aqueous solution were mixed such that the Co and Al contents of the catalyst precursor aqueous solution were 16 moles and 1.6 moles, respectively, based on 100 moles of Al in the support.
상기 지지체에 촉매 전구체 수용액을 60 ℃의 항온조에서 5 분 동안 담지시킨 후, 공기 분위기에서 120 ℃로 12 시간 동안 건조하였다. 이어서, 공기 분위기 하에서 720 ℃로 4 시간 동안 1.0 bar하에서 제2 열처리하여 담지 촉매를 제조하였다. The catalyst precursor aqueous solution was supported on the support in a thermostatic chamber at 60 DEG C for 5 minutes and then dried in an air atmosphere at 120 DEG C for 12 hours. Subsequently, the catalyst was subjected to a second heat treatment under air at 720 ° C for 4 hours under 1.0 bar to prepare a supported catalyst.
제2 열처리 시 가해진 압력은 제2 열처리 용기 내의 내부 압력을 의미하는 것으로서, 상술한 압력 보다 내부 압력이 증가되면 제2 열처리 용기의 뚜껑이 내부 압력에 의하여 부분적으로 열리면서 용기 내 가스가 외부로 방출되었고, 가스가 방출된 후에 제2 열처리 용기의 내부 압력이 상술한 범위 내로 다시 돌아오게 되면 다시 뚜껑이 닫히게 되었다. 이러한 과정이 4 시간 동안 반복되면서 제2 열처리가 수행되었다.The pressure applied during the second heat treatment means the internal pressure in the second heat treatment vessel. When the internal pressure is higher than the above-mentioned pressure, the lid of the second heat treatment vessel is partially opened by the internal pressure, When the internal pressure of the second heat treatment vessel returns to the above-mentioned range after the gas is released, the lid is closed again. This process was repeated for 4 hours, and the second heat treatment was performed.
상기 담지 촉매 2g을 유동층 반응장치 내에 위치하는 직경 55 ㎜의 내경을 갖는 석영관의 하단부에 장착하였다. 유동층 반응장치의 내부를 질소 분위기에서 670 ℃까지 승온한 다음 유지시키고, 질소와 에틸렌 가스의 부피비를 3:1로 하여 3.2ℓ/분 흘리면서 100 분 동안 합성하여 탄소나노튜브 조성물을 수득하였다.2 g of the supported catalyst was attached to the lower end of a quartz tube having an inner diameter of 55 mm in diameter located in the fluidized bed reactor. The inside of the fluidized bed reactor was heated to 670 캜 in a nitrogen atmosphere, and maintained at a ratio of nitrogen to ethylene gas of 3: 1, while being flowed at 3.2 L / min for 100 minutes to obtain a carbon nanotube composition.
실시예Example 6 6
시트르산과 NH4VO3을 1:0.6의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.A carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 to water at a molar ratio of 1: 0.6 and dissolving the solution.
비교예Comparative Example 1 One
시트르산과 NH4VO3을 1:0.085의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.A carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.085 to water and dissolving them to prepare an NH 4 VO 3 aqueous solution.
비교예Comparative Example 2 2
시트르산과 NH4VO3을 1:0.61의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.A carbon nanotube composition was prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.61 to water and dissolving them to prepare an NH 4 VO 3 aqueous solution.
비교예Comparative Example 3 3
시트르산과 NH4VO3을 1:2.3의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조하고, 상기 지지체 내 Al 100 몰에 대하여, 상기 촉매 전구체 수용액 내 Co가 14 몰, V가 1.4 몰이 되도록, 상기 지지체와 상기 촉매 전구체 수용액을 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.Citric acid and NH 4 VO 3 were added to water at a molar ratio of 1: 2.3 and dissolved to form NH 4 VO 3 Was prepared in the same manner as in Example 1 except that the support and the catalyst precursor aqueous solution were mixed so that the amount of Co and the amount of V in the catalyst precursor aqueous solution were 14 moles and 1.4 moles, respectively, per 100 moles of Al in the support. To prepare a carbon nanotube composition.
비교예Comparative Example 4 4
알루미늄계 지지체 전구체로서 수산화알루미늄(Al(OH)3)를 공기 분위기에서 800 ℃로 4 시간 동안 제1 열처리한 것을 제외하고는 비교예 1과 동일한 방법으로 탄소나노튜브 조성물을 제조하였다.A carbon nanotube composition was prepared in the same manner as in Comparative Example 1, except that aluminum hydroxide (Al (OH) 3 ) as an aluminum-based support precursor was subjected to a first heat treatment at 800 占 폚 for 4 hours in an air atmosphere.
실험예Experimental Example 1 One
실시예 및 비교예의 탄소나노튜브 조성물을 하기와 같은 방법으로, 물성을 평가하였고, 그 결과를 하기 표 1 및 표 2에 나타내었다.The carbon nanotube compositions of Examples and Comparative Examples were evaluated for physical properties by the following methods. The results are shown in Tables 1 and 2 below.
(1) 제조수율: {(제조된 탄소나노튜브 조성물의 총 중량) - (사용한 담지 촉매의 총 중량)}/(사용한 담지 촉매의 총 중량)(1) Production yield: {(total weight of the produced carbon nanotube composition) - (total weight of the used supported catalyst)} / (total weight of the used supported catalyst)
(2) BET 비표면적: BEL Japan 사 BELSORP-mino Ⅱ를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출하였다.(2) BET specific surface area: The amount of nitrogen gas adsorbed at a temperature of liquid nitrogen (77K) was measured using BEL Japan's BELSORP-mino II.
(3) 벌크 밀도: 무게를 알고 있는 32㎖ 스테인리스 용기(제조사: SCOTT)에 탄소나노튜브 조성물 파우더를 채우고 무게를 측정한 후, 하기 식에 따라 벌크 밀도를 계산하였다.(3) Bulk density: A 32 ml stainless steel container (manufacturer: SCOTT) having a known weight was filled with the carbon nanotube composition powder and the weight was measured, and then the bulk density was calculated according to the following formula.
벌크 밀도(㎏/㎥)=탄소나노튜브 중량(㎏)/탄소나노튜브 부피(㎥)Bulk density (kg / m 3) = weight of carbon nanotube (kg) / volume of carbon nanotube (m 3)
(4) 분체 저항값(ohm·cm @ 1g/cc): 탄소나노튜브를 1 g/cc가 되도록 절연 몰드에 충진하고 가압하였고, Loresta-GX(상품명, 제조사: MITSUBISHI CHEMICAL ANALYTECH)를 이용하여, 표면의 전류와 전압을 4 개의 탐침으로 측정하였고, 분체 저항값을 산출하였다.(4) Powder resistance value (ohm-cm @ 1 g / cc): The carbon nanotube was filled into an insulating mold so as to have a density of 1 g / cc and pressurized. Using Loresta-GX (trade name: MITSUBISHI CHEMICAL ANALYTECH) The surface current and voltage were measured with four probes and the powder resistance was calculated.
(5) 최대 분산 농도(중량%): 탄소나노튜브 조성물을 N-메틸 피롤리돈에 조금씩 투입하면서 도전재 분산액을 제조하였다. 그리고, 도전재 분산액 내 포함될 수 있는 탄소나노튜브 조성물의 최대 분산 농도를 측정하여 하기 표 4에 기재하였다.(5) Maximum Dispersion Concentration (wt%): A conductive material dispersion was prepared by gradually feeding the carbon nanotube composition into N-methylpyrrolidone. The maximum dispersion concentration of the carbon nanotube composition that can be contained in the conductive material dispersion was measured and described in Table 4 below.
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6
시트르산과 NH4VO3과 몰비Citric acid and NH 4 VO 3 and molar ratio 1:0.091: 0.09 1:0.0961: 0.096 1:0.1151: 0.115 1:0.1441: 0.144 1:0.581: 0.58 1:0.61: 0.6
Co와 V의 몰비The mole ratio of Co and V 10:110: 1 10:110: 1 10:110: 1 10:110: 1 10:110: 1 10:110: 1
Al과 Co와 V의 몰비The molar ratio of Al, Co and V 100:23:2.3100: 23: 2.3 100:23:2.3100: 23: 2.3 100:23:2.3100: 23: 2.3 100:23:2.3100: 23: 2.3 100:16:1.6100: 16: 1.6 100:23:2.3100: 23: 2.3
제1 열처리 온도(℃)First heat treatment temperature (占 폚) 450450 450450 450450 450450 450450 450450
제2 열처리 압력(bar)The second heat treatment pressure (bar) 상압Atmospheric pressure 상압Atmospheric pressure 상압Atmospheric pressure 상압Atmospheric pressure 1 bar1 bar 상압Atmospheric pressure
2차 구조 형상Secondary structural feature 탄소나노튜브 조성물Carbon nanotube composition 탄소나노튜브 조성물Carbon nanotube composition 탄소나노튜브 조성물Carbon nanotube composition 탄소나노튜브 조성물Carbon nanotube composition 탄소나노튜브 조성물Carbon nanotube composition 탄소나노튜브 조성물Carbon nanotube composition
제조수율(배)Production yield (times) 1919 1414 21.821.8 77 2020 2525
비표면적(㎡/g)Specific surface area (m &lt; 2 &gt; / g) 200200 225225 201201 232232 206206 238238
벌크 밀도(kg/m3)Bulk density (kg / m 3 ) 110110 95.495.4 121121 54.354.3 41.841.8 4949
비표면적/벌크 밀도Specific surface area / bulk density 1.811.81 2.362.36 1.661.66 4.274.27 4.934.93 55
분체 저항값 (ohm·㎝ @ 1g/cc)Powder resistance value (ohm · cm @ 1 g / cc) 0.01700.0170 0.01710.0171 0.01530.0153 0.01280.0128 0.01710.0171 0.01150.0115
최대 분산 농도(중량%)Maximum dispersion concentration (% by weight) 3.53.5 3.53.5 3.53.5 3.53.5 2.52.5 2.52.5
구분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4
시트르산과 NH4VO3과 몰비Citric acid and NH 4 VO 3 and molar ratio 1:0.0851: 0.085 1:0.611: 0.61 1:2.31: 2.3 1:2.31: 2.3
Co와 V의 몰비The mole ratio of Co and V 10:110: 1 10:110: 1 10:110: 1 10:110: 1
Al과 Co와 V의 몰비The molar ratio of Al, Co and V 100:23:2.3100: 23: 2.3 100:23:2.3100: 23: 2.3 100:14:1.4100: 14: 1.4 100:14:1.4100: 14: 1.4
제1 열처리 온도(℃)First heat treatment temperature (占 폚) 450450 450450 450450 800800
제2 열처리 압력(bar)The second heat treatment pressure (bar) 상압Atmospheric pressure 상압Atmospheric pressure 상압Atmospheric pressure 상압Atmospheric pressure
2차 구조 형상Secondary structural feature 탄소나노튜브 조성물Carbon nanotube composition 탄소나노튜브 조성물Carbon nanotube composition 번들형 탄소나노튜브Bundled carbon nanotubes 번들형 탄소나노튜브Bundled carbon nanotubes
제조수율(배)Production yield (times) 1919 55 2424 22.822.8
비표면적(㎡/g)Specific surface area (m &lt; 2 &gt; / g) 185185 240240 250250 190190
벌크밀도(kg/m3)Bulk density (kg / m 3 ) 100100 4343 26.426.4 18.118.1
비표면적/벌크 밀도Specific surface area / bulk density 1.851.85 5.585.58 9.479.47 10.510.5
분체 저항값 (ohm·㎝ @ 1g/cc)Powder resistance value (ohm · cm @ 1 g / cc) 0.020.02 0.0120.012 0.00880.0088 0.0090.009
최대 분산 농도(중량%)Maximum dispersion concentration (% by weight) 3.53.5 1.51.5 1.251.25 1.251.25
표 1 및 표 2를 참조하면, 시트르산과 NH4VO3를 1:0.09 내지 1:0.6의 몰비로 투입하여 제조한 실시예 1 내지 실시예 6은 비표면적이 200 내지 238 ㎡/g이고, 벌크 밀도에 대한 비표면적의 값이 1.61 내지 5이므로, 분체 저항 값이 낮을 뿐만 아니라, 최대 분산 농도가 높아 도전재 분산액 용도로 적합한 것을 확인할 수 있었다.Referring to Tables 1 and 2, Examples 1 to 6 prepared by adding citric acid and NH 4 VO 3 in a molar ratio of 1: 0.09 to 1: 0.6 had a specific surface area of 200 to 238 m 2 / g, The value of the specific surface area relative to the density is 1.61 to 5. Therefore, it is confirmed that the powder resistance value is low and the maximum dispersion concentration is high, which is suitable for the conductive material dispersion.
하지만, 시트르산과 NH4VO3를 1:0.085의 몰비로 투입하여 제조한 비교예 1은 벌크 밀도에 대한 비표면적의 값이 1.85 이나, 비표면적이 185 ㎡/g이므로, 분체 저항 값이 높아, 도전재 분산액 용도로 적합하지 않은 것을 확인할 수 있었다.However, in Comparative Example 1 prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.085, the specific surface area to bulk density was 1.85, and the specific surface area was 185 m 2 / g. It was confirmed that it is not suitable for use as a conductive material dispersion.
또한, 시트르산과 NH4VO3를 1:0.61의 몰비로 투입하여 제조한 비교예 2는 벌크 밀도에 대한 비표면적의 값이 5.58이므로, 분체 저항 값이 낮아 도전성은 우수하나, 최대 분산 농도가 너무 낮아, 도전재 분산액 용도로 적합하지 않은 것을 확인할 수 있었다.In Comparative Example 2 prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.61, the specific surface area to the bulk density was 5.58, so the powder resistance was low and the conductivity was excellent. However, It was confirmed that it was not suitable for use as a conductive material dispersion.
시트르산과 NH4VO3를 1:2.3의 몰비로 투입하여 제조한 비교예 3 및 4는 번들형 탄소나노튜브이고, 벌크 밀도에 대한 비표면적의 값이 각각 9.47 및 10.5이므로, 분체 저항 값이 낮아 도전성은 우수하나, 되대 분산 농도가 너무 낮아 도전재 분산액 용도로 적합하지 않은 것을 확인할 수 있었다.Comparative Examples 3 and 4 prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 2.3 are bundle-type carbon nanotubes, and the specific surface area to bulk density is 9.47 and 10.5, respectively. The conductivity was excellent, but the dispersion concentration was too low to confirm that it was not suitable for the conductive material dispersion.

Claims (15)

  1. 인탱글형 탄소나노튜브 및 번들형 탄소나노튜브를 포함하는 탄소나노튜브 조성물이며,A carbon nanotube composition comprising an entangled carbon nanotube and a bundled carbon nanotube,
    상기 탄소나노튜브 조성물은 비표면적이 190 내지 240 ㎡/g이고, 하기 식 1을 만족하는 탄소나노튜브 조성물: Wherein the carbon nanotube composition has a specific surface area of 190 to 240 m &lt; 2 &gt; / g and satisfies the following formula 1:
    <식 1><Formula 1>
    0.1 ≤ X/Y≤ 5.290.1? X / Y? 5.29
    상기 식 1에서, In Equation (1)
    X는 상기 탄소나노튜브 조성물의 비표면적(단위: ㎡/g)을 나타내는 수이고,X is a number representing the specific surface area (unit: m2 / g) of the carbon nanotube composition,
    Y는 상기 탄소나노튜브 조성물의 벌크 밀도(단위: ㎏/㎥)를 나타내는 수임.Y is a number representing the bulk density (unit: kg / m 3) of the carbon nanotube composition.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 탄소나노튜브 조성물의 비표면적은 193 내지 239 ㎡/g인 것인 탄소나노튜브 조성물.Wherein the carbon nanotube composition has a specific surface area of 193 to 239 m &lt; 2 &gt; / g.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 탄소나노튜브 조성물의 비표면적은 195 내지 239 ㎡/g인 것인 탄소나노튜브 조성물.Wherein the carbon nanotube composition has a specific surface area of 195 to 239 m &lt; 2 &gt; / g.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 식 1의 값은 1 내지 5.14인 것인 탄소나노튜브 조성물.Wherein the value of the formula 1 is 1 to 5.14.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 식 1의 값은 1.5 내지 5인 것인 탄소나노튜브 조성물.Wherein the value of the formula (1) is from 1.5 to 5.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 탄소나노튜브 조성물의 벌크 밀도는 25 내지 150 ㎏/㎥인 것인 탄소나노튜브 조성물.Wherein the carbon nanotube composition has a bulk density of 25 to 150 kg / m &lt; 3 &gt;.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 탄소나노튜브 조성물의 벌크 밀도는 35 내지 130 ㎏/㎥인 것인 탄소나노튜브 조성물.Wherein the carbon nanotube composition has a bulk density of 35 to 130 kg / m &lt; 3 &gt;.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 탄소나노튜브 조성물은 평균직경이 10 내지 30 ㎚인 탄소나노튜브 단위체를 포함하는 것인 탄소나노튜브 조성물.Wherein the carbon nanotube composition comprises a carbon nanotube unit having an average diameter of 10 to 30 nm.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 탄소나노튜브 단위체는 X선 회절법으로 구한 탄소결정의 층면간격(d002)이 O.335 내지 O.342 nm 이고, The carbon nanotube unit preferably has a layer plane spacing (d 002 ) of carbon crystals obtained by X-ray diffractometry of from 0.355 to 0.332 nm,
    층면간격(d002)<O.3448 - 0.0028(logφ)(식 중, φ는 탄소나노튜브 단위체의 평균직경이다.)를 만족하며, Layer plane interval (d 002 ) &lt; O.3448 - 0.0028 (log?) (Wherein? Is an average diameter of the carbon nanotube unit)
    결정의 C축 방향의 두께(Lc)가 40 nm이하인 탄소나노튜브 조성물.And the thickness (Lc) of the crystal in the C axis direction is 40 nm or less.
  10. 유기산과 바나듐 전구체를 1:0.088 내지 1:0.605의 몰비로 혼합하여 혼합물을 제조하는 단계;Mixing the organic acid and the vanadium precursor in a molar ratio of 1: 0.088 to 1: 0.605 to prepare a mixture;
    상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조하는 단계;Mixing the mixture with a cobalt precursor to produce a catalyst precursor;
    수산화알루미늄을 제1 열처리하여 지지체를 제조하는 단계;Subjecting the aluminum hydroxide to a first heat treatment to produce a support;
    상기 지지체에 상기 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조하는 단계; 및Supporting the catalyst precursor on the support, and then performing a second heat treatment to produce a supported catalyst; And
    상기 담지 촉매와 탄소계 화합물을 반응시키는 단계;를 포함하는 탄소나노튜브 조성물의 제조방법.And reacting the supported catalyst with the carbon-based compound.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 혼합물을 제조하는 단계는 유기산과 바나듐 전구체를 1:0.09 내지 1:0.6의 몰비로 혼합하여 혼합물을 제조하는 단계인 것인 탄소나노튜브 조성물의 제조방법.Wherein the step of preparing the mixture is a step of mixing the organic acid and the vanadium precursor in a molar ratio of 1: 0.09 to 1: 0.6 to prepare a mixture.
  12. 청구항 10에 있어서,The method of claim 10,
    상기 촉매 전구체를 제조하는 단계는 상기 혼합물과 코발트 전구체를 바나듐과 코발트의 몰비가 1:1 내지 1:100이 되도록 혼합하는 것인 탄소나노튜브 조성물의 제조방법.Wherein the catalyst precursor is prepared by mixing the mixture and the cobalt precursor in a molar ratio of vanadium to cobalt of 1: 1 to 1: 100.
  13. 청구항 10에 있어서,The method of claim 10,
    상기 유기산은 시트르산, 타르타르산, 퓨마르산, 말산(malic acid), 아세트산, 뷰티르산, 팔미트산 및 옥살산으로 이루어진 군에서 선택되는 1종 이상인 것인 탄소나노튜브 조성물의 제조방법.Wherein the organic acid is at least one selected from the group consisting of citric acid, tartaric acid, fumaric acid, malic acid, acetic acid, butyric acid, palmitic acid and oxalic acid.
  14. 청구항 10에 있어서,The method of claim 10,
    상기 바나듐 전구체는 NH4VO3, NaVO3, V2O5 및 V(C5H7O2)3으로 이루어진 군에서 선택되는 1종 이상인 것인 탄소나노튜브 조성물의 제조방법.Wherein the vanadium precursor is at least one selected from the group consisting of NH 4 VO 3 , NaVO 3 , V 2 O 5 and V (C 5 H 7 O 2 ) 3 .
  15. 청구항 10에 있어서,The method of claim 10,
    상기 제2 열처리는 0.1 내지 2 bar의 추가 압력 하에서 수행되는 것인 탄소나노튜브 조성물의 제조방법.Wherein the second heat treatment is performed under an additional pressure of 0.1 to 2 bar.
PCT/KR2018/014740 2017-12-26 2018-11-27 Carbon nanotube composition and manufacturing method therefor WO2019132266A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880041613.6A CN110785378B (en) 2017-12-26 2018-11-27 Carbon nanotube composition and method for preparing same
EP18896593.3A EP3628641A4 (en) 2017-12-26 2018-11-27 Carbon nanotube composition and manufacturing method therefor
US16/624,743 US11565938B2 (en) 2017-12-26 2018-11-27 Carbon nanotube composition and method of preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170179769 2017-12-26
KR10-2017-0179769 2017-12-26
KR1020180146926A KR102379595B1 (en) 2017-12-26 2018-11-26 Carbon nano tube composition and method for preparing the same
KR10-2018-0146926 2018-11-26

Publications (1)

Publication Number Publication Date
WO2019132266A1 true WO2019132266A1 (en) 2019-07-04

Family

ID=67067765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014740 WO2019132266A1 (en) 2017-12-26 2018-11-27 Carbon nanotube composition and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2019132266A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037661A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Catalysts for preparing carbon nanotubes and carbon nanotubes prepared using same
KR20150142408A (en) * 2014-06-12 2015-12-22 주식회사 엘지화학 Supported catalysts, carbon nanotube agglomerates, and process for preparing same
KR20170011834A (en) * 2015-07-24 2017-02-02 주식회사 엘지화학 Apparatus for preparing carbon nanotube aggregate and process for preparing carbon nanotube aggregate using same
KR20170037454A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
KR20170037458A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037661A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Catalysts for preparing carbon nanotubes and carbon nanotubes prepared using same
KR20150142408A (en) * 2014-06-12 2015-12-22 주식회사 엘지화학 Supported catalysts, carbon nanotube agglomerates, and process for preparing same
KR20170011834A (en) * 2015-07-24 2017-02-02 주식회사 엘지화학 Apparatus for preparing carbon nanotube aggregate and process for preparing carbon nanotube aggregate using same
KR20170037454A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
KR20170037458A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3628641A4 *

Similar Documents

Publication Publication Date Title
WO2013105779A1 (en) Carbon nanotubes and method for manufacturing same
WO2013105784A1 (en) Carbon nanotubes and method for manufacturing same
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015008988A1 (en) Supported catalyst, method for producing same, and secondary structure of carbon nanostructure manufactured using same
WO2017126776A1 (en) Apparatus for manufacturing carbon nanotube pellets
WO2013095045A1 (en) Novel secondary structure of carbon nanostructures, assembly thereof, and composite comprising same
WO2017126777A1 (en) Carbon nanotube pellets and method for manufacturing same
WO2020111520A1 (en) Process for preparing a carbon nanotube sheet comprising a uniaxially aligned yarn and carbon nanotube sheet prepared thereby
WO2017039132A1 (en) Method for purification of carbon nanotubes
WO2017126775A1 (en) Carbon nanotube pellets and method for manufacturing same
WO2020022725A1 (en) Method for preparing carbon nanotubes
WO2016126133A1 (en) High-density bundle-type carbon nanotubes and preparation method therefor
WO2017018667A1 (en) Carbon nanotubes having improved thermal stability
WO2019132266A1 (en) Carbon nanotube composition and manufacturing method therefor
WO2019132265A1 (en) Entangled type carbon nanotubes and manufacturing method therefor
WO2019245157A1 (en) Catalyst for preparing light olefin, preparation method therefor, and method for preparing light olefin by using same
WO2022124799A1 (en) Supported catalyst for manufacturing carbon nanotube
WO2024186062A1 (en) High-density carbon nanotube composition, method for preparing same, carbon nanotube dispersion liquid comprising same, and positive electrode slurry composition
WO2017048053A1 (en) Carbon nanotube having improved crystallizability
WO2021215578A1 (en) Apparatus for roll-to-roll synthesis of large-area graphene, method for manufacturing large-area graphene, and method for reducing graphene oxide fabric
WO2024123020A1 (en) Supported catalyst for producing entangled carbon nanotubes and method for producing entangled carbon nanotubes using same
WO2024096695A1 (en) Catalyst for producing carbon nanotubes, and method for producing catalyst for producing carbon nanotubes
WO2015047048A1 (en) Method for controlling bulk density of carbon nanotube agglomerate
KR102379595B1 (en) Carbon nano tube composition and method for preparing the same
WO2023080715A1 (en) Method for preparing carbon composite fiber, and carbon nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018896593

Country of ref document: EP

Effective date: 20191224

NENP Non-entry into the national phase

Ref country code: DE