[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019131295A1 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
WO2019131295A1
WO2019131295A1 PCT/JP2018/046439 JP2018046439W WO2019131295A1 WO 2019131295 A1 WO2019131295 A1 WO 2019131295A1 JP 2018046439 W JP2018046439 W JP 2018046439W WO 2019131295 A1 WO2019131295 A1 WO 2019131295A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
row
sensor
output
signal
Prior art date
Application number
PCT/JP2018/046439
Other languages
French (fr)
Japanese (ja)
Inventor
佑貴 須山
佑樹 菊井
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2019563021A priority Critical patent/JP7238795B2/en
Publication of WO2019131295A1 publication Critical patent/WO2019131295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/18Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying effective impedance of discharge tubes or semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G25/00Other details or appurtenances of control mechanisms, e.g. supporting intermediate members elastically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K20/00Arrangement or mounting of change-speed gearing control devices in vehicles
    • B60K20/02Arrangement or mounting of change-speed gearing control devices in vehicles of initiating means

Definitions

  • the present invention relates to a position detection device.
  • Patent Document 1 discloses a position sensor (position detection device) that detects a shift position in a shift device of a vehicle.
  • a magnet is provided on a detection subject (shift lever), and a magnetic detection element such as a Hall element is provided at a shift position of the detection subject.
  • one or two magnetic detection elements are one element row, and a plurality of element rows are arranged substantially linearly, for example, for detection of five positions, 6 Since the element rows of the rows are arranged, the position sensor itself becomes large, and there is a problem that the degree of freedom of attachment to a vehicle or the like is reduced.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a position detection device which can be configured compact and has a high degree of freedom of attachment to a vehicle or the like.
  • a position detection device is: An object to be detected that moves linearly with an operation to the operation unit;
  • a position detection apparatus comprising: a plurality of detection elements that output an approach detection signal when the object to be detected approaches and output a separation detection signal when the object to be detected is separated,
  • the plurality of detection elements an element row in which one or more detection elements are arranged in the column direction is arranged over a plurality of rows, and the detection target is from the first position along the direction orthogonal to the column direction
  • the plurality of detection elements are arranged such that the number of detection elements switched between the proximity detection signal and the separation detection signal is three or more among the plurality of detection elements when moving to the second position,
  • the proximity detection signal is output to the detection elements of the at least three element rows adjacent to each other, It is characterized by
  • a position detection device which can be configured compactly and has a high degree of freedom of attachment to a vehicle or the like.
  • FIG. 10 is a plan view of a circuit board according to still another embodiment. It is a top view of the circuit board concerning other one embodiment.
  • a position detection device 100 is mounted on a vehicle, for example, as shown in FIG. 1, and detects a shift position accompanying a linear operation of an operation unit that switches a shift range of a transmission.
  • a plurality of shift positions are provided, and for example, five shift positions A, B, C, D, and E are set, and the respective positions are detected.
  • the position detection apparatus 100 is provided with the to-be-detected body 10, the holder 20, the detection element 30, and the circuit board 40, as shown to FIG.
  • the to-be-detected body 10 has the magnet 11 and the magnet holding part 12.
  • the magnet holding portion 12 is made of, for example, a resin material having slidability and thermoplasticity such as polyacetal, polyamide, polytetrafluoroethylene or the like, and is formed into a rectangular solid or cubic outer shape.
  • the magnet holding portion 12 is accommodated in the holder 20 so as to be linearly movable along the guide portion 21 of the holder 20.
  • a circuit board 40 on which the detection element 30 is mounted is disposed in parallel along the moving direction of the magnet holding unit 12.
  • the holder 20 is formed of a resin material having the same slidability and thermoplasticity as the detection target 10.
  • the magnet 11 is held inside the magnet holder 12.
  • the magnet 11 is formed in, for example, a cylindrical shape and magnetized in the radial direction.
  • the magnet 11 and the magnet holding portion 12 are integrally formed by insert molding.
  • the magnet 11 is, as shown in FIG. 3, second shift positions (second positions) B and C excluding first shift positions (first positions) A and E among five element rows described later.
  • (D) it has a cylindrical shape of a size (diameter) capable of outputting a detection signal to all the detection elements 30 of the three element rows 33.
  • the magnetic field is made as uniform as possible at all positions on the element row 33 and the element row 34 A detection element 30 is arranged.
  • the row is the XD direction in the figure
  • the column is the YD direction.
  • the distance between the element row 33 and the element row 34 of the detection element 30 is that the detection range at each shift position (detection position) A, B, C, D, E of the magnet 11 is a broken line. As indicated by the circles, the distance when moving from the first shift positions A and E to the adjacent second shift positions B, C and D is reduced by minimizing the amount of movement of the magnet 11.
  • all detection elements 30 in one or three columns are arranged in three rows, and the detection elements 30 are positioned at the periphery of the detection range of the magnet 11 at each shift position. Make the change as uniform as possible. That is, at the first shift position A, the detection element 30 in the first row is made to output at the rear of the operation direction, and at the first shift position E, it is output to the detection element 30 in the fifth row at the front of the operation direction. I am trying to In the second shift positions B, C, and D, all of the three rows of detection elements 30 are disposed at the periphery of the magnet 11 and output to all the detection elements 30. Thus, the position detection device 100 is made compact.
  • the magnet holding unit 12 is attached with an operation unit (not shown) that is held when performing a shift change operation.
  • the operation unit is linearly operated by the operation of the shift change
  • the magnet holding unit 12 holding the magnet 11 (that is, the object to be detected 10) is linearly moved to each shift position.
  • the detection subject 10 linearly moves the magnet 11 to each shift position with respect to the detection element 30 mounted on the circuit board 40 housed in the holder 20.
  • the circuit board 40 is formed of, for example, a printed circuit board in which various circuits are formed on a rigid board. As shown in FIG. 2, the circuit board 40 is formed in a rectangular shape such as a rectangular shape in a plan view.
  • the detection element 30 includes, for example, a magnetic sensor 31, and is mounted on the front surface side of the circuit board 40 together with a protection circuit (not shown).
  • the magnetic sensor 31 outputs a detection signal (voltage signal) corresponding to the magnitude of the magnetic field formed by the magnet 11 to the control unit 50.
  • the magnetic sensor 31 is configured of, for example, a sensor IC (Integrated Circuit) 32 of one chip having a Hall element or a magnetoresistive element and a signal processing circuit.
  • the sensor IC (magnetic sensor) 32 is composed of eight sensor ICs 32-1 to 32-8, and one or a plurality of sensor ICs 32 is one element.
  • the row 33 includes five rows of elements 33-1 to 33-5, which are mounted on the circuit board 40 according to the five shift positions A, B, C, D, and E of the detection subject 10.
  • the protection circuit is composed of a resistor, a capacitor, and a wiring pattern (not shown) formed on the circuit board 40, and protects the sensor IC 32 and the like from overcurrent and the like.
  • the control unit 50 acquires detection signals from each of the sensor ICs 32-1 to 32-8 constituting the detection element 30, and based on the acquired detection signals, the position of the detection target 10 having the magnet 11, that is, the shift position To detect
  • the control unit 50 includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like, and includes a circuit board 40 and an electronic control unit (ECU) disposed in the vehicle, for example. It is connected conductively with Unit).
  • the control unit 50 may be mounted on the back side of the circuit board 40.
  • the control unit 50 detects, for example, the position (shift position) of the detection subject 10 as follows.
  • a detection voltage corresponding to the position of the magnet 11 is output from each of the sensor ICs 32-1 to 32-8 constituting the detection element 30. These detected voltages are input to, for example, a comparator (not shown) and compared with a predetermined threshold voltage.
  • the sensor IC 32 outputs an on signal (1) to the control unit 50 when the detected voltage is higher than the threshold voltage Hi. That is, the sensor IC 32 that outputs the on signal (1) is turned on.
  • an off signal (0) is output to the control unit 50. That is, the sensor IC that outputs the off signal (0) is turned off.
  • the control unit 50 is configured by associating the combination of the on state (1) or the off state (0) of each of the sensor ICs 32-1 to 32-8 with each of the shift positions A, B, C, D, and E.
  • the stored table is stored in advance in the ROM, and the shift position A to E corresponding to the on signal (1) or the off signal (0) acquired from each of the sensor ICs 32-1 to 32-8 with reference to the table. Identify
  • the control unit 50 specifying the shift position gives an instruction according to the specified shift position to the vehicle side, and the shift range of the transmission of the vehicle is switched according to the instruction.
  • the eight sensor ICs 32-1 to 32-8 constituting the detection element 30 are arranged in five element rows 33-1 to 33-5, as shown in FIG.
  • a first row 33-1, a second row 33-2, a third row 33-3, a fourth row 33-4 and a fifth row 33-5 are arranged along the operation direction of the unit.
  • eight sensor ICs 32-1 to 32-8 are arranged in three rows 34 of a first row 34-1, a second row 34-2, and a third row 34-3 orthogonal to the column 33. .
  • the eight sensor ICs 32-1 to 32-8 have two groups X and Y of X-1 to X-4 of group X and Y-5 to Y-8 of group Y. It is divided and arranged to belong to.
  • the two groups X and Y are configured such that the sensor IC 32 belonging to the first group X and the sensor IC 32 belonging to the second group Y receive power from different power supplies. As a result, even if the power supply for supplying power to the sensor IC 32 of one group fails, detection by the sensor IC 32 of the other group becomes possible, and the function of the position detection device 100 can be secured.
  • the relationship between the eight sensor ICs 32-1 to 32-8 and the sensor ICs X-1 to X-4 and Y-5 to Y-8 of the groups X and Y is that in the first group X, the second sensor IC 32 is used.
  • the second row 33-2 and the fourth row 33-4 are respectively one sensor IC 32 and Y-6 and Y-7 of the group Y, while the two sensor ICs 32 of the third row 33-3 Since both are group X's X-2 and X-3, it is necessary to determine which group's power supply has failed from changes in the operating status of the above two sensor ICs 32 in group X or group Y. Can.
  • the sensor IC 32 belonging to the first group X among the plurality of sensor ICs 32 of the two groups X and Y outputs an ON signal with the detection signal (approach detection signal) as a Hi signal, and the detection signal (separation detection signal) Is output as the Lo signal, and the sensor IC 32 belonging to the second group Y among the plurality of sensor ICs 32 outputs the detection signal (approach detection signal) as the Lo signal and outputs the detection signal (separation detection signal) as the Hi signal.
  • the threshold values Hi and Lo of the detection signal are set reversely, and the four sensor ICs 32 (X-1 to X-4) belonging to the group X are turned on by the Hi signal when the magnet 11 is positioned.
  • the four sensor ICs 32 (Y-5 to Y-8) belonging to the group Y output the ON signal by the Lo signal when the magnet is positioned.
  • the control unit 50 can determine which one of the two groups X and Y the failure or the like of the sensor IC belongs to, thereby determining the failed sensor IC 32.
  • the arrangement of the sensor ICs 32 constituting the detection element 30 will be specifically described.
  • (First column) In the element column of the first column 33-1, two of the first sensor IC 32-1 and the second sensor IC 32-2 are arranged in a row direction orthogonal to the operation direction.
  • the first sensor ICs 32-1 are arranged in the second row 34-2 and the second sensor ICs are arranged in the first row 34-1 in the element column of the first column 33-1. It is arranged in two lines.
  • the first row 34-1 and the second row 34-2 are disposed across the operation direction passing the center of the magnet 11.
  • the first sensor IC 32-1 belongs to group Y to constitute Y-5
  • the second sensor IC 32-2 belongs to group X to constitute X-1 .
  • one third sensor IC 32-3 is arranged in a row direction orthogonal to the operation direction.
  • the third sensor IC 32-3 is arranged in the third row 34- of the third row, which is different from the two first sensor ICs 32-1 and the second sensor IC 32-2 in the element row of the first column 33-1. It is arranged in three.
  • the third row 34-3 as shown in FIG. 3, is disposed at the outer edge (upper part in FIG. 3) orthogonal to the operation direction of the detection range of the magnet 11 so that the change of the magnetic field can be made uniform. It is.
  • the third sensor IC 32-3 belongs to the group Y and configures Y-6.
  • the fourth sensor IC 32-4 and the fifth sensor IC 32-5 are arranged in a row direction orthogonal to the operation direction.
  • the fourth sensor IC 32-4 of the element column of the third column 33-3 is arranged in the second row 34-2 identical to the first sensor IC 32-1 of the first column 33-1, and the fifth sensor
  • the ICs 32-5 are arranged in two rows by being arranged in the same first row 34-1 as the second sensor IC 32-2 in the first column 33-1.
  • the fourth sensor IC 32-4 belongs to the group X to constitute X-2
  • the fifth sensor IC 32-5 also belongs to the group X to constitute X-3. .
  • one sixth sensor IC 32-6 is arranged in a row direction orthogonal to the operation direction.
  • the sixth sensor IC 32-6 is different from the two first sensor ICs 32-1 and the second sensor IC 32-2 of the element row of the first row 33-1 in that the third sensor of the second row It is arranged in the 3rd line 34-3 of the 3rd line same as IC32-3.
  • the sixth sensor IC 32-6 belongs to the group Y and constitutes Y-7 as shown in FIG.
  • the fifth element row 33-5 two seventh sensor ICs 32-7 and eighth sensor ICs 32-8 are arranged in a row direction orthogonal to the operation direction.
  • the seventh sensor IC 32-7 is arranged in the second row 34-2 and the eighth sensor IC 32-8 is arranged in the first row 34-1 in the fifth element row 33-5. And are arranged in two lines. Further, as shown in FIG. 4, the seventh sensor IC 32-7 belongs to group Y to constitute Y-8, and the eighth sensor IC 32-8 belongs to group X to constitute X-4. .
  • the detected object 10 provided with the magnet 11 causes the sensor IC 32 in the first row 33-1 to output a detection signal at the shift position A, which is the first position, as shown in FIG. That is, at the shift position A which is the first position, the two first sensor ICs 32-1 (Y-5) and the second sensor IC 32-2 (X-1) in the first row 33-1 are detected. Output a signal.
  • the first position is the same even in the shift position E, and the second seventh sensor IC 32-7 (Y-8) and the eighth sensor IC 32-8 (X) in the fifth row 33-5 are the same. -Output the detection signal to-4).
  • detection signals are output to the sensor ICs 32 of the at least three element rows 33 adjacent to each other. That is, at the second shift position B, detection signals are output to the five magnetic sensors 31 in the first row 33-1, the second row 33-2, and the third row 33-3. That is, the first sensor IC 32-1 (Y-5), the second sensor IC 32-2 (X-1), the third sensor IC 32-3 (Y-6), the fourth sensor IC 32-4 (X) -2) The detection signal is output to five rows of five sensor ICs 32 of the fifth sensor IC 32-5 (X-3).
  • detection signals are output to the sensor ICs 32 in the second row 33-2, the third row 33-3, and the fourth row 33-4, and the third sensor ICs 32-3 to A detection signal is output to four sensor ICs 32 of the sensor IC 32-6. That is, the third sensor IC 32-3 (Y-6), the fourth sensor IC 32-4 (X-2), the fifth sensor IC 32-5 (X-3), the sixth sensor IC 32-6 (Y The detection signal is output to four in three rows of -7).
  • the detection signal is output to the sensor IC 32 in the third row 33-3, the fourth row 33-4, and the fifth row 33-5, and the fourth sensor IC 32-4 to the eighth
  • the detection signals are output to the five magnetic sensors 31 of the sensor IC 32-8. That is, the fourth sensor IC 32-4 (X-2), the fifth sensor IC 32-5 (X-3), the sixth sensor IC 32-6 (Y-7), the seventh sensor IC 32-7 (Y -8)
  • the fifth sensor IC 32-8 (X-4) outputs a detection signal to five rows of five.
  • the first shift positions A and E When moving to shift positions B, C, and D of 2, the number of sensor ICs 32 to which the detection signal switches among the plurality of sensor ICs 32 is three or more (the Hamming distance 3) or more.
  • FIG. 4 1 to 4 in the horizontal row indicate the sensors IC X-1 to X-4 which are detection elements in group X, and 5 to 8 in the horizontal rows are detection elements in group Y. Sensor ICs Y-5 to Y-8 are shown. Moreover, in the group X, the case where the detection signal is 1 indicates that the detection state is on, and in the group Y, the case where the detection signal is 0 indicates that the detection state is on.
  • the shift position A when the shift position A is operated to the adjacent shift position B, the three detection signals of the sensors IC X-2, X-3 and Y-6 change, and the shift position B can be detected.
  • the detection signals of the three sensor ICs 32 change, so that even if one of the three sensor ICs 32 fails, the remaining two sensor ICs 32 shift position B. It can be detected.
  • the detection signals of the three sensor ICs 32 change, so that even if one sensor IC 32 of the three sensor ICs 32 breaks down, the remaining two sensor ICs 32 shift Position E can be detected.
  • the shift positions A to E can be similarly detected.
  • the position detection apparatus 100 can detect five shift positions A to E.
  • four shift positions are detected by the position detection apparatus 100.
  • four shift positions A, B, C, D or shift positions can be obtained by not using shift positions A or E at both ends among the above-mentioned five shift positions A to E It can be detected as B, C, D, and E, and as shown in FIG. 4, four shift positions can be detected by changes in the three sensor ICs 32. Also, as in the case of detection of five shift positions, even if one sensor IC 32 out of three sensor ICs 32 fails, the four remaining shift positions can be detected by the remaining two sensor ICs 32. it can.
  • shift positions A, B, D, and E excluding shift position C can be used among the five shift positions A to E.
  • the detection from the shift position A to B and from the shift position D to the shift position E is the same as in the case of FIG. 3 and FIG. (Shift position B to D)
  • the magnet 11 is separated from the first row 33-1 and the second row 33-2 where the magnet 11 was located at the shift position B, and in addition to the third row 33-3, the fourth row 33-4 and the fifth row 33-4
  • the magnet 11 is located on the row 33-5.
  • the sensor IC X-1 in the first row 33-1 is turned off (0)
  • the sensor IC Y-5 is turned off (1).
  • the sensor IC Y-6 in the second row 33-2 changes to OFF (1).
  • the sensor IC Y-7 in the fourth row 33-4 is turned on (0)
  • the sensor IC Y-8 in the fifth row 33-5 is turned on (0)
  • the sensor IC X-4 is turned on (1) Change to
  • the shift position B is operated to the adjacent shift position D
  • the six detection signals of the sensors IC X-1, X-4, Y-5, Y-6, Y-7 and Y-8 change.
  • the shift position D can be detected.
  • the shift position D is detected by the remaining five sensor ICs 32 by changing detection signals of the six sensor ICs 32. Can.
  • the sensor IC 32 when detecting four shift positions by the position detection apparatus 100, in any case, the sensor IC 32 performs five element rows 33-1 to 5-6 as in the case of detecting five shift positions. At 33-5, four shift positions can be detected by using eight sensor ICs 32 of three element rows 34-1 to 34-3.
  • the position detection apparatus 100 detects three shift positions.
  • the three shift positions A, B, C (or shift positions C, D, E), as shown in FIG.
  • the three shift positions A, B and C (or shift positions C, D and E) can be detected by being configured by 33-4 (or element rows 33-2 to 33-5).
  • the relationship of the output signal of the sensor IC 32 by the movement of the shift position A, B, C (or the shift position C, D, E) to the adjacent shift position in this case is as described in FIG. The description is omitted. Also in this case, even if one of the three sensor ICs 32 fails, the remaining two sensor ICs 32 detect each of the three shift positions by changing the detection signals of the three sensor ICs 32. can do.
  • three shift positions may be detected as shift positions A, C, and E.
  • the shift positions A, C, and E are independent of each other. It becomes the same as the case where sensor IC 32 is arranged.
  • the detection signals of the six sensor ICs 32 change as the sensor IC 32 operates from the shift position A to the shift position C or from the shift position C to the shift position E, so that, for example, six sensors IC 32 Even if one sensor IC 32 fails, the remaining five sensor ICs 32 can detect each of the three shift positions.
  • the detection object 10 moving linearly with the operation to the operation unit and the detection signal (when the detection object 10 approaches)
  • a position detection apparatus 100 having a plurality of sensor ICs (detection elements) 32 outputting a proximity detection signal) and outputting a detection signal (separation detection signal) when the object 10 is separated, the plurality of sensors In the IC 32, a plurality of element rows 33 in which one or more sensor ICs 32 are arranged in the column direction are arranged over a plurality of rows, and the first shift position (position) A (a direction in which the detection object 10 is orthogonal to the column direction When moving from E) to the second shift position (position) B, C, D, the signal to be output is switched between the detection signal (approach detection signal) and the detection signal (separation detection signal) of the plurality of sensor ICs 32
  • the number of capacitors IC32 are arranged so that three or more, in the second shift position to output
  • the shift positions are detected using detection signals of the sensor ICs 32 in three rows at the second shift positions B, C, D. Therefore, for example, five shift positions of the sensor IC 32 in the operation direction are five rows. Therefore, the size of the position detection device 100 in the operation direction can be made compact.
  • at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
  • the sensor ICs 32 are arranged in three rows and / or the magnets 11 are arranged in a cylindrical shape so that the sensor ICs 32 are positioned on the outer peripheral edge, the influence of leakage magnetic flux or the like on the magnets 11 of the detection object 10 Therefore, the detection signal can be detected substantially uniformly, avoiding false detection, and detection accuracy can be enhanced.
  • the first and second sensor ICs 32-1 and 32-2 are disposed as the sensor IC 32 in the first row 33-1 among the plurality of element rows 33, and the plurality of rows of The third sensor IC 32-3 is disposed as the sensor IC 32 in the second row 33-2 of the element row 33, and the fourth and fourth sensor ICs 32 are disposed in the third row 33-3 of the plurality of element rows 33.
  • the fifth sensor IC 32-4, 32-5 are arranged, the sixth sensor IC 32-6 is arranged as the sensor IC 32 in the fourth row 33-4 of the plural element rows 33, and the detection subject 10 is
  • detection signals (approach detection signals) are output from the first and second sensor ICs 32-1 and 32-2 arranged in the first row 33-1, and the second shift position First row when in B or C 3-1, the sensor ICs 32-1, 32-2, 32-3, 32-4, 32-5 or the second row 33-2, the third row arranged in the second row 33-2 and the third row 33-3
  • a detection signal (approach detection signal) is output from the sensor ICs 32-3, 32-2, 32-5, 32-6 arranged in the third column 33-4 and the fourth column 33-4.
  • three shift positions as shift positions A, B, C or shift positions C, D, E can be configured by the four element rows 33 to provide the position detection apparatus 100, and position detection in the operation direction
  • the size of the device 100 can be made compact.
  • at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
  • the seventh and eighth sensor ICs 32-7 and 32-8 are disposed as the sensor IC 32 in the fifth row 33-5 among the plurality of element rows 33, and the detection object 10 is
  • the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, the second row 33-2, and the third row 33-3.
  • the detection signal (approach detection from the sensor IC 32 arranged in the second row 33-2, the third row 33-3 and the fourth row 33-4 Signal, and when in the fourth shift position (position) D adjacent to the third shift position (position) C, the third row 33-3, the fourth row 33-4 and the fifth row 33-5 Output a detection signal (approach detection signal) from the sensor IC 32 And the detection signals from the seventh and eighth sensor ICs 32-7 and 32-8 arranged in the fifth row 33-5 when in the fifth shift position (position) E adjacent to the fourth shift position (position) D (Proximity detection signal) is output.
  • five shift positions as shift positions A, B, C, D, and E can be configured by the five element rows 33 to form the position detection device 100, and the size of the position detection device 100 in the operation direction Can be made compact.
  • at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
  • the sensor ICs 32 in the first to third rows 33-1 to 33-5 are arranged in the plurality of element rows 33, and the detection object 10 is at the first shift position (position).
  • the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, and when it is in the second shift position (position) B adjacent to the first shift position (position) A
  • the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, the second row 33-2, and the third row 33-3, and the third adjacent to the second shift position (position) B
  • the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the third row 33-3, the fourth row 33-4, and the fifth row 33-5 when in the shift position (position) D of Fourth shift position (position) adjacent to position (position) D
  • the E causes the output detection signal (approach detection signal) from the sensor IC32 arranged in the fifth column 33-5.
  • shift positions as shift positions A, B, D, and E can be configured by the five element rows 33 to be the position detection device 100, and the size of the position detection device 100 in the operation direction can be It can be made compact.
  • at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
  • the sensor ICs 32 in the first to third rows 33-1 to 33-5 are arranged in the plurality of element rows 33, and the detection object 10 is at the first shift position (position).
  • the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, the second row 33-2 and the third row 33-3, and the first shift position (position) B
  • a detection signal (approach detection signal) is output from the sensor IC 32 arranged in the second row 33-2, the third row 33-3 and the fourth row 33-4
  • detection is performed from the sensor IC 32 arranged in the third row 33-3, the fourth row 33-4 and the fifth row 33-5
  • a signal (approach detection signal) is output.
  • three shift positions as shift positions B, C, and D can be configured by the five element rows 33 to form the position detection device 100, and the size of the position detection device 100 in the operation direction can be made compact. can do.
  • at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
  • the sensor IC 32 belonging to the first group X among the plurality of sensor ICs 32 outputs the detection signal (approach detection signal) as the Hi signal and outputs the detection signal (separation detection signal) as the Lo signal
  • the sensor IC 32 belonging to the second group Y among the plurality of sensor ICs 32 outputs a detection signal (approach detection signal) as a Lo signal, and outputs a detection signal (separation detection signal) as a Hi signal.
  • the sensor IC 32 belonging to the first group X and the sensor IC 32 belonging to the second group Y receive power from different power sources. By this, even if one power source fails, the detection of the shift position can be continued with the other power source.
  • the second sensor IC X-1, the fourth sensor IC X-2, the fifth sensor IC X-3, and the eighth sensor IC X-4 The first sensor IC Y-5, the third sensor IC Y-6, the sixth sensor IC Y-7, and the seventh sensor IC Y-8 belong to the second group Y.
  • a sensor in which detection of each shift position of three shift positions from five shift positions is compactly arranged by arranging the sensor ICs 32 belonging to such two groups X and Y as first to eighth sensor ICs respectively It can be detected by the IC 32, and at the same time, the detection signal of the sensor IC 32 can be changed and detected (Hamming distance 3) according to the operation of the shift position, and even if one sensor IC 32 breaks down, it remains
  • the shift position can be detected by the following two.
  • a magnet and a sensor IC including a magnetic sensor are used as a detection element
  • an optical detection element including a light source and an optical sensor can also be used.
  • the detection elements are not limited to these.
  • the position detection apparatus 100 is not limited to the application for detecting the shift position, as long as the position detection apparatus 100 can detect the position of the detection object 10 using a detection signal that changes as the detection object 10 moves. Can be applied to position detection for various applications.
  • the present invention is applicable to a shift position sensor for a vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Provided is a position detection device that can be configured so as to be compact and can be attached to a vehicle, or the like, with a high degree of freedom. This position detection device 100 comprises a body to be detected that moves linearly in conjunction with the operation of an operation part and a plurality of sensors IC32 for outputting detection signals when the body to be detected has approached and when the body to be detected has left. The plurality of sensors IC32 are arranged in a plurality of element rows 33 in each of which one or more sensors IC32 are aligned in the row direction. The plurality of sensors IC32 are arranged such that when the body to be detected moves along a direction orthogonal to the row direction from a first shift position A(E) to a second shift position B, C, D, the signals of three or more sensors IC32 from among the plurality of sensors IC32 switch between the detection signal for approaching and that for leaving. At the second shift position, the sensors IC32 of at least three adjacent element rows 33 output detection signals.

Description

位置検出装置Position detection device
 本発明は、位置検出装置に関する。 The present invention relates to a position detection device.
 従来の位置検出装置として、移動する被検出体の位置を、被検出体が有する磁石の磁場変化を利用して検出するものがある。この種の位置検出装置として、特許文献1には、車両のシフト装置におけるシフト位置を検出するポジションセンサ(位置検出装置)が開示されている。 As a conventional position detection device, there is one which detects the position of a moving object to be detected by using a magnetic field change of a magnet of the object to be detected. As a position detection device of this type, Patent Document 1 discloses a position sensor (position detection device) that detects a shift position in a shift device of a vehicle.
 特許文献1に係るポジションセンサでは、被検出体(シフトレバー)に磁石を設け、被検出体のシフト位置にホール素子などの磁気検出素子を設けて構成されている。 In the position sensor according to Patent Document 1, a magnet is provided on a detection subject (shift lever), and a magnetic detection element such as a Hall element is provided at a shift position of the detection subject.
特開2014-20922号公報JP, 2014-20922, A
 特許文献1に開示されているポジションセンサでは、1つまたは2つの磁気検出素子を1つの素子列とし、略直線的に複数の素子列を配列しており、例えば5ポジションの検出のため、6列の素子列が配列されているため、ポジションセンサ自体が大きくなり、車両などへの取り付けの自由度が低下するという問題がある。 In the position sensor disclosed in Patent Document 1, one or two magnetic detection elements are one element row, and a plurality of element rows are arranged substantially linearly, for example, for detection of five positions, 6 Since the element rows of the rows are arranged, the position sensor itself becomes large, and there is a problem that the degree of freedom of attachment to a vehicle or the like is reduced.
 本発明は、上記実情に鑑みてなされたものであり、コンパクトに構成でき、車両などへの取り付けの自由度が高い位置検出装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a position detection device which can be configured compact and has a high degree of freedom of attachment to a vehicle or the like.
 上記目的を達成するため、本発明に係る位置検出装置は、
 操作部への操作に伴い直線的に移動する被検出体と、
 前記被検出体が接近したとき接近検出信号を出力し、前記被検出体が離間したとき離間検出信号を出力する複数の検出素子と、を有する位置検出装置であって、
 前記複数の検出素子は、単数または複数の前記検出素子が列方向に並べられた素子列が複数列にわたって配置され、前記被検出体が前記列方向に直交する方向に沿って第1の位置から第2の位置に移動したときには前記複数の検出素子のうち前記接近検出信号と前記離間検出信号の間で出力する信号が切り替わる前記検出素子の数が3つ以上となるように配置され、前記第2の位置においては互いに隣り合う少なくとも3列の前記素子列の前記検出素子に前記接近検出信号を出力させる、
 ことを特徴とする。
In order to achieve the above object, a position detection device according to the present invention is:
An object to be detected that moves linearly with an operation to the operation unit;
A position detection apparatus comprising: a plurality of detection elements that output an approach detection signal when the object to be detected approaches and output a separation detection signal when the object to be detected is separated,
In the plurality of detection elements, an element row in which one or more detection elements are arranged in the column direction is arranged over a plurality of rows, and the detection target is from the first position along the direction orthogonal to the column direction The plurality of detection elements are arranged such that the number of detection elements switched between the proximity detection signal and the separation detection signal is three or more among the plurality of detection elements when moving to the second position, At position 2, the proximity detection signal is output to the detection elements of the at least three element rows adjacent to each other,
It is characterized by
 本発明によれば、コンパクトに構成でき、車両などへの取り付けの自由度が高い位置検出装置を提供することができる。 According to the present invention, it is possible to provide a position detection device which can be configured compactly and has a high degree of freedom of attachment to a vehicle or the like.
本発明の一実施形態に係る位置検出装置の概略斜視図及び被検出体の概略斜視図である。It is the schematic perspective view of the position detection apparatus which concerns on one Embodiment of this invention, and the schematic perspective view of a to-be-detected body. 回路基板部分の概略斜視図である。It is a schematic perspective view of a circuit board part. 回路基板の平面図である。It is a top view of a circuit board. シフト位置と検出素子の検出の関係の説明図である。It is explanatory drawing of the relationship of a shift position and the detection of a detection element. 他の一実施形態に係る回路基板の平面図である。It is a top view of the circuit board concerning other one embodiment. さらに他の一実施形態に係る回路基板の平面図である。FIG. 10 is a plan view of a circuit board according to still another embodiment. 他の一実施形態に係る回路基板の平面図である。It is a top view of the circuit board concerning other one embodiment.
 本発明の一実施形態に係る位置検出装置を、図面を参照して説明する。 A position detection device according to an embodiment of the present invention will be described with reference to the drawings.
 本発明の一実施形態に係る位置検出装置100は、図1に示すように、例えば、車両に搭載され、変速機のシフトレンジを切り替える操作部の直線的な操作に伴うシフト位置を検出する。シフト位置は、複数設けられ、例えば5つのシフト位置A,B,C,D,Eが設定されてそれぞれの位置が検出される。 A position detection device 100 according to an embodiment of the present invention is mounted on a vehicle, for example, as shown in FIG. 1, and detects a shift position accompanying a linear operation of an operation unit that switches a shift range of a transmission. A plurality of shift positions are provided, and for example, five shift positions A, B, C, D, and E are set, and the respective positions are detected.
 位置検出装置100は、図1,2に示すように、被検出体10と、ホルダ20と、検出素子30と、回路基板40と、を備える。 The position detection apparatus 100 is provided with the to-be-detected body 10, the holder 20, the detection element 30, and the circuit board 40, as shown to FIG.
 被検出体10は、磁石11と、磁石保持部12と、を有する。 The to-be-detected body 10 has the magnet 11 and the magnet holding part 12.
 磁石保持部12は、例えば、ポリアセタール、ポリアミド、ポリテトラフルオロエチレン等の摺動性及び熱可塑性を有する樹脂材からなり、直方体状あるいは立方体状の外形に形成されている。磁石保持部12は、ホルダ20のガイド部21に沿って直線的に移動可能にホルダ20内に収容されている。ホルダ20内には、検出素子30が実装された回路基板40が磁石保持部12の移動方向に沿って平行に配置されている。ホルダ20は、被検出体10と同様の摺動性及び熱可塑性を有する樹脂材で形成されている。
 磁石11は、磁石保持部12の内部に保持される。磁石11は、例えば、円柱状に形成され、径方向に着磁されている。例えば、磁石11と磁石保持部12とは、インサート成形によって一体に形成される。
 磁石11は、図3に示すように、後述する5列の素子列のうち第1のシフト位置(第1の位置)A,Eを除く第2のシフト位置(第2の位置)B,C,Dでは、3列の素子列33のすべての検出素子30に対して検出信号を出力させることができる大きさ(直径)の円柱形とされる。
The magnet holding portion 12 is made of, for example, a resin material having slidability and thermoplasticity such as polyacetal, polyamide, polytetrafluoroethylene or the like, and is formed into a rectangular solid or cubic outer shape. The magnet holding portion 12 is accommodated in the holder 20 so as to be linearly movable along the guide portion 21 of the holder 20. In the holder 20, a circuit board 40 on which the detection element 30 is mounted is disposed in parallel along the moving direction of the magnet holding unit 12. The holder 20 is formed of a resin material having the same slidability and thermoplasticity as the detection target 10.
The magnet 11 is held inside the magnet holder 12. The magnet 11 is formed in, for example, a cylindrical shape and magnetized in the radial direction. For example, the magnet 11 and the magnet holding portion 12 are integrally formed by insert molding.
The magnet 11 is, as shown in FIG. 3, second shift positions (second positions) B and C excluding first shift positions (first positions) A and E among five element rows described later. In the case of (D), it has a cylindrical shape of a size (diameter) capable of outputting a detection signal to all the detection elements 30 of the three element rows 33.
 また、検出素子30の素子列33および素子行34は、磁石11による漏れ磁束などの影響を抑えるために、素子列33および素子行34上の全ての位置で、できるだけ磁界が均一となるように検出素子30を配置してある。ここで、行は図のXD方向、列はYD方向とする。また、検出素子30の素子列33および素子行34の間隔は、図3に示すように、磁石11の各シフト位置(検出位置)A,B,C,D,Eでの検出範囲を破線の円で示したように、磁石11の移動量を最小限として第1のシフト位置A,Eから隣接する第2のシフト位置B,C,Dにそれぞれ移動する場合の距離を小さくしている。
 さらに、検出素子30の配列を、1列または3列のすべての検出素子30を3行に配置して各シフト位置での磁石11の検出範囲の周縁部に検出素子30を位置させ、磁界の変化をできるだけ均一にしている。
 すなわち、第1のシフト位置Aでは、操作方向の後方で第1列の検出素子30に出力させるようにし、第1のシフト位置Eでは、操作方向の前方で第5列の検出素子30に出力させるようにしている。また、第2のシフト位置B,C,Dでは、3列の検出素子30の全てが磁石11の周縁部に位置するように配置し、全ての検出素子30に出力させるようにしている。これにより、位置検出装置100のコンパクト化を図っている。 
Further, in order to suppress the influence of the leakage flux due to the magnet 11 and the like in the element row 33 and the element row 34 of the detection element 30, the magnetic field is made as uniform as possible at all positions on the element row 33 and the element row 34 A detection element 30 is arranged. Here, the row is the XD direction in the figure, and the column is the YD direction. Further, as shown in FIG. 3, the distance between the element row 33 and the element row 34 of the detection element 30 is that the detection range at each shift position (detection position) A, B, C, D, E of the magnet 11 is a broken line. As indicated by the circles, the distance when moving from the first shift positions A and E to the adjacent second shift positions B, C and D is reduced by minimizing the amount of movement of the magnet 11.
Further, all detection elements 30 in one or three columns are arranged in three rows, and the detection elements 30 are positioned at the periphery of the detection range of the magnet 11 at each shift position. Make the change as uniform as possible.
That is, at the first shift position A, the detection element 30 in the first row is made to output at the rear of the operation direction, and at the first shift position E, it is output to the detection element 30 in the fifth row at the front of the operation direction. I am trying to In the second shift positions B, C, and D, all of the three rows of detection elements 30 are disposed at the periphery of the magnet 11 and output to all the detection elements 30. Thus, the position detection device 100 is made compact.
 磁石保持部12には、シフトチェンジの操作を行う際に把持する操作部(図示せず)が取り付けられる。操作部がシフトチェンジの操作によって直線的に操作されると、これに伴って、磁石11を保持した磁石保持部12(つまり、被検出体10)が直線的に各シフト位置に移動される。
 これにより、被検出体10は、ホルダ20に収容された回路基板40に実装された検出素子30に対して各シフト位置に磁石11を直線的に移動することになる。
The magnet holding unit 12 is attached with an operation unit (not shown) that is held when performing a shift change operation. When the operation unit is linearly operated by the operation of the shift change, the magnet holding unit 12 holding the magnet 11 (that is, the object to be detected 10) is linearly moved to each shift position.
As a result, the detection subject 10 linearly moves the magnet 11 to each shift position with respect to the detection element 30 mounted on the circuit board 40 housed in the holder 20.
 回路基板40は、例えば、リジッド基板に各種回路を形成してなるプリント回路板から構成される。回路基板40は、図2に示すように、平面視で長方形状などの矩形状に形成される。検出素子30は、例えば磁気センサ31で構成され、図示しない保護回路とともに、例えば、回路基板40の基板表側に実装される。 The circuit board 40 is formed of, for example, a printed circuit board in which various circuits are formed on a rigid board. As shown in FIG. 2, the circuit board 40 is formed in a rectangular shape such as a rectangular shape in a plan view. The detection element 30 includes, for example, a magnetic sensor 31, and is mounted on the front surface side of the circuit board 40 together with a protection circuit (not shown).
 磁気センサ31は磁石11が形成する磁場の大きさに応じた検出信号(電圧信号)を制御部50へ出力する。
 磁気センサ31は、例えば、ホール素子又は磁気抵抗素子と、信号処理回路とを有する1チップのセンサIC(Integrated Circuit)32から構成されている。
 この実施形態では、図2,3に示すように、センサIC(磁気センサ)32は、8個のセンサIC32-1~32-8で構成され、1個乃至複数個のセンサIC32を1つの素子列33として5列の素子列33-1~33-5で構成され、被検出体10の5つのシフト位置A,B,C,D,Eに応じて回路基板40に実装されている。保護回路は、抵抗、コンデンサ及び回路基板40に形成された図示しない配線パターンから構成され、センサIC32などを過電流などから保護する。
 検出素子30の8個のセンサIC32による5列の素子列33の配列及び、これによって検出する5つのシフト位置A~Eで、隣接するシフト位置への移動に対し、少なくとも3つのセンサIC32の出力信号を変化させる(ハミング距離3としている)。
 なお、これらについての詳細は、後述する。
The magnetic sensor 31 outputs a detection signal (voltage signal) corresponding to the magnitude of the magnetic field formed by the magnet 11 to the control unit 50.
The magnetic sensor 31 is configured of, for example, a sensor IC (Integrated Circuit) 32 of one chip having a Hall element or a magnetoresistive element and a signal processing circuit.
In this embodiment, as shown in FIGS. 2 and 3, the sensor IC (magnetic sensor) 32 is composed of eight sensor ICs 32-1 to 32-8, and one or a plurality of sensor ICs 32 is one element. The row 33 includes five rows of elements 33-1 to 33-5, which are mounted on the circuit board 40 according to the five shift positions A, B, C, D, and E of the detection subject 10. The protection circuit is composed of a resistor, a capacitor, and a wiring pattern (not shown) formed on the circuit board 40, and protects the sensor IC 32 and the like from overcurrent and the like.
The arrangement of the five element rows 33 by eight sensor ICs 32 of the detection element 30 and the five shift positions A to E detected thereby, the outputs of at least three sensor ICs 32 for movement to adjacent shift positions Change the signal (Hamming distance 3).
The details of these will be described later.
 制御部50は、検出素子30を構成するセンサIC32-1~32-8の各々から検出信号を取得し、取得した検出信号に基づき、磁石11を有する被検出体10の位置、つまり、シフト位置を検出する。制御部50は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えて構成され、回路基板40と、例えば、車両内に配設されたECU(Electronic Control Unit)と導通接続して構成される。なお、制御部50は、回路基板40の裏側に実装されていても良い。 The control unit 50 acquires detection signals from each of the sensor ICs 32-1 to 32-8 constituting the detection element 30, and based on the acquired detection signals, the position of the detection target 10 having the magnet 11, that is, the shift position To detect The control unit 50 includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like, and includes a circuit board 40 and an electronic control unit (ECU) disposed in the vehicle, for example. It is connected conductively with Unit). The control unit 50 may be mounted on the back side of the circuit board 40.
 制御部50は、例えば、以下のようにして被検出体10の位置(シフト位置)を検出する。
 検出素子30を構成するセンサIC32-1~32-8の各々からは、磁石11の位置に応じた検出電圧が出力される。これらの検出電圧は、例えば、図示しないコンパレータに入力されて予め定められた閾値電圧と比較される。
 センサIC32からは、検出電圧が閾値電圧以上Hiの場合にはオン信号(1)が制御部50に出力される。つまり、オン信号(1)を出力するセンサIC32はオン状態となる。
 また、検出電圧が閾値電圧より小さいLoの場合には制御部50にオフ信号(0)が出力される。つまり、オフ信号(0)を出力するセンサICはオフ状態となる。
 制御部50は、各センサIC32-1~32-8のオン状態(1)またはオフ状態(0)の組み合わせと、シフト位置A,B,C,D,Eの各位置とを対応付けて構成したテーブルを予めROM内に記憶しており、当該テーブルを参照して、各センサIC32-1~32-8から取得したオン信号(1)又はオフ信号(0)に応じたシフト位置A~Eを特定する。
 このように、シフト位置を特定した制御部50は、特定したシフト位置に応じた指示を車両側に与え、当該指示に応じて車両の変速機のシフトレンジが切り替えられる。
The control unit 50 detects, for example, the position (shift position) of the detection subject 10 as follows.
A detection voltage corresponding to the position of the magnet 11 is output from each of the sensor ICs 32-1 to 32-8 constituting the detection element 30. These detected voltages are input to, for example, a comparator (not shown) and compared with a predetermined threshold voltage.
The sensor IC 32 outputs an on signal (1) to the control unit 50 when the detected voltage is higher than the threshold voltage Hi. That is, the sensor IC 32 that outputs the on signal (1) is turned on.
When the detected voltage is Lo smaller than the threshold voltage, an off signal (0) is output to the control unit 50. That is, the sensor IC that outputs the off signal (0) is turned off.
The control unit 50 is configured by associating the combination of the on state (1) or the off state (0) of each of the sensor ICs 32-1 to 32-8 with each of the shift positions A, B, C, D, and E. The stored table is stored in advance in the ROM, and the shift position A to E corresponding to the on signal (1) or the off signal (0) acquired from each of the sensor ICs 32-1 to 32-8 with reference to the table. Identify
Thus, the control unit 50 specifying the shift position gives an instruction according to the specified shift position to the vehicle side, and the shift range of the transmission of the vehicle is switched according to the instruction.
 この実施形態では、検出素子30を構成する8個のセンサIC32-1~32-8は、図3に示すように、5列の素子列33-1~33-5に配列されており、操作部の操作方向に沿って第1列33-1、第2列33-2、第3列33-3、第4列33-4及び第5列33-5が配列されている。
 また、8個のセンサIC32-1~32-8は、列33と直交する第1行34-1、第2行34-2、第3行34-3の3つの行34に配列されている。
In this embodiment, the eight sensor ICs 32-1 to 32-8 constituting the detection element 30 are arranged in five element rows 33-1 to 33-5, as shown in FIG. A first row 33-1, a second row 33-2, a third row 33-3, a fourth row 33-4 and a fifth row 33-5 are arranged along the operation direction of the unit.
In addition, eight sensor ICs 32-1 to 32-8 are arranged in three rows 34 of a first row 34-1, a second row 34-2, and a third row 34-3 orthogonal to the column 33. .
 さらに、8個のセンサIC32-1~32-8は、図4に示すように、グループXのX-1~X-4とグループYのY-5~Y-8の2つのグループX,Yに属するものに分けて配列されている。
 2つのグループX,Yは、第1グループXに属するセンサIC32と第2グループYに属するセンサIC32は、それぞれ異なる電源から電力を受けるように構成される。これにより、一方のグループのセンサIC32への電力の供給を行う電源が故障しても他方のグループのセンサIC32での検出が可能となり、位置検出装置100の機能を確保することができる。
 8個のセンサIC32-1~32-8とグループX,YのセンサIC X-1~X-4,Y-5~Y-8の関係は、第1グループXには、第2のセンサIC32-2(=X-1)、第4のセンサIC32-4(=X-2)、第5のセンサIC32-5(=X-3)及び第8のセンサIC32-8(=X-4)が属し、第2グループYには、第1のセンサIC32-1(=Y-5)、第3のセンサIC32-3(=Y-6)、第6のセンサIC32-6(=Y-7)及び第7のセンサIC32-7(=Y-8)が属する。
 また、第2列33-2と第4列33-4をそれぞれ1個のセンサIC32とし、グループYのY-6,Y-7とする一方、第3列33-3の2個のセンサIC32を両方ともグループXのX-2,X-3としているので、グループXまたはグループYの上記の2個のセンサIC32の動作状態の変化からどちらのグループの電源が故障しているかを判定することができる。
Furthermore, as shown in FIG. 4, the eight sensor ICs 32-1 to 32-8 have two groups X and Y of X-1 to X-4 of group X and Y-5 to Y-8 of group Y. It is divided and arranged to belong to.
The two groups X and Y are configured such that the sensor IC 32 belonging to the first group X and the sensor IC 32 belonging to the second group Y receive power from different power supplies. As a result, even if the power supply for supplying power to the sensor IC 32 of one group fails, detection by the sensor IC 32 of the other group becomes possible, and the function of the position detection device 100 can be secured.
The relationship between the eight sensor ICs 32-1 to 32-8 and the sensor ICs X-1 to X-4 and Y-5 to Y-8 of the groups X and Y is that in the first group X, the second sensor IC 32 is used. -2 (= X-1), fourth sensor IC 32-4 (= X-2), fifth sensor IC 32-5 (= X-3), and eighth sensor IC 32-8 (= X-4) Belong to the second group Y, the first sensor IC 32-1 (= Y-5), the third sensor IC 32-3 (= Y-6), the sixth sensor IC 32-6 (= Y-7). And the seventh sensor IC 32-7 (= Y-8).
The second row 33-2 and the fourth row 33-4 are respectively one sensor IC 32 and Y-6 and Y-7 of the group Y, while the two sensor ICs 32 of the third row 33-3 Since both are group X's X-2 and X-3, it is necessary to determine which group's power supply has failed from changes in the operating status of the above two sensor ICs 32 in group X or group Y. Can.
 また、2つのグループX,Yは、複数のセンサIC32のうち第1グループXに属するセンサIC32は、検出信号(接近検出信号)をHi信号としてオン信号を出力し、検出信号(離間検出信号)をLo信号として出力し、複数のセンサIC32のうち第2グループYに属するセンサIC32は、検出信号(接近検出信号)をLo信号として出力し、検出信号(離間検出信号)をHi信号として出力するように分けられる。すなわち、検出信号の閾値のHiとLoを逆に設定してあり、グループXに属する4個のセンサIC32(X-1~X-4)は、磁石11が位置することによりHi信号によりオン信号を出力し、グループYに属する4個のセンサIC32(Y-5~Y-8)は、磁石が位置することによりLo信号によりオン信号を出力する。これにより、センサICの故障などを2つのグループX,Yのいずれに属するかを制御部50で判定することで、故障したセンサIC32を判別することに利用できる。 Further, the sensor IC 32 belonging to the first group X among the plurality of sensor ICs 32 of the two groups X and Y outputs an ON signal with the detection signal (approach detection signal) as a Hi signal, and the detection signal (separation detection signal) Is output as the Lo signal, and the sensor IC 32 belonging to the second group Y among the plurality of sensor ICs 32 outputs the detection signal (approach detection signal) as the Lo signal and outputs the detection signal (separation detection signal) as the Hi signal. It is divided as follows. That is, the threshold values Hi and Lo of the detection signal are set reversely, and the four sensor ICs 32 (X-1 to X-4) belonging to the group X are turned on by the Hi signal when the magnet 11 is positioned. The four sensor ICs 32 (Y-5 to Y-8) belonging to the group Y output the ON signal by the Lo signal when the magnet is positioned. As a result, the control unit 50 can determine which one of the two groups X and Y the failure or the like of the sensor IC belongs to, thereby determining the failed sensor IC 32.
 次に、検出素子30を構成するセンサIC32の配列について具体的に説明する。
 (第1列)
 第1列33-1の素子列には、第1のセンサIC32-1と第2のセンサIC32-2の2個が操作方向と直交する行方向に配列されている。第1列33-1の素子列には、第1のセンサIC32-1が第2行34-2に配列され、第2のセンサICが第1行34-1にそれぞれ配列されることで、2行に配列されている。第1行34-1と第2行34-2とは、図3に示すように、磁石11の中心を通る操作方向を挟んで配置されている。
 また、図4に示すように、第1のセンサIC32-1がグループYに属してY-5を構成し、第2のセンサIC32-2がグループXに属してX-1を構成している。
Next, the arrangement of the sensor ICs 32 constituting the detection element 30 will be specifically described.
(First column)
In the element column of the first column 33-1, two of the first sensor IC 32-1 and the second sensor IC 32-2 are arranged in a row direction orthogonal to the operation direction. The first sensor ICs 32-1 are arranged in the second row 34-2 and the second sensor ICs are arranged in the first row 34-1 in the element column of the first column 33-1. It is arranged in two lines. As shown in FIG. 3, the first row 34-1 and the second row 34-2 are disposed across the operation direction passing the center of the magnet 11.
Further, as shown in FIG. 4, the first sensor IC 32-1 belongs to group Y to constitute Y-5, and the second sensor IC 32-2 belongs to group X to constitute X-1 .
 (第2列)
 第2列33-2の素子列には、第3のセンサIC32-3の1個が操作方向と直交する行方向に配列されている。この第3のセンサIC32-3は、第1列33-1の素子列の2個の第1のセンサIC32-1と第2のセンサIC32-2とは異なる3行目の第3行34-3に配列されている。第3行34-3は、図3に示すように、磁石11の検出範囲の操作方向と直交する外縁部(図3での上方部)に配置されており、磁界の変化を均一にできるようにしてある。
 第3のセンサIC32-3は、グループYに属し、Y-6を構成する。
(Second column)
In the element column of the second column 33-2, one third sensor IC 32-3 is arranged in a row direction orthogonal to the operation direction. The third sensor IC 32-3 is arranged in the third row 34- of the third row, which is different from the two first sensor ICs 32-1 and the second sensor IC 32-2 in the element row of the first column 33-1. It is arranged in three. The third row 34-3, as shown in FIG. 3, is disposed at the outer edge (upper part in FIG. 3) orthogonal to the operation direction of the detection range of the magnet 11 so that the change of the magnetic field can be made uniform. It is.
The third sensor IC 32-3 belongs to the group Y and configures Y-6.
 (第3列)
 第3列33-3の素子列には、第4のセンサIC32-4と第5のセンサIC32-5の2個が操作方向と直交する行方向に配列されている。第3列33-3の素子列の第4のセンサIC32-4は、第1列33-1の第1のセンサIC32-1と同一の第2行34-2に配列され、第5のセンサIC32-5が第1列33-1の第2のセンサIC32-2と同一の第1行34-1にそれぞれ配列されることで、2行に配列されている。
 また、図4に示すように、第4のセンサIC32-4がグループXに属してX-2を構成し、第5のセンサIC32-5もグループXに属してX-3を構成している。
(3rd column)
In the element row of the third column 33-3, two of the fourth sensor IC 32-4 and the fifth sensor IC 32-5 are arranged in a row direction orthogonal to the operation direction. The fourth sensor IC 32-4 of the element column of the third column 33-3 is arranged in the second row 34-2 identical to the first sensor IC 32-1 of the first column 33-1, and the fifth sensor The ICs 32-5 are arranged in two rows by being arranged in the same first row 34-1 as the second sensor IC 32-2 in the first column 33-1.
Further, as shown in FIG. 4, the fourth sensor IC 32-4 belongs to the group X to constitute X-2, and the fifth sensor IC 32-5 also belongs to the group X to constitute X-3. .
 (第4列)
 第4列33-4の素子列には、第6のセンサIC32-6の1個が操作方向と直交する行方向に配列されている。この第6のセンサIC32-6は、第1列33-1の素子列の2個の第1のセンサIC32-1と第2のセンサIC32-2とは異なり、第2列の第3のセンサIC32-3と同一の3行目の第3行34-3に配列されている。
 第6のセンサIC32-6は、図4に示すように、グループYに属し、Y-7を構成する。
(4th column)
In the fourth element row 33-4, one sixth sensor IC 32-6 is arranged in a row direction orthogonal to the operation direction. The sixth sensor IC 32-6 is different from the two first sensor ICs 32-1 and the second sensor IC 32-2 of the element row of the first row 33-1 in that the third sensor of the second row It is arranged in the 3rd line 34-3 of the 3rd line same as IC32-3.
The sixth sensor IC 32-6 belongs to the group Y and constitutes Y-7 as shown in FIG.
 (第5列)
 第5列33-5の素子列には、第7のセンサIC32-7と第8のセンサIC32-8の2個が操作方向と直交する行方向に配列されている。第5列33-5の素子列には、第7のセンサIC32-7が第2行34-2に配列され、第8のセンサIC32-8が第1行34-1にそれぞれ配列されることで、2行に配列されている。
 また、図4に示すように、第7のセンサIC32-7がグループYに属してY-8を構成し、第8のセンサIC32-8がグループXに属してX-4を構成している。
(5th column)
In the fifth element row 33-5, two seventh sensor ICs 32-7 and eighth sensor ICs 32-8 are arranged in a row direction orthogonal to the operation direction. The seventh sensor IC 32-7 is arranged in the second row 34-2 and the eighth sensor IC 32-8 is arranged in the first row 34-1 in the fifth element row 33-5. And are arranged in two lines.
Further, as shown in FIG. 4, the seventh sensor IC 32-7 belongs to group Y to constitute Y-8, and the eighth sensor IC 32-8 belongs to group X to constitute X-4. .
 (シフト位置A,E)
 磁石11が設けられた被検出体10は、第1の位置であるシフト位置Aでは、図3に示すように、第1列33-1のセンサIC32に検出信号を出力させる。すなわち、第1の位置であるシフト位置Aでは、第1列33-1の2個の第1のセンサIC32-1(Y-5)と第2のセンサIC32-2(X-1)に検出信号を出力させる。
 この第1の位置は、シフト位置Eであっても同様であり、第5列33-5の2個の第7のセンサIC32-7(Y-8)と第8のセンサIC32-8(X-4)に検出信号を出力させる。
(Shift position A, E)
The detected object 10 provided with the magnet 11 causes the sensor IC 32 in the first row 33-1 to output a detection signal at the shift position A, which is the first position, as shown in FIG. That is, at the shift position A which is the first position, the two first sensor ICs 32-1 (Y-5) and the second sensor IC 32-2 (X-1) in the first row 33-1 are detected. Output a signal.
The first position is the same even in the shift position E, and the second seventh sensor IC 32-7 (Y-8) and the eighth sensor IC 32-8 (X) in the fifth row 33-5 are the same. -Output the detection signal to-4).
 (シフト位置B)
 第1のシフト位置から第2のシフト位置に移動したときには、第2のシフト位置B,C,Dにおいては、互いに隣り合う少なくとも3列の素子列33のセンサIC32に検出信号を出力させる。
 すなわち、第2のシフト位置Bにおいては、第1列33-1、第2列33-2、第3列33-3の5個の磁気センサ31に検出信号を出力させる。つまり、第1のセンサIC32-1(Y-5)、第2のセンサIC32-2(X-1)、第3のセンサIC32-3(Y-6)、第4のセンサIC32-4(X-2)、第5のセンサIC32-5(X-3)の5個のセンサIC32の3列5個に検出信号を出力させる。
(Shift position B)
When moving from the first shift position to the second shift position, at the second shift positions B, C, D, detection signals are output to the sensor ICs 32 of the at least three element rows 33 adjacent to each other.
That is, at the second shift position B, detection signals are output to the five magnetic sensors 31 in the first row 33-1, the second row 33-2, and the third row 33-3. That is, the first sensor IC 32-1 (Y-5), the second sensor IC 32-2 (X-1), the third sensor IC 32-3 (Y-6), the fourth sensor IC 32-4 (X) -2) The detection signal is output to five rows of five sensor ICs 32 of the fifth sensor IC 32-5 (X-3).
 (シフト位置C)
 第2のシフト位置Cにおいては、第2列33-2、第3列33-3、第4列33-4のセンサIC32に検出信号を出力させ、第3のセンサIC32-3~第6のセンサIC32-6の4個のセンサIC32に検出信号を出力させる。つまり、第3のセンサIC32-3(Y-6)、第4のセンサIC32-4(X-2)、第5のセンサIC32-5(X-3)、第6のセンサIC32-6(Y-7)の3列4個に検出信号を出力させる。
(Shift position C)
At the second shift position C, detection signals are output to the sensor ICs 32 in the second row 33-2, the third row 33-3, and the fourth row 33-4, and the third sensor ICs 32-3 to A detection signal is output to four sensor ICs 32 of the sensor IC 32-6. That is, the third sensor IC 32-3 (Y-6), the fourth sensor IC 32-4 (X-2), the fifth sensor IC 32-5 (X-3), the sixth sensor IC 32-6 (Y The detection signal is output to four in three rows of -7).
 (シフト位置D)
 第2のシフト位置Dにおいては、第3列33-3、第4列33-4,第5列33-5のセンサIC32に検出信号を出力させ、第4のセンサIC32-4~第8のセンサIC32-8の5個の磁気センサ31に検出信号を出力させる。つまり、第4のセンサIC32-4(X-2)、第5のセンサIC32-5(X-3)、第6のセンサIC32-6(Y-7)、第7のセンサIC32-7(Y-8)、第8のセンサIC32-8(X-4)の3列5個に検出信号を出力させる。
(Shift position D)
In the second shift position D, the detection signal is output to the sensor IC 32 in the third row 33-3, the fourth row 33-4, and the fifth row 33-5, and the fourth sensor IC 32-4 to the eighth The detection signals are output to the five magnetic sensors 31 of the sensor IC 32-8. That is, the fourth sensor IC 32-4 (X-2), the fifth sensor IC 32-5 (X-3), the sixth sensor IC 32-6 (Y-7), the seventh sensor IC 32-7 (Y -8) The fifth sensor IC 32-8 (X-4) outputs a detection signal to five rows of five.
 このような検出素子30を8個のセンサIC32-1~32-8で構成し、5列の素子列33-1~33-5に配列することにより、第1のシフト位置A,Eから第2のシフト位置B,C,Dに移動したときには、複数のセンサIC32のうち検出信号が切り替わるセンサIC32の数が3つ(ハミング距離3)以上となるように配置されている。 By arranging such a detection element 30 with eight sensor ICs 32-1 to 32-8 and arranging them in five element rows 33-1 to 33-5, the first shift positions A and E When moving to shift positions B, C, and D of 2, the number of sensor ICs 32 to which the detection signal switches among the plurality of sensor ICs 32 is three or more (the Hamming distance 3) or more.
 次に、各シフト位置A~Eでの隣接するシフト位置への変化とセンサIC32の出力信号の関係について、図4に基づき具体的に説明する。なお、図4では、横の行の1~4は、グループXの検出素子であるセンサIC X-1~X-4を示し、横の行の5~8は、グループYの検出素子であるセンサIC Y-5~Y-8を示す。また、グループXでは、検出信号が1の場合が検出状態のオンを示し、グループYでは検出信号が0の場合が検出状態のオンを示す。 Next, the relationship between the change to the adjacent shift position at each of the shift positions A to E and the output signal of the sensor IC 32 will be specifically described based on FIG. In FIG. 4, 1 to 4 in the horizontal row indicate the sensors IC X-1 to X-4 which are detection elements in group X, and 5 to 8 in the horizontal rows are detection elements in group Y. Sensor ICs Y-5 to Y-8 are shown. Moreover, in the group X, the case where the detection signal is 1 indicates that the detection state is on, and in the group Y, the case where the detection signal is 0 indicates that the detection state is on.
 (シフト位置AからBへ)
 シフト位置Aでは、被検出体10の磁石11が第1列33-1上にのみ位置し、第1列33-1のセンサIC X-1がオン(1)となり、センサIC Y-5がオン(0)となる。
 このシフト位置AからBに操作されると、磁石11が第1列33-1に加えた第2列33-2及び第3列33-3上に位置する。
 これにより、第3列33-3の2つのセンサIC X-2,X-3がオン(1)に変化し、第2列33-2のセンサIC Y-6がオン(0)に変化する。
 これにより、シフト位置Aから隣接するシフト位置Bに操作されると、センサIC X-2,X-3及びY-6の3つの検出信号が変化し、シフト位置Bを検出することができる。
 このシフト位置Bの検出の際は、3つセンサIC32の検出信号が変化することで、例え3個のうち1個のセンサIC32が故障しても残りの2個のセンサIC32でシフト位置Bを検出することができる。
(From shift position A to B)
In the shift position A, the magnets 11 of the detection object 10 are located only on the first row 33-1, the sensor IC X-1 of the first row 33-1 is turned on (1), and the sensor IC Y-5 is It will be on (0).
When operated from this shift position A to B, the magnets 11 are positioned on the second row 33-2 and the third row 33-3 added to the first row 33-1.
As a result, the two sensor ICs X-2 and X-3 in the third row 33-3 change to ON (1), and the sensor IC Y-6 in the second row 33-2 changes to ON (0). .
Thereby, when the shift position A is operated to the adjacent shift position B, the three detection signals of the sensors IC X-2, X-3 and Y-6 change, and the shift position B can be detected.
When detecting this shift position B, the detection signals of the three sensor ICs 32 change, so that even if one of the three sensor ICs 32 fails, the remaining two sensor ICs 32 shift position B. It can be detected.
 (シフト位置BからCへ)
 このシフト位置BからCに操作されると、磁石11が第1列33-1上から離間し、第2列33-2及び第3列33-3に加えて第4列33-4上に位置する。すると、第1列33-1のセンサIC X-1がオフ(0)に変化し、センサIC Y-5がオフ(1)に変化する。また、第4列33-4のセンサIC Y-7がオン(0)となる。
 これにより、シフト位置Bから隣接するシフト位置Cに操作されると、センサIC X-1,Y-5及びY-7の3つのセンサIC32の検出信号が変化し、シフト位置Cを検出することができる。このシフト位置Cの検出の際は、3つのセンサIC32の検出信号が変化することで、例え3個のうち1個のセンサIC32が故障しても残りの2個のセンサIC32でシフト位置Cを検出することができる。
(From shift position B to C)
When the shift position B is operated from C to C, the magnets 11 are separated from the first row 33-1 and added to the second row 33-2 and the third row 33-3 to the fourth row 33-4. To position. Then, the sensor IC X-1 in the first row 33-1 is turned off (0), and the sensor IC Y-5 is turned off (1). Also, the sensor IC Y-7 in the fourth row 33-4 is turned on (0).
Thus, when the shift position B is operated to the adjacent shift position C, the detection signals of the three sensor ICs 32 of the sensors IC X-1, Y-5 and Y-7 change, and the shift position C is detected. Can. When detecting the shift position C, the detection signals of the three sensor ICs 32 change, so that even if one of the three sensor ICs 32 fails, the remaining two sensor ICs 32 shift position C. It can be detected.
 (シフト位置CからDへ)
 このシフト位置CからDに操作されると、磁石11が第2列33-2上から離間し、第3列33-3及び第4列33-4に加えて第5列33-5上に位置する。すると、第2列33-2のセンサIC Y-6がオフ(1)に変化する。また、第5列33-5のセンサIC Y-8がオン(0)となり、センサIC X-4がオン(1)に変化する。
 これにより、シフト位置Cから隣接するシフト位置Dに操作されると、センサIC X-4,Y-6及びY-8の3つの検出信号が変化し、シフト位置Dを検出することができる。このシフト位置Dの検出の際は、3つのセンサIC32の検出信号が変化することで、例え3個のうち1個のセンサIC32が故障しても残りの2個のセンサIC32でシフト位置Dを検出することができる。
(Shift position C to D)
When operated from this shift position C to D, the magnet 11 is separated from the second row 33-2 and is added to the third row 33-3 and the fourth row 33-4 to the fifth row 33-5. To position. Then, the sensor IC Y-6 in the second row 33-2 changes to OFF (1). Further, the sensor IC Y-8 in the fifth row 33-5 is turned on (0), and the sensor IC X-4 is turned on (1).
Thereby, when the shift position C is operated to the adjacent shift position D, the three detection signals of the sensors IC X-4, Y-6 and Y-8 change, and the shift position D can be detected. When detecting this shift position D, the detection signals of the three sensor ICs 32 change, so that even if one of the three sensor ICs 32 fails, the remaining two sensor ICs 32 shift position D. It can be detected.
 (シフト位置DからEへ)
 このシフト位置Dからシフト位置Eに操作されると、磁石11が第3列33-3及び第4列33-4上から離間し、第5列33-5上にのみ位置する。すると、第3列33-3のセンサIC X-2及びX-3がオフ(0)に変化し、第4列33-4のセンサIC Y-7がオフ(1)に変化する。また、第5列33-5のセンサIC Y-8がオン(0)となり、センサIC X-4がオン(1)となる。
 これにより、シフト位置Dから隣接するシフト位置Eに操作されると、センサIC X-2,X-3及びY-7の3つの検出信号が変化し、シフト位置Eを検出することができる。このシフト位置Eの検出の際は、3つのセンサIC32の検出信号が変化することで、例え3個のセンサIC32のうち1個のセンサIC32が故障しても残りの2個のセンサIC32でシフト位置Eを検出することができる。
 なお、シフト位置Eを第1のシフト位置として逆方向に操作する場合も同様にして各シフト位置A~Eを検出することができる。
 以上のようにして位置検出装置100では、5つのシフト位置A~Eを検出することができる。
(From shift position D to E)
When the shift position D is operated to the shift position E, the magnets 11 are separated from the third row 33-3 and the fourth row 33-4 and located only on the fifth row 33-5. Then, the sensor IC X-2 and X-3 in the third row 33-3 are turned off (0), and the sensor IC Y-7 in the fourth row 33-4 is turned off (1). Further, the sensor IC Y-8 in the fifth row 33-5 is turned on (0), and the sensor IC X-4 is turned on (1).
Thereby, when the shift position D is operated to the adjacent shift position E, the three detection signals of the sensors IC X-2, X-3 and Y-7 change, and the shift position E can be detected. At the time of detection of the shift position E, the detection signals of the three sensor ICs 32 change, so that even if one sensor IC 32 of the three sensor ICs 32 breaks down, the remaining two sensor ICs 32 shift Position E can be detected.
When the shift position E is operated in the reverse direction as the first shift position, the shift positions A to E can be similarly detected.
As described above, the position detection apparatus 100 can detect five shift positions A to E.
 次に、位置検出装置100で、4つのシフト位置を検出する場合について説明する。
 4つのシフト位置の検出では、上記の5つのシフト位置A~Eのうち、両端部のシフト位置A,またはEを使用しないことで、4つのシフト位置A,B,C,Dまたは、シフト位置B,C,D,Eとして検出することができ、図4に示したように、3つのセンサIC32の変化によって4つのシフト位置をそれぞれ検出することができる。
 また、5つのシフト位置の検出の場合と同様に、例え3個のセンサIC32のうち1個のセンサIC32が故障しても残りの2個のセンサIC32で4つの各シフト位置を検出することができる。
Next, a case where four shift positions are detected by the position detection apparatus 100 will be described.
In the detection of four shift positions, four shift positions A, B, C, D or shift positions can be obtained by not using shift positions A or E at both ends among the above-mentioned five shift positions A to E It can be detected as B, C, D, and E, and as shown in FIG. 4, four shift positions can be detected by changes in the three sensor ICs 32.
Also, as in the case of detection of five shift positions, even if one sensor IC 32 out of three sensor ICs 32 fails, the four remaining shift positions can be detected by the remaining two sensor ICs 32. it can.
 4つのシフト位置を検出する場合に、図5に示すように、5つのシフト位置A~Eのうちシフト位置Cを除くシフト位置A,B,D,Eを用いて構成することができる。
 この場合には、シフト位置AからB及びシフト位置Dからシフト位置Eへの検出は、既に説明した図3及び図4の場合と同一であるので、重複する説明は、省略する。
 (シフト位置BからDへ)
 シフト位置Bで磁石11が位置していた第1列33-1及び第2列33-2から磁石11が離間するとともに、第3列33-3に加えて第4列33-4及び第5列33-5上に磁石11が位置する。すると、第1列33-1のセンサIC X-1がオフ(0)に変化し、センサIC Y-5がオフ(1)に変化する。また、第2列33-2のセンサIC Y-6がオフ(1)に変化する。さらに、第4列33-4のセンサIC Y-7がオン(0)となり、第5列33-5のセンサIC Y-8がオン(0)となり、センサIC X-4がオン(1)に変化する。
 これにより、シフト位置Bから隣接するシフト位置Dに操作されると、センサIC X-1,X-4,Y-5、Y-6、Y-7及びY-8の6つの検出信号が変化し、シフト位置Dを検出することができる。
 この場合にも6つのセンサIC32の検出信号が変化することで、例え6個のセンサIC32のうち1個のセンサIC32が故障しても残りの5個のセンサIC32でシフト位置Dを検出することができる。
 以上のように、位置検出装置100で4つのシフト位置を検出する場合には、いずれの場合でもセンサIC32は、5つのシフト位置を検出する場合と同様に、5列の素子列33-1~33-5で、3行の素子行34-1~34-3の8個のセンサIC32を用いることで4つの各シフト位置を検出することができる。
When four shift positions are detected, as shown in FIG. 5, among the five shift positions A to E, shift positions A, B, D, and E excluding shift position C can be used.
In this case, the detection from the shift position A to B and from the shift position D to the shift position E is the same as in the case of FIG. 3 and FIG.
(Shift position B to D)
The magnet 11 is separated from the first row 33-1 and the second row 33-2 where the magnet 11 was located at the shift position B, and in addition to the third row 33-3, the fourth row 33-4 and the fifth row 33-4 The magnet 11 is located on the row 33-5. Then, the sensor IC X-1 in the first row 33-1 is turned off (0), and the sensor IC Y-5 is turned off (1). In addition, the sensor IC Y-6 in the second row 33-2 changes to OFF (1). Further, the sensor IC Y-7 in the fourth row 33-4 is turned on (0), the sensor IC Y-8 in the fifth row 33-5 is turned on (0), and the sensor IC X-4 is turned on (1) Change to
Thus, when the shift position B is operated to the adjacent shift position D, the six detection signals of the sensors IC X-1, X-4, Y-5, Y-6, Y-7 and Y-8 change. And the shift position D can be detected.
Also in this case, even if one sensor IC 32 of the six sensor ICs 32 fails, the shift position D is detected by the remaining five sensor ICs 32 by changing detection signals of the six sensor ICs 32. Can.
As described above, when detecting four shift positions by the position detection apparatus 100, in any case, the sensor IC 32 performs five element rows 33-1 to 5-6 as in the case of detecting five shift positions. At 33-5, four shift positions can be detected by using eight sensor ICs 32 of three element rows 34-1 to 34-3.
 次に、位置検出装置100により3つのシフト位置を検出する場合について説明する。
 3つのシフト位置は、上記のシフト位置A,B,C(またはシフト位置C,D,E)とする場合には、図6に示すように、センサIC32を4列の素子列33-1~33-4(または素子列33-2~33-5)で構成して3つのシフト位置A,B,C(またはシフト位置C,D,E)を検出することができる。
 この場合のシフト位置A,B,C(またはシフト位置C,D,E)の隣接するシフト位置への移動によるセンサIC32の出力信号の関係については、図4で説明した通りであり、重複する説明は省略する。
 この場合にも3つのセンサIC32の検出信号が変化することで、例え3個のセンサIC32のうち1個のセンサIC32が故障しても残りの2個のセンサIC32で3つの各シフト位置を検出することができる。
Next, the case where the position detection apparatus 100 detects three shift positions will be described.
When the three shift positions are the above shift positions A, B, C (or shift positions C, D, E), as shown in FIG. The three shift positions A, B and C (or shift positions C, D and E) can be detected by being configured by 33-4 (or element rows 33-2 to 33-5).
The relationship of the output signal of the sensor IC 32 by the movement of the shift position A, B, C (or the shift position C, D, E) to the adjacent shift position in this case is as described in FIG. The description is omitted.
Also in this case, even if one of the three sensor ICs 32 fails, the remaining two sensor ICs 32 detect each of the three shift positions by changing the detection signals of the three sensor ICs 32. can do.
 また、3つのシフト位置をシフト位置A,C,Eとすることでも検出することもできるが、この場合には、図7に示すように、それぞれのシフト位置A,C,Eにそれぞれ独立したセンサIC32を配置する場合と同様になる。
 この場合にもセンサIC32でシフト位置Aからシフト位置C、あるいは、シフト位置Cからシフト位置Eへの操作に伴って6つのセンサIC32の検出信号が変化することで、例え6個のセンサIC32のうち1個のセンサIC32が故障しても残りの5個のセンサIC32で3つの各シフト位置を検出することができる。
Alternatively, three shift positions may be detected as shift positions A, C, and E. In this case, as shown in FIG. 7, the shift positions A, C, and E are independent of each other. It becomes the same as the case where sensor IC 32 is arranged.
Also in this case, the detection signals of the six sensor ICs 32 change as the sensor IC 32 operates from the shift position A to the shift position C or from the shift position C to the shift position E, so that, for example, six sensors IC 32 Even if one sensor IC 32 fails, the remaining five sensor ICs 32 can detect each of the three shift positions.
 以上、実施形態とともに、具体的に説明したように位置検出装置100によれば、操作部への操作に伴い直線的に移動する被検出体10と、被検出体10が接近したとき検出信号(接近検出信号)を出力し、被検出体10が離間したとき検出信号(離間検出信号)を出力する複数のセンサIC(検出素子)32と、を有する位置検出装置100であって、複数のセンサIC32は、単数または複数のセンサIC32が列方向に並べられた素子列33が複数列にわたって配置され、被検出体10が列方向に直交する方向に沿って第1のシフト位置(位置)A(E)から第2のシフト位置(位置)B,C,Dに移動したときには複数のセンサIC32のうち検出信号(接近検出信号)と検出信号(離間検出信号)の間で出力する信号が切り替わるセンサIC32の数が3つ以上となるように配置され、第2のシフト位置においては互いに隣り合う少なくとも3列の素子列33のセンサIC32に検出信号(接近検出信号)を出力させる。
 これにより、第2のシフト位置B,C,Dで3列のセンサIC32の検出信号を用いてシフト位置を検出するので、操作方向のセンサIC32の配列を、例えば5列として5つのシフト位置を検出することができ、操作方向の位置検出装置100の大きさをコンパクトにすることができる。
 また、シフト位置の操作に伴い、センサIC32の検出信号を少なくとも3つ変化させて検出すること(ハミング距離3)ができ、例え1個のセンサIC32が故障しても残りの2つでシフト位置を検出することができる。
 また、センサIC32を3行に配置すること、及び/又は磁石11を円柱形として外周縁にセンサIC32が位置するように配置してあるので、被検出体10の磁石11で漏れ磁束などの影響を回避して略均一に検出信号を検出することができ、誤検出を防止して検出精度を高めることができる。
As described above, according to the embodiment, as specifically described, according to the position detection device 100, the detection object 10 moving linearly with the operation to the operation unit and the detection signal (when the detection object 10 approaches) A position detection apparatus 100 having a plurality of sensor ICs (detection elements) 32 outputting a proximity detection signal) and outputting a detection signal (separation detection signal) when the object 10 is separated, the plurality of sensors In the IC 32, a plurality of element rows 33 in which one or more sensor ICs 32 are arranged in the column direction are arranged over a plurality of rows, and the first shift position (position) A (a direction in which the detection object 10 is orthogonal to the column direction When moving from E) to the second shift position (position) B, C, D, the signal to be output is switched between the detection signal (approach detection signal) and the detection signal (separation detection signal) of the plurality of sensor ICs 32 The number of capacitors IC32 are arranged so that three or more, in the second shift position to output a detection signal (approach detection signal) to the sensor IC32 of at least three rows of the element array 33 adjacent to each other.
As a result, the shift positions are detected using detection signals of the sensor ICs 32 in three rows at the second shift positions B, C, D. Therefore, for example, five shift positions of the sensor IC 32 in the operation direction are five rows. Therefore, the size of the position detection device 100 in the operation direction can be made compact.
In addition, at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
Further, since the sensor ICs 32 are arranged in three rows and / or the magnets 11 are arranged in a cylindrical shape so that the sensor ICs 32 are positioned on the outer peripheral edge, the influence of leakage magnetic flux or the like on the magnets 11 of the detection object 10 Therefore, the detection signal can be detected substantially uniformly, avoiding false detection, and detection accuracy can be enhanced.
(シフト位置A,B,Cまたは、C,D,Eの3段を4列で構成)
 また、位置検出装置100によれば、複数列の素子列33のうち第1列33-1にはセンサIC32として第1および第2のセンサIC32-1,32-2が配置され、複数列の素子列33のうち第2列33-2にはセンサIC32として第3のセンサIC32-3が配置され、複数列の素子列33のうち第3列33-3にはセンサIC32として第4および第5のセンサIC32-4,32-5が配置され、複数列の素子列33のうち第4列33-4にはセンサIC32として第6のセンサIC32-6が配置され、被検出体10は、第1のシフト位置(A)にあるときには第1列33-1に並ぶ第1および第2のセンサIC32-1,32-2から検出信号(接近検出信号)を出力させ、第2のシフト位置B又はCにあるときには第1列33-1、第2列33-2及び第3列33-3に並ぶセンサIC32-1,32-2,32-3,32-4,32-5又は第2列33-2、第3列33-3及び第4列33-4に並ぶセンサIC32-3,32-4,32-5,32-6から検出信号(接近検出信号)を出力させる。
 これにより、シフト位置A,B,C又はシフト位置C,D,Eとする3つのシフト位置を4列の素子列33で構成して位置検出装置100とすることができ、操作方向の位置検出装置100の大きさをコンパクトにすることができる。
 また、シフト位置の操作に伴い、センサIC32の検出信号を少なくとも3つ変化させて検出すること(ハミング距離3)ができ、例え1個のセンサIC32が故障しても残りの2つでシフト位置を検出することができる。
(3 positions of shift position A, B, C or C, D, E are configured in 4 rows)
Further, according to the position detection apparatus 100, the first and second sensor ICs 32-1 and 32-2 are disposed as the sensor IC 32 in the first row 33-1 among the plurality of element rows 33, and the plurality of rows of The third sensor IC 32-3 is disposed as the sensor IC 32 in the second row 33-2 of the element row 33, and the fourth and fourth sensor ICs 32 are disposed in the third row 33-3 of the plurality of element rows 33. The fifth sensor IC 32-4, 32-5 are arranged, the sixth sensor IC 32-6 is arranged as the sensor IC 32 in the fourth row 33-4 of the plural element rows 33, and the detection subject 10 is When in the first shift position (A), detection signals (approach detection signals) are output from the first and second sensor ICs 32-1 and 32-2 arranged in the first row 33-1, and the second shift position First row when in B or C 3-1, the sensor ICs 32-1, 32-2, 32-3, 32-4, 32-5 or the second row 33-2, the third row arranged in the second row 33-2 and the third row 33-3 A detection signal (approach detection signal) is output from the sensor ICs 32-3, 32-2, 32-5, 32-6 arranged in the third column 33-4 and the fourth column 33-4.
As a result, three shift positions as shift positions A, B, C or shift positions C, D, E can be configured by the four element rows 33 to provide the position detection apparatus 100, and position detection in the operation direction The size of the device 100 can be made compact.
In addition, at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
(シフト位置A,B,C,D,Eの5段を5列で構成)
 位置検出装置100によれば、複数列の素子列33のうち第5列33-5にはセンサIC32として第7および第8のセンサIC32-7,32-8が配置され、被検出体10は、第2のシフト位置(位置)Bにあるときには第1列33-1、第2列33-2及び第3列33-3に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第2のシフト位置Bに隣接する第3のシフト位置(位置)Cにあるときには第2列33-2、第3列33-3及び第4列33-4に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第3のシフト位置(位置)Cに隣接する第4のシフト位置(位置)Dにあるときには第3列33-3、第4列33-4及び第5列33-5に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第4のシフト位置(位置)Dに隣接する第5のシフト位置(位置)Eにあるときには第5列33-5に並ぶ第7および第8のセンサIC32-7,32-8から検出信号(接近検出信号)を出力させる。
 これにより、シフト位置A,B,C,D,Eとする5つのシフト位置を5列の素子列33で構成して位置検出装置100とすることができ、操作方向の位置検出装置100の大きさをコンパクトにすることができる。
 また、シフト位置の操作に伴い、センサIC32の検出信号を少なくとも3つ変化させて検出すること(ハミング距離3)ができ、例え1個のセンサIC32が故障しても残りの2つでシフト位置を検出することができる。
(5 stages of shift positions A, B, C, D, E are configured in 5 rows)
According to the position detection apparatus 100, the seventh and eighth sensor ICs 32-7 and 32-8 are disposed as the sensor IC 32 in the fifth row 33-5 among the plurality of element rows 33, and the detection object 10 is When in the second shift position (position) B, the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, the second row 33-2, and the third row 33-3. When in the third shift position (position) C adjacent to the second shift position B, the detection signal (approach detection from the sensor IC 32 arranged in the second row 33-2, the third row 33-3 and the fourth row 33-4 Signal, and when in the fourth shift position (position) D adjacent to the third shift position (position) C, the third row 33-3, the fourth row 33-4 and the fifth row 33-5 Output a detection signal (approach detection signal) from the sensor IC 32 And the detection signals from the seventh and eighth sensor ICs 32-7 and 32-8 arranged in the fifth row 33-5 when in the fifth shift position (position) E adjacent to the fourth shift position (position) D (Proximity detection signal) is output.
As a result, five shift positions as shift positions A, B, C, D, and E can be configured by the five element rows 33 to form the position detection device 100, and the size of the position detection device 100 in the operation direction Can be made compact.
In addition, at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
(シフト位置A,B,D,Eの4段を5列で構成)
 位置検出装置100によれば、複数列の素子列33は、第1列33-1から第5列33-5のセンサIC32が配置され、被検出体10は、第1のシフト位置(位置)Aにあるときには第1列33-1に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第1のシフト位置(位置)Aに隣接する第2のシフト位置(位置)Bにあるときには第1列33-1、第2列33-2及び第3列33-3に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第2のシフト位置(位置)Bに隣接する第3のシフト位置(位置)Dにあるときには第3列33-3、第4列33-4及び第5列33-5に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第3のシフト位置(位置)Dに隣接する第4のシフト位置(位置)Eにあるときには第5列33-5に並ぶセンサIC32から検出信号(接近検出信号)を出力させる。
 これにより、シフト位置A,B,D,Eとする4つのシフト位置を5列の素子列33で構成して位置検出装置100とすることができ、操作方向の位置検出装置100の大きさをコンパクトにすることができる。
 また、シフト位置の操作に伴い、センサIC32の検出信号を少なくとも3つ変化させて検出すること(ハミング距離3)ができ、例え1個のセンサIC32が故障しても残りの2つでシフト位置を検出することができる。
(Consists of 4 rows of shift positions A, B, D and E in 5 rows)
According to the position detection apparatus 100, the sensor ICs 32 in the first to third rows 33-1 to 33-5 are arranged in the plurality of element rows 33, and the detection object 10 is at the first shift position (position). When it is in A, the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, and when it is in the second shift position (position) B adjacent to the first shift position (position) A The detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, the second row 33-2, and the third row 33-3, and the third adjacent to the second shift position (position) B The detection signal (approach detection signal) is output from the sensor IC 32 arranged in the third row 33-3, the fourth row 33-4, and the fifth row 33-5 when in the shift position (position) D of Fourth shift position (position) adjacent to position (position) D When in the E causes the output detection signal (approach detection signal) from the sensor IC32 arranged in the fifth column 33-5.
Thus, four shift positions as shift positions A, B, D, and E can be configured by the five element rows 33 to be the position detection device 100, and the size of the position detection device 100 in the operation direction can be It can be made compact.
In addition, at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
(シフト位置B,C,Dの3段を5列で構成)
 位置検出装置100によれば、複数列の素子列33は、第1列33-1から第5列33-5のセンサIC32が配置され、被検出体10は、第1のシフト位置(位置)Bにあるときには第1列33-1、第2列33-2及び第3列33-3に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第1のシフト位置(位置)Bに隣接する第2のシフト位置(位置)Cにあるときには第2列33-2、第3列33-3及び第4列33-4に並ぶセンサIC32から検出信号(接近検出信号)を出力させ、第2のシフト位置(位置)Cに隣接する第3のシフト位置(位置)Dにあるときには第3列33-3、第4列33-4及び第5列33-5に並ぶセンサIC32から検出信号(接近検出信号)を出力させる。
 これにより、シフト位置B,C,Dとする3つのシフト位置を5列の素子列33で構成して位置検出装置100とすることができ、操作方向の位置検出装置100の大きさをコンパクトにすることができる。
 また、シフト位置の操作に伴い、センサIC32の検出信号を少なくとも3つ変化させて検出すること(ハミング距離3)ができ、例え1個のセンサIC32が故障しても残りの2つでシフト位置を検出することができる。
(Consists of 3 rows of shift positions B, C and D in 5 rows)
According to the position detection apparatus 100, the sensor ICs 32 in the first to third rows 33-1 to 33-5 are arranged in the plurality of element rows 33, and the detection object 10 is at the first shift position (position). When in B, the detection signal (approach detection signal) is output from the sensor IC 32 arranged in the first row 33-1, the second row 33-2 and the third row 33-3, and the first shift position (position) B When in the adjacent second shift position (position) C, a detection signal (approach detection signal) is output from the sensor IC 32 arranged in the second row 33-2, the third row 33-3 and the fourth row 33-4, When in the third shift position (position) D adjacent to the second shift position (position) C, detection is performed from the sensor IC 32 arranged in the third row 33-3, the fourth row 33-4 and the fifth row 33-5 A signal (approach detection signal) is output.
As a result, three shift positions as shift positions B, C, and D can be configured by the five element rows 33 to form the position detection device 100, and the size of the position detection device 100 in the operation direction can be made compact. can do.
In addition, at least three detection signals of the sensor IC 32 can be changed and detected with the operation of the shift position (Hamming distance 3), and even if one sensor IC 32 breaks down, the remaining two shift positions Can be detected.
 位置検出装置100によれば、複数のセンサIC32のうち第1グループXに属するセンサIC32は、検出信号(接近検出信号)をHi信号として出力し、検出信号(離間検出信号)をLo信号として出力し、複数のセンサIC32のうち第2グループYに属するセンサIC32は、検出信号(接近検出信号)をLo信号として出力し、検出信号(離間検出信号)をHi信号として出力する。
 これにより、2つのグループX,YにセンサIC32を分けることで、どのグループのセンサIC32の故障であるかを2つのセンサIC32の検出信号を用いて判定することできる。
According to the position detection device 100, the sensor IC 32 belonging to the first group X among the plurality of sensor ICs 32 outputs the detection signal (approach detection signal) as the Hi signal and outputs the detection signal (separation detection signal) as the Lo signal The sensor IC 32 belonging to the second group Y among the plurality of sensor ICs 32 outputs a detection signal (approach detection signal) as a Lo signal, and outputs a detection signal (separation detection signal) as a Hi signal.
As a result, by separating the sensor IC 32 into two groups X and Y, it is possible to determine which group of sensor ICs 32 is faulty using detection signals of the two sensor ICs 32.
 位置検出装置100によれば、第1グループXに属するセンサIC32と第2グループYに属するセンサIC32は、それぞれ異なる電源から電力を受ける。
 こうすることにより、一方の電源が故障しても他方の電源でシフト位置の検出を続けることができる。
According to the position detection device 100, the sensor IC 32 belonging to the first group X and the sensor IC 32 belonging to the second group Y receive power from different power sources.
By this, even if one power source fails, the detection of the shift position can be continued with the other power source.
 位置検出装置100によれば、第1グループXには、第2のセンサIC X-1、第4のセンサIC X-2、第5のセンサIC X-3及び第8のセンサIC X-4が属し、第2グループYには、第1のセンサIC Y-5、第3のセンサIC Y-6、第6のセンサIC Y-7及び第7のセンサIC Y-8が属する。
 このような2つのグループX,Yに属すセンサIC32をそれぞれ第1から第8のセンサICとして配置することで、5つのシフト位置から3つのシフト位置の各シフト位置の検出をコンパクトに配置したセンサIC32で検出することができ、シフト位置の操作に伴い、センサIC32の検出信号を少なくとも3つ変化させて検出すること(ハミング距離3)ができ、例え1個のセンサIC32が故障しても残りの2つでシフト位置を検出することができる。
According to the position detection device 100, in the first group X, the second sensor IC X-1, the fourth sensor IC X-2, the fifth sensor IC X-3, and the eighth sensor IC X-4 The first sensor IC Y-5, the third sensor IC Y-6, the sixth sensor IC Y-7, and the seventh sensor IC Y-8 belong to the second group Y.
A sensor in which detection of each shift position of three shift positions from five shift positions is compactly arranged by arranging the sensor ICs 32 belonging to such two groups X and Y as first to eighth sensor ICs respectively It can be detected by the IC 32, and at the same time, the detection signal of the sensor IC 32 can be changed and detected (Hamming distance 3) according to the operation of the shift position, and even if one sensor IC 32 breaks down, it remains The shift position can be detected by the following two.
 なお、本発明は以上の実施形態及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、適宜、変更(構成要素の削除も含む)を加えることが可能であり、それぞれの発明を任意に組み合わせることも可能である。 The present invention is not limited by the above embodiment and the drawings. Changes (including deletion of components) can be made as appropriate without departing from the scope of the present invention, and the respective inventions can be arbitrarily combined.
 以上の実施形態では、検出素子として磁石と、磁気センサを備えたセンサICと、を用いる場合を例に説明したが、光源と光センサとによる光学式の検出素子を用いて構成することもできるなど、検出素子は、これらに限られるものではない。 In the above embodiments, the case where a magnet and a sensor IC including a magnetic sensor are used as a detection element is described as an example, but an optical detection element including a light source and an optical sensor can also be used. For example, the detection elements are not limited to these.
 また、位置検出装置100は、被検出体10の移動に伴って変化する検出信号を利用して被検出体10の位置を検出できるものであれば、シフト位置を検出する用途に限られず、様々な用途の位置検出に適用可能である。 The position detection apparatus 100 is not limited to the application for detecting the shift position, as long as the position detection apparatus 100 can detect the position of the detection object 10 using a detection signal that changes as the detection object 10 moves. Can be applied to position detection for various applications.
 本発明は、車両用のシフトポジションセンサに利用可能である。 The present invention is applicable to a shift position sensor for a vehicle.
 100…位置検出装置
  10…被検出体
  11…磁石
  12…磁石保持部
  20…ホルダ
  21…ガイド部
  30…検出素子
  31…磁気センサ
  32…センサIC(32-1~32-8)
  33…素子列
  33-1…第1列(素子列)
  33-2…第2列(素子列)
  33-3…第3列(素子列)
  33-4…第4列(素子列)
  33-5…第5列(素子列)
  34…素子行(34-1~34-3)
  40…回路基板
  50…制御部
   A…シフト位置(位置)
   B…シフト位置(位置)
   C…シフト位置(位置)
   D…シフト位置(位置)
   E…シフト位置(位置)
   X…第1グループ(X-1~X-4)
   Y…第2グループ(Y-5~Y-8)
DESCRIPTION OF SYMBOLS 100 ... Position detection apparatus 10 ... Detection object 11 ... Magnet 12 ... Magnet holding part 20 ... Holder 21 ... Guide part 30 ... Detection element 31 ... Magnetic sensor 32 ... Sensor IC (32-1 to 32-8)
33 ... element row 33-1 ... first row (element row)
33-2 ... 2nd column (element array)
33-3 ... 3rd row (element row)
33-4 ... 4th column (element array)
33-5 ... 5th column (element array)
34 ... Element row (34-1 to 34-3)
40 ... circuit board 50 ... control unit A ... shift position (position)
B: Shift position (position)
C: Shift position (position)
D: Shift position (position)
E: Shift position (position)
X: First group (X-1 to X-4)
Y: second group (Y-5 to Y-8)

Claims (8)

  1.  操作部への操作に伴い直線的に移動する被検出体と、
     前記被検出体が接近したとき接近検出信号を出力し、前記被検出体が離間したとき離間検出信号を出力する複数の検出素子と、を有する位置検出装置であって、
     前記複数の検出素子は、単数または複数の前記検出素子が列方向に並べられた素子列が複数列にわたって配置され、前記被検出体が前記列方向に直交する方向に沿って第1の位置から第2の位置に移動したときには前記複数の検出素子のうち前記接近検出信号と前記離間検出信号の間で出力する信号が切り替わる前記検出素子の数が3つ以上となるように配置され、前記第2の位置においては互いに隣り合う少なくとも3列の前記素子列の前記検出素子に前記接近検出信号を出力させる、
     ことを特徴とする位置検出装置。
    An object to be detected that moves linearly with an operation to the operation unit;
    A position detection apparatus comprising: a plurality of detection elements that output an approach detection signal when the object to be detected approaches and output a separation detection signal when the object to be detected is separated,
    In the plurality of detection elements, an element row in which one or more detection elements are arranged in the column direction is arranged over a plurality of rows, and the detection target is from the first position along the direction orthogonal to the column direction The plurality of detection elements are arranged such that the number of detection elements switched between the proximity detection signal and the separation detection signal is three or more among the plurality of detection elements when moving to the second position, At position 2, the proximity detection signal is output to the detection elements of the at least three element rows adjacent to each other,
    A position detection device characterized by
  2.  前記複数列のうち第1列には前記検出素子として第1および第2の検出素子が配置され、
     前記複数列のうち第2列には前記検出素子として第3の検出素子が配置され、
     前記複数列のうち第3列には前記検出素子として第4および第5の検出素子が配置され、
     前記複数列のうち第4列には前記検出素子として第6の検出素子が配置され、
     前記被検出体は、前記第1の位置(A)にあるときには前記第1列に並ぶ前記第1および第2の検出素子から前記接近検出信号を出力させ、前記第2の位置(B又はC)にあるときには前記第1列、前記第2列及び前記第3列に並ぶ前記検出素子又は前記第2列、前記第3列及び前記第4列に並ぶ前記検出素子から前記接近検出信号を出力させる、
     ことを特徴とする請求項1に記載の位置検出装置。
    First and second detection elements are disposed as the detection elements in the first line among the plurality of lines.
    A third detection element is disposed as the detection element in the second line among the plurality of lines.
    Fourth and fifth detection elements are disposed as the detection elements in the third line among the plurality of lines.
    A sixth detection element is disposed as the detection element in the fourth line among the plurality of lines.
    The object to be detected causes the proximity detection signal to be output from the first and second detection elements arranged in the first row when in the first position (A), and the second position (B or C) Output the proximity detection signal from the detection elements arranged in the first column, the second column and the third column or the detection elements arranged in the second column, the third column and the fourth column Let
    The position detection device according to claim 1,
  3.  前記複数列のうち第5列には前記検出素子として第7および第8の検出素子が配置され、
     前記被検出体は、前記第2の位置(B)にあるときには前記第1列、前記第2列及び前記第3列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第2の位置(B)に隣接する第3の位置(C)にあるときには前記第2列、前記第3列及び前記第4列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第3の位置(C)に隣接する第4の位置(D)にあるときには前記第3列、前記第4列及び前記第5列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第4の位置(D)に隣接する第5の位置(E)にあるときには前記第5列に並ぶ前記第7および第8の検出素子から前記接近検出信号を出力させる、
     ことを特徴とする請求項2に記載の位置検出装置。
    Seventh and eighth detection elements are disposed as the detection elements in the fifth line among the plurality of lines.
    When the object to be detected is at the second position (B), the proximity detection signal is output from the detection elements arranged in the first row, the second row, and the third row, and the second position (B) causes the proximity detection signal to be output from the detection elements arranged in the second row, the third row, and the fourth row when in the third position (C) adjacent to (B); C) causing the proximity detection signal to be output from the detection elements arranged in the third row, the fourth row and the fifth row when in the fourth position (D) adjacent to the C), and the fourth position (D And the seventh and eighth detection elements arranged in the fifth column output the proximity detection signal when the fifth position (E) is adjacent to
    The position detection device according to claim 2, characterized in that:
  4.  前記複数列の前記素子列は、前記第1列から前記第5列の前記検出素子が配置され、
     前記被検出体は、前記第1の位置(A)にあるときには前記第1列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第1の位置(A)に隣接する第2の位置(B)にあるときには前記第1列、前記第2列及び前記第3列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第2の位置(B)に隣接する第3の位置(D)にあるときには前記第3列、前記第4列及び前記第5列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第3の位置(D)に隣接する第4の位置(E)にあるときには前記第5列に並ぶ前記検出素子から前記接近検出信号を出力させる、
     ことを特徴とする請求項3に記載の位置検出装置。
    In the plurality of element rows, the detection elements of the first to fifth lines are disposed.
    The object to be detected causes the proximity detection signal to be output from the detection elements arranged in the first row when in the first position (A), and the second position adjacent to the first position (A) When in (B), the proximity detection signal is output from the detection elements arranged in the first column, the second column and the third column, and a third position (adjacent to the second position (B) When in D), the proximity detection signal is output from the detection elements arranged in the third row, the fourth row, and the fifth row, and a fourth position (E) adjacent to the third position (D) And the proximity detection signal is output from the detection elements arranged in the fifth row,
    The position detection device according to claim 3, characterized in that:
  5.  前記複数列の前記素子列は、前記第1列から前記第5列の前記検出素子が配置され、
     前記被検出体は、前記第1の位置(B)にあるときには前記第1列、前記第2列及び前記第3列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第1の位置(B)に隣接する第2の位置(C)にあるときには前記第2列、前記第3列及び前記第4列に並ぶ前記検出素子から前記接近検出信号を出力させ、前記第2の位置(C)に隣接する第3の位置(D)にあるときには前記第3列、前記第4列及び前記第5列に並ぶ前記検出素子から前記接近検出信号を出力させる、
     ことを特徴とする請求項3に記載の位置検出装置。
    In the plurality of element rows, the detection elements of the first to fifth lines are disposed.
    The object to be detected causes the proximity detection signal to be output from the detection elements arranged in the first row, the second row, and the third row when in the first position (B), and the first position (B) causes the proximity detection signal to be output from the detection elements arranged in the second row, the third row, and the fourth row when in the second position (C) adjacent to the second position (C); C) causing the proximity detection signal to be output from the detection elements arranged in the third row, the fourth row and the fifth row when in the third position (D) adjacent to C)
    The position detection device according to claim 3, characterized in that:
  6.  前記複数の検出素子のうち第1グループに属する検出素子は、前記接近検出信号をHi信号として出力し、前記離間検出信号をLo信号として出力し、
     前記複数の検出素子のうち第2グループに属する検出素子は、前記接近検出信号をLo信号として出力し、前記離間検出信号をHi信号として出力する、
     ことを特徴とする請求項1乃至5のいずれかに記載の位置検出装置。
    The detection elements belonging to the first group among the plurality of detection elements output the proximity detection signal as a Hi signal, and output the separation detection signal as a Lo signal,
    The detection elements belonging to the second group among the plurality of detection elements output the approach detection signal as a Lo signal and output the separation detection signal as a Hi signal.
    The position detection device according to any one of claims 1 to 5, characterized in that:
  7.  前記第1グループに属する検出素子と前記第2グループに属する検出素子は、それぞれ異なる電源から電力を受ける、
     ことを特徴とする請求項6に記載の位置検出装置。
    The detection elements belonging to the first group and the detection elements belonging to the second group respectively receive power from different power supplies,
    The position detection apparatus according to claim 6,
  8.  前記第1グループには、第2の検出素子、第4の検出素子、第5の検出素子及び第8の検出素子が属し、
     前記第2グループには、第1の検出素子、第3の検出素子、第6の検出素子及び第7の検出素子が属する、
    ことを特徴とする請求項6又は7に記載の位置検出装置。
    The second detection element, the fourth detection element, the fifth detection element and the eighth detection element belong to the first group,
    The first detection element, the third detection element, the sixth detection element, and the seventh detection element belong to the second group.
    The position detection device according to claim 6 or 7, characterized in that:
PCT/JP2018/046439 2017-12-27 2018-12-18 Position detection device WO2019131295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019563021A JP7238795B2 (en) 2017-12-27 2018-12-18 Position detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-251018 2017-12-27
JP2017251018 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131295A1 true WO2019131295A1 (en) 2019-07-04

Family

ID=67066491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046439 WO2019131295A1 (en) 2017-12-27 2018-12-18 Position detection device

Country Status (2)

Country Link
JP (1) JP7238795B2 (en)
WO (1) WO2019131295A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047016A1 (en) * 2001-01-22 2003-03-13 Wolfgang Kliemannel Shifting device for shifting between different operating states of a motor vehicle transmission
JP2008032155A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Shift lever position detection device
JP2014020922A (en) * 2012-07-18 2014-02-03 Tokai Rika Co Ltd Position sensor
JP2017045190A (en) * 2015-08-25 2017-03-02 株式会社東海理化電機製作所 Position sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047016A1 (en) * 2001-01-22 2003-03-13 Wolfgang Kliemannel Shifting device for shifting between different operating states of a motor vehicle transmission
JP2008032155A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Shift lever position detection device
JP2014020922A (en) * 2012-07-18 2014-02-03 Tokai Rika Co Ltd Position sensor
JP2017045190A (en) * 2015-08-25 2017-03-02 株式会社東海理化電機製作所 Position sensor

Also Published As

Publication number Publication date
JPWO2019131295A1 (en) 2020-12-24
JP7238795B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US9671212B2 (en) Position sensor
KR101577865B1 (en) Method and apparatus for mram sense reference trimming
JP2007278720A (en) Position detector and shift device
US10415998B2 (en) Method for operating a rotation sensor and corresponding rotation sensor
WO2009044670A1 (en) Input device and electronic apparatus mounting the same
JP2018151181A (en) Magnetic position detecting device
JP6535184B2 (en) Encoder
US11733063B2 (en) Position sensor
JP2017045190A (en) Position sensor
JP5976797B2 (en) Shift position detector
WO2019131295A1 (en) Position detection device
JPWO2013171977A1 (en) Bridge circuit and magnetic sensor having the same
US10352682B2 (en) Displacement detection device
JP2019002469A (en) Position sensor
US20130057473A1 (en) Mouse device
US20150332876A1 (en) Multi-point switching apparatus
US10048091B1 (en) Magnetic multimedia control element
JP5128416B2 (en) Magnetic sensor device
JP6162839B2 (en) Position sensor
US9761390B2 (en) Input device
JP2017219399A (en) Shift position detection device
US11513171B2 (en) Magnetic sensor device including a plurality of asymmetrically arranged elements
JP5800086B2 (en) Position detector
JP2011220832A (en) Position detector and shift lever device
JP2010285056A (en) Shift position determination and fixing device for transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893798

Country of ref document: EP

Kind code of ref document: A1