WO2019131095A1 - ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 - Google Patents
ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 Download PDFInfo
- Publication number
- WO2019131095A1 WO2019131095A1 PCT/JP2018/045348 JP2018045348W WO2019131095A1 WO 2019131095 A1 WO2019131095 A1 WO 2019131095A1 JP 2018045348 W JP2018045348 W JP 2018045348W WO 2019131095 A1 WO2019131095 A1 WO 2019131095A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin composition
- mass
- phenol
- inorganic filler
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
Definitions
- the present disclosure relates to an epoxy resin composition for sealing a ball grid array package, an epoxy resin cured product, and an electronic component device.
- semiconductor packages in place of the conventional pin insertion type, are mainly of the surface mounting type suitable for high density mounting.
- the surface mount semiconductor package is mounted by direct soldering to a printed circuit board or the like.
- As a general mounting method there is a method of heating and mounting the whole semiconductor package by an infrared ray reflow method, a vapor phase reflow method, a solder dip method or the like.
- BGA ball grid array
- the BGA package is a single-sided resin-sealed package in which the semiconductor element mounting surface of the substrate is sealed with a resin composition.
- a resin composition for sealing an epoxy resin composition is widely used from the viewpoint of the balance of various properties such as moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, adhesion to an insert, etc. There is.
- Patent 4188634 gazette
- the present disclosure provides an epoxy resin composition for sealing a BGA package which is excellent in fluidity and excellent in thermal conductivity when cured, an epoxy resin cured product obtained by curing the epoxy resin composition, and the epoxy resin cured. It is an object of the present invention to provide an electronic component device including an element sealed by an object.
- Means for solving the above problems include the following embodiments.
- ⁇ 5> A cured epoxy resin product obtained by curing the epoxy resin composition for sealing a ball grid array package according to any one of ⁇ 1> to ⁇ 4>.
- the electronic component apparatus which has a ⁇ 6> element and the epoxy resin hardened material as described in ⁇ 5> which has sealed the said element, and has a form of a ball grid array package.
- an epoxy resin composition for sealing a BGA package which is excellent in fluidity and excellent in thermal conductivity when cured, an epoxy resin cured product obtained by curing the epoxy resin composition, and the epoxy resin cured.
- An electronic component device comprising an element sealed by an object is provided.
- the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps.
- numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
- the upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
- the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
- each component may contain a plurality of corresponding substances.
- the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
- particles corresponding to each component may contain a plurality of types.
- the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
- the epoxy resin composition for sealing a BGA package of the present disclosure (hereinafter, also simply referred to as an epoxy resin composition) is an inorganic resin containing an epoxy resin, a phenol curing agent having a hydroxyl equivalent of 120 g / eq or less, alumina particles and silica particles. And the content of the inorganic filler is 65% by volume to 85% by volume, and the proportion of the silica particles to the total amount of the alumina particles and the silica particles is 10% by mass to 15% by mass. is there.
- the epoxy resin composition of the present disclosure has excellent thermal conductivity when cured, and good flowability is maintained.
- the reason is not clear, it can be considered as follows.
- the content of the inorganic filler is 65% by volume to 85% by volume, and the ratio of the silica particles to the total amount of the alumina particles and the silica particles is 10% by mass to 15% by mass
- the thermal conductivity can be secured by alumina, the resin component and the silica particles are appropriately present around the alumina particles, and the friction between the particles of the alumina particles is reduced, thereby reducing the fluidity.
- the epoxy resin composition of the present disclosure is used to seal a BGA package.
- the BGA package refers to a semiconductor package in which a plurality of metal bumps are arranged in a lattice on the substrate of the package.
- the BGA package is manufactured by mounting an element on the front surface of a substrate having a metal bump formed on the back surface, connecting the element and a wiring formed on the substrate by bump or wire bonding, and sealing the element.
- a CSP Chip Size Package
- a CSP Chip Size Package
- the outer diameter size is reduced to the same size as the element size is also a form of the BGA package.
- the epoxy resin composition of the present disclosure contains an epoxy resin.
- the epoxy resin composition preferably contains an epoxy resin having two or more epoxy groups in one molecule.
- the epoxy resin is not particularly limited, and is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcine, catechol, bisphenol A and bisphenol F and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
- Novolak type epoxy resin (phenol novolac type epoxy resin) which is obtained by epoxidizing a novolac resin obtained by condensation or cocondensation of a phenolic compound of the type with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde or propionaldehyde under acidic catalyst Epoxy resin, ortho cresol novolac epoxy resin, etc.); condensation of the above-mentioned phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst Is a triphenylmethane type epoxy resin obtained by epoxidizing a triphenylmethane type phenol resin obtained by cocondensation; a novolak obtained by cocondensing the above-mentioned phenol compound and naphthol compound with an aldehyde compound under an acidic catalyst Copolymer-type epoxy resin which is obtained by epoxidizing resin; diphenyl
- biphenyl type epoxy resin biphenyl type epoxy resin, stilbene type epoxy resin, diphenylmethane type epoxy resin, sulfur atom containing epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin from the viewpoint of balance between reflow resistance and fluidity.
- At least one epoxy resin selected from the group consisting of triphenylmethane epoxy resins, copolymer epoxy resins, and aralkyl epoxy resins (these are referred to as "specific epoxy resins") is preferable.
- the specific epoxy resins may be used alone or in combination of two or more.
- the content of the specific epoxy resin is preferably 30% by mass or more of the entire epoxy resin, and is 50% by mass or more from the viewpoint of exhibiting the performance of the specific epoxy resin. Is more preferred.
- epoxy resins from the viewpoint of fluidity, at least one selected from the group consisting of biphenyl type epoxy resins, stilbene type epoxy resins, diphenylmethane type epoxy resins, and sulfur atom-containing epoxy resins is preferable, and heat resistance is preferred. From the viewpoint of the above, at least one selected from the group consisting of dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and aralkyl type epoxy resins is preferable. Among them, biphenyl type epoxy resins are preferable from the viewpoint of fluidity.
- the biphenyl type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton.
- an epoxy resin represented by the following general formula (II) is preferable.
- the 3,3 ′, 5,5 ′ position is a methyl group when the position substituted by the oxygen atom in R 8 is 4 and 4 ′.
- R 8 is a hydrogen atom
- all the R 8 are hydrogen atoms 4,4'-bis (2,3-epoxypropoxy) biphenyl, all '3,3 when the position' of the oxygen atom 4 and 4 positions that are substituted R 8 may well R 8 a hydrogen atom, 5,5 'position otherwise a methyl group
- Commercially available products such as YL-6121H (Mitsubishi Chemical Co., Ltd., trade name), which is a mixture when 8 is a hydrogen atom, are commercially available.
- R 8 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an aromatic group having 4 to 18 carbon atoms, and all of them may be the same or different.
- n is an average value and represents a number of 0 to 10.
- R 8 is preferably each independently a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, a hydrogen atom or More preferably, it is a methyl group.
- n represents a number of 0 to 10, preferably 0 to 4.
- n 10 or less, the melt viscosity of the resin component does not become too high, the viscosity at the time of melt molding of the epoxy resin composition decreases, filling failure, deformation of bonding wire (gold wire connecting element and lead), etc. The tendency is to suppress the occurrence of
- the diphenylmethane type epoxy resin is not particularly limited as long as it is an epoxy resin having a diphenylmethane skeleton.
- an epoxy resin represented by the following general formula (IV) is preferable.
- all of R 11 are hydrogen atoms, and the position at which the oxygen atom is substituted in R 12 is 4, 3 and 4.
- YSLV-80XY (trade name, Nippon Steel & Sumikin Chemical Co., Ltd., trade name) and the like in which the ', 5,5' position is a methyl group, and the other R 12 is a hydrogen atom are commercially available products.
- R 11 and R 12 each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
- n is an average value and represents a number of 0 to 10.
- R 11 and R 12 each independently are preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, a hydrogen atom or More preferably, it is a methyl group.
- n is preferably 0 to 4.
- the triphenylmethane-type epoxy resin is not particularly limited as long as it is an epoxy resin whose raw material is a compound having a triphenylmethane skeleton.
- an epoxy resin obtained by glycidyl-etherifying a triphenylmethane-type phenol resin such as a novolak-type phenol resin of a compound having a triphenylmethane skeleton and a compound having a phenolic hydroxyl group is preferable. More preferred are epoxy resins.
- epoxy resins represented by the following general formula (VIII) i is 0 and k is 0 1032H60 (Mitsubishi Chemical Co., Ltd., trade name), EPPN-502H (Nippon Kayaku Co., Ltd., trade name) Etc. are available as commercial products.
- R 17 and R 18 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
- Each i independently represents an integer of 0 to 3
- each k independently represents an integer of 0 to 4.
- n is an average value and represents a number of 0 to 10.
- hydrogen atoms present on the aromatic ring are not shown.
- R 17 and R 18 are preferably each independently an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and it is preferably a methyl group More preferable.
- n is preferably 0 to 4.
- the epoxy resin composition is at least one selected from the group consisting of biphenyl type epoxy resin, diphenylmethane type epoxy resin, and triphenylmethane type epoxy resin from the viewpoint of reflow resistance and fluidity. It is preferable to contain
- the epoxy resin composition may contain any at least two selected from the group consisting of these epoxy resins, and may contain any of these epoxy resins.
- the content of the biphenyl type epoxy resin is preferably 60% by mass to 100% by mass with respect to the total amount of the epoxy resin, 70% by mass The content is preferably up to 100% by mass, and more preferably 80% to 100% by mass.
- the content of the biphenyl type epoxy resin is preferably 5% by mass to 60% by mass with respect to the total amount of the epoxy resin, and 10 The content is more preferably 50% by mass and still more preferably 20% by mass to 40% by mass.
- the content of the diphenylmethane type epoxy resin is preferably 5% by mass to 45% by mass with respect to the total amount of the epoxy resin, and 5% by mass The content is more preferably 35% by mass, further preferably 5% by mass to 25% by mass.
- the epoxy resin composition contains a triphenylmethane epoxy resin
- the content of the triphenylmethane epoxy resin is preferably 25% by mass to 85% by mass with respect to the total amount of the epoxy resin. 35% by mass to 75% by mass is more preferable, and 45% by mass to 65% by mass is even more preferable.
- the epoxy equivalent of the epoxy resin is not particularly limited.
- the epoxy equivalent of the epoxy resin is preferably 100 g / eq to 1000 g / eq and 150 g / eq to 500 g / eq from the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability. Is more preferred.
- the softening point or melting point of the epoxy resin is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and 50 ° C. to 130 ° C. from the viewpoint of handleability in preparation of the epoxy resin composition. It is more preferable that The melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986.
- DSC differential scanning calorimetry
- the content of the epoxy resin in the epoxy resin composition is preferably 0.5% by mass to 50% by mass, and preferably 2% by mass to 30% by mass, in view of strength, fluidity, heat resistance, moldability, etc. It is more preferable that
- the epoxy resin may contain an epoxy resin (also referred to as a multifunctional epoxy resin) having three or more epoxy groups in one molecule.
- an epoxy resin also referred to as a multifunctional epoxy resin
- the content of the polyfunctional epoxy resin relative to the total mass of the epoxy resin is 10 from the viewpoint of controlling the warpage behavior of the package after reflow.
- the content is preferably at most mass%, more preferably at most 5 mass%, still more preferably at most 1 mass%, particularly preferably substantially at 0 mass%.
- the "substantially 0 mass%" content refers to a content such that the influence on the control of the warpage behavior of the package after reflow of the multifunctional epoxy resin is not observed.
- the epoxy resin composition of the present disclosure contains a phenol curing agent (hereinafter also referred to as a specific phenol curing agent) having a hydroxyl equivalent of 120 g / eq or less.
- the specific phenol curing agent is not particularly limited as long as it is a compound having a phenolic hydroxyl group and having a hydroxyl equivalent of 120 g / eq or less.
- the specific phenol curing agent may be a low molecular weight phenolic compound or a phenolic resin obtained by polymerizing a low molecular weight phenolic compound. From the viewpoint of thermal conductivity, the specific phenol curing agent is preferably a phenol resin.
- the specific phenol curing agent may be used alone or in combination of two or more.
- the specific phenol curing agent preferably contains a phenol resin having two or more phenolic hydroxyl groups in one molecule, and a phenol resin having three or more phenolic hydroxyl groups in one molecule (also referred to as polyfunctional phenol resin) More preferably,
- the phenol resin is not particularly limited, and biphenylene type phenol resin, aralkyl type phenol resin, dicyclopentadiene type phenol resin, copolymer resin of benzaldehyde type phenol resin and aralkyl type phenol resin, triphenylmethane type phenol resin, etc. It can be mentioned. Among them, triphenylmethane type phenolic resin is preferable.
- the triphenylmethane-type phenol resin is not particularly limited as long as it is a phenol resin obtained using a compound having a triphenylmethane skeleton as a raw material.
- a phenol resin represented by the following general formula (XVI) is preferable.
- phenol resins represented by the following general formula (XVI), MEH-7500 (Meiwa Kasei Co., Ltd., trade name) or the like in which i is 0 and k is 0 is commercially available.
- R 30 and R 31 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
- Each i is independently an integer of 0 to 3
- each k is independently an integer of 0 to 4.
- n is an average value and is a number of 0 to 10.
- hydrogen atoms present on the aromatic ring are not shown.
- R 30 and R 31 are preferably each independently an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and it is preferably a methyl group More preferable.
- n is preferably 0 to 5.
- the hydroxyl equivalent of the specific phenol curing agent is 120 g / eq or less, preferably 110 g / eq or less, and more preferably 100 g / eq or less. If the hydroxyl equivalent of the phenol curing agent is 120 g / eq or less, good moldability tends to be obtained.
- the lower limit of the hydroxyl group equivalent is not particularly limited, and is preferably 50 g / eq or more, more preferably 60 g / eq or more, from the viewpoint of the balance of various characteristics such as reflow resistance and electrical reliability. More preferably, it is 70 g / eq or more.
- the preferred range of the hydroxyl equivalent is preferably 50 g / eq to 120 g / eq, more preferably 60 g / eq to 115 eq, and still more preferably 70 g / eq to 110 g / eq.
- the hydroxyl equivalent of the specific phenol curing agent is a value measured by the method according to JIS K 0070: 1992.
- the specific phenol curing agent When the specific phenol curing agent is solid, its melting point or softening point is not particularly limited.
- the melting point or softening point of the specific phenol curing agent is preferably 50 ° C. to 250 ° C., more preferably 65 ° C. to 200 ° C., and still more preferably 70 ° C. to 170 ° C.
- the melting point or softening point of the specific phenol curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
- the content ratio of the epoxy resin to the specific phenol curing agent in the epoxy resin composition is the ratio of the number of equivalents of the hydroxyl group of the specific phenol curing agent to the number of equivalents of the epoxy group of the epoxy resin (number of equivalents of hydroxyl group / equivalent number of epoxy groups) Is preferably set to be in the range of 0.5 to 2.0, and is more preferably set to be 0.7 to 1.5, and is in the range of 0.8 to 1.3. It is further preferred that the settings be made as follows. When the ratio is 0.5 or more, curing of the epoxy resin is sufficient, and the heat resistance, moisture resistance, and electrical characteristics of the cured product tend to be excellent. In addition, when the ratio is 2.0 or less, the amount of phenolic hydroxyl groups remaining in the cured resin is suppressed, and the electrical characteristics and the moisture resistance tend to be excellent.
- the epoxy resin composition may further contain a curing agent other than the specific phenol curing agent as a curing agent.
- a curing agent other than the specific phenol curing agent examples include phenol resins other than the specific phenol curing agent that are generally used in the relevant field.
- the curing agents other than the specific phenol curing agent may be used alone or in combination of two or more.
- the content of the specific phenol curing agent in the total amount of the curing agent is 60% by mass or more from the viewpoint of sufficiently exhibiting the performance of the specific phenol curing agent.
- the content is preferably 75% by mass or more, more preferably 90% by mass or more.
- the content ratio of the epoxy resin to the total curing agent is the ratio of the number of equivalents of functional groups of all curing agents to the number of equivalents of epoxy groups of the epoxy resin. It is preferable to set according to (number of equivalents of functional group of curing agent / number of equivalents of epoxy group). For example, the ratio is preferably set to be in the range of 0.5 to 2.0, more preferably set to be 0.7 to 1.5, and more preferably 0.8 to 1. It is further preferable to set so as to be three.
- the epoxy resin composition of the present disclosure contains an inorganic filler containing alumina particles and silica particles.
- the content of the inorganic filler is 65% by volume to 85% by volume based on the total volume of the composition, and the ratio of the silica particles to the total amount of the alumina particles and the silica particles is 10% by mass to 15% by mass.
- the inorganic filler may contain an inorganic filler other than alumina particles and silica particles, and the inorganic filler preferably comprises alumina particles and silica particles. Spherical silica, crystalline silica, etc. are mentioned as a silica particle.
- the volume average particle size of the inorganic filler is not particularly limited.
- the volume average particle diameter of the inorganic filler is, for example, preferably 0.1 ⁇ m to 80 ⁇ m, and more preferably 0.3 ⁇ m to 50 ⁇ m.
- the volume average particle diameter of the inorganic filler is 0.1 ⁇ m or more, the increase in the viscosity of the epoxy resin composition tends to be easily suppressed.
- the volume average particle diameter of the inorganic filler is 80 ⁇ m or less, the mixing property of the epoxy resin composition and the inorganic filler is improved, and the state of the package obtained by curing tends to be more homogeneous and the variation of the characteristics is suppressed. There is a tendency that the filling property to the narrow area is further improved.
- the particle size distribution of the inorganic filler preferably has a maximum value in the range of 0.1 ⁇ m to 80 ⁇ m.
- the volume average particle diameter of the alumina particles is, for example, preferably 0.1 ⁇ m to 80 ⁇ m, and more preferably 0.3 ⁇ m to 50 ⁇ m.
- the volume average particle diameter of the alumina particles is 0.1 ⁇ m or more, the increase in the viscosity of the epoxy resin composition tends to be easily suppressed.
- the volume average particle diameter of the alumina particles is 80 ⁇ m or less, the mixing property of the epoxy resin composition and the alumina particles is improved, and the state of the package obtained by curing tends to be more homogeneous to suppress the dispersion of characteristics. Further, the filling property in a narrower area tends to be improved.
- the volume average particle diameter of the silica particles is, for example, preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.3 ⁇ m to 30 ⁇ m, and still more preferably 0.5 ⁇ m to 20 ⁇ m.
- the volume average particle size of the silica particles is 50 ⁇ m or less, the flowability tends to be improved.
- the volume average particle diameter of the inorganic filler is determined using a dry particle size distribution analyzer or using a wet particle size distribution measuring apparatus in the state of a slurry in which the inorganic filler is dispersed in water or an organic solvent. Can be measured. In particular, when particles of 1 ⁇ m or less are contained, measurement is preferably performed using a wet particle size distribution analyzer. Specifically, a water slurry in which the concentration of the inorganic filler is adjusted to about 0.01% by mass is treated with a bath type ultrasonic cleaner for 5 minutes, and a laser diffraction type particle size measuring apparatus (LA-960, HORIBA, Ltd. It can be determined from the average value of all particles detected using In the present disclosure, the volume average particle size refers to the particle size (D50) at which the accumulation from the small diameter side is 50% in the volume-based particle size distribution.
- the particle shape of the inorganic filler is preferably spherical, and the particle size distribution of the inorganic filler is preferably widely distributed.
- 70% by mass or more of the inorganic filler be spherical particles, and the particle diameter of the spherical particles be distributed in a wide range of 0.1 ⁇ m to 80 ⁇ m.
- Such an inorganic filler easily forms a close-packed structure by mixing particles having different sizes, and therefore, even if the content of the inorganic filler is increased, the increase in viscosity of the epoxy resin composition is suppressed. It tends to be able to obtain the epoxy resin composition which is excellent in fluidity.
- the inorganic filler is, for example, alumina particles having a volume average particle diameter of 1 ⁇ m or less and a volume average particle diameter of 1 ⁇ m or less from the viewpoint of further improving the flowability of the epoxy resin composition and the thermal conductivity of the cured product.
- alumina particles having a volume average particle diameter of 1 ⁇ m or less And silica particles having a volume average particle diameter of more than 1 ⁇ m and 20 ⁇ m or less, preferably 5 ⁇ m to 15 ⁇ m.
- the inorganic filler includes alumina particles having a volume average particle diameter of 1 ⁇ m or less and silica particles having a volume average particle diameter of more than 1 ⁇ m and 20 ⁇ m or less, preferably 5 ⁇ m to 15 ⁇ m. It can confirm by calculating
- the content of the inorganic filler is 65% by volume to 85% by volume with respect to the total volume of the composition, and is 68% by volume to 80% by volume from the viewpoint of the balance of characteristics such as thermal conductivity and flowability. Is preferable, and 70% by volume to 78% by volume is more preferable.
- the content of the inorganic filler is preferably 84% by mass to 95% by mass with respect to the total mass of the composition, from the viewpoint of the balance of characteristics such as thermal conductivity and fluidity, and is 85% by mass 94 mass% is more preferable, and 86 mass% to 92 mass% is even more preferable.
- the ratio of silica particles to the total amount of alumina particles and silica particles is 10% by mass to 15% by mass, and from the viewpoint of property balance such as thermal conductivity and flowability, 12% by mass to 14%. More preferably, it is mass%, and more preferably 12 mass% to 13 mass%.
- the inorganic filler other than the alumina particles and the silica particles is not particularly limited, and glass, calcium carbonate, zirconium silicate, magnesium oxide, calcium silicate, silicon nitride, aluminum nitride, boron nitride, silicon carbide, industrial diamond, Particles of inorganic substances such as beryllia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc, clay and mica, beads obtained by spheroidizing these particles, and the like can be mentioned.
- inorganic fillers having a flame retardant effect may be used.
- Examples of the inorganic filler having a flame retardant effect include particles of a composite metal hydroxide such as aluminum hydroxide, magnesium hydroxide, a composite hydroxide of magnesium and zinc, zinc borate and the like.
- the inorganic particles other than the alumina particles and the silica particles may be used alone or in combination of two or more.
- the total content of alumina particles and silica particles relative to the total volume of the inorganic filler is preferably 80% by volume or more, more preferably 90% by volume or more, still more preferably 95% by volume or more And particularly preferably 98% by volume or more.
- the epoxy resin composition of the present disclosure may optionally contain a curing accelerator.
- a hardening accelerator what is generally used for the epoxy resin composition for sealing can be selected suitably, and can be used.
- the curing accelerator include organic phosphorus compounds, imidazole compounds, tertiary amines, and quaternary ammonium salts. Among them, organic phosphorus compounds are preferable.
- the curing accelerator may be used alone or in combination of two or more.
- Organic phosphorus compounds such as organic phosphines such as tributyl phosphine, phenyl phosphine, diphenyl phosphine, triphenyl phosphine, methyl diphenyl phosphine, and triparatolyl phosphine, and these phosphines such as maleic anhydride, benzoquinone, diazophenylmethane, etc.
- Phosphorus compounds having an intramolecular polarization formed by adding a compound having a bond for example, an adduct of triphenylphosphine and benzoquinone, and an adduct of triparatolylphosphine and benzoquinone
- a compound having a bond for example, an adduct of triphenylphosphine and benzoquinone, and an adduct of triparatolylphosphine and benzoquinone
- tetraphenylphosphonium tetraphenylborate triphenylphosphinetetra Examples include phenyl borate, 2-ethyl-4-methylimidazole tetraphenyl borate, triphenyl phosphonium triphenyl borane and the like.
- the reason for this is not clear, it can be considered as follows.
- the amount of the curing accelerator tends to be increased.
- the amount of chlorine ions generated by the reaction between the chlorine derived from epichlorohydrin, which is a raw material of the epoxy resin, and the curing accelerator increases, which reduces the reliability of the electronic component device.
- the organophosphorus compound is not too reactive, when the organophosphorus compound is used as a curing accelerator, the reaction with chlorine is suppressed, and the generation of chloride ion is also suppressed, thereby suppressing the decrease in reliability.
- the content of the curing accelerator is not particularly limited, and for example, it is 1.0% by mass to 10% by mass with respect to the total amount of the epoxy resin and the curing agent
- the content is preferably 1.5% by mass to 7% by mass, and more preferably 2.0% by mass to 6% by mass.
- the epoxy resin composition of the present disclosure may contain an organic solvent.
- the organic solvent is not particularly limited, and may contain, for example, an organic solvent having a boiling point of 50 ° C. to 100 ° C. (hereinafter also referred to as a specific organic solvent).
- the specific organic solvent is not particularly limited, and, for example, one having a boiling point of 50 ° C. to 100 ° C., preferably one that is nonreactive with the components in the epoxy resin composition can be appropriately selected and used.
- the specific organic solvent include alcohol solvents, ether solvents, ketone solvents, ester solvents and the like. Among them, alcohol solvents are preferable, and methanol (boiling point 64.7 ° C.), ethanol (boiling point 78.37 ° C.), propanol (boiling point 97 ° C.) and isopropanol (boiling point 82.6 ° C.) are more preferable.
- the specific organic solvents may be used alone or in combination of two or more.
- the boiling point of the specific organic solvent refers to the boiling point of the specific organic solvent measured at normal pressure.
- the content of the specific organic solvent in the epoxy resin composition is not particularly limited.
- the content of the specific organic solvent is, for example, preferably 0.1% by mass to 10% by mass with respect to the total mass of the epoxy resin composition, and from the viewpoint of further improving the thermal conductivity, 0.3% by mass It is more preferably ⁇ 4.0% by mass, still more preferably 0.3% by mass to 3.0% by mass, and particularly preferably 0.3% by mass to 2.5% by mass.
- the content of the specific organic solvent is 0.3% by mass or more, the effect of improving the fluidity tends to be further enhanced.
- the content of the specific organic solvent is 3.0% by mass or less, generation of voids is further suppressed when the epoxy resin in the epoxy resin composition is cured, and a decrease in insulation reliability is further suppressed. is there.
- the content rate of the alcohol solvent in the specific organic solvent is not particularly limited.
- the content of the alcohol solvent is, for example, preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more based on the total mass of the specific organic solvent. And particularly preferably 95% by mass or more.
- the epoxy resin composition may not substantially contain a specific organic solvent other than the alcohol solvent.
- the epoxy resin composition may contain additives such as an anion exchanger, a mold release agent, a flame retardant, a coupling agent, a stress relaxation agent, a plasticizer, a colorant and the like, as necessary.
- additives such as an anion exchanger, a mold release agent, a flame retardant, a coupling agent, a stress relaxation agent, a plasticizer, a colorant and the like, as necessary.
- the epoxy resin composition may optionally contain an anion exchanger.
- an anion exchanger when using an epoxy resin composition as a sealing material, it is preferable to contain an anion exchanger from the viewpoint of improving the moisture resistance and the high-temperature standing characteristics of the electronic component device provided with the element to be sealed.
- the anion exchanger is not particularly limited and can be selected from those conventionally used commonly in the art.
- hydrotalcite compounds and hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium and bismuth can be mentioned.
- the anion exchanger is not particularly limited and can be selected from those conventionally used commonly in the art.
- examples of the anion exchanger include a hydrotalcite compound having a composition represented by the following formula (I), and a hydrous oxide of an element selected from the group consisting of magnesium, aluminum, titanium, zirconium, bismuth and antimony. .
- the anion exchangers may be used alone or in combination of two or more. Mg 1-x Al x (OH) 2 (CO 3 ) x / 2 ⁇ mH 2 O (I) (0 ⁇ X ⁇ 0.5, m is a positive number)
- the hydrotalcite compound is captured by substituting anions such as halogen ions with CO 3 in the structure, and the halogen ions incorporated into the crystal structure are released until the crystal structure is destroyed at about 350 ° C. or higher. It is a compound with no property.
- the hydrotalcites having such properties include Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O produced as a natural product, and Mg 4.3 Al 2 (OH) 12.6 CO 3 as a synthetic product. ⁇ MH 2 O etc. may be mentioned.
- the epoxy resin composition of the present disclosure contains a phenol curing agent as a curing agent, the epoxy resin composition exhibits an acidity under the influence of the phenol curing agent (for example, the extract of a cured product using pure water has a pH of 3 to 5).
- the phenol curing agent for example, the extract of a cured product using pure water has a pH of 3 to 5.
- aluminum which is an amphoteric metal, becomes an environment susceptible to corrosion by the epoxy resin composition, but the corrosion of aluminum is caused by the epoxy resin composition containing a hydrotalcite compound also having an action of adsorbing an acid. Tend to be suppressed.
- the water-containing oxide of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium, bismuth and antimony can also be captured by substituting anions such as halogen ions with hydroxide ions. it can.
- these ion exchangers exhibit excellent ion exchange ability on the acid side. Therefore, when the epoxy resin composition contains these ion exchangers, the corrosion of aluminum tends to be suppressed as in the case of containing the hydrotalcite compound.
- the content of the anion exchanger is not particularly limited as long as it is an amount sufficient to capture anions such as halogen ions.
- the content of the anion exchanger is, for example, preferably 0.1% by mass to 30% by mass, and 1.0% by mass to 5% by mass. It is more preferable that
- the epoxy resin composition may contain a mold release agent as needed from the viewpoint of exhibiting good mold release property to the mold in the molding step.
- the type of release agent is not particularly limited, and examples include release agents known in the art. Specifically, as a mold release agent, higher fatty acids such as carnauba wax, montanic acid and stearic acid, higher fatty acid metal salts, ester-based waxes such as montanic acid esters, and polyolefin-based waxes such as oxidized polyethylene and non-oxidized polyethylene It can be mentioned. Among them, carnauba wax and polyolefin wax are preferable.
- the mold release agent may be used alone or in combination of two or more.
- polystyrene-based wax a commercially available product may be used.
- low molecular weight polyethylene having a number average molecular weight of about 500 to 10000 such as H4 of PECHET, PE, PED series, etc., can be mentioned.
- the content of the polyolefin wax is preferably 0.01% by mass to 10% by mass, and 0.10% by mass to 5% by mass with respect to the epoxy resin. It is more preferable that When the content of the polyolefin wax is 0.01% by mass or more, sufficient releasability tends to be obtained, and when it is 10% by mass or less, sufficient adhesiveness tends to be obtained.
- the epoxy resin composition contains a release agent other than polyolefin wax, or when the epoxy resin composition contains a polyolefin wax and another release agent, release agents other than polyolefin wax are released.
- the content of the mold agent is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 3% by mass with respect to the epoxy resin.
- the epoxy resin composition may contain a flame retardant, if necessary, from the viewpoint of imparting flame retardancy.
- the flame retardant is not particularly limited, and examples thereof include known organic and inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, metal hydroxides, and acenaphthylene.
- the flame retardant may be used alone or in combination of two or more.
- the content of the flame retardant is not particularly limited as long as the flame retardant effect can be obtained.
- the content of the flame retardant is preferably 1% by mass to 30% by mass, and more preferably 2% by mass to 15% by mass, with respect to the epoxy resin. preferable.
- the epoxy resin composition may optionally contain a coupling agent from the viewpoint of enhancing the adhesion between the resin component and the inorganic filler.
- the type of coupling agent is not particularly limited.
- Examples of the coupling agent include various silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, methacrylsilane, acrylsilane and vinylsilane, titanium compounds, aluminum chelate compounds, aluminum and zirconium-containing compounds.
- the coupling agents may be used alone or in combination of two or more.
- the content of the coupling agent is preferably 0.05% by mass to 5.0% by mass, and 0.10% by mass to the inorganic filler. More preferably, it is 2.5% by mass.
- the content of the coupling agent is 0.05% by mass or more, the adhesion to the frame tends to be improved, and when the content is 5.0% by mass or less, the moldability of the package tends to be excellent.
- the epoxy resin composition may contain a stress relaxation agent such as silicone oil or silicone rubber particles, if necessary, from the viewpoint of reducing the amount of warping and package cracking of the package.
- a stress relaxation agent such as silicone oil or silicone rubber particles
- a known flexible agent stress relaxation agent generally used in the relevant technical field can be appropriately selected and used.
- thermoplastic elastomers such as silicone, polystyrene, polyolefin, polyurethane, polyester, polyether, polyamide, polybutadiene, etc .; NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic rubber, urethane rubber Rubber particles such as silicone powder; methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, rubber having a core-shell structure such as methyl methacrylate-butyl acrylate copolymer Particles; and the like.
- silicone-based stress relaxation agents containing silicone are preferable.
- silicone type stress relaxation agent what has an epoxy group, what has an amino group, what carried out polyether modification of these etc. are mentioned.
- the stress relaxation agents may be used alone or in combination of two or more.
- the epoxy resin composition may contain a plasticizer from the viewpoint of lowering the high temperature elastic modulus.
- the plasticizer include organic phosphorus compounds such as trialkyl phosphine oxide and phosphoric acid ester, silicone and the like.
- the content of the plasticizer is preferably 0.001% by mass to 20% by mass, and more preferably 10% by mass to 20% by mass, with respect to the epoxy resin.
- the plasticizer may be used alone or in combination of two or more.
- the epoxy resin composition may contain a colorant such as carbon black, fibrous carbon, an organic dye, an organic colorant, titanium oxide, red lead, bengara and the like.
- a colorant such as carbon black, fibrous carbon, an organic dye, an organic colorant, titanium oxide, red lead, bengara and the like.
- the content of the colorant is preferably 0.05% by mass to 5.0% by mass with respect to the inorganic filler, and 0.10% by mass to 2.%. More preferably, it is 5% by mass.
- any method may be used as long as various components can be dispersed and mixed.
- a method of melt-kneading by a mixing roll, an extruder or the like, cooling, and crushing can be mentioned.
- the epoxy resin composition is, for example, mixed and stirred with the above-mentioned components, and kneaded by a kneader, a roll, an extruder, etc. which has been heated to 70 ° C. to 140 ° C. in advance, and then cooled. It can be obtained by a method such as crushing.
- the epoxy resin composition may be tableted in size and mass to match the molding conditions of the package. The tableting of the epoxy resin composition facilitates handling.
- the epoxy resin composition of the present disclosure preferably exhibits a flow distance of 160 cm or more when the flowability is measured by the following method.
- the epoxy resin composition is molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition is measured.
- the epoxy resin composition is molded using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa and a curing time of 120 seconds.
- Epoxy resin cured product is formed by curing the above-described epoxy resin composition. Since the epoxy resin cured product of the present disclosure is obtained by curing the above-described epoxy resin composition, it tends to be excellent in moldability and thermal conductivity.
- the thermal conductivity of the cured epoxy resin is not particularly limited, and is preferably 2.5 W / (m ⁇ K) or more.
- the thermal conductivity of the cured epoxy resin is a value measured as follows. Transfer molding is performed using an epoxy resin composition under the conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a mold-shaped epoxy resin cured product.
- the specific gravity of the obtained epoxy resin cured product is measured by the Archimedes method, and the specific heat is measured by DSC (for example, Perkin Elmer, DSC Pyris 1).
- the thermal diffusivity of the obtained cured product is measured by a laser flash method using a thermal diffusivity measuring device (for example, LFA 467, manufactured by NETZSCH).
- the thermal conductivity of the epoxy resin cured product is calculated using the obtained specific gravity, specific heat, and thermal diffusivity.
- the electronic component device of the present disclosure has a device and a cured product of the epoxy resin composition of the present disclosure sealing the device, and has the form of a BGA package.
- a BGA package is manufactured by mounting an element on the front surface of a substrate having a metal bump formed on the back surface, connecting the element and a wiring formed on the substrate by bump or wire bonding, and sealing the element. .
- the substrate include a glass-epoxy printed wiring board and the like.
- an active element, a passive element, etc. are mentioned.
- the active element includes a semiconductor chip, a transistor, a diode, a thyristor and the like.
- a passive element a capacitor, a resistor, a coil, etc. are mentioned.
- the method for sealing the device with the epoxy resin cured product is not particularly limited, and methods known in the art can be applied.
- a low pressure transfer molding method is generally used, an injection molding method, a compression molding method or the like may be used.
- Multifunctional epoxy resin Mitsubishi Chemical Corporation, trade name "1032H60”
- Curing agent 1-Multifunctional phenol resin Air Water Co., Ltd., trade name "HE 910", triphenylmethane type phenol resin having a hydroxyl equivalent of 105 g / eq
- Curing agent 2-Multifunctional phenol resin Air Water Co., Ltd., trade name "HE 200”, biphenylene aralkyl type phenol resin having a hydroxyl equivalent of 199 g / eq) ⁇
- Inorganic filler 1 Alumina-silica mixed filler (silica content: 10% by mass), volume average particle diameter: 10 ⁇ m
- Inorganic filler 2 alumina filler, volume average particle diameter: 0.8 ⁇ m
- Inorganic filler 3 silica filler, volume average particle diameter: 0.8 ⁇ m
- Inorganic filler 4 silica filler, volume average particle diameter: 10 ⁇ m
- Coupling agent epoxysilane (anilinosilane (N-phenyl-3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name: KBM-573)
- Colorant carbon black (Mitsubishi Chemical Corporation, trade name: MA-100)
- -Releasing agent Montanic acid ester (Celarika NODA)
- the evaluation of the flowability of the epoxy resin composition was performed by a spiral flow test. Specifically, the epoxy resin composition was molded using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) of the molded product of the epoxy resin composition was measured. Molding of the epoxy resin composition was performed using a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds. Moreover, fluidity
- the evaluation of the thermal conductivity when the epoxy resin composition was cured was performed as follows. Specifically, transfer molding was performed using the prepared epoxy resin composition under conditions of a mold temperature of 180 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds, to obtain a molded product having a mold shape.
- the specific gravity of the obtained cured product measured by the Archimedes method was 3.00.
- the specific heat of the obtained cured product was measured by DSC (Perkin Elmer, DSC Pyris 1).
- the thermal diffusivity of the cured product was measured by a laser flash method using a thermal diffusivity measuring device (LFA 467, manufactured by NETZSCH).
- the thermal conductivity of the epoxy resin cured product was calculated using the obtained specific gravity, specific heat, and thermal diffusivity.
- the thermal conductivity was A at 2.5 W / (m ⁇ K) or more, and B at less than 2.5 W / (m ⁇ K).
- the curing agent 1 is contained, the content of the inorganic filler is 65% by volume to 85% by volume, and the ratio of the silica particles to the total amount of the alumina particles and the silica particles is 10% by mass to 15
- the ratio of the silica particles to the total amount of the alumina particles and the silica particles is 10% by mass to 15
- both evaluations of fluidity and thermal conductivity were good.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Epoxy Resins (AREA)
Abstract
Description
<1> エポキシ樹脂と、水酸基当量120g/eq以下のフェノール硬化剤と、アルミナ粒子及びシリカ粒子を含む無機充填材と、を含有し、
前記無機充填材の含有率が65体積%~85体積%であり、
前記アルミナ粒子及び前記シリカ粒子の合計量に対する前記シリカ粒子の割合が10質量%~15質量%である、ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<2> 更に硬化促進剤を含有し、前記硬化促進剤が有機リン化合物を含む、<1>に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<3> 前記フェノール硬化剤が、1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂を含む、<1>又は<2>に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<4> 前記フェノール硬化剤がトリフェニルメタン型フェノール樹脂を含む、<1>~<3>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
<5> <1>~<4>のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。
<6> 素子と、前記素子を封止している<5>に記載のエポキシ樹脂硬化物と、を有し、ボールグリッドアレイパッケージの形態を有する、電子部品装置。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示のBGAパッケージ封止用エポキシ樹脂組成物(以下、単にエポキシ樹脂組成物ともいう)は、エポキシ樹脂と、水酸基当量120g/eq以下のフェノール硬化剤と、アルミナ粒子及びシリカ粒子を含む無機充填材と、を含有し、前記無機充填材の含有率が65体積%~85体積%であり、前記アルミナ粒子及び前記シリカ粒子の合計量に対する前記シリカ粒子の割合が10質量%~15質量%である。
本開示のエポキシ樹脂組成物は、エポキシ樹脂を含有する。エポキシ樹脂組成物は、好ましくは、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含有する。エポキシ樹脂は特に制限されず、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはシリコーン樹脂のエポキシ化物、アクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。エポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
式(IV)中、nは0~4であることが好ましい。
式(VIII)中、nは0~4であることが好ましい。
エポキシ樹脂組成物がビフェニル型エポキシ樹脂を含有する場合の別の一実施形態において、ビフェニル型エポキシ樹脂の含有量は、エポキシ樹脂全量に対して5質量%~60質量%であることが好ましく、10質量%~50質量%であることがより好ましく、20質量%~40質量%であることが更に好ましい。
エポキシ樹脂組成物がジフェニルメタン型エポキシ樹脂を含有する場合の一実施形態において、ジフェニルメタン型エポキシ樹脂の含有量は、エポキシ樹脂全量に対して5質量%~45質量%であることが好ましく、5質量%~35質量%であることがより好ましく、5質量%~25質量%であることが更に好ましい。
エポキシ樹脂組成物がトリフェニルメタン型エポキシ樹脂を含有する場合の一実施形態において、トリフェニルメタン型エポキシ樹脂の含有量は、エポキシ樹脂全量に対して25質量%~85質量%であることが好ましく、35質量%~75質量%であることがより好ましく、45質量%~65質量%であることが更に好ましい。
本開示のエポキシ樹脂組成物は、水酸基当量120g/eq以下のフェノール硬化剤(以下、特定フェノール硬化剤ともいう)を含有する。特定フェノール硬化剤は、フェノール性水酸基を有し、水酸基当量120g/eq以下の化合物であれば特に制限されない。特定フェノール硬化剤は、低分子のフェノール化合物であっても、低分子のフェノール化合物を高分子化したフェノール樹脂であってもよい。熱伝導性の観点からは、特定フェノール硬化剤はフェノール樹脂であることが好ましい。特定フェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
式(XVI)中、nは0~5であることが好ましい。
本開示のエポキシ樹脂組成物は、アルミナ粒子及びシリカ粒子を含む無機充填材を含有する。無機充填材の含有率は組成物の全体積に対して65体積%~85体積%であり、アルミナ粒子及びシリカ粒子の合計量に対するシリカ粒子の割合は、10質量%~15質量%である。無機充填材は、アルミナ粒子とシリカ粒子以外の無機充填材を含んでもよく、無機充填材はアルミナ粒子とシリカ粒子からなることが好ましい。シリカ粒子としては、球状シリカ、結晶シリカ等が挙げられる。
無機充填材が、体積平均粒子径が1μm以下のアルミナ粒子と、体積平均粒子径が1μm以下のシリカ粒子とを含むものであることは、例えば無機充填材の体積基準の粒度分布(頻度分布)を求めることで確認することができる。
また、無機充填材の含有率は、熱伝導性、流動性等の特性バランスの観点から、組成物の全質量に対して、84質量%~95質量%であることが好ましく、85質量%~94 質量%であることがより好ましく、86質量%~92質量%であることが更に好ましい。
本開示のエポキシ樹脂組成物は、必要に応じて硬化促進剤を含有してもよい。硬化促進剤としては、封止用エポキシ樹脂組成物に一般に用いられるものを適宜選択して使用することができる。硬化促進剤としては、例えば、有機リン化合物、イミダゾール化合物、第3級アミン、及び第4級アンモニウム塩が挙げられる。中でも、有機リン化合物が好ましい。硬化促進剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
本開示のエポキシ樹脂組成物は、有機溶剤を含有してもよい。エポキシ樹脂組成物が有機溶剤を含有すると、組成物の粘度が低下し、混練性及び流動性が向上する傾向にある。有機溶剤は特に制限されず、例えば、沸点が50℃~100℃である有機溶剤(以下、特定有機溶剤ともいう)を含有してもよい。
エポキシ樹脂組成物は、必要に応じて陰イオン交換体、離型剤、難燃剤、カップリング剤、応力緩和剤、可塑剤、着色剤等の添加剤を含有してもよい。
エポキシ樹脂組成物は、必要に応じて陰イオン交換体を含有してもよい。特に、エポキシ樹脂組成物を封止材料として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、陰イオン交換体を含有することが好ましい。
Mg1-xAlx(OH)2(CO3)x/2・mH2O (I)
(0<X≦0.5、mは正の数)
エポキシ樹脂組成物は、成形工程において金型に対する良好な離型性を発揮させる観点から、必要に応じて離型剤を含有してもよい。離型剤の種類は特に制限されず、当該技術分野において公知の離型剤が挙げられる。具体的に、離型剤としては、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。中でも、カルナバワックス及びポリオレフィン系ワックスが好ましい。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
また、エポキシ樹脂組成物がポリオレフィン系ワックス以外のその他の離型剤を含有する場合、又はエポキシ樹脂組成物がポリオレフィン系ワックス及びその他の離型剤を含有する場合、ポリオレフィン系ワックス以外のその他の離型剤の含有率は、エポキシ樹脂に対して0.1質量%~10質量%であることが好ましく、0.5質量%~3質量%であることがより好ましい。
エポキシ樹脂組成物は、難燃性を付与する観点から、必要に応じて難燃剤を含有してもよい。難燃剤は特に制限されず、例えば、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む公知の有機化合物及び無機化合物、金属水酸化物、並びにアセナフチレンが挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
エポキシ樹脂組成物は、必要に応じて、樹脂成分と無機充填材との接着性を高める観点から、カップリング剤を含有してもよい。カップリング剤の種類は、特に制限されない。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、メタクリルシラン、アクリルシラン、ビニルシラン等の各種シラン化合物、チタン化合物、アルミニウムキレート化合物、アルミニウム及びジルコニウム含有化合物などが挙げられる。カップリング剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
エポキシ樹脂組成物は、パッケージの反り変形量及びパッケージクラックを低減させる観点から、必要に応じて、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含有してもよい。使用可能な応力緩和剤としては、当該技術分野で一般に用いられる公知の可とう剤(応力緩和剤)を適宜選択して使用することができる。
エポキシ樹脂組成物は、高温弾性率を低下させる観点から、可塑剤を含有してもよい。可塑剤としては、トリアルキルホスフィンオキシド、リン酸エステル等の有機リン化合物、シリコーンなどが挙げられる。可塑剤の含有率は、エポキシ樹脂に対して、0.001質量%~20質量%であることが好ましく、10質量%~20質量%であることがより好ましい。可塑剤は1種を単独で用いても2種以上組み合わせて用いてもよい。
エポキシ樹脂組成物は、カーボンブラック、繊維状カーボン、有機染料、有機着色剤、酸化チタン、鉛丹、ベンガラ等の着色剤を含有してもよい。エポキシ樹脂組成物が着色剤を含有する場合、着色剤の含有率は、無機充填材に対して0.05質量%~5.0質量%であることが好ましく、0.10質量%~2.5質量%であることがより好ましい。
エポキシ樹脂組成物の調製には、各種成分を分散混合できるのであれば、いずれの手法を用いてもよい。一般的な手法として、各種成分をミキサー等によって充分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、エポキシ樹脂組成物は、例えば、上述した成分を混合して攪拌し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練した後、冷却し、粉砕する等の方法によって得ることができる。エポキシ樹脂組成物は、パッケージの成形条件に合うような寸法及び質量でタブレット化してもよい。エポキシ樹脂組成物をタブレット化することで、取り扱いが容易になる。
本開示のエポキシ樹脂組成物は、以下の方法で流動性を測定したときに、160cm以上の流動距離を示すことが好ましい。EMMI-1-66に準じたスパイラルフロー測定用金型を用いてエポキシ樹脂組成物を成形し、エポキシ樹脂組成物の成形物の流動距離(cm)を測定する。エポキシ樹脂組成物の成形は、トランスファー成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間120秒の条件下で行うものとする。
本開示のエポキシ樹脂硬化物は、上述したエポキシ樹脂組成物を硬化してなる。本開示のエポキシ樹脂硬化物は、上述したエポキシ樹脂組成物を硬化して得られることから、成形性及び熱伝導性に優れる傾向にある。
エポキシ樹脂硬化物の熱伝導率は特に制限されず、2.5W/(m・K)以上であることが好ましい。本開示においてエポキシ樹脂硬化物の熱伝導率は以下のように測定したときの値とする。エポキシ樹脂組成物を用いて、金型温度180℃、成形圧力7MPa、硬化時間300秒間の条件でトランスファー成形を行い、金型形状のエポキシ樹脂硬化物を得る。得られたエポキシ樹脂硬化物の比重をアルキメデス法により測定し、比熱をDSC(例えば、Perkin Elmer社、DSC Pyris1)で測定する。また、得られた硬化物の熱拡散率を、熱拡散率測定装置(例えば、NETZSCH社、LFA467)を用いてレーザーフラッシュ法により測定する。得られた比重、比熱、及び熱拡散率を用いてエポキシ樹脂硬化物の熱伝導率を算出する。
本開示の電子部品装置は、素子と、前記素子を封止している本開示のエポキシ樹脂組成物の硬化物と、を有し、BGAパッケージの形態を有する。BGAパッケージは、裏面に金属バンプを形成した基板のおもて面に素子を搭載し、バンプ又はワイヤボンディングにより素子と基板に形成された配線を接続した後、素子を封止して作製される。基板としては、ガラス-エポキシプリント配線板等が挙げられる。素子としては、能動素子、受動素子等が挙げられる。能動素子としては、半導体チップ、トランジスタ、ダイオード、サイリスタ等が挙げられる。受動素子としては、コンデンサ、抵抗体、コイル等が挙げられる。
下記に示す成分を表1に示す配合割合(質量部)で混合し、実施例と比較例の樹脂組成物を調製した。表1中、「-」は成分が配合されていないことを示す。
・エポキシ樹脂2…ジフェニルメタン型エポキシ樹脂(新日鐵住金化学株式会社、商品名「YSLV-80XY」)
・エポキシ樹脂3…多官能エポキシ樹脂(三菱ケミカル株式会社、商品名「1032H60」)
・硬化剤1…多官能フェノール樹脂(エア・ウォーター株式会社、商品名「HE910」、水酸基当量105g/eqのトリフェニルメタン型フェノール樹脂)
・硬化剤2…多官能フェノール樹脂(エア・ウォーター株式会社、商品名「HE200」、水酸基当量199g/eqのビフェニレンアラルキル型フェノール樹脂)
・硬化促進剤1…リン系硬化促進剤(有機リン化合物)
・無機充填材1:アルミナ-シリカ混合フィラー(シリカ含有率:10質量%)、体積平均粒子径:10μm
・無機充填材2:アルミナフィラー、体積平均粒子径:0.8μm
・無機充填材3:シリカフィラー、体積平均粒子径:0.8μm
・無機充填材4:シリカフィラー、体積平均粒子径:10μm
・カップリング剤:エポキシシラン(アニリノシラン(N-フェニル-3-アミノプロピルトリメトキシシラン、信越化学工業株式会社、商品名:KBM-573)
・着色剤:カーボンブラック(三菱ケミカル株式会社、商品名:MA-100)
・離型剤:モンタン酸エステル(株式会社セラリカNODA)
エポキシ樹脂組成物の流動性の評価は、スパイラルフロー試験により行った。
具体的には、EMMI-1-66に準じたスパイラルフロー測定用金型を用いてエポキシ樹脂組成物を成形し、エポキシ樹脂組成物の成形物の流動距離(cm)を測定した。エポキシ樹脂組成物の成形は、トランスファー成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間120秒の条件下で行った。また、流動性は160cm以上をAとし、160cm未満をBとした。
エポキシ樹脂組成物を硬化したときの熱伝導率の評価は、下記により行った。具体的には、調製したエポキシ樹脂組成物を用いて、金型温度180℃、成形圧力7MPa、硬化時間300秒間の条件でトランスファー成形を行い、金型形状の硬化物を得た。得られた硬化物をアルキメデス法により測定した比重は3.00であった。得られた硬化物の比熱をDSC(Perkin Elmer社、DSC Pyris1)で測定した。また硬化物の熱拡散率を熱拡散率測定装置(NETZSCH社、LFA467)を用いてレーザーフラッシュ法により測定した。得られた比重、比熱、及び熱拡散率を用いてエポキシ樹脂硬化物の熱伝導率を算出した。熱伝導率は2.5W/(m・K)以上をAとし、2.5W/(m・K)未満をBとした。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
Claims (6)
- エポキシ樹脂と、水酸基当量120g/eq以下のフェノール硬化剤と、アルミナ粒子及びシリカ粒子を含む無機充填材と、を含有し、
前記無機充填材の含有率が65体積%~85体積%であり、
前記アルミナ粒子及び前記シリカ粒子の合計量に対する前記シリカ粒子の割合が10質量%~15質量%である、ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。 - 更に硬化促進剤を含有し、前記硬化促進剤が有機リン化合物を含む、請求項1に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
- 前記フェノール硬化剤が、1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂を含む、請求項1又は請求項2に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
- 前記フェノール硬化剤がトリフェニルメタン型フェノール樹脂を含む、請求項1~請求項3のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物。
- 請求項1~請求項4のいずれか1項に記載のボールグリッドアレイパッケージ封止用エポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。
- 素子と、前記素子を封止している請求項5に記載のエポキシ樹脂硬化物と、を有し、ボールグリッドアレイパッケージの形態を有する、電子部品装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019562936A JP7287281B2 (ja) | 2017-12-28 | 2018-12-10 | ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 |
CN201880084109.4A CN111527147A (zh) | 2017-12-28 | 2018-12-10 | 球栅阵列封装密封用环氧树脂组合物、环氧树脂固化物和电子部件装置 |
KR1020207021183A KR102731475B1 (ko) | 2017-12-28 | 2018-12-10 | 볼 그리드 어레이 패키지 밀봉용 에폭시 수지 조성물, 에폭시 수지 경화물 및 전자 부품 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017254880 | 2017-12-28 | ||
JP2017-254880 | 2017-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019131095A1 true WO2019131095A1 (ja) | 2019-07-04 |
Family
ID=67063570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045348 WO2019131095A1 (ja) | 2017-12-28 | 2018-12-10 | ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 |
Country Status (4)
Country | Link |
---|---|
JP (3) | JP7287281B2 (ja) |
CN (1) | CN111527147A (ja) |
TW (1) | TW201930455A (ja) |
WO (1) | WO2019131095A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022149602A1 (ja) * | 2021-01-08 | 2022-07-14 | 昭和電工マテリアルズ株式会社 | 熱硬化性樹脂組成物及び電子部品装置 |
WO2023188401A1 (ja) * | 2022-03-31 | 2023-10-05 | 株式会社レゾナック | 成形用樹脂組成物及び電子部品装置 |
WO2023238950A1 (ja) * | 2022-06-10 | 2023-12-14 | 株式会社レゾナック | 成形用樹脂組成物及び電子部品装置 |
WO2024029602A1 (ja) * | 2022-08-05 | 2024-02-08 | 日鉄ケミカル&マテリアル株式会社 | 樹脂組成物及び硬化物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114921057B (zh) * | 2022-06-02 | 2023-06-13 | 江苏长电科技股份有限公司 | 一种环氧塑封料组合物、制备方法及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005200533A (ja) * | 2004-01-15 | 2005-07-28 | Kyocera Chemical Corp | 半導体封止用エポキシ樹脂組成物および樹脂封止型半導体装置 |
JP2008297530A (ja) * | 2007-06-04 | 2008-12-11 | Sumitomo Bakelite Co Ltd | エポキシ樹脂組成物及び半導体装置 |
JP2014005359A (ja) * | 2012-06-25 | 2014-01-16 | Sumitomo Bakelite Co Ltd | エポキシ樹脂組成物及び電子部品装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10182947A (ja) * | 1996-12-24 | 1998-07-07 | Matsushita Electric Works Ltd | 封止材用エポキシ樹脂組成物及びそれを用いた半導体装置 |
MY148463A (en) * | 2004-07-29 | 2013-04-30 | Sumitomo Bakelite Co | Epoxy resin composition and semiconductor device |
WO2006075599A1 (ja) * | 2005-01-13 | 2006-07-20 | Sumitomo Bakelite Company, Ltd. | 半導体封止用エポキシ樹脂組成物及び半導体装置 |
JP5630652B2 (ja) * | 2011-01-06 | 2014-11-26 | 日立化成株式会社 | 封止用エポキシ樹脂成形材料および電子部品装置 |
JP6712895B2 (ja) * | 2016-04-15 | 2020-06-24 | 京セラ株式会社 | 粉粒状半導体封止用樹脂組成物及び半導体装置 |
JP2017203132A (ja) * | 2016-05-13 | 2017-11-16 | 日立化成株式会社 | エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 |
-
2018
- 2018-12-10 JP JP2019562936A patent/JP7287281B2/ja active Active
- 2018-12-10 CN CN201880084109.4A patent/CN111527147A/zh active Pending
- 2018-12-10 WO PCT/JP2018/045348 patent/WO2019131095A1/ja active Application Filing
- 2018-12-20 TW TW107146026A patent/TW201930455A/zh unknown
-
2023
- 2023-05-25 JP JP2023086399A patent/JP2023105016A/ja active Pending
-
2024
- 2024-06-03 JP JP2024089976A patent/JP2024103696A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005200533A (ja) * | 2004-01-15 | 2005-07-28 | Kyocera Chemical Corp | 半導体封止用エポキシ樹脂組成物および樹脂封止型半導体装置 |
JP2008297530A (ja) * | 2007-06-04 | 2008-12-11 | Sumitomo Bakelite Co Ltd | エポキシ樹脂組成物及び半導体装置 |
JP2014005359A (ja) * | 2012-06-25 | 2014-01-16 | Sumitomo Bakelite Co Ltd | エポキシ樹脂組成物及び電子部品装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022149602A1 (ja) * | 2021-01-08 | 2022-07-14 | 昭和電工マテリアルズ株式会社 | 熱硬化性樹脂組成物及び電子部品装置 |
WO2023188401A1 (ja) * | 2022-03-31 | 2023-10-05 | 株式会社レゾナック | 成形用樹脂組成物及び電子部品装置 |
WO2023190419A1 (ja) * | 2022-03-31 | 2023-10-05 | 株式会社レゾナック | 成形用樹脂組成物及び電子部品装置 |
JP7521715B2 (ja) | 2022-03-31 | 2024-07-24 | 株式会社レゾナック | 成形用樹脂組成物及び電子部品装置 |
WO2023238950A1 (ja) * | 2022-06-10 | 2023-12-14 | 株式会社レゾナック | 成形用樹脂組成物及び電子部品装置 |
JP7505661B2 (ja) | 2022-06-10 | 2024-06-25 | 株式会社レゾナック | 成形用樹脂組成物及び電子部品装置 |
WO2024029602A1 (ja) * | 2022-08-05 | 2024-02-08 | 日鉄ケミカル&マテリアル株式会社 | 樹脂組成物及び硬化物 |
Also Published As
Publication number | Publication date |
---|---|
JP7287281B2 (ja) | 2023-06-06 |
CN111527147A (zh) | 2020-08-11 |
JP2023105016A (ja) | 2023-07-28 |
TW201930455A (zh) | 2019-08-01 |
JP2024103696A (ja) | 2024-08-01 |
JPWO2019131095A1 (ja) | 2021-01-07 |
KR20200103756A (ko) | 2020-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7287281B2 (ja) | ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 | |
JP7571814B2 (ja) | エポキシ樹脂組成物、及び電子部品装置 | |
WO2019054217A1 (ja) | エポキシ樹脂組成物、及び電子部品装置 | |
JP7400473B2 (ja) | ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 | |
JP5386836B2 (ja) | 半導体封止用樹脂組成物及び半導体装置 | |
JP7276151B2 (ja) | ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置 | |
JP2024096265A (ja) | 樹脂組成物及び電子部品装置 | |
JP6221382B2 (ja) | エポキシ樹脂組成物及び電子部品装置 | |
JP2008266611A (ja) | 半導体封止用樹脂組成物及び半導体装置 | |
KR102731475B1 (ko) | 볼 그리드 어레이 패키지 밀봉용 에폭시 수지 조성물, 에폭시 수지 경화물 및 전자 부품 장치 | |
JP2021195480A (ja) | 封止用樹脂組成物及び電子部品装置 | |
JP7571407B2 (ja) | 封止用樹脂組成物及び電子部品装置 | |
JP7533439B2 (ja) | 硬化性樹脂組成物及び電子部品装置 | |
JP6686428B2 (ja) | エポキシ樹脂組成物および半導体装置 | |
JP2024055627A (ja) | 成形用樹脂組成物及び電子部品装置 | |
JP2023093108A (ja) | 樹脂組成物、電子部品装置、電子部品装置の製造方法及び樹脂組成物の製造方法 | |
JP2023023485A (ja) | エポキシ樹脂組成物、硬化物、及び電子部品装置 | |
JP2024091762A (ja) | トランスファ成形封止用樹脂組成物及び半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18897287 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019562936 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207021183 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18897287 Country of ref document: EP Kind code of ref document: A1 |