WO2019128597A1 - 洗衣机 - Google Patents
洗衣机 Download PDFInfo
- Publication number
- WO2019128597A1 WO2019128597A1 PCT/CN2018/117686 CN2018117686W WO2019128597A1 WO 2019128597 A1 WO2019128597 A1 WO 2019128597A1 CN 2018117686 W CN2018117686 W CN 2018117686W WO 2019128597 A1 WO2019128597 A1 WO 2019128597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- axis
- motor
- phase
- phase error
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F34/00—Details of control systems for washing machines, washer-dryers or laundry dryers
- D06F34/08—Control circuits or arrangements thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
Definitions
- the present invention relates to a washing machine capable of determining an eccentric state easily and accurately without a sensor.
- Patent Document 1 As a method of detecting the eccentric state in a sensorless manner and performing control for stopping the rotation when necessary, for example, a method disclosed in Patent Document 1 is known.
- This method focuses on "there is a correlation between the motor q-axis current and the eccentric state calculated for vector control", and determines the occurrence of abnormal vibration based on the q-axis current.
- the d-axis voltage is the amount of operation of the q-axis current, which varies depending on the eccentric state as well as the q-axis current. Further, since it is an operation amount, it is less susceptible to external noise, and the change in absolute value is also large.
- Patent Document 1 Japanese Patent No. 4406176
- the present invention has been made in view of such new recognition, and an object thereof is to realize a washing machine that uses a new determination method for eccentricity determination, which can be appropriately performed when determining an eccentric state by a d-axis voltage After the completion of the repair, the eccentric state is determined by the d-axis voltage equal to or instead of the d-axis voltage.
- the washing machine of the present invention includes: a motor that rotationally drives the dewatering tub; and a control unit that performs vector control of the generated torque of the motor, wherein the control unit includes: an eccentricity determining unit The eccentric state of the dewatering tank is determined based on the magnitude of the phase error between the d-axis phase estimated by the vector control and the actual d-axis phase.
- the washing machine of the present invention includes: a motor that rotationally drives the dewatering tub; and a control unit that performs vector control of the generated torque of the motor, wherein the control unit includes an eccentricity determining unit, The degree of change in the phase error between the estimated d-axis phase and the actual d-axis phase by the vector control is determined, and the eccentric state of the dewatering tub is determined.
- the washing machine of the present invention includes: a motor that rotationally drives the dewatering tub; and a control unit that performs vector control of the generated torque of the motor, wherein the control unit includes an eccentricity determining unit that is Determining the relationship between the value obtained by performing the vector control and the d-axis voltage corrected by the load, and the phase error of the d-axis phase estimated by the vector control and the actual d-axis phase.
- the eccentric state of the dewatering bucket includes: a motor that rotationally drives the dewatering tub; and a control unit that performs vector control of the generated torque of the motor, wherein the control unit includes an eccentricity determining unit that is Determining the relationship between the value obtained by performing the vector control and the d-axis voltage corrected by the load, and the phase error of the d-axis phase estimated by the vector control and the actual d-axis phase.
- the washing machine of the present invention is characterized in that, in each of the above configurations, a value of a Fourier coefficient corresponding to an actual vibration frequency after performing Fourier series expansion on a waveform of a phase error is used as the phase error. .
- the washing machine of the present invention determines the eccentric state based on the magnitude of the phase error of the d-axis phase and the actual d-axis phase.
- This phase error does not vary as much as the d-axis voltage, and increases or decreases depending on the eccentric state. Therefore, according to the present invention, it is possible to determine the eccentric state at an angle different from the case of monitoring the d-axis voltage. Therefore, it is possible to perform an appropriate eccentricity when the eccentric state is determined by the d-axis voltage, and to determine the eccentric state in place of or in place of the d-axis voltage depending on the situation.
- the phase error has a tendency to be large when performing acceleration in a low speed region.
- the washing machine of the present invention determines the eccentric state based on the degree of change in the phase error of the d-axis phase and the actual d-axis phase.
- the degree of change in the phase error is such that the influence of the load is not changed as much as the degree of change in the d-axis voltage, and the eccentric state is increased. Therefore, according to the present invention, it is possible to perform an eccentric state determination in which the eccentric state of the time change is accurately grasped at an angle different from the case where the d-axis voltage is monitored and the magnitude of the phase error is also different.
- the phase error has a tendency to vary greatly when performing acceleration in a high speed region.
- the washing machine of the present invention determines the eccentric state based on the correlation between the value corrected for the d-axis voltage based on the load and the phase error described above. Even when the d-axis voltage is corrected based on the load, the d-axis voltage may increase for other reasons, and the phase error does not greatly change. Therefore, according to the present invention, the determination based on the d-axis voltage can be completed based on the phase error, and the eccentric state can be more accurately determined. For other reasons, a so-called "water-containing" state in which water remains between the dewatering tank and the outer tub due to the difference in drainage is exemplified.
- the washing machine of the present invention performs Fourier transform on the waveform of the phase error to extract a phase error corresponding to the actual vibration frequency. Therefore, it is possible to eliminate noise and perform high-precision determination.
- Fig. 1 is a perspective view showing an appearance of a washing machine in accordance with an embodiment of the present invention.
- Fig. 2 is a longitudinal sectional view showing a schematic configuration of the same washing machine.
- FIG. 3 is a block diagram showing a system configuration of a motor control system which is a premise of load measurement in the same embodiment.
- FIG. 4 is a view showing a schematic configuration of a speed estimating unit in the same motor control system.
- Fig. 5 is a view showing the principle of speed estimation of the same motor control system.
- Fig. 6 is a view showing an outline of a PLL control unit in the same motor control system.
- Fig. 7 is a timing chart showing a control process at the time of the dehydration process of the same washing machine.
- FIG. 8 is a flowchart showing a processing procedure of the low speed region determination one in the same embodiment.
- FIG. 9 is a flowchart showing a processing procedure of the low speed region determination 2 in the same embodiment.
- FIG. 10 is a flowchart showing a processing procedure of the high speed area determination one in the same embodiment.
- FIG. 11 is a flowchart showing a processing procedure of the high speed area determination 2 in the same embodiment.
- FIG. 12 is a graph showing a transition of the detected value of the d-axis voltage when the eccentric amount is small and the eccentric amount is large, and the low-speed region determination is not applied to the C section.
- FIG. 13 is a graph showing a transition of the phase error when the low-speed region determination 2 is not applied to the C section, in the case where the eccentric amount is small and the eccentricity is large.
- FIG. 14 is a graph showing the transition of the d-axis voltage and the phase error ⁇ when the high-speed area determination is not applied to the D section, when the eccentric amount is small and the eccentricity is large.
- FIG. 15 is a graph showing the transition of the d-axis voltage and the phase error ⁇ when the high-speed region determination 2 is not applied to the D section, in the case where the eccentric amount is small and the eccentricity is large.
- 100 eccentricity determination unit
- A4 dehydration barrel
- M motor
- Vd d-axis voltage
- Vd amd load amount correction value
- ⁇ phase error of the estimated phase of the d-axis and the actual d-axis phase.
- FIG. 1 is a perspective view showing an appearance of a vertical washing machine (hereinafter referred to as "washing machine") 1 according to an embodiment of the present invention.
- FIG. 2 is a vertical cross-sectional view showing a schematic configuration of the washing machine 1 of the present embodiment.
- the washing machine 1 of the present embodiment includes a washing machine body 11, an outer tub 12, a dewatering tub (washing tub) 13, a drive unit 16, and a control unit C (see Fig. 3).
- the washing machine 1 as described above, when the start button (not shown) which is located in the input unit 14 and is fully automatically washed is pressed, the amount of laundry in the dewatering tank 13 is automatically determined as the amount of load, and based on the amount of load. The amount of water stored in the tub 12 during the washing process and the rinsing process is automatically determined to perform the washing action.
- the sensorless control is transitioned after the low speed rotation, the eccentric state of the dewatering tank 13 is monitored in a sensorless manner, and the rotation is stopped in the case of an eccentricity abnormality, and is accelerated to the highest speed if there is no eccentricity abnormality.
- Fig. 3 is a functional block diagram showing an outline of a control unit.
- the present embodiment has an eccentricity determining unit 100 that determines the eccentricity state, and uses the value of the d-axis voltage instead of the value of the q-axis current, and uses the phase of the d-axis and the actual d-axis estimated by the control. Error ⁇ .
- the process of removing the abruptly changed data is performed by a low-pass filter, a moving average process, or the like as necessary.
- the description will be given in order.
- the washing machine main body 11 is formed in a substantially rectangular parallelepiped shape, and has an opening 11b for inserting/removing laundry (clothing) into the dewatering tub 13 on the upper surface 11a, and an opening and closing cover 11c capable of opening and closing the opening 11b, which can be opened
- the lid 11c is opened and closed, and the laundry is placed/removed into the dewatering tub 13 through the opening 11b.
- the input unit 14 described above is formed on the upper surface 11a of the washing machine body 11.
- the outer tub 12 shown in FIG. 2 is a bottomed cylindrical member that can be stored inside the washing machine main body 11 and can store water.
- the dewatering tub 13 as a washing tub is a bottomed cylindrical member that is disposed coaxially with the outer tub 12 inside the outer tub 12 and rotatably supported by the outer tub 12.
- the dewatering tub 13 has a small diameter compared to the outer tub 12, and has a plurality of water passing holes (not shown) on the wall surface 13a.
- a pulsator (stirring blade) 15 is rotatably disposed in the center of the bottom portion 13b of the dewatering tub 13.
- the pulsator 15 agitates the water stored in the outer tub 12 to generate a water flow.
- the pulsator 15 is rotationally driven at the start of the washing process and before the water supply to the dewatering tank 13, and the detected value obtained by the rotation of the towed laundry at this time is used for the detection of the load amount.
- the drive unit 16 includes a motor M and a clutch 16b.
- the motor M rotates the dewatering tub 13 by rotating the drive shaft m that extends toward the bottom portion 13a of the dewatering tub 13. Further, the motor M can also apply a driving force to the pulsator 15 by switching the clutch 16b to rotate the pulsator 15. Therefore, the washing machine 1 can mainly rotate only the pulsator 15 during the washing process and the rinsing process in the load amount measurement described later, and rotate the dewatering tub 13 and the pulsator 15 at high speed integrally in the dehydrating process.
- each speed ⁇ is marked as ⁇ e .
- Vd R ⁇ Id- ⁇ Lq ⁇ iq (2)
- Vd - ⁇ Lq ⁇ iq ...(4)
- Vq ⁇ Ld ⁇ id+ ⁇ (5)
- Patent Document 1 also describes that iq depends on the eccentric state. However, according to equation (4), the state change of the d-axis voltage Vd which is the operation amount of the q-axis current Iq depends on the eccentric state.
- the d-axis voltage Vd is a control operation amount and does not appear as a result of control like the q-axis current Iq. Therefore, it has an advantage that it is less susceptible to external noise or the like. Therefore, in the present embodiment, the d-axis voltage Vd is used to determine the eccentric state.
- the phase error ⁇ is a state in which the phase of the applied voltage of the three phases is shifted with respect to the actual phase of the dewatering tank 13, and the control system controls the phase error ⁇ to 0.
- the phase error ⁇ does not converge, it can be said that Produces a large eccentric state and vibration. That is, the phase error can be handled as a parameter reflecting the eccentric state.
- the eccentricity determining unit 100 determines the eccentric state based on the magnitude of the phase error ⁇ and the degree of change in the phase error ⁇ .
- the eccentricity determining unit 100 is based on a value obtained by correcting the d-axis voltage based on the load, and a correlation between the d-axis phase estimated by the torque control unit and the phase error ⁇ of the actual d-axis phase. To determine the eccentric state.
- an appropriate determination result can be derived by replacing or replacing the disadvantage of using the d-axis voltage Vd that is less susceptible to interference but having a large fluctuation.
- FIG. 3 is a block diagram showing a sensorless vector control of the control unit C of the present invention, in which a d-axis voltage Vd and a phase error ⁇ for determining an eccentric state are calculated.
- Vd d-axis voltage
- ⁇ phase error
- the basic configuration of the control unit C includes a torque command generation unit 2 that generates a torque command based on a deviation between the motor rotation speed command value ⁇ m * and the motor rotation speed estimated value ⁇ m which are given as the control amount;
- the control unit 3 converts the deviation between the motor current Iq (Id) at the time of driving and the current command value Iq * (Id) corresponding to the torque command value T * into the motor voltage command values Vq * , Vd * as the control operation amount .
- Driving motor M; and estimator 4 estimating motor rotation speed ⁇ m and phase error ⁇ using motor currents Iq, Id and motor voltages Vq, Vd based on motor voltage command values Vq * , Vd * , the estimator 4 is constructed In the feedback loop 5.
- the torque command generating unit 2 and the motor drive control unit 3 are constituent elements of a so-called variable frequency controller.
- processing is performed as a means for generating the motor voltages Vq, Vd equal to the motor voltage command values Vq * , Vd * , processing is performed.
- the torque command generation unit 2 first inputs the rotation speed command ⁇ m * given by the microcomputer 6 that controls the overall operation of the washing machine 1 to the subtractor 21 and the estimated speed value ⁇ m estimated from the motor drive state.
- the differential output of the subtractor 21 is input to the speed controller 22.
- the speed controller 22 In order to control the rotational speed of the motor M to the target value, the speed controller 22 generates a torque command T * by PI control based on the difference between the rotational speed command ⁇ m * and the estimated speed ⁇ m .
- the torque command T * generated by the torque command generation unit 2 is input to the motor drive control unit 3.
- the motor drive control unit 3 performs voltage driving under the coordinate system (d, q) of the magnetic pole that rotates in accordance with the rotation of the rotor of the synchronous motor M.
- the torque command value T * is multiplied by the torque coefficient 1/K E in the gain multiplying unit 31 to become the q-axis current command value Iq * , and is output to the q-axis current controller 33 via the subtractor 32.
- the q-axis current value Iq outputted from the second converter 51 which will be described later, which is converted by [uvw ⁇ dq]
- the subtractor 35 is given the second from the subtractor 35.
- the d-axis current value Id output from the converter 51.
- the q-axis current controller 33 generates a q-axis voltage command value Vq * by performing PI control based on the difference between the q-axis current command value Iq * and the q-axis current value Iq.
- the d-axis voltage command value Vd * is generated by performing PI control. Then, it is input to the first converter 37 that performs [dq ⁇ uvw] conversion in order to convert to a three-phase voltage command.
- the first converter 37 is given a estimated rotor rotational phase angle ⁇ obtained by integrating the motor electrical angular velocity ⁇ e output from the estimator 4 to be described later by the integrator 44. Then, based on the estimated rotor rotation phase angle ⁇ , the q and d voltage command values Vq * and Vd * are converted into three-phase voltage command values Vu, Vv, and Vw, and the motor M is energized via the motor excitation circuit 38.
- the feedback loop 5 detects the phase currents Iu, Iv, and Iw through the phase current detecting unit 50 provided in the motor exciting circuit 38, and inputs them to the second converter 51 that performs [uvw ⁇ dq] conversion.
- the second converter 51 is given an estimated rotor rotational phase angle ⁇ obtained by integrating the motor electrical angular velocity ⁇ e output from the estimator 4 to be described later by the integrator 44, thereby converting the phase current value into q, D-axis current values Id, Iq.
- These q, d-axis current values are input to the subtractors 35, 32, respectively.
- the estimator 4 is composed of a rotor phase error estimator 41 and a phase locked loop (PLL) controller 42.
- R is the motor winding resistance
- L is the motor winding inductance.
- the motor M is a permanent magnet synchronous motor, as shown in the coordinate system of FIG. 5, the rotor rotates at the electrical angular velocity ⁇ n in the dq rotating coordinate system with respect to the stationary coordinate systems ⁇ and ⁇ .
- the rotational speed estimation algorithm which is generally called a sensorless algorithm, estimates ⁇ - ⁇ rotation coordinates.
- a phase error of ⁇ is generated between the estimated d-axis and the actual d-axis.
- the estimator 41 calculates the phase error ⁇ based on the following equation.
- the PLL controller 42 is used.
- the inside of the PLL controller 42 is as shown in FIG.
- the PLL controller 42 uses PI control.
- ⁇ ⁇ is an angular velocity (angular frequency) of the three-phase voltage applied to the motor by the motor drive control unit 3, and of course, the motor drive control unit 3 can output a free value by the inverter method.
- ⁇ ⁇ becomes larger according to the speed difference from ⁇ n
- ⁇ ⁇ ⁇ becomes smaller when ⁇ ⁇ decreases.
- Fig. 7 shows the sequence from the start of dehydration when the horizontal axis is time and the vertical axis is rotational speed.
- the synchronous rotation control is performed in the A section, and after the synchronization is completed in the B section, the sensorless vector control in the C section and the D section is controlled.
- the C section operates in the low speed mode and the D section operates in the high speed mode.
- the present embodiment uses the d-axis voltage input to the estimator 4 shown in FIG. 3 and the phase error ⁇ estimated by the estimator 4 as described above.
- the d-axis voltage Vd and the phase error ⁇ are updated for each carrier frequency which is the fundamental frequency of control, but in this detection, the d-axis voltage V and the phase error ⁇ are extracted from the estimator 4 every predetermined time, for example every 10 ms. It is input to the eccentricity determining unit 100.
- the eccentricity determining unit 100 is configured to execute a program and data for performing eccentricity determination using the d-axis voltage Vd and the phase error ⁇ in advance.
- the low speed area determination 1 and the low speed area determination 2 are executed in parallel in the C section, the high speed area determination 1 is executed from the first half in the D section, and the parallel execution is performed from the second half.
- the ultra-high speed area is judged two.
- the eccentricity determining unit 100 measures the maximum value of the Vd value in step S11. Since the Vd value is approximately proportional to the amount of load, the amount of load can be estimated from the Vd value.
- the eccentricity determining unit 100 After the measurement of the maximum value of the Vd value is completed, the eccentricity determining unit 100 accumulates the Vd value after a certain period of time.
- the eccentricity determining unit 100 corrects the integrated value based on the load amount which is the maximum value calculated in step S11. For example, when the integrated value is Vd int , the maximum value is Vd max , the count value of the measurement counter is CT, and the load amount correction value is Vd amd , the correction formula is performed as follows. Calculation.
- Vd amd Vd int +(30-Vd max ) ⁇ 0.3 ⁇ (CT-40)...(8)
- step S13 is performed by CT>40.
- the eccentricity determining unit 100 compares the load amount correction value Vd amd calculated in step S13 with a preset threshold value. Then, if the load amount correction value Vd amd is equal to or greater than the threshold value, it is determined that the eccentricity amount is large and proceeds to step S15, and if it is smaller than the threshold value, step S15 is skipped and the step is ended.
- step S15 the eccentricity determining unit 100 issues a dehydration barrel rotation stop command, and ends the step.
- This command is inserted into the dehydration program to stop the rotation.
- the rotation stop is performed by a brake mechanism (not shown). The same is true below.
- the eccentricity determining unit 100 measures the phase error ⁇ .
- the eccentricity determining unit 100 compares the phase error ⁇ with a predetermined threshold value. Then, if the phase error ⁇ is equal to or greater than the threshold value, the process proceeds to step S23, and if it is less than the threshold value, step S23 is skipped.
- the eccentricity determining unit 100 issues a dehydration barrel rotation stop command, and ends the step. This command is inserted into the dehydration program to stop dehydration.
- the eccentricity determining unit 100 After entering the D section, the eccentricity determining unit 100 starts the process of (a) at any time, and determines whether or not the number of revolutions has reached a predetermined number of revolutions, for example, 400 rpm. If yes, proceed to step 32, and if otherwise, repeat the determination of step S31.
- the eccentricity determining unit 100 measures and stores the Vd value, and ends the step. Once this step S32 is performed, the process of (a) may not be performed thereafter.
- the measurement of the Vd value at the time of the 400 rpm is an estimated value of the load amount, and is set as a reference for the rotation speed at which the rotation amount is stable beyond the resonance rotation speed and the load amount is estimated without being affected by the eccentric load.
- the error may become large.
- an average of a certain section for example, a period of 100 rpm, that is, a period of 400 to 500 rpm may be used in step S32.
- the rotation speed does not need to be 400 to 500 rpm.
- the eccentricity determining unit 100 starts the process of (b) of FIG. 10 at any time.
- the Vd value is measured at any time and the eccentric amount is judged based on the difference from the Vd value regarded as the previous load amount.
- step S41 the eccentricity determining unit 100 determines in step S41 whether or not the number of revolutions has reached 500 rpm. If yes, the process proceeds to step S42, and if otherwise, the determination of step S41 is repeated.
- the eccentricity determining unit 100 measures the Vd value.
- the error may become large.
- an average of a certain section for example, a period of 50 rpm, and a period of 500 to 550 rpm may be measured in step S42.
- the Vd value is used and the average is used. Then, the process proceeds to step S43.
- the eccentricity determining unit 100 calculates a difference between the Vd value measured in step S42 and the Vd value regarded as the load amount, and compares the difference with a preset threshold value. Then, when the difference is equal to or greater than the threshold value, the rotation stop command is not immediately issued, but the process proceeds to step S44. If the difference is less than the threshold value, the step is ended.
- the eccentricity determining unit 100 measures the phase error ⁇ .
- the phase error ⁇ can also be measured multiple times and not simply by one measurement. In this case, the same processing as the Vd value described above can be performed. Since the phase error ⁇ is less changed than the d-axis voltage Vd, there is a tendency that the average of the values of the d-axis voltage Vd is not required to be obtained.
- the value of the Fourier coefficient corresponding to the actual vibration frequency (rotational speed) after the Fourier series expansion of the phase error waveform may be used as the phase error ⁇ . When the value of the Fourier coefficient is used, it is possible to eliminate noise and perform high-precision determination. Then, the process proceeds to step S45.
- step S45 the eccentricity determining unit 100 determines whether or not the phase error ⁇ is equal to or greater than the threshold. If the threshold value is equal to or greater than the threshold value, the process proceeds to step S46, and if it is less than the threshold value, the process proceeds to a so-called water state and the process proceeds to step S47.
- the water-containing state refers to a state in which water is left between the dewatering tank and the outer tub as the drainage is poor as described above.
- step S46 the eccentricity determining unit 100 issues a rotation stop command of the dehydration stop bucket, and ends the step.
- the rotation stop command is inserted into the dehydration program to stop the dehydration process.
- step S47 the eccentricity determining unit 100 issues a command to maintain a predetermined predetermined time and a predetermined number of revolutions, and ends the step.
- This command is inserted into the spin-drying program, and the predetermined number of revolutions is maintained for a certain period of time.
- the time is exceeded, the number of revolutions is increased.
- the number of revolutions is increased in a water-containing state, the water-containing state is further deteriorated. Therefore, the increase in the number of revolutions is stopped and the predetermined number of revolutions is maintained to promote drainage.
- the eccentric state is determined based on the correlation between the d-axis voltage Vd and the phase error ⁇ , so that a useless stop command can be avoided.
- the eccentricity determining unit 100 After entering the D section, the eccentricity determining unit 100 starts the process of (a) at any time, and determines whether or not the number of revolutions has reached a predetermined number of revolutions, for example, 1000 rpm. If yes, the process proceeds to step 52, and if otherwise, the determination of step S51 is repeated.
- the eccentricity determining unit 100 measures and stores the Vd value and the ⁇ value, and ends the step. Once this step S52 is performed, the process of (a) may not be performed thereafter.
- the rotational speed is from 1000 rpm to the ultra-high speed rotating region, the influence of the eccentric load is larger than that at the usual high speed rotation. Therefore, the above value at 1000 rpm is set as a reference for the entrance to the super-high-speed rotation region.
- the eccentricity determining unit 100 starts measuring at any time, for example, every 2 seconds (b).
- Vd and ⁇ are measured at any time, and the amount of eccentricity is determined based on the difference between the Vd value and the ⁇ value as a reference at 1000 rpm.
- step S61 the eccentricity determining unit 100 waits in step S61 whether or not a predetermined time has elapsed from the start. If yes, the process proceeds to step S62, and if otherwise, the determination of step S61 is repeated.
- the eccentricity determining unit 100 measures the Vd value and the ⁇ value.
- the error may become large, and in this case, the same average value as described above may be used. Then, the process proceeds to step S63.
- the eccentricity determining unit 100 calculates the difference between the Vd value measured in step S52 and the Vd value measured every 2 seconds in step S62, and compares the difference with a predetermined threshold value. Then, in the case of a threshold value or more, the process proceeds to step S64, and if it is less than the threshold value, the process proceeds to step S65 without immediately ending the step.
- the eccentricity determining unit 100 considers that the amount of eccentricity is large, issues a rotation stop command of the dewatering tub, and ends the step. This command is inserted into the dehydration program to stop dehydration.
- the eccentricity determination unit 100 calculates the difference between the ⁇ value measured in step S52 and the ⁇ value measured every 2 seconds in step S62, and compares the difference with a predetermined threshold value. Then, in the case of a threshold value or more, the process proceeds to the above-described step S64, and if it is less than the threshold value, the step is ended.
- FIG. 12 is a graph showing a transition of the detected value of the d-axis voltage when the eccentricity is small and the eccentricity is large, and the low-speed region is not used in the C section.
- FIG. 13 is a graph showing transition of the phase error ⁇ when the low-speed region determination is not used in the C section when the eccentric amount is small and the eccentric amount is large.
- FIG. 14 is a graph showing transitions of the d-axis voltage and the phase error ⁇ when the high-speed area determination is not used in the D section when the eccentric amount is small and the eccentric amount is large.
- the upper graph is a graph at a load of 10 kg
- the middle graph is a graph at a load of 1 kg.
- 15 is a graph showing transitions of the d-axis voltage and the phase error ⁇ when the high-speed region determination 2 is not used in the D section when the eccentric amount is small and the eccentricity is large.
- the magnitude, degree of change, or phase error ⁇ of the phase error ⁇ according to the phase of the d-axis and the actual phase is corrected or compensated for, and the d-axis voltage Vd is corrected according to the load.
- the correlation of the values determines the method of the eccentric state, so that the eccentric state can be accurately determined.
- the processes shown in the flowcharts of FIGS. 8 and 9 may be implemented in the D section, or the processes shown in the flowcharts of FIGS. 10 and 11 may be implemented in the section C.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Power Engineering (AREA)
- Control Of Washing Machine And Dryer (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
一种洗衣机,其将新的判定方法用于偏心判定,该判定方法能在通过d轴电压判定偏心状态时进行适当的补完并根据情况与d轴电压对等或代替d轴电压地进行偏心状态的判定。一种洗衣机,具备:电机(M),对脱水桶进行旋转驱动;以及控制单元(C),对电机(M)的生成转矩进行矢量控制,其中,控制单元(C)具备:偏心判定部(100),其根据为了进行矢量控制而推定出的d轴相位与实际的d轴相位的相位误差Δθ的大小,判定脱水桶的偏心状态。
Description
本发明涉及一种洗衣机,其即使没有传感器也能简易且精度良好地进行偏心状态的判定。
当洗衣机的脱水桶内的洗涤物的分布状态存在偏差时,会成为进行脱水运转时产生大幅振动的原因。在对脱水桶进行旋转驱动来进行脱水过程的情况下,当洗涤物处于偏心状态时会产生过大的振动,因此需要停止旋转。
因此,作为一种以无传感器的方式检测偏心状态并在需要的情况下进行使旋转停止的控制的方法,例如已知有专利文献1所公开的方法。
该方法着眼于“为了进行矢量控制而计算出的电机q轴电流与偏心状态之间存在关联”这一点,并基于q轴电流来判断异常振动的产生。
然而,由于q轴电流相对于电压控制作为结果而出现,因此容易受到外部噪声的影响,绝对值变化也小。因此,当基于q轴电流来判断偏心状态时,容易引起误判。
因此本发明人着眼于d轴电压。d轴电压为q轴电流的操作量,与q轴电流同样取决于偏心状态而发生变化。并且,由于是操作量,因此不易受到外部噪声的影响,绝对值的变化也大。
但是,由于d轴电压与q轴电流相比变动较大,因此,当仅依赖d轴电压来判定偏心状态时,仍然存在误判的可能性。
现有技术文献
专利文献
专利文献1:日本专利第4406176号公报
发明内容
发明所要解决的问题
本发明是鉴于这样的新的认知而完成的发明,其目的在于实现一种洗衣机,该洗衣机将新的判定方法用于偏心判定,该判定方法能在通过d轴电压判定偏心状态时进行适当的补完并根据情况与d轴电压对等或代替d轴电压地进行偏心状态的判定。
用于解决问题的方案
本发明的洗衣机为了达到以上的目的,具备:电机,对脱水桶进行旋转驱动;以及控制单元,对所述电机的生成转矩进行矢量控制,其特征在于,所述控制单元具备:偏心判定部,其根据为了进行所述矢量控制而推定出的d轴相位与实际的d轴相位的相位误差的大小,判定所述脱水桶的偏心状态。
此外,本发明的洗衣机具备:电机,对脱水桶进行旋转驱动;以及控制单元,对所述电机的生成转矩进行矢量控制,其特征在于,所述控制单元具备:偏心判定部,其根据为了进行所述矢量控制而推定出的d轴相位与实际的d轴相位的相位误差的变化程度,判定所述脱水桶的偏心状态。
此外,本发明的洗衣机具备:电机,对脱水桶进行旋转驱动;以及控制单元,对所述电机的生成转矩进行矢量控制,其特征在于,所述控制单元具备:偏心判定部,其根据对进行所述矢量控制后生成的d轴电压根据负荷进行校正后的值、以及进行所述矢量控制后推定出的d轴相位与实际的d轴相位的相位误差这两者的关联,判定所述脱水桶的偏心状态。
此外,本发明的洗衣机的特征在于,在上述各构成中,将对相位误差的波形进行傅里叶级数展开之后的与实际的振动频率对应的傅里叶系数的值用作所述相位误差。
发明效果
本发明的洗衣机基于d轴相位与实际的d轴相位的相位误差的大小来判定偏心状态。该相位误差不会像d轴电压那样大幅变动,取决于偏心状态而增减。因此,根据本发明,能够以与监视d轴电压的情况不同的角度对偏心状态进行判定。因而,能在通过d轴电压判定偏心状态时进行适当的补完并根据情况与d 轴电压对等或替代d轴电压地进行偏心状态的判定。相位误差具有在进行低速区域的加速时表现得较大的趋势。
此外,本发明的洗衣机基于d轴相位与实际的d轴相位的相位误差的变化程度来判定偏心状态。该相位误差的变化程度以不会像d轴电压的变化程度那样大幅变动的方式,排除负荷的影响,取决于偏心状态而变大。因此,根据本发明,以与监视d轴电压的情况不同的角度并且相位误差的大小也不同的角度,能够进行准确掌握了时刻变化的偏心状态的偏心状态判定。相位误差具有在进行高速区域的加速时会大幅变化的趋势。
此外,本发明的洗衣机根据基于负荷对d轴电压进行了校正的值与上述的相位误差的关联来判定偏心状态。即使在根据负荷对d轴电压进行了校正的情况下,d轴电压也有可能会因其他原因而变大,此时相位误差不会大幅变动。因此,根据本发明,能够对基于d轴电压的判定根据相位误差进行补完,精度更良好地判定偏心状态。作为其他原因,可列举出由于排水差而在脱水桶与外桶之间残留有水的所谓“含水”状态。
此外,本发明的洗衣机对相位误差的波形进行傅里叶变换而取出与实际的振动频率对应的相位误差,因此能排除噪声进行高精度的判定。
图1是表示本发明的一实施方式的洗衣机的外观的立体图。
图2是表示同一洗衣机的概略构成的纵剖图。
图3是表示同一实施方式的作为负荷测量的前提构成的电机控制系统的系统构成的框图。
图4是表示同一电机控制系统中的速度推定部的概略构成的图。
图5是表示同一电机控制系统的速度推定原理的图。
图6是表示同一电机控制系统中的PLL控制部的概要的图。
图7是表示同一洗衣机的脱水过程时的控制过程的定序图。
图8是表示同一实施方式的低速区域判定一的处理过程的流程图。
图9是表示同一实施方式的低速区域判定二的处理过程的流程图。
图10是表示同一实施方式的高速区域判定一的处理过程的流程图。
图11是表示同一实施方式的高速区域判定二的处理过程的流程图。
图12是按偏心量小的情况和偏心量大的情况示出不将低速区域判定一适用于C区间时d轴电压的检测值的推移的图表。
图13是按偏心量小的情况和偏心量大的情况示出不将低速区域判定二适用于C区间时相位误差的推移的图表。
图14是按偏心量小的情况和偏心量大的情况示出不将高速区域判定一适用于D区间时d轴电压及相位误差Δθ的推移的图表。
图15是按偏心量小的情况和偏心量大的情况示出不将高速区域判定二适用于D区间时d轴电压及相位误差Δθ的推移的图表。
附图标记说明
100:偏心判定部;A4:脱水桶;M:电机;Vd:d轴电压;Vd
amd:负荷量校正值;Δθ:d轴的推定相位与实际的d轴相位的相位误差。
以下,参照附图对本发明的实施方式进行说明。
图1是表示本发明的一实施方式的立式洗衣机(以下称为“洗衣机”)1的外观的立体图。此外,图2是表示本实施方式的洗衣机1的概略构成的纵剖图。
如图2所示,本实施方式的洗衣机1具备:洗衣机主体11、外桶12、脱水桶(洗涤桶)13、驱动部16、以及控制单元C(参照图3)。对于这样的洗衣机1,当按下位于输入部14并全自动地进行洗涤的未图示的开始键时,将处于脱水桶13内的洗涤物的量自动判定为负荷量,并基于负荷量来自动确定洗涤过程及漂洗过程中蓄于外桶12的水量,从而进行洗涤动作。随后,在脱水过程中,在低速旋转后向无传感器控制过渡,以无传感器的方式监视脱水桶13的偏心状态,并且在偏心异常的情况下停止旋转,如果没有偏心异常则加速至最高速度。
图3是表示控制单元的概要的功能框图。本实施方式具有判定这种偏心状态的偏心判定部100,该偏心判定部100使用d轴电压的值而不使用q轴电流的值,并且使用控制上推定的d轴与实际的d轴的相位误差Δθ。对于Vd值、Δθ值而言,根据需要,通过低通滤波器、移动平均处理等,进行去掉急剧变化的数据的处理。以下,按照顺序进行说明。
洗衣机主体11构成为近似长方体形状,并在上表面11a具有用于向脱水桶13放入/取出洗涤物(衣服)的开口11b、和能够开闭该开口11b的开闭盖11c,能够通过打开开闭盖11c而经由开口11b向脱水桶13放入/取出洗涤物。此外,在这样的洗衣机主体11的上表面11a形成有上述的输入部14。
图2所示的外桶12是配置在洗衣机主体11的内部的能够蓄水的有底筒状构件。
作为洗涤桶的脱水桶13是在外桶12的内部与外桶12同轴配置并且被外桶12以旋转自如的方式支承的有底筒状的构件。脱水桶13与外桶12相比为小径,在其壁面13a具有许多通水孔(未图示)。
在这样的脱水桶13的底部13b中央,以旋转自如的方式配置有波轮(搅拌翼)15。波轮15搅拌蓄于外桶12的水而产生水流。
此外,波轮15在洗涤过程开始时且在向脱水桶13供水之前进行旋转驱动,通过此时的拖曳洗涤物的旋转而取得的检测值用于负荷量的检测。
驱动部16包括电机M和离合器16b。电机M通过使朝着脱水桶13的底部13a延伸的驱动轴m旋转而使脱水桶13旋转。此外,电机M能够通过切换离合器16b,对波轮15也赋予驱动力来使波轮15旋转。因此,洗衣机1可以在后述的负荷量测量时,在洗涤过程及漂洗过程中主要仅使波轮15旋转,并在脱水过程中使脱水桶13与波轮15一体地高速旋转。
以下为永磁铁式同步电机的电压方程式。只有在该式中,将各速度ω标记为ω
e。
[式1]
在该式中,当视为稳定旋转并忽略微分项时,则
Vd=R·Id-ω·Lq·iq ...(2)
Vq=ω·Ld·id+R·iq+ω·Φ ...(3)
而且,当ω大且可以忽略由R产生的压降时,
Vd=-ω·Lq·iq ...(4)
Vq=ω·Ld·id+ω·Φ ...(5)
Vq≈ωΦ ...(6)
专利文献1中还记载了iq取决于偏心状态,但根据式(4)可知,作为q轴电流Iq的操作量的d轴电压Vd的状态变化也取决于偏心状态。
特别是,d轴电压Vd为控制操作量,不会像q轴电流Iq那样作为控制的结果而出现,因此,具有不易受到外部噪声等的影响的优点。因此,在本实施方式中使用d轴电压Vd进行偏心状态的判定。
但是,作为与使用q轴电流Iq的情况相比的缺点,存在有变动变大的倾向。因此,在判断偏心状态之后并不使用瞬时值,除需要累计值、平均值之类进行运算处理后的值以外,还要对判断要素追加控制上推定的d轴与实际的d轴的相位误差Δθ。相位误差Δθ为三相的施加电压的相位相对于脱水桶13的实际相位发生了偏移的状态,控制系统将相位误差Δθ控制为0,但在相位误差Δθ未收敛的情况下,可以说正在产生较大的偏心状态、振动。即,相位误差能够作为反映偏心状态的参数来处理。
因此,偏心判定部100根据相位误差Δθ的大小、相位误差Δθ的变化程度 来判定偏心状态。或者,偏心判定部100基于根据负荷对d轴电压进行了校正的值、以及在所述转矩控制单元进行矢量控制后推定出的d轴相位与实际的d轴相位的相位误差Δθ的关联,来判定偏心状态。
由此,通过补完或者代替在使用不易受到干扰的影响但变动较大的d轴电压Vd时的缺点,能够导出适当的判定结果。
图3是表示本发明的控制单元C的无传感器矢量控制框图,在其控制模块中计算出用于判定偏心状态的d轴电压Vd及相位误差Δθ。首先,对该控制模块进行说明。
该控制单元C的基本构成具备:转矩指令生成部2,基于作为控制量而被赋予的电机旋转速度指令值ω
m
*与电机旋转速度推定值ω
m的偏差来生成转矩指令;电机驱动控制部3,将驱动时的电机电流Iq(Id)与对应于转矩指令值T
*的电流指令值Iq
*(Id)的偏差转换为作为控制操作量的电机电压指令值Vq
*、Vd
*,驱动电机M;以及推定器4,使用电机电流Iq、Id及基于电机电压指令值Vq
*、Vd
*的电机电压Vq、Vd来推定电机旋转速度ω
m和相位误差Δθ,该推定器4构成于反馈环路5内。转矩指令生成部2和电机驱动控制部3是通常所说的变频控制器的构成要素。此外,在此,作为产生与电机电压指令值Vq
*、Vd
*相等的电机电压Vq、Vd的构件进行处理。
转矩指令生成部2首先向减法器21输入由控制洗衣机1的整体运转的微型计算机6赋予的旋转速度指令ω
m
*和根据电机驱动状态推定出的推定速度值ω
m。减法器21的差分输出被输入至速度控制器22。
速度控制器22为了控制电机M的转速至目标值,基于旋转速度指令ω
m
*与推定速度ω
m的差分量,通过PI控制来生成转矩指令T
*。
由该转矩指令生成部2生成的转矩指令T
*被输入至电机驱动控制部3。
电机驱动控制部3在随着同步电机M的转子的旋转而旋转的磁极的坐标系(d、q)之下进行电压驱动。
首先,转矩指令值T
*在增益乘法部31中通过乘以转矩系数1/K
E而成为q轴电流指令值Iq
*,并经由减法器32输出至q轴电流控制器33。通常,指令值Id=0从d轴电流指令部34输出,并经由减法器35被输入至d轴电流控制器36。 作为减算值,对减法器32赋予从进行[u-v-w→d-q]转换的后述的第二转换器51输出的q轴电流值Iq,作为减算值,对减法器35赋予从所述第二转换器51输出的d轴电流值Id。
q轴电流控制器33基于q轴电流指令值Iq
*与q轴电流值Iq的差分,通过进行PI控制来生成q轴电压指令值Vq
*。d轴电流控制器36基于d轴电流指令值Id
*(=0)与q轴电流值Iq的差分。通过进行PI控制来生成d轴电压指令值Vd
*。然后,为了转换为三相的电压指令而被输入至进行[d-q→u-v-w]转换的第一转换器37。
第一转换器37被赋予通过用积分器44来将从后述的推定器4输出的电机电角速度ω
e积分而获得的推定转子旋转相位角θ。然后,基于该推定转子旋转相位角θ,将q、d电压指令值Vq
*、Vd
*转换为三相电压指令值Vu、Vv、Vw,并经由电机励磁电路38对电机M通电。
另一方面,反馈环路5通过设于电机励磁电路38的相电流检测部50检测相电流Iu、Iv、Iw并将其输入至进行[u-v-w→d-q]转换的第二转换器51。第二转换器51被赋予通过用积分器44来将从后述的推定器4输出的电机电角速度ω
e积分而获得的推定转子旋转相位角θ,由此,将相电流值转换为q、d轴电流值Id、Iq。这些q、d轴电流值分别被输入至所述减法器35、32。
另一方面,推定器4如图4所示,由转子相位误差推定器41和锁相环(Phase Locked Loop:PLL)控制器42构成。转子相位误差推定器41使用电机电压Vd(=Vd
*)、Vq(=Vq
*)、电机电流Id、Iq、电机参数R、L等,来计算推定相位误差Δθ。R为电机绕组电阻、L为电机绕组电感。
在电机M为永磁铁同步电机的情况下,如图5的坐标系所示,相对于静止坐标系α、β,转子在d-q旋转坐标系中以电角速度ω
n进行旋转。另一方面,通常被称作无传感器算法的旋转速度推定算法推定γ-δ旋转坐标。实际上无论磁极是否在d轴上,当推定出磁极在γ轴上时,推定的d轴与实际的d轴之间产生Δθ的相位误差。
然后,作为一个示例,推定器41基于以下的式子,计算出相位误差Δθ。
Δθ=tan
-1{(Vd-R·Id+ω
γ·L·Iq)/(Vq-R·Iq-ω
γ·Li·d)}...(7)
为了使电机M稳定地转动,必须查出d-q轴的位置,使其与控制单元1所识别到的r-δ轴一致。即,需要以使Δθ→0为目标。
因此,使用PLL控制器42。该PLL控制器42的内部如图6所示。
PLL控制器42使用PI控制。ω
γ为电机驱动控制部3施加于电机的三相电压的角速度(角频率),当然,电机驱动控制部3能够通过变频方式输出自由的值。根据图5可知,当ω
γ增加时,根据与ω
n的速度差,Δθ→变大,当ω
γ减少时,Δθ→变小。
图7示出了横轴为时间、纵轴为转速,从脱水时的启动开始的定序。在A区间进行同步旋转控制,在B区间完成同步后,向C区间、D区间的无传感器矢量控制过渡。C区间以低速模式运转,D区间以高速模式运转。
本实施方式如上所述,利用输入至图3所示的推定器4的d轴电压和由该推定器4推定出的相位误差Δθ。d轴电压Vd、相位误差Δθ按照每个作为控制的基本频率的载波频率被更新,但在此次的检测中,每隔规定时间例如每10ms从推定器4提取d轴电压V、相位误差Δθ并输入至偏心判定部100。
偏心判定部100构成为预先执行用于利用d轴电压Vd和相位误差Δθ进行偏心判定的程序、数据。对于该偏心判定部100中的偏心判定而言,在C区间并行地执行低速区域判定一和低速区域判定二,在D区间从前半程开始执行高速区域判定一,从后半程开始并行地执行超高速区域判定二。
图8~图11是表示在各区间中偏心判定部100执行的偏心判定的处理过程的流程图。
(低速区域判定一)
首先,基于图8对低速区域判定一的处理过程进行说明。
进入C区间,在开始加速的状态下开始判断流程。
<步骤S11>
首先,偏心判定部100在步骤S11中测量Vd值的最大值。Vd值与负荷量大致成比例,因此能够根据Vd值推定负荷量。
<步骤S12>
在Vd值的最大值的测量结束之后,偏心判定部100在一定时间后累计Vd值。
<步骤S13>
接着,偏心判定部100根据由步骤S11计算出的最大值即负荷量,对累计值进行校正。例如,在将累计值设为Vd
int、将最大值设为Vd
max、将测量计数器的计数值设为CT、将负荷量校正值设为Vd
amd的情况下,作为校正式,以如下方式进行计算。
Vd
amd=Vd
int+(30-Vd
max)×0.3×(CT-40)...(8)
CT的计数在步骤S11的时间点开始,当以CT(0~40)取得最大值Vd
max后,按CT>40实施步骤S13。由此,通过从包含负荷量的累计值Vd
int中减去包含负荷量的最大值Vd
max乘以系数的值,负荷量的一部分被抵消。
<步骤S14>
偏心判定部100对由步骤S13计算出的负荷量校正值Vd
amd与预先设定的阈值进行比较。然后,如果负荷量校正值Vd
amd为阈值以上,则判断为偏心量大并进入步骤S15,如果小于阈值则跳过步骤S15,结束步骤。
<步骤S15>
在步骤S15中,偏心判定部100发出脱水桶旋转停止指令,结束步骤。该指令被插入脱水程序,使旋转停止。对于旋转停止而言,除了将图4所示的旋转速度指令ω
m
*设为0以外,还通过未图示的制动机构来施加机械制动等必要的处理。以下同样如此。
通常,当偏心量小时,在出现最大值后Vd值急剧减小。因此,步骤S12和S13的处理后的值变低。但是,当偏心量大时,Vd值的减小变小。因此,步骤S12和S13的处理后的值大于阈值。
(低速区域判定二)
接着,基于图9对低速区域判定二的处理过程进行说明。进入C区间开始加速后,随时开始并重复执行图9的流程。
<步骤S21>
首先,偏心判定部100测量相位误差Δθ。
<步骤S22>
接着,偏心判定部100将相位误差Δθ与预先设定的阈值进行比较。然后,如果相位误差Δθ为阈值以上则进入步骤S23,如果小于阈值则跳过步骤S23。
<步骤S23>
在此,偏心判定部100发出脱水桶旋转停止指令,结束步骤。该指令被插入脱水程序,使脱水停止。
因此,即使图8的流程图中偶尔Vd值的变动表现得较小而使偏心异常被忽略,也能够通过在图9的流程图中进行由θ实现的补完来可靠地判定偏心状态。
(高速区域判定一)
接着,基于图10对高速区域判定一的处理过程进行说明。在图10中,在首先执行了按照(a)的流程图的过程后,执行按照(b)的流程图的过程。
<步骤S31>
进入D区间后,偏心判定部100随时开始(a)的过程,判断转速是否达到规定转速例如400rpm。若为是则进入步骤32,若为否则重复步骤S31的判断。
<步骤S32>
在此,偏心判定部100测量Vd值并存储,结束步骤。一旦进行了该步骤S32,之后就可以不执行(a)的过程。该400rpm时的Vd值的测量为负荷量的推定值,设定为了能够超过共振转速地旋转稳定且不受偏心载荷的影响地推定负荷量的转速的基准。
但是,当仅仅通过一次Vd值进行判断时,误差有可能会变大,在这种情况下,可以在步骤S32中使用某个确定的区间的平均、例如变化100rpm的期间即400~500rpm的期间的Vd值的平均值。此外,转速也无需是400~500rpm。
接下来,偏心判定部100随时开始图10的(b)的过程。在此,随时测量Vd值并基于与被视为之前的负荷量的Vd值的差分来判断偏心量。
<步骤S41>
首先,偏心判定部100在步骤S41中判断转速是否达到500rpm。若为是则进入步骤S42,若为否则重复步骤S41的判断。
<步骤S42>
在此,偏心判定部100测量Vd值。当该测量仅仅通过一次Vd值进行判断时,误差有可能会变大,在这种情况下,可以在步骤S42中测量某个确定的区间的平均、例如变化50rpm的期间、500~550rpm的期间的Vd值并使用该平均值。然后,进入步骤S43。
<步骤S43>
偏心判定部100计算由步骤S42测量的Vd值与视为负荷量的Vd值之差,并将该差分与预先设定的阈值进行比较。然后,在差分为阈值以上的情况下,不立刻发出旋转停止指令而是向步骤S44过渡,在小于阈值的情况下,结束步骤。
<步骤S44>
在此,偏心判定部100测量相位误差Δθ。该相位误差Δθ也可以进行多次测量而不仅仅通过一次测量来取平均值。在该情况下,也可以进行与上述的Vd值同样的处理。由于相位误差Δθ与d轴电压Vd相比变化较少,因此,具有无需求出d轴电压Vd那么多的值的平均的倾向。或者,也可以将对相位误差波形进行了傅里叶级数展开之后的与实际的振动频率(转速)对应的傅里叶系数的值用作相位误差Δθ。当利用傅里叶系数的值时,能够排除噪声而进行精度高的判定。然后,进入步骤S45。
<步骤S45>
在步骤S45中,偏心判定部100判断相位误差Δθ是否为阈值以上。如果为阈值以上则作为偏心大进行处理并进入步骤S46,如果小于阈值则作为所谓的含水状态进行处理并进入步骤S47。含水状态是指如上所述排水差而在脱水桶与外桶之间残留有水的状态。
<步骤S46>
在步骤S46中,偏心判定部100发出脱水停止桶的旋转停止指令,结束步 骤。旋转停止指令被插入脱水程序而使脱水过程停止。
<步骤S47>
在步骤S47中,偏心判定部100发出维持预定的规定时间、规定转速的指令并结束步骤。该指令被插入脱水程序,在一定时间的期间维持规定转速,当超过该时间则使转速上升。当以含水的状态使转速上升时,含水状态进一步变差,因此,使转速的上升停止并维持规定转速以促进排水。
如此,通过根据d轴电压Vd与相位误差Δθ的关联来判定偏心状态,因此能够避免无用的停止指令。
(高速区域判定二)
接着,基于图11对高速区域判定一的处理过程进行说明。在图11中,首先执行按照(a)的流程图的过程,之后执行按照(b)的流程图的过程。
<步骤S51>
进入D区间后,偏心判定部100随时开始(a)的过程,判断转速是否达到规定转速例如1000rpm。若为是则进入步骤52,若为否则重复步骤S51的判断。
<步骤S52>
在此偏心判定部100测量Vd值和θ值并存储,结束步骤。一旦进行了该步骤S52,之后就可以不执行(a)的过程。当转速从1000rpm趋向超高速旋转区域时,偏心载荷的影响比通常的高速旋转时更大。因此,将1000rpm时的上述值设定为趋向超高速旋转区域的入口的基准。
但是,当仅仅通过一次Vd值、θ值进行判断时,误差有可能会变大,在这种情况下,可以使用与上述同样的平均值。
接下来,偏心判定部100随时按例如每2秒(b)开始测量。在此,随时测量Vd、θ并基于与1000rpm时的作为基准的Vd值、θ值的差分来判断偏心量。
<步骤S61>
首先,偏心判定部100在步骤S61中等待是否从开始经过了规定时间。若为是则进入步骤S62,若为否则重复步骤S61的判断。
<步骤S62>
在此,偏心判定部100测量Vd值、θ值。当该测量也只通过一次Vd值进行判断时,误差有可能会变大,在这种情况下,可以使用与上述同样的平均值。然后,进入步骤S63。
<步骤S63>
在此,偏心判定部100计算出由步骤S52测量出的Vd值与由步骤S62每隔2秒测量出的Vd值之差,并对该差分与预先设定的阈值进行比较。然后,在阈值以上的情况下向步骤S64过渡,如果小于阈值则向步骤S65过渡而并不立即结束步骤。
<步骤S64>
在此,偏心判定部100认为偏心量大,发出脱水桶的旋转停止指令并结束步骤。该指令被插入脱水程序而使脱水停止。
<步骤S65>
在此,偏心判定部100计算出由步骤S52测量出的Δθ值与由步骤S62每隔2秒测量出的Δθ值之差,并对该差分与预先设定的阈值进行比较。然后,在阈值以上的情况下向上述步骤S64过渡,如果小于阈值则结束步骤。
像这样监视d轴电压Vd的变化程度和相位误差Δθ的变化程度,如果任一方为阈值以上则作为偏心异常进行处理,因此,能够实现准确地掌握时刻变化的偏心状态的判定。
图12是在偏心量小的情况和偏心量大的情况下示出未在C区间内使用低速区域判定一时的d轴电压的检测值的推移的图表。图13是在偏心量小的情况和偏心量大的情况下示出未在C区间内使用低速区域判定二时的相位误差Δθ的推移的图表。图14是在偏心量小的情况和偏心量大的情况下示出未在D区间内使用高速区域判定一时的d轴电压及相位误差Δθ的推移的图表。在图14的图表中,上方的图表为10kg负荷时的图表,正中的图表为1kg负荷时的图表。图15是在偏心量小的情况和偏心量大的情况下示出未在D区间内使用高速区域判定二时的d轴电压及相位误差Δθ的推移的图表。
无论在哪种情况下,通过应用本发明,并用或补完了根据d轴的相位与实际的相位的相位误差Δθ的大小、变化程度或者该相位误差Δθ与根据负荷对d轴电压Vd进行了校正的值的关联来判定偏心状态的方法,因此能够准确地判定偏心状态。
以上,对本发明的一个实施方式进行了说明,但各部的具体构成并不限定于上述的实施方式。
例如,图8、图9的流程图中示出的过程也可以在D区间实施,或者,图10、图11的流程图中示出的过程也可以在C区间实施。
此外,对于相位误差的推定方法,也能够使用上述以外的各种方法。
其他构成在不脱离本发明的技术精神的范围内也能实施各种变形。
Claims (4)
- 一种洗衣机,具备:电机,对脱水桶进行旋转驱动;以及控制单元,对所述电机的生成转矩进行矢量控制,其特征在于,所述控制单元具备:偏心判定部,其根据为了进行所述矢量控制而推定出的d轴相位与实际的d轴相位的相位误差的大小,判定所述脱水桶的偏心状态。
- 一种洗衣机,具备:电机,对脱水桶进行旋转驱动;以及控制单元,对所述电机的生成转矩进行矢量控制,其特征在于,所述控制单元具备:偏心判定部,其根据为了进行所述矢量控制而推定出的d轴相位与实际的d轴相位的相位误差的变化程度,判定所述脱水桶的偏心状态。
- 一种洗衣机,具备:电机,对脱水桶进行旋转驱动;以及控制单元,对所述电机的生成转矩进行矢量控制,其特征在于,所述控制单元具备:偏心判定部,其根据对进行所述矢量控制后生成的d轴电压根据负荷进行校正后的值、以及进行所述矢量控制后推定出的d轴相位与实际的d轴相位的相位误差这两者的关联,判定所述脱水桶的偏心状态。
- 根据权利要求1至3中任一项所述的洗衣机,其特征在于,将对相位误差的波形进行傅里叶级数展开之后的与实际的振动频率对应的傅里叶系数的值用作所述相位误差。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880083541.1A CN111511975B (zh) | 2017-12-27 | 2018-11-27 | 洗衣机 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-251252 | 2017-12-27 | ||
JP2017251252A JP7093071B2 (ja) | 2017-12-27 | 2017-12-27 | 洗濯機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019128597A1 true WO2019128597A1 (zh) | 2019-07-04 |
Family
ID=67065052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/117686 WO2019128597A1 (zh) | 2017-12-27 | 2018-11-27 | 洗衣机 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7093071B2 (zh) |
CN (1) | CN111511975B (zh) |
WO (1) | WO2019128597A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113622140B (zh) * | 2021-08-03 | 2022-07-26 | 珠海格力电器股份有限公司 | 一种洗衣机脱水控制方法及洗衣机 |
CN114717791B (zh) * | 2022-03-17 | 2023-08-29 | 美的威灵电机技术(上海)有限公司 | 衣物处理装置的控制方法及其装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090108756A (ko) * | 2008-04-14 | 2009-10-19 | 삼성전자주식회사 | 세탁기 및 그 탈수 제어 방법 |
EP2119820A1 (en) * | 2008-05-16 | 2009-11-18 | LG Electronics Inc. | Washing machine |
CN103451891A (zh) * | 2013-09-03 | 2013-12-18 | 无锡小天鹅通用电器有限公司 | 振动传感器检测滚筒洗衣机偏心负载的方法 |
CN105862335A (zh) * | 2016-04-06 | 2016-08-17 | 珠海格力电器股份有限公司 | 洗衣机偏心负载的确定方法和装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100216126B1 (ko) * | 1995-03-29 | 1999-08-16 | 다카노 야스아키 | 원심탈수장치 |
JP4406176B2 (ja) * | 2001-06-07 | 2010-01-27 | 株式会社東芝 | 洗濯機 |
JP4989075B2 (ja) * | 2006-01-11 | 2012-08-01 | 株式会社日立産機システム | 電動機駆動制御装置及び電動機駆動システム |
JP4726818B2 (ja) | 2007-02-08 | 2011-07-20 | シャープ株式会社 | ドラム式洗濯機 |
JP5908205B2 (ja) | 2010-11-30 | 2016-04-26 | 株式会社東芝 | 回転センサレス制御装置 |
CN104246050B (zh) | 2012-04-23 | 2016-09-21 | 松下知识产权经营株式会社 | 滚筒式洗衣机 |
-
2017
- 2017-12-27 JP JP2017251252A patent/JP7093071B2/ja active Active
-
2018
- 2018-11-27 WO PCT/CN2018/117686 patent/WO2019128597A1/zh active Application Filing
- 2018-11-27 CN CN201880083541.1A patent/CN111511975B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090108756A (ko) * | 2008-04-14 | 2009-10-19 | 삼성전자주식회사 | 세탁기 및 그 탈수 제어 방법 |
EP2119820A1 (en) * | 2008-05-16 | 2009-11-18 | LG Electronics Inc. | Washing machine |
CN103451891A (zh) * | 2013-09-03 | 2013-12-18 | 无锡小天鹅通用电器有限公司 | 振动传感器检测滚筒洗衣机偏心负载的方法 |
CN105862335A (zh) * | 2016-04-06 | 2016-08-17 | 珠海格力电器股份有限公司 | 洗衣机偏心负载的确定方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111511975B (zh) | 2022-11-04 |
JP2019115504A (ja) | 2019-07-18 |
JP7093071B2 (ja) | 2022-06-29 |
CN111511975A (zh) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3962668B2 (ja) | ドラム式洗濯機 | |
EP2212991B1 (en) | Motor performing vector control in a start mode | |
JP2014176157A (ja) | モータ回転位置検出装置,洗濯機及びモータ回転位置検出方法 | |
WO2019128597A1 (zh) | 洗衣机 | |
EP3333297B1 (en) | Washing machine | |
Dianov et al. | Sensorless starting of horizontal axis washing machines with direct drive | |
Murray et al. | Performance comparison of permanent magnet synchronous motors and controlled induction motors in washing machine applications using sensorless field oriented control | |
KR101800643B1 (ko) | 세탁물 처리기기 및 그 제어방법 | |
Balazovic et al. | Sensorless PMSM control for H-axis washing machine drive | |
JP6634603B2 (ja) | 洗濯機 | |
CN110731046B (zh) | 洗衣机 | |
KR101404914B1 (ko) | 모터, 이를 포함하는 세탁기 및 그 제어방법 | |
Wang et al. | Identification of load current influences on position estimation errors for sensorless SPMSM drives | |
KR102543582B1 (ko) | 모터 구동장치, 및 이를 구비하는 세탁물 처리기기 | |
JP5869308B2 (ja) | インバータ装置 | |
JP6064165B2 (ja) | ドラム駆動装置 | |
JP2018137911A (ja) | モータ制御装置、及びそれを用いた洗濯機、乾燥機 | |
US10385497B2 (en) | Method of controlling washing machine | |
JP2017074078A (ja) | ドラム駆動装置 | |
TW202232879A (zh) | 馬達控制裝置及搭載該馬達控制裝置的洗衣機或洗衣乾燥機 | |
JP6681554B2 (ja) | 洗濯機のモータ駆動装置 | |
JP2021058244A (ja) | 洗濯機 | |
JP2022126029A (ja) | 洗濯機 | |
CN113802329A (zh) | 洗衣机 | |
CN111510036A (zh) | 电机控制方法、电机控制装置、电机装置和衣物处理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18897209 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18897209 Country of ref document: EP Kind code of ref document: A1 |