WO2019127451A1 - Image recognition method and cloud system - Google Patents
Image recognition method and cloud system Download PDFInfo
- Publication number
- WO2019127451A1 WO2019127451A1 PCT/CN2017/120087 CN2017120087W WO2019127451A1 WO 2019127451 A1 WO2019127451 A1 WO 2019127451A1 CN 2017120087 W CN2017120087 W CN 2017120087W WO 2019127451 A1 WO2019127451 A1 WO 2019127451A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- preset
- loss function
- feature vector
- extraction network
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
Definitions
- a feature extraction network configured to acquire a feature vector of the image to be identified by using a preset feature extraction network
- Transceiver memory, one or more processors;
- FIG. 3 is a structural diagram of a cloud system for image recognition in Embodiment 2 of the present application.
- the setting of the loss function of the initialized modified Softmax classifier specifically includes:
- FIG. 2 is a schematic diagram of classification of a classifier in an image recognition method according to Embodiment 1 of the present application.
- the new parameter M can further increase the degree of aggregation of feature vectors within the class and expand the distinguishability of feature vectors between classes.
- the classifier 302 is configured to obtain a recognition result of the image to be recognized according to the Euclidean distance of the feature vector of the to-be-identified image and the corresponding class center point by using a preset classifier.
- the training device 303 is configured to train the initialized feature extraction network and the classifier by using the first loss function to obtain a preset feature extraction network and a classifier, where the first loss function L is:
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
Abstract
Provided are an image recognition method and a cloud system. The method comprises: using a preset feature extraction network to acquire a feature vector of an image to be recognized; and using a preset classifier to obtain, according to a Euclidean distance between the feature vector of the image to be recognized and a class center point corresponding thereto, a recognition result of the image to be recognized. The present application is based on an improved classifier, and increases the aggregation degree of feature vectors within a class, expands the distinguishability of feature vectors between classes, and also improves the robustness of the cloud system.
Description
本申请涉及图像识别技术领域,特别涉及图像识别方法及云端系统。The present application relates to the field of image recognition technologies, and in particular, to an image recognition method and a cloud system.
人工神经网络(ANN:Artificial Neural Network)适用于特征分类等应用场景,通常利用线性分类器对特征进行分类。目前最广泛使用的线性分类器是Softmax分类器,即对于一个类别为n的分类任务,ANN提取的特征向量x
i(i=1,…,m)属于第j(j=1,…l,n)类的概率P
ij为:
Artificial Neural Network (ANN) is suitable for application scenarios such as feature classification. Usually, linear classifiers are used to classify features. The most widely used linear classifier is the Softmax classifier. For a classification task with category n, the feature vector x i (i=1,...,m) extracted by the ANN belongs to the jth (j=1,...l, The probability P ij of the class n) is:
训练过程中,损失函数定义如下:During the training process, the loss function is defined as follows:
其中,w、b均为神经网络参数,w为连接权值,b为偏移量,1{·}为示性函数,当表达式为真时,1{表达式}=1,当表达式为假时,1{表达式}=0。Where w and b are neural network parameters, w is the connection weight, b is the offset, 1{·} is the explicit function, when the expression is true, 1{expression}=1, when the expression When it is false, 1{expression}=0.
Softmax分类器的分类结果依赖于特征向量和表示类中心向量的内积,通过Softmax分类器与交叉熵定义的损失函数对ANN提取的特征向量进行优化时,仅能够保证特征向量是线性可分的,但是仅线性可分的特征向量在实际应用中存在以下问题:The classification result of the Softmax classifier depends on the feature vector and the inner product representing the class center vector. When the feature vector extracted by the ANN is optimized by the loss function defined by the Softmax classifier and the cross entropy, only the feature vector can be linearly separable. However, only linearly separable feature vectors have the following problems in practical applications:
1)对于靠近类别边界的特征向量,易受到微小扰动造成误分类,系统的鲁棒性较低;1) For eigenvectors close to the category boundary, it is susceptible to misclassification caused by small disturbances, and the system is less robust;
2)对于非分类任务(例如,人脸识别),所提取的特征向量无法保证 良好的类内聚集度和类间区分度。2) For non-classification tasks (for example, face recognition), the extracted feature vectors cannot guarantee good intra-class aggregation and inter-class discrimination.
发明内容Summary of the invention
本申请实施例提出了图像识别方法及云端系统,以解决现有分类器对于靠近类别边界的特征向量的识别度较低,以及所提取的特征向量无法保证良好的类内聚集度和类间区分度的技术问题。The image recognition method and the cloud system are proposed in the embodiment of the present application to solve the problem that the existing classifier has low recognition degree of the feature vector close to the category boundary, and the extracted feature vector cannot guarantee good intra-class aggregation degree and inter-class distinction. Technical problems.
在一个方面,本申请实施例提供了一种图像识别方法,包括:In one aspect, an embodiment of the present application provides an image recognition method, including:
利用预设的特征提取网络获取待识别图像的特征向量;Acquiring a feature vector of the image to be identified by using a preset feature extraction network;
利用预设的分类器,根据所述待识别图像的特征向量与其对应的类中心点的欧式距离得到待识别图像的识别结果。The recognition result of the image to be recognized is obtained according to the Euclidean distance of the feature vector of the image to be recognized and the corresponding class center point by using a preset classifier.
在另一个方面,本申请实施例提供了一种图像识别云端系统,包括:In another aspect, an embodiment of the present application provides an image recognition cloud system, including:
特征提取网络,用于利用预设的特征提取网络获取待识别图像的特征向量;a feature extraction network, configured to acquire a feature vector of the image to be identified by using a preset feature extraction network;
分类器,用于利用预设的分类器,根据所述待识别图像的特征向量与其对应的类中心点的欧式距离得到待识别图像的识别结果。The classifier is configured to obtain, by using a preset classifier, a recognition result of the image to be identified according to a feature distance of the feature vector of the image to be recognized and a corresponding Euclidean distance of the class center point.
在另一个方面,本申请实施例提供了一种电子设备,所述电子设备包括:In another aspect, an embodiment of the present application provides an electronic device, where the electronic device includes:
收发设备,存储器,一个或多个处理器;以及Transceiver, memory, one or more processors;
一个或多个模块,所述一个或多个模块被存储在所述存储器中,并被配置成由所述一个或多个处理器执行,所述一个或多个模块包括用于执行上述方法中各个步骤的指令。One or more modules, the one or more modules being stored in the memory and configured to be executed by the one or more processors, the one or more modules comprising Instructions for each step.
在另一个方面,本申请实施例提供了一种与电子设备结合使用的计算机程序产品,所述计算机程序产品包括计算机可读的存储介质和内嵌于其中的计算机程序机制,所述计算机程序机制包括用于执行上述方法中各个步骤的指令。In another aspect, embodiments of the present application provide a computer program product for use with an electronic device, the computer program product comprising a computer readable storage medium and a computer program mechanism embedded therein, the computer program mechanism Instructions are included for performing the various steps in the above methods.
有益效果如下:The benefits are as follows:
本实施例中,利用训练好的特征提取网络获取待识别图像的特征向量,以及利用训练好的分类器,根据所述待识别图像的特征向量与其对应的类中心点的欧式距离得到待识别图像的识别结果。通过对现有的分类器进行改进,增加了类内特征向量的聚集度,扩大了类间特征向量的可区分性,同时提高了云端系统的鲁棒性。In this embodiment, the feature vector of the image to be recognized is acquired by using the trained feature extraction network, and the image to be recognized is obtained according to the Euclidean distance of the feature vector of the image to be recognized and the corresponding class center point by using the trained classifier. Identification result. By improving the existing classifier, the degree of aggregation of feature vectors in the class is increased, the distinguishability of feature vectors between classes is expanded, and the robustness of the cloud system is improved.
下面将参照附图描述本申请的具体实施例,其中:Specific embodiments of the present application will be described below with reference to the accompanying drawings, in which:
图1为本申请实施例一中图像识别的方法原理图;1 is a schematic diagram of a method for image recognition in Embodiment 1 of the present application;
图2为本申请实施例一中图像识别方法中的分类器分类示意图;2 is a schematic diagram of classification of a classifier in an image recognition method according to Embodiment 1 of the present application;
图3为本申请实施例二中图像识别的云端系统架构图;3 is a structural diagram of a cloud system for image recognition in Embodiment 2 of the present application;
图4为本申请实施例三中电子设备的结构示意图。FIG. 4 is a schematic structural diagram of an electronic device according to Embodiment 3 of the present application.
以下通过具体示例,进一步阐明本发明实施例技术方案的实质。The essence of the technical solution of the embodiment of the present invention is further clarified by specific examples below.
为了使本申请的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。并且在不冲突的情况下,本说明中的实施例及实施例中的特征可以互相结合。The exemplary embodiments of the present application are further described in detail below with reference to the accompanying drawings, in which the embodiments described are only a part of the embodiments of the present application, but not all embodiments. An exhaustive example. And in the case of no conflict, the features in the embodiments and the embodiments in the description can be combined with each other.
发明人在发明过程中注意到:The inventor noticed during the invention:
现有Softmax分类器基于特征向量的内积来度量相似度,直观性较差。对于仅线性可分,且靠近类别边界的特征向量,现有Softmax分类器极易受到微小扰动造成误分类,鲁棒性较低;对于非分类任务,所提取的特征向量也无法保证良好的类内聚集度和类间区分度。The existing Softmax classifier measures the similarity based on the inner product of the feature vector, and the intuitiveness is poor. For eigenvectors that are only linearly separable and close to the class boundary, the existing Softmax classifiers are highly susceptible to misclassification caused by small disturbances, and the robustness is low. For non-classification tasks, the extracted feature vectors cannot guarantee good classes. Internal aggregation and inter-class discrimination.
针对上述不足/基于此,本申请实施例提出了将分类器度量相似度的方式由通过内积计算的方式改进为通过欧式距离计算的方式来实现,即,将 现有的Softmax分类器中基于类中心向量的损失函数改进为基于类中心点的损失函数,从而达到增加类内特征向量聚集度,以及扩大类间特征向量可区分性的技术效果。In view of the above-mentioned deficiencies/based on the above, the embodiment of the present application proposes to improve the manner in which the classifier measures the similarity by means of the inner product calculation to the method of calculating the Euclidean distance, that is, based on the existing Softmax classifier. The loss function of the class center vector is improved to the loss function based on the class center point, so as to increase the feature vector aggregation degree in the class and expand the technical effect of the distinguishability of the feature vector between classes.
为了便于本申请的实施,下面实例进行说明。In order to facilitate the implementation of the present application, the following examples are described.
实施例1Example 1
图1示出了本申请实施例一中图像识别的方法原理图,如图1所示,该方法包括:FIG. 1 is a schematic diagram of a method for image recognition in the first embodiment of the present application. As shown in FIG. 1, the method includes:
步骤101:利用预设的特征提取网络获取待识别图像的特征向量。Step 101: Acquire a feature vector of the image to be identified by using a preset feature extraction network.
步骤102:利用预设的分类器,根据所述待识别图像的特征向量与其对应的类中心点的欧式距离得到待识别图像的识别结果。Step 102: Using a preset classifier, obtaining a recognition result of the image to be recognized according to the Euclidean distance of the feature vector of the to-be-identified image and its corresponding class center point.
实施中,上述步骤的执行主体可以为云端服务器,云端服务器中的训练器基于图像样本,图像标签,以及初始化的修正的Softmax分类器的损失函数对ANN进行训练,在训练优化的过程中,将损失函数对ANN各层参数求偏导,并利用后向传导算法实现对ANN各层参数的优化,以使训练好的ANN能够通过提取网络获取待识别图像的特征向量,以及利用修正的Softmax分类器对待识别图像的特征向量识别,得到待识别图像的识别结果。In the implementation, the execution body of the above step may be a cloud server, and the training device in the cloud server trains the ANN based on the image sample, the image tag, and the modified loss function of the modified Softmax classifier, and in the process of training optimization, The loss function deviates the parameters of each layer of the ANN, and uses the backward conduction algorithm to optimize the parameters of each layer of the ANN, so that the trained ANN can obtain the feature vector of the image to be identified by extracting the network, and use the modified Softmax classification. The feature vector of the image to be recognized is recognized, and the recognition result of the image to be recognized is obtained.
在本实施例中,利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到预设的特征提取网络和分类器,所述第一损失函数L为:In this embodiment, the initialized feature extraction network and the classifier are trained by using the first loss function to obtain a preset feature extraction network and a classifier, and the first loss function L is:
其中,L
i为图像样本的特征向量x
i(i=1,…,m)的损失函数,C
j为图像样本的特征向量x
i对应的第j(j=1,…l,n)个图像类别的中心点,M 为预设的第一神经网络参数。
Where L i is the loss function of the feature vector x i (i=1, . . . , m) of the image sample, and C j is the jth (j=1, . . . , n) corresponding to the feature vector x i of the image sample. The center point of the image category, M is the preset first neural network parameter.
在本实施例中,所述预设的神经网络参数M的取值条件为:In this embodiment, the preset condition of the neural network parameter M is:
所述图像样本的特征向量x
i与其对应的第j个图像类别的类中心点的欧式距离的M倍小于等于所述图像样本的特征向量x
i与其它任一图像类别的类中心点的欧式距离;或者,
M times the Euclidean distance of feature vectors of sample images x i corresponding to the image category of the j-th class is less than or equal to the center point of the sample image feature vector x i European center point and one of the other classes of image categories Distance; or,
所述图像样本的特征向量x
i属于第j个图像类别的概率大于等于所述图像样本的特征向量x
i属于其它任一图像类别的概率与预设的第二神经网络参数δ的和。
The probability that the feature vector x i of the image sample belongs to the j-th image category is greater than or equal to the sum of the probability that the feature vector x i of the image sample belongs to any other image category and the preset second neural network parameter δ.
实施中,初始化的修正的Softmax分类器的损失函数的设定具体包括:In the implementation, the setting of the loss function of the initialized modified Softmax classifier specifically includes:
将现有Softmax分类器基于类中心向量度量相似度的方式改进为基于类中心点度量相似度的方式,即基于特征向量x
i与其对应的类中心点的欧式距离实现相似度的度量,特征向量x
i(i=1,…,m)属于第j类的概率为:
The existing Softmax classifier is improved based on the class center vector metric similarity to the similarity based on the class center point metric, that is, the metric of the similarity based on the Euclidean distance of the feature vector x i and its corresponding class center point, the eigenvector The probability that x i (i=1,...,m) belongs to the jth class is:
训练过程中,损失函数定义如下:During the training process, the loss function is defined as follows:
其中,C
j为第j(j=1,…l,n)类的中心点,此时的损失函数无法有效提高特征向量的聚集程度,为上述损失函数引入新的参数M,改进后的损失函数为:
Where C j is the central point of the jth (j=1,...l,n) class. The loss function at this time cannot effectively improve the aggregation degree of the feature vector, and introduces a new parameter M for the above loss function, and the improved loss. The function is:
其中,M的取值应满足的条件为,特征向量x
i与其对应的类中心点的 欧式距离的M倍小于等于特征向量x
i与其它任一类中心点的欧式距离,或者特征向量x
i属于第j类的概率大于等于特征向量x
i属于第l类的概率与神经网络参数δ的和,即
Wherein, the value of M should satisfy the condition that M times of the Euclidean distance of the feature vector x i and its corresponding class center point is less than or equal to the Euclidean distance of the feature vector x i and any other type of center point, or the feature vector x i The probability of belonging to the jth class is greater than or equal to the sum of the probability that the feature vector x i belongs to the class 1 and the neural network parameter δ, that is,
P
ij≥P
il+δ δ>0,l≠i。
P ij ≥P il +δ δ>0, l≠i.
图2为本申请实施例一中图像识别方法中的分类器分类示意图,如图2所示,修正的Softmax分类器中引入新的参数M,令M=2,可见,通过在损失函数中引入新的参数M,能够进一步增加类内特征向量的聚集度,以及扩大类间特征向量的可区分性。2 is a schematic diagram of classification of a classifier in an image recognition method according to Embodiment 1 of the present application. As shown in FIG. 2, a new parameter M is introduced in a modified Softmax classifier, so that M=2, visible, introduced in the loss function. The new parameter M can further increase the degree of aggregation of feature vectors within the class and expand the distinguishability of feature vectors between classes.
在本实施例中,还包括:In this embodiment, the method further includes:
利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到第一特征提取网络和预设的分类器;The initial feature extraction network and the classifier are trained by using the first loss function to obtain a first feature extraction network and a preset classifier;
利用预设的第二损失函数对所述第一特征提取网络进行训练,得到预设的特征提取网络。The first feature extraction network is trained by using a preset second loss function to obtain a preset feature extraction network.
在本实施例中,所述预设的第二损失函数L
C为:
In this embodiment, the preset second loss function L C is:
其中,C
j为图像样本的特征向量x
i(i=1,…,m)对应的第j个图像类别的中心点,所述第二损失函数的类中心点与所述第一损失函数的类中心点相同。
Where C j is the center point of the j-th image category corresponding to the feature vector x i (i=1, . . . , m) of the image sample, and the class center point of the second loss function is related to the first loss function The class center points are the same.
实施中,若修正的Softmax分类器的损失函数中引入的新的参数M为1时,修正的Softmax分类器的损失函数未考虑到图像类别边界的“安全范围”,则可以通过分步训练的方式实现对ANN各层参数的优化,从而达到增加类内特征向量聚集度,以及扩大类间特征向量可区分性的技术效果,训练过程具体包括:In the implementation, if the new parameter M introduced in the loss function of the modified Softmax classifier is 1, the modified Softmax classifier loss function does not take into account the "safe range" of the image category boundary, and can be step-by-step trained. The method realizes the optimization of the parameters of each layer of the ANN, thereby achieving the technical effect of increasing the degree of feature vector aggregation within the class and expanding the distinguishability of the feature vector between the classes. The training process specifically includes:
1)对初始化的ANN特征提取网络和修正的Softmax分类器进行第一 阶段训练。根据利用ANN特征提取网络提取的图像样本的特征向量和预设的图像标签,利用前向传导算法,以及修正的Softmax分类器的损失函数计算损失值,并将第一损失函数对ANN各层参数求偏导,利用后向传导算法对初始化的ANN特征提取网络和修正的Softmax分类器进行第一阶段训练,通过对ANN各层参数的优化得到训练好的第一ANN特征提取网络和修正的Softmax分类器。1) Perform the first stage training on the initialized ANN feature extraction network and the modified Softmax classifier. According to the feature vector of the image sample extracted by the ANN feature extraction network and the preset image tag, the loss value is calculated by using the forward conduction algorithm and the modified loss function of the Softmax classifier, and the first loss function is used for the parameters of the ANN layer. The partial derivative is used to perform the first stage training on the initialized ANN feature extraction network and the modified Softmax classifier. The trained first ANN feature extraction network and the modified Softmax are obtained by optimizing the parameters of the various layers of the ANN. Classifier.
2)对第一ANN特征提取网络进行第二阶段训练。固定修正的Softmax分类器,即保持ANN分类任务中各类别的类中心C不变,利用设定的第二损失函数对第一ANN特征提取网络进行训练,得到训练好的ANN特征提取网络。具体为,设定第二损失函数L
C为:
2) Perform the second stage training on the first ANN feature extraction network. The fixed-corrected Softmax classifier, that is, keeps the class center C of each category in the ANN classification task unchanged, and uses the set second loss function to train the first ANN feature extraction network to obtain a trained ANN feature extraction network. Specifically, setting the second loss function L C is:
将第二损失函数L
C对图像样本的特征向量x
i和ANN特征提取网络层参数求偏导,并利用后向传导算法实现对ANN特征提取网络层参数的优化,以使训练好的ANN特征提取网络在提取待识别图像的特征向量时精确度更高,即提取的同类特征向量的聚集度更高。
The second loss function L C is used to derive the eigenvector x i of the image sample and the ANN feature extraction network layer parameters, and the backward conduction algorithm is used to optimize the parameters of the ANN feature extraction network layer to make the trained ANN features The extraction network has higher accuracy when extracting the feature vector of the image to be recognized, that is, the degree of aggregation of the extracted similar feature vectors is higher.
本申请以具体场景为例,对本申请实施例1进行详细描述。The present application provides a detailed description of Embodiment 1 of the present application by taking a specific scenario as an example.
本申请实施例应用范围包括但不限于基于ANN的人脸图像识别,以基于ANN的人脸图像识别为例,具体流程如下:The application scope of the embodiments of the present application includes, but is not limited to, ANN-based face image recognition, and the face image recognition based on ANN is taken as an example. The specific process is as follows:
ANN特征提取网络和修正的Softmax分类器的训练过程:The training process of the ANN feature extraction network and the modified Softmax classifier:
步骤201:通过对初始化的ANN特征提取网络和修正的Softmax分类器进行第一阶段训练。根据利用ANN特征提取网络提取的图像样本的特征向量和预设的图像标签,利用前向传导算法,以及修正的Softmax分类器的损失函数计算损失值,并将第一损失函数对ANN各层参数求偏导,利用后向传导算法对ANN各层参数进行优化,得到第一特征提取网络和修正的Softmax分类器,第一损失函数定义如下:Step 201: Perform the first stage training by the initialized ANN feature extraction network and the modified Softmax classifier. According to the feature vector of the image sample extracted by the ANN feature extraction network and the preset image tag, the loss value is calculated by using the forward conduction algorithm and the modified loss function of the Softmax classifier, and the first loss function is used for the parameters of the ANN layer. The partial derivative is obtained by using the backward conduction algorithm to optimize the parameters of each layer of the ANN, and the first feature extraction network and the modified Softmax classifier are obtained. The first loss function is defined as follows:
其中,L
i为图像样本的特征向量x
i(i=1,…,m)的损失函数,C
j为图像样本的特征向量x
i对应的第j(j=1,…l,n)个图像类别的类中心点,M为预设的第一神经网络参数。
Where L i is the loss function of the feature vector x i (i=1, . . . , m) of the image sample, and C j is the jth (j=1, . . . , n) corresponding to the feature vector x i of the image sample. The class center point of the image category, M is the preset first neural network parameter.
步骤202:若修正的Softmax分类器的损失函数中引入的新的参数M为1,则对第一ANN特征提取网络进行第二阶段训练。具体包括:Step 202: If the new parameter M introduced in the loss function of the modified Softmax classifier is 1, the second stage training is performed on the first ANN feature extraction network. Specifically include:
保持ANN分类任务中各类别的类中心C不变,利用设定的第二损失函数对第一ANN特征提取网络进行训练,得到训练好的ANN特征提取网络,即对修正的Softmax分类器不做训练,仅对ANN特征提取网络层参数进行第二阶段优化,第二损失函数定义如下:Keep the class center C of each category in the ANN classification task unchanged, and use the set second loss function to train the first ANN feature extraction network to obtain the trained ANN feature extraction network, that is, do not do the modified Softmax classifier. Training, only the second feature optimization of the ANN feature extraction network layer parameters, the second loss function is defined as follows:
将第二损失函数L
C对图像样本的特征向量x
i和ANN特征提取网络层参数求偏导,并利用后向传导算法实现对ANN特征提取网络层参数的优化,得到训练好的ANN特征提取网络。
The second loss function L C is used to derive the eigenvector x i of the image sample and the ANN feature extraction network layer parameters, and the backward conduction algorithm is used to optimize the parameters of the ANN feature extraction network layer to obtain the trained ANN feature extraction. The internet.
基于训练好的ANN特征提取网络和修正的Softmax分类器的识别过程:Based on the trained ANN feature extraction network and the modified Softmax classifier recognition process:
步骤203:获取待识别图像,利用训练好的ANN特征提取网络提取待识别图像的特征向量,以及利用修正的Softmax分类器对待识别图像的特征向量进行识别,得到待识别图像的识别结果。Step 203: Acquire an image to be identified, extract a feature vector of the image to be recognized by using the trained ANN feature extraction network, and identify a feature vector of the image to be recognized by using the modified Softmax classifier to obtain a recognition result of the image to be identified.
实施例2Example 2
基于同一发明构思,本申请实施例中还提供了一种图像识别云端系统,由于这些设备解决问题的原理与一种图像识别方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。Based on the same inventive concept, an image recognition cloud system is also provided in the embodiment of the present application. Since the principle of solving the problem of these devices is similar to an image recognition method, the implementation of these devices can refer to the implementation of the method, and the repetition is not Let me repeat.
图3示出了本申请实施例二中图像识别的云端系统架构图,如图3所示,图像识别云端系统300可以包括:FIG. 3 is a schematic diagram of a cloud system architecture for image recognition in the second embodiment of the present application. As shown in FIG. 3, the image recognition cloud system 300 may include:
特征提取网络301,用于利用预设的特征提取网络获取待识别图像的特征向量;a feature extraction network 301, configured to acquire a feature vector of an image to be identified by using a preset feature extraction network;
分类器302,用于利用预设的分类器,根据所述待识别图像的特征向量与其对应的类中心点的欧式距离得到待识别图像的识别结果。The classifier 302 is configured to obtain a recognition result of the image to be recognized according to the Euclidean distance of the feature vector of the to-be-identified image and the corresponding class center point by using a preset classifier.
训练器303,用于利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到预设的特征提取网络和分类器,所述第一损失函数L为:The training device 303 is configured to train the initialized feature extraction network and the classifier by using the first loss function to obtain a preset feature extraction network and a classifier, where the first loss function L is:
其中,L
i为图像样本的特征向量x
i(i=1,…,m)的损失函数,C
j为图像样本的特征向量x
i对应的第j(j=1,…l,n)个图像类别的类中心点,M为预设的第一神经网络参数。
Where L i is the loss function of the feature vector x i (i=1, . . . , m) of the image sample, and C j is the jth (j=1, . . . , n) corresponding to the feature vector x i of the image sample. The class center point of the image category, M is the preset first neural network parameter.
在本实施例中,所述预设的神经网络参数M的取值条件为:In this embodiment, the preset condition of the neural network parameter M is:
所述图像样本的特征向量x
i与其对应的第j个图像类别的类中心点的欧式距离的M倍小于等于所述图像样本的特征向量x
i与其它任一图像类别的类中心点的欧式距离;或者,
M times the Euclidean distance of feature vectors of sample images x i corresponding to the image category of the j-th class is less than or equal to the center point of the sample image feature vector x i European center point and one of the other classes of image categories Distance; or,
所述图像样本的特征向量x
i属于第j个图像类别的概率大于等于所述图像样本的特征向量x
i属于其它任一图像类别的概率与预设的第二神经网络参数δ的和。
The probability that the feature vector x i of the image sample belongs to the j-th image category is greater than or equal to the sum of the probability that the feature vector x i of the image sample belongs to any other image category and the preset second neural network parameter δ.
在本实施例中,所述训练器303,还用于利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到第一特征提取网络和预设的分类器;以及,In this embodiment, the training device 303 is further configured to use the first loss function to train the initialized feature extraction network and the classifier to obtain a first feature extraction network and a preset classifier;
利用预设的第二损失函数对所述第一特征提取网络进行训练,得到预设的特征提取网络。The first feature extraction network is trained by using a preset second loss function to obtain a preset feature extraction network.
在本实施例中,所述预设的第二损失函数L
C为:
In this embodiment, the preset second loss function L C is:
其中,C
j为图像样本的特征向量x
i(i=1,…,m)对应的第j个图像类别的类中心点,所述第二损失函数的类中心点与所述第一损失函数的类中心点相同。
Where C j is a class center point of the jth image class corresponding to the feature vector x i (i=1, . . . , m) of the image sample, and the class center point of the second loss function and the first loss function The class center points are the same.
实施例3Example 3
基于同一发明构思,本申请实施例中还提供了一种电子设备,由于其原理与一种图像识别方法相似,因此其实施可以参见方法的实施,重复之处不再赘述。Based on the same inventive concept, an electronic device is also provided in the embodiment of the present application. Since the principle is similar to an image recognition method, the implementation of the method may refer to the implementation of the method, and the repeated description is not repeated.
图4示出了本申请实施例三中电子设备的结构示意图,如图4所示,所述电子设备包括:收发设备401,存储器402,一个或多个处理器403;以及一个或多个模块,所述一个或多个模块被存储在所述存储器中,并被配置成由所述一个或多个处理器执行,所述一个或多个模块包括用于执行任一上述方法中各个步骤的指令。4 is a schematic structural diagram of an electronic device in Embodiment 3 of the present application. As shown in FIG. 4, the electronic device includes: a transceiver device 401, a memory 402, one or more processors 403, and one or more modules. The one or more modules are stored in the memory and configured to be executed by the one or more processors, the one or more modules including steps for performing the steps of any of the above methods instruction.
实施例4Example 4
基于同一发明构思,本申请实施例还提供了一种与电子设备结合使用的计算机程序产品,由于其原理与一种图像识别方法相似,因此其实施可以参见方法的实施,重复之处不再赘述。所述计算机程序产品包括计算机可读的存储介质和内嵌于其中的计算机程序机制,所述计算机程序机制包括用于执行任一上述方法中各个步骤的指令。Based on the same inventive concept, the embodiment of the present application further provides a computer program product used in combination with an electronic device. Since the principle is similar to an image recognition method, the implementation of the method can refer to the implementation of the method, and the details are not repeated. . The computer program product comprises a computer readable storage medium and a computer program mechanism embodied therein, the computer program mechanism comprising instructions for performing the various steps of any of the above methods.
为了描述的方便,以上所述装置的各部分以功能分为各种模块分别描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。For the convenience of description, the various parts of the above-described apparatus are separately described by functions into various modules. Of course, the functions of each module or unit may be implemented in the same software or hardware in the implementation of the present application.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present application can be provided as a method, system, or computer program product. Thus, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware. Moreover, the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG. These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device. Means for implementing the functions specified in one or more of the flow or in a block or blocks of the flow chart.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。The computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device. The apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. The instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所 附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。While the preferred embodiment of the present application has been described, it will be apparent that those skilled in the art can make further changes and modifications to the embodiments. Therefore, it is intended that the appended claims be interpreted as
Claims (12)
- 一种图像识别方法,其特征在于,包括:An image recognition method, comprising:利用预设的特征提取网络获取待识别图像的特征向量;Acquiring a feature vector of the image to be identified by using a preset feature extraction network;利用预设的分类器,根据所述待识别图像的特征向量与其对应的类中心点的欧式距离得到待识别图像的识别结果。The recognition result of the image to be recognized is obtained according to the Euclidean distance of the feature vector of the image to be recognized and the corresponding class center point by using a preset classifier.
- 如权利要求1所述的方法,其特征在于,还包括:利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到预设的特征提取网络和分类器,所述第一损失函数L为:The method according to claim 1, further comprising: training the initialized feature extraction network and the classifier with a first loss function to obtain a preset feature extraction network and a classifier, the first loss function L is:其中,L i为图像样本的特征向量x i(i=1,…,m)的损失函数,C j为图像样本的特征向量x i对应的第j(j=1,…l,n)个图像类别的中心点,M为预设的第一神经网络参数。 Where L i is the loss function of the feature vector x i (i=1, . . . , m) of the image sample, and C j is the jth (j=1, . . . , n) corresponding to the feature vector x i of the image sample. The center point of the image category, M is the preset first neural network parameter.
- 如权利要求2所述的方法,其特征在于,所述预设的神经网络参数M的取值条件为:The method according to claim 2, wherein the predetermined condition of the neural network parameter M is:所述图像样本的特征向量x i与其对应的第j个图像类别的类中心点的欧式距离的M倍小于等于所述图像样本的特征向量x i与其它任一图像类别的类中心点的欧式距离;或者, M times the Euclidean distance of feature vectors of sample images x i corresponding to the image category of the j-th class is less than or equal to the center point of the sample image feature vector x i European center point and one of the other classes of image categories Distance; or,所述图像样本的特征向量x i属于第j个图像类别的概率大于等于所述图像样本的特征向量x i属于其它任一图像类别的概率与预设的第二神经网络参数δ的和。 The probability that the feature vector x i of the image sample belongs to the j-th image category is greater than or equal to the sum of the probability that the feature vector x i of the image sample belongs to any other image category and the preset second neural network parameter δ.
- 如权利要求1或2所述的方法,其特征在于,还包括:The method of claim 1 or 2, further comprising:利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到 第一特征提取网络和预设的分类器;The initial feature extraction network and the classifier are trained by using the first loss function to obtain a first feature extraction network and a preset classifier;利用预设的第二损失函数对所述第一特征提取网络进行训练,得到预设的特征提取网络。The first feature extraction network is trained by using a preset second loss function to obtain a preset feature extraction network.
- 如权利要求4所述的方法,其特征在于,所述预设的第二损失函数L C为: The method of claim 4 wherein said predetermined second loss function L C is:其中,C j为图像样本的特征向量x i(i=1,…,m)对应的第j个图像类别的类中心点,所述第二损失函数的类中心点与所述第一损失函数的类中心点相同。 Where C j is a class center point of the jth image class corresponding to the feature vector x i (i=1, . . . , m) of the image sample, and the class center point of the second loss function and the first loss function The class center points are the same.
- 一种图像识别云端系统,其特征在于,包括:An image recognition cloud system, comprising:特征提取网络,用于利用预设的特征提取网络获取待识别图像的特征向量;a feature extraction network, configured to acquire a feature vector of the image to be identified by using a preset feature extraction network;分类器,用于利用预设的分类器,根据所述待识别图像的特征向量与其对应的类中心点的欧式距离得到待识别图像的识别结果。The classifier is configured to obtain, by using a preset classifier, a recognition result of the image to be identified according to a feature distance of the feature vector of the image to be recognized and a corresponding Euclidean distance of the class center point.
- 如权利要求6所述的云端系统,其特征在于,还包括训练器,所述训练器用于利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到预设的特征提取网络和分类器,所述第一损失函数L为:The cloud system according to claim 6, further comprising a trainer for training the initialized feature extraction network and the classifier by using the first loss function to obtain a preset feature extraction network and classification The first loss function L is:其中,L i为图像样本的特征向量x i(i=1,…,m)的损失函数,C j为图像样本的特征向量x i对应的第j(j=1,…l,n)个图像类别的中心点,M为预设的第一神经网络参数。 Where L i is the loss function of the feature vector x i (i=1, . . . , m) of the image sample, and C j is the jth (j=1, . . . , n) corresponding to the feature vector x i of the image sample. The center point of the image category, M is the preset first neural network parameter.
- 如权利要求7所述的云端系统,其特征在于,所述预设的神经网络参数M的取值条件为:The cloud system according to claim 7, wherein the preset condition of the neural network parameter M is:所述图像样本的特征向量x i与其对应的第j个图像类别的类中心点的欧式距离的M倍小于等于所述图像样本的特征向量x i与其它任一图像类别的类中心点的欧式距离;或者, M times the Euclidean distance of feature vectors of sample images x i corresponding to the image category of the j-th class is less than or equal to the center point of the sample image feature vector x i European center point and one of the other classes of image categories Distance; or,所述图像样本的特征向量x i属于第j个图像类别的概率大于等于所述图像样本的特征向量x i属于其它任一图像类别的概率与预设的第二神经网络参数δ的和。 The probability that the feature vector x i of the image sample belongs to the j-th image category is greater than or equal to the sum of the probability that the feature vector x i of the image sample belongs to any other image category and the preset second neural network parameter δ.
- 如权利要求6或7所述的云端系统,其特征在于,还包括训练器,所述训练器用于利用第一损失函数对初始化的特征提取网络和分类器进行训练,得到第一特征提取网络和预设的分类器;以及,The cloud system according to claim 6 or 7, further comprising a trainer for training the initialized feature extraction network and the classifier by using the first loss function to obtain the first feature extraction network and Preset classifier; and,利用预设的第二损失函数对所述第一特征提取网络进行训练,得到预设的特征提取网络。The first feature extraction network is trained by using a preset second loss function to obtain a preset feature extraction network.
- 如权利要求9所述的云端系统,其特征在于,所述预设的第二损失函数L C为: The cloud system according to claim 9, wherein the preset second loss function L C is:其中,C j为图像样本的特征向量x i(i=1,…,m)对应的第j个图像类别的类中心点,所述第二损失函数的类中心点与所述第一损失函数的类中心点相同。 Where C j is a class center point of the jth image class corresponding to the feature vector x i (i=1, . . . , m) of the image sample, and the class center point of the second loss function and the first loss function The class center points are the same.
- 一种电子设备,其特征在于,所述电子设备包括:An electronic device, comprising:收发设备,存储器,一个或多个处理器;以及Transceiver, memory, one or more processors;一个或多个模块,所述一个或多个模块被存储在所述存储器中,并被配置成由所述一个或多个处理器执行,所述一个或多个模块包括用于执行权利要求1-5中任一所述方法中各个步骤的指令。One or more modules stored in the memory and configured to be executed by the one or more processors, the one or more modules including for performing claim 1 The instructions of the various steps in any of the methods described in 5.
- 一种与电子设备结合使用的计算机程序产品,所述计算机程序产 品包括计算机可读的存储介质和内嵌于其中的计算机程序机制,所述计算机程序机制包括用于执行权利要求1-5中任一所述方法中各个步骤的指令。A computer program product for use in conjunction with an electronic device, the computer program product comprising a computer readable storage medium and a computer program mechanism embedded therein, the computer program mechanism comprising means for performing any of claims 1-5 An instruction for each step in the method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780003088.4A CN108235770B (en) | 2017-12-29 | 2017-12-29 | Image identification method and cloud system |
PCT/CN2017/120087 WO2019127451A1 (en) | 2017-12-29 | 2017-12-29 | Image recognition method and cloud system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/120087 WO2019127451A1 (en) | 2017-12-29 | 2017-12-29 | Image recognition method and cloud system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019127451A1 true WO2019127451A1 (en) | 2019-07-04 |
Family
ID=62643290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/120087 WO2019127451A1 (en) | 2017-12-29 | 2017-12-29 | Image recognition method and cloud system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108235770B (en) |
WO (1) | WO2019127451A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111046971A (en) * | 2019-12-24 | 2020-04-21 | 上海眼控科技股份有限公司 | Image recognition method, device, equipment and computer readable storage medium |
CN111242199A (en) * | 2020-01-07 | 2020-06-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | Training method and classification method of image classification model |
CN111242162A (en) * | 2019-12-27 | 2020-06-05 | 北京地平线机器人技术研发有限公司 | Training method and device of image classification model, medium and electronic equipment |
CN111259967A (en) * | 2020-01-17 | 2020-06-09 | 北京市商汤科技开发有限公司 | Image classification and neural network training method, device, equipment and storage medium |
CN111539480A (en) * | 2020-04-27 | 2020-08-14 | 上海鹰瞳医疗科技有限公司 | Multi-class medical image identification method and equipment |
CN111563439A (en) * | 2020-04-28 | 2020-08-21 | 北京海益同展信息科技有限公司 | Aquatic organism disease detection method, device and equipment |
CN111783858A (en) * | 2020-06-19 | 2020-10-16 | 厦门市美亚柏科信息股份有限公司 | Method and device for generating category vector |
CN112036455A (en) * | 2020-08-19 | 2020-12-04 | 浙江大华技术股份有限公司 | Image identification method, intelligent terminal and storage medium |
CN112836629A (en) * | 2021-02-01 | 2021-05-25 | 清华大学深圳国际研究生院 | Image classification method |
CN113033665A (en) * | 2021-03-26 | 2021-06-25 | 北京沃东天骏信息技术有限公司 | Sample expansion method, training method and system, and sample learning system |
CN113361636A (en) * | 2021-06-30 | 2021-09-07 | 山东建筑大学 | Image classification method, system, medium and electronic device |
CN113505256A (en) * | 2021-07-02 | 2021-10-15 | 北京达佳互联信息技术有限公司 | Feature extraction network training method, image processing method and device |
CN113536870A (en) * | 2020-07-09 | 2021-10-22 | 腾讯科技(深圳)有限公司 | Abnormal head portrait identification method and device |
CN114004854A (en) * | 2021-09-16 | 2022-02-01 | 清华大学 | System and method for processing and displaying slice image under microscope in real time |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108960342B (en) * | 2018-08-01 | 2021-09-14 | 中国计量大学 | Image similarity calculation method based on improved Soft-Max loss function |
CN109241315B (en) * | 2018-08-28 | 2022-01-04 | 电子科技大学 | Rapid face retrieval method based on deep learning |
CN110647916B (en) * | 2019-08-23 | 2022-10-28 | 苏宁云计算有限公司 | Pornographic picture identification method and device based on convolutional neural network |
CN110705572B (en) * | 2019-09-23 | 2022-07-19 | 北京邮电大学 | Image recognition method |
CN111079790B (en) * | 2019-11-18 | 2023-06-30 | 清华大学深圳国际研究生院 | Image classification method for constructing class center |
CN111340021B (en) * | 2020-02-20 | 2022-07-15 | 中国科学技术大学 | Unsupervised domain adaptive target detection method based on center alignment and relation significance |
CN111914761A (en) * | 2020-08-04 | 2020-11-10 | 南京华图信息技术有限公司 | Thermal infrared face recognition method and system |
CN111967381B (en) * | 2020-08-16 | 2022-11-11 | 云知声智能科技股份有限公司 | Face image quality grading and labeling method and device |
CN112561053B (en) * | 2020-11-10 | 2023-09-08 | 北京百度网讯科技有限公司 | Image processing method, training method and device of pre-training model and electronic equipment |
CN115294396B (en) * | 2022-08-12 | 2024-04-23 | 北京百度网讯科技有限公司 | Backbone network training method and image classification method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155801A (en) * | 1990-10-09 | 1992-10-13 | Hughes Aircraft Company | Clustered neural networks |
US6038338A (en) * | 1997-02-03 | 2000-03-14 | The United States Of America As Represented By The Secretary Of The Navy | Hybrid neural network for pattern recognition |
CN103984959A (en) * | 2014-05-26 | 2014-08-13 | 中国科学院自动化研究所 | Data-driven and task-driven image classification method |
CN106845421A (en) * | 2017-01-22 | 2017-06-13 | 北京飞搜科技有限公司 | Face characteristic recognition methods and system based on multi-region feature and metric learning |
-
2017
- 2017-12-29 WO PCT/CN2017/120087 patent/WO2019127451A1/en active Application Filing
- 2017-12-29 CN CN201780003088.4A patent/CN108235770B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155801A (en) * | 1990-10-09 | 1992-10-13 | Hughes Aircraft Company | Clustered neural networks |
US6038338A (en) * | 1997-02-03 | 2000-03-14 | The United States Of America As Represented By The Secretary Of The Navy | Hybrid neural network for pattern recognition |
CN103984959A (en) * | 2014-05-26 | 2014-08-13 | 中国科学院自动化研究所 | Data-driven and task-driven image classification method |
CN106845421A (en) * | 2017-01-22 | 2017-06-13 | 北京飞搜科技有限公司 | Face characteristic recognition methods and system based on multi-region feature and metric learning |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111046971A (en) * | 2019-12-24 | 2020-04-21 | 上海眼控科技股份有限公司 | Image recognition method, device, equipment and computer readable storage medium |
CN111242162A (en) * | 2019-12-27 | 2020-06-05 | 北京地平线机器人技术研发有限公司 | Training method and device of image classification model, medium and electronic equipment |
CN111242199A (en) * | 2020-01-07 | 2020-06-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | Training method and classification method of image classification model |
CN111259967A (en) * | 2020-01-17 | 2020-06-09 | 北京市商汤科技开发有限公司 | Image classification and neural network training method, device, equipment and storage medium |
CN111259967B (en) * | 2020-01-17 | 2024-03-08 | 北京市商汤科技开发有限公司 | Image classification and neural network training method, device, equipment and storage medium |
CN111539480A (en) * | 2020-04-27 | 2020-08-14 | 上海鹰瞳医疗科技有限公司 | Multi-class medical image identification method and equipment |
CN111539480B (en) * | 2020-04-27 | 2023-10-17 | 上海鹰瞳医疗科技有限公司 | Multi-category medical image recognition method and equipment |
CN111563439B (en) * | 2020-04-28 | 2023-08-08 | 京东科技信息技术有限公司 | Aquatic organism disease detection method, device and equipment |
CN111563439A (en) * | 2020-04-28 | 2020-08-21 | 北京海益同展信息科技有限公司 | Aquatic organism disease detection method, device and equipment |
CN111783858A (en) * | 2020-06-19 | 2020-10-16 | 厦门市美亚柏科信息股份有限公司 | Method and device for generating category vector |
CN111783858B (en) * | 2020-06-19 | 2022-07-15 | 厦门市美亚柏科信息股份有限公司 | Method and device for generating category vector |
CN113536870A (en) * | 2020-07-09 | 2021-10-22 | 腾讯科技(深圳)有限公司 | Abnormal head portrait identification method and device |
CN112036455A (en) * | 2020-08-19 | 2020-12-04 | 浙江大华技术股份有限公司 | Image identification method, intelligent terminal and storage medium |
CN112036455B (en) * | 2020-08-19 | 2023-09-01 | 浙江大华技术股份有限公司 | Image identification method, intelligent terminal and storage medium |
CN112836629A (en) * | 2021-02-01 | 2021-05-25 | 清华大学深圳国际研究生院 | Image classification method |
CN112836629B (en) * | 2021-02-01 | 2024-03-08 | 清华大学深圳国际研究生院 | Image classification method |
CN113033665A (en) * | 2021-03-26 | 2021-06-25 | 北京沃东天骏信息技术有限公司 | Sample expansion method, training method and system, and sample learning system |
CN113361636A (en) * | 2021-06-30 | 2021-09-07 | 山东建筑大学 | Image classification method, system, medium and electronic device |
CN113505256A (en) * | 2021-07-02 | 2021-10-15 | 北京达佳互联信息技术有限公司 | Feature extraction network training method, image processing method and device |
CN114004854A (en) * | 2021-09-16 | 2022-02-01 | 清华大学 | System and method for processing and displaying slice image under microscope in real time |
CN114004854B (en) * | 2021-09-16 | 2024-06-07 | 清华大学 | Real-time processing display system and method for slice image under microscope |
Also Published As
Publication number | Publication date |
---|---|
CN108235770B (en) | 2021-10-19 |
CN108235770A (en) | 2018-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019127451A1 (en) | Image recognition method and cloud system | |
Zafar et al. | Face recognition with Bayesian convolutional networks for robust surveillance systems | |
Martinez et al. | Local evidence aggregation for regression-based facial point detection | |
EP3084682B1 (en) | System and method for identifying faces in unconstrained media | |
JP6397986B2 (en) | Image object region recognition method and apparatus | |
WO2017024963A1 (en) | Image recognition method, measure learning method and image source recognition method and device | |
Bautista et al. | Probability-based dynamic time warping for gesture recognition on RGB-D data | |
US20180096196A1 (en) | Verifying Identity Based on Facial Dynamics | |
Ghimire et al. | Extreme learning machine ensemble using bagging for facial expression recognition | |
Perdana et al. | Face recognition using light-convolutional neural networks based on modified Vgg16 model | |
US20150131899A1 (en) | Devices, systems, and methods for learning a discriminant image representation | |
CN106096517A (en) | A kind of face identification method based on low-rank matrix Yu eigenface | |
CN106599856A (en) | Combined face detection, positioning and identification method | |
Robert et al. | Mouth features extraction for emotion classification | |
TWI731919B (en) | Image recognition method and device and metric learning method and device | |
WO2015176502A1 (en) | Image feature estimation method and device | |
Gaston et al. | Matching larger image areas for unconstrained face identification | |
Bissoon et al. | Gender classification using face recognition | |
Pathak et al. | Entropy based CNN for segmentation of noisy color eye images using color, texture and brightness contour features | |
Agrawal et al. | Support Vector Machine for age classification | |
Venkatramaphanikumar et al. | Gabor based face recognition with dynamic time warping | |
Battiato et al. | Aligning shapes for symbol classification and retrieval | |
Li et al. | Face attributes recognition via deep multi-task cascade | |
Goel et al. | An illumination invariant robust and fast face detection, feature extraction based face recognition system | |
Alex et al. | Local alignment of gradient features for face sketch recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17936090 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 18.11.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17936090 Country of ref document: EP Kind code of ref document: A1 |