WO2019127287A1 - 第一智能设备及其连接方法以及具有存储功能的装置 - Google Patents
第一智能设备及其连接方法以及具有存储功能的装置 Download PDFInfo
- Publication number
- WO2019127287A1 WO2019127287A1 PCT/CN2017/119598 CN2017119598W WO2019127287A1 WO 2019127287 A1 WO2019127287 A1 WO 2019127287A1 CN 2017119598 W CN2017119598 W CN 2017119598W WO 2019127287 A1 WO2019127287 A1 WO 2019127287A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- smart device
- image
- smart
- code
- shape
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
Definitions
- the present invention relates to the field of smart devices, and in particular, to a first smart device, a connection method thereof, and a device having a storage function.
- a smart device with a camera function has been widely applied to the visual field, and the smart device performs related operations according to the acquired image.
- the angle of view of the image that can be collected by the smart device is limited, the image information acquired by the single smart device is not comprehensive enough, which may affect the operation of the smart device.
- the technical problem to be solved by the present invention is to provide a first smart device, a connection method thereof, and a device having a storage function.
- the smart device can adaptively and flexibly establish a connection with other smart devices according to an actual scenario, and establish a binocular camera mode. To obtain image information of the target object at different viewing angles.
- the first technical solution adopted by the present invention is to provide a connection method of a smart device, where the connection method includes acquiring, by the first smart device, a flag code of the second smart device including the second smart device. a picture, the identifier code is identified, and after the connection is established with the second smart device, the shooting parameter of the second smart device is acquired; the first smart device acquires the flag in the image a pixel size and a shape of the code, determining, according to a shooting parameter of the first smart device, a pixel size and a shape of the flag code in the picture, and an actual size and shape of the identifier code, determining the first smart device and the Determining a relative pose relationship between the second smart devices; the first smart device according to the shooting parameters of the first smart device, the shooting parameters of the second smart device, and the relative pose relationship and the first The second smart device establishes a binocular camera mode.
- the second technical solution adopted by the present invention is to provide a first smart device, where the first smart device includes an image capturing device and a processor, and the image capturing device is coupled to the processor;
- the image capture device is configured to acquire a picture of the second smart device that includes the identifier code of the second smart device;
- the processor is configured to identify the identifier code, and establish, according to the identifier code, the second smart device After the connection, acquiring the shooting parameters of the second smart device; and acquiring the pixel size and shape of the logo code in the image, according to the shooting parameters of the first smart device, the pixel size of the logo code in the image And determining a relative pose relationship between the first smart device and the second smart device according to a shape and an actual size and a shape of the identifier; the processor is further configured to be used according to the first smart device The shooting parameters, the shooting parameters of the second smart device, and the relative pose relationship establish a binocular imaging mode with the second smart device.
- the third technical solution adopted by the present invention is to provide a device having a storage function, wherein the device having the storage function stores program data, and when the program data is executed, the present invention is implemented. The steps in any of the described methods of attachment.
- the invention has the beneficial effects that the smart device of the present invention can obtain the picture of the other smart device including its identification code in real time, and automatically establish a connection with the corresponding smart device according to the identifier code, and the flag in the picture is different from the prior art.
- the code and the actual logo code are processed and analyzed, the relative pose relationship between the smart devices is determined, and the binocular camera mode is established according to the relative pose relationship and the shooting parameters corresponding to the smart device.
- the smart device of the present invention can adaptively and flexibly establish a binocular camera mode with other smart devices according to an actual scene, to obtain images of different perspectives, and can determine a three-dimensional size of a target object in a common field of view and a three-dimensional feature point of a space object. Coordinates to facilitate three-dimensional modeling of objects.
- FIG. 1 is a schematic flow chart of an embodiment of a method for connecting a smart device according to the present invention
- FIG. 2 is a schematic structural diagram of an embodiment of a first smart device according to the present invention.
- FIG. 3 is a schematic structural view of an embodiment of a device having a storage function according to the present invention.
- the method for connecting the smart device of the present embodiment includes: the first smart device acquiring a picture of the second smart device that includes the identifier of the second smart device, identifying the identifier code, and establishing a connection with the second smart device according to the identifier code, Obtain the shooting parameters of the second smart device.
- the first smart device acquires the pixel size and shape of the logo code in the picture, and determines, according to the shooting parameter of the first smart device, the pixel size of the logo code in the picture, and the actual size and shape of the logo code, the first smart device and the a relative pose relationship between the second smart devices; and establishing a binocular camera mode with the second smart device according to the shooting parameters of the first smart device, the shooting parameters of the second smart device, and the relative pose relationship.
- the actual size and shape of the identification code of the first smart device and the second smart device are consistent, and the actual size and shape of the identification code are pre-set in the first smart device.
- the information included in the identifier of the second smart device is pre-set with the actual size and shape of the identifier, and the first smart device can identify the identifier to obtain the actual size and shape of the identifier. .
- FIG. 1 is a schematic flowchart diagram of an embodiment of a connection method of a smart device according to the present invention.
- the first smart device acquires a picture of the second smart device that includes the identifier code of the second smart device, identifies the identifier code, and obtains a shooting parameter of the second smart device after establishing a connection with the second smart device according to the identifier code.
- the first smart device and the second smart device have a camera function, for example, the first smart device and the second smart device are robots; or may be smart cameras.
- the first smart device and the second smart device are in the same working environment. That is, the second smart device is within the effective range of the first smart device imaging.
- the first smart device acquires a picture of the second smart device that includes the identifier code of the second smart device, identifies the identifier code, and establishes a connection with the second smart device according to the identifier code, and acquires the second intelligence. Shooting parameters of the device.
- the capturing parameter of the second smart device includes an internal parameter of the second smart device, the internal parameter includes an image magnification of the second smart device, and further includes a pixel size of the second smart device.
- the identifier code is one of a two-dimensional code or a barcode, and the identifier includes a plurality of information, specifically including an identifier of the second smart device and a connection manner.
- the identification code further includes the actual size and shape of the two-dimensional code or the barcode of the second smart device.
- the first smart device performs photographing or photographing on the second smart device to obtain a picture of the second smart device that includes the identifier code of the second smart device.
- the first smart device scans the identifier code, obtains the identification code of the second smart device from the identifier code, and establishes a connection manner, and establishes a connection with the second smart device according to the connection manner.
- the identification code is pre-set by the smart device when it leaves the factory, and the unique identity verification for each smart device may be a device number or a serial number.
- connection method may be a wired connection or a wireless connection.
- the wireless connection mode may be a wifi connection or a Bluetooth connection or a zigbee connection.
- the specific connection mode may be selected according to the usage scenario of the smart device, and is not specifically limited herein.
- Step 102 The first smart device acquires a pixel size and a shape of the identifier code in the picture, and determines the first smart according to the shooting parameter of the first smart device, the pixel size of the identifier code in the image, and the actual size and shape of the shape code. The relative pose relationship between the device and the second smart device.
- the first smart device acquires the pixel size and shape of the logo code in the picture, and according to the shooting parameters of the first smart device, the pixel size and shape of the logo code in the picture, and the actual size and shape of the identification code.
- the calculation determines a pose relationship between the first smart device and the second smart device.
- the pixel size is the number of pixels of the logo code in the picture.
- the relative pose relationship is specifically a relative position relationship and a relative posture relationship. Specifically, the relative positional relationship includes a relative distance relationship, and the relative attitude relationship includes a relative angular relationship.
- the shooting parameters of the first smart device include internal parameters of the first smart device.
- the internal parameters include an image magnification factor and a pixel size of the first smart device.
- the first smart device establishes an imaging geometric model according to a shooting algorithm according to a shooting parameter of the first smart device, a pixel size of the flag code in the picture, and an actual size and shape of the identifier code to determine the first smart device and the first The relative pose relationship between the two smart devices.
- the imaging geometry model can be established by a linear calibration algorithm to determine a relative pose relationship between the first smart device and the second smart device.
- the imaging geometric model may also be established by a nonlinear calibration algorithm to determine a relative pose relationship between the first smart device and the second smart device.
- establishing an imaging geometric model according to the nonlinear calibration algorithm can avoid distortion caused by the distance of the first smart device relative to the second smart device and the angle of the shooting.
- the first smart device unit converts the pixel size of the logo code in the picture according to its image enlargement factor and image resolution to be unified with the unit of the actual size of the logo code. Then, the relative pose relationship between the first smart device and the second smart device is determined according to the size relationship and the shape relationship of the two.
- the identification code of the second smart device is disposed on the side of the body thereof, for example, directly above the lens of the second smart device.
- the shape of the identification code is a quadrilateral, and the size of the quadrilateral is fixed, for example, one of a square or a rectangle; the shape of the identification code may also be a circular shape or an elliptical shape, which may be designed according to actual conditions, and is convenient for scanning and identification.
- the shape of the obtained identification code is not deformed and the shape of the actual identification code is the same, that is, the obtained identification code size is relatively
- the actual dimensions are linear and scale up or down.
- a geometric model may be established using a linear calibration method to determine a relative pose relationship between the first smart device and the second smart device.
- the shape of the obtained identification code may be deformed accordingly.
- the square identification code may be deformed in parallel.
- a quadrilateral or an irregular quadrilateral that is, the size of the obtained logo code is nonlinearly changed with respect to the actual size, and the nonlinear relationship can be determined according to the size of the obtained logo code and the actual size of the logo code, thereby determining the The tilt angle of a side of the smart device relative to the second smart device with the identification code. That is, the relative angle between the first smart device and the second smart device is determined.
- a geometric model may be established using a non-linear calibration method to determine a relative pose relationship between the first smart device and the second smart device.
- the identifier code may be set in a plurality of different locations of the second smart device, and the specific orientation information is set in the identification code of each location to make the first smart
- the device may determine an orientation between the first smart device and the second smart device according to the orientation of the identification code.
- the first smart device establishes a binocular camera mode with the second smart device according to the shooting parameters of the first smart device, the shooting parameters of the second smart device, and the relative pose relationship.
- the first smart device establishes a binocular imaging mode with the second smart device according to the shooting parameters of the first smart device, the shooting parameters of the second smart device, and the relative pose relationship.
- the binocular camera mode simulates the principle of human vision, observes an object from two or more points, acquires images at different viewing angles, and determines the correspondence between each pair of images according to the matching relationship of pixels between the images, through the triangle
- the measurement principle yields a disparity map.
- the depth information and the three-dimensional information of the original image can be obtained according to the projection model, to calculate the actual distance between the object and the camera, and the three-dimensional size of the object, thereby reconstructing the three-dimensional shape and position of the target object.
- the first smart device and the second smart device when the shooting directions of the first smart device and the second smart device are opposite or the shooting angle is large (for example, 90°), the first smart device and the second smart device establish the binocular camera mode.
- the first smart device can acquire an image acquired by the second smart device.
- the first smart device and the second smart device when the shooting directions of the first smart device and the second smart device are the same, and the shooting angle is between 0° and 90°, the first smart device and the second smart device establish binoculars.
- the three-dimensional image can be synthesized by the image captured by the first smart device itself and the image acquired from the second smart device.
- the distance between the first smart device and the second smart device projection center and the respective projection centers may be determined. Coordinates to determine the projection model.
- the first smart device and the second smart device capture the target object at the same time, respectively obtaining corresponding captured images.
- the image acquired by the first smart device and the second smart device is on the same plane, the first smart device and the first smart device
- the height of the target object in the different images acquired by the second smart device is the same, but there is parallax in the horizontal direction.
- the depth information and the three-dimensional information of the original image can be obtained to calculate the actual distance between the object and the smart device, and the three-dimensional size of the object. Thereby reconstructing the three-dimensional shape and position of the target object.
- the first smart device and the second smart device can acquire and scan each other's identification code to automatically establish a binocular imaging mode.
- a plurality of smart devices acquire each other and scan the other party's identification code to automatically establish a multi-vision mode. For example, three smart devices acquire and scan each other's identification codes to automatically establish a tri-image mode.
- the smart device of the present embodiment can obtain a picture of another smart device including its identification code in real time, and automatically establish a connection with the corresponding smart device according to the identifier code, and the flag code and the actual logo code in the picture.
- the relative pose relationship between the smart devices is determined, and the binocular camera mode is established according to the relative pose relationship and the shooting parameters corresponding to the smart device.
- the smart device of the present embodiment can adaptively and flexibly establish a binocular camera mode with other smart devices according to an actual scenario, to acquire images of different views, and can determine the three-dimensional size of the target object in the common field of view and the feature points of the space object. Three-dimensional coordinates to facilitate three-dimensional modeling of objects.
- a method for connecting a smart device by which the first smart device can optimize the travel route by using the second smart device to improve the problem that the first smart device has a limited field of view on the travel route.
- the connection method of the present embodiment establishes binocular with the second smart device according to the shooting parameters of the first smart device, the shooting parameters of the second smart device, and the relative pose relationship.
- the step of the camera mode further includes: after the first smart device and the second smart device establish the binocular camera mode, the first smart device acquires an image acquired by the second smart device; the image captured by the first smart device according to the camera and the slave device The step of planning the path of the first smart device by the image acquired by the second smart device.
- the first smart device acquires an image acquired by the second smart device.
- the image acquired by the second smart device includes environment information.
- the environment information includes an object size and a display condition, a motion situation, and the like in a visual range of the second smart device. Determining, by the first smart device, whether there is an obstacle on the current travel path of the first smart device according to the image captured by itself and the image acquired from the second smart device; if there is an obstacle, determining the travel path of the first smart device according to the location of the obstacle .
- the first smart device when traveling, it is limited by its route of travel and its own cause, and the field of view of the first smart device is limited.
- the first smart device can acquire image information of other smart devices to re-plan the travel path.
- the following is an example of a sweeping robot.
- the planned route may become a “dead end” due to obstacles on the route, so that the sweeping robot has to return to the original road, reducing work efficiency.
- the cleaning robot can first establish a connection with the second smart device in the visual range by using the first smart device to obtain the environmental information acquired by the second smart device.
- a connection may be established with the third smart device to obtain the environment information acquired by the third smart device, and the selection is made according to the relative location of the smart device, which is not limited herein.
- the cleaning robot determines whether there is an obstacle on the current travel path of the cleaning robot based on the environmental information obtained from the second smart device and the image taken by itself. If there is an obstacle, the travel path of the sweeping robot is determined according to the position of the obstacle.
- the binocular intelligent device can be used for monitoring, which not only can make the monitoring picture clearer, but also can calculate the passenger flow, real-time monitoring of the vehicle speed, and vehicle unmanned driving.
- the smart device of the present embodiment can obtain a picture of another smart device including its identification code in real time, and automatically establish a connection with the corresponding smart device according to the identifier code, and the flag code and the actual logo code in the picture.
- the relative pose relationship between the smart devices is determined, and the binocular camera mode is established according to the relative pose relationship and the shooting parameters corresponding to the smart device.
- the smart device of the present embodiment can adaptively and flexibly establish a binocular camera mode with other smart devices according to an actual scenario, to acquire images of different views, and can determine the three-dimensional size of the target object in the common field of view and the feature points of the space object. Three-dimensional coordinates to facilitate three-dimensional modeling of objects.
- the first smart device of the present embodiment further acquires image information acquired by the second smart device, so as to comprehensively grasp the environment in the travel path of the first smart device, thereby intelligently planning the travel path to avoid the first smart device.
- the device is blocked by obstacles during travel.
- the first smart device can also input data information. Sending to the external controller, the external controller plans the path of the first smart device according to the received data information, and the first smart device acquires the path of the path from the external controller and travels according to the path.
- the external controller may be a computer or a server, and is not specifically limited herein.
- the first smart device acquires an image acquired by the second smart device, and images the image captured by itself, the image acquired from the second smart device, the shooting parameters of the first smart device, and the shooting parameters of the second smart device.
- the external controller plans the travel path of the first smart device according to the image captured by the first smart device, the image of the second smart device, the shooting parameters of the first smart device, and the shooting parameters of the second smart device.
- the external controller is connected to a plurality of smart devices, and the external controller has a large amount of data information.
- the first smart device also sends its own physical location information to the external controller, and the external controller matches the physical location information and the picture information sent by the first smart device to determine whether the first intelligence exists in the database.
- the physical location information of the device and the image information matched by the picture information sent by the first smart device, if any, are combined with all relevant image information for path planning.
- the smart device of the present embodiment can obtain a picture of another smart device including its identification code in real time, and automatically establish a connection with the corresponding smart device according to the identifier code, and the flag code and the actual logo code in the picture.
- the relative pose relationship between the smart devices is determined, and the binocular camera mode is established according to the relative pose relationship and the shooting parameters corresponding to the smart device.
- the smart device of the present embodiment can adaptively and flexibly establish a binocular camera mode with other smart devices according to an actual scenario, to acquire images of different views, and can determine the three-dimensional size of the target object in the common field of view and the feature points of the space object. Three-dimensional coordinates to facilitate three-dimensional modeling of objects.
- the first smart device of the embodiment can plan the travel path of the external controller, thereby saving hardware resources and improving the speed of the path planning.
- FIG. 2 is a schematic structural diagram of an embodiment of a first smart device according to the present invention.
- the first smart device includes an image capture device 201 and a processor 202.
- the processor 202 is coupled to the image capture device 201.
- the smart device device is a robot or a smart camera, and is not specifically limited herein.
- the image capture device 201 is configured to acquire a picture of the second smart device that includes the second smart device, and specifically, the image capture device 201 takes a photo or video to the second smart device to obtain the second image. A picture of the smart device including the identification code of the second smart device.
- the processor 202 identifies the identifier code, and after establishing a connection with the second smart device according to the identifier code, acquires the shooting parameters of the second smart device.
- the shooting parameters of the second smart device include internal parameters of the second smart device and external parameters.
- the external parameters include the optical core coordinates of the second smart device, the internal parameters include the image magnification of the second smart device, and the pixel size of the second smart device.
- the identifier code is one of a two-dimensional code or a barcode, and the identifier includes a plurality of information, specifically including an identifier of the second smart device and a connection manner.
- the identification code further includes the actual size and shape of the two-dimensional code or the barcode of the second smart device.
- the processor 202 scans the identifier code, obtains the identification code of the second smart device and the connection manner from the identifier code, and establishes a connection with the second smart device according to the connection manner.
- the identification code is pre-set by the smart device when it leaves the factory, and the unique identity verification for each smart device may be a device number or a serial number.
- connection method may be a wired connection or a wireless connection.
- the wireless connection mode may be a wifi connection or a Bluetooth connection or a zigbee connection.
- the specific connection mode may be selected according to the usage scenario of the smart device, and is not specifically limited herein.
- the processor 202 acquires the pixel size and shape of the logo code in the picture, and calculates according to the shooting parameters of the first smart device, the pixel size and shape of the logo code in the picture, and the actual size and shape of the identification code. Determining a pose relationship between the first smart device and the second smart device.
- the pixel size is the number of pixels of the logo code in the picture.
- the relative pose relationship is specifically a relative position relationship and a relative posture relationship. Specifically, the relative positional relationship includes a relative distance relationship, and the relative attitude relationship includes a relative angular relationship.
- the shooting parameters of the first smart device include external parameters and internal parameters of the first smart device.
- the external parameters include the optical core coordinates of the first smart device
- the internal parameters include the image magnification of the first smart device.
- the processor 202 establishes an imaging geometric model according to a calibration algorithm according to a shooting parameter of the first smart device, a pixel size of the flag code in the picture, and an actual size and shape of the identifier code to determine the first smart device and the second The relative pose relationship between smart devices.
- the imaging geometry model can be established by a linear calibration algorithm to determine a relative pose relationship between the first smart device and the second smart device.
- the imaging geometric model may also be established by a nonlinear calibration algorithm to determine a relative pose relationship between the first smart device and the second smart device.
- establishing an imaging geometric model according to the nonlinear calibration algorithm can avoid distortion caused by the distance of the first smart device relative to the second smart device and the angle of the shooting.
- the processor 202 unit converts the pixel size of the flag code in the picture according to the image enlargement factor and the image resolution of the first smart device to be unified with the unit of the actual size of the flag code. Then, the relative pose relationship between the first smart device and the second smart device is determined according to the size relationship and the shape relationship of the two.
- the identification code of the second smart device is disposed on the side of the body thereof, for example, directly above the lens of the second smart device.
- the shape of the identification code is a quadrilateral, and the size of the quadrilateral is fixed, for example, one of a square or a rectangle; the shape of the identification code may also be a circular shape or an elliptical shape, which may be designed according to actual conditions, and is convenient for scanning and identification.
- the shape of the obtained identification code is not deformed and the shape of the actual identification code is the same, that is, the obtained identification code size is relatively
- the actual dimensions are linear and scale up or down.
- a geometric model may be established using a linear calibration method to determine a relative pose relationship between the first smart device and the second smart device.
- the shape of the obtained identification code may be deformed accordingly.
- the square identification code may be deformed in parallel.
- a quadrilateral or an irregular quadrilateral that is, the size of the obtained logo code is nonlinearly changed with respect to the actual size, and the nonlinear relationship can be determined according to the size of the obtained logo code and the actual size of the logo code, thereby determining the The tilt angle of a side of the smart device relative to the second smart device with the identification code. That is, the relative angle between the first smart device and the second smart device is determined.
- a geometric model may be established using a non-linear calibration method to determine a relative pose relationship between the first smart device and the second smart device.
- the identifier code may be set in a plurality of different locations of the second smart device, and the specific orientation information is set in the identification code of each location to make the first smart
- the device may determine an orientation between the first smart device and the second smart device according to the orientation of the identification code.
- the processor 202 establishes a binocular imaging mode with the second smart device according to the shooting parameters of the first smart device, the shooting parameters of the second smart device, and the relative pose relationship.
- the binocular camera mode simulates the principle of human vision, observes an object from two or more points, acquires images at different viewing angles, and determines the correspondence between each pair of images according to the matching relationship of pixels between the images, through the triangle
- the measurement principle yields a disparity map.
- the depth information and the three-dimensional information of the original image can be obtained according to the projection model, to calculate the actual distance between the object and the camera, and the three-dimensional size of the object, thereby reconstructing the three-dimensional shape and position of the target object.
- the first smart device and the second smart device when the shooting directions of the first smart device and the second smart device are opposite or the shooting angle is large (for example, 90°), the first smart device and the second smart device establish the binocular camera mode.
- the first smart device can acquire an image acquired by the second smart device.
- the first smart device and the second smart device when the shooting directions of the first smart device and the second smart device are the same, and the shooting angle is between 0° and 90°, the first smart device and the second smart device establish binoculars.
- the three-dimensional image can be synthesized by the image captured by the first smart device itself and the image acquired from the second smart device.
- the distance between the first smart device and the second smart device projection center and the respective projection centers may be determined. Coordinates to determine the projection model.
- the first smart device and the second smart device capture the target object at the same time, respectively obtaining corresponding captured images.
- the image acquired by the first smart device and the second smart device is on the same plane, the first smart device and the first smart device
- the height of the target object in the different images acquired by the second smart device is the same, but there is parallax in the horizontal direction.
- the depth information and the three-dimensional information of the original image can be obtained to calculate the actual distance between the object and the smart device, and the three-dimensional size of the object. Thereby reconstructing the three-dimensional shape and position of the target object.
- the first smart device and the second smart device can acquire and scan each other's identification code to automatically establish a binocular imaging mode.
- a plurality of smart devices acquire each other and scan the other party's identification code to automatically establish a multi-vision mode. For example, three smart devices acquire and scan each other's identification codes to automatically establish a tri-image mode.
- the processor 202 can also utilize the second smart device to optimize the travel route to improve the problem that the first smart device has a limited field of view on the travel route.
- the processor 202 acquires an image acquired by the second smart device.
- the image acquired by the second smart device includes environment information. Specifically, the environment information includes an object size and a display condition, a motion situation, and the like in a visual range of the second smart device.
- the processor 202 determines, according to the image captured by the first smart device and the image acquired by the second smart device, whether there is an obstacle on the current travel path of the first smart device; if there is an obstacle, determining the travel of the first smart device according to the position re-planning of the obstacle path.
- the first smart device when traveling, it is limited by its route of travel and its own cause, and the field of view of the first smart device is limited.
- the first smart device can acquire image information of other smart devices to re-plan the travel path.
- the following is an example of a sweeping robot.
- the planned route may become a “dead end” due to obstacles on the route, so that the sweeping robot has to return to the original road, reducing work efficiency.
- the cleaning robot can first establish a connection with the second smart device in the visual range by using the first smart device to obtain the environmental information acquired by the second smart device.
- a connection may be established with the third smart device to obtain the environment information acquired by the third smart device, and the selection is made according to the relative location of the smart device, which is not limited herein.
- the cleaning robot determines whether there is an obstacle on the current travel path of the cleaning robot based on the environmental information obtained from the second smart device and the image taken by itself. If there is an obstacle, the travel path of the sweeping robot is determined according to the position of the obstacle.
- the binocular intelligent device can be used for monitoring, which not only can make the monitoring picture clearer, but also can calculate the passenger flow, real-time monitoring of the vehicle speed, and vehicle unmanned driving.
- the processor 202 can also perform data information.
- the controller sends the path to the external smart device according to the received data information, and the processor 202 obtains the path of the path from the external controller, and the first smart device travels according to the path.
- the external controller may be a computer or a server, and is not specifically limited herein.
- the processor 202 acquires an image acquired by the second smart device, and sends an image captured by itself, an image acquired from the second smart device, a shooting parameter of the first smart device, and a shooting parameter of the second smart device.
- the external controller is configured to cause the external controller to plan the travel path of the first smart device according to the image captured by the first smart device, the image of the second smart device, the shooting parameters of the first smart device, and the shooting parameters of the second smart device.
- the external controller is connected to a plurality of smart devices, and the external controller has a large amount of data information.
- the processor 202 also sends its own physical location information to the external controller, and the external controller performs matching according to the physical location information and the picture information sent by the first smart device, and determines whether the first smart device exists in the database.
- the physical location information and the image information matched by the picture information sent by the first smart device, if any, are combined with all relevant image information for path planning.
- the smart device of the present embodiment can obtain a picture of another smart device including its identification code in real time, and automatically establish a connection with the corresponding smart device according to the identifier code, and the flag code and the actual logo code in the picture.
- the relative pose relationship between the smart devices is determined, and the binocular camera mode is established according to the relative pose relationship and the shooting parameters corresponding to the smart device.
- the smart device of the present embodiment can adaptively and flexibly establish a binocular camera mode with other smart devices according to an actual scenario, to acquire images of different views, and can determine the three-dimensional size of the target object in the common field of view and the feature points of the space object. Three-dimensional coordinates to facilitate three-dimensional modeling of objects.
- the first smart device further acquires the image information acquired by the second smart device to comprehensively grasp the environment in the travel path of the first smart device, thereby intelligently planning the travel path to prevent the first smart device from being blocked by the obstacle during the traveling.
- FIG 3 is a schematic structural view of an embodiment of a device having a storage function according to the present invention.
- at least one program data 301 is stored in the device 30 having the storage function.
- the program data 301 is used to perform the marker-based positioning method in any of the above embodiments.
- the device 30 having the storage function may be a storage chip in the smart device, a hard disk, or a portable hard disk or other readable and writable storage tool such as a USB flash drive or an optical disk, and may be a server or the like, which is not specifically limited herein.
- the disclosed methods and apparatus may be implemented in other manners.
- the device implementations described above are merely illustrative.
- the division of modules or units is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the present embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- An integrated unit, if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
- the technical solution of the present application in essence or the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the various embodiments of the present application.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, Read-Only) Memory, random access memory (RAM), disk or optical disk, and other media that can store program code.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
本发明公开了一种第一智能设备及其连接方法及具有存储功能的装置,连接方法包括:第一智能设备获取第二智能设备的包括第二智能设备的标志码的图片,对标志码进行识别,根据标志码与第二智能设备建立连接后,获取第二智能设备的拍摄参数;获取图片中的标志码的像素尺寸以及形状,根据第一智能设备的拍摄参数、图片中的标志码的像素尺寸以及形状和标志码的实际尺寸以及形状计算确定第一智能设备与第二智能设备之间的相对位姿关系;根据第一智能设备的拍摄参数、第二智能设备的拍摄参数以及相对位姿关系与第二智能设备建立双目摄像模式。通过该方法,第一智能设备可根据实际场景自适应、灵活的与其他智能设备建立双目摄像模式。
Description
【技术领域】
本发明涉及智能设备领域,特别涉及一种第一智能设备及其连接方法以及具有存储功能的装置。
【背景技术】
随着电子技术的发展,越来越多的智能设备应用到日常生活中或工作中,而且智能设备的功能也趋于多样化。
例如,具有摄像功能的智能设备已广泛应用到视觉领域,智能设备根据获取到的图像执行相关的操作。但是,由于智能设备所能够采集的图像的视角范围有限,单一的智能设备所获取到的图像信息不够全面,进而会影响智能设备的操作。
【发明内容】
本发明主要解决的技术问题是提供一种第一智能设备及其连接方法以及具有存储功能的装置,智能设备可根据实际场景自适应、灵活的与其他智能设备建立连接,并建立双目摄像模式,以获取不同视角下的目标物体的图像信息。
为解决上述技术问题,本发明采用的第一个技术方案是:提供一种智能设备的连接方法,所述连接方法包括第一智能设备获取第二智能设备的包括第二智能设备的标志码的图片,对所述标志码进行识别,根据所述标志码与所述第二智能设备建立连接后,获取所述第二智能设备的拍摄参数;所述第一智能设备获取所述图片中的标志码的像素尺寸以及形状,根据所述第一智能设备的拍摄参数、所述图片中的标志码的像素尺寸以及形状和所述标志码的实际尺寸以及形状计算确定所述第一智能设备与所述第二智能设备之间的相对位姿关系;所述第一智能设备根据所述第一智能设备的拍摄参数、所述第二智能设备的拍摄参数以及所述相对位姿关系与所述第二智能设备建立双目摄像模式。
为解决上述技术问题,本发明采用的第二个技术方案是:提供一种第一智能设备,第一智能设备包括图像采集装置及处理器,所述图像采集装置与所述处理器耦接;所述图像采集装置用于获取第二智能设备的包括第二智能设备的标志码的图片;所述处理器用于对所述标志码进行识别,根据所述标志码与所述第二智能设备建立连接后,获取所述第二智能设备的拍摄参数;并获取所述图片中的标志码的像素尺寸以及形状,根据所述第一智能设备的拍摄参数、所述图片中的标志码的像素尺寸以及形状和所述标志码的实际尺寸以及形状计算确定所述第一智能设备与所述第二智能设备之间的相对位姿关系;所述处理器还用于根据所述第一智能设备的拍摄参数、所述第二智能设备的拍摄参数以及所述相对位姿关系与所述第二智能设备建立双目摄像模式。
为解决上述技术问题,本发明采用的第三个技术方案是:提供一种具有存储功能的装置,所述具有存储功能的装置上存储有程序数据,所述程序数据被执行时实现如本发明任一所述的连接方法中的步骤。
本发明的有益效果是:区别于现有技术,本发明的智能设备可实时获取其他智能设备的包括其标识码的图片,根据标志码自动与对应的智能设备建立连接,在对图片中的标志码与实际的标志码进行处理分析后,确定智能设备之间的相对位姿关系,并根据相对位姿关系以及智能设备对应的拍摄参数建立双目摄像模式。本发明的智能设备可根据实际场景自适应、灵活的与其他智能设备建立双目摄像模式,以获取不同视角的图像,并可以确定公共视场内目标物体的三维尺寸及空间物体特征点的三维坐标,以方便对物体三维建模。
【附图说明】
图1是本发明的智能设备的连接方法一实施方式的流程示意图;
图2是本发明的第一智能设备一实施方式的结构示意图;
图3是本发明的具有存储功能的装置一实施方式的结构示意图。
【具体实施方式】
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例中的技术方案作进一步的详细描述。
本实施方式的智能设备的连接方法包括:第一智能设备获取第二智能设备的包括第二智能设备的标志码的图片,对标志码进行识别,根据标志码与第二智能设备建立连接后,获取第二智能设备的拍摄参数。
第一智能设备获取图片中的标志码的像素尺寸以及形状,根据第一智能设备的拍摄参数、图片中的标志码的像素尺寸以及形状和标志码的实际尺寸以及形状计算确定第一智能设备与第二智能设备之间的相对位姿关系;并根据第一智能设备的拍摄参数、第二智能设备的拍摄参数以及相对位姿关系与第二智能设备建立双目摄像模式。
在其中的一个实施方式中,第一智能设备与第二智能设备的标识码的实际尺寸以及形状是一致,第一智能设备中预设有标识码的实际尺寸以及形状。
在另一个实施方式中,第二智能设备的标识码所包含的信息中预设有标识码的实际尺寸以及形状,第一智能设备可对标识码进行识别,从而获取标识码的实际尺寸以及形状。
为了清楚说明上述实施方式的连接方法,请参阅图1,图1为本发明智能设备的连接方法一实施方式的流程示意图。
101:第一智能设备获取第二智能设备的包括第二智能设备的标志码的图片,对标志码进行识别,根据标志码与第二智能设备建立连接后,获取第二智能设备的拍摄参数。
其中,第一智能设备和第二智能设备具有摄像功能,例如,第一智能设备和第二智能设备为机器人;也可以为智能摄像机。
其中,第一智能设备和第二智能设备处于同一个工作环境中。即,第二智能设备在第一智能设备摄像的有效范围内。
在本实施方式中,第一智能设备获取第二智能设备的包括第二智能设备的标志码的图片,对标志码进行识别,并根据标志码与第二智能设备建立连接后,获取第二智能设备的拍摄参数。
其中,第二智能设备的拍摄参数包括第二智能设备的内部参数内部参数包括第二智能设备的图像放大倍数,还包括第二智能设备的像元尺寸。
其中,标志码为二维码或条形码中的一种,而且标识码包含多种信息,具体包括第二智能设备的识别码以及连接方式。可选地,标识码中还包括第二智能设备的二维码或条形码的实际尺寸以及形状。
具体地,第一智能设备对第二智能设备进行拍照或摄像,以获取第二智能设备的包括第二智能设备的标志码的图片。第一智能设备扫描该标志码,从标志码中获取第二智能设备的识别码以及连接方式,根据连接方式与第二智能设备建立连接。其中,识别码为智能设备出厂时预先设置好的,为每个智能设备的唯一身份验证,可以是设备号也可以是序列号。
另外,连接方式可以为有线连接,也可以为无线连接。具体的,无线连接方式可以为wifi连接或蓝牙连接或zigbee连接,具体的连接方式可依据智能设备的使用场景做出选择,在此不做具体限定。
102:第一智能设备获取图片中的标志码的像素尺寸以及形状,根据第一智能设备的拍摄参数、图片中的标志码的像素尺寸以及形状和标志码的实际尺寸以及形状计算确定第一智能设备与第二智能设备之间的相对位姿关系。
在本实施方式中,第一智能设备获取图片中的标志码的像素尺寸以及形状,并根据第一智能设备的拍摄参数、图片中的标志码的像素尺寸以及形状和标识码的实际尺寸以及形状计算确定第一智能设备与第二智能设备之间位姿关系。
其中,像素尺寸为图片中的标志码的像素数量。相对位姿关系具体为相对位置关系和相对姿态关系。具体地,相对位置关系包括相对距离关系,相对姿态关系包括相对角度关系。
其中,第一智能设备的拍摄参数包括第一智能设备的内部参数,具体地,内部参数包括第一智能设备的图像放大倍数和像元尺寸。
具体地,第一智能设备根据第一智能设备的拍摄参数、图片中的标志码的像素尺寸以及形状和标志码的实际尺寸以及形状按照标定算法建立成像几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。在其中的一个实施方式中,可以通过线性标定算法建立成像几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。
为了提高精度,在另一个实施方式中,也可以通过非线性标定算法建立成像几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。同时,根据非线性标定算法建立成像几何模型可避免由于第一智能设备相对于第二智能设备的距离以及拍摄的角度所引起畸变。
在此,说明标定算法的原理以及计算过程。在视觉系统中,从摄像机获取的图像信息出发,计算三维环境的物体的位置、形状等几何信息,并识别环境中的物体。图像中每一点的位置与空间物体表面的相应点的几何位置有关。这些位置的相互关系,由成像几何模型所决定,一般通过标定算法计算确定几何模型。不妨假设摄像机所拍摄到的图像与三维空间中的物体之间存在以下一种简单的线性关系:[像]=M[物],这里,矩阵M可以看成是摄像机成像的几何模型。M中的参数就是摄像机参数。这个求解参数的过程就称为摄像机标定。在本实施方式中,第一智能设备根据其图像放大倍数和图像分辨率将图片中的标志码的像素尺寸进行单位转换,以与标志码的实际尺寸的单位统一。然后,再根据两者的尺寸大小关系以及形状关系确定第一智能设备与第二智能设备的相对位姿关系。
在一个实际的应用场景中,第二智能设备的标识码设置在其本体的侧面,例如,设置在第二智能设备的镜头的正上方。且标识码的形状为四边形,该四边形的尺寸是固定的,例如正方形或长方形中的一种;标识码的形状也可以为圆形或椭圆形,可根据实际情况设计,方便扫描识别即可。
当第一智能设备正对第二智能设备设置有标识码的一面进行拍摄时,获取到的标识码形状不会发生形变与实际标识码的形状是相同的,即,获取到的标识码尺寸相对于实际的尺寸是线性变化的,成比例放大或缩小。具体地,可采用线性标定法建立几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。
而当第一智能设备相对于第二智能设备设置有标识码的一面按照一定的倾斜角度进行拍摄时,获取到的标识码的形状会发生相应的形变,例如,正方形的标识码会形变呈平行四边形或不规则的四边形,即,获取到的标志码的尺寸相对于实际的尺寸是非线性变化的,可根据获取到的标志码的尺寸以及标志码实际的尺寸确定该非线性关系,进而确定第一智能设备相对于第二智能设备设置有标识码的一面的倾斜角度。即,确定了第一智能设备与第二智能设备之间相对角度。具体地,可采用非线性标定法建立几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。
为了更快捷方便的获取第二智能设备的标志码,可以在第二智能设备的多个不同位置设置标志码,每个位置的标识码中均相应设置有具体的方位信息,以使第一智能设备根据标识码的方位可以确定第一智能设备与第二智能设备之间方位。
103:第一智能设备根据第一智能设备的拍摄参数、第二智能设备的拍摄参数以及相对位姿关系与第二智能设备建立双目摄像模式。
在本实施方式中,第一智能设备根据第一智能设备的拍摄参数、第二智能设备的拍摄参数以及相对位姿关系与第二智能设备建立双目摄像模式。
其中,双目摄像模式模拟人类视觉原理,从两个或者多个点观察一个物体,获取在不同视角下的图像,根据图像之间像素的匹配关系,确定每对图像间的对应关系,通过三角测量原理得到视差图。在获得了视差信息后,根据投影模型可以得到原始图像的深度信息和三维信息,以计算出物体与相机之间的实际距离、物体三维大小,从而重建目标物体的三维形状与位置。
在一个具体的应用场景中,当第一智能设备和第二智能设备的拍摄方向相反或拍摄夹角度较大(如90°)时,第一智能设备和第二智能设备建立双目摄像模式后,第一智能设备可以获取第二智能设备获取到的图像。
在另一个具体的应用场景中,当第一智能设备和第二智能设备的拍摄方向相同,且拍摄夹角度在0°到90°之间时,第一智能设备和第二智能设备建立双目摄像模式后,可以通过第一智能设备自身拍摄的图像以及从第二智能设备获取的图像合成三维图像。
具体地,在设定的坐标系中,由第一智能设备与第二智能设备之间的相对位姿,可以确定第一智能设备与第二智能设备投影中心连线的距离以及各自的投影中心坐标,以确定投影模型。
第一智能设备与第二智能设备在同一时刻拍摄目标物体,分别获得相应的拍摄的图像,当第一智能设备与第二智能设备获取到的图像在同一平面上时,由第一智能设备与第二智能设备获取到的不同图像中目标物体的高度是相同的,但是在水平方向上存在视差。
在双目摄像的投影模型下,根据第一智能设备与第二智能的视差信息,可以得到原始图像的深度信息和三维信息,以计算出物体与智能设备之间的实际距离、物体三维大小,从而重建目标物体的三维形状与位置。在此,需要说明的是,第一智能设备与第二智能设备可互相获取并扫描对方的识别码,以自动建立双目摄像模式。为了获取更多的图像信息,也可以是多个智能设备互相获取并扫描对方的识别码,以自动建立多目像模式。例如,三个智能设备互相获取并扫描对方的识别码,以自动建立三目像模式。
区别于现有技术,本实施方式的智能设备可实时获取其他智能设备的包括其标识码的图片,根据标志码自动与对应的智能设备建立连接,在对图片中的标志码与实际的标志码进行处理分析后,确定智能设备之间的相对位姿关系,并根据相对位姿关系以及智能设备对应的拍摄参数建立双目摄像模式。本实施方式的智能设备可根据实际场景自适应、灵活的与其他智能设备建立双目摄像模式,以获取不同视角的图像,并可以确定公共视场内目标物体的三维尺寸及空间物体特征点的三维坐标,以方便对物体三维建模。
在本实施方式中,还提供了一种智能设备的连接方法,通过该方法第一智能设备可以利用第二智能设备优化行进路线,以改善第一智能设备在行进路线上视野范围有限的问题。
区别于上述实施方式中的连接方法,本实施方式的连接方法在第一智能设备根据第一智能设备的拍摄参数、第二智能设备的拍摄参数以及相对位姿关系与第二智能设备建立双目摄像模式的步骤之后还包括在第一智能设备与第二智能设备建立双目摄像模式后,第一智能设备获取第二智能设备所获取的图像;第一智能设备根据其自身拍摄的图像以及从第二智能设备所获取到的图像规划第一智能设备的行径路径的步骤。
在本实施方式中,第一智能设备与第二智能设备建立双目摄像模式后,第一智能设备获取第二智能设备所获取的图像。其中,第二智能设备获取到的图像中包括环境信息,具体地,环境信息包括第二智能设备视觉范围内物体的大小及摆设情况、运动情况等。第一智能设备根据其自身拍摄的图像以及从第二智能设备获取的图像判断第一智能设备当前行进路径上是否存在障碍;如果存在障碍,根据障碍的位置重新规划确定第一智能设备的行进路径。
在一个具体的应用场景中,第一智能设备在行进时,其受其行进路线和自身原因,第一智能设备的视野有局限性。第一智能设备可获取其他智能设备的图像信息,以重新规划行进路径。
下面以扫地机器人为例举例说明。在扫地机器人行进路线中,由于其自身的矮小,只能拍摄到周边小范围的环境信息。其计划的路径可能由于行进路线上有障碍物而成为“死胡同”,以至于扫地机器人不得不原路返回,降低工作效率。此时,扫地机器人能先利用其第一智能设备与视觉范围内的第二智能设备建立连接,以获取第二智能设备获取的环境信息。在其他情况下,还可以与第三智能设备建立连接,以获取第三智能设备获取的环境信息,根据智能设备的相对位置做出选择,在此不做限定。
扫地机器人根据从第二智能设备获得的环境信息以及其自身拍摄的图像判断扫地机器人当前行进路径上是否存在障碍。如果存在障碍,根据障碍的位置重新规划确定扫地机器人的行进路径。
可选地,在其他应用场景中,可以利用双目智能设备进行监测,不仅可以让监测画面更加清晰,还可以计算客流量、实时监测车速、车辆无人驾驶等。
区别于现有技术,本实施方式的智能设备可实时获取其他智能设备的包括其标识码的图片,根据标志码自动与对应的智能设备建立连接,在对图片中的标志码与实际的标志码进行处理分析后,确定智能设备之间的相对位姿关系,并根据相对位姿关系以及智能设备对应的拍摄参数建立双目摄像模式。本实施方式的智能设备可根据实际场景自适应、灵活的与其他智能设备建立双目摄像模式,以获取不同视角的图像,并可以确定公共视场内目标物体的三维尺寸及空间物体特征点的三维坐标,以方便对物体三维建模。
区别于上述实施方式,本实施方式的第一智能设备还获取第二智能设备所获取的图像信息,以全面掌握第一智能设备行进路程中的环境,从而,智能规划行进路径,避免第一智能设备在行进过程中被障碍物阻挡。
由于规划路径所需要的硬件资源较多,而且对处理器处理数据的要求较高,为了节省硬件资源,同时提高数据处理的能力,在另一个实施方式中,第一智能设备还可以将数据信息发送给外接的控制器,外接控制器根据接收到的数据信息规划第一智能设备的行径路径,第一智能设备再从外接控制器获取行径路径,并根据该行径路径行进。
其中,外接控制器可以为电脑,也可以为服务器,在此不做具体限定。
具体地,第一智能设备获取第二智能设备所获取的图像,并将其自身拍摄的图像、从第二智能设备获取到的图像、第一智能设备的拍摄参数以及第二智能设备的拍摄参数发送给外接控制器,以使外接控制器根据第一智能设备拍摄的图像、第二智能设备的图像、第一智能设备的拍摄参数以及第二智能设备的拍摄参数规划第一智能设备的行进路径。
由于第一智能设备和第二智能设备所获取的图像信息有限,无法全面反映第一智能设备行径路程中的所有环境信息,从而使得外接控制器规划的路径不够完善。为了避免前述情况的发生,在另一个实施方式中,外接控制器连接有多个智能设备,外接控制器中有大量的数据信息。第一智能设备还将其自身的物理定位信息发送给外接控制器,外接控制器根据该物理定位信息以及第一智能设备所发送的图片信息进行匹配,判断确定其数据库中是否存在与第一智能设备的物理定位信息以及第一智能设备所发送的图片信息相匹配的图像信息,如果有,则结合所有相关的图像信息进行路径规划。
区别于现有技术,本实施方式的智能设备可实时获取其他智能设备的包括其标识码的图片,根据标志码自动与对应的智能设备建立连接,在对图片中的标志码与实际的标志码进行处理分析后,确定智能设备之间的相对位姿关系,并根据相对位姿关系以及智能设备对应的拍摄参数建立双目摄像模式。本实施方式的智能设备可根据实际场景自适应、灵活的与其他智能设备建立双目摄像模式,以获取不同视角的图像,并可以确定公共视场内目标物体的三维尺寸及空间物体特征点的三维坐标,以方便对物体三维建模。
区别于上述实施方式,本实施方式的第一智能设备通过外接控制器规划其行进路径,可节省硬件资源,同时可提高路径规划的速度。
参阅图2,图2是本发明第一智能设备一实施方式的结构示意图。第一智能设备包括图像采集装置201以及处理器202。处理器202与图像采集装置201耦接。
其中,智能设备设备为机器人,也可以为智能摄像机,在此,不做具体限定。
在本实施方式中,图像采集装置201用于获取第二智能设备的包括第二智能设备的标志码的图片,具体地,图像采集装置201对第二智能设备进行拍照或摄像,以获取第二智能设备的包括第二智能设备的标志码的图片。
处理器202对标志码进行识别,根据标志码与第二智能设备建立连接后,获取第二智能设备的拍摄参数。
其中,第二智能设备的拍摄参数包括第二智能设备的内部参数以及外部参数。外部参数包括第二智能设备的光芯坐标,内部参数包括第二智能设备的图像放大倍数,还包括第二智能设备的像元尺寸。
其中,标志码为二维码或条形码中的一种,而且标识码包含多种信息,具体包括第二智能设备的识别码以及连接方式。可选地,标识码中还包括第二智能设备的二维码或条形码的实际尺寸以及形状。
处理器202扫描该标志码,从标志码中获取第二智能设备的识别码以及连接方式,根据连接方式与第二智能设备建立连接。其中,识别码为智能设备出厂时预先设置好的,为每个智能设备的唯一身份验证,可以是设备号也可以是序列号。
另外,连接方式可以为有线连接,也可以为无线连接。具体的,无线连接方式可以为wifi连接或蓝牙连接或zigbee连接,具体的连接方式可依据智能设备的使用场景做出选择,在此不做具体限定。
在本实施方式中,处理器202获取图片中的标志码的像素尺寸以及形状,并根据第一智能设备的拍摄参数、图片中的标志码的像素尺寸以及形状和标识码的实际尺寸以及形状计算确定第一智能设备与第二智能设备之间位姿关系。
其中,像素尺寸为图片中的标志码的像素数量。相对位姿关系具体为相对位置关系和相对姿态关系。具体地,相对位置关系包括相对距离关系,相对姿态关系包括相对角度关系。
其中,第一智能设备的拍摄参数包括第一智能设备的外部参数和内部参数,具体地,外部参数包括第一智能设备的光芯坐标,内部参数包括第一智能设备的图像放大倍数。
具体地,处理器202根据第一智能设备的拍摄参数、图片中的标志码的像素尺寸以及形状和标志码的实际尺寸以及形状按照标定算法建立成像几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。在其中的一个实施方式中,可以通过线性标定算法建立成像几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。
为了提高精度,在另一个实施方式中,也可以通过非线性标定算法建立成像几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。同时,根据非线性标定算法建立成像几何模型可避免由于第一智能设备相对于第二智能设备的距离以及拍摄的角度所引起畸变。
在此,说明标定算法的原理以及计算过程。在视觉系统中,从摄像机获取的图像信息出发,计算三维环境的物体的位置、形状等几何信息,并识别环境中的物体。图像中每一点的位置与空间物体表面的相应点的几何位置有关。这些位置的相互关系,由成像几何模型所决定,一般通过标定算法计算确定几何模型。不妨假设摄像机所拍摄到的图像与三维空间中的物体之间存在以下一种简单的线性关系:[像]=M[物],这里,矩阵M可以看成是摄像机成像的几何模型。M中的参数就是摄像机参数。这个求解参数的过程就称为摄像机标定。
在本实施方式中,处理器202根据第一智能设备的图像放大倍数和图像分辨率将图片中的标志码的像素尺寸进行单位转换,以与标志码的实际尺寸的单位统一。然后,再根据两者的尺寸大小关系以及形状关系确定第一智能设备与第二智能设备的相对位姿关系。
在一个实际的应用场景中,第二智能设备的标识码设置在其本体的侧面,例如,设置在第二智能设备的镜头的正上方。且标识码的形状为四边形,该四边形的尺寸是固定的,例如正方形或长方形中的一种;标识码的形状也可以为圆形或椭圆形,可根据实际情况设计,方便扫描识别即可。
当第一智能设备正对第二智能设备设置有标识码的一面进行拍摄时,获取到的标识码形状不会发生形变与实际标识码的形状是相同的,即,获取到的标识码尺寸相对于实际的尺寸是线性变化的,成比例放大或缩小。具体地,可采用线性标定法建立几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。
而当第一智能设备相对于第二智能设备设置有标识码的一面按照一定的倾斜角度进行拍摄时,获取到的标识码的形状会发生相应的形变,例如,正方形的标识码会形变呈平行四边形或不规则的四边形,即,获取到的标志码的尺寸相对于实际的尺寸是非线性变化的,可根据获取到的标志码的尺寸以及标志码实际的尺寸确定该非线性关系,进而确定第一智能设备相对于第二智能设备设置有标识码的一面的倾斜角度。即,确定了第一智能设备与第二智能设备之间相对角度。具体地,可采用非线性标定法建立几何模型,以确定第一智能设备和第二智能设备之间的相对位姿关系。
为了更快捷方便的获取第二智能设备的标志码,可以在第二智能设备的多个不同位置设置标志码,每个位置的标识码中均相应设置有具体的方位信息,以使第一智能设备根据标识码的方位可以确定第一智能设备与第二智能设备之间方位。
在本实施方式中,处理器202根据第一智能设备的拍摄参数、第二智能设备的拍摄参数以及相对位姿关系与第二智能设备建立双目摄像模式。
其中,双目摄像模式模拟人类视觉原理,从两个或者多个点观察一个物体,获取在不同视角下的图像,根据图像之间像素的匹配关系,确定每对图像间的对应关系,通过三角测量原理得到视差图。在获得了视差信息后,根据投影模型可以得到原始图像的深度信息和三维信息,以计算出物体与相机之间的实际距离、物体三维大小,从而重建目标物体的三维形状与位置。
在一个具体的应用场景中,当第一智能设备和第二智能设备的拍摄方向相反或拍摄夹角度较大(如90°)时,第一智能设备和第二智能设备建立双目摄像模式后,第一智能设备可以获取第二智能设备获取到的图像。
在另一个具体的应用场景中,当第一智能设备和第二智能设备的拍摄方向相同,且拍摄夹角度在0°到90°之间时,第一智能设备和第二智能设备建立双目摄像模式后,可以通过第一智能设备自身拍摄的图像以及从第二智能设备获取的图像合成三维图像。
具体地,在设定的坐标系中,由第一智能设备与第二智能设备之间的相对位姿,可以确定第一智能设备与第二智能设备投影中心连线的距离以及各自的投影中心坐标,以确定投影模型。
第一智能设备与第二智能设备在同一时刻拍摄目标物体,分别获得相应的拍摄的图像,当第一智能设备与第二智能设备获取到的图像在同一平面上时,由第一智能设备与第二智能设备获取到的不同图像中目标物体的高度是相同的,但是在水平方向上存在视差。
在双目摄像的投影模型下,根据第一智能设备与第二智能的视差信息,可以得到原始图像的深度信息和三维信息,以计算出物体与智能设备之间的实际距离、物体三维大小,从而重建目标物体的三维形状与位置。
在此,需要说明的是,第一智能设备与第二智能设备可互相获取并扫描对方的识别码,以自动建立双目摄像模式。为了获取更多的图像信息,也可以是多个智能设备互相获取并扫描对方的识别码,以自动建立多目像模式。例如,三个智能设备互相获取并扫描对方的识别码,以自动建立三目像模式。
处理器202还可以利用第二智能设备优化行进路线,以改善第一智能设备在行进路线上视野范围有限的问题。
在本实施方式中,第一智能设备与第二智能设备建立双目摄像模式后,处理器202获取第二智能设备所获取的图像。其中,第二智能设备获取到的图像中包括环境信息,具体地,环境信息包括第二智能设备视觉范围内物体的大小及摆设情况、运动情况等。处理器202根据第一智能设备拍摄的图像以及从第二智能设备获取的图像判断第一智能设备当前行进路径上是否存在障碍;如果存在障碍,根据障碍的位置重新规划确定第一智能设备的行进路径。
在一个具体的应用场景中,第一智能设备在行进时,其受其行进路线和自身原因,第一智能设备的视野有局限性。第一智能设备可获取其他智能设备的图像信息,以重新规划行进路径。
下面以扫地机器人为例举例说明。在扫地机器人行进路线中,由于其自身的矮小,只能拍摄到周边小范围的环境信息。其计划的路径可能由于行进路线上有障碍物而成为“死胡同”,以至于扫地机器人不得不原路返回,降低工作效率。此时,扫地机器人能先利用其第一智能设备与视觉范围内的第二智能设备建立连接,以获取第二智能设备获取的环境信息。在其他情况下,还可以与第三智能设备建立连接,以获取第三智能设备获取的环境信息,根据智能设备的相对位置做出选择,在此不做限定。
扫地机器人根据从第二智能设备获得的环境信息以及其自身拍摄的图像判断扫地机器人当前行进路径上是否存在障碍。如果存在障碍,根据障碍的位置重新规划确定扫地机器人的行进路径。
可选地,在其他应用场景中,可以利用双目智能设备进行监测,不仅可以让监测画面更加清晰,还可以计算客流量、实时监测车速、车辆无人驾驶等。
由于规划路径所需要的硬件资源较多,而且对处理器20处理数据的要求较高,为了节省硬件资源,同时提高数据处理的能力,在另一个实施方式中,处理器202还可以将数据信息发送给外接的控制器,外接控制器根据接收到的数据信息规划第一智能设备的行径路径,处理器202再从外接控制器获取行径路径,第一智能设备并根据该行径路径行进。
其中,外接控制器可以为电脑,也可以为服务器,在此不做具体限定。
具体地,处理器202获取第二智能设备所获取的图像,并将其自身拍摄的图像、从第二智能设备获取到的图像、第一智能设备的拍摄参数以及第二智能设备的拍摄参数发送给外接控制器,以使外接控制器根据第一智能设备拍摄的图像、第二智能设备的图像、第一智能设备的拍摄参数以及第二智能设备的拍摄参数规划第一智能设备的行进路径。
由于第一智能设备和第二智能设备所获取的图像信息有限,无法全面反映第一智能设备行径路程中的所有环境信息,从而使得外接控制器规划的路径不够完善。为了避免前述情况的发生,在另一个实施方式中,外接控制器连接有多个智能设备,外接控制器中有大量的数据信息。处理器202还将其自身的物理定位信息发送给外接控制器,外接控制器根据该物理定位信息以及第一智能设备所发送的图片信息进行匹配,判断确定其数据库中是否存在与第一智能设备的物理定位信息以及第一智能设备所发送的图片信息相匹配的图像信息,如果有,则结合所有相关的图像信息进行路径规划。
区别于现有技术,本实施方式的智能设备可实时获取其他智能设备的包括其标识码的图片,根据标志码自动与对应的智能设备建立连接,在对图片中的标志码与实际的标志码进行处理分析后,确定智能设备之间的相对位姿关系,并根据相对位姿关系以及智能设备对应的拍摄参数建立双目摄像模式。本实施方式的智能设备可根据实际场景自适应、灵活的与其他智能设备建立双目摄像模式,以获取不同视角的图像,并可以确定公共视场内目标物体的三维尺寸及空间物体特征点的三维坐标,以方便对物体三维建模。
第一智能设备还获取第二智能设备所获取的图像信息,以全面掌握第一智能设备行进路程中的环境,从而,智能规划行进路径,避免第一智能设备在行进过程中被障碍物阻挡。
图3是本发明的具有存储功能的装置一实施方式的结构示意图。在本实施方式中,具有存储功能的装置30中存储有至少一个程序数据301。程序数据301用于执行上述任一实施方式中的基于标志物的定位方法。
其中,具有存储功能的装置30可以是智能设备中的存储芯片、硬盘或者是移动硬盘或者优盘、光盘等其他可读写存储的工具,还可以是服务器等,在此不做具体限定。在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。以上所描述的装置实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only
Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (20)
- 一种智能设备的连接方法,其特征在于,所述连接方法包括:第一智能设备获取第二智能设备的包括第二智能设备的标志码的图片,对所述标志码进行识别,根据所述标志码与所述第二智能设备建立连接后,获取所述第二智能设备的拍摄参数;所述第一智能设备获取所述图片中的标志码的像素尺寸以及形状,根据所述第一智能设备的拍摄参数、所述图片中的标志码的像素尺寸以及形状和所述标志码的实际尺寸以及形状计算确定所述第一智能设备与所述第二智能设备之间的相对位姿关系;所述第一智能设备根据所述第一智能设备的拍摄参数、所述第二智能设备的拍摄参数以及所述相对位姿关系与所述第二智能设备建立双目摄像模式。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述根据所述第一智能设备的拍摄参数、所述图片中的标志码的像素尺寸以及形状和所述标志码的实际尺寸以及形状计算确定所述第一智能设备与所述第二智能设备之间的相对位姿关系的步骤具体包括:根据所述第一智能设备的拍摄参数、所述图片中的标志码的像素尺寸以及形状和所述标志码的实际尺寸以及形状按照标定算法建立成像几何模型,以确定所述第一智能设备和所述第二智能设备之间的相对位姿关系。
- 根据权利要求2所述的智能设备的连接方法,其特征在于,所述标定算法为线性标定算法或非线性标定算法。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述连接方法还包括:在所述第一智能设备与所述第二智能设备建立双目摄像模式后,所述第一智能设备获取所述第二智能设备所获取的图像;所述第一智能设备根据其自身拍摄的图像以及从所述第二智能设备所获取到的图像规划所述第一智能设备的行径路径。
- 根据权利要求4所述的智能设备的连接方法,其特征在于,所述第一智能设备根据其自身拍摄的图像以及从所述第二智能设备所获取到的图像规划所述第一智能设备的行径路径的步骤具体包括:所述第一智能设备根据其自身拍摄的图像以及从所述第二智能设备所获取到的图像判断确定其当前行进路径上是否存在障碍;如果存在障碍,根据所述障碍的位置重新规划所述第一智能设备的行进路径。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述连接方法还包括:所述第一智能设备获取所述第二智能设备所获取的图像;所述第一智能设备将其自身拍摄的图像、从所述第二智能设备获取到的图像、所述第一智能设备的拍摄参数以及所述第二智能设备的拍摄参数发送给外接控制器,以使所述外接控制器根据所述第一智能设备拍摄的图像、所述第二智能设备的图像、所述第一智能设备的拍摄参数以及所述第二智能设备的拍摄参数规划所述第一智能设备的行进路径。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述第一智能设备获取第二智能设备的包括第二智能设备的标志码的图片步骤具体包括:第一智能设备对第二智能设备进行拍摄,以获取第二智能设备的包括第二智能设备的标志码的图片。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述第一智能设备的拍摄参数包括所述第一智能设备内部参数,其中,所述内部参数包括所述第一智能设备的图像放大倍数和像元尺寸。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述第二智能设备的拍摄参数包括所述第二智能设备的内部参数,其中,所述内部参数包括所述第二智能设备的图像放大倍数和像元尺寸。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述标志码为二维码或条形码中的一种。
- 根据权利要求1所述的智能设备的连接方法,其特征在于,所述标志码包括所述标志码的实际尺寸以及形状和连接方式信息。
- 第一智能设备,其特征在于,第一智能设备包括图像采集装置及处理器,所述图像采集装置与所述处理器耦接;所述图像采集装置用于获取第二智能设备的包括第二智能设备的标志码的图片;所述处理器用于对所述标志码进行识别,根据所述标志码与所述第二智能设备建立连接后,获取所述第二智能设备的拍摄参数;并获取所述图片中的标志码的像素尺寸以及形状,根据所述第一智能设备的拍摄参数、所述图片中的标志码的像素尺寸以及形状和所述标志码的实际尺寸以及形状计算确定所述第一智能设备与所述第二智能设备之间的相对位姿关系;所述处理器还用于根据所述第一智能设备的拍摄参数、所述第二智能设备的拍摄参数以及所述相对位姿关系与所述第二智能设备建立双目摄像模式。
- 根据权利要求12所述的第一智能设备,其特征在于,所述处理器具体用于根据所述第一智能设备的拍摄参数、所述图片中的标志码的像素尺寸以及形状和所述标志码的实际尺寸以及形状按照标定算法建立成像几何模型,以确定所述第一智能设备和所述第二智能设备之间的相对位姿关系。
- 根据权利要求13所述的第一智能设备,其特征在于,所述标定算法为线性标定算法或非线性标定算法。
- 根据权利要求12所述的第一智能设备,其特征在于,所述处理器还用于在所述第一智能设备与所述第二智能设备建立双目摄像模式后,获取所述第二智能设备所获取的图像;并根据所述第一智能设备拍摄的图像以及从所述第二智能设备所获取到的图像规划所述第一智能设备的行径路径。
- 根据权利要求12所述的第一智能设备,其特征在于,所述处理器还用于获取所述第二智能设备所获取的图像;并将所述第一智能设备拍摄的图像、从所述第二智能设备获取到的图像、所述第一智能设备的拍摄参数以及所述第二智能设备的拍摄参数发送给外接控制器,以使所述外接控制器根据所述第一智能设备拍摄的图像、所述第二智能设备的图像、所述第一智能设备的拍摄参数以及所述第二智能设备的拍摄参数规划所述第一智能设备的行进路径。
- 根据权利要求12所述的第一智能设备,其特征在于,所述第一智能设备的拍摄参数包括所述第一智能设备的内部参数,其中,所述内部参数包括所述第一智能设备的图像放大倍数和像元尺寸。
- 根据权利要求12所述的第一智能设备,其特征在于,所述第二智能设备的拍摄参数包括所述第二智能设备的内部参数,其中,所述内部参数包括所述第二智能设备的图像放大倍数和像元尺寸。
- 根据权利要求12所述的第一智能设备,其特征在于,所述标志码包括所述标志码的实际尺寸以及形状和连接方式信息。
- 一种具有存储功能的装置,其特征在于,所述具有存储功能的装置上存储有程序数据,所述程序数据被执行时实现如权利要求1-11任一所述的连接方法中的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780035397.XA CN109644263B (zh) | 2017-12-28 | 2017-12-28 | 第一智能设备及其连接方法以及具有存储功能的装置 |
PCT/CN2017/119598 WO2019127287A1 (zh) | 2017-12-28 | 2017-12-28 | 第一智能设备及其连接方法以及具有存储功能的装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/119598 WO2019127287A1 (zh) | 2017-12-28 | 2017-12-28 | 第一智能设备及其连接方法以及具有存储功能的装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019127287A1 true WO2019127287A1 (zh) | 2019-07-04 |
Family
ID=66053536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/119598 WO2019127287A1 (zh) | 2017-12-28 | 2017-12-28 | 第一智能设备及其连接方法以及具有存储功能的装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109644263B (zh) |
WO (1) | WO2019127287A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113781548B (zh) * | 2020-06-10 | 2024-06-14 | 华为技术有限公司 | 多设备的位姿测量方法、电子设备及系统 |
CN112083867A (zh) | 2020-07-29 | 2020-12-15 | 华为技术有限公司 | 一种跨设备的对象拖拽方法及设备 |
CN112929860B (zh) * | 2021-01-21 | 2023-09-19 | 维沃移动通信有限公司 | 蓝牙连接方法、装置和电子设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103852066A (zh) * | 2012-11-28 | 2014-06-11 | 联想(北京)有限公司 | 一种设备定位的方法、控制方法、电子设备及系统 |
CN105955279A (zh) * | 2016-07-18 | 2016-09-21 | 中国矿业大学 | 一种基于图像视觉的移动机器人路径规划方法及装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100969576B1 (ko) * | 2009-12-17 | 2010-07-12 | (주)유디피 | 카메라 파라미터 캘리브레이션 장치 및 방법 |
CN104010379A (zh) * | 2013-02-22 | 2014-08-27 | 中国移动通信集团公司 | 设备间自动连接方法及系统、设备 |
US20180137480A1 (en) * | 2016-11-11 | 2018-05-17 | Honey Inc. | Mobile device gesture and proximity communication |
CN107094231B (zh) * | 2017-01-11 | 2020-05-29 | 口碑控股有限公司 | 智能拍摄方法和装置 |
-
2017
- 2017-12-28 CN CN201780035397.XA patent/CN109644263B/zh active Active
- 2017-12-28 WO PCT/CN2017/119598 patent/WO2019127287A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103852066A (zh) * | 2012-11-28 | 2014-06-11 | 联想(北京)有限公司 | 一种设备定位的方法、控制方法、电子设备及系统 |
CN105955279A (zh) * | 2016-07-18 | 2016-09-21 | 中国矿业大学 | 一种基于图像视觉的移动机器人路径规划方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109644263B (zh) | 2021-02-26 |
CN109644263A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI617277B (zh) | 姿勢估計裝置及吸塵器系統 | |
US7126630B1 (en) | Method and apparatus for omni-directional image and 3-dimensional data acquisition with data annotation and dynamic range extension method | |
CN109658457B (zh) | 一种激光与相机任意相对位姿关系的标定方法 | |
CN108053449A (zh) | 双目视觉系统的三维重建方法、装置及双目视觉系统 | |
WO2016153100A1 (ko) | 카메라로부터 획득한 영상에 대한 자동보정기능을 구비한 영상처리장치 및 그 방법 | |
WO2016053067A1 (en) | 3-dimensional model generation using edges | |
WO2002065786A1 (en) | Method and apparatus for omni-directional image and 3-dimensional data acquisition with data annotation and dynamic range extension method | |
WO2012005387A1 (ko) | 다중 카메라와 물체 추적 알고리즘을 이용한 광범위한 지역에서의 물체 이동 감시 방법 및 그 시스템 | |
CN113276106A (zh) | 一种攀爬机器人空间定位方法及空间定位系统 | |
WO2019127287A1 (zh) | 第一智能设备及其连接方法以及具有存储功能的装置 | |
CN111028155A (zh) | 一种基于多对双目相机的视差图像拼接方法 | |
WO2016107230A1 (zh) | 一种3d场景中重现物体的系统和方法 | |
WO2015158284A1 (zh) | 具有动态追拍功能的移动终端及其动态追拍方法 | |
WO2019127049A1 (zh) | 一种图像匹配方法、装置及存储介质 | |
WO2024007485A1 (zh) | 基于视觉特征的空地多机器人地图融合方法 | |
WO2020189909A2 (ko) | 3d-vr 멀티센서 시스템 기반의 도로 시설물 관리 솔루션을 구현하는 시스템 및 그 방법 | |
JPH03200007A (ja) | ステレオ計測装置 | |
JP2017027417A (ja) | 画像処理装置及び電気掃除器 | |
WO2019146903A1 (ko) | 거리정보를 이용한 랩어라운드뷰 영상제공장치 및 방법 | |
JP2021033712A (ja) | 画像処理装置、撮像装置、ロボット及びロボットシステム | |
CN108366229A (zh) | 一种定点设备智能化巡检方法 | |
WO2019105009A1 (en) | Method and system for synchronized scanning of space | |
JPH09114979A (ja) | カメラシステム | |
CN113781573B (zh) | 一种基于双目折反射全景相机的视觉里程计方法 | |
WO2019232782A1 (zh) | 一种物体特征的识别方法、视觉识别装置及机器人 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17936330 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17936330 Country of ref document: EP Kind code of ref document: A1 |