WO2019117030A1 - Active energy ray-curable resin composition and coating agent - Google Patents
Active energy ray-curable resin composition and coating agent Download PDFInfo
- Publication number
- WO2019117030A1 WO2019117030A1 PCT/JP2018/045067 JP2018045067W WO2019117030A1 WO 2019117030 A1 WO2019117030 A1 WO 2019117030A1 JP 2018045067 W JP2018045067 W JP 2018045067W WO 2019117030 A1 WO2019117030 A1 WO 2019117030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- acrylate
- energy ray
- active energy
- curable resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
- C08F2/40—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using retarding agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/22—Esters containing halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F230/08—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/06—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/08—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/675—Low-molecular-weight compounds
- C08G18/6755—Unsaturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
Definitions
- the present invention relates to an active energy ray-curable resin composition and a coating agent comprising a urethane (meth) acrylate composition, and more specifically, antifouling performance (contamination resistance and its durability) and a cured coating
- the present invention relates to an active energy ray-curable resin composition capable of forming a coating film excellent in the properties (appearance, hardness, scratch resistance) of the above, and a coating agent containing the same.
- a hard coating agent having high surface hardness and scratch resistance as a cured coating film as described above for example, one in which a fluorine compound is mixed with a curing component mainly composed of dipentaerythritol hexaacrylate and N-substituted acrylamide It is proposed (for example, refer patent document 1).
- a film obtained by applying this hard coating agent on a laminated film to a film thickness of 11 ⁇ m and curing it does not get scratched even if it is reciprocated 500 times with a hardness of about 5H with a pencil hardness of about 5H It develops scratch resistance.
- Patent Document 1 is excellent in surface hardness of a cured coating film and scratch resistance under a load of 500 g, there is no description regarding scratch resistance under a more severe 1 kg load, and further improvement is required. There is.
- the storage stability of the coating liquid is excellent, and the antifouling performance (contamination resistance and its persistence), the characteristics of the cured coating (appearance, hardness, scratch resistance)
- the present invention provides an active energy ray-curable resin composition capable of forming a coating film excellent in the following properties), and a coating agent using the same.
- urethane (meth) acrylates obtained by reacting a (meth) acrylic acid adduct of polyhydric alcohol with a polyisocyanate compound as a curing component.
- the active energy ray curable resin composition contains a larger amount of the above-mentioned polymerization inhibitor than usual. It was found that a cured coating film excellent in storage stability with the solution of (1) and when it was formed into a cured coating film was excellent in coating physical properties such as antifouling performance and scratch resistance.
- a urethane (meth) acrylate composition [I] in which the hydroxyl group in the (meth) acrylic acid adduct of polyhydric alcohol (A) and the isocyanate group of the polyisocyanate compound (B) have reacted.
- the coating agent formed by containing the active energy ray curable resin composition of the said 1st summary makes it a 2nd summary.
- a polymerization inhibitor is introduced into the reaction system for the purpose of suppressing the polymerization reaction of the (meth) acryloyl group during the urethanization reaction and improving the storage stability.
- the compounding amount should be as small as possible, since the active energy ray curability is lowered due to the presence of the polymerization inhibitor or the pigment is colored.
- the use of the polymerization inhibitor in an amount larger than that used in the preparation of the urethane (meth) acrylate composition lowers the active energy ray curability and the coating liquid and the curing.
- the coating liquid is excellent in storage stability, anti-soiling performance (stain resistance and its persistence), and the cured film has excellent properties (appearance, hardness, scratch resistance) It has been found that a film can be formed.
- the active energy ray-curable resin composition of the present invention is a urethane (meth) in which the hydroxyl group in the (meth) acrylic acid adduct (A) of polyhydric alcohol and the isocyanate group of the polyisocyanate compound (B) have reacted.
- Acrylate composition [I], fluorine-containing (meth) acrylate compound [II] and polymerization inhibitor [III], and the content of polymerization inhibitor [III] is urethane (meth) acrylate composition
- the amount is 800 to 10,000 ppm by weight based on the total of the compound [I], the fluorine-containing (meth) acrylate compound [II] and the polymerization inhibitor [III].
- the said polyhydric alcohol is at least one of dipentaerythritol and pentaerythritol especially among this invention, it is more excellent in the storage stability in a coating liquid, and also when it is set as a cured coating film. It becomes excellent also in antifouling performance and abrasion resistance.
- the fluorine-containing (meth) acrylate compound [II] when the fluorine-containing (meth) acrylate compound [II] has a siloxane bond, it becomes more excellent in antifouling performance.
- the antifouling performance is further enhanced.
- the weight average molecular weight of the said urethane (meth) acrylate type composition [I] is 900-30,000 especially among this invention, it will become excellent by the abrasion resistance at the time of setting it as a cured coating film. .
- the active energy ray curable resin composition of the present invention further contains a coloration inhibitor [IV], the storage stability in the coating liquid is further improved.
- the active energy ray-curable resin composition of the present invention further contains an organic solvent having a boiling point of 80 ° C. or higher, the above urethane (meth) acrylate composition [I] and the fluorine-containing (meth) acrylate compound [ Since the compatibility with [II] is excellent, the storage stability of the coating liquid is further improved.
- (meth) acrylic means acrylic or methacrylic
- (meth) acryloyl means acryloyl or methacryloyl
- (meth) acrylate means acrylate or methacrylate.
- the active energy ray curable resin composition of the present invention comprises a urethane (meth) acrylate composition [I], a fluorine-containing (meth) acrylate compound [II] and a polymerization inhibitor [III]. The details will be described below.
- urethane (meth) acrylate composition [I] used in the present invention reacts the hydroxyl group in the (meth) acrylic acid adduct (A) of polyhydric alcohol with the isocyanate group of the polyisocyanate compound (B) Thus, a urethane bond can be formed.
- each component used by this invention is demonstrated.
- the (meth) acrylic acid adduct (A) of the polyhydric alcohol used in the present invention is a compound in which (meth) acrylic acid is added to the hydroxyl group of the polyhydric alcohol, and all hydroxyl groups of the polyhydric alcohol It is a mixture including one to which (meth) acrylic acid is added, one to which (meth) acrylic acid is added to a part of hydroxyl groups of a polyhydric alcohol, and the like.
- the polyhydric alcohol is preferably a trihydric or higher polyol, but a dihydric alcohol may be used.
- a dihydric alcohol may be used as a kind of alcohol, aliphatic alcohol, alicyclic alcohol, aromatic alcohol etc. are mentioned, for example, Especially, aliphatic alcohol is preferable.
- trivalent or higher aliphatic polyols examples include pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, trimethylolpropane, trimethylolethane, 1,3,6-hexanetriol, adamantantriol and the like. These can be used alone or in combination of two or more. Among them, pentaerythritol and dipentaerythritol are preferable.
- (meth) acrylic acid adducts of pentaerythritol and dipentaerythritol which are suitable polyhydric alcohols [(meth) acrylic acid adduct of pentaerythritol (A1) and (meth) acrylic acid adduct of dipentaerythritol ((meth) acrylic acid adduct A2)] will be described.
- the (meth) acrylic acid adduct of pentaerythritol means, in its component, pentaerythritol tetra (4) having (meth) acrylic acid added to all four of the four hydroxyl groups possessed by pentaerythritol.
- the (meth) acrylic acid adduct (A1) of pentaerythritol may be one obtained by reacting pentaerythritol and (meth) acrylic acid according to a generally known method.
- the hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol is preferably 50 to 300 mg KOH / g, more preferably 70 to 200 mg KOH / g, and particularly preferably 100 to 160 mg KOH / g. . If the hydroxyl value is too small, the content of pentaerythritol tetra (meth) acrylate which is low in molecular weight and has a large number of ethylenic unsaturated groups and does not react with isocyanate groups increases, so that curing shrinkage during curing becomes large and curls It tends to be easier.
- the content of the polyol component such as pentaerythritol di (meth) acrylate diol or pentaerythritol mono (meth) acrylate triol increases, so that the molecular weight of the resulting urethane acrylate becomes large, The viscosity increases and tends to be difficult to handle.
- the hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol mentioned above means the hydroxyl value of the mixture of (meth) acrylic acid adducts of pentaerythritol as a whole. Further, in the present invention, the hydroxyl value is a value obtained by a method according to JIS K 1557-1.
- the adjustment of the hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol can be performed, for example, by adjusting the ratio of (meth) acrylic acid to be added to pentaerythritol.
- the (meth) acrylic acid adduct of dipentaerythritol refers to dipentaerythritol in which (meth) acrylic acid is added to all six of the six hydroxyl groups possessed by dipentaerythritol in the component.
- dipentaerythritol hexa (meth) acrylate dipentaerythritol penta (meth) acrylate monool having 5 (meth) acrylic acid added thereto, and dipentaerythritol tetra (meth) acrylate having 4 (meth) acrylic acid added Diol, dipentaerythritol tri (meth) acrylate triol to which (meth) acrylic acid is added to three, dipentaerythritol di (meth) acrylate tetraol to which (meth) acrylic acid is added to two, only one (Meth) acrylic acid added to dipentaerythritol (meth) It is a mixture containing chestnut rate pentaols.
- the (meth) acrylic acid adduct (A2) of dipentaerythritol may be any one obtained by reacting dipentaerythritol and (meth) acrylic acid according to a generally known method.
- the hydroxyl value of the (meth) acrylic acid adduct (A2) of dipentaerythritol is preferably 10 to 120 mg KOH / g, more preferably 20 to 80 mg KOH / g, particularly preferably 30 to 70 mg KOH / g, Particularly preferably, it is 40 to 60 mg KOH / g. If the hydroxyl value is too small, the content of dipentaerythritol hexa (meth) acrylate which has a low molecular weight and a large number of ethylenic unsaturated groups and does not react with the isocyanate group increases, so the curing shrinkage upon curing becomes large, and curling occurs. It tends to be easy to do.
- the content of the polyol component such as dipentaerythritol tetra (meth) acrylate diol or dipentaerythritol tri (meth) acrylate triol increases, so the molecular weight of the resulting urethane acrylate becomes large. Since the viscosity is increased, it tends to be difficult to handle.
- the hydroxyl value of the (meth) acrylic acid adduct (A2) of dipentaerythritol mentioned above means the hydroxyl value of the whole mixture of (meth) acrylic acid adducts of dipentaerythritol.
- the adjustment of the hydroxyl value of the (meth) acrylic acid adduct (A2) of dipentaerythritol can be performed, for example, by adjusting the ratio of (meth) acrylic acid to be added to dipentaerythritol.
- Polyisocyanate Compound (B) As the polyisocyanate compound (B) which reacts with the hydroxyl group of the (meth) acrylic acid adduct (A) of the polyhydric alcohol, known general compounds generally used for the production of urethane (meth) acrylate compositions These polyisocyanate compounds can be used.
- polyisocyanate compound (B) examples include aromatic compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, phenylene diisocyanate and naphthalene diisocyanate.
- aromatic compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, phenylene diisocyanate and naphthalene diisocyanate.
- polyisocyanate pentamethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, aliphatic diisocyanates such as lysine diisocyanate and lysine triisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, etc. Alicyclic polyisocyanates or trimeric compound or multimeric compounds of these polyisocyanates, allophanate type polyisocyanate, buret type polyisocyanate, water dispersible polyisocyanate, and the like. These polyisocyanate compounds (B) can be used alone or in combination of two or more.
- the polyisocyanate compound (B) may be selected from various polyols, for example, low molecular weight polyols and high molecular weight polyols, particularly polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, polybutadiene polyols ( It may be a reaction product of a polyol such as a meth) acrylic polyol and a polyisocyanate compound.
- aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate and lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene, in terms of excellent yellowing resistance and versatility.
- Alicyclic diisocyanates such as diisocyanates are preferred, and isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate and hexamethylene diisocyanate are more preferred, and isophorone diisocyanate and hexamethylene diisocyanate are more preferred.
- the urethane (meth) acrylate composition [I] used in the present invention is the hydroxyl group in the (meth) acrylic acid adduct of polyhydric alcohol (A) and the isocyanate of the polyisocyanate compound (B) It is obtained by reacting a group.
- the functional group molar ratio of the isocyanate group of the above-mentioned polyisocyanate compound (B) and the hydroxyl group of the (meth) acrylic acid adduct of polyhydric alcohol (A) is adjusted, and, if necessary, dibutyltin A urethane (meth) acrylate composition [I] is obtained by reacting a polyisocyanate compound (B) and a (meth) acrylic acid adduct of a polyhydric alcohol (A) using a catalyst such as dilaurate. Can.
- an acrylic acid adduct of dipentaerythritol (A2) having a hydroxyl value of 60 mg KOH / g or more as an acrylic acid adduct of polyhydric alcohol (A), and xylylene It excludes the urethane (meth) acrylate type composition which the at least 1 sort (s) of polyisocyanate system compound selected from the group which consists of an isocyanate, hydrogenated xylylene diisocyanate, and these derivatives reacted.
- reaction molar ratio [(B) :( A)] of the preparation of the polyisocyanate compound (B) and the (meth) acrylic acid adduct (A) of polyhydric alcohol is about 1: 2 to 1: 5. is there.
- the reaction of the (meth) acrylic acid adduct (A) of the polyhydric alcohol with the polyisocyanate compound (B) is generally carried out by the (meth) acrylic acid adduct of the above polyhydric alcohol (A), a polyisocyanate compound B) may be charged to the reactor all at once or separately and reacted.
- a catalyst for the purpose of promoting the reaction, and examples of such a catalyst include dibutyltin dilaurate, dibutyltin diacetate, trimethyltin hydroxide, tetra-n-butyltin and zinc bisacetylacetonate.
- Organometallic compounds such as zirconium tris (acetylacetonate) ethylacetoacetate, zirconium tetraacetylacetonate, tin octylate, tin octenate, zinc hexanoate, zinc octenate, zinc stearate, zirconium 2-ethylhexanoate, Metal salts such as cobalt naphthenate, stannous chloride, stannous chloride, potassium acetate, etc., triethylamine, triethylenediamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5 , 4 0] Amine based catalysts such as undecene, N, N, N ', N'-tetramethyl-1,3-butanediamine, N-methylmorpholine, N-ethylmorpholine, bismut
- polymerization inhibitor [III '] publicly known general agents used as a polymerization inhibitor can be used, and examples thereof include p-benzoquinone, naphthoquinone, toluquinone, 2,5-diphenyl-p-benzoquinone and the like.
- Quinones hydroquinone, 2,5-di-t-butylhydroquinone, methylhydroquinone, mono-t-butylhydroquinone, 4-methoxyphenol, 2,6-di-t-butylcresol, p-t-butylcatechol, etc.
- phenols are preferable, and 4-methoxyphenol and 2,6-di-t-butylcresol are particularly preferable. These can be used alone or in combination of two or more.
- the content of the polymerization inhibitor [III '] in the above reaction is 0.005 to about the total 100 parts by weight of the (meth) acrylic acid adduct of polyhydric alcohol (A) and the polyisocyanate compound (B). It is 0.095 parts by weight, preferably 0.01 to 0.08 parts by weight. If the content of the polymerization inhibitor [III '] is too small, polymerization of acryloyl group may occur during the reaction. Furthermore, the liquid stability of the urethane (meth) acrylate composition [I] tends to decrease, and the composition tends to gel during storage. On the other hand, when the content of the polymerization inhibitor [III '] is too large, coloring tends to occur, and curing tends to be difficult even when irradiated with active energy rays.
- an organic solvent having no functional group reactive to an isocyanate group for example, esters such as ethyl acetate, butyl acetate, 2-methoxy-1-methylethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, etc.
- organic solvents such as aromatics such as toluene and xylene.
- the reaction temperature of the above reaction is usually 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is usually 2 to 30 hours, preferably 3 to 20 hours.
- the urethane (meth) acrylate composition [I] used in the present invention contains plural kinds of urethane (meth) acrylates, and (meth) acrylic acid adduct of polyisocyanate compound (B) and unreacted polyhydric alcohol
- the polymer (A) may further contain, for example, a polymer of a (meth) acrylic acid adduct of a polyhydric alcohol (A).
- the weight average molecular weight of the above urethane (meth) acrylate composition [I] is preferably 900 to 30,000, more preferably 1,000 to 20,000, and particularly preferably 1,100 to 10,000. Particularly preferably, it is 1,200 to 5,000.
- the weight-average molecular weight is too small, the cured coating tends to be brittle, and when it is too large, the viscosity becomes high and it becomes difficult to handle.
- the weight average molecular weight in the present invention is a weight average molecular weight based on standard polystyrene molecular weight conversion, and in a high performance liquid chromatograph (manufactured by Waters, “ACQUITY APC system”), columns: ACQUITY APC XT 450 ⁇ 1, ACQUITY APC It is measured by using four XT 200 ⁇ 1 and ACQUITY APC XT 45 ⁇ 2 in series.
- the viscosity of the urethane (meth) acrylate composition [I] at 60 ° C. is preferably 500 to 300,000 mPa ⁇ s, in particular 750 to 100,000 mPa ⁇ s, and further preferably 1,000 to 30.
- the viscosity is preferably 1,000 mPa ⁇ s. If the viscosity is outside the above range, the coatability tends to decrease.
- the measuring method of a viscosity is based on E-type viscosity meter.
- the content of urethane (meth) acrylate in the urethane (meth) acrylate composition [I] used in the present invention is preferably 10% by weight or more, particularly preferably 20% by weight or more, and further preferably 30% by weight or more. Particularly preferably, it is 50% by weight or more.
- the upper limit is usually 80% by weight.
- the fluorine-containing (meth) acrylate compound [II] used in the present invention is a compound having a (meth) acryloyl group and a fluorine atom.
- the structure other than the (meth) acryloyl group and the fluorine atom is not particularly limited, and may further have a heteroatom such as oxygen, nitrogen, silicon, sulfur and the like.
- the fluorine-containing (meth) acrylate compound [II] is preferably a compound in which a fluorine atom is bonded to an alkyl group of a (meth) acrylic acid alkyl ester, for example, “Optool DAC” manufactured by Daikin Industries, Ltd.
- fluorine-containing (meth) acrylate compounds [II] fluorine-containing (meth) acrylate compounds having a siloxane bond in the structure are preferable in that they are more excellent in antifouling performance, and “KY-1203” is particularly preferable preferable.
- the weight average molecular weight of the fluorine-containing (meth) acrylate compound [II] is preferably 1,000 to 100,000, more preferably 5,000 to 70,000, and particularly preferably 10,000 to 1,000. It is preferably 50,000, more preferably 15,000 to 40,000.
- the weight average molecular weight of the fluorine-containing (meth) acrylate compound [II] is too small, the scratch resistance and the antifouling performance tend to decrease, and when the weight average molecular weight is too large, the urethane (meth) acrylate composition [I The compatibility with the solvent and the solvent tends to be reduced.
- the content of the fluorine-containing (meth) acrylate compound [II] in the active energy ray curable resin composition of the present invention is usually 0. 0 parts by weight based on 100 parts by weight of the urethane (meth) acrylate composition [I].
- the content is from 01 to 5 parts by weight, preferably from 0.05 to 3 parts by weight, and particularly preferably from 0.1 to 1 parts by weight.
- the active energy ray curable resin composition of the present invention contains the polymerization inhibitor [III] more than a general active energy ray curable resin composition.
- the addition of a large amount of the polymerization inhibitor [III] causes reduction in active energy ray curability, coloring, etc.
- the content of the polymerization inhibitor [III] is an amount such that the content of the polymerization inhibitor [III] is generally used in the production of the above-mentioned urethane (meth) acrylate composition [I].
- the active energy ray curing is carried out
- the content of the polymerization inhibitor [III] is larger than the amount used for the water-soluble resin composition, the liquid energy stability of the active energy ray-curable resin composition is free from the problem of decrease in the active energy ray curability and coloring problems The effect is to improve and to suppress gelation during storage.
- polymerization inhibitor [III] used in the present invention known general ones can be used, and specifically, the same compounds as the compounds listed in the above-mentioned polymerization inhibitor [III '] can be used . Further, as the polymerization inhibitor [III] to be added to the active energy ray curable resin composition, the same compound as the polymerization inhibitor [III '] used in the production of the urethane (meth) acrylate composition [I] is used although it is preferred, different compounds may be used.
- the content of the polymerization inhibitor [III] is relative to the total of the urethane (meth) acrylate composition [I], the fluorine-containing (meth) acrylate compound [II] and the polymerization inhibitor [III]. It is important that it is 800 to 10,000 ppm by weight, preferably 1,000 to 8,000 ppm, more preferably 1,500 to 7,000 ppm, still more preferably 2,000 to 6,000 ppm, in particular Preferably, it is 3,100 to 5,000 ppm.
- the content of the polymerization inhibitor [III] is too small, the liquid stability of the active energy ray-curable resin composition before curing is reduced, and the composition becomes easy to gel during storage.
- a coloring inhibitor is further added. It is preferable to contain [IV].
- the above coloring inhibitors [IV] include aryl phosphine compounds such as triphenyl phosphine, 1,1,3,3-tetramethyldisilazane, 1,1,3,3,3-hexamethyldisilazane and the like.
- Examples thereof include silazane compounds, and hydrazine compounds such as phenylhydrazine, benzophenylhydrolazine, and diacetylhydrazine.
- hydrazine compounds such as phenylhydrazine, benzophenylhydrolazine, and diacetylhydrazine.
- One of these coloring inhibitors may be used alone, or two or more thereof may be used in combination.
- aryl phosphine compounds are preferable, and triphenyl phosphine is particularly preferable, in that the coloring of the urethane (meth) acrylate composition [I] can be further prevented.
- the content of the above-mentioned coloring inhibitor [IV] is the total of urethane (meth) acrylate composition [I], fluorine-containing (meth) acrylate compound [II] and polymerization inhibitor [III],
- the concentration is usually 10 to 10,000 ppm, preferably 100 to 5,000 ppm, and more preferably 250 to 2,000 ppm by weight.
- the active energy ray curable resin composition of the present invention further contains a photopolymerization initiator.
- an ethylenically unsaturated monomer other than urethane (meth) acrylate, an acrylic resin, a surface control agent, a leveling agent, and the like can be blended within a range that does not impair the effects of the present invention.
- Fillers, reinforcing agents, matting agents, crosslinking agents, silica, water-dispersed or solvent-dispersed silica, zirconium compounds, preservatives and the like can also be blended. These may be used alone or in combination of two or more.
- photopolymerization initiator examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyl dimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-) 2-Propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-one ⁇ 4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propane, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy Acetophenones such as 2-methyl-1- [4- (1-methylvinyl) phenyl]
- acetophenones more preferably benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, benzoin isopropyl ether, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, particularly preferably 1-hydroxycyclohexyl phenyl ketone.
- the content thereof is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the curing component contained in the active energy ray curable resin composition, and in particular The amount is preferably 0.5 to 10 parts by weight, more preferably 1 to 10 parts by weight. If the content of the photopolymerization initiator is too small, curing tends to be poor and film formation tends to be difficult, and if too large, it causes yellowing of the cured coating film and tends to cause coloring problems.
- auxiliary agent of the said photoinitiator for example, triethanolamine, triisopropanolamine, 4,4'-dimethylamino benzophenone (Michler's ketone), 4,4'- diethylamino benzophenone, 2-dimethylaminoethyl benzoic acid, Ethyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2, It is also possible to use 4-diisopropylthioxanthone and the like in combination.
- ethylenic unsaturated monomers other than the said urethane (meth) acrylate a monofunctional monomer, a bifunctional monomer, the trifunctional or more than trifunctional polyfunctional monomer etc. are mentioned, for example. These ethylenically unsaturated monomers can be used alone or in combination of two or more.
- Examples of such monofunctional monomers include styrene-based monomers such as styrene, vinyl toluene, chlorostyrene, ⁇ -methylstyrene, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2-hydroxy -3-Phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) a Lilate, cyclohexyl (meth
- ethylene glycol di (meth) acrylate for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, di Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A Type di (meth) acrylate, cyclohexane dimethanol di (meth) acrylate, ethoxylated cyclohexane dimethanol di ( Ta) acrylate, dimethylol dicyclopentadi (meth) acrylate, tricyclodecane dimethanol di (meth)
- trifunctional or higher functional monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa ( Meta) acrylate, tri (meth) acryloyloxy ethoxy trimethylol propane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanurate ethylene oxide modified triacrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexamer (Meth) acrylate, caprolactone modified pentaerythritol tri (meth) acrylate, cap Lactone modified pentaerythritol tetra (
- a Michael adduct of (meth) acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester can also be used in combination.
- Michael adducts of (meth) acrylic acid include (meth) acrylic acid dimers, (meth) acrylic acid trimers, and (meth) acrylic acid tetramers.
- the 2-acryloyloxyethyl dicarboxylic acid monoester is a carboxylic acid having a specific substituent, such as 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, 2-acryloyloxyethyl.
- Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester.
- other oligoester acrylates and the like can be mentioned.
- the content of the ethylenically unsaturated monomer other than urethane (meth) acrylate is preferably 70% by weight or less, particularly preferably 50% by weight, based on all the curing components contained in the active energy ray curable resin composition. % Or less, more preferably 30% by weight or less.
- cellulose resin an alkyd resin, etc.
- the cellulose resin has the effect of improving the surface smoothness of the coating film
- the alkyd resin has the effect of improving the film forming property at the time of coating.
- any generally known leveling agent can be used as long as it has the action of imparting wettability to the substrate of the coating liquid and the action of lowering surface tension.
- silicone modified resin, fluorine modified resin And alkyl-modified resins can be used.
- the active energy ray curable resin composition of the present invention comprises a mixture of a urethane (meth) acrylate composition [I], a fluorine-containing (meth) acrylate compound [II], a polymerization inhibitor [III] and other optional components. It can be obtained by The mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing optional components, and a method of collectively or sequentially mixing the remaining components are adopted. can do.
- the active energy ray-curable resin composition of the present invention thus obtained is excellent in storage stability in a coating liquid, and further excellent in abrasion resistance when formed into a cured coating film and antifouling property after abrasion. It is a thing.
- the active energy ray curable resin composition of the present invention may be coated as it is, or may be diluted with an organic solvent and coated.
- the solid concentration may be usually 3 to 90% by weight (preferably 5 to 60% by weight) using an organic solvent.
- organic solvent examples include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, and aromatics such as toluene and xylene.
- Glycol ethers such as -methoxy-2-propanol (alias: propylene glycol monomethyl ether), propylene glycol monomethyl ether acetate, ethyl cellosolve, acetates such as methyl acetate, ethyl acetate, butyl acetate, diacetone alcohol, etc. .
- These organic solvents may be used alone or in combination of two or more.
- Solvents having a boiling point of 80.degree. C. or higher, particularly 100.degree. C. or higher, more preferably 120 to 170.degree. C. are preferable, glycol ethers are more preferable, and 1-methoxy-2-propanol is particularly preferable.
- Propylene glycol monomethyl ether acetate is particularly preferable.
- a combination of a glycol ether such as propylene glycol monomethyl ether and a ketone such as methyl ethyl ketone or an alcohol such as methanol or a glycol ether such as propylene glycol monomethyl ether A combination of esters such as butyl acetate and a combination of ketones such as methyl ethyl ketone and alcohols such as methanol can be used.
- the viscosity at 20 ° C. of the active energy ray-curable resin composition of the present invention is preferably 5 to 50,000 mPa ⁇ s, particularly preferably 10 to 10,000 mPa ⁇ s, still more preferably 15 to 5, It is 000 mPa ⁇ s. If the viscosity is outside the above range, the coatability tends to decrease. In addition, the measuring method of a viscosity is based on E-type viscosity meter.
- the active energy ray curable resin composition of the present invention is effectively used as a curable composition for forming a coating film, such as top coat agent and anchor coat agent for various substrates, and such active energy ray cure After the base resin composition is applied to the substrate (in the case where the active energy ray-curable resin composition diluted with an organic solvent is applied, after further drying), the active energy ray is cured to cure it. Be done.
- Examples of the substrate to which the active energy ray-curable resin composition of the present invention is applied include polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile-butadiene-styrene copolymer (ABS), and polystyrene.
- Base materials such as acrylic resins, acrylic resins etc.
- the coating method of the active energy ray-curable resin composition of the present invention includes, for example, wet coating methods such as spray, shower, gravure, dipping, roll, spin, screen printing, etc. It may be coated on the substrate under the condition of temperature range without heating.
- temperature is usually 40-120 degreeC (preferably 50-100 degreeC), and drying time is And usually 1 to 20 minutes (preferably 2 to 10 minutes).
- an active energy ray used when hardening the active energy ray curable resin composition coated on the base material for example, light rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, X rays, ⁇ rays and the like
- light rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, X rays, ⁇ rays and the like
- electron beams, proton beams, neutron beams and the like can be used, but ultraviolet rays or electron beams, particularly ultraviolet rays are preferable in view of curing speed, availability of an irradiation apparatus, cost and the like.
- hardening by irradiation of an electron beam even if it does not use a photoinitiator, it can harden
- UV irradiation When curing by ultraviolet irradiation, use a high pressure mercury lamp, an ultra high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrode discharge lamp, an LED lamp, etc. that emit light in the 150 to 450 nm wavelength range.
- ultraviolet rays of 30 to 3,000 mJ / cm 2 (preferably 100 to 1,500 mJ / cm 2 ) may be applied. After irradiation with ultraviolet light, heating may be performed as necessary to complete curing.
- the coating film thickness (film thickness after curing) is usually 1 to 1,000 ⁇ m from the viewpoint of transmitting light so that the photopolymerization initiator reacts uniformly as an active energy ray-curable coating film.
- the thickness is preferably 2 to 500 ⁇ m, particularly preferably 3 to 200 ⁇ m.
- the active energy ray-curable resin composition of the present invention is particularly preferably used as a coating agent, and particularly preferably used as a coating agent for hard coat or a coating agent for optical film.
- the active energy ray-curable resin composition of the present invention is excellent in the storage stability of the solution, and further excellent in the scratch resistance when formed into a cured coating film and the antifouling property after scratching.
- it is useful as a coating agent (further, a coating agent for a hard coat or a coating agent for an optical film), and is also useful as a paint, an ink or the like.
- the reaction was terminated, and the reaction was terminated when the residual isocyanate group reached 0.1%, to obtain a urethane acrylate composition [I-1] (resin concentration: 100%).
- the weight average molecular weight of the resulting urethane acrylate composition [I-1] was 1,400, and the viscosity at 60 ° C. was 3,000 mPa ⁇ s.
- the reaction was terminated when the residual isocyanate group reached 0.3%, to obtain a urethane acrylate composition [I-3] (resin concentration: 100%).
- the weight average molecular weight of the resulting urethane acrylate composition [I-3] was 1,700, and the viscosity at 60 ° C. was 1,500 mPa ⁇ s.
- the urethane acrylate composition [I-4] was obtained (resin concentration 100%).
- the weight average molecular weight of the resulting urethane acrylate composition [I-4] was 3,700, and the viscosity at 60 ° C. was 3,000 mPa ⁇ s.
- an active energy ray-curable resin composition was produced using the above-mentioned urethane acrylate compositions [I-1] to [I-4].
- Example 1 While stirring a solution of 100 parts of the urethane acrylate composition [I-1] obtained above in 100 parts of 1-methoxy-2-propanol (boiling point 120 ° C.), the fluorine-containing acrylate compound [II- 1) “KY-1203” (20% active ingredient, weight-average molecular weight (measured value) 27,000 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.2 part (1 part including solvent ingredient) active ingredient, polymerization prohibited 0.3 part of 2,6-di-t-butylcresol as agent [III-1] (urethane acrylate composition [I-1], fluorine-containing acrylate compound [II-1] and polymerization inhibitor [III
- the active energy ray curable resin composition was obtained by blending 2,990 ppm with respect to the total of 1), and 0.05 parts of "CSP" (manufactured by SEIKO CHEMICAL CO., LTD.) As a coloring
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,780 ppm with respect to the sum total of II] and polymerization inhibitor [III].
- Example 2 An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the urethane acrylate composition [I-2] was used instead of the urethane acrylate composition [I-1] in Example 1. And an active energy ray-curable resin composition containing a photopolymerization initiator.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate
- the amount was 3,380 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 3 The same procedure as in Example 1 was repeated except that the content of the fluorine-containing acrylate compound [II-1] was changed to 0.05 parts (0.25 parts in terms of solvent) in the active ingredient in Example 1.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate
- the total amount was 3,790 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 4 The active energy ray curing is carried out in the same manner as in Example 1 except that the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 1 part (5 parts in terms of solvent component included) in Example 1 Energy ray curable resin composition containing the water soluble resin composition and the photopolymerization initiator is obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,750 ppm relative to the total of the compound [II] and the polymerization inhibitor [III].
- Example 5 In Example 1, in place of the fluorine-containing acrylate compound [II-1], “Optool DAC-HP” (20% of active ingredient, manufactured by Daikin Industries, weight average molecular weight An active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that 0.2 part (1 part in terms of solvent component) was used as the active component (measured value) 2,300) as the active component.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate
- the amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 6 In Example 1, in place of the fluorine-containing acrylate compound [II-1], “IRX-380” (active ingredient 10%, manufactured by AGC, weight average molecular weight (measured value) as the fluorine-containing acrylate compound [II-3]
- the active energy ray-curable resin composition and the photopolymerization initiator are contained in the same manner as in Example 1 except that 0.2 parts (2 parts by solvent included) of 1,300) is used as an active ingredient. An active energy ray curable resin composition was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate
- the amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 7 An active energy ray curable resin composition and a photopolymerization initiator are contained in the same manner as in Example 1 except that the blending amount of the polymerization inhibitor [III-1] is changed to 0.9 part in Example 1. An active energy ray curable resin composition was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 9,690 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 8 Example 1 is the same as example 1 except that 4-methoxyphenol is used as polymerization inhibitor [III-2] in place of polymerization inhibitor [III-1] 2,6-di-t-butylcresol.
- an active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate
- the amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 9 In Example 1, instead of the urethane acrylate composition [I-1], 100 parts of the urethane acrylate composition [I-3] and 0.1 parts of “CSP” as the coloring inhibitor [IV-1] An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained in the same manner as in Example 1 except for the above.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
- Example 10 An active energy ray-curable resin composition in the same manner as in Example 9 except that a urethane acrylate composition [I-4] was used in place of the urethane acrylate composition [I-3] in Example 9, and An active energy ray-curable resin composition containing a photopolymerization initiator was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate
- the amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 9 is the same as Example 9 except that the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 0.05 parts (0.25 parts in terms of the solvent component) in terms of the active ingredient.
- An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,590 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
- Example 12 The active energy ray curability is the same as in Example 9, except that in Example 9, the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 1 part (5 parts in terms of solvent) including the active ingredient.
- An active energy ray curable resin composition containing a resin composition and a photopolymerization initiator was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,550 ppm relative to the total of the compound [II] and the polymerization inhibitor [III].
- Example 13 In Example 9, in place of the fluorine-containing acrylate compound [II-1], “Optool DAC-HP” (20% of active ingredient, manufactured by Daikin Industries, weight average molecular weight Measured value: 2,300) The active energy ray-curable resin composition and the photopolymerization initiator were prepared in the same manner as in Example 9, except that 0.2 part (1 part in the solvent component included) was used as the active component. The active energy ray curable resin composition to be contained was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
- Example 14 In Example 9, in place of the fluorine-containing acrylate compound [II-1], “IRX-380” (active ingredient 10%, product of AGC, weight average molecular weight (measured value) as the fluorine-containing acrylate compound [II-3]
- the active energy ray curable resin composition and the photopolymerization initiator are contained in the same manner as in Example 9 except that 0.2 part (2 parts in terms of solvent) is used as the active ingredient). An active energy ray-curable resin composition was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
- Example 15 An active energy ray curable resin composition and a photopolymerization initiator are contained in the same manner as in Example 9 except that the blending amount of the polymerization inhibitor [III-1] is changed to 0.9 part in Example 9. An active energy ray curable resin composition was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 9,500 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
- Example 9 is the same as Example 9 except that in place of the polymerization inhibitor [III-1] 2,6-di-t-butylcresol, 4-methoxyphenol is used as the polymerization inhibitor [III-2]. Similarly, an active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
- Example 17 An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the coloring inhibitor [IV-1] is not used in Example 9. I got a thing.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
- Comparative Example 1 An active energy ray-curable composition containing an active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that the fluorine-containing acrylate compound [II-1] is not used in Example 1. A resin composition was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,790 ppm with respect to the sum total of II] and polymerization inhibitor [III].
- Comparative Example 2 An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that the polymerization inhibitor [III-1] is not used in Example 1. I got a thing.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 800 ppm with respect to the sum total of II] and polymerization inhibitor [III].
- Example 9 an active energy ray-curable composition containing an active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the fluorine-containing acrylate compound [II-1] is not used.
- a resin composition was obtained.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,590 ppm with respect to the sum total of II] and polymerization inhibitor [III].
- Comparative Example 4 An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the polymerization inhibitor [III-1] is not used in Example 9. I got a thing.
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 600 ppm with respect to the sum total of II] and polymerization inhibitor [III].
- Example 9 Comparative Example 5 In Example 9, except that trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd., “Alonix M-309”, containing 100 ppm of a polymerization inhibitor) was used in place of the urethane acrylate composition [I-3]. In the same manner as in Example 9, an active energy ray-curable resin composition containing an active energy ray-curable resin composition and a photopolymerization initiator was obtained.
- trimethylolpropane triacrylate manufactured by Toagosei Co., Ltd., “Alonix M-309”, containing 100 ppm of a polymerization inhibitor
- the content of the polymerization inhibitor [III] (including the polymerization inhibitor contained in trimethylolpropane triacrylate) is the total of trimethylolpropane, fluorine-containing acrylate compound [II] and polymerization inhibitor [III] against 3,090 ppm.
- the liquid storage stability of the active energy ray curable resin composition obtained above was evaluated by the following method.
- the Hazen color number (APHA) of the above-mentioned active energy ray-curable resin composition was measured using a spectrocolorimeter "SE6000: manufactured by Nippon Denshoku Kogyo Co., Ltd.”.
- the active energy ray-curable resin composition was placed in a closed glass test container, and subjected to a heat resistance test under heat resistance conditions (stored for 4 weeks in a 60 ° C. environment) to measure the value of APHA after the heat resistance test.
- the results are shown in Tables 1 to 3 below.
- the active energy ray-curable resin composition containing the photopolymerization initiator obtained above is applied onto an easily-adhered PET film (Toyobo Co., Ltd., “Cosmo Shine A4300, thickness 125 ⁇ m) substrate, The coating is applied so that the film thickness after drying is 5 ⁇ m, and after drying at 90 ° C. for 3 minutes, using a 80 W high-pressure mercury lamp, 1 lamp, from a height of 18 cm to a conveyor speed of 5.1 m / min 2 The pass was irradiated with ultraviolet light (accumulated irradiation amount: 450 mJ / cm 2 ) to form a cured coating film.
- ultraviolet light accumulated irradiation amount: 450 mJ / cm 2
- the composition containing the urethane (meth) acrylate composition [I] and the fluorine-containing (meth) acrylate compound [II] further contains a predetermined amount of the polymerization inhibitor [III]
- the storage stability in the coating liquid was excellent.
- the example contains the polymerization inhibitor [III] more than Comparative Examples 2 and 4, it is also excellent in antifouling performance and scratch resistance when made into a cured coating film. there were.
- Comparative Examples 1 and 3 which do not contain the fluorine-containing (meth) acrylate compound [II], they are inferior in antifouling performance and scratch resistance and other than the production of the urethane (meth) acrylate composition [I]
- Comparative Examples 2 and 4 in which the blending of the polymerization inhibitor [III] was not performed, the storage stability of the solution was inferior.
- Comparative Example 5 in which the urethane (meth) acrylate composition [I] was not used, the curability was insufficient, and the object of the present invention was not satisfied.
- the active energy ray-curable resin composition of the present invention is excellent in the storage stability of the coating solution, and has antifouling performance (contamination resistance and its persistence), properties of the cured coating (appearance, hardness, scratch resistance) (6) can be formed, and is useful as a coating agent, in particular, a coating agent for a hard coat or a coating agent for an optical film. It is also useful as a paint, an ink and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Paints Or Removers (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
As an active energy ray-curable resin composition which exhibits excellent coating solution storage stability and is capable of forming a coating film having excellent antifouling performance (contamination resistance and sustainability thereof) and other properties (appearance, hardness, abrasion resistance), the present invention provides an active energy ray-curable resin composition which contains: a urethane (meth)acrylate composition [I] obtained by reacting a hydroxyl group in a (meth)acrylic acid additive (A) of a polyalcohol and an isocyanate group of a polyisocyanate compound (B) with one another; a fluorine-containing (meth)acrylate compound [II]; and a polymerization inhibitor [III]. Therein, the content of the polymerization inhibitor [III] constitutes 800-10,000 ppm on a weight basis of the combined total of the urethane (meth)acrylate composition [I], the fluorine-containing (meth)acrylate compound [II], and the polymerization inhibitor [III].
Description
本発明は、ウレタン(メタ)アクリレート系組成物を含有してなる活性エネルギー線硬化性樹脂組成物及びコーティング剤に関し、更に詳しくは、防汚性能(耐汚染性及びその持続性)及び硬化塗膜の特性(外観、硬度、耐擦傷性)に優れた塗膜を形成することができる活性エネルギー線硬化性樹脂組成物及びこれを含有してなるコーティング剤に関するものである。
The present invention relates to an active energy ray-curable resin composition and a coating agent comprising a urethane (meth) acrylate composition, and more specifically, antifouling performance (contamination resistance and its durability) and a cured coating The present invention relates to an active energy ray-curable resin composition capable of forming a coating film excellent in the properties (appearance, hardness, scratch resistance) of the above, and a coating agent containing the same.
従来、活性エネルギー線硬化性樹脂組成物は、ごく短時間の放射線や紫外線等の活性エネルギー線の照射により硬化が完了するため、各種基材へのコーティング剤や接着剤、またはアンカーコート剤等として幅広く用いられており、その中の硬化成分としては、ウレタン(メタ)アクリレート系化合物や多官能モノマーが使用されている。近年では、活性エネルギー線硬化性樹脂組成物を、特にコーティング剤、とりわけハードコート用コーティング剤として用いる際に、ガラスに代わる高い表面硬度と耐擦傷性を有するものが求められている。
Conventionally, as curing of active energy ray curable resin compositions is completed by irradiation of active energy rays such as radiation or ultraviolet rays for a very short time, as a coating agent, adhesive, anchor coating agent, etc. on various substrates It is widely used, and urethane (meth) acrylate compounds and polyfunctional monomers are used as the curing component therein. In recent years, when the active energy ray-curable resin composition is used as a coating agent, particularly as a coating agent for a hard coat, those having high surface hardness and scratch resistance to replace glass are required.
上記のような硬化塗膜として高い表面硬度と耐擦傷性を有するハードコート剤としては、例えば、ジペンタエリスリトールヘキサアクリレートとN-置換アクリルアミドを主体とした硬化成分に、フッ素化合物を配合したものが提案されている(例えば、特許文献1参照)。このハードコート剤を積層フィルム上に膜厚11μmに塗布して硬化させて得られるフィルムは、鉛筆硬度5H程度の硬度と、スチールウールで500g荷重をかけて500回往復させても傷がつかない耐擦傷性を発現する。
As a hard coating agent having high surface hardness and scratch resistance as a cured coating film as described above, for example, one in which a fluorine compound is mixed with a curing component mainly composed of dipentaerythritol hexaacrylate and N-substituted acrylamide It is proposed (for example, refer patent document 1). A film obtained by applying this hard coating agent on a laminated film to a film thickness of 11 μm and curing it does not get scratched even if it is reciprocated 500 times with a hardness of about 5H with a pencil hardness of about 5H It develops scratch resistance.
しかしながら、上記特許文献1の開示技術は、硬化塗膜の表面硬度と500g荷重での耐擦傷性に優れるものの、より厳しい1kg荷重での耐擦傷性に関する記載はなく、更なる改善が求められている。
However, although the disclosed technique of Patent Document 1 is excellent in surface hardness of a cured coating film and scratch resistance under a load of 500 g, there is no description regarding scratch resistance under a more severe 1 kg load, and further improvement is required. There is.
また、近年においては、ディスプレイやモニター、タッチパネル化された機器の画面や、携帯電話等電化製品の表面に指紋等の汚れが付着すると、画面の透明性や画面の鮮明性が低下してしまったり、美観性が損なわれたりしてしまうため、様々な汚れのふき取り方法、汚れの付着防止性や汚れ除去性を向上させるためのコーティング剤の検討や、コーティング剤で上塗りを行った場合の塗膜表面の耐擦傷性の検討等がなされており、塗膜表面の防汚性能や耐擦傷性への要求が益々高まっている。更に、防汚性や耐擦傷性を発現するためにはフッ素化合物がよく用いられているが、フッ素化合物を配合したコーティング剤は、塗工液が保存中にゲル化しやすい場合があり、保存安定性の更なる改善が求められている。
Also, in recent years, when dirt such as fingerprints adheres to the surface of a display or monitor, the screen of a touch panel device, or the surface of an electric appliance such as a mobile phone, the transparency of the screen or the clarity of the screen may be degraded. And because the appearance may be impaired, various methods of removing stains, examination of coating agents to improve stain adhesion prevention and stain removability, and coating when top coating with a coating agent is carried out The scuff resistance of the surface has been studied, etc., and the demand for the antifouling performance and the scuff resistance of the coating film surface is increasing more and more. Furthermore, although a fluorine compound is often used to develop antifouling property and scratch resistance, a coating agent containing a fluorine compound may be easily gelled during storage of the coating liquid, and thus storage stability is obtained. Further improvement of sexuality is required.
そこで、本発明では、このような背景下において、塗工液の保存安定性に優れ、また、防汚性能(耐汚染性及びその持続性)、硬化塗膜の特性(外観、硬度、耐擦傷性)に優れた塗膜を形成することができる活性エネルギー線硬化性樹脂組成物、及びそれを用いたコーティング剤を提供する。
Therefore, in the present invention, under such background, the storage stability of the coating liquid is excellent, and the antifouling performance (contamination resistance and its persistence), the characteristics of the cured coating (appearance, hardness, scratch resistance) The present invention provides an active energy ray-curable resin composition capable of forming a coating film excellent in the following properties), and a coating agent using the same.
しかるに本発明者らは、かかる事情に鑑み鋭意研究を重ねた結果、硬化成分として多価アルコールの(メタ)アクリル酸付加物とポリイソシアネート系化合物とを反応させて得られるウレタン(メタ)アクリレート系組成物、フッ素含有(メタ)アクリレート系化合物及び重合禁止剤を含有する活性エネルギー線硬化性樹脂組成物において、上記重合禁止剤を通常よりも多く含有させることにより、活性エネルギー線硬化性樹脂組成物の液での保存安定性に優れ、また、硬化塗膜とした際に、防汚性能及び耐擦傷性等の塗膜物性に優れた硬化塗膜が得られることを見出した。
However, as a result of intensive researches in view of such circumstances, the present inventors have made urethane (meth) acrylates obtained by reacting a (meth) acrylic acid adduct of polyhydric alcohol with a polyisocyanate compound as a curing component. In an active energy ray curable resin composition containing a composition, a fluorine-containing (meth) acrylate compound and a polymerization inhibitor, the active energy ray curable resin composition contains a larger amount of the above-mentioned polymerization inhibitor than usual. It was found that a cured coating film excellent in storage stability with the solution of (1) and when it was formed into a cured coating film was excellent in coating physical properties such as antifouling performance and scratch resistance.
即ち、本発明は、多価アルコールの(メタ)アクリル酸付加物(A)中の水酸基と、ポリイソシアネート系化合物(B)のイソシアネート基とが反応したウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]を含有してなり、重合禁止剤[III]の含有量が、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、重量基準で800~10,000ppmである活性エネルギー線硬化性樹脂組成物を第1の要旨とするものである。
また、上記第1の要旨の活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤を第2の要旨とするものである。 That is, according to the present invention, a urethane (meth) acrylate composition [I] in which the hydroxyl group in the (meth) acrylic acid adduct of polyhydric alcohol (A) and the isocyanate group of the polyisocyanate compound (B) have reacted. A fluorine-containing (meth) acrylate compound [II] and a polymerization inhibitor [III], wherein the content of the polymerization inhibitor [III] is urethane (meth) acrylate composition [I], fluorine-containing An active energy ray-curable resin composition having a weight of 800 to 10,000 ppm by weight based on the total of the (meth) acrylate compound [II] and the polymerization inhibitor [III] is the first aspect. .
Moreover, the coating agent formed by containing the active energy ray curable resin composition of the said 1st summary makes it a 2nd summary.
また、上記第1の要旨の活性エネルギー線硬化性樹脂組成物を含有してなるコーティング剤を第2の要旨とするものである。 That is, according to the present invention, a urethane (meth) acrylate composition [I] in which the hydroxyl group in the (meth) acrylic acid adduct of polyhydric alcohol (A) and the isocyanate group of the polyisocyanate compound (B) have reacted. A fluorine-containing (meth) acrylate compound [II] and a polymerization inhibitor [III], wherein the content of the polymerization inhibitor [III] is urethane (meth) acrylate composition [I], fluorine-containing An active energy ray-curable resin composition having a weight of 800 to 10,000 ppm by weight based on the total of the (meth) acrylate compound [II] and the polymerization inhibitor [III] is the first aspect. .
Moreover, the coating agent formed by containing the active energy ray curable resin composition of the said 1st summary makes it a 2nd summary.
一般に、ウレタン(メタ)アクリレート系組成物を製造するに際しては、ウレタン化反応中の(メタ)アクリロイル基の重合反応の抑制及び保存安定性の向上の目的で反応系内に重合禁止剤を仕込むことが行われるが、重合禁止剤の存在により活性エネルギー線硬化性を低下させることとなってしまったり、着色させてしまうため、その配合量はできる限り少量で行おうと考えるのが通常である。しかしながら、本発明においては、意外なことに、重合禁止剤をウレタン(メタ)アクリレート系組成物の製造時に用いられる量よりも多く用いることにより、活性エネルギー線硬化性の低下及び塗工液や硬化塗膜の着色の問題もなく、塗工液の保存安定性に優れ、防汚性能(耐汚染性及びその持続性)、硬化塗膜の特性(外観、硬度、耐擦傷性)に優れた塗膜を形成することができることを見出したのである。
In general, when producing a urethane (meth) acrylate composition, a polymerization inhibitor is introduced into the reaction system for the purpose of suppressing the polymerization reaction of the (meth) acryloyl group during the urethanization reaction and improving the storage stability. In general, it is generally considered that the compounding amount should be as small as possible, since the active energy ray curability is lowered due to the presence of the polymerization inhibitor or the pigment is colored. However, in the present invention, surprisingly, the use of the polymerization inhibitor in an amount larger than that used in the preparation of the urethane (meth) acrylate composition lowers the active energy ray curability and the coating liquid and the curing. There is no problem of coloration of the coating film, the coating liquid is excellent in storage stability, anti-soiling performance (stain resistance and its persistence), and the cured film has excellent properties (appearance, hardness, scratch resistance) It has been found that a film can be formed.
本発明の活性エネルギー線硬化性樹脂組成物は、多価アルコールの(メタ)アクリル酸付加物(A)中の水酸基と、ポリイソシアネート系化合物(B)のイソシアネート基とが反応したウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]を含有してなり、重合禁止剤[III]の含有量が、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、重量基準で800~10,000ppmである。そのため、塗工液での保存安定性に優れ、更には、硬化塗膜とした際の防汚性能及び耐擦傷性にも優れる。また、これらの優れた特性から、特に、ハードコート用コーティング剤または光学フィルム用コーティング剤の用途に有用である。
The active energy ray-curable resin composition of the present invention is a urethane (meth) in which the hydroxyl group in the (meth) acrylic acid adduct (A) of polyhydric alcohol and the isocyanate group of the polyisocyanate compound (B) have reacted. Acrylate composition [I], fluorine-containing (meth) acrylate compound [II] and polymerization inhibitor [III], and the content of polymerization inhibitor [III] is urethane (meth) acrylate composition The amount is 800 to 10,000 ppm by weight based on the total of the compound [I], the fluorine-containing (meth) acrylate compound [II] and the polymerization inhibitor [III]. Therefore, it is excellent in the storage stability in a coating liquid, and also excellent in the antifouling performance and abrasion resistance at the time of setting it as a cured coating film. In addition, because of these excellent properties, they are particularly useful in applications of hard coat coatings or optical film coatings.
そして、本発明の中でも、特に、上記多価アルコールが、ジペンタエリスリトール及びペンタエリスリトールの少なくとも一方であると、より塗工液での保存安定性に優れ、更には、硬化塗膜とした際の防汚性能及び耐擦傷性にも優れるようになる。
And when the said polyhydric alcohol is at least one of dipentaerythritol and pentaerythritol especially among this invention, it is more excellent in the storage stability in a coating liquid, and also when it is set as a cured coating film. It becomes excellent also in antifouling performance and abrasion resistance.
また、本発明の中でも、特に、上記フッ素含有(メタ)アクリレート系化合物[II]が、シロキサン結合を有すると、防汚性能により優れるようになる。
Further, among the present invention, in particular, when the fluorine-containing (meth) acrylate compound [II] has a siloxane bond, it becomes more excellent in antifouling performance.
更に、本発明の中でも、特に、上記フッ素含有(メタ)アクリレート系化合物[II]の重量平均分子量が1,000~100,000であると、防汚性能により一層優れるようになる。
Furthermore, among the present invention, in particular, when the weight average molecular weight of the fluorine-containing (meth) acrylate compound [II] is 1,000 to 100,000, the antifouling performance is further enhanced.
そして、本発明の中でも、特に、上記ウレタン(メタ)アクリレート系組成物[I]の重量平均分子量が900~30,000であると、硬化塗膜とした際の耐擦傷性により優れるようになる。
And when the weight average molecular weight of the said urethane (meth) acrylate type composition [I] is 900-30,000 especially among this invention, it will become excellent by the abrasion resistance at the time of setting it as a cured coating film. .
また、本発明の活性エネルギー線硬化性樹脂組成物が、更に着色防止剤[IV]を含有すると、塗工液での保存安定性に、より優れるようになる。
In addition, when the active energy ray curable resin composition of the present invention further contains a coloration inhibitor [IV], the storage stability in the coating liquid is further improved.
また、本発明の活性エネルギー線硬化性樹脂組成物が、更に沸点が80℃以上の有機溶剤を含有すると、上記ウレタン(メタ)アクリレート系組成物[I]とフッ素含有(メタ)アクリレート系化合物[II]との相溶性に優れるため、塗工液での保存安定性に、より一層優れるようになる。
Further, when the active energy ray-curable resin composition of the present invention further contains an organic solvent having a boiling point of 80 ° C. or higher, the above urethane (meth) acrylate composition [I] and the fluorine-containing (meth) acrylate compound [ Since the compatibility with [II] is excellent, the storage stability of the coating liquid is further improved.
以下に本発明を詳細に説明する。
なお、本発明において、「(メタ)アクリル」とはアクリルあるいはメタクリルを、「(メタ)アクリロイル」とはアクリロイルあるいはメタクリロイルを、「(メタ)アクリレート」とはアクリレートあるいはメタクリレートをそれぞれ意味するものである。 The present invention will be described in detail below.
In the present invention, "(meth) acrylic" means acrylic or methacrylic, "(meth) acryloyl" means acryloyl or methacryloyl, and "(meth) acrylate" means acrylate or methacrylate. .
なお、本発明において、「(メタ)アクリル」とはアクリルあるいはメタクリルを、「(メタ)アクリロイル」とはアクリロイルあるいはメタクリロイルを、「(メタ)アクリレート」とはアクリレートあるいはメタクリレートをそれぞれ意味するものである。 The present invention will be described in detail below.
In the present invention, "(meth) acrylic" means acrylic or methacrylic, "(meth) acryloyl" means acryloyl or methacryloyl, and "(meth) acrylate" means acrylate or methacrylate. .
[活性エネルギー線硬化性樹脂組成物]
本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]を含むものである。以下にその詳細を説明する。 [Active energy ray curable resin composition]
The active energy ray curable resin composition of the present invention comprises a urethane (meth) acrylate composition [I], a fluorine-containing (meth) acrylate compound [II] and a polymerization inhibitor [III]. The details will be described below.
本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]を含むものである。以下にその詳細を説明する。 [Active energy ray curable resin composition]
The active energy ray curable resin composition of the present invention comprises a urethane (meth) acrylate composition [I], a fluorine-containing (meth) acrylate compound [II] and a polymerization inhibitor [III]. The details will be described below.
<ウレタン(メタ)アクリレート系組成物[I]>
本発明で用いるウレタン(メタ)アクリレート系組成物[I]は、多価アルコールの(メタ)アクリル酸付加物(A)中の水酸基と、ポリイソシアネート系化合物(B)のイソシアネート基とを反応させることにより、ウレタン結合が形成され得られるものである。以下、本発明で用いる各成分について説明する。 <Urethane (Meth) Acrylate Composition [I]>
The urethane (meth) acrylate composition [I] used in the present invention reacts the hydroxyl group in the (meth) acrylic acid adduct (A) of polyhydric alcohol with the isocyanate group of the polyisocyanate compound (B) Thus, a urethane bond can be formed. Hereinafter, each component used by this invention is demonstrated.
本発明で用いるウレタン(メタ)アクリレート系組成物[I]は、多価アルコールの(メタ)アクリル酸付加物(A)中の水酸基と、ポリイソシアネート系化合物(B)のイソシアネート基とを反応させることにより、ウレタン結合が形成され得られるものである。以下、本発明で用いる各成分について説明する。 <Urethane (Meth) Acrylate Composition [I]>
The urethane (meth) acrylate composition [I] used in the present invention reacts the hydroxyl group in the (meth) acrylic acid adduct (A) of polyhydric alcohol with the isocyanate group of the polyisocyanate compound (B) Thus, a urethane bond can be formed. Hereinafter, each component used by this invention is demonstrated.
〔多価アルコールの(メタ)アクリル酸付加物(A)〕
本発明に用いる多価アルコールの(メタ)アクリル酸付加物(A)とは、多価アルコールの水酸基に(メタ)アクリル酸が付加されたものであり、多価アルコールが有する全ての水酸基に(メタ)アクリル酸が付加されたもの、多価アルコールが有する一部の水酸基に(メタ)アクリル酸が付与されたもの等を含む混合物である。 [(Meth) acrylic acid adduct of polyhydric alcohol (A)]
The (meth) acrylic acid adduct (A) of the polyhydric alcohol used in the present invention is a compound in which (meth) acrylic acid is added to the hydroxyl group of the polyhydric alcohol, and all hydroxyl groups of the polyhydric alcohol It is a mixture including one to which (meth) acrylic acid is added, one to which (meth) acrylic acid is added to a part of hydroxyl groups of a polyhydric alcohol, and the like.
本発明に用いる多価アルコールの(メタ)アクリル酸付加物(A)とは、多価アルコールの水酸基に(メタ)アクリル酸が付加されたものであり、多価アルコールが有する全ての水酸基に(メタ)アクリル酸が付加されたもの、多価アルコールが有する一部の水酸基に(メタ)アクリル酸が付与されたもの等を含む混合物である。 [(Meth) acrylic acid adduct of polyhydric alcohol (A)]
The (meth) acrylic acid adduct (A) of the polyhydric alcohol used in the present invention is a compound in which (meth) acrylic acid is added to the hydroxyl group of the polyhydric alcohol, and all hydroxyl groups of the polyhydric alcohol It is a mixture including one to which (meth) acrylic acid is added, one to which (meth) acrylic acid is added to a part of hydroxyl groups of a polyhydric alcohol, and the like.
上記多価アルコールとしては、三価以上のポリオールが好ましいが、二価のアルコールを用いてもよい。また、アルコールの種類としては、例えば、脂肪族アルコール、脂環族アルコール、芳香族アルコール等が挙げられ、中でも、脂肪族アルコールが好ましい。
The polyhydric alcohol is preferably a trihydric or higher polyol, but a dihydric alcohol may be used. Moreover, as a kind of alcohol, aliphatic alcohol, alicyclic alcohol, aromatic alcohol etc. are mentioned, for example, Especially, aliphatic alcohol is preferable.
上記三価以上の脂肪族ポリオールとしては、例えば、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,3,6-ヘキサントリオール、アダマンタントリオール等が挙げられる。これらは、単独でもしくは2種以上を併せて用いることができる。中でもペンタエリスリトール、ジペンタエリスリトールが好ましい。
以下、好適な多価アルコールであるペンタエリスリトールおよびジペンタエリスリトールの(メタ)アクリル酸付加物〔ペンタエリスリトールの(メタ)アクリル酸付加物(A1)およびジペンタエリスリトールの(メタ)アクリル酸付加物(A2)〕について説明する。 Examples of the trivalent or higher aliphatic polyols include pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, trimethylolpropane, trimethylolethane, 1,3,6-hexanetriol, adamantantriol and the like. These can be used alone or in combination of two or more. Among them, pentaerythritol and dipentaerythritol are preferable.
Hereinafter, (meth) acrylic acid adducts of pentaerythritol and dipentaerythritol which are suitable polyhydric alcohols [(meth) acrylic acid adduct of pentaerythritol (A1) and (meth) acrylic acid adduct of dipentaerythritol ((meth) acrylic acid adduct A2)] will be described.
以下、好適な多価アルコールであるペンタエリスリトールおよびジペンタエリスリトールの(メタ)アクリル酸付加物〔ペンタエリスリトールの(メタ)アクリル酸付加物(A1)およびジペンタエリスリトールの(メタ)アクリル酸付加物(A2)〕について説明する。 Examples of the trivalent or higher aliphatic polyols include pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, trimethylolpropane, trimethylolethane, 1,3,6-hexanetriol, adamantantriol and the like. These can be used alone or in combination of two or more. Among them, pentaerythritol and dipentaerythritol are preferable.
Hereinafter, (meth) acrylic acid adducts of pentaerythritol and dipentaerythritol which are suitable polyhydric alcohols [(meth) acrylic acid adduct of pentaerythritol (A1) and (meth) acrylic acid adduct of dipentaerythritol ((meth) acrylic acid adduct A2)] will be described.
[ペンタエリスリトールの(メタ)アクリル酸付加物(A1)]
一般的に、ペンタエリスリトールの(メタ)アクリル酸付加物とは、その成分中に、ペンタエリスリトールが有する4個の水酸基のうち、4個全てに(メタ)アクリル酸が付加されたペンタエリスリトールテトラ(メタ)アクリレート、3個に(メタ)アクリル酸が付加されたペンタエリスリトールトリ(メタ)アクリレートモノオール、2個に(メタ)アクリル酸が付加されたペンタエリスリトールジ(メタ)アクリレートジオール、1個のみに(メタ)アクリル酸が付加されたペンタエリスリトールモノ(メタ)アクリレートトリオールを含む混合物である。
上記ペンタエリスリトールの(メタ)アクリル酸付加物(A1)は、ペンタエリスリトールと(メタ)アクリル酸を公知一般の方法で反応させたものであればよい。 [(Meth) acrylic acid adduct of pentaerythritol (A1)]
Generally, the (meth) acrylic acid adduct of pentaerythritol means, in its component, pentaerythritol tetra (4) having (meth) acrylic acid added to all four of the four hydroxyl groups possessed by pentaerythritol. Meta) Acrylate, Pentaerythritol tri (meth) acrylate monool in which (meth) acrylic acid is added to three, pentaerythritol di (meth) acrylate diol in which (meth) acrylic acid is added to two, only one A mixture containing pentaerythritol mono (meth) acrylate triol to which (meth) acrylic acid is added.
The (meth) acrylic acid adduct (A1) of pentaerythritol may be one obtained by reacting pentaerythritol and (meth) acrylic acid according to a generally known method.
一般的に、ペンタエリスリトールの(メタ)アクリル酸付加物とは、その成分中に、ペンタエリスリトールが有する4個の水酸基のうち、4個全てに(メタ)アクリル酸が付加されたペンタエリスリトールテトラ(メタ)アクリレート、3個に(メタ)アクリル酸が付加されたペンタエリスリトールトリ(メタ)アクリレートモノオール、2個に(メタ)アクリル酸が付加されたペンタエリスリトールジ(メタ)アクリレートジオール、1個のみに(メタ)アクリル酸が付加されたペンタエリスリトールモノ(メタ)アクリレートトリオールを含む混合物である。
上記ペンタエリスリトールの(メタ)アクリル酸付加物(A1)は、ペンタエリスリトールと(メタ)アクリル酸を公知一般の方法で反応させたものであればよい。 [(Meth) acrylic acid adduct of pentaerythritol (A1)]
Generally, the (meth) acrylic acid adduct of pentaerythritol means, in its component, pentaerythritol tetra (4) having (meth) acrylic acid added to all four of the four hydroxyl groups possessed by pentaerythritol. Meta) Acrylate, Pentaerythritol tri (meth) acrylate monool in which (meth) acrylic acid is added to three, pentaerythritol di (meth) acrylate diol in which (meth) acrylic acid is added to two, only one A mixture containing pentaerythritol mono (meth) acrylate triol to which (meth) acrylic acid is added.
The (meth) acrylic acid adduct (A1) of pentaerythritol may be one obtained by reacting pentaerythritol and (meth) acrylic acid according to a generally known method.
上記ペンタエリスリトールの(メタ)アクリル酸付加物(A1)の水酸基価としては、50~300mgKOH/gであることが好ましく、より好ましくは70~200mgKOH/g、特に好ましくは100~160mgKOH/gである。
かかる水酸基価が小さすぎると、低分子量でエチレン性不飽和基数が多く、イソシアネート基と反応しないペンタエリスリトールテトラ(メタ)アクリレートの含有量が多くなるため、硬化時の硬化収縮が大きくなり、カールしやすくなる傾向がある。また、上記水酸基価が大きくなりすぎると、ペンタエリスリトールジ(メタ)アクリレートジオールやペンタエリスリトールモノ(メタ)アクリレートトリオール等のポリオール成分の含有量が増えるために、得られるウレタンアクリレートの分子量が大きくなり、粘度が上昇し、取り扱いにくくなる傾向がある。 The hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol is preferably 50 to 300 mg KOH / g, more preferably 70 to 200 mg KOH / g, and particularly preferably 100 to 160 mg KOH / g. .
If the hydroxyl value is too small, the content of pentaerythritol tetra (meth) acrylate which is low in molecular weight and has a large number of ethylenic unsaturated groups and does not react with isocyanate groups increases, so that curing shrinkage during curing becomes large and curls It tends to be easier. When the hydroxyl value is too large, the content of the polyol component such as pentaerythritol di (meth) acrylate diol or pentaerythritol mono (meth) acrylate triol increases, so that the molecular weight of the resulting urethane acrylate becomes large, The viscosity increases and tends to be difficult to handle.
かかる水酸基価が小さすぎると、低分子量でエチレン性不飽和基数が多く、イソシアネート基と反応しないペンタエリスリトールテトラ(メタ)アクリレートの含有量が多くなるため、硬化時の硬化収縮が大きくなり、カールしやすくなる傾向がある。また、上記水酸基価が大きくなりすぎると、ペンタエリスリトールジ(メタ)アクリレートジオールやペンタエリスリトールモノ(メタ)アクリレートトリオール等のポリオール成分の含有量が増えるために、得られるウレタンアクリレートの分子量が大きくなり、粘度が上昇し、取り扱いにくくなる傾向がある。 The hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol is preferably 50 to 300 mg KOH / g, more preferably 70 to 200 mg KOH / g, and particularly preferably 100 to 160 mg KOH / g. .
If the hydroxyl value is too small, the content of pentaerythritol tetra (meth) acrylate which is low in molecular weight and has a large number of ethylenic unsaturated groups and does not react with isocyanate groups increases, so that curing shrinkage during curing becomes large and curls It tends to be easier. When the hydroxyl value is too large, the content of the polyol component such as pentaerythritol di (meth) acrylate diol or pentaerythritol mono (meth) acrylate triol increases, so that the molecular weight of the resulting urethane acrylate becomes large, The viscosity increases and tends to be difficult to handle.
上記ペンタエリスリトールの(メタ)アクリル酸付加物(A1)の水酸基価は、ペンタエリスリトールの(メタ)アクリル酸付加物の混合物全体での水酸基価を意味するものである。
また、本発明において水酸基価は、JIS K 1557-1に準じた方法で求めた値である。 The hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol mentioned above means the hydroxyl value of the mixture of (meth) acrylic acid adducts of pentaerythritol as a whole.
Further, in the present invention, the hydroxyl value is a value obtained by a method according to JIS K 1557-1.
また、本発明において水酸基価は、JIS K 1557-1に準じた方法で求めた値である。 The hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol mentioned above means the hydroxyl value of the mixture of (meth) acrylic acid adducts of pentaerythritol as a whole.
Further, in the present invention, the hydroxyl value is a value obtained by a method according to JIS K 1557-1.
上記ペンタエリスリトールの(メタ)アクリル酸付加物(A1)の水酸基価の調整は、例えば、ペンタエリスリトールに付加させる(メタ)アクリル酸の比率を調整することにより行うことができる。
The adjustment of the hydroxyl value of the (meth) acrylic acid adduct (A1) of pentaerythritol can be performed, for example, by adjusting the ratio of (meth) acrylic acid to be added to pentaerythritol.
〔ジペンタエリスリトールの(メタ)アクリル酸付加物(A2)〕
一般的に、ジペンタエリスリトールの(メタ)アクリル酸付加物とは、その成分中に、ジペンタエリスリトールが有する6個の水酸基のうち、6個全てに(メタ)アクリル酸が付加されたジペンタエリスリトールヘキサ(メタ)アクリレート、5個に(メタ)アクリル酸が付加されたジペンタエリスリトールペンタ(メタ)アクリレートモノオール、4個に(メタ)アクリル酸が付加されたジペンタエリスリトールテトラ(メタ)アクリレートジオール、3個に(メタ)アクリル酸が付加されたジペンタエリスリトールトリ(メタ)アクリレートトリオール、2個に(メタ)アクリル酸が付加されたジペンタエリスリトールジ(メタ)アクリレートテトラオール、1個のみに(メタ)アクリル酸が付加されたジペンタエリスリトール(メタ)アクリレートペンタオールを含む混合物である。
上記ジペンタエリスリトールの(メタ)アクリル酸付加物(A2)は、ジペンタエリスリトールと(メタ)アクリル酸を公知一般の方法で反応させたものであればよい。 [(Meth) acrylic acid adduct of dipentaerythritol (A2)]
Generally, the (meth) acrylic acid adduct of dipentaerythritol refers to dipentaerythritol in which (meth) acrylic acid is added to all six of the six hydroxyl groups possessed by dipentaerythritol in the component. Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate monool having 5 (meth) acrylic acid added thereto, and dipentaerythritol tetra (meth) acrylate having 4 (meth) acrylic acid added Diol, dipentaerythritol tri (meth) acrylate triol to which (meth) acrylic acid is added to three, dipentaerythritol di (meth) acrylate tetraol to which (meth) acrylic acid is added to two, only one (Meth) acrylic acid added to dipentaerythritol (meth) It is a mixture containing chestnut rate pentaols.
The (meth) acrylic acid adduct (A2) of dipentaerythritol may be any one obtained by reacting dipentaerythritol and (meth) acrylic acid according to a generally known method.
一般的に、ジペンタエリスリトールの(メタ)アクリル酸付加物とは、その成分中に、ジペンタエリスリトールが有する6個の水酸基のうち、6個全てに(メタ)アクリル酸が付加されたジペンタエリスリトールヘキサ(メタ)アクリレート、5個に(メタ)アクリル酸が付加されたジペンタエリスリトールペンタ(メタ)アクリレートモノオール、4個に(メタ)アクリル酸が付加されたジペンタエリスリトールテトラ(メタ)アクリレートジオール、3個に(メタ)アクリル酸が付加されたジペンタエリスリトールトリ(メタ)アクリレートトリオール、2個に(メタ)アクリル酸が付加されたジペンタエリスリトールジ(メタ)アクリレートテトラオール、1個のみに(メタ)アクリル酸が付加されたジペンタエリスリトール(メタ)アクリレートペンタオールを含む混合物である。
上記ジペンタエリスリトールの(メタ)アクリル酸付加物(A2)は、ジペンタエリスリトールと(メタ)アクリル酸を公知一般の方法で反応させたものであればよい。 [(Meth) acrylic acid adduct of dipentaerythritol (A2)]
Generally, the (meth) acrylic acid adduct of dipentaerythritol refers to dipentaerythritol in which (meth) acrylic acid is added to all six of the six hydroxyl groups possessed by dipentaerythritol in the component. Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate monool having 5 (meth) acrylic acid added thereto, and dipentaerythritol tetra (meth) acrylate having 4 (meth) acrylic acid added Diol, dipentaerythritol tri (meth) acrylate triol to which (meth) acrylic acid is added to three, dipentaerythritol di (meth) acrylate tetraol to which (meth) acrylic acid is added to two, only one (Meth) acrylic acid added to dipentaerythritol (meth) It is a mixture containing chestnut rate pentaols.
The (meth) acrylic acid adduct (A2) of dipentaerythritol may be any one obtained by reacting dipentaerythritol and (meth) acrylic acid according to a generally known method.
上記ジペンタエリスリトールの(メタ)アクリル酸付加物(A2)の水酸基価としては、10~120mgKOH/gであることが好ましく、より好ましくは20~80mgKOH/g、特に好ましくは30~70mgKOH/g、殊に好ましくは40~60mgKOH/gである。
かかる水酸基価が小さすぎると、低分子量でエチレン性不飽和基数が多く、イソシアネート基と反応しないジペンタエリスリトールヘキサ(メタ)アクリレートの含有量が多くなるため、硬化時の硬化収縮が大きくなり、カールしやすくなる傾向がある。また、上記水酸基価が大きくなりすぎると、ジペンタエリスリトールテトラ(メタ)アクリレートジオールやジペンタエリスリトールトリ(メタ)アクリレートトリオール等のポリオール成分の含有量が増えるため、得られるウレタンアクリレートの分子量が大きくなり、粘度が上昇するため、取り扱いにくくなる傾向がある。 The hydroxyl value of the (meth) acrylic acid adduct (A2) of dipentaerythritol is preferably 10 to 120 mg KOH / g, more preferably 20 to 80 mg KOH / g, particularly preferably 30 to 70 mg KOH / g, Particularly preferably, it is 40 to 60 mg KOH / g.
If the hydroxyl value is too small, the content of dipentaerythritol hexa (meth) acrylate which has a low molecular weight and a large number of ethylenic unsaturated groups and does not react with the isocyanate group increases, so the curing shrinkage upon curing becomes large, and curling occurs. It tends to be easy to do. If the hydroxyl value is too large, the content of the polyol component such as dipentaerythritol tetra (meth) acrylate diol or dipentaerythritol tri (meth) acrylate triol increases, so the molecular weight of the resulting urethane acrylate becomes large. Since the viscosity is increased, it tends to be difficult to handle.
かかる水酸基価が小さすぎると、低分子量でエチレン性不飽和基数が多く、イソシアネート基と反応しないジペンタエリスリトールヘキサ(メタ)アクリレートの含有量が多くなるため、硬化時の硬化収縮が大きくなり、カールしやすくなる傾向がある。また、上記水酸基価が大きくなりすぎると、ジペンタエリスリトールテトラ(メタ)アクリレートジオールやジペンタエリスリトールトリ(メタ)アクリレートトリオール等のポリオール成分の含有量が増えるため、得られるウレタンアクリレートの分子量が大きくなり、粘度が上昇するため、取り扱いにくくなる傾向がある。 The hydroxyl value of the (meth) acrylic acid adduct (A2) of dipentaerythritol is preferably 10 to 120 mg KOH / g, more preferably 20 to 80 mg KOH / g, particularly preferably 30 to 70 mg KOH / g, Particularly preferably, it is 40 to 60 mg KOH / g.
If the hydroxyl value is too small, the content of dipentaerythritol hexa (meth) acrylate which has a low molecular weight and a large number of ethylenic unsaturated groups and does not react with the isocyanate group increases, so the curing shrinkage upon curing becomes large, and curling occurs. It tends to be easy to do. If the hydroxyl value is too large, the content of the polyol component such as dipentaerythritol tetra (meth) acrylate diol or dipentaerythritol tri (meth) acrylate triol increases, so the molecular weight of the resulting urethane acrylate becomes large. Since the viscosity is increased, it tends to be difficult to handle.
上記ジペンタエリスリトールの(メタ)アクリル酸付加物(A2)の水酸基価は、ジペンタエリスリトールの(メタ)アクリル酸付加物の混合物全体での水酸基価を意味するものである。
The hydroxyl value of the (meth) acrylic acid adduct (A2) of dipentaerythritol mentioned above means the hydroxyl value of the whole mixture of (meth) acrylic acid adducts of dipentaerythritol.
上記ジペンタエリスリトールの(メタ)アクリル酸付加物(A2)の水酸基価の調整は、例えば、ジペンタエリスリトールに付加させる(メタ)アクリル酸の比率を調整することにより行うことができる。
The adjustment of the hydroxyl value of the (meth) acrylic acid adduct (A2) of dipentaerythritol can be performed, for example, by adjusting the ratio of (meth) acrylic acid to be added to dipentaerythritol.
〔ポリイソシアネート系化合物(B)〕
上記多価アルコールの(メタ)アクリル酸付加物(A)の水酸基と反応するポリイソシアネート系化合物(B)としては、通常、ウレタン(メタ)アクリレート系組成物の製造に使用されている、公知一般のポリイソシアネート系化合物を用いることができる。 [Polyisocyanate Compound (B)]
As the polyisocyanate compound (B) which reacts with the hydroxyl group of the (meth) acrylic acid adduct (A) of the polyhydric alcohol, known general compounds generally used for the production of urethane (meth) acrylate compositions These polyisocyanate compounds can be used.
上記多価アルコールの(メタ)アクリル酸付加物(A)の水酸基と反応するポリイソシアネート系化合物(B)としては、通常、ウレタン(メタ)アクリレート系組成物の製造に使用されている、公知一般のポリイソシアネート系化合物を用いることができる。 [Polyisocyanate Compound (B)]
As the polyisocyanate compound (B) which reacts with the hydroxyl group of the (meth) acrylic acid adduct (A) of the polyhydric alcohol, known general compounds generally used for the production of urethane (meth) acrylate compositions These polyisocyanate compounds can be used.
上記のポリイソシアネート系化合物(B)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環式系ポリイソシアネート、あるいはこれらポリイソシアネートの3量体化合物または多量体化合物、アロファネート型ポリイソシアネート、ビュレット型ポリイソシアネート、水分散型ポリイソシアネート等が挙げられる。これらポリイソシアネート系化合物(B)は1種または2種以上組み合わせて使用することができる。
Examples of the polyisocyanate compound (B) include aromatic compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, phenylene diisocyanate and naphthalene diisocyanate. -Based polyisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, aliphatic diisocyanates such as lysine diisocyanate and lysine triisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, etc. Alicyclic polyisocyanates or trimeric compound or multimeric compounds of these polyisocyanates, allophanate type polyisocyanate, buret type polyisocyanate, water dispersible polyisocyanate, and the like. These polyisocyanate compounds (B) can be used alone or in combination of two or more.
また、上記ポリイソシアネート系化合物(B)は、各種ポリオール、例えば、低分子量のポリオールや高分子量のポリオール、中でもポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、(メタ)アクリル系ポリオール等のポリオールとポリイソシアネート系化合物との反応物であってもよい。
The polyisocyanate compound (B) may be selected from various polyols, for example, low molecular weight polyols and high molecular weight polyols, particularly polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, polybutadiene polyols ( It may be a reaction product of a polyol such as a meth) acrylic polyol and a polyisocyanate compound.
これらの中でも、耐黄変性及び汎用性に優れる点で、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族系ジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環式系ジイソシアネートが好ましく、特に好ましくはイソホロンジイソシアネート、水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、ヘキサメチレンジイソシアネートであり、更に好ましくは、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートである。
Among these, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate and lysine diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene, in terms of excellent yellowing resistance and versatility. Alicyclic diisocyanates such as diisocyanates are preferred, and isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate and hexamethylene diisocyanate are more preferred, and isophorone diisocyanate and hexamethylene diisocyanate are more preferred.
〔ウレタン(メタ)アクリレート系組成物[I]の製造方法〕
前述のとおり、本発明で用いられるウレタン(メタ)アクリレート系組成物[I]は、多価アルコールの(メタ)アクリル酸付加物(A)中の水酸基と、ポリイソシアネート系化合物(B)のイソシアネート基とを反応させて得られるものである。 [Method of producing urethane (meth) acrylate composition [I]]
As described above, the urethane (meth) acrylate composition [I] used in the present invention is the hydroxyl group in the (meth) acrylic acid adduct of polyhydric alcohol (A) and the isocyanate of the polyisocyanate compound (B) It is obtained by reacting a group.
前述のとおり、本発明で用いられるウレタン(メタ)アクリレート系組成物[I]は、多価アルコールの(メタ)アクリル酸付加物(A)中の水酸基と、ポリイソシアネート系化合物(B)のイソシアネート基とを反応させて得られるものである。 [Method of producing urethane (meth) acrylate composition [I]]
As described above, the urethane (meth) acrylate composition [I] used in the present invention is the hydroxyl group in the (meth) acrylic acid adduct of polyhydric alcohol (A) and the isocyanate of the polyisocyanate compound (B) It is obtained by reacting a group.
具体的には、上記のポリイソシアネート系化合物(B)のイソシアネート基と多価アルコールの(メタ)アクリル酸付加物(A)の水酸基との官能基モル比を調整し、必要に応じてジブチル錫ジラウレート等の触媒を用いて、ポリイソシアネート系化合物(B)と多価アルコールの(メタ)アクリル酸付加物(A)とを反応させることによりウレタン(メタ)アクリレート系組成物[I]を得ることができる。
なお、本発明のウレタン(メタ)アクリレート系組成物は、多価アルコールのアクリル酸付加物(A)として水酸基価が60mgKOH/g以上のジペンタエリスリトールのアクリル酸付加物(A2)と、キシリレンジイソシアネート、水添キシリレンジイソシアネート及びこれらの誘導体からなる群より選択される少なくとも1種のポリイソシアネート系化合物とが反応したウレタン(メタ)アクレート系組成物を除くものである。 Specifically, the functional group molar ratio of the isocyanate group of the above-mentioned polyisocyanate compound (B) and the hydroxyl group of the (meth) acrylic acid adduct of polyhydric alcohol (A) is adjusted, and, if necessary, dibutyltin A urethane (meth) acrylate composition [I] is obtained by reacting a polyisocyanate compound (B) and a (meth) acrylic acid adduct of a polyhydric alcohol (A) using a catalyst such as dilaurate. Can.
In the urethane (meth) acrylate composition of the present invention, an acrylic acid adduct of dipentaerythritol (A2) having a hydroxyl value of 60 mg KOH / g or more as an acrylic acid adduct of polyhydric alcohol (A), and xylylene It excludes the urethane (meth) acrylate type composition which the at least 1 sort (s) of polyisocyanate system compound selected from the group which consists of an isocyanate, hydrogenated xylylene diisocyanate, and these derivatives reacted.
なお、本発明のウレタン(メタ)アクリレート系組成物は、多価アルコールのアクリル酸付加物(A)として水酸基価が60mgKOH/g以上のジペンタエリスリトールのアクリル酸付加物(A2)と、キシリレンジイソシアネート、水添キシリレンジイソシアネート及びこれらの誘導体からなる群より選択される少なくとも1種のポリイソシアネート系化合物とが反応したウレタン(メタ)アクレート系組成物を除くものである。 Specifically, the functional group molar ratio of the isocyanate group of the above-mentioned polyisocyanate compound (B) and the hydroxyl group of the (meth) acrylic acid adduct of polyhydric alcohol (A) is adjusted, and, if necessary, dibutyltin A urethane (meth) acrylate composition [I] is obtained by reacting a polyisocyanate compound (B) and a (meth) acrylic acid adduct of a polyhydric alcohol (A) using a catalyst such as dilaurate. Can.
In the urethane (meth) acrylate composition of the present invention, an acrylic acid adduct of dipentaerythritol (A2) having a hydroxyl value of 60 mg KOH / g or more as an acrylic acid adduct of polyhydric alcohol (A), and xylylene It excludes the urethane (meth) acrylate type composition which the at least 1 sort (s) of polyisocyanate system compound selected from the group which consists of an isocyanate, hydrogenated xylylene diisocyanate, and these derivatives reacted.
かかるポリイソシアネート系化合物(B)と多価アルコールの(メタ)アクリル酸付加物(A)との仕込みの反応モル比〔(B):(A)〕は、1:2~1:5程度である。
The reaction molar ratio [(B) :( A)] of the preparation of the polyisocyanate compound (B) and the (meth) acrylic acid adduct (A) of polyhydric alcohol is about 1: 2 to 1: 5. is there.
かかる反応モル比において、多価アルコールの(メタ)アクリル酸付加物(A)の割合が多すぎると、ポリイソシアネート系化合物(B)と反応しない低分子量モノマー(多価アルコールの有する全ての水酸基に(メタ)アクリル酸が付加したもの)の含有量が多くなり、硬化収縮が大きくなるため硬化塗膜のカールが大きくなる傾向があり、多価アルコールの(メタ)アクリル酸付加物(A)の割合が少なすぎると、未反応のポリイソシアネート系化合物(B)が残存し、硬化塗膜の安定性や安全性が低下する傾向がある。
In such a reaction molar ratio, when the proportion of the (meth) acrylic acid adduct of polyhydric alcohol (A) is too large, a low molecular weight monomer which does not react with the polyisocyanate compound (B) (all hydroxyl groups of polyhydric alcohol) The content of (meth) acrylic acid added is large, and the curing shrinkage is large, so the curl of the cured coating film tends to be large, and (meth) acrylic acid adduct of polyhydric alcohol (A) If the proportion is too small, unreacted polyisocyanate compound (B) tends to remain, and the stability and safety of the cured coating film tend to be reduced.
多価アルコールの(メタ)アクリル酸付加物(A)とポリイソシアネート系化合物(B)との反応は、通常、上記多価アルコールの(メタ)アクリル酸付加物(A)、ポリイソシアネート系化合物(B)を、反応器に一括または別々に仕込み反応させればよい。
The reaction of the (meth) acrylic acid adduct (A) of the polyhydric alcohol with the polyisocyanate compound (B) is generally carried out by the (meth) acrylic acid adduct of the above polyhydric alcohol (A), a polyisocyanate compound B) may be charged to the reactor all at once or separately and reacted.
上記反応においては、反応を促進する目的で触媒を用いることも好ましく、かかる触媒としては、例えばジブチル錫ジラウレート、ジブチル錫ジアセテート、トリメチル錫ヒドロキシド、テトラ-n-ブチル錫、ビスアセチルアセトナート亜鉛、ジルコニウムトリス(アセチルアセトネート)エチルアセトアセテート、ジルコニウムテトラアセチルアセトネート等の有機金属化合物、オクチル酸錫、オクテン酸錫、ヘキサン酸亜鉛、オクテン酸亜鉛、ステアリン酸亜鉛、2-エチルヘキサン酸ジルコニウム、ナフテン酸コバルト、塩化第1錫、塩化第2錫、酢酸カリウム等の金属塩、トリエチルアミン、トリエチレンジアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン、N,N,N’,N’-テトラメチル-1,3-ブタンジアミン、N-メチルモルホリン、N-エチルモルホリン等のアミン系触媒、硝酸ビスマス、臭化ビスマス、ヨウ化ビスマス、硫化ビスマス等の他、ジブチルビスマスジラウレート、ジオクチルビスマスジラウレート等の有機ビスマス化合物や、2-エチルヘキサン酸ビスマス塩、ナフテン酸ビスマス塩、イソデカン酸ビスマス塩、ネオデカン酸ビスマス塩、ラウリル酸ビスマス塩、マレイン酸ビスマス塩、ステアリン酸ビスマス塩、オレイン酸ビスマス塩、リノール酸ビスマス塩、酢酸ビスマス塩、ビスマスリビスネオデカノエート、ジサリチル酸ビスマス塩、ジ没食子酸ビスマス塩等の有機酸ビスマス塩等のビスマス系触媒等が挙げられ、中でも、ジブチル錫ジラウレート、1,8-ジアザビシクロ[5,4,0]ウンデセンが好適である。これらは単独でもしくは2種以上を併せて用いることができる。
In the above reaction, it is also preferable to use a catalyst for the purpose of promoting the reaction, and examples of such a catalyst include dibutyltin dilaurate, dibutyltin diacetate, trimethyltin hydroxide, tetra-n-butyltin and zinc bisacetylacetonate. , Organometallic compounds such as zirconium tris (acetylacetonate) ethylacetoacetate, zirconium tetraacetylacetonate, tin octylate, tin octenate, zinc hexanoate, zinc octenate, zinc stearate, zirconium 2-ethylhexanoate, Metal salts such as cobalt naphthenate, stannous chloride, stannous chloride, potassium acetate, etc., triethylamine, triethylenediamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5 , 4 0] Amine based catalysts such as undecene, N, N, N ', N'-tetramethyl-1,3-butanediamine, N-methylmorpholine, N-ethylmorpholine, bismuth nitrate, bismuth bromide, bismuth iodide, In addition to bismuth sulfide and the like, organic bismuth compounds such as dibutyl bismuth dilaurate and dioctyl bismuth dilaurate, bismuth 2-ethylhexanoate, bismuth naphthenate, bismuth isodecanoate, bismuth neodecanoate, bismuth laurate and maleate Bismuth-based catalysts such as bismuth salts of organic acids such as bismuth salts, bismuth stearate, bismuth oleate, bismuth linoleate, bismuth acetate, bismuth bis bis neodecanoate, bismuth disalicylate, bismuth di gallate, and the like. Etc., among which dibutyltin Rate, 1,8-diazabicyclo [5,4,0] undecene is preferred. These can be used alone or in combination of two or more.
<重合禁止剤[III’]>
また、上記反応においては、更に重合禁止剤[III’]を用いることが好ましい。なお、上記反応で重合禁止剤[III’]を用いる場合は、後述する重合禁止剤[III]の含有量に含めるものとする。 <Polymerization inhibitor [III ']>
In the above reaction, it is preferable to further use a polymerization inhibitor [III ']. In addition, when using polymerization inhibitor [III '] by the said reaction, it shall be included in content of polymerization inhibitor [III] mentioned later.
また、上記反応においては、更に重合禁止剤[III’]を用いることが好ましい。なお、上記反応で重合禁止剤[III’]を用いる場合は、後述する重合禁止剤[III]の含有量に含めるものとする。 <Polymerization inhibitor [III ']>
In the above reaction, it is preferable to further use a polymerization inhibitor [III ']. In addition, when using polymerization inhibitor [III '] by the said reaction, it shall be included in content of polymerization inhibitor [III] mentioned later.
上記重合禁止剤[III’]としては、重合禁止剤として用いられている公知一般のものを使用することができ、例えば、p-ベンゾキノン、ナフトキノン、トルキノン、2,5-ジフェニル-p-ベンゾキノン等のキノン類、ハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、メチルハイドロキノン、モノ-t-ブチルハイドロキノン、4-メトキシフェノール、2,6-ジ-t-ブチルクレゾール、p-t-ブチルカテコール等のフェノール類を挙げることができる。中でもフェノール類が好ましく、4-メトキシフェノール、2,6-ジ-t-ブチルクレゾールが特に好ましい。これらは単独でもしくは2種以上を併せて用いることができる。
As the above-mentioned polymerization inhibitor [III '], publicly known general agents used as a polymerization inhibitor can be used, and examples thereof include p-benzoquinone, naphthoquinone, toluquinone, 2,5-diphenyl-p-benzoquinone and the like. Quinones, hydroquinone, 2,5-di-t-butylhydroquinone, methylhydroquinone, mono-t-butylhydroquinone, 4-methoxyphenol, 2,6-di-t-butylcresol, p-t-butylcatechol, etc. And phenols. Among them, phenols are preferable, and 4-methoxyphenol and 2,6-di-t-butylcresol are particularly preferable. These can be used alone or in combination of two or more.
上記反応における重合禁止剤[III’]の含有量は、多価アルコールの(メタ)アクリル酸付加物(A)及びポリイソシアネート系化合物(B)の合計100重量部に対して、0.005~0.095重量部であり、好ましくは0.01~0.08重量部である。かかる重合禁止剤[III’]の含有量が少なすぎると、上記反応中にアクリロイル基の重合が起こる可能性がある。更には、ウレタン(メタ)アクリレート系組成物[I]の液安定性が低下する傾向があり、保存中にゲル化しやすくなる傾向がある。また、重合禁止剤[III’]の含有量が多すぎると、着色が起こったり、活性エネルギー線を照射しても硬化しにくくなる傾向がある。
The content of the polymerization inhibitor [III '] in the above reaction is 0.005 to about the total 100 parts by weight of the (meth) acrylic acid adduct of polyhydric alcohol (A) and the polyisocyanate compound (B). It is 0.095 parts by weight, preferably 0.01 to 0.08 parts by weight. If the content of the polymerization inhibitor [III '] is too small, polymerization of acryloyl group may occur during the reaction. Furthermore, the liquid stability of the urethane (meth) acrylate composition [I] tends to decrease, and the composition tends to gel during storage. On the other hand, when the content of the polymerization inhibitor [III '] is too large, coloring tends to occur, and curing tends to be difficult even when irradiated with active energy rays.
また、上記反応においては、イソシアネート基に対して反応する官能基を有しない有機溶剤、例えば、酢酸エチル、酢酸ブチル、酢酸2-メトキシ-1-メチルエチル等のエステル類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、キシレン等の芳香族類等の有機溶剤を用いることができる。
In the above reaction, an organic solvent having no functional group reactive to an isocyanate group, for example, esters such as ethyl acetate, butyl acetate, 2-methoxy-1-methylethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, etc. And organic solvents such as aromatics such as toluene and xylene.
上記反応の反応温度は、通常30~90℃、好ましくは40~80℃であり、反応時間は、通常2~30時間、好ましくは3~20時間である。
The reaction temperature of the above reaction is usually 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is usually 2 to 30 hours, preferably 3 to 20 hours.
かくして、本発明で用いられるウレタン(メタ)アクリレート系組成物[I]が得られる。
上記ウレタン(メタ)アクリレート系組成物[I]は、複数種のウレタン(メタ)アクリレートを含有し、また、ポリイソシアネート系化合物(B)と未反応の多価アルコールの(メタ)アクリル酸付加物(A)、更には多価アルコールの(メタ)アクリル酸付加物(A)の重合体等を含有することがある。 Thus, the urethane (meth) acrylate composition [I] used in the present invention is obtained.
The above urethane (meth) acrylate composition [I] contains plural kinds of urethane (meth) acrylates, and (meth) acrylic acid adduct of polyisocyanate compound (B) and unreacted polyhydric alcohol The polymer (A) may further contain, for example, a polymer of a (meth) acrylic acid adduct of a polyhydric alcohol (A).
上記ウレタン(メタ)アクリレート系組成物[I]は、複数種のウレタン(メタ)アクリレートを含有し、また、ポリイソシアネート系化合物(B)と未反応の多価アルコールの(メタ)アクリル酸付加物(A)、更には多価アルコールの(メタ)アクリル酸付加物(A)の重合体等を含有することがある。 Thus, the urethane (meth) acrylate composition [I] used in the present invention is obtained.
The above urethane (meth) acrylate composition [I] contains plural kinds of urethane (meth) acrylates, and (meth) acrylic acid adduct of polyisocyanate compound (B) and unreacted polyhydric alcohol The polymer (A) may further contain, for example, a polymer of a (meth) acrylic acid adduct of a polyhydric alcohol (A).
上記ウレタン(メタ)アクリレート系組成物[I]の重量平均分子量としては900~30,000であることが好ましく、更に好ましくは1,000~20,000、特に好ましくは1,100~10,000、殊に好ましくは、1,200~5,000である。
かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The weight average molecular weight of the above urethane (meth) acrylate composition [I] is preferably 900 to 30,000, more preferably 1,000 to 20,000, and particularly preferably 1,100 to 10,000. Particularly preferably, it is 1,200 to 5,000.
When the weight-average molecular weight is too small, the cured coating tends to be brittle, and when it is too large, the viscosity becomes high and it becomes difficult to handle.
かかる重量平均分子量が小さすぎると硬化塗膜が脆くなる傾向があり、大きすぎると高粘度となり取り扱いにくくなる傾向がある。 The weight average molecular weight of the above urethane (meth) acrylate composition [I] is preferably 900 to 30,000, more preferably 1,000 to 20,000, and particularly preferably 1,100 to 10,000. Particularly preferably, it is 1,200 to 5,000.
When the weight-average molecular weight is too small, the cured coating tends to be brittle, and when it is too large, the viscosity becomes high and it becomes difficult to handle.
なお、本発明における重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフ(Waters社製、「ACQUITY APCシステム」)に、カラム:ACQUITY APC XT 450×1本、ACQUITY APC XT 200×1本、ACQUITY APC XT 45×2本の4本を直列にして用いることにより測定される。
The weight average molecular weight in the present invention is a weight average molecular weight based on standard polystyrene molecular weight conversion, and in a high performance liquid chromatograph (manufactured by Waters, “ACQUITY APC system”), columns: ACQUITY APC XT 450 × 1, ACQUITY APC It is measured by using four XT 200 × 1 and ACQUITY APC XT 45 × 2 in series.
また、ウレタン(メタ)アクリレート系組成物[I]の60℃における粘度は、500~300,000mPa・sであることが好ましく、特には750~100,000mPa・s、更には1,000~30,000mPa・sであることが好ましい。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
なお、粘度の測定法はE型粘度計による。 The viscosity of the urethane (meth) acrylate composition [I] at 60 ° C. is preferably 500 to 300,000 mPa · s, in particular 750 to 100,000 mPa · s, and further preferably 1,000 to 30. The viscosity is preferably 1,000 mPa · s. If the viscosity is outside the above range, the coatability tends to decrease.
In addition, the measuring method of a viscosity is based on E-type viscosity meter.
なお、粘度の測定法はE型粘度計による。 The viscosity of the urethane (meth) acrylate composition [I] at 60 ° C. is preferably 500 to 300,000 mPa · s, in particular 750 to 100,000 mPa · s, and further preferably 1,000 to 30. The viscosity is preferably 1,000 mPa · s. If the viscosity is outside the above range, the coatability tends to decrease.
In addition, the measuring method of a viscosity is based on E-type viscosity meter.
本発明で用いられるウレタン(メタ)アクリレート系組成物[I]におけるウレタン(メタ)アクリレートの含有量は、好ましくは10重量%以上、特に好ましくは20重量%以上、更に好ましくは30重量%以上、殊に好ましくは50重量%以上である。なお、上限は通常80重量%である。
The content of urethane (meth) acrylate in the urethane (meth) acrylate composition [I] used in the present invention is preferably 10% by weight or more, particularly preferably 20% by weight or more, and further preferably 30% by weight or more. Particularly preferably, it is 50% by weight or more. The upper limit is usually 80% by weight.
<フッ素含有(メタ)アクリレート系化合物[II]>
本発明で用いられるフッ素含有(メタ)アクリレート系化合物[II]とは、(メタ)アクリロイル基及びフッ素原子を有する化合物である。また、(メタ)アクリロイル基及びフッ素原子以外の構造は特に限定されず、更には酸素、窒素、ケイ素、硫黄等のヘテロ原子を有していてもよい。 <Fluorine-containing (meth) acrylate compound [II]>
The fluorine-containing (meth) acrylate compound [II] used in the present invention is a compound having a (meth) acryloyl group and a fluorine atom. The structure other than the (meth) acryloyl group and the fluorine atom is not particularly limited, and may further have a heteroatom such as oxygen, nitrogen, silicon, sulfur and the like.
本発明で用いられるフッ素含有(メタ)アクリレート系化合物[II]とは、(メタ)アクリロイル基及びフッ素原子を有する化合物である。また、(メタ)アクリロイル基及びフッ素原子以外の構造は特に限定されず、更には酸素、窒素、ケイ素、硫黄等のヘテロ原子を有していてもよい。 <Fluorine-containing (meth) acrylate compound [II]>
The fluorine-containing (meth) acrylate compound [II] used in the present invention is a compound having a (meth) acryloyl group and a fluorine atom. The structure other than the (meth) acryloyl group and the fluorine atom is not particularly limited, and may further have a heteroatom such as oxygen, nitrogen, silicon, sulfur and the like.
上記フッ素含有(メタ)アクリレート系化合物[II]としては、(メタ)アクリル酸アルキルエステルのアルキル基にフッ素原子が結合した化合物であることが好ましく、例えば、ダイキン工業社製「オプツールDAC」、「オプツールDAC-HP」、DIC社製「メガファックRS-75」、「メガファックRS-76」、「メガファックRS-91C」、「ディフェンサTF3028」、「ディフェンサTF3001」、「ディフェンサTF3000」、新中村化学社製「SUA1900L10」、「SUA1900L6」、日本合成化学工業社製「UT3971」、信越化学工業社製「KNS5300」、「KY-1203」、大阪有機化学工業社製「ビスコート3F」、「ビスコート4F」、「ビスコート8F」、「ビスコート8FM」、「ビスコート13F」、AGC社製「IRX-380」等が挙げられる。これらのフッ素含有(メタ)アクリレート系化合物[II]は、単独でもしくは2種以上併せて用いることができる。
The fluorine-containing (meth) acrylate compound [II] is preferably a compound in which a fluorine atom is bonded to an alkyl group of a (meth) acrylic acid alkyl ester, for example, “Optool DAC” manufactured by Daikin Industries, Ltd. Optool DAC-HP, DIC's "Megafuck RS-75", "Megafuck RS-76", "Megafuck RS-91C", "Difensa TF3028", "Difensa TF3001", "Difensa TF3000", Shin-Nakamura “SUA1900L10” and “SUA1900L6” manufactured by Chemical Company, “UT3971” manufactured by Japan Synthetic Chemical Industry Co., Ltd. “KNS5300” and “KY-1203” manufactured by Shin-Etsu Chemical Co., Ltd. "," Viscoat 8F "," Biscoe " 8FM "," BISCOAT 13F ", AGC Corp." IRX-380 ", and the like. These fluorine-containing (meth) acrylate compounds [II] can be used alone or in combination of two or more.
上記のフッ素含有(メタ)アクリレート系化合物[II]の中でも、より防汚性能に優れる点で、構造中にシロキサン結合を有するフッ素含有(メタ)アクリレート系化合物が好ましく、「KY-1203」が特に好ましい。
Among the above-mentioned fluorine-containing (meth) acrylate compounds [II], fluorine-containing (meth) acrylate compounds having a siloxane bond in the structure are preferable in that they are more excellent in antifouling performance, and “KY-1203” is particularly preferable preferable.
また、フッ素含有(メタ)アクリレート系化合物[II]の重量平均分子量は、1,000~100,000であることが好ましく、より好ましくは5,000~70,000、特に好ましくは10,000~50,000、更に好ましくは15,000~40,000である。フッ素含有(メタ)アクリレート系化合物[II]の重量平均分子量が小さすぎると耐擦傷性や防汚性能が低下する傾向があり、重量平均分子量が大きすぎるとウレタン(メタ)アクリレート系組成物[I]や溶剤との相溶性が低下する傾向がある。
The weight average molecular weight of the fluorine-containing (meth) acrylate compound [II] is preferably 1,000 to 100,000, more preferably 5,000 to 70,000, and particularly preferably 10,000 to 1,000. It is preferably 50,000, more preferably 15,000 to 40,000. When the weight average molecular weight of the fluorine-containing (meth) acrylate compound [II] is too small, the scratch resistance and the antifouling performance tend to decrease, and when the weight average molecular weight is too large, the urethane (meth) acrylate composition [I The compatibility with the solvent and the solvent tends to be reduced.
本発明の活性エネルギー線硬化性樹脂組成物における上記フッ素含有(メタ)アクリレート系化合物[II]の含有量は、ウレタン(メタ)アクリレート系組成物[I]100重量部に対して、通常0.01~5重量部であり、好ましくは0.05~3重量部であり、特に好ましくは0.1~1重量部である。フッ素含有(メタ)アクリレート系化合物[II]の含有量が少なすぎると、耐擦傷性と防汚性能が低下する傾向があり、含有量が多すぎると、ウレタン(メタ)アクリレート系組成物[I]との相溶性が低下する傾向がある。
The content of the fluorine-containing (meth) acrylate compound [II] in the active energy ray curable resin composition of the present invention is usually 0. 0 parts by weight based on 100 parts by weight of the urethane (meth) acrylate composition [I]. The content is from 01 to 5 parts by weight, preferably from 0.05 to 3 parts by weight, and particularly preferably from 0.1 to 1 parts by weight. When the content of the fluorine-containing (meth) acrylate compound [II] is too small, the scratch resistance and the antifouling performance tend to decrease, and when the content is too large, the urethane (meth) acrylate composition [I There is a tendency for the compatibility with
<重合禁止剤[III]>
本発明の活性エネルギー線硬化性樹脂組成物は、一般的な活性エネルギー線硬化性樹脂組成物よりも多く重合禁止剤[III]を含有するものである。通常、活性エネルギー線硬化性樹脂組成物においては、重合禁止剤[III]を多く含有させることにより活性エネルギー線硬化性を低下させてしまったり、着色してしまったりする等の理由から、必要以上に重合禁止剤[III]を含有させないものであり、重合禁止剤[III]の含有量は、前述のウレタン(メタ)アクリレート系組成物[I]の製造時に通常用いられる程度の量である。しかし、本発明は、特定のウレタン(メタ)アクリレート系組成物[I]とフッ素含有(メタ)アクリレート系化合物[II]を含有する活性エネルギー線硬化性樹脂組成物において、通常、活性エネルギー線硬化性樹脂組成物に用いられる量よりも多く重合禁止剤[III]を含有させることで、活性エネルギー線硬化性の低下及び着色の問題もなく、活性エネルギー線硬化性樹脂組成物の液安定性が向上し、保存中のゲル化を抑制する効果を奏するものである。 <Polymerization inhibitor [III]>
The active energy ray curable resin composition of the present invention contains the polymerization inhibitor [III] more than a general active energy ray curable resin composition. Usually, in the active energy ray-curable resin composition, the addition of a large amount of the polymerization inhibitor [III] causes reduction in active energy ray curability, coloring, etc. The content of the polymerization inhibitor [III] is an amount such that the content of the polymerization inhibitor [III] is generally used in the production of the above-mentioned urethane (meth) acrylate composition [I]. However, in the present invention, in the active energy ray curable resin composition containing the specific urethane (meth) acrylate composition [I] and the fluorine-containing (meth) acrylate compound [II], generally, the active energy ray curing is carried out The content of the polymerization inhibitor [III] is larger than the amount used for the water-soluble resin composition, the liquid energy stability of the active energy ray-curable resin composition is free from the problem of decrease in the active energy ray curability and coloring problems The effect is to improve and to suppress gelation during storage.
本発明の活性エネルギー線硬化性樹脂組成物は、一般的な活性エネルギー線硬化性樹脂組成物よりも多く重合禁止剤[III]を含有するものである。通常、活性エネルギー線硬化性樹脂組成物においては、重合禁止剤[III]を多く含有させることにより活性エネルギー線硬化性を低下させてしまったり、着色してしまったりする等の理由から、必要以上に重合禁止剤[III]を含有させないものであり、重合禁止剤[III]の含有量は、前述のウレタン(メタ)アクリレート系組成物[I]の製造時に通常用いられる程度の量である。しかし、本発明は、特定のウレタン(メタ)アクリレート系組成物[I]とフッ素含有(メタ)アクリレート系化合物[II]を含有する活性エネルギー線硬化性樹脂組成物において、通常、活性エネルギー線硬化性樹脂組成物に用いられる量よりも多く重合禁止剤[III]を含有させることで、活性エネルギー線硬化性の低下及び着色の問題もなく、活性エネルギー線硬化性樹脂組成物の液安定性が向上し、保存中のゲル化を抑制する効果を奏するものである。 <Polymerization inhibitor [III]>
The active energy ray curable resin composition of the present invention contains the polymerization inhibitor [III] more than a general active energy ray curable resin composition. Usually, in the active energy ray-curable resin composition, the addition of a large amount of the polymerization inhibitor [III] causes reduction in active energy ray curability, coloring, etc. The content of the polymerization inhibitor [III] is an amount such that the content of the polymerization inhibitor [III] is generally used in the production of the above-mentioned urethane (meth) acrylate composition [I]. However, in the present invention, in the active energy ray curable resin composition containing the specific urethane (meth) acrylate composition [I] and the fluorine-containing (meth) acrylate compound [II], generally, the active energy ray curing is carried out The content of the polymerization inhibitor [III] is larger than the amount used for the water-soluble resin composition, the liquid energy stability of the active energy ray-curable resin composition is free from the problem of decrease in the active energy ray curability and coloring problems The effect is to improve and to suppress gelation during storage.
本発明に用いる重合禁止剤[III]としては、公知一般のものを使用することができ、具体的には、前述の重合禁止剤[III’]で列挙した化合物と同じものを用いることができる。また、活性エネルギー線硬化性樹脂組成物に配合する重合禁止剤[III]は、前記ウレタン(メタ)アクリレート系組成物[I]の製造で用いた重合禁止剤[III’]と同じ化合物を用いることが好ましいが、互いに異なる化合物を用いてもよい。
As the polymerization inhibitor [III] used in the present invention, known general ones can be used, and specifically, the same compounds as the compounds listed in the above-mentioned polymerization inhibitor [III '] can be used . Further, as the polymerization inhibitor [III] to be added to the active energy ray curable resin composition, the same compound as the polymerization inhibitor [III '] used in the production of the urethane (meth) acrylate composition [I] is used Although it is preferred, different compounds may be used.
また、上記重合禁止剤[III]の含有量は、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、重量基準で、800~10,000ppmであることが重要であり、好ましくは1,000~8,000ppm、より好ましくは1,500~7,000ppm、更に好ましくは2,000~6,000ppm、特に好ましくは3,100~5,000ppmである。かかる重合禁止剤[III]の含有量が少なすぎると、硬化前の活性エネルギー線硬化性樹脂組成物の液安定性が低下し、保存中にゲル化しやすくなる。また、重合禁止剤[III]の含有量が多すぎると、活性エネルギー線を照射しても硬化しにくくなる。なお、前記ウレタン(メタ)アクリレート系組成物[I]の製造で重合禁止剤[III’]を用いた場合は、この重合禁止剤[III’]の含有量も、本発明の重合禁止剤[III]の含有量に含む。
In addition, the content of the polymerization inhibitor [III] is relative to the total of the urethane (meth) acrylate composition [I], the fluorine-containing (meth) acrylate compound [II] and the polymerization inhibitor [III]. It is important that it is 800 to 10,000 ppm by weight, preferably 1,000 to 8,000 ppm, more preferably 1,500 to 7,000 ppm, still more preferably 2,000 to 6,000 ppm, in particular Preferably, it is 3,100 to 5,000 ppm. When the content of the polymerization inhibitor [III] is too small, the liquid stability of the active energy ray-curable resin composition before curing is reduced, and the composition becomes easy to gel during storage. In addition, when the content of the polymerization inhibitor [III] is too large, it becomes difficult to cure even when irradiated with an active energy ray. In addition, when polymerization inhibitor [III '] is used by manufacture of said urethane (meth) acrylate type composition [I], content of this polymerization inhibitor [III'] is also the polymerization inhibitor of this invention [ Included in the content of III].
<着色防止剤[IV]>
本発明においては、ウレタン(メタ)アクリレート系組成物[I]の着色を防止し、上記活性エネルギー線硬化性樹脂組成物の液の保存安定をより優れたものとするために、更に着色防止剤[IV]を含有することが好ましい。
上記着色防止剤[IV]としては、例えば、トリフェニルホスフィン等のアリールホスフィン化合物、1,1,3,3-テトラメチルジシラザン、1,1,3,3,3-ヘキサメチルジシラザン等のシラザン化合物、フェニルヒドラジン、ベンゾフェニルヒドロラジン、ジアセチルヒドラジン等のヒドラジン化合物等が挙げられる。これら着色防止剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。これらの中でも、ウレタン(メタ)アクリレート系組成物[I]の着色をより防止できる点で、アリールホスフィン化合物が好ましく、トリフェニルホスフィンが特に好ましい。 <Colorant [IV]>
In the present invention, in order to prevent the coloration of the urethane (meth) acrylate composition [I] and to make the storage stability of the liquid of the active energy ray curable resin composition more excellent, a coloring inhibitor is further added. It is preferable to contain [IV].
Examples of the above coloring inhibitors [IV] include aryl phosphine compounds such as triphenyl phosphine, 1,1,3,3-tetramethyldisilazane, 1,1,3,3,3-hexamethyldisilazane and the like. Examples thereof include silazane compounds, and hydrazine compounds such as phenylhydrazine, benzophenylhydrolazine, and diacetylhydrazine. One of these coloring inhibitors may be used alone, or two or more thereof may be used in combination. Among these, aryl phosphine compounds are preferable, and triphenyl phosphine is particularly preferable, in that the coloring of the urethane (meth) acrylate composition [I] can be further prevented.
本発明においては、ウレタン(メタ)アクリレート系組成物[I]の着色を防止し、上記活性エネルギー線硬化性樹脂組成物の液の保存安定をより優れたものとするために、更に着色防止剤[IV]を含有することが好ましい。
上記着色防止剤[IV]としては、例えば、トリフェニルホスフィン等のアリールホスフィン化合物、1,1,3,3-テトラメチルジシラザン、1,1,3,3,3-ヘキサメチルジシラザン等のシラザン化合物、フェニルヒドラジン、ベンゾフェニルヒドロラジン、ジアセチルヒドラジン等のヒドラジン化合物等が挙げられる。これら着色防止剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。これらの中でも、ウレタン(メタ)アクリレート系組成物[I]の着色をより防止できる点で、アリールホスフィン化合物が好ましく、トリフェニルホスフィンが特に好ましい。 <Colorant [IV]>
In the present invention, in order to prevent the coloration of the urethane (meth) acrylate composition [I] and to make the storage stability of the liquid of the active energy ray curable resin composition more excellent, a coloring inhibitor is further added. It is preferable to contain [IV].
Examples of the above coloring inhibitors [IV] include aryl phosphine compounds such as triphenyl phosphine, 1,1,3,3-tetramethyldisilazane, 1,1,3,3,3-hexamethyldisilazane and the like. Examples thereof include silazane compounds, and hydrazine compounds such as phenylhydrazine, benzophenylhydrolazine, and diacetylhydrazine. One of these coloring inhibitors may be used alone, or two or more thereof may be used in combination. Among these, aryl phosphine compounds are preferable, and triphenyl phosphine is particularly preferable, in that the coloring of the urethane (meth) acrylate composition [I] can be further prevented.
また、上記着色防止剤[IV]の含有量は、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、重量基準で、通常10~10,000ppmであり、好ましくは100~5,000ppm、更に好ましくは250~2,000ppmである。
In addition, the content of the above-mentioned coloring inhibitor [IV] is the total of urethane (meth) acrylate composition [I], fluorine-containing (meth) acrylate compound [II] and polymerization inhibitor [III], The concentration is usually 10 to 10,000 ppm, preferably 100 to 5,000 ppm, and more preferably 250 to 2,000 ppm by weight.
〔その他の任意成分〕
本発明の活性エネルギー線硬化性樹脂組成物には、更に光重合開始剤を含有することが好ましい。また、本発明の効果を損なわない範囲で、ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマー、アクリル系樹脂、表面調整剤、レベリング剤等を配合することができ、更にはフィラー、染顔料、油、可塑剤、ワックス類、乾燥剤、分散剤、湿潤剤、ゲル化剤、安定剤、消泡剤、界面活性剤、レベリング剤、チクソトロピー性付与剤、酸化防止剤、難燃剤、帯電防止剤、充填剤、補強剤、艶消し剤、架橋剤、シリカ、水分散または溶剤分散されたシリカ、ジルコニウム化合物、防腐剤等を配合することも可能である。これらは単独でもしくは2種以上を併せて用いてもよい。 [Other optional components]
It is preferable that the active energy ray curable resin composition of the present invention further contains a photopolymerization initiator. In addition, an ethylenically unsaturated monomer other than urethane (meth) acrylate, an acrylic resin, a surface control agent, a leveling agent, and the like can be blended within a range that does not impair the effects of the present invention. Oils, plasticizers, waxes, desiccants, dispersants, wetting agents, gelling agents, stabilizers, antifoaming agents, surfactants, leveling agents, thixotropic agents, antioxidants, flame retardants, antistatic agents Fillers, reinforcing agents, matting agents, crosslinking agents, silica, water-dispersed or solvent-dispersed silica, zirconium compounds, preservatives and the like can also be blended. These may be used alone or in combination of two or more.
本発明の活性エネルギー線硬化性樹脂組成物には、更に光重合開始剤を含有することが好ましい。また、本発明の効果を損なわない範囲で、ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマー、アクリル系樹脂、表面調整剤、レベリング剤等を配合することができ、更にはフィラー、染顔料、油、可塑剤、ワックス類、乾燥剤、分散剤、湿潤剤、ゲル化剤、安定剤、消泡剤、界面活性剤、レベリング剤、チクソトロピー性付与剤、酸化防止剤、難燃剤、帯電防止剤、充填剤、補強剤、艶消し剤、架橋剤、シリカ、水分散または溶剤分散されたシリカ、ジルコニウム化合物、防腐剤等を配合することも可能である。これらは単独でもしくは2種以上を併せて用いてもよい。 [Other optional components]
It is preferable that the active energy ray curable resin composition of the present invention further contains a photopolymerization initiator. In addition, an ethylenically unsaturated monomer other than urethane (meth) acrylate, an acrylic resin, a surface control agent, a leveling agent, and the like can be blended within a range that does not impair the effects of the present invention. Oils, plasticizers, waxes, desiccants, dispersants, wetting agents, gelling agents, stabilizers, antifoaming agents, surfactants, leveling agents, thixotropic agents, antioxidants, flame retardants, antistatic agents Fillers, reinforcing agents, matting agents, crosslinking agents, silica, water-dispersed or solvent-dispersed silica, zirconium compounds, preservatives and the like can also be blended. These may be used alone or in combination of two or more.
上記光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド類、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類が挙げられる。
なお、これら光重合開始剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyl dimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-) 2-Propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-one {4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propane, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy Acetophenones such as 2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; benzophenone, o -Benzoylbenzoic acid methyl, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6- Trimethyl benzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzene metanaminium bromide, benzopheno such as (4-benzoylbenzyl) trimethylammonium chloride 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3 Thioxanthones such as 2,4-dimethyl-9H-thioxanthone-9-one meso chloride; 2,4,6-trimethylbenzoyl-diphenyl phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl- Acyl phosphine oxides such as pentyl phosphine oxide, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide, 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyl] Oxime)], Etano And oxime esters such as 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) and the like.
These photopolymerization initiators may be used alone or in combination of two or more.
なお、これら光重合開始剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyl dimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-) 2-Propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-one {4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propane, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy Acetophenones such as 2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; benzophenone, o -Benzoylbenzoic acid methyl, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6- Trimethyl benzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzene metanaminium bromide, benzopheno such as (4-benzoylbenzyl) trimethylammonium chloride 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3 Thioxanthones such as 2,4-dimethyl-9H-thioxanthone-9-one meso chloride; 2,4,6-trimethylbenzoyl-diphenyl phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl- Acyl phosphine oxides such as pentyl phosphine oxide, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide, 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyl] Oxime)], Etano And oxime esters such as 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) and the like.
These photopolymerization initiators may be used alone or in combination of two or more.
これらの中でも、好ましくはアセトフェノン類であり、より好ましくはベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインイソプロピルエーテル、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンであり、特に好ましくは1-ヒドロキシシクロヘキシルフェニルケトンである。
Among these, preferred are acetophenones, more preferably benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, benzoin isopropyl ether, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, particularly preferably 1-hydroxycyclohexyl phenyl ketone.
光重合開始剤を含有する場合、その含有量としては、活性エネルギー線硬化性樹脂組成物中に含まれる硬化成分100重量部に対して、0.1~20重量部であることが好ましく、特に好ましくは0.5~10重量部、更に好ましくは1~10重量部である。
光重合開始剤の含有量が少なすぎると、硬化不良となり膜形成がなされにくい傾向があり、多すぎると硬化塗膜の黄変の原因となり、着色の問題が起こりやすい傾向がある。 When the photopolymerization initiator is contained, the content thereof is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the curing component contained in the active energy ray curable resin composition, and in particular The amount is preferably 0.5 to 10 parts by weight, more preferably 1 to 10 parts by weight.
If the content of the photopolymerization initiator is too small, curing tends to be poor and film formation tends to be difficult, and if too large, it causes yellowing of the cured coating film and tends to cause coloring problems.
光重合開始剤の含有量が少なすぎると、硬化不良となり膜形成がなされにくい傾向があり、多すぎると硬化塗膜の黄変の原因となり、着色の問題が起こりやすい傾向がある。 When the photopolymerization initiator is contained, the content thereof is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the curing component contained in the active energy ray curable resin composition, and in particular The amount is preferably 0.5 to 10 parts by weight, more preferably 1 to 10 parts by weight.
If the content of the photopolymerization initiator is too small, curing tends to be poor and film formation tends to be difficult, and if too large, it causes yellowing of the cured coating film and tends to cause coloring problems.
また、上記光重合開始剤の助剤として、例えば、トリエタノールアミン、トリイソプロパノールアミン、4,4’-ジメチルアミノベンゾフェノン(ミヒラーケトン)、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン等を併用することも可能である。
Moreover, as an auxiliary agent of the said photoinitiator, for example, triethanolamine, triisopropanolamine, 4,4'-dimethylamino benzophenone (Michler's ketone), 4,4'- diethylamino benzophenone, 2-dimethylaminoethyl benzoic acid, Ethyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy), isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,4-diethylthioxanthone, 2, It is also possible to use 4-diisopropylthioxanthone and the like in combination.
上記ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマーとしては、例えば、単官能モノマー、2官能モノマー、3官能以上の多官能モノマー等が挙げられる。これらのエチレン性不飽和モノマーは、単独でもしくは2種以上併せて用いることができる。
As ethylenic unsaturated monomers other than the said urethane (meth) acrylate, a monofunctional monomer, a bifunctional monomer, the trifunctional or more than trifunctional polyfunctional monomer etc. are mentioned, for example. These ethylenically unsaturated monomers can be used alone or in combination of two or more.
かかる単官能モノマーとしては、例えば、スチレン、ビニルトルエン、クロロスチレン、α-メチルスチレン等のスチレン系モノマー、メチル(メタ)アクリレート、エチル(メタ)アクリレート、アクリロニトリル、2-メトキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、ラウリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリルレート、ジシクロペンタニル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)-メチル(メタ)アクリレート、シクロヘキサンスピロ-2-(1,3-ジオキソラン-4-イル)-メチル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート、γ-ブチロラクトン(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノールエチレンオキサイド変性(n=2)(メタ)アクリレート、ノニルフェノールプロピレンオキサイド変性(n=2.5)(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート等のフタル酸誘導体のハーフ(メタ)アクリレート、フルフリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カルビトール(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルモルホリン、ポリオキシエチレン第2級アルキルエーテルアクリレート等の(メタ)アクリレート系モノマー、2-ヒドロキシエチルアクリルアミド、N-メチロール(メタ)アクリルアミド、N-ビニルピロリドン、2-ビニルピリジン、酢酸ビニル等が挙げられる。
Examples of such monofunctional monomers include styrene-based monomers such as styrene, vinyl toluene, chlorostyrene, α-methylstyrene, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2-hydroxy -3-Phenoxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, lauryl (meth) a Lilate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) -methyl (meth) acrylate, cyclohexane spiro-2- (1,3-dioxolan-4-yl) -methyl (meth) acrylate, 3-ethyl-3-oxetanylmethyl (meth) acrylate, γ-butyrolactone (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) A) Lilate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate, phenol ethylene oxide modified (n = 2) (meth) acrylate, nonylphenol propylene Half (meth) acrylates of phthalic acid derivatives such as oxide-modified (n = 2.5) (meth) acrylates, 2- (meth) acryloyloxyethyl acid phosphates, 2- (meth) acryloyloxy-2-hydroxypropyl phthalates, Furfuryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, carbitol (meth) acrylate, benzyl (meth) acrylate, butoxyethyl (meth) acrylate, allyl (meth) (Meth) acrylate monomers such as acrylate, (meth) acryloyl morpholine, polyoxyethylene secondary alkyl ether acrylate, 2-hydroxyethyl acrylamide, N-methylol (meth) acrylamide, N-vinyl pyrrolidone, 2-vinyl pyridine, Vinyl acetate etc. are mentioned.
かかる2官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート等が挙げられる。
As such a bifunctional monomer, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, di Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, propylene oxide modified bisphenol A Type di (meth) acrylate, cyclohexane dimethanol di (meth) acrylate, ethoxylated cyclohexane dimethanol di ( Ta) acrylate, dimethylol dicyclopentadi (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) ) Acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, phthalic acid diglycidyl ester di (meth) acrylate, hydroxypivalic acid modified neopentyl glycol di (meth) acrylate, isocyanuric acid Ethylene oxide modified diacrylate etc. are mentioned.
かかる3官能以上のモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリアクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化15グリセリントリアクリレート等が挙げられる。
Examples of such trifunctional or higher functional monomers include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa ( Meta) acrylate, tri (meth) acryloyloxy ethoxy trimethylol propane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanurate ethylene oxide modified triacrylate, caprolactone modified dipentaerythritol penta (meth) acrylate, caprolactone modified dipentaerythritol hexamer (Meth) acrylate, caprolactone modified pentaerythritol tri (meth) acrylate, cap Lactone modified pentaerythritol tetra (meth) acrylate, ethylene oxide modified dipentaerythritol penta (meth) acrylate, ethylene oxide modified dipentaerythritol hexa (meth) acrylate, ethylene oxide modified pentaerythritol tri (meth) acrylate, ethylene oxide modified pentaerythritol Tetra (meth) acrylate, ethoxylated 15 glycerin triacrylate and the like can be mentioned.
また、ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマーとしては、(メタ)アクリル酸のミカエル付加物あるいは2-アクリロイルオキシエチルジカルボン酸モノエステルも併用可能である。かかる(メタ)アクリル酸のミカエル付加物としては、(メタ)アクリル酸ダイマー、(メタ)アクリル酸トリマー、(メタ)アクリル酸テトラマー等が挙げられる。上記2-アクリロイルオキシエチルジカルボン酸モノエステルとしては、特定の置換基をもつカルボン酸であり、例えば2-アクリロイルオキシエチルコハク酸モノエステル、2-メタクリロイルオキシエチルコハク酸モノエステル、2-アクリロイルオキシエチルフタル酸モノエステル、2-メタクリロイルオキシエチルフタル酸モノエステル、2-アクリロイルオキシエチルヘキサヒドロフタル酸モノエステル、2-メタクリロイルオキシエチルヘキサヒドロフタル酸モノエステル等が挙げられる。更に、その他オリゴエステルアクリレート等を挙げることができる。
In addition, as an ethylenically unsaturated monomer other than urethane (meth) acrylate, a Michael adduct of (meth) acrylic acid or 2-acryloyloxyethyl dicarboxylic acid monoester can also be used in combination. Examples of such Michael adducts of (meth) acrylic acid include (meth) acrylic acid dimers, (meth) acrylic acid trimers, and (meth) acrylic acid tetramers. The 2-acryloyloxyethyl dicarboxylic acid monoester is a carboxylic acid having a specific substituent, such as 2-acryloyloxyethyl succinic acid monoester, 2-methacryloyloxyethyl succinic acid monoester, 2-acryloyloxyethyl. Examples thereof include phthalic acid monoester, 2-methacryloyloxyethyl phthalic acid monoester, 2-acryloyloxyethyl hexahydrophthalic acid monoester, and 2-methacryloyloxyethyl hexahydrophthalic acid monoester. Furthermore, other oligoester acrylates and the like can be mentioned.
ウレタン(メタ)アクリレート以外のエチレン性不飽和モノマーの含有量としては、活性エネルギー線硬化性樹脂組成物中に含まれる全硬化成分中、70重量%以下であることが好ましく、特に好ましくは50重量%以下、更に好ましくは30重量%以下である。
The content of the ethylenically unsaturated monomer other than urethane (meth) acrylate is preferably 70% by weight or less, particularly preferably 50% by weight, based on all the curing components contained in the active energy ray curable resin composition. % Or less, more preferably 30% by weight or less.
前記表面調整剤としては特に限定されず、例えば、セルロース樹脂やアルキッド樹脂等を挙げることができる。かかるセルロース樹脂は、塗膜の表面平滑性を向上させる作用があり、アルキッド樹脂は、塗布時の造膜性を高める作用を有する。
It does not specifically limit as said surface conditioner, For example, cellulose resin, an alkyd resin, etc. can be mentioned. The cellulose resin has the effect of improving the surface smoothness of the coating film, and the alkyd resin has the effect of improving the film forming property at the time of coating.
前記レベリング剤としては、塗液の基材への濡れ性付与作用、表面張力の低下作用を有するものであれば、公知一般のレベリング剤を用いることができ、例えば、シリコーン変性樹脂、フッ素変性樹脂、アルキル変性樹脂等を用いることができる。
As the leveling agent, any generally known leveling agent can be used as long as it has the action of imparting wettability to the substrate of the coating liquid and the action of lowering surface tension. For example, silicone modified resin, fluorine modified resin And alkyl-modified resins can be used.
本発明の活性エネルギー線硬化性樹脂組成物は、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]、その他の任意成分を混合することにより得ることができる。なお、混合方法については、特に限定されるものではなく、各成分を一括で混合する方法や、任意の成分を混合した後、残りの成分を一括または順次混合する方法等、種々の方法を採用することができる。
The active energy ray curable resin composition of the present invention comprises a mixture of a urethane (meth) acrylate composition [I], a fluorine-containing (meth) acrylate compound [II], a polymerization inhibitor [III] and other optional components. It can be obtained by The mixing method is not particularly limited, and various methods such as a method of mixing each component at once, a method of mixing optional components, and a method of collectively or sequentially mixing the remaining components are adopted. can do.
かくして得られる本発明の活性エネルギー線硬化性樹脂組成物は、塗工液での保存安定性に優れ、更には、硬化塗膜とした際の耐擦傷性及び擦傷後の防汚性にも優れるものである。
The active energy ray-curable resin composition of the present invention thus obtained is excellent in storage stability in a coating liquid, and further excellent in abrasion resistance when formed into a cured coating film and antifouling property after abrasion. It is a thing.
また、本発明の活性エネルギー線硬化性樹脂組成物は、そのまま塗工してもよいし、有機溶剤で希釈して塗工してもよい。希釈する場合には、有機溶剤を用いて、固形分濃度を、通常3~90重量%(好ましくは5~60重量%)とすればよい。
Moreover, the active energy ray curable resin composition of the present invention may be coated as it is, or may be diluted with an organic solvent and coated. In the case of dilution, the solid concentration may be usually 3 to 90% by weight (preferably 5 to 60% by weight) using an organic solvent.
上記有機溶剤としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類、アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族類、1-メトキシ-2-プロパノール(別名:プロピレングリコールモノメチルエーテル)、プロピレングリコールモノメチルエーテルアセテート、エチルセロソルブ等のグリコールエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類、ジアセトンアルコール等が挙げられる。これら上記の有機溶剤は、単独で用いてもよいし、2種以上を併用してもよい。
Examples of the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol, ketones such as acetone, methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone, and aromatics such as toluene and xylene. Glycol ethers such as -methoxy-2-propanol (alias: propylene glycol monomethyl ether), propylene glycol monomethyl ether acetate, ethyl cellosolve, acetates such as methyl acetate, ethyl acetate, butyl acetate, diacetone alcohol, etc. . These organic solvents may be used alone or in combination of two or more.
また、これらの中でも、ウレタン(メタ)アクリレート系組成物[I]とフッ素含有(メタ)アクリレート[II]との相溶性に優れ、活性エネルギー線硬化性樹脂組成物の液の安定性に優れるものとなることから沸点が80℃以上、特には100℃以上、更には120~170℃の高沸点溶剤が好ましく、より好ましくは、グリコールエーテル類であり、特に好ましくは1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテルアセテートである。
Moreover, among these, it is excellent in compatibility with urethane (meth) acrylate type composition [I] and fluorine-containing (meth) acrylate [II], and is excellent in the stability of the liquid of an active energy ray curable resin composition. Solvents having a boiling point of 80.degree. C. or higher, particularly 100.degree. C. or higher, more preferably 120 to 170.degree. C. are preferable, glycol ethers are more preferable, and 1-methoxy-2-propanol is particularly preferable. Propylene glycol monomethyl ether acetate.
また、上記有機溶剤を2種以上併用する場合は、プロピレングリコールモノメチルエーテル等のグリコールエーテル類とメチルエチルケトン等のケトン類やメタノール等のアルコール類との組み合わせや、プロピレングリコールモノメチルエーテル等のグリコールエーテル類と酢酸ブチル等のエステル類の組み合わせ、メチルエチルケトン等のケトン類とメタノール等のアルコール類の組み合わせ等を用いることができる。
When two or more of the above organic solvents are used in combination, a combination of a glycol ether such as propylene glycol monomethyl ether and a ketone such as methyl ethyl ketone or an alcohol such as methanol or a glycol ether such as propylene glycol monomethyl ether A combination of esters such as butyl acetate and a combination of ketones such as methyl ethyl ketone and alcohols such as methanol can be used.
本発明の活性エネルギー線硬化性樹脂組成物の20℃での粘度は、5~50,000mPa・sであることが好ましく、特に好ましくは10~10,000mPa・s、更に好ましくは15~5,000mPa・sである。かかる粘度が上記範囲外では塗工性が低下する傾向がある。
なお、粘度の測定法はE型粘度計による。 The viscosity at 20 ° C. of the active energy ray-curable resin composition of the present invention is preferably 5 to 50,000 mPa · s, particularly preferably 10 to 10,000 mPa · s, still more preferably 15 to 5, It is 000 mPa · s. If the viscosity is outside the above range, the coatability tends to decrease.
In addition, the measuring method of a viscosity is based on E-type viscosity meter.
なお、粘度の測定法はE型粘度計による。 The viscosity at 20 ° C. of the active energy ray-curable resin composition of the present invention is preferably 5 to 50,000 mPa · s, particularly preferably 10 to 10,000 mPa · s, still more preferably 15 to 5, It is 000 mPa · s. If the viscosity is outside the above range, the coatability tends to decrease.
In addition, the measuring method of a viscosity is based on E-type viscosity meter.
本発明の活性エネルギー線硬化性樹脂組成物は、各種基材へのトップコート剤やアンカーコート剤等、塗膜形成用の硬化性組成物として有効に用いられるものであり、かかる活性エネルギー線硬化性樹脂組成物を基材に塗工した後(有機溶剤で希釈した活性エネルギー線硬化性樹脂組成物を塗工した場合には、更に乾燥させた後)、活性エネルギー線を照射することにより硬化される。
The active energy ray curable resin composition of the present invention is effectively used as a curable composition for forming a coating film, such as top coat agent and anchor coat agent for various substrates, and such active energy ray cure After the base resin composition is applied to the substrate (in the case where the active energy ray-curable resin composition diluted with an organic solvent is applied, after further drying), the active energy ray is cured to cure it. Be done.
本発明の活性エネルギー線硬化性樹脂組成物を塗工する対象である基材としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、ポリスチレン系樹脂、アクリル系樹脂等やそれらの成型品(フィルム、シート、カップ等)等のプラスチック基材、また、ポリエチレンテレフタレートフィルム、トリアセチルセルロースフィルム、シクロオレフィンフィルム等の光学フィルム、それらの複合基材、またはガラス繊維や無機物を混合した上記材料の複合基材等、金属(アルミニウム、銅、鉄、SUS、亜鉛、マグネシウム、これらの合金等)やガラス、または、これらの基材上にプライマー層を設けた基材等が挙げられる。
Examples of the substrate to which the active energy ray-curable resin composition of the present invention is applied include polyolefin resins, polyester resins, polycarbonate resins, acrylonitrile-butadiene-styrene copolymer (ABS), and polystyrene. Base materials such as acrylic resins, acrylic resins etc. and molded products thereof (films, sheets, cups etc), optical films such as polyethylene terephthalate film, triacetyl cellulose film, cycloolefin film etc, composite substrates thereof Or composite substrates of the above materials mixed with glass fibers and inorganic substances, metals (aluminium, copper, iron, SUS, zinc, magnesium, alloys thereof, etc.) or glasses, or primer layers on these substrates The base material etc. which were provided are mentioned.
本発明の活性エネルギー線硬化性樹脂組成物の塗工方法としては、例えば、スプレー、シャワー、グラビア、ディッピング、ロール、スピン、スクリーン印刷等のようなウェットコーティング法が挙げられ、通常は常温(特に加熱しない温度範囲)の条件下で、基材に塗工すればよい。
The coating method of the active energy ray-curable resin composition of the present invention includes, for example, wet coating methods such as spray, shower, gravure, dipping, roll, spin, screen printing, etc. It may be coated on the substrate under the condition of temperature range without heating.
また、上記有機溶剤による希釈を行った活性エネルギー線硬化性樹脂組成物を塗工した場合の乾燥条件としては、温度が、通常40~120℃(好ましくは50~100℃)で、乾燥時間が、通常1~20分間(好ましくは2~10分間)であればよい。
Moreover, as a drying condition at the time of coating the active energy ray curable resin composition which diluted with the said organic solvent, temperature is usually 40-120 degreeC (preferably 50-100 degreeC), and drying time is And usually 1 to 20 minutes (preferably 2 to 10 minutes).
基材上に塗工された活性エネルギー線硬化性樹脂組成物を硬化させる際に使用する活性エネルギー線としては、例えば、遠紫外線、紫外線、近紫外線、赤外線等の光線、X線、γ線等の電磁波の他、電子線、プロトン線、中性子線等が利用できるが、硬化速度、照射装置の入手のし易さ、価格等から紫外線または電子線、とりわけ紫外線が好ましい。
なお、電子線の照射により硬化を行う場合は、光重合開始剤を用いなくても硬化し得る。 As an active energy ray used when hardening the active energy ray curable resin composition coated on the base material, for example, light rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, X rays, γ rays and the like In addition to the electromagnetic waves described above, electron beams, proton beams, neutron beams and the like can be used, but ultraviolet rays or electron beams, particularly ultraviolet rays are preferable in view of curing speed, availability of an irradiation apparatus, cost and the like.
In addition, when hardening by irradiation of an electron beam, even if it does not use a photoinitiator, it can harden | cure.
なお、電子線の照射により硬化を行う場合は、光重合開始剤を用いなくても硬化し得る。 As an active energy ray used when hardening the active energy ray curable resin composition coated on the base material, for example, light rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, X rays, γ rays and the like In addition to the electromagnetic waves described above, electron beams, proton beams, neutron beams and the like can be used, but ultraviolet rays or electron beams, particularly ultraviolet rays are preferable in view of curing speed, availability of an irradiation apparatus, cost and the like.
In addition, when hardening by irradiation of an electron beam, even if it does not use a photoinitiator, it can harden | cure.
紫外線の照射により硬化させる際には、150~450nm波長域の光を発する高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、無電極放電ランプ、LEDランプ等を用いて、通常30~3,000mJ/cm2(好ましくは100~1,500mJ/cm2)の紫外線を照射すればよい。
紫外線照射後は、必要に応じて加熱を行って硬化の完全を図ることもできる。 When curing by ultraviolet irradiation, use a high pressure mercury lamp, an ultra high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrode discharge lamp, an LED lamp, etc. that emit light in the 150 to 450 nm wavelength range. In general, ultraviolet rays of 30 to 3,000 mJ / cm 2 (preferably 100 to 1,500 mJ / cm 2 ) may be applied.
After irradiation with ultraviolet light, heating may be performed as necessary to complete curing.
紫外線照射後は、必要に応じて加熱を行って硬化の完全を図ることもできる。 When curing by ultraviolet irradiation, use a high pressure mercury lamp, an ultra high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an electrode discharge lamp, an LED lamp, etc. that emit light in the 150 to 450 nm wavelength range. In general, ultraviolet rays of 30 to 3,000 mJ / cm 2 (preferably 100 to 1,500 mJ / cm 2 ) may be applied.
After irradiation with ultraviolet light, heating may be performed as necessary to complete curing.
塗工膜厚(硬化後の膜厚)としては、通常、活性エネルギー線硬化型の塗膜として光重合開始剤が均一に反応するように光線を透過させるという点から、1~1,000μmであればよく、好ましくは2~500μmであり、特に好ましくは3~200μmである。
The coating film thickness (film thickness after curing) is usually 1 to 1,000 μm from the viewpoint of transmitting light so that the photopolymerization initiator reacts uniformly as an active energy ray-curable coating film. The thickness is preferably 2 to 500 μm, particularly preferably 3 to 200 μm.
本発明の活性エネルギー線硬化性樹脂組成物は、とりわけ、コーティング剤として用いることが好ましく、特にはハードコート用コーティング剤や光学フィルム用コーティング剤として用いることが好ましい。
The active energy ray-curable resin composition of the present invention is particularly preferably used as a coating agent, and particularly preferably used as a coating agent for hard coat or a coating agent for optical film.
このように、本発明の活性エネルギー線硬化性樹脂組成物は、液の保存安定性に優れ、更には、硬化塗膜とした際の耐擦傷性及び擦傷後の防汚性にも優れるものであり、特にコーティング剤(更にはハードコート用コーティング剤や光学フィルム用コーティング剤)として有用であり、また、塗料、インク等としても有用である。
Thus, the active energy ray-curable resin composition of the present invention is excellent in the storage stability of the solution, and further excellent in the scratch resistance when formed into a cured coating film and the antifouling property after scratching. In particular, it is useful as a coating agent (further, a coating agent for a hard coat or a coating agent for an optical film), and is also useful as a paint, an ink or the like.
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、例中、「部」、「%」とあるのは、重量基準を意味する。
EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In the examples, "parts" and "%" mean weight basis.
まず、ウレタン(メタ)アクリレート系組成物[I]として、以下のものを調製した。
First, the following were prepared as a urethane (meth) acrylate composition [I].
<製造例1>
〔ウレタンアクリレート系組成物[I-1]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(B-1)184.6部とペンタエリスリトールのアクリル酸付加物(A1-1)〔水酸基価:120mgKOH/g〕815.4部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.8部、反応触媒としてジブチル錫ジラウレート0.05部を仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-1]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-1]の重量平均分子量は1,400であり、60℃での粘度は3,000mPa・sであった。 <Production Example 1>
[Production of Urethane Acrylate Composition [I-1]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas injection port, 184.6 parts of isophorone diisocyanate (B-1) and acrylic acid adduct of pentaerythritol (A1-1) [hydroxyl value: Charged with 815.4 parts of 120 mg KOH / g], 0.8 parts of 2,6-di-t-butylcresol as a polymerization inhibitor [III'-1], and 0.05 parts of dibutyltin dilaurate as a reaction catalyst, at 60 ° C. The reaction was terminated, and the reaction was terminated when the residual isocyanate group reached 0.1%, to obtain a urethane acrylate composition [I-1] (resin concentration: 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-1] was 1,400, and the viscosity at 60 ° C. was 3,000 mPa · s.
〔ウレタンアクリレート系組成物[I-1]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(B-1)184.6部とペンタエリスリトールのアクリル酸付加物(A1-1)〔水酸基価:120mgKOH/g〕815.4部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.8部、反応触媒としてジブチル錫ジラウレート0.05部を仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-1]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-1]の重量平均分子量は1,400であり、60℃での粘度は3,000mPa・sであった。 <Production Example 1>
[Production of Urethane Acrylate Composition [I-1]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas injection port, 184.6 parts of isophorone diisocyanate (B-1) and acrylic acid adduct of pentaerythritol (A1-1) [hydroxyl value: Charged with 815.4 parts of 120 mg KOH / g], 0.8 parts of 2,6-di-t-butylcresol as a polymerization inhibitor [III'-1], and 0.05 parts of dibutyltin dilaurate as a reaction catalyst, at 60 ° C. The reaction was terminated, and the reaction was terminated when the residual isocyanate group reached 0.1%, to obtain a urethane acrylate composition [I-1] (resin concentration: 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-1] was 1,400, and the viscosity at 60 ° C. was 3,000 mPa · s.
<製造例2>
〔ウレタンアクリレート系組成物[I-2]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化ジフェニルメタンジイソシアネート(B-2)219.1部とペンタエリスリトールのアクリル酸付加物(A1-1)〔水酸基価:120mgKOH/g〕780.9部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.4部、反応触媒としてジブチル錫ジラウレート0.1部を仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-2]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-2]の重量平均分子量は2,200であり、60℃での粘度は5,000mPa・sであった。 <Production Example 2>
[Production of Urethane Acrylate Composition [I-2]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas injection port, 219.1 parts of hydrogenated diphenylmethane diisocyanate (B-2) and acrylic acid adduct of pentaerythritol (A1-1) [A1-1] [ 780.9 parts of hydroxyl value: 120 mg KOH / g], 0.4 parts of 2,6-di-t-butylcresol as a polymerization inhibitor [III'-1], 0.1 parts of dibutyltin dilaurate as a reaction catalyst, The reaction was carried out at 60 ° C., and the reaction was terminated when the residual isocyanate group reached 0.1%, to obtain a urethane acrylate composition [I-2] (resin concentration 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-2] was 2,200, and the viscosity at 60 ° C. was 5,000 mPa · s.
〔ウレタンアクリレート系組成物[I-2]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、水添化ジフェニルメタンジイソシアネート(B-2)219.1部とペンタエリスリトールのアクリル酸付加物(A1-1)〔水酸基価:120mgKOH/g〕780.9部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.4部、反応触媒としてジブチル錫ジラウレート0.1部を仕込み、60℃で反応させ、残存イソシアネート基が0.1%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-2]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-2]の重量平均分子量は2,200であり、60℃での粘度は5,000mPa・sであった。 <Production Example 2>
[Production of Urethane Acrylate Composition [I-2]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas injection port, 219.1 parts of hydrogenated diphenylmethane diisocyanate (B-2) and acrylic acid adduct of pentaerythritol (A1-1) [A1-1] [ 780.9 parts of hydroxyl value: 120 mg KOH / g], 0.4 parts of 2,6-di-t-butylcresol as a polymerization inhibitor [III'-1], 0.1 parts of dibutyltin dilaurate as a reaction catalyst, The reaction was carried out at 60 ° C., and the reaction was terminated when the residual isocyanate group reached 0.1%, to obtain a urethane acrylate composition [I-2] (resin concentration 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-2] was 2,200, and the viscosity at 60 ° C. was 5,000 mPa · s.
<製造例3>
〔ウレタンアクリレート系組成物[I-3]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(B-1)66.2部とジペンタエリスリトールのアクリル酸付加物(A2-1)〔水酸基価:48mgKOH/g〕933.8部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.6部、反応触媒としてジブチル錫ジラウレート0.2部を仕込み、50℃で反応させ、残存イソシアネート基が0.3%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-3]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-3]の重量平均分子量は1,700であり、60℃での粘度は1,500mPa・sであった。 <Production Example 3>
[Production of Urethane Acrylate Composition [I-3]]
66.2 parts of isophorone diisocyanate (B-1) and acrylic acid adduct of dipentaerythritol (A2-1) [hydroxyl value in a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet] Charged with: 933.8 parts of 48 mg KOH / g], 0.6 parts of 2,6-di-t-butylcresol as a polymerization inhibitor [III'-1], 0.2 parts of dibutyltin dilaurate as a reaction catalyst, 50 ° C. The reaction was terminated when the residual isocyanate group reached 0.3%, to obtain a urethane acrylate composition [I-3] (resin concentration: 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-3] was 1,700, and the viscosity at 60 ° C. was 1,500 mPa · s.
〔ウレタンアクリレート系組成物[I-3]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソホロンジイソシアネート(B-1)66.2部とジペンタエリスリトールのアクリル酸付加物(A2-1)〔水酸基価:48mgKOH/g〕933.8部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.6部、反応触媒としてジブチル錫ジラウレート0.2部を仕込み、50℃で反応させ、残存イソシアネート基が0.3%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-3]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-3]の重量平均分子量は1,700であり、60℃での粘度は1,500mPa・sであった。 <Production Example 3>
[Production of Urethane Acrylate Composition [I-3]]
66.2 parts of isophorone diisocyanate (B-1) and acrylic acid adduct of dipentaerythritol (A2-1) [hydroxyl value in a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas inlet] Charged with: 933.8 parts of 48 mg KOH / g], 0.6 parts of 2,6-di-t-butylcresol as a polymerization inhibitor [III'-1], 0.2 parts of dibutyltin dilaurate as a reaction catalyst, 50 ° C. The reaction was terminated when the residual isocyanate group reached 0.3%, to obtain a urethane acrylate composition [I-3] (resin concentration: 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-3] was 1,700, and the viscosity at 60 ° C. was 1,500 mPa · s.
<製造例4>
〔ウレタンアクリレート系組成物[I-4]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソシアヌレート骨格を有するヘキサメチレンジイソシアネートの三量体化合物(B-3)237.8部〔イソシアネート基含有量21%〕とジペンタエリスリトールのアクリル酸付加物(A2-1)〔水酸基価:50mgKOH/g〕639.5部、2-ヒドロキシプロピルアクリレート122.7部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.8部、反応触媒としてジブチル錫ジラウレート0.2部を仕込み、60℃で反応させ、残存イソシアネート基が0.3%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-4]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-4]の重量平均分子量は3,700であり、60℃での粘度は3,000mPa・sであった。 Production Example 4
[Production of Urethane Acrylate Composition [I-4]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, 237.8 parts of a trimeric compound (B-3) of hexamethylene diisocyanate having an isocyanurate skeleton [isocyanate group content 21 %, Acrylic acid adduct of dipentaerythritol (A2-1) [hydroxyl value: 50 mg KOH / g] 639.5 parts, 122.7 parts of 2-hydroxypropyl acrylate, 2 as a polymerization inhibitor [III'-1] 0.8 parts of 1,6-di-t-butylcresol and 0.2 parts of dibutyltin dilaurate as a reaction catalyst are charged and reacted at 60 ° C., and the reaction is completed when the residual isocyanate group reaches 0.3%. The urethane acrylate composition [I-4] was obtained (resin concentration 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-4] was 3,700, and the viscosity at 60 ° C. was 3,000 mPa · s.
〔ウレタンアクリレート系組成物[I-4]の製造〕
温度計、撹拌機、水冷コンデンサー、窒素ガス吹き込み口を備えた4つ口フラスコに、イソシアヌレート骨格を有するヘキサメチレンジイソシアネートの三量体化合物(B-3)237.8部〔イソシアネート基含有量21%〕とジペンタエリスリトールのアクリル酸付加物(A2-1)〔水酸基価:50mgKOH/g〕639.5部、2-ヒドロキシプロピルアクリレート122.7部、重合禁止剤[III’-1]として2,6-ジ-t-ブチルクレゾール0.8部、反応触媒としてジブチル錫ジラウレート0.2部を仕込み、60℃で反応させ、残存イソシアネート基が0.3%となった時点で反応を終了し、ウレタンアクリレート系組成物[I-4]を得た(樹脂分濃度100%)。
得られたウレタンアクリレート系組成物[I-4]の重量平均分子量は3,700であり、60℃での粘度は3,000mPa・sであった。 Production Example 4
[Production of Urethane Acrylate Composition [I-4]]
In a four-necked flask equipped with a thermometer, a stirrer, a water-cooled condenser, and a nitrogen gas blowing port, 237.8 parts of a trimeric compound (B-3) of hexamethylene diisocyanate having an isocyanurate skeleton [isocyanate group content 21 %, Acrylic acid adduct of dipentaerythritol (A2-1) [hydroxyl value: 50 mg KOH / g] 639.5 parts, 122.7 parts of 2-hydroxypropyl acrylate, 2 as a polymerization inhibitor [III'-1] 0.8 parts of 1,6-di-t-butylcresol and 0.2 parts of dibutyltin dilaurate as a reaction catalyst are charged and reacted at 60 ° C., and the reaction is completed when the residual isocyanate group reaches 0.3%. The urethane acrylate composition [I-4] was obtained (resin concentration 100%).
The weight average molecular weight of the resulting urethane acrylate composition [I-4] was 3,700, and the viscosity at 60 ° C. was 3,000 mPa · s.
つぎに、上記ウレタンアクリレート系組成物[I-1]~[I-4]を用いて、活性エネルギー線硬化性樹脂組成物を製造した。
Next, an active energy ray-curable resin composition was produced using the above-mentioned urethane acrylate compositions [I-1] to [I-4].
〔活性エネルギー線硬化性樹脂組成物の製造〕
<実施例1>
上記で得られたウレタンアクリレート系組成物[I-1]100部を1-メトキシ-2-プロパノール(沸点120℃)100部に溶解させた溶液を撹拌しながら、フッ素含有アクリレート系化合物[II-1]として「KY-1203」(有効成分20%、信越化学工業社製、重量平均分子量(実測値)27,000)を有効成分で0.2部(溶剤成分込みで1部)、重合禁止剤[III-1]として2,6-ジ-t-ブチルクレゾールを0.3部(ウレタンアクリレート系組成物[I-1]、フッ素含有アクリレート系化合物[II-1]及び重合禁止剤[III-1]の合計に対して2,990ppm)、着色防止剤[IV-1]として「CSP」(精工化学社製)を0.05部配合し、活性エネルギー線硬化性樹脂組成物を得た。更に光重合開始剤として、α-ヒドロキシアルキルフェノン系光重合開始剤(IGM社製、「オムニラッド184」)を4部配合し、光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 [Production of Active Energy Ray-Curable Resin Composition]
Example 1
While stirring a solution of 100 parts of the urethane acrylate composition [I-1] obtained above in 100 parts of 1-methoxy-2-propanol (boiling point 120 ° C.), the fluorine-containing acrylate compound [II- 1) “KY-1203” (20% active ingredient, weight-average molecular weight (measured value) 27,000 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.2 part (1 part including solvent ingredient) active ingredient, polymerization prohibited 0.3 part of 2,6-di-t-butylcresol as agent [III-1] (urethane acrylate composition [I-1], fluorine-containing acrylate compound [II-1] and polymerization inhibitor [III The active energy ray curable resin composition was obtained by blending 2,990 ppm with respect to the total of 1), and 0.05 parts of "CSP" (manufactured by SEIKO CHEMICAL CO., LTD.) As a coloring inhibitor [IV-1]. . Further, 4 parts of an α-hydroxyalkylphenone photopolymerization initiator (“OMNI RAD 184” manufactured by IGM Co., Ltd.) is blended as a photopolymerization initiator to obtain an active energy ray curable resin composition containing the photopolymerization initiator The
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,780 ppm with respect to the sum total of II] and polymerization inhibitor [III].
<実施例1>
上記で得られたウレタンアクリレート系組成物[I-1]100部を1-メトキシ-2-プロパノール(沸点120℃)100部に溶解させた溶液を撹拌しながら、フッ素含有アクリレート系化合物[II-1]として「KY-1203」(有効成分20%、信越化学工業社製、重量平均分子量(実測値)27,000)を有効成分で0.2部(溶剤成分込みで1部)、重合禁止剤[III-1]として2,6-ジ-t-ブチルクレゾールを0.3部(ウレタンアクリレート系組成物[I-1]、フッ素含有アクリレート系化合物[II-1]及び重合禁止剤[III-1]の合計に対して2,990ppm)、着色防止剤[IV-1]として「CSP」(精工化学社製)を0.05部配合し、活性エネルギー線硬化性樹脂組成物を得た。更に光重合開始剤として、α-ヒドロキシアルキルフェノン系光重合開始剤(IGM社製、「オムニラッド184」)を4部配合し、光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 [Production of Active Energy Ray-Curable Resin Composition]
Example 1
While stirring a solution of 100 parts of the urethane acrylate composition [I-1] obtained above in 100 parts of 1-methoxy-2-propanol (boiling point 120 ° C.), the fluorine-containing acrylate compound [II- 1) “KY-1203” (20% active ingredient, weight-average molecular weight (measured value) 27,000 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.2 part (1 part including solvent ingredient) active ingredient, polymerization prohibited 0.3 part of 2,6-di-t-butylcresol as agent [III-1] (urethane acrylate composition [I-1], fluorine-containing acrylate compound [II-1] and polymerization inhibitor [III The active energy ray curable resin composition was obtained by blending 2,990 ppm with respect to the total of 1), and 0.05 parts of "CSP" (manufactured by SEIKO CHEMICAL CO., LTD.) As a coloring inhibitor [IV-1]. . Further, 4 parts of an α-hydroxyalkylphenone photopolymerization initiator (“OMNI RAD 184” manufactured by IGM Co., Ltd.) is blended as a photopolymerization initiator to obtain an active energy ray curable resin composition containing the photopolymerization initiator The
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,780 ppm with respect to the sum total of II] and polymerization inhibitor [III].
<実施例2>
実施例1において、ウレタンアクリレート系組成物[I-1]に代えてウレタンアクリレート系組成物[I-2]を用いたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,380ppmであった。 Example 2
An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the urethane acrylate composition [I-2] was used instead of the urethane acrylate composition [I-1] in Example 1. And an active energy ray-curable resin composition containing a photopolymerization initiator.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,380 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、ウレタンアクリレート系組成物[I-1]に代えてウレタンアクリレート系組成物[I-2]を用いたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,380ppmであった。 Example 2
An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the urethane acrylate composition [I-2] was used instead of the urethane acrylate composition [I-1] in Example 1. And an active energy ray-curable resin composition containing a photopolymerization initiator.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,380 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例3>
実施例1において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で0.05部(溶剤成分込みで0.25部)に変更したこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,790ppmであった。 Example 3
The same procedure as in Example 1 was repeated except that the content of the fluorine-containing acrylate compound [II-1] was changed to 0.05 parts (0.25 parts in terms of solvent) in the active ingredient in Example 1. An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The total amount was 3,790 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で0.05部(溶剤成分込みで0.25部)に変更したこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,790ppmであった。 Example 3
The same procedure as in Example 1 was repeated except that the content of the fluorine-containing acrylate compound [II-1] was changed to 0.05 parts (0.25 parts in terms of solvent) in the active ingredient in Example 1. An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The total amount was 3,790 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例4>
実施例1において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で1部(溶剤成分込みで5部)に変更したこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,750ppmであった。 Example 4
The active energy ray curing is carried out in the same manner as in Example 1 except that the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 1 part (5 parts in terms of solvent component included) in Example 1 Energy ray curable resin composition containing the water soluble resin composition and the photopolymerization initiator is obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,750 ppm relative to the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で1部(溶剤成分込みで5部)に変更したこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,750ppmであった。 Example 4
The active energy ray curing is carried out in the same manner as in Example 1 except that the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 1 part (5 parts in terms of solvent component included) in Example 1 Energy ray curable resin composition containing the water soluble resin composition and the photopolymerization initiator is obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,750 ppm relative to the total of the compound [II] and the polymerization inhibitor [III].
<実施例5>
実施例1において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-2]として「オプツールDAC-HP」(有効成分20%、ダイキン工業社製、重量平均分子量(実測値)2,300)を有効成分で0.2部(溶剤成分込みで1部)を用いたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 5
In Example 1, in place of the fluorine-containing acrylate compound [II-1], “Optool DAC-HP” (20% of active ingredient, manufactured by Daikin Industries, weight average molecular weight An active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that 0.2 part (1 part in terms of solvent component) was used as the active component (measured value) 2,300) as the active component. An active energy ray-curable resin composition containing
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-2]として「オプツールDAC-HP」(有効成分20%、ダイキン工業社製、重量平均分子量(実測値)2,300)を有効成分で0.2部(溶剤成分込みで1部)を用いたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 5
In Example 1, in place of the fluorine-containing acrylate compound [II-1], “Optool DAC-HP” (20% of active ingredient, manufactured by Daikin Industries, weight average molecular weight An active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that 0.2 part (1 part in terms of solvent component) was used as the active component (measured value) 2,300) as the active component. An active energy ray-curable resin composition containing
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例6>
実施例1において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-3]として「IRX-380」(有効成分10%、AGC社製、重量平均分子量(実測値)1,300)を有効成分で0.2部(溶剤成分込みで2部)を用いたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 6
In Example 1, in place of the fluorine-containing acrylate compound [II-1], “IRX-380” (active ingredient 10%, manufactured by AGC, weight average molecular weight (measured value) as the fluorine-containing acrylate compound [II-3] The active energy ray-curable resin composition and the photopolymerization initiator are contained in the same manner as in Example 1 except that 0.2 parts (2 parts by solvent included) of 1,300) is used as an active ingredient. An active energy ray curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-3]として「IRX-380」(有効成分10%、AGC社製、重量平均分子量(実測値)1,300)を有効成分で0.2部(溶剤成分込みで2部)を用いたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 6
In Example 1, in place of the fluorine-containing acrylate compound [II-1], “IRX-380” (active ingredient 10%, manufactured by AGC, weight average molecular weight (measured value) as the fluorine-containing acrylate compound [II-3] The active energy ray-curable resin composition and the photopolymerization initiator are contained in the same manner as in Example 1 except that 0.2 parts (2 parts by solvent included) of 1,300) is used as an active ingredient. An active energy ray curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例7>
実施例1において、重合禁止剤[III-1]の配合量を0.9部に変更したこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、9,690ppmであった。 Example 7
An active energy ray curable resin composition and a photopolymerization initiator are contained in the same manner as in Example 1 except that the blending amount of the polymerization inhibitor [III-1] is changed to 0.9 part in Example 1. An active energy ray curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 9,690 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、重合禁止剤[III-1]の配合量を0.9部に変更したこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、9,690ppmであった。 Example 7
An active energy ray curable resin composition and a photopolymerization initiator are contained in the same manner as in Example 1 except that the blending amount of the polymerization inhibitor [III-1] is changed to 0.9 part in Example 1. An active energy ray curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 9,690 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例8>
実施例1において、重合禁止剤[III-1]2,6-ジ-t-ブチルクレゾールに代えて重合禁止剤[III-2]として4-メトキシフェノールを用いた以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 8
Example 1 is the same as example 1 except that 4-methoxyphenol is used as polymerization inhibitor [III-2] in place of polymerization inhibitor [III-1] 2,6-di-t-butylcresol. Thus, an active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、重合禁止剤[III-1]2,6-ジ-t-ブチルクレゾールに代えて重合禁止剤[III-2]として4-メトキシフェノールを用いた以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 8
Example 1 is the same as example 1 except that 4-methoxyphenol is used as polymerization inhibitor [III-2] in place of polymerization inhibitor [III-1] 2,6-di-t-butylcresol. Thus, an active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例9>
実施例1において、ウレタンアクリレート系組成物[I-1]に代えて、ウレタンアクリレート系組成物[I-3]100部、着色防止剤[IV-1]として「CSP」を0.1部としたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 9
In Example 1, instead of the urethane acrylate composition [I-1], 100 parts of the urethane acrylate composition [I-3] and 0.1 parts of “CSP” as the coloring inhibitor [IV-1] An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained in the same manner as in Example 1 except for the above.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
実施例1において、ウレタンアクリレート系組成物[I-1]に代えて、ウレタンアクリレート系組成物[I-3]100部、着色防止剤[IV-1]として「CSP」を0.1部としたこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 9
In Example 1, instead of the urethane acrylate composition [I-1], 100 parts of the urethane acrylate composition [I-3] and 0.1 parts of “CSP” as the coloring inhibitor [IV-1] An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained in the same manner as in Example 1 except for the above.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
<実施例10>
実施例9において、ウレタンアクリレート系組成物[I-3]に代えてウレタンアクリレート系組成物[I-4]を用いた以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 10
An active energy ray-curable resin composition in the same manner as in Example 9 except that a urethane acrylate composition [I-4] was used in place of the urethane acrylate composition [I-3] in Example 9, and An active energy ray-curable resin composition containing a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、ウレタンアクリレート系組成物[I-3]に代えてウレタンアクリレート系組成物[I-4]を用いた以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,780ppmであった。 Example 10
An active energy ray-curable resin composition in the same manner as in Example 9 except that a urethane acrylate composition [I-4] was used in place of the urethane acrylate composition [I-3] in Example 9, and An active energy ray-curable resin composition containing a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate The amount was 3,780 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例11>
実施例9において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で0.05部(溶剤成分込みで0.25部)に変更したこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,590ppmであった。 Example 11
Example 9 is the same as Example 9 except that the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 0.05 parts (0.25 parts in terms of the solvent component) in terms of the active ingredient. An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,590 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で0.05部(溶剤成分込みで0.25部)に変更したこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,590ppmであった。 Example 11
Example 9 is the same as Example 9 except that the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 0.05 parts (0.25 parts in terms of the solvent component) in terms of the active ingredient. An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,590 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
<実施例12>
実施例9において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で1部(溶剤成分込みで5部)に変更した以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,550ppmであった。 Example 12
The active energy ray curability is the same as in Example 9, except that in Example 9, the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 1 part (5 parts in terms of solvent) including the active ingredient. An active energy ray curable resin composition containing a resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,550 ppm relative to the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、フッ素含有アクリレート系化合物[II-1]の配合量を有効成分で1部(溶剤成分込みで5部)に変更した以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,550ppmであった。 Example 12
The active energy ray curability is the same as in Example 9, except that in Example 9, the compounding amount of the fluorine-containing acrylate compound [II-1] is changed to 1 part (5 parts in terms of solvent) including the active ingredient. An active energy ray curable resin composition containing a resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,550 ppm relative to the total of the compound [II] and the polymerization inhibitor [III].
<実施例13>
実施例9において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-2]として「オプツールDAC-HP」(有効成分20%、ダイキン工業社製、重量平均分子量(実測値)2,300)を有効成分で0.2部(溶剤成分込みで1部)を用いた以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 13
In Example 9, in place of the fluorine-containing acrylate compound [II-1], “Optool DAC-HP” (20% of active ingredient, manufactured by Daikin Industries, weight average molecular weight Measured value: 2,300) The active energy ray-curable resin composition and the photopolymerization initiator were prepared in the same manner as in Example 9, except that 0.2 part (1 part in the solvent component included) was used as the active component. The active energy ray curable resin composition to be contained was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-2]として「オプツールDAC-HP」(有効成分20%、ダイキン工業社製、重量平均分子量(実測値)2,300)を有効成分で0.2部(溶剤成分込みで1部)を用いた以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 13
In Example 9, in place of the fluorine-containing acrylate compound [II-1], “Optool DAC-HP” (20% of active ingredient, manufactured by Daikin Industries, weight average molecular weight Measured value: 2,300) The active energy ray-curable resin composition and the photopolymerization initiator were prepared in the same manner as in Example 9, except that 0.2 part (1 part in the solvent component included) was used as the active component. The active energy ray curable resin composition to be contained was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
<実施例14>
実施例9において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-3]として「IRX-380」(有効成分10%、AGC社製、重量平均分子量(実測値)1,300)を有効成分で0.2部(溶剤成分込みで2部)を用いた以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 14
In Example 9, in place of the fluorine-containing acrylate compound [II-1], “IRX-380” (active ingredient 10%, product of AGC, weight average molecular weight (measured value) as the fluorine-containing acrylate compound [II-3] The active energy ray curable resin composition and the photopolymerization initiator are contained in the same manner as in Example 9 except that 0.2 part (2 parts in terms of solvent) is used as the active ingredient). An active energy ray-curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、フッ素含有アクリレート系化合物[II-1]に代えてフッ素含有アクリレート系化合物[II-3]として「IRX-380」(有効成分10%、AGC社製、重量平均分子量(実測値)1,300)を有効成分で0.2部(溶剤成分込みで2部)を用いた以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 14
In Example 9, in place of the fluorine-containing acrylate compound [II-1], “IRX-380” (active ingredient 10%, product of AGC, weight average molecular weight (measured value) as the fluorine-containing acrylate compound [II-3] The active energy ray curable resin composition and the photopolymerization initiator are contained in the same manner as in Example 9 except that 0.2 part (2 parts in terms of solvent) is used as the active ingredient). An active energy ray-curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
<実施例15>
実施例9において、重合禁止剤[III-1]の配合量を0.9部に変更したこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、9,500ppmであった。 Example 15
An active energy ray curable resin composition and a photopolymerization initiator are contained in the same manner as in Example 9 except that the blending amount of the polymerization inhibitor [III-1] is changed to 0.9 part in Example 9. An active energy ray curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 9,500 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、重合禁止剤[III-1]の配合量を0.9部に変更したこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、9,500ppmであった。 Example 15
An active energy ray curable resin composition and a photopolymerization initiator are contained in the same manner as in Example 9 except that the blending amount of the polymerization inhibitor [III-1] is changed to 0.9 part in Example 9. An active energy ray curable resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 9,500 ppm based on the total of the compound [II] and the polymerization inhibitor [III].
<実施例16>
実施例9において、重合禁止剤[III-1]2,6-ジ-t-ブチルクレゾールに代えて重合禁止剤[III-2]として4-メトキシフェノールを用いたこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 16
Example 9 is the same as Example 9 except that in place of the polymerization inhibitor [III-1] 2,6-di-t-butylcresol, 4-methoxyphenol is used as the polymerization inhibitor [III-2]. Similarly, an active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、重合禁止剤[III-1]2,6-ジ-t-ブチルクレゾールに代えて重合禁止剤[III-2]として4-メトキシフェノールを用いたこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 16
Example 9 is the same as Example 9 except that in place of the polymerization inhibitor [III-1] 2,6-di-t-butylcresol, 4-methoxyphenol is used as the polymerization inhibitor [III-2]. Similarly, an active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
<実施例17>
実施例9において、着色防止剤[IV-1]を用いないこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 17
An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the coloring inhibitor [IV-1] is not used in Example 9. I got a thing.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
実施例9において、着色防止剤[IV-1]を用いないこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物[I]の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,580ppmであった。 Example 17
An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the coloring inhibitor [IV-1] is not used in Example 9. I got a thing.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition [I]) is a urethane acrylate composition [I], a fluorine-containing acrylate It was 3,580 ppm with respect to the total of the compound [II] and the polymerization inhibitor [III].
<比較例1>
実施例1において、フッ素含有アクリレート系化合物[II-1]を用いないこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,790ppmであった。 Comparative Example 1
An active energy ray-curable composition containing an active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that the fluorine-containing acrylate compound [II-1] is not used in Example 1. A resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,790 ppm with respect to the sum total of II] and polymerization inhibitor [III].
実施例1において、フッ素含有アクリレート系化合物[II-1]を用いないこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,790ppmであった。 Comparative Example 1
An active energy ray-curable composition containing an active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that the fluorine-containing acrylate compound [II-1] is not used in Example 1. A resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,790 ppm with respect to the sum total of II] and polymerization inhibitor [III].
<比較例2>
実施例1において、重合禁止剤[III-1]を用いないこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、800ppmであった。 Comparative Example 2
An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that the polymerization inhibitor [III-1] is not used in Example 1. I got a thing.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 800 ppm with respect to the sum total of II] and polymerization inhibitor [III].
実施例1において、重合禁止剤[III-1]を用いないこと以外は、実施例1と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、800ppmであった。 Comparative Example 2
An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 1 except that the polymerization inhibitor [III-1] is not used in Example 1. I got a thing.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 800 ppm with respect to the sum total of II] and polymerization inhibitor [III].
<比較例3>
実施例9において、フッ素含有アクリレート系化合物[II-1]を用いないこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,590ppmであった。 Comparative Example 3
In Example 9, an active energy ray-curable composition containing an active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the fluorine-containing acrylate compound [II-1] is not used. A resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,590 ppm with respect to the sum total of II] and polymerization inhibitor [III].
実施例9において、フッ素含有アクリレート系化合物[II-1]を用いないこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,590ppmであった。 Comparative Example 3
In Example 9, an active energy ray-curable composition containing an active energy ray-curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the fluorine-containing acrylate compound [II-1] is not used. A resin composition was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 3,590 ppm with respect to the sum total of II] and polymerization inhibitor [III].
<比較例4>
実施例9において、重合禁止剤[III-1]を用いないこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、600ppmであった。 Comparative Example 4
An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the polymerization inhibitor [III-1] is not used in Example 9. I got a thing.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 600 ppm with respect to the sum total of II] and polymerization inhibitor [III].
実施例9において、重合禁止剤[III-1]を用いないこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(ウレタンアクリレート系組成物の製造で用いた重合禁止剤[III’]を含む)は、ウレタンアクリレート系組成物[I]、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、600ppmであった。 Comparative Example 4
An active energy ray curable resin composition containing an active energy ray curable resin composition and a photopolymerization initiator in the same manner as in Example 9 except that the polymerization inhibitor [III-1] is not used in Example 9. I got a thing.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor [III ′] used in the production of the urethane acrylate composition) is the urethane acrylate composition [I], the fluorine-containing acrylate compound [I] It was 600 ppm with respect to the sum total of II] and polymerization inhibitor [III].
<比較例5>
実施例9において、ウレタンアクリレート系組成物[I-3]に代えてトリメチロールプロパントリアクリレート(東亜合成社製、「アロニックスM-309」、重合禁止剤100ppm含有)を用いたこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(トリメチロールプロパントリアクリレートに含まれる重合禁止剤を含む)は、トリメチロールプロパン、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,090ppmであった。 Comparative Example 5
In Example 9, except that trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd., “Alonix M-309”, containing 100 ppm of a polymerization inhibitor) was used in place of the urethane acrylate composition [I-3]. In the same manner as in Example 9, an active energy ray-curable resin composition containing an active energy ray-curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor contained in trimethylolpropane triacrylate) is the total of trimethylolpropane, fluorine-containing acrylate compound [II] and polymerization inhibitor [III] Against 3,090 ppm.
実施例9において、ウレタンアクリレート系組成物[I-3]に代えてトリメチロールプロパントリアクリレート(東亜合成社製、「アロニックスM-309」、重合禁止剤100ppm含有)を用いたこと以外は、実施例9と同様にして活性エネルギー線硬化性樹脂組成物及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を得た。
上記において、重合禁止剤[III]の含有量(トリメチロールプロパントリアクリレートに含まれる重合禁止剤を含む)は、トリメチロールプロパン、フッ素含有アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、3,090ppmであった。 Comparative Example 5
In Example 9, except that trimethylolpropane triacrylate (manufactured by Toagosei Co., Ltd., “Alonix M-309”, containing 100 ppm of a polymerization inhibitor) was used in place of the urethane acrylate composition [I-3]. In the same manner as in Example 9, an active energy ray-curable resin composition containing an active energy ray-curable resin composition and a photopolymerization initiator was obtained.
In the above, the content of the polymerization inhibitor [III] (including the polymerization inhibitor contained in trimethylolpropane triacrylate) is the total of trimethylolpropane, fluorine-containing acrylate compound [II] and polymerization inhibitor [III] Against 3,090 ppm.
上記で得られた活性エネルギー線硬化性樹脂組成物の液保存安定性を、下記の方法で評価した。
[液保存安定性]
上記の活性エネルギー線硬化性樹脂組成物について、ハーゼン色数(APHA)を、分光色差計「SE6000:日本電色工業社製)」を用いて測定した。さらに、該活性エネルギー線硬化性樹脂組成物を密閉式のガラス試験容器に入れ、耐熱条件(60℃環境下で4週間保管)で耐熱試験を行い、耐熱試験後のAPHAの値を測定した。結果を後記表1~表3に示す。 The liquid storage stability of the active energy ray curable resin composition obtained above was evaluated by the following method.
[Liquid storage stability]
The Hazen color number (APHA) of the above-mentioned active energy ray-curable resin composition was measured using a spectrocolorimeter "SE6000: manufactured by Nippon Denshoku Kogyo Co., Ltd.". Furthermore, the active energy ray-curable resin composition was placed in a closed glass test container, and subjected to a heat resistance test under heat resistance conditions (stored for 4 weeks in a 60 ° C. environment) to measure the value of APHA after the heat resistance test. The results are shown in Tables 1 to 3 below.
[液保存安定性]
上記の活性エネルギー線硬化性樹脂組成物について、ハーゼン色数(APHA)を、分光色差計「SE6000:日本電色工業社製)」を用いて測定した。さらに、該活性エネルギー線硬化性樹脂組成物を密閉式のガラス試験容器に入れ、耐熱条件(60℃環境下で4週間保管)で耐熱試験を行い、耐熱試験後のAPHAの値を測定した。結果を後記表1~表3に示す。 The liquid storage stability of the active energy ray curable resin composition obtained above was evaluated by the following method.
[Liquid storage stability]
The Hazen color number (APHA) of the above-mentioned active energy ray-curable resin composition was measured using a spectrocolorimeter "SE6000: manufactured by Nippon Denshoku Kogyo Co., Ltd.". Furthermore, the active energy ray-curable resin composition was placed in a closed glass test container, and subjected to a heat resistance test under heat resistance conditions (stored for 4 weeks in a 60 ° C. environment) to measure the value of APHA after the heat resistance test. The results are shown in Tables 1 to 3 below.
また、上記で得られた光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物から、評価用サンプルを製造し、鉛筆硬度、耐擦傷性、防汚性、水接触角及びオレイン酸接触角の評価を行った。結果を後記表1~表3に示す。
Moreover, a sample for evaluation is manufactured from the active energy ray-curable resin composition containing the photopolymerization initiator obtained above, and the pencil hardness, the scratch resistance, the stain resistance, the water contact angle and the oleic acid contact angle The evaluation of The results are shown in Tables 1 to 3 below.
〔評価用サンプルの製造方法〕
上記で得られた光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を、易接着PETフィルム(東洋紡社製、「コスモシャインA4300」、厚み125μm)基材上にバーコーターを用いて、乾燥後の膜厚が5μmとなるように塗工し、90℃で3分間乾燥した後、80Wの高圧水銀灯、1灯を用いて、18cmの高さから5.1m/minのコンベア速度で2パスの紫外線照射(積算照射量450mJ/cm2)を行い、硬化塗膜を形成した。 [Method of producing sample for evaluation]
Using a bar coater, the active energy ray-curable resin composition containing the photopolymerization initiator obtained above is applied onto an easily-adhered PET film (Toyobo Co., Ltd., “Cosmo Shine A4300, thickness 125 μm) substrate, The coating is applied so that the film thickness after drying is 5 μm, and after drying at 90 ° C. for 3 minutes, using a 80 W high-pressure mercury lamp, 1 lamp, from a height of 18 cm to a conveyor speed of 5.1 m / min 2 The pass was irradiated with ultraviolet light (accumulated irradiation amount: 450 mJ / cm 2 ) to form a cured coating film.
上記で得られた光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を、易接着PETフィルム(東洋紡社製、「コスモシャインA4300」、厚み125μm)基材上にバーコーターを用いて、乾燥後の膜厚が5μmとなるように塗工し、90℃で3分間乾燥した後、80Wの高圧水銀灯、1灯を用いて、18cmの高さから5.1m/minのコンベア速度で2パスの紫外線照射(積算照射量450mJ/cm2)を行い、硬化塗膜を形成した。 [Method of producing sample for evaluation]
Using a bar coater, the active energy ray-curable resin composition containing the photopolymerization initiator obtained above is applied onto an easily-adhered PET film (Toyobo Co., Ltd., “Cosmo Shine A4300, thickness 125 μm) substrate, The coating is applied so that the film thickness after drying is 5 μm, and after drying at 90 ° C. for 3 minutes, using a 80 W high-pressure mercury lamp, 1 lamp, from a height of 18 cm to a conveyor speed of 5.1 m / min 2 The pass was irradiated with ultraviolet light (accumulated irradiation amount: 450 mJ / cm 2 ) to form a cured coating film.
[鉛筆硬度]
易接着PETフィルム上に塗工した上記硬化塗膜について、JIS K 5600に準じて試験を行い、鉛筆硬度を測定した。 [Pencil hardness]
About the said cured coating film coated on the easily bonding PET film, it tested according to JISK5600, and measured pencil hardness.
易接着PETフィルム上に塗工した上記硬化塗膜について、JIS K 5600に準じて試験を行い、鉛筆硬度を測定した。 [Pencil hardness]
About the said cured coating film coated on the easily bonding PET film, it tested according to JISK5600, and measured pencil hardness.
[耐擦傷性]
易接着PETフィルム上に塗工した上記硬化塗膜について、スチールウール(日本スチールウール社製、ボンスター#0000)を用い、1kgの荷重をかけながら硬化塗膜表面を往復させた後、目視で表面に傷が発生するまでの往復回数を測定し、下記の基準で評価した。
(評価)
○・・・1,000回往復しても傷が無かった
△・・・600回以上1,000回未満で傷が発生した
×・・・600回未満で傷が発生した [Scratch resistance]
About the above-mentioned cured coating film coated on easy-to-adhere PET film, after making the surface of the cured coating film reciprocate while applying a load of 1 kg using steel wool (made by Nippon Steel Wool Co., Ltd., Bonstar # 0000) The number of reciprocations until the wound was generated was measured and evaluated according to the following criteria.
(Evaluation)
○ · · · There was no scratch even if reciprocated 1,000 times △ · · · wound occurred in more than 600 times and less than 1,000 times · · · wound occurred in less than 600 times
易接着PETフィルム上に塗工した上記硬化塗膜について、スチールウール(日本スチールウール社製、ボンスター#0000)を用い、1kgの荷重をかけながら硬化塗膜表面を往復させた後、目視で表面に傷が発生するまでの往復回数を測定し、下記の基準で評価した。
(評価)
○・・・1,000回往復しても傷が無かった
△・・・600回以上1,000回未満で傷が発生した
×・・・600回未満で傷が発生した [Scratch resistance]
About the above-mentioned cured coating film coated on easy-to-adhere PET film, after making the surface of the cured coating film reciprocate while applying a load of 1 kg using steel wool (made by Nippon Steel Wool Co., Ltd., Bonstar # 0000) The number of reciprocations until the wound was generated was measured and evaluated according to the following criteria.
(Evaluation)
○ · · · There was no scratch even if reciprocated 1,000 times △ · · · wound occurred in more than 600 times and less than 1,000 times · · · wound occurred in less than 600 times
[防汚性(マジックインキ(登録商標)拭き取り性)]
硬化塗膜面に、黒マジックインキで1往復で線を引いて、24時間放置した後、ウエスにより、拭き取った後の塗膜を観察し、以下のように評価した。また、上記の耐擦傷性試験後(1,000回往復後)の塗膜についても同様に、マジックインキ拭き取り性を評価した。
(評価)
○・・・きれいに拭き取れる
△・・・ある程度拭き取れるが跡が残る
×・・・拭き取れない [Stain resistance (Magic ink (registered trademark) wiping ability)]
A line was drawn on the cured coating surface in one reciprocation with black magic ink, and after standing for 24 hours, the coating after wiping with a rag was observed and evaluated as follows. Moreover, the magic ink wiping off property was similarly evaluated also about the coating film after said abrasion resistance test (after 1,000 reciprocations).
(Evaluation)
○ ········································································· Can not wipe off
硬化塗膜面に、黒マジックインキで1往復で線を引いて、24時間放置した後、ウエスにより、拭き取った後の塗膜を観察し、以下のように評価した。また、上記の耐擦傷性試験後(1,000回往復後)の塗膜についても同様に、マジックインキ拭き取り性を評価した。
(評価)
○・・・きれいに拭き取れる
△・・・ある程度拭き取れるが跡が残る
×・・・拭き取れない [Stain resistance (Magic ink (registered trademark) wiping ability)]
A line was drawn on the cured coating surface in one reciprocation with black magic ink, and after standing for 24 hours, the coating after wiping with a rag was observed and evaluated as follows. Moreover, the magic ink wiping off property was similarly evaluated also about the coating film after said abrasion resistance test (after 1,000 reciprocations).
(Evaluation)
○ ········································································· Can not wipe off
[水及びオレイン酸接触角]
硬化塗膜面に対する水及びオレイン酸の接触角を接触角測定装置(協和界面化学社製、DropMaster600)で測定した。また、上記の耐擦傷性試験後の塗膜についても同様に、水及びオレイン酸接触角を評価した。 [Water and oleic acid contact angle]
The contact angles of water and oleic acid with respect to the cured coating surface were measured by a contact angle measurement device (DropMaster 600, manufactured by Kyowa Interface Chemicals Co., Ltd.). Moreover, water and an oleic acid contact angle were similarly evaluated also about the coating film after the above-mentioned abrasion resistance test.
硬化塗膜面に対する水及びオレイン酸の接触角を接触角測定装置(協和界面化学社製、DropMaster600)で測定した。また、上記の耐擦傷性試験後の塗膜についても同様に、水及びオレイン酸接触角を評価した。 [Water and oleic acid contact angle]
The contact angles of water and oleic acid with respect to the cured coating surface were measured by a contact angle measurement device (DropMaster 600, manufactured by Kyowa Interface Chemicals Co., Ltd.). Moreover, water and an oleic acid contact angle were similarly evaluated also about the coating film after the above-mentioned abrasion resistance test.
上記結果から分かるように、ウレタン(メタ)アクリレート系組成物[I]とフッ素含有(メタ)アクリレート系化合物[II]を含有する組成物において、更に、重合禁止剤[III]を所定量含有する実施例においては、塗工液での保存安定性に優れるものであった。更に、実施例は、比較例2,4よりも多く重合禁止剤[III]を含有するにもかかわらず、硬化塗膜とした際の防汚性能及び耐擦傷性にも遜色なく優れたものであった。一方、フッ素含有(メタ)アクリレート系化合物[II]を含有しない比較例1、3では、防汚性能や耐擦傷性に劣るものであり、ウレタン(メタ)アクリレート系組成物[I]の製造以外に、更なる重合禁止剤[III]の配合を行わなかった比較例2,4では、液の保存安定性に劣るものであった。また、ウレタン(メタ)アクリレート系組成物[I]を用いなかった比較例5では硬化性が不充分なものとなり、本発明の目的を満足しないものであった。
As can be seen from the above results, the composition containing the urethane (meth) acrylate composition [I] and the fluorine-containing (meth) acrylate compound [II] further contains a predetermined amount of the polymerization inhibitor [III] In the examples, the storage stability in the coating liquid was excellent. Furthermore, although the example contains the polymerization inhibitor [III] more than Comparative Examples 2 and 4, it is also excellent in antifouling performance and scratch resistance when made into a cured coating film. there were. On the other hand, in Comparative Examples 1 and 3 which do not contain the fluorine-containing (meth) acrylate compound [II], they are inferior in antifouling performance and scratch resistance and other than the production of the urethane (meth) acrylate composition [I] In addition, in Comparative Examples 2 and 4 in which the blending of the polymerization inhibitor [III] was not performed, the storage stability of the solution was inferior. Moreover, in Comparative Example 5 in which the urethane (meth) acrylate composition [I] was not used, the curability was insufficient, and the object of the present invention was not satisfied.
上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
Although specific embodiments of the present invention have been described in the above examples, the above examples are merely illustrative and are not to be construed as limiting. Various modifications apparent to those skilled in the art are intended to be within the scope of the present invention.
本発明の活性エネルギー線硬化性樹脂組成物は、塗工液の保存安定性に優れ、また、防汚性能(耐汚染性及びその持続性)、硬化塗膜の特性(外観、硬度、耐擦傷性)に優れた塗膜を形成することができるものであり、コーティング剤、とりわけハードコート用コーティング剤や光学フィルム用コーティング剤として有用である。また、塗料、インク等としても有用である。
The active energy ray-curable resin composition of the present invention is excellent in the storage stability of the coating solution, and has antifouling performance (contamination resistance and its persistence), properties of the cured coating (appearance, hardness, scratch resistance) (6) can be formed, and is useful as a coating agent, in particular, a coating agent for a hard coat or a coating agent for an optical film. It is also useful as a paint, an ink and the like.
Claims (10)
- 多価アルコールの(メタ)アクリル酸付加物(A)中の水酸基と、ポリイソシアネート系化合物(B)のイソシアネート基とが反応したウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]を含有してなり、重合禁止剤[III]の含有量が、ウレタン(メタ)アクリレート系組成物[I]、フッ素含有(メタ)アクリレート系化合物[II]及び重合禁止剤[III]の合計に対して、重量基準で800~10,000ppmであることを特徴とする活性エネルギー線硬化性樹脂組成物。 Urethane (meth) acrylate composition [I] in which a hydroxyl group in a (meth) acrylic acid adduct (A) of a polyhydric alcohol and an isocyanate group of a polyisocyanate compound (B) are reacted, fluorine-containing (meth) Acrylate compound [II] and polymerization inhibitor [III] are contained, and the content of polymerization inhibitor [III] is urethane (meth) acrylate composition [I], fluorine-containing (meth) acrylate compound An active energy ray-curable resin composition which is 800 to 10,000 ppm by weight with respect to the total of [II] and the polymerization inhibitor [III].
- 上記多価アルコールが、ジペンタエリスリトール及びペンタエリスリトールの少なくとも一方であることを特徴とする請求項1記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray curable resin composition according to claim 1, wherein the polyhydric alcohol is at least one of dipentaerythritol and pentaerythritol.
- 上記フッ素含有(メタ)アクリレート系化合物[II]が、シロキサン結合を有することを特徴とする請求項1または2記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray curable resin composition according to claim 1 or 2, wherein the fluorine-containing (meth) acrylate compound [II] has a siloxane bond.
- 上記フッ素含有(メタ)アクリレート系化合物[II]の重量平均分子量が1,000~100,000であることを特徴とする請求項1~3のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The weight average molecular weight of the said fluorine-containing (meth) acrylate type compound [II] is 1,000-100,000, The active energy ray curable resin as described in any one of Claims 1-3 characterized by the above-mentioned. Composition.
- 上記ウレタン(メタ)アクリレート系組成物[I]の重量平均分子量が900~30,000であることを特徴とする請求項1~4のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The weight average molecular weight of said urethane (meth) acrylate type composition [I] is 900-30,000, The active energy ray curable resin composition as described in any one of Claims 1-4 characterized by the above-mentioned. .
- 更に着色防止剤[IV]を含有することを特徴とする請求項1~5のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray curable resin composition according to any one of claims 1 to 5, further comprising a coloring inhibitor [IV].
- 更に沸点が80℃以上の有機溶剤を含有することを特徴とする請求項1~6のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray curable resin composition according to any one of claims 1 to 6, further comprising an organic solvent having a boiling point of 80 ° C or more.
- 請求項1~7のいずれか一項に記載の活性エネルギー線硬化性樹脂組成物を含有してなることを特徴とするコーティング剤。 A coating agent comprising the active energy ray curable resin composition according to any one of claims 1 to 7.
- ハードコート用コーティング剤として用いることを特徴とする請求項8記載のコーティング剤。 9. The coating agent according to claim 8, which is used as a coating agent for hard coating.
- 光学フィルム用コーティング剤として用いることを特徴とする請求項8記載のコーティング剤。 The coating agent according to claim 8, which is used as a coating agent for an optical film.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207012070A KR102645100B1 (en) | 2017-12-14 | 2018-12-07 | Active energy ray curable resin composition and coating agent |
CN201880069383.4A CN111278880A (en) | 2017-12-14 | 2018-12-07 | Active energy ray-curable resin composition and coating agent |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017239385 | 2017-12-14 | ||
JP2017-239386 | 2017-12-14 | ||
JP2017-239385 | 2017-12-14 | ||
JP2017239386 | 2017-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019117030A1 true WO2019117030A1 (en) | 2019-06-20 |
Family
ID=66819213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045067 WO2019117030A1 (en) | 2017-12-14 | 2018-12-07 | Active energy ray-curable resin composition and coating agent |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102645100B1 (en) |
CN (1) | CN111278880A (en) |
WO (1) | WO2019117030A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023132578A1 (en) * | 2022-01-06 | 2023-07-13 | 동우화인켐 주식회사 | Adhesive composition, adhesive sheet and optical film |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005283849A (en) * | 2004-03-29 | 2005-10-13 | Fuji Photo Film Co Ltd | Setting resin composition, method for manufacturing antireflection film using the same, antireflection film, polarizing plate, and image display apparatus |
JP2013023548A (en) * | 2011-07-19 | 2013-02-04 | Bridgestone Corp | Photocurable resin composition, wet area member and functional panel using the same |
WO2013151119A1 (en) * | 2012-04-06 | 2013-10-10 | 東亞合成株式会社 | Active-energy-curable composition for forming optical layer |
WO2014034030A1 (en) * | 2012-08-28 | 2014-03-06 | 株式会社ブリヂストン | Member having cured layer formed by curing curable resin composition on at least surface thereof |
JP2014091776A (en) * | 2012-11-02 | 2014-05-19 | Dic Corp | Active energy ray curable composition, cured product thereof and product having the cured coating film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5162306B2 (en) * | 2008-04-03 | 2013-03-13 | 精工化学株式会社 | Anti-coloring agent |
JP6217208B2 (en) * | 2013-07-22 | 2017-10-25 | 東亞合成株式会社 | Active energy ray-curable composition |
WO2016043263A1 (en) * | 2014-09-19 | 2016-03-24 | 横浜ゴム株式会社 | Ultraviolet light curable resin composition and laminate using same |
JP6719919B2 (en) | 2015-11-25 | 2020-07-08 | リケンテクノス株式会社 | Hard coat laminated film |
-
2018
- 2018-12-07 KR KR1020207012070A patent/KR102645100B1/en active IP Right Grant
- 2018-12-07 CN CN201880069383.4A patent/CN111278880A/en active Pending
- 2018-12-07 WO PCT/JP2018/045067 patent/WO2019117030A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005283849A (en) * | 2004-03-29 | 2005-10-13 | Fuji Photo Film Co Ltd | Setting resin composition, method for manufacturing antireflection film using the same, antireflection film, polarizing plate, and image display apparatus |
JP2013023548A (en) * | 2011-07-19 | 2013-02-04 | Bridgestone Corp | Photocurable resin composition, wet area member and functional panel using the same |
WO2013151119A1 (en) * | 2012-04-06 | 2013-10-10 | 東亞合成株式会社 | Active-energy-curable composition for forming optical layer |
WO2014034030A1 (en) * | 2012-08-28 | 2014-03-06 | 株式会社ブリヂストン | Member having cured layer formed by curing curable resin composition on at least surface thereof |
JP2014091776A (en) * | 2012-11-02 | 2014-05-19 | Dic Corp | Active energy ray curable composition, cured product thereof and product having the cured coating film |
Also Published As
Publication number | Publication date |
---|---|
CN111278880A (en) | 2020-06-12 |
KR102645100B1 (en) | 2024-03-08 |
KR20200090153A (en) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5235263B2 (en) | Active energy ray-curable resin composition, method for producing the same, and coating agent composition using the same | |
JP2016104859A (en) | Active energy ray-curable resin composition and coating agent | |
EP3127931A1 (en) | Urethane (meth)acrylate compound, active-energy-ray-curable resin composition, and coating agent | |
KR20180095687A (en) | Active energy ray curable resin composition, active energy ray curable emulsion composition and coating composition | |
JP6261247B2 (en) | Active energy ray-curable resin composition, coating agent composition using the same, and cured coating film | |
JP7408910B2 (en) | Active energy ray-curable resin composition and coating agent | |
JP7384233B2 (en) | Active energy ray-curable resin composition and coating agent | |
KR102445218B1 (en) | Active energy ray-curable resin composition and coating agent | |
JP2018178094A (en) | Active energy ray-curable resin composition and coating agent | |
JP6578692B2 (en) | Active energy ray-curable resin composition and coating agent using the same | |
JP6596898B2 (en) | Active energy ray-curable resin composition and coating agent using the same | |
WO2019117030A1 (en) | Active energy ray-curable resin composition and coating agent | |
JP6938889B2 (en) | Active energy ray-curable resin composition and coating agent | |
JP2020029478A (en) | Active energy ray-curable resin composition and coating agent | |
JP6891404B2 (en) | Coating agent | |
JP7434708B2 (en) | Active energy ray-curable resin composition and coating agent | |
JP2022176959A (en) | Curable composition, cured product and laminate | |
JP7322396B2 (en) | Active energy ray-curable resin composition and coating agent for pre-coated metal production | |
JP7243162B2 (en) | Active energy ray-curable resin composition and coating agent | |
JP7110672B2 (en) | Active energy ray-curable resin composition and coating agent | |
JP7461239B2 (en) | Urethane (meth)acrylate composition, active energy ray-curable composition, and cured product thereof | |
JP7275748B2 (en) | Active energy ray-curable resin composition and coating agent containing the same | |
JP6950527B2 (en) | Active energy ray-curable resin composition and coating agent using the same | |
JP2017115028A (en) | Active energy ray-curable resin composition and coating agent containing the same | |
JP6740608B2 (en) | Active energy ray curable resin composition and coating agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18888445 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18888445 Country of ref document: EP Kind code of ref document: A1 |