[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019116745A1 - Liquid crystal display device and method of manufacture therefor - Google Patents

Liquid crystal display device and method of manufacture therefor Download PDF

Info

Publication number
WO2019116745A1
WO2019116745A1 PCT/JP2018/039627 JP2018039627W WO2019116745A1 WO 2019116745 A1 WO2019116745 A1 WO 2019116745A1 JP 2018039627 W JP2018039627 W JP 2018039627W WO 2019116745 A1 WO2019116745 A1 WO 2019116745A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
liquid crystal
alignment film
crystal display
region
Prior art date
Application number
PCT/JP2018/039627
Other languages
French (fr)
Japanese (ja)
Inventor
幸一 井桁
英博 園田
武徳 廣田
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2019116745A1 publication Critical patent/WO2019116745A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present invention relates to a display device, and more particularly to a liquid crystal display device which can be bent, bent and the like.
  • a TFT substrate on which pixels having pixel electrodes, thin film transistors (TFTs), and the like are formed in a matrix, and an opposing substrate are disposed facing the TFT substrate, and liquid crystal is sandwiched between the TFT substrate and the opposing substrate. ing.
  • An image is formed by controlling the light transmittance of liquid crystal molecules for each pixel.
  • a flexible liquid crystal display device uses a thin glass substrate as a substrate or is formed of a resin such as polyimide. If bending or bending is repeated for such a flexible display area, display quality is degraded.
  • Patent Document 1 in order to prevent the deterioration of display quality in such a flexible display device, an electrode layer and an alignment film are formed on a TFT substrate, and then a curable liquid crystal composition is applied and cured, and then A liquid crystal display device having a configuration in which liquid crystal is held between an opposing substrate and a TFT substrate is described.
  • a curable liquid crystal composition is applied and cured, and then A liquid crystal display device having a configuration in which liquid crystal is held between an opposing substrate and a TFT substrate is described.
  • using the photo-alignment film formed by irradiating an ultraviolet-ray as said alignment film is described.
  • the alignment film is for initially aligning liquid crystal molecules, and there are rubbing processing and photo-alignment processing using polarized ultraviolet light as the alignment processing.
  • the photo-alignment process has advantages such as no influence of foreign substances generated by the rubbing process, or less generation of static electricity.
  • polyimide is used for the alignment film subjected to photo-alignment
  • the film is broken in the predetermined direction because the polyimide is torn.
  • the liquid crystal display device having such an alignment film is bent or bent, a phenomenon in which the alignment film is broken and peeled off occurs in a portion subjected to the bending or bending stress.
  • the alignment film is broken, light leakage occurs in that portion and the display quality is degraded.
  • An object of the present invention is to provide a liquid crystal display device having a photo-aligned alignment film, which can prevent deterioration of display quality without breaking the alignment film even if stress of bending or bending is applied. It is to realize.
  • the present invention overcomes the above problems, and the main specific means are as follows.
  • a first photoalignment film is formed on a first substrate, a second photoalignment film is formed on a second substrate, and a liquid crystal is held between the first substrate and the second substrate
  • a liquid crystal display capable of being bent or bent with the first direction as a bending axis or bending axis, wherein the direction of the alignment axis of the first light alignment film and the second light alignment film is What is claimed is: 1.
  • a liquid crystal display device wherein the first direction coincides with a range of 90 degrees ⁇ 10 degrees.
  • a method of manufacturing a liquid crystal display device in which liquid crystal is held between a first substrate and a second substrate, and can be curved or bent in a second direction with the first direction as a bending axis or a bending axis
  • a first alignment film is formed on the first substrate, and the first alignment film is photoaligned using polarized ultraviolet light so as to have an alignment axis in the second direction
  • a second alignment film is formed on the second substrate, and the second alignment film is photoaligned using polarized ultraviolet light so as to have an alignment axis in the second direction.
  • a liquid crystal display device in which liquid crystal is held between a first substrate and a second substrate and which can be bent with a first direction as a first bending axis, the first substrate and the first substrate
  • the second substrate has an alignment film, and in the first substrate and the second substrate, the alignment ability of the first region having a first width including the first bending axis to the liquid crystal is
  • the alignment film is subjected to alignment treatment with polarized ultraviolet light in portions other than the first region, which is smaller than the alignment ability to the liquid crystal other than the first region.
  • FIG. 1 is a plan view of a liquid crystal display to which the present invention is applied. It is a top view which shows the pixel structure of a display area. It is sectional drawing of a display area. It is another example of a pixel electrode. It is a schematic diagram which shows optical orientation. It is a schematic diagram which shows the influence on alignment film intensity
  • FIG. 1 is a schematic view showing a configuration of Example 1; It is a table
  • FIG. 21 is a plan view showing a first example of the fifth embodiment.
  • FIG. 21 is a plan view showing a second example of the fifth embodiment.
  • FIG. 21 is a plan view showing a third example of the fifth embodiment.
  • 21 is a plan view showing a fourth example of the fifth embodiment.
  • a liquid crystal having positive dielectric anisotropy it is a plan view showing a configuration in the case where the alignment axis of the alignment film is 45 degrees with respect to the bending direction.
  • a liquid crystal with negative dielectric anisotropy it is a plan view showing a configuration in the case where the alignment axis of the alignment film is 45 degrees with respect to the bending direction.
  • FIG. 1 is a plan view showing an example of a liquid crystal display panel 20 to which the present invention is applied.
  • FIG. 1 shows an example of a liquid crystal display panel 20 used for a mobile phone or a tablet.
  • a TFT substrate 100 in which pixels including TFTs and pixel electrodes are arranged in a matrix and a counter substrate 200 on which a black matrix and the like are formed are bonded by a sealing material 50, and between the TFT substrate 100 and the counter substrate 200. The liquid crystal is held.
  • a display area 30 is formed in a portion where the TFT substrate 100 and the counter substrate 200 overlap.
  • scanning lines 11 extend in the horizontal direction (x direction) on the TFT substrate 100 and are arranged in the vertical direction (y direction).
  • the video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction.
  • Pixels 13 are formed in a region surrounded by the scanning lines 11 and the video signal lines 12.
  • the TFT substrate 100 is formed to be larger than the counter substrate 200, and the terminal region 40 is formed in a portion where the TFT substrate 100 and the counter substrate 200 do not overlap.
  • a flexible wiring substrate 500 is connected to the terminal region 40 in order to supply signals and power to the liquid crystal display panel 20.
  • the liquid crystal display panel 20 shown in FIG. 1 is configured such that the TFT substrate 100 and the counter substrate 200 are formed of a resin such as polyimide or very thin glass, etc., and can be bent flexibly.
  • a display device using the liquid crystal display panel 20 is referred to as a liquid crystal display device in this specification, the liquid crystal display panel 20 and the liquid crystal display device may be used without distinction.
  • FIG. 2 is a plan view showing the pixel arrangement in the display area 30 of FIG.
  • the scanning lines 11 extend in the lateral direction (x direction) and are arranged in the longitudinal direction (y direction).
  • the video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction.
  • a pixel electrode 112 is formed in a region surrounded by the scanning line 11 and the video signal line 12.
  • the major axis direction of the pixel electrode 112 is inclined at an angle ⁇ with the y direction.
  • the video signal line 12 is inclined by an angle ⁇ with the y direction in accordance with the inclination ⁇ of the pixel electrode 112.
  • the angle ⁇ is, for example, 5 degrees to 15 degrees.
  • An arrow AL in FIG. 2 indicates the alignment direction of the alignment film when the dielectric anisotropy of the liquid crystal is positive.
  • the alignment direction AL of the alignment film is the y direction.
  • the reason for inclining the pixel electrode 112 and the alignment direction AL by the angle ⁇ is to match the rotational direction of the liquid crystal when a voltage is applied to the pixel electrode 112 and to prevent the generation of a domain.
  • FIG. 2 shows the case where the dielectric anisotropy of the liquid crystal is positive.
  • the alignment direction AL is rotated 90 degrees from the case of FIG. That is, it becomes the x direction of FIG.
  • the semiconductor layer 103 is connected to the video signal line 12 in the through hole 140, passes under the video signal line 12, passes under the scanning line 11, and then bends and passes under the scanning line 11 again. Do.
  • a TFT is formed. That is, in FIG. 2, two TFTs are formed in series. At this time, the scanning line 11 has a role of the gate electrode of the TFT.
  • the semiconductor layer 103 is connected to the contact electrode 107 in the through hole 120.
  • the contact electrode 107 is connected to the pixel electrode 112 in the through hole 130.
  • the common electrode 110 is formed in a planar shape except for the through hole 130.
  • a capacitive insulating film 111 which will be described later, is present on the common electrode 110, and a pixel electrode 112 is formed thereon.
  • the pixel electrode 112 has a slit 1121 and a comb electrode 1122.
  • the pixel electrode 112 may have various shapes depending on the size of the pixel. For example, when the pixel becomes small, the slit 1121 disappears, and the pixel electrode 112 becomes one comb-tooth electrode 1122, that is, a stripe-shaped electrode. On the other hand, when the pixel size is increased, the number of slits 1121 is two or more, and the number of the comb-tooth electrodes 1122 is also three or more. In this specification, even when the number of the comb-tooth electrode 1122 of the pixel electrode 112 is one, it is called a comb-tooth electrode.
  • FIG. 3 is a cross-sectional view of the liquid crystal display panel corresponding to the cross section AA of FIG. That is, only one TFT is described in FIG.
  • the TFT in FIG. 3 is a so-called top gate type TFT, and as the semiconductor 103 used, LTPS (Low Temperature Poly-Si) is used.
  • LTPS Low Temperature Poly-Si
  • bottom gate TFTs are often used.
  • a top gate TFT is used is described as an example, the present invention can be applied to a case where a bottom gate TFT is used.
  • the TFT substrate 100 and the counter substrate 200 are formed of a resin such as polyimide or a very thin glass plate having a thickness of 0.15 mm or less.
  • the glass plate can be bent flexibly as the plate thickness decreases.
  • the thickness can be further reduced to 10 ⁇ m to 20 ⁇ m.
  • a first base film 101 made of SiN and a second base film 102 made of SiO are formed on the TFT substrate 100 by CVD (Chemical Vapor Deposition).
  • the role of the first base film 101 and the second base film 102 is to prevent impurities from the TFT substrate 100 from contaminating the semiconductor layer 103.
  • the semiconductor layer 103 is formed on the second base film 102.
  • an a-Si film is formed on the second base film 102 by CVD and converted into a poly-Si film by laser annealing. This poly-Si film is patterned by photolithography.
  • a gate insulating film 104 is formed on the semiconductor film 103.
  • the gate insulating film 104 is an SiO film made of TEOS (tetraethoxysilane) as a raw material. This film is also formed by CVD.
  • a gate electrode 105 is formed thereon. The gate electrode 105 doubles as the scanning line 11 shown in FIG.
  • the gate electrode 105 is formed of, for example, a MoW film. When it is necessary to reduce the resistance of the gate electrode 105 or the scanning line 10, an Al alloy is used.
  • the gate electrode 105 is patterned by photolithography. During this patterning, an impurity such as phosphorus or boron is doped into the poly-Si layer by ion implantation to form a source S or drain D in the poly-Si layer. Do. In addition, a lightly doped drain (LDD) layer is formed between the channel layer of the poly-Si layer and the source S or the drain D by using a photoresist when patterning the gate electrode 105.
  • LDD lightly doped drain
  • an interlayer insulating film 106 is formed of SiO, covering the gate electrode 105.
  • the interlayer insulating film 106 is to insulate the gate wiring 105 and the contact electrode 107.
  • Through holes 120 for connecting the source portion S of the semiconductor layer 103 to the contact electrode 107 are formed in the interlayer insulating film 106 and the gate insulating film 104. Photolithography for forming the through holes 120 in the interlayer insulating film 106 and the gate insulating film 104 is simultaneously performed.
  • Contact electrode 107 is formed on interlayer insulating film 106.
  • the contact electrode 107 is connected to the pixel electrode 112 through the through hole 130.
  • the drain D of the TFT is connected to the video signal line 12 through the through hole 140 as shown in FIG.
  • the contact electrode 107 and the video signal line 12 are simultaneously formed in the same layer.
  • an AlSi alloy is used to reduce the resistance. Since AlSi alloy generates hillocks and Al diffuses into other layers, for example, a barrier layer of MoW not shown and a cap layer sandwich AlSi.
  • the inorganic passivation film (insulating film) 108 is covered to cover the contact electrode 107 to protect the entire TFT.
  • the inorganic passivation film 108 is formed by CVD in the same manner as the first base film 101.
  • An organic passivation film 109 is formed to cover the inorganic passivation film 108.
  • the organic passivation film 109 is formed of a photosensitive acrylic resin.
  • the organic passivation film 109 can be formed of a silicone resin, an epoxy resin, a polyimide resin or the like in addition to the acrylic resin.
  • the organic passivation film 109 has a role as a planarizing film and is therefore formed thick.
  • the film thickness of the organic passivation film 109 is 1 to 4 ⁇ m, but in most cases it is about 2 ⁇ m.
  • through holes 130 are formed in the inorganic passivation film 108 and the organic passivation film 109.
  • the organic passivation film 109 uses a photosensitive resin. After application of the photosensitive resin, when the resin is exposed, only the light-exposed part is dissolved in the specific developer. That is, formation of a photoresist can be omitted by using a photosensitive resin. After forming the through holes 130 in the organic passivation film 109, the organic passivation film 109 is completed by baking the organic passivation film at about 230.degree.
  • ITO Indium Tin Oxide
  • SiN to be a capacitive insulating film 111 is formed on the entire surface by CVD.
  • a through hole for electrically connecting the contact electrode 107 and the pixel electrode 112 is formed in the capacitive insulating film 111 and the inorganic passivation film 108.
  • the capacitive insulating film 111 is called a capacitive insulating film 111 because a storage capacitance is formed between the common electrode 110 and the pixel electrode 112.
  • ITO is formed by sputtering and patterned to form a pixel electrode 112.
  • the planar shape of the pixel electrode 112 is described in FIG.
  • An alignment film material is applied on the pixel electrode 112 by flexo printing, inkjet, or the like, and baked to form an alignment film 113.
  • photo alignment by polarized ultraviolet light is used for alignment processing of the alignment film 113.
  • the counter substrate 200 is disposed with the liquid crystal layer 300 interposed therebetween.
  • a color filter 201 is formed on the inside of the counter substrate 200.
  • red, green and blue color filters are formed for each pixel, whereby a color image is formed.
  • a black matrix 202 is formed between the color filter 201 and the color filter 201 to improve the contrast of the image.
  • the black matrix 202 also has a role as a light shielding film of the TFT, and prevents a photocurrent from flowing to the TFT.
  • An overcoat film 203 is formed to cover the color filters 201 and the black matrix 202. Since the surfaces of the color filter 201 and the black matrix 202 are uneven, the surface is made flat by the overcoat film 203. The overcoat film 203 also has a role of preventing the pigment of the color filter 201 from contaminating the liquid crystal layer 300.
  • An alignment film 113 for determining the initial alignment of the liquid crystal molecules 301 is formed on the overcoat film 203. Similar to the alignment film 113 on the TFT substrate 100 side, the alignment process of the alignment film 113 uses a photoalignment method by polarized ultraviolet light.
  • the inorganic passivation film 108 in the TFT substrate 100 may not be formed depending on the type.
  • the process of forming the through holes 130 may differ depending on the type.
  • the shape of the pixel electrode 112 is not limited to that shown in FIG. 2, but may have a structure as shown in FIG.
  • the slit 1121 is inclined in the lateral direction (x direction) by ⁇ degrees, for example 5 to 15 degrees
  • the comb electrode 1122 is also in the lateral direction (x direction) with ⁇ degrees, for example 5 degrees It is inclined by 15 degrees.
  • the alignment direction AL of the alignment film is the x direction. That is, it is the same as FIG. 2 in that the comb electrode 1122 forms an angle of ⁇ degrees with the alignment direction AL of the alignment film 113.
  • the direction of the pixel electrode 112 is defined as the direction of the comb electrode 1122 in the present specification. Also in the case of FIG. 4, when the dielectric anisotropy is negative, the alignment direction of the alignment film 113 is rotated by 90 degrees and is in the y direction.
  • FIG. 5 is a schematic view showing photoalignment.
  • the photoalignment is performed by irradiating the alignment film 113 formed on the substrate 100 with polarized ultraviolet light having a wavelength of about 250 nm.
  • the figure in the center of FIG. 5 shows a state in which ultraviolet light having a polarization axis UVP in the longitudinal direction (y direction) is irradiated so that the alignment film 113 formed on the substrate 100 has the alignment axis in the lateral direction (x direction).
  • the substrate is represented by the TFT substrate 100, but the same applies to the opposite substrate 200.
  • the alignment film has a configuration in which polyimides are randomly arranged in all directions as shown in FIG.
  • the figure on the right side of FIG. 5 is a schematic view showing a state in which the polyimide PI having the main chain in the longitudinal direction is irradiated with the ultraviolet light having the polarization axis UVP in the longitudinal direction.
  • the cyclobutane ring is cleaved by polarized ultraviolet light, and the polyimide PI is cleaved.
  • FIG. 5 is a schematic view showing a state in which the polyimide PI having the main chain in the horizontal direction is irradiated with the ultraviolet light having the polarization axis UVP in the vertical direction.
  • the polyimide is not divided.
  • the alignment film 113 has the alignment axis AL in the lateral direction (x direction) which is a direction in which the polyimide is not divided.
  • the polyimide molecules are separated in this direction, so that they are mechanically weak and peeling of the alignment film 113 or the like occurs.
  • the substrate on which the alignment film 113 in this state is formed is curved along the x-axis, since the polyimide PI is not divided, the mechanical strength is not lowered. It is hard to occur.
  • FIG. 6 is a plan view showing a state in which ultraviolet light having a polarization axis UVP is applied in the lateral direction (x direction) so that the alignment film 113 formed on the substrate 100 has the alignment axis AL in the longitudinal direction (y direction). It is.
  • the central view of FIG. 6 shows a state in which the end of the substrate is curved in a roll in the x direction with the y direction as the bending axis.
  • the polyimide having a main chain in the lateral direction (x direction) is cleaved by cleavage of the cyclobutane ring.
  • the structural formula in the upper drawing of FIG. 6 shows a state in which a cyclobutane ring constituting a polyimide having a main chain in the lateral direction (x direction) is cleaved by polarized ultraviolet light. Further, the wavy curve PI shows a state in which the polyimide chain is divided by ultraviolet light. In this case, the polyimide having a main chain in the lateral direction (x direction) is weak in strength both in the lateral direction (x direction) and in the longitudinal direction (y direction).
  • FIG. 6 is a schematic view showing a state in which the ultraviolet light having the polarization axis UVP in the lateral direction is irradiated to the polyimide PI having the main chain in the longitudinal direction.
  • the polyimide PI is not divided.
  • the alignment film 113 has the alignment axis AL in the longitudinal direction (y direction) in which the polyimide is not divided.
  • polyimide PI has low strength in the direction perpendicular to the direction of the main chain.
  • the wavy line PI on the right side of FIG. 6 shows a polyimide chain, but the strength is large in the extending direction of the wavy line but weak in the direction perpendicular to the wavy line PI. Therefore, in FIG. 6, the strength of the polyimide is weak in the direction of bending in a roll shape or an S shape, and the alignment film 113 is easily peeled off from the substrate.
  • FIG. 7 is a schematic view showing the bending direction of the substrate 100 and the direction of the alignment axis AL of the alignment film 113, which show the feature of the present invention.
  • the central view of FIG. 7 shows a state in which the end of the substrate 100 is curved in a roll in the x direction with the y direction as the bending axis.
  • It is a top view which shows the direction of axis AL.
  • the alignment axis UVP of the polarized ultraviolet light is in the longitudinal direction (y direction)
  • the alignment axis AL of the alignment film 113 subjected to the alignment process by the polarized ultraviolet light is in the lateral direction (x direction).
  • FIG. 7 shows a structural formula of a polyimide having a main chain in the lateral direction (x direction), but the polyimide PI having a main chain in this direction does not cleave a cyclobutane ring by polarized ultraviolet light. Therefore, the alignment axis AL of the alignment film 113 is in the x direction. In addition, since the polyimide having a main chain in this direction is strong, the polyimide PI is difficult to peel even if it is curved along the x direction.
  • FIG. 7 shows a structural formula of a polyimide having a main chain in the longitudinal direction (y direction), but in the polyimide having a main chain in this direction, the cyclobutane ring is cleaved by polarized ultraviolet light. Therefore, the polyimide PI has low strength in the longitudinal direction.
  • a wavy line PI in the central diagram of FIG. 7 indicates that the polyimide PI having a main chain in the lateral direction is not divided. Therefore, even if the alignment film 113 is curved in a roll shape or an S-shape along the lateral direction (x direction), the alignment film 113 is resistant to stress and therefore does not peel off. On the other hand, although the polyimide PI having the main chain in the longitudinal direction is torn, it is weak to stress, but since the substrate 100 is not curved in this direction, peeling of the alignment film 113 does not occur. Therefore, with the configuration as shown in FIG. 7, peeling of the alignment film 113 hardly occurs even when the liquid crystal display device is curved.
  • the direction of the alignment axis AL of the alignment film 113 and the bending direction of the liquid crystal display panel are the same direction means that they coincide with each other within 0 ° ⁇ 10 °. This range is more preferably within 0 ° ⁇ 1 °.
  • the direction of the alignment axis AL of the alignment film 113 and the bending axis or bending axis of the liquid crystal display panel coincide within 90 degrees ⁇ 10 degrees. More preferably, this range is within 90 ° ⁇ 1 °.
  • FIG. 8 is a table showing the usage of the flexible liquid crystal display device.
  • the flexible liquid crystal display device is bent and used, or folded and stored.
  • bending stress is generated in the first direction on the substrate and the alignment film, but no bending stress is applied in the direction perpendicular to the first direction.
  • FIG. 9 shows specifications associated with the alignment film 113 corresponding to the usage mode as shown in FIG.
  • the alignment direction row of the alignment film when the alignment direction of the alignment film is either vertical or horizontal in the TFT substrate, the alignment direction is single but the alignment direction is oblique.
  • a plurality of alignment film regions may exist in the TFT substrate.
  • light alignment is performed using a mask.
  • the direction of the major axis direction of the comb electrode in the pixel electrode becomes a problem in relation to the alignment direction of the alignment film. That is, the direction of the major axis direction of the comb-tooth electrode in the pixel electrode needs to be selected so as not to generate a domain in the liquid crystal layer in relation to the alignment direction of the liquid crystal.
  • the case where the major axis direction of the pixel electrode is oblique corresponds to the case where the alignment direction of the alignment film is oblique.
  • the alignment direction of the alignment film and the direction of the long axis direction of the pixel electrode need to be determined depending on the liquid crystal material used.
  • the dielectric anisotropy of the liquid crystal is positive
  • the long axis direction of the comb electrode in the pixel electrode is disposed in the orientation direction and the ⁇ degree, for example, 5 ° to 15 °
  • the dielectric anisotropy of the liquid crystal Is negative the major axis direction of the comb-tooth electrode in the pixel electrode is disposed in a direction perpendicular to the alignment direction and in a direction forming ⁇ degrees, for example, 5 degrees to 15 degrees.
  • FIG. 10 describes the configuration according to the present invention in the case of using liquid crystal with positive dielectric anisotropy.
  • the substrate 100 is curved at its end so as to be rolled in the x direction as indicated by the arrow RD.
  • the alignment direction AL of the alignment film 113 is the x direction so as not to cause peeling of the alignment film 113.
  • the right side of FIG. 10 shows the direction of the pixel electrode 112 in this case. That is, the direction of the comb electrode 1122 of the pixel electrode 112 forms an angle ⁇ with the direction of the alignment axis AL of the alignment film 113.
  • generation of domains in the liquid crystal layer can be prevented, and peeling of the alignment film 113 when it is curved can be prevented.
  • FIG. 11 describes the configuration according to the present invention in the case of using liquid crystal with negative dielectric anisotropy.
  • the bending direction of the substrate 100, the alignment axis AL of the alignment film 113, and the like are the same as in FIG. That is, peeling of the alignment film 113 is prevented by setting the direction in which the substrate 100 is curved to a direction in which the strength of the alignment film 113 is strong.
  • FIG. 11 is different from FIG. 10 in that the extending direction of the comb electrode 1122 in the pixel electrode 112 is inclined by ⁇ with respect to the direction of 90 degrees with respect to the alignment axis AL of the alignment film 113.
  • This prevents the generation of domains when the dielectric anisotropy is negative. That is, according to the configuration of FIG. 11, in the case where the dielectric anisotropy is negative, the peeling of the alignment film 113 is prevented and the generation of the domain is prevented even if the liquid crystal display device is used by bending. I can do it.
  • FIG. 12 is a schematic view of a liquid crystal display device which can be folded along the folding line FL.
  • FIG. 12 shows that the right side of the substrate 100 is bent along the bending line FL, and the x-axis direction is changed from X1 to X2.
  • Bending is equivalent to bending a liquid crystal display with a very small radius of curvature. That is, in the vicinity of the bending line, a large stress is generated in the alignment film 113 in the direction perpendicular to the bending line. Therefore, after the light alignment, the alignment axis AL of the alignment film 113 may be perpendicular to the bending line FL so that the strength of the alignment film 113 does not deteriorate in the x direction.
  • the polarization axis UVP direction of the polarized ultraviolet light and the orientation axis AL direction of the alignment film 113 are the same as in the case of FIG.
  • the extending direction of the comb teeth of the pixel electrode 112 is a direction inclined by the angle ⁇ with the alignment axis AL.
  • FIG. 13 is a schematic view in the case of using liquid crystal with negative dielectric anisotropy in a liquid crystal display which can be folded along a folding line FL.
  • the bending axis FL of the substrate 100, the bending direction, the polarization axis UVP of polarized ultraviolet light used for optical alignment, and the alignment direction AL of the alignment film 113 are the same as in FIG.
  • FIG. 13 is different from FIG. 12 in that the direction of the comb electrode 1121 of the pixel electrode 112 is inclined by an angle ⁇ with respect to the direction forming 90 degrees with the orientation axis. The reason for this is to prevent the generation of domains in the liquid crystal layer, as described in FIG.
  • Example 3 shows another configuration in the case of folding the liquid crystal display device in two.
  • FIG. 14 is a schematic view showing one aspect in the third embodiment.
  • the figure on the left side of FIG. 14 is a schematic view of a liquid crystal display device which can be folded along a folding line FL, as in FIG. 12 and the like.
  • the direction of the alignment axis AL of the alignment film 113, the direction of the bending line FL, etc. are the same as in FIG.
  • FIG. 14 is different from FIG. 12 in that strong stress is applied to the alignment film 113 and no photo-alignment is performed near the bending line FL. That is, if the alignment film 113 is not subjected to the light alignment process, the strength of the alignment film 113 in that portion does not deteriorate. Therefore, the risk of peeling off the alignment film 113 is further reduced.
  • a region in which the alignment film 113 is not subjected to the light alignment has a width w1 including the folding line FL.
  • the width w1 is, for example, the same as the thickness of the liquid crystal display panel.
  • bending can be considered synonymous with bending with the same radius of curvature as the thickness of the liquid crystal display panel. Therefore, the light alignment process may not be performed on the portion of the width w1 where the stress is concentrated. However, since light from the backlight leaks in a portion where the light alignment processing is not performed, it is necessary to form a black matrix as a light shielding film on the corresponding portion of the counter substrate 200.
  • the extending direction of the comb electrode 1122 of the pixel electrode 112 in FIG. 14 is the same as FIG. 12 when the liquid crystal has a positive dielectric constant, and the same as FIG. 13 when the liquid crystal has a negative dielectric constant. is there.
  • FIG. 14 Another mode in FIG. 14 is to apply weaker light orientation to the area of width w1 including the folding line FL in FIG. 14 than the other areas. If the light alignment is weak, the liquid crystal is not sufficiently aligned and the black level rises. That is, the contrast is reduced. However, since the liquid crystal has viscosity, if the liquid crystal on both sides of the area of width w1 is sufficiently oriented in the right side of FIG. 14, the influence of the liquid crystals on both sides of the area of width w1 of FIG. And may be oriented in the same manner as other regions. Therefore, in some cases, the reduction in contrast can be suppressed without forming a black matrix on the counter substrate 200 or the like.
  • the feature of the first embodiment of FIG. 14 is that the alignment film 113 is formed on the entire surface of the substrate 100, and the optical alignment processing by the ultraviolet light is not performed on the bent region w1.
  • a mask may be used for the width w1 when performing the light alignment process, and ultraviolet light may not be emitted.
  • the feature of the second embodiment of FIG. 14 is that the alignment film 113 is formed on the entire surface of the substrate 100, and the bent region w1 needs to be subjected to photoalignment treatment with ultraviolet light weaker than other portions. In such a case, it is possible to use a mask that is semitransparent to the polarized ultraviolet light used. Such a mask is used when performing so-called halftone exposure.
  • FIG. 15 is a schematic view showing another aspect in the third embodiment.
  • the left side of FIG. 15 is a schematic view of the liquid crystal display device which can be folded along the folding line FL.
  • the point in which FIG. 15 differs from FIG. 14 is that the alignment direction of the alignment film 113 is parallel to the bending line, and as described in FIG. 6 etc., the alignment film 113 becomes weak because the polyimide is torn. Direction. That is, when the substrate 100 is bent along the bending line FL, the alignment film is easily peeled off.
  • the folding line FL is included, and for example, the region of the width w1 is not subjected to the light alignment processing.
  • the mechanical strength of the alignment film 113 is not reduced unless the light alignment is performed, so the alignment film 113 is not easily peeled off. Since light from the backlight leaks in a portion where the alignment film 113 is not subjected to the alignment process, it is necessary to form a black matrix or the like as a light shielding film on the counter substrate 200 etc. corresponding to this portion.
  • the area where the stress is large is limited to about the thickness of the liquid crystal display panel, so the light shielding area may be small. Therefore, the display area is not greatly reduced. From the requirements of the product, it may be necessary to set the alignment direction of the alignment film 113 as shown in FIG. 15. In that case, peeling of the alignment film 113 can be prevented by adopting the configuration of the present invention. It can.
  • the alignment film 113 may be formed on the entire surface of the substrate 100, and the photoalignment process may be performed using a mask that does not irradiate the ultraviolet light to the region w1 including the bending line FL. .
  • FIG. 16 is a schematic view showing one aspect in the third embodiment.
  • the drawing on the left side of FIG. 16 is a schematic view of a liquid crystal display device which can be folded along a folding line FL, as in FIG. 14 and the like.
  • the direction of the alignment axis AL of the alignment film 113, the direction of the bending line FL, etc. are the same as in FIG.
  • the right side of FIG. 16 is a plan view showing the features of this embodiment.
  • the alignment film 113 is formed on the entire surface of the substrate 100 except the area of the width w1 including the bending line FL. That is, in the substrate 100, in the region of the width w1, not the alignment film 113 but the capacitance insulating film 111 is exposed. Since the alignment film 113 does not exist in the stressed bending region, the alignment film 113 is not peeled off even when the liquid crystal display device is bent.
  • the alignment film 113 is often formed by flexographic printing, inkjet, or the like.
  • the printing plate may be shaped as shown in FIG.
  • the application range of the inkjet may be programmed as shown in FIG.
  • the alignment film 113 is not deteriorated even when irradiated with ultraviolet light, so the entire surface of the substrate is not used.
  • the ultraviolet light to be photo-aligned is a large energy ultraviolet light having a wavelength of about 250 nm, there is a risk that the overcoat film 203 may be deteriorated if it is on the exposed capacitive insulating film 111 or the counter substrate 200 side.
  • the region of width w 1 where the alignment film 113 is not formed may be masked to avoid ultraviolet irradiation.
  • FIG. 17 is a schematic view showing another aspect in the fourth embodiment.
  • the left side of FIG. 17 is a schematic view of a liquid crystal display device which can be folded along a folding line FL. 17 differs from FIG. 16 in that the alignment direction AL of the alignment film 113 is parallel to the bending line, and as described with FIG. 6 etc., the alignment film 113 is weak because the polyimide is torn. It is the direction in which That is, when the substrate 100 is bent along the bending line FL, the alignment film 113 is easily peeled off.
  • the folding line FL is included, and for example, the alignment film 113 is not formed in the area of the width w1. If the alignment film 113 does not exist, there is no peeling of the alignment film due to the deterioration of the alignment film 113.
  • the method of forming the alignment film 113 as shown on the right side of FIG. 17 is the same as that described in FIG.
  • the right side of FIG. 16 differs from the right side of FIG. 17 only in the alignment direction of the alignment film 113.
  • the alignment direction of the alignment film 113 may need to be as shown in FIG. 17. In this case, peeling of the alignment film can be prevented by adopting the configuration of the present invention. .
  • the present embodiment is a case where the liquid crystal display device is folded in four, and the first bending line FL1 and the second bending line FL2 cross each other. If the first folding line FL1 and the second folding line FL2 are parallel even in the case of four-fold, the same configuration as the two-fold in the second to fourth embodiments may be employed.
  • FIG. 18 is a schematic view showing a first aspect in the fifth embodiment.
  • the left side of FIG. 18 is a perspective view showing a form of four fold.
  • the liquid crystal display device is bent by the first bending line FL1 and the second bending line FL2 as shown by the curved arrows in the drawing.
  • the first bending line FL1 and the second bending line FL2 intersect with each other.
  • FIG. 18 shows that the right side of the substrate 100 is bent at a bending line FL1, and the x-axis direction changes from X1 to X2. The same is true for the figures shown below.
  • FIG. 18 shows that the lower side of the substrate 100 is bent at a bending line FL2, and the y-axis direction is changed from Y1 to Y2. The same is true for the figures shown below.
  • the alignment films in the four regions divided by the folding lines FL1 and FL2 are all photo-aligned in the x direction, which is the same direction.
  • peeling of the alignment film 113 is unlikely to occur with respect to the bending line FL1.
  • peeling of the alignment film 113 is likely to occur with respect to the bending line FL2.
  • the figure on the right side of FIG. 18 is a plan view showing the alignment process of the alignment film 113 to cope with this.
  • the alignment film 113 is formed on the entire surface of the substrate 100.
  • the alignment process is performed such that the alignment axis AL of the alignment film 113 is in the x direction.
  • the feature of FIG. 18 does not perform the light alignment process on the region w1 including the folding line FL2. Therefore, since the strength of the alignment film 113 in this region is not deteriorated, the alignment film 113 is not easily peeled off even if it is bent.
  • the manufacturing method for realizing such a configuration of FIG. 18, the effects and the like are similar to those described in the third embodiment. Therefore, according to the configuration of FIG. 18, peeling of the alignment film 113 can be suppressed even in the case of four folds.
  • a light shielding film of black matrix or the like is formed on the alignment film 113 in the area of the width w1 which is not subjected to the alignment process as described in the third embodiment.
  • FIG. 19 is a schematic view showing a second aspect in the fifth embodiment.
  • the left side of FIG. 19 is a perspective view showing the manner of bending of the liquid crystal display device, but is the same as the left side of FIG. That is, in the configuration on the left side of FIG. 19, the alignment film 113 is easily peeled off in the vicinity of the second bending line FL2.
  • the figure on the right side of FIG. 19 is a plan view showing the features of this embodiment.
  • the alignment film 113 is not formed in the region of the width w1 including the second bending line FL2. That is, since the alignment film 113 does not exist in this region, the alignment film 113 is not peeled off.
  • This embodiment is an application of the configuration of the fourth embodiment when the liquid crystal display device is folded in four.
  • the method of forming the alignment film 113, the alignment treatment, and the like are the same as those described in the fourth embodiment.
  • a light shielding film made of a black matrix or the like is formed in the region of width w1 where the alignment film 113 is not formed, as in the fourth embodiment.
  • FIG. 20 is a schematic view showing a third aspect in the fifth embodiment.
  • the drawing on the left side of FIG. 20 is a perspective view showing the manner of bending of the liquid crystal display device, and is the same as the drawing on the left side of FIG.
  • the figure on the right side of FIG. 20 is a plan view showing the features of this embodiment. That is, although the alignment film 113 is formed on the entire surface, the optical alignment process is not performed on the region of the width w1 including the bending lines FL1 and FL2. If the optical alignment processing is not performed, the strength of the alignment film does not deteriorate, so peeling of the alignment film 113 does not occur.
  • the configuration of FIG. 20 can be formed by applying the configuration described in the third embodiment.
  • a light shielding film made of a black matrix or the like is formed on the alignment film 113 in the region of the width w1 which is not subjected to the alignment processing, as described in the third embodiment.
  • the alignment direction AL of the alignment film can be applied not only to the x direction shown in FIG. 20 but also to the y direction. That is, the configuration of FIG. 20 can be applied even when the alignment direction of the alignment film is set to the y direction according to the product specification.
  • FIG. 21 is a schematic view showing a fourth aspect in the fifth embodiment.
  • the left side of FIG. 21 is a perspective view showing the manner of bending of the liquid crystal display device, but is the same as the left side of FIG.
  • the drawing on the right side of FIG. 21 is a plan view showing the features of this aspect. That is, the alignment film 113 is not formed in the region of the width w1 including the folding lines FL1 and FL2. If the alignment film 113 does not exist, the strength of the alignment film does not deteriorate, so peeling of the alignment film 113 does not occur.
  • the configuration of FIG. 21 can be formed by applying the configuration described in the fourth embodiment.
  • a light shielding film made of a black matrix or the like is formed in a region of width w1 where the alignment film 113 does not exist, as in the fourth embodiment.
  • the alignment direction of the alignment film 113 can be applied not only to the x direction shown in FIG. 21 but also to the y direction. That is, the configuration of FIG. 21 can be applied even when the alignment direction of the alignment film is set to the y direction according to product specifications.
  • the present embodiment is another configuration in the case where the liquid crystal display device is folded in four, and in which the first bending line and the second bending line intersect.
  • the alignment process can be performed on the area along the first bending line FL1 and the second bending line FL2 as in the other areas. It is.
  • the left drawing of FIG. 22 is a perspective view showing a bending mode of the liquid crystal display device, but the bending state is the same as the left drawing of FIG. 18 etc. in the third embodiment.
  • the left side of FIG. 22 is different from the left side of FIG. 18 of the third embodiment in that the mechanical direction of the alignment film 113 is strong, and the alignment direction of the alignment film 113 is the side of the substrate. It is a point that is 45 degrees against. By this, a portion where the strength of the alignment film 113 is weak in the vicinity of the folding lines FL1 and FL2 is eliminated, the alignment film 113 is uniformly formed on the entire surface of the substrate, and four-fold can be made.
  • the drawing on the upper right side of FIG. 22 is a plan view showing the alignment direction AL of the alignment film 113 in this embodiment.
  • the alignment direction AL is inclined by ⁇ with respect to a bending line FL2 indicated by a dotted line.
  • the central value of ⁇ is 45 degrees.
  • the range of ⁇ is preferably 45 ° ⁇ 1 ° but acceptable up to 45 ° ⁇ 10 °.
  • FIG. 22 shows the shape of the pixel electrode 112 when liquid crystal is used when the dielectric anisotropy is positive.
  • the extending direction of the comb electrode 1121 of the pixel electrode 112 is shifted by ⁇ with respect to the alignment direction AL of the alignment film 113.
  • the value of ⁇ is 5 degrees to 15 degrees. This is to prevent the generation of domains in the liquid crystal layer as described in the first embodiment and the like.
  • FIG. 23 is a diagram showing a configuration in the case where a liquid crystal display device is folded in four when liquid crystal having a negative dielectric anisotropy is used.
  • the left side of FIG. 23 is the same as the left side of FIG.
  • the upper right drawing of FIG. 23 is the same as the upper right drawing of FIG. That is, the alignment direction AL of the alignment film 113 when the liquid crystal display device is folded along the folding lines FL1 and FL2 is at an angle of ⁇ with respect to the folding line FL2.
  • the lower right part of FIG. 23 shows the shape of the pixel electrode 112 corresponding to the liquid crystal with negative dielectric anisotropy.
  • the extending direction of the comb-tooth electrode 1121 of the pixel electrode 112 is shifted by ⁇ from the direction of 90 degrees with respect to the alignment direction AL.
  • the value of ⁇ is 5 degrees to 15 degrees. This is to prevent the generation of domains in the liquid crystal layer as described in the first embodiment and the like.
  • the alignment film 113 is not subjected to the light alignment treatment for a predetermined width along the folding line, for example w1.
  • the alignment film 113 can be uniformly applied to the substrate 100 and the light alignment process can be uniformly performed.
  • the formation of a light shielding film by a black matrix or the like corresponding to this is also unnecessary.
  • the strength of the alignment film along the first bending line FL1 and the second bending line Fl2 is an intermediate value between the direction in which the strength of the alignment film is weak and the direction in which the strength of the alignment film is strong.
  • the alignment film 113 formed on the TFT substrate 100 side is mainly made on the alignment film 113 formed on the TFT substrate 100 side, but the same applies to the alignment film 113 formed on the counter substrate 200 side.
  • the base film of the alignment film 113 formed on the opposite substrate 200 side is an overcoat film 203 as shown in FIG.
  • the alignment directions AL of the alignment film 113 on the TFT substrate 100 side and the alignment film 113 on the counter substrate side are the same.
  • the IPS type liquid crystal display device is described as having the pixel electrode 112 formed on the upper side of the common electrode 110, but in the present invention, the common electrode 110 having a slit is formed on the pixel electrode 112.
  • the invention can also be applied to a liquid crystal display device of the IPS type in the case of In this case, the direction in which the comb electrode 1121 of the pixel electrode 112 extends may be replaced with the slit in the common electrode 110 as the extending direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

The purpose of the present invention is to prevent an alignment film from peeling off from the curved portion of a flexible liquid crystal display device. Provided is a liquid crystal display device that has a first alignment film 113 formed on a first substrate 100, a second alignment film formed on a second substrate, and a liquid crystal interposed between the first substrate 100 and the second substrate, and can be curved or bent in a second direction with a first direction as a curving axis or bending axis, the liquid crystal display device being characterized in that the first alignment film 113 and the second alignment film are optically aligned using polarized ultraviolet rays, and the direction of the alignment axis AL of the first alignment film 113 and the second alignment film matches the second direction within the range of 0° ± 10°.

Description

液晶表示装置およびその製造方法Liquid crystal display device and method of manufacturing the same
 本発明は表示装置に係り、特に湾曲、折り曲げ等が可能な液晶表示装置に関する。 The present invention relates to a display device, and more particularly to a liquid crystal display device which can be bent, bent and the like.
 液晶表示装置では画素電極および薄膜トランジスタ(TFT)等を有する画素がマトリクス状に形成されたTFT基板と、TFT基板に対向して対向基板が配置され、TFT基板と対向基板の間に液晶が挟持されている。そして液晶分子による光の透過率を画素毎に制御することによって画像を形成している。 In a liquid crystal display device, a TFT substrate on which pixels having pixel electrodes, thin film transistors (TFTs), and the like are formed in a matrix, and an opposing substrate are disposed facing the TFT substrate, and liquid crystal is sandwiched between the TFT substrate and the opposing substrate. ing. An image is formed by controlling the light transmittance of liquid crystal molecules for each pixel.
 このような液晶表示装置を湾曲、あるいは折り曲げ等が可能なフレキシブル表示装置とする需要が増大している。フレキシブルな液晶表示装置は、基板として薄いガラス基板をもちいるか、ポリイミド等の樹脂で形成する構成である。このようなフレキシブル表示領域に対し、湾曲あるいは折り曲げを繰り返した場合、表示品質の劣化が生ずる。 There is an increasing demand for such a liquid crystal display device as a flexible display device which can be bent or bent. A flexible liquid crystal display device uses a thin glass substrate as a substrate or is formed of a resin such as polyimide. If bending or bending is repeated for such a flexible display area, display quality is degraded.
 特許文献1には、このようなフレキシブル表示装置における表示品質の劣化を防止するため、TFT基板上に、電極層や配向膜を形成した後、硬化性液晶組成物を塗布して硬化させ、その後、対向基板とTFT基板の間に液晶を挟持した構成の液晶表示装置が記載されている。なお、上記配向膜として、紫外線照射して形成される光配向膜を用いることが記載されている。 In Patent Document 1, in order to prevent the deterioration of display quality in such a flexible display device, an electrode layer and an alignment film are formed on a TFT substrate, and then a curable liquid crystal composition is applied and cured, and then A liquid crystal display device having a configuration in which liquid crystal is held between an opposing substrate and a TFT substrate is described. In addition, using the photo-alignment film formed by irradiating an ultraviolet-ray as said alignment film is described.
特開2015-203720号公報JP, 2015-203720, A
 TFT基板には、配向膜、電極、配線、絶縁膜等の種々の膜が形成されている。したがって、液晶表示装置を湾曲あるいは折り曲げした場合、これらの膜にストレスが生ずる。配向膜は液晶分子を初期配向させるものであるが、この配向処理として、ラビング処理と、偏光紫外線を用いた光配向処理とがある。光配向処理は、ラビング処理によって発生する異物の影響がない、あるいは、静電気が発生しにくい等の利点を有している。 On the TFT substrate, various films such as alignment films, electrodes, wirings, insulating films and the like are formed. Therefore, when the liquid crystal display device is bent or bent, stress occurs in these films. The alignment film is for initially aligning liquid crystal molecules, and there are rubbing processing and photo-alignment processing using polarized ultraviolet light as the alignment processing. The photo-alignment process has advantages such as no influence of foreign substances generated by the rubbing process, or less generation of static electricity.
 光配向を受ける配向膜にはポリイミドが用いられているが、ポリイミドが配向処理を受けると、所定の方向において、ポリイミドが断裂するので、膜強度が低下する。このような配向膜を有する液晶表示装置に対して湾曲や折り曲げを行うと、湾曲あるいは折り曲げのストレスを受けた部分において、配向膜が破壊され、剥離してしまうという現象を生ずる。配向膜が破壊されるとその部分において、光漏れが生じ、表示品質が劣化する。 Although polyimide is used for the alignment film subjected to photo-alignment, when the polyimide is subjected to alignment treatment, the film is broken in the predetermined direction because the polyimide is torn. When the liquid crystal display device having such an alignment film is bent or bent, a phenomenon in which the alignment film is broken and peeled off occurs in a portion subjected to the bending or bending stress. When the alignment film is broken, light leakage occurs in that portion and the display quality is degraded.
 本発明の課題は、光配向された配向膜を有する液晶表示装置において、湾曲や折り曲げのストレスが加わっても、配向膜が破壊されず、表示品質の劣化を防止することが出来る液晶表示装置を実現することである。 An object of the present invention is to provide a liquid crystal display device having a photo-aligned alignment film, which can prevent deterioration of display quality without breaking the alignment film even if stress of bending or bending is applied. It is to realize.
 本発明は上記課題を克服するものであり、主な具体的な手段は次のとおりである。 The present invention overcomes the above problems, and the main specific means are as follows.
 (1)第1の基板に第1の光配向膜が形成され、第2の基板に第2の光配向膜が形成され、前記第1の基板と前記第2の基板の間に液晶が挟持され、第1の方向を湾曲軸または折り曲げ軸として湾曲または折り曲げることが可能な液晶表示装置であって、前記第1の光配向膜および前記第2の光配向膜の配向軸の方向は、前記第1の方向と90度±10度の範囲で一致することを特徴とする液晶表示装置。 (1) A first photoalignment film is formed on a first substrate, a second photoalignment film is formed on a second substrate, and a liquid crystal is held between the first substrate and the second substrate A liquid crystal display capable of being bent or bent with the first direction as a bending axis or bending axis, wherein the direction of the alignment axis of the first light alignment film and the second light alignment film is What is claimed is: 1. A liquid crystal display device wherein the first direction coincides with a range of 90 degrees ± 10 degrees.
 (2)第1の基板と第2の基板の間に液晶が挟持され、第1の方向を湾曲軸または折り曲げ軸として、第2の方向に湾曲または折り曲げることが可能な液晶表示装置の製造方法であって、前記第1の基板に第1の配向膜を形成し、前記第1の配向膜を前記第2の方向に配向軸を有するように、偏光紫外線を用いて光配向させ、前記第2の基板に第2の配向膜を形成し、前記第2の配向膜を前記第2の方向に配向軸を有するように、偏光紫外線を用いて光配向させることを特徴とする液晶表示装置の製造方法。 (2) A method of manufacturing a liquid crystal display device in which liquid crystal is held between a first substrate and a second substrate, and can be curved or bent in a second direction with the first direction as a bending axis or a bending axis A first alignment film is formed on the first substrate, and the first alignment film is photoaligned using polarized ultraviolet light so as to have an alignment axis in the second direction, A second alignment film is formed on the second substrate, and the second alignment film is photoaligned using polarized ultraviolet light so as to have an alignment axis in the second direction. Production method.
 (3)第1の基板と第2の基板の間に液晶が挟持され、第1の方向を第1の折り曲げ軸として折り曲げることが出来る液晶表示装置であって、前記第1の基板と前記第2の基板は配向膜を有し、前記第1の基板と前記第2の基板において、前記第1の折り曲げ軸を含む第1の幅を有する第1の領域の前記液晶に対する配向能力は、前記第1の領域以外における前記液晶に対する配向能力よりも小さく、前記第1の領域以外の部分においては、前記配向膜は偏光紫外線による配向処理を受けていることを特徴とする液晶表示装置。 (3) A liquid crystal display device in which liquid crystal is held between a first substrate and a second substrate and which can be bent with a first direction as a first bending axis, the first substrate and the first substrate The second substrate has an alignment film, and in the first substrate and the second substrate, the alignment ability of the first region having a first width including the first bending axis to the liquid crystal is A liquid crystal display device characterized in that the alignment film is subjected to alignment treatment with polarized ultraviolet light in portions other than the first region, which is smaller than the alignment ability to the liquid crystal other than the first region.
本発明が適用される液晶表示装置の平面図である。1 is a plan view of a liquid crystal display to which the present invention is applied. 表示領域の画素構成を示す平面図である。It is a top view which shows the pixel structure of a display area. 表示領域の断面図である。It is sectional drawing of a display area. 画素電極の他の例である。It is another example of a pixel electrode. 光配向を示す模式図である。It is a schematic diagram which shows optical orientation. 光配向による配向膜強度への影響を示す模式図である。It is a schematic diagram which shows the influence on alignment film intensity | strength by optical alignment. 実施例1の構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of Example 1; フレキシブル液晶表示装置の使用態様の例を示す表である。It is a table | surface which shows the example of the usage aspect of a flexible liquid crystal display device. 配向膜の剥離対策に関連した仕様を示す表である。It is a table | surface which shows the specification relevant to the peeling countermeasure of alignment film. 誘電率異方性が正の場合の液晶表示装置の湾曲方向と画素電極の関係を示す平面図である。It is a top view which shows the relationship between the curve direction of a liquid crystal display device in case dielectric anisotropy is positive, and a pixel electrode. 誘電率異方性が負の場合の液晶表示装置の湾曲方向と画素電極の関係を示す平面図である。It is a top view which shows the relationship of the curve direction of a liquid crystal display device, and a pixel electrode in case dielectric anisotropy is negative. 誘電率異方性が正の場合の液晶表示装置の折り曲げ方向と画素電極の関係を示す平面図である。It is a top view which shows the relationship between the bending direction of a liquid crystal display device when a dielectric anisotropy is positive, and a pixel electrode. 誘電率異方性が負の場合の液晶表示装置の折り曲げ方向と画素電極の関係を示す平面図である。It is a top view which shows the relationship between the bending direction of a liquid crystal display device in case dielectric anisotropy is negative, and a pixel electrode. 折り曲げ部分の配向膜に配向処理をしない場合の、配向膜の配向方向の例を示す平面図である。It is a top view which shows the example of the orientation direction of alignment film in case alignment processing is not performed to alignment film of a bending part. 折り曲げ部分の配向膜に配向処理をしない場合の、配向膜の配向方向の他の例を示す平面図である。It is a top view which shows the other example of the orientation direction of alignment film in case alignment processing is not carried out to alignment film of a bending part. 折り曲げ部分に配向膜を形成しない場合の、配向膜の配向方向の例を示す平面図である。It is a top view which shows the example of the orientation direction of alignment film in case an alignment film is not formed in a bending part. 折り曲げ部分に配向膜を形成しない場合の、配向膜の配向方向の他の例を示す平面図である。It is a top view which shows the other example of the orientation direction of alignment film in case an alignment film is not formed in a bending part. 実施例5の第1の例を示す平面図である。FIG. 21 is a plan view showing a first example of the fifth embodiment. 実施例5の第2の例を示す平面図である。FIG. 21 is a plan view showing a second example of the fifth embodiment. 実施例5の第3の例を示す平面図である。FIG. 21 is a plan view showing a third example of the fifth embodiment. 実施例5の第4の例を示す平面図である。FIG. 21 is a plan view showing a fourth example of the fifth embodiment. 誘電率異方性が正の液晶の場合において、配向膜の配向軸を折り曲げ方向に対して45度とした場合の構成を示す平面図である。In the case of a liquid crystal having positive dielectric anisotropy, it is a plan view showing a configuration in the case where the alignment axis of the alignment film is 45 degrees with respect to the bending direction. 誘電率異方性が負の液晶の場合において、配向膜の配向軸を折り曲げ方向に対して45度とした場合の構成を示す平面図である。In the case of a liquid crystal with negative dielectric anisotropy, it is a plan view showing a configuration in the case where the alignment axis of the alignment film is 45 degrees with respect to the bending direction.
 以下の実施例により本発明を詳細に説明する。 The following examples illustrate the invention in detail.
 図1は本発明が適用される液晶表示パネル20の例を示す平面図である。図1は携帯電話あるいはタブレット等に使用される液晶表示パネル20の例である。図1において、TFTや画素電極等を含む画素がマトリクス状に配置したTFT基板100とブラックマトリクス等が形成された対向基板200がシール材50によって接着し、TFT基板100と対向基板200の間に液晶が挟持されている。 FIG. 1 is a plan view showing an example of a liquid crystal display panel 20 to which the present invention is applied. FIG. 1 shows an example of a liquid crystal display panel 20 used for a mobile phone or a tablet. In FIG. 1, a TFT substrate 100 in which pixels including TFTs and pixel electrodes are arranged in a matrix and a counter substrate 200 on which a black matrix and the like are formed are bonded by a sealing material 50, and between the TFT substrate 100 and the counter substrate 200. The liquid crystal is held.
 TFT基板100と対向基板200がオーバーラップしている部分に表示領域30が形成されている。表示領域30においてTFT基板100には走査線11が横方向(x方向)に延在し、縦方向(y方向)に配列している。また、映像信号線12が縦方向に延在し、横方向に配列している。走査線11と映像信号線12で囲まれた領域に画素13が形成されている。 A display area 30 is formed in a portion where the TFT substrate 100 and the counter substrate 200 overlap. In the display area 30, scanning lines 11 extend in the horizontal direction (x direction) on the TFT substrate 100 and are arranged in the vertical direction (y direction). The video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction. Pixels 13 are formed in a region surrounded by the scanning lines 11 and the video signal lines 12.
 図1において、TFT基板100は対向基板200よりも大きく形成され、TFT基板100と対向基板200がオーバーラップしていない部分に端子領域40が形成されている。端子領域40には、液晶表示パネル20に信号や電力を供給するためにフレキシブル配線基板500が接続している。図1の液晶表示パネル20は、TFT基板100や対向基板200がポリイミド等の樹脂、あるいは、非常に薄いガラス等で形成され、フレキシブルに湾曲可能な構成となっている。なお、本明細書では、液晶表示パネル20を用いた表示装置を液晶表示装置と称するが、液晶表示パネル20と液晶表示装置とは区別なく用いる場合もある。 In FIG. 1, the TFT substrate 100 is formed to be larger than the counter substrate 200, and the terminal region 40 is formed in a portion where the TFT substrate 100 and the counter substrate 200 do not overlap. A flexible wiring substrate 500 is connected to the terminal region 40 in order to supply signals and power to the liquid crystal display panel 20. The liquid crystal display panel 20 shown in FIG. 1 is configured such that the TFT substrate 100 and the counter substrate 200 are formed of a resin such as polyimide or very thin glass, etc., and can be bent flexibly. Although a display device using the liquid crystal display panel 20 is referred to as a liquid crystal display device in this specification, the liquid crystal display panel 20 and the liquid crystal display device may be used without distinction.
 図2は、図1の表示領域30における画素配置を示す平面図である。図2において、走査線11が横方向(x方向)に延在し、縦方向(y方向)に配列している。また、映像信号線12が縦方向に延在し、横方向に配列している。走査線11と映像信号線12で囲まれた領域に画素電極112が形成されている。 FIG. 2 is a plan view showing the pixel arrangement in the display area 30 of FIG. In FIG. 2, the scanning lines 11 extend in the lateral direction (x direction) and are arranged in the longitudinal direction (y direction). The video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction. A pixel electrode 112 is formed in a region surrounded by the scanning line 11 and the video signal line 12.
 画素電極112の長軸方向は、y方向とは角度θだけ傾いている。映像信号線12は画素電極112の傾きθに合わせて、y方向と角度θだけ傾いている。角度θは例えば5度乃至15度である。図2における矢印ALは、液晶の誘電率異方性が正の場合の配向膜の配向方向である。配向膜の配向方向ALはy方向である。画素電極112と配向方向ALとを角度θだけ傾ける理由は、画素電極112に電圧が印加された時の液晶の回転方向を合わせ、ドメインの発生を防止するためである。 The major axis direction of the pixel electrode 112 is inclined at an angle θ with the y direction. The video signal line 12 is inclined by an angle θ with the y direction in accordance with the inclination θ of the pixel electrode 112. The angle θ is, for example, 5 degrees to 15 degrees. An arrow AL in FIG. 2 indicates the alignment direction of the alignment film when the dielectric anisotropy of the liquid crystal is positive. The alignment direction AL of the alignment film is the y direction. The reason for inclining the pixel electrode 112 and the alignment direction AL by the angle θ is to match the rotational direction of the liquid crystal when a voltage is applied to the pixel electrode 112 and to prevent the generation of a domain.
 液晶には誘電率異方性が正のものと負のものが存在する。図2は液晶の誘電率異方性が正の場合である。液晶表示装置の液晶の誘電率異方性が負の場合は、配向方向ALが図2の場合とは90度回転した方向になる。すなわち、図2のx方向となる。 There are positive and negative dielectric anisotropy in liquid crystals. FIG. 2 shows the case where the dielectric anisotropy of the liquid crystal is positive. When the dielectric anisotropy of the liquid crystal of the liquid crystal display device is negative, the alignment direction AL is rotated 90 degrees from the case of FIG. That is, it becomes the x direction of FIG.
 図2において、半導体層103はスルーホール140において映像信号線12と接続し、映像信号線12の下に沿って走査線11の下を通過し、その後、折れ曲がり、再び走査線11の下を通過する。半導体層103が走査線11の下を通過するときにTFTが形成される。つまり、図2では、TFTは直列に2個形成されている。この時、走査線11はTFTのゲート電極の役割を有する。 In FIG. 2, the semiconductor layer 103 is connected to the video signal line 12 in the through hole 140, passes under the video signal line 12, passes under the scanning line 11, and then bends and passes under the scanning line 11 again. Do. When the semiconductor layer 103 passes under the scanning line 11, a TFT is formed. That is, in FIG. 2, two TFTs are formed in series. At this time, the scanning line 11 has a role of the gate electrode of the TFT.
 半導体層103はスルーホール120において、コンタクト電極107と接続する。コンタクト電極107はスルーホール130において、画素電極112と接続している。図2において、スルーホール130の部分を除いて、コモン電極110が平面状に形成されている。コモン電極110の上には後で説明する容量絶縁膜111が存在し、その上に画素電極112が形成されている。 The semiconductor layer 103 is connected to the contact electrode 107 in the through hole 120. The contact electrode 107 is connected to the pixel electrode 112 in the through hole 130. In FIG. 2, the common electrode 110 is formed in a planar shape except for the through hole 130. A capacitive insulating film 111, which will be described later, is present on the common electrode 110, and a pixel electrode 112 is formed thereon.
 画素電極112はスリット1121と櫛歯電極1122を有している。画素電極112は画素の大きさによって種々の形状を取りうる。例えば、画素が小さくなった場合、スリット1121が無くなり、画素電極112は櫛歯電極1122が1本、すなわち、ストライプ状の電極となる。一方、画素が大きくなると、スリット1121の数は2個以上となり、櫛歯電極1122も3本以上となる。本明細書では、画素電極112の櫛歯電極1122が1本の場合であっても櫛歯電極と呼ぶ。 The pixel electrode 112 has a slit 1121 and a comb electrode 1122. The pixel electrode 112 may have various shapes depending on the size of the pixel. For example, when the pixel becomes small, the slit 1121 disappears, and the pixel electrode 112 becomes one comb-tooth electrode 1122, that is, a stripe-shaped electrode. On the other hand, when the pixel size is increased, the number of slits 1121 is two or more, and the number of the comb-tooth electrodes 1122 is also three or more. In this specification, even when the number of the comb-tooth electrode 1122 of the pixel electrode 112 is one, it is called a comb-tooth electrode.
 図3は、図2のA-A断面に対応する液晶表示パネルの断面図である。すなわち、図3では、TFTは1個のみ記載されている。図3におけるTFTは、いわゆるトップゲートタイプのTFTであり、使用される半導体103としては、LTPS(Low Temperature Poly-Si)が使用されている。一方、a-Si(amorphous Si)半導体を使用した場合は、いわゆるボトムゲート方式のTFTが多く用いられる。以後の説明では、トップゲート方式のTFTを用いた場合を例にして説明するが、ボトムゲート方式のTFTを用いた場合についても、本発明を適用することが出来る。 FIG. 3 is a cross-sectional view of the liquid crystal display panel corresponding to the cross section AA of FIG. That is, only one TFT is described in FIG. The TFT in FIG. 3 is a so-called top gate type TFT, and as the semiconductor 103 used, LTPS (Low Temperature Poly-Si) is used. On the other hand, when an a-Si (amorphous Si) semiconductor is used, so-called bottom gate TFTs are often used. In the following description, although the case where a top gate TFT is used is described as an example, the present invention can be applied to a case where a bottom gate TFT is used.
 図3において、TFT基板100および対向基板200はポリイミド等の樹脂、あるいは厚さ0.15mm以下の非常に薄いガラス板で形成されている。ガラス板は板厚が薄くなるとフレキシブルに湾曲させることが出来る。ポリイミド等の樹脂で基板100を形成する場合は、厚さ10μm乃至20μmというように、さらに薄くすることが出来る。 In FIG. 3, the TFT substrate 100 and the counter substrate 200 are formed of a resin such as polyimide or a very thin glass plate having a thickness of 0.15 mm or less. The glass plate can be bent flexibly as the plate thickness decreases. When the substrate 100 is formed of a resin such as polyimide, the thickness can be further reduced to 10 μm to 20 μm.
 図3において、TFT基板100の上にSiNからなる第1下地膜101およびSiOからなる第2下地膜102がCVD(Chemical Vapor Deposition)によって形成される。第1下地膜101および第2下地膜102の役割はTFT基板100からの不純物が半導体層103を汚染することを防止することである。 In FIG. 3, a first base film 101 made of SiN and a second base film 102 made of SiO are formed on the TFT substrate 100 by CVD (Chemical Vapor Deposition). The role of the first base film 101 and the second base film 102 is to prevent impurities from the TFT substrate 100 from contaminating the semiconductor layer 103.
 第2下地膜102の上には半導体層103が形成される。この半導体層103は第2下地膜102に上にCVDによってa-Si膜を形成し、これをレーザアニールすることによってpoly-Si膜に変換したものである。このpoly-Si膜をフォトリソグラフィによってパターニングする。 The semiconductor layer 103 is formed on the second base film 102. In this semiconductor layer 103, an a-Si film is formed on the second base film 102 by CVD and converted into a poly-Si film by laser annealing. This poly-Si film is patterned by photolithography.
 半導体膜103の上にはゲート絶縁膜104が形成される。このゲート絶縁膜104はTEOS(テトラエトキシシラン)を原料としたSiO膜である。この膜もCVDによって形成される。その上にゲート電極105が形成される。ゲート電極105は図2に示す走査線11が兼ねている。ゲート電極105は例えば、MoW膜によって形成される。ゲート電極105あるいは走査線10の抵抗を小さくする必要があるときはAl合金が使用される。 A gate insulating film 104 is formed on the semiconductor film 103. The gate insulating film 104 is an SiO film made of TEOS (tetraethoxysilane) as a raw material. This film is also formed by CVD. A gate electrode 105 is formed thereon. The gate electrode 105 doubles as the scanning line 11 shown in FIG. The gate electrode 105 is formed of, for example, a MoW film. When it is necessary to reduce the resistance of the gate electrode 105 or the scanning line 10, an Al alloy is used.
 ゲート電極105はフォトリソグラフィによってパターニングされるが、このパターニングの際に、イオンインプランテーションによって、リンあるいはボロン等の不純物をpoly-Si層にドープしてpoly-Si層にソースSあるいはドレインDを形成する。また、ゲート電極105のパターニングの際のフォトレジストを利用して、poly-Si層のチャネル層と、ソースSあるいはドレインDとの間にLDD(Lightly Doped Drain)層を形成する。 The gate electrode 105 is patterned by photolithography. During this patterning, an impurity such as phosphorus or boron is doped into the poly-Si layer by ion implantation to form a source S or drain D in the poly-Si layer. Do. In addition, a lightly doped drain (LDD) layer is formed between the channel layer of the poly-Si layer and the source S or the drain D by using a photoresist when patterning the gate electrode 105.
 その後、ゲート電極105を覆って層間絶縁膜106をSiOによって形成する。層間絶縁膜106はゲート配線105とコンタクト電極107を絶縁するためである。層間絶縁膜106およびゲート絶縁膜104には、半導体層103のソース部Sをコンタクト電極107と接続するためのスルーホール120が形成される。層間絶縁膜106とゲート絶縁膜104にスルーホール120を形成するためのフォトリソグラフィは同時に行われる。 Thereafter, an interlayer insulating film 106 is formed of SiO, covering the gate electrode 105. The interlayer insulating film 106 is to insulate the gate wiring 105 and the contact electrode 107. Through holes 120 for connecting the source portion S of the semiconductor layer 103 to the contact electrode 107 are formed in the interlayer insulating film 106 and the gate insulating film 104. Photolithography for forming the through holes 120 in the interlayer insulating film 106 and the gate insulating film 104 is simultaneously performed.
 層間絶縁膜106の上にコンタクト電極107が形成される。コンタクト電極107は、スルーホール130を介して画素電極112と接続する。TFTのドレインDは、図2に示すように、映像信号線12とスルーホール140を介して接続している。 Contact electrode 107 is formed on interlayer insulating film 106. The contact electrode 107 is connected to the pixel electrode 112 through the through hole 130. The drain D of the TFT is connected to the video signal line 12 through the through hole 140 as shown in FIG.
 コンタクト電極107および映像信号線12は、同層で、同時に形成される。コンタクト電極107および映像信号線(以後コンタクト電極107で代表させる)は、抵抗を小さくするために、例えば、AlSi合金が使用される。AlSi合金はヒロックを発生したり、Alが他の層に拡散したりするので、例えば、図示しないMoWによるバリア層、およびキャップ層によってAlSiをサンドイッチする構造がとられている。 The contact electrode 107 and the video signal line 12 are simultaneously formed in the same layer. For the contact electrodes 107 and the video signal lines (hereinafter represented by the contact electrodes 107), for example, an AlSi alloy is used to reduce the resistance. Since AlSi alloy generates hillocks and Al diffuses into other layers, for example, a barrier layer of MoW not shown and a cap layer sandwich AlSi.
 コンタクト電極107を覆って無機パッシベーション膜(絶縁膜)108を被覆し、TFT全体を保護する。無機パッシベーション膜108は第1下地膜101と同様にCVDによって形成される。無機パッシベーション膜108を覆って有機パッシベーション膜109が形成される。有機パッシベーション膜109は感光性のアクリル樹脂で形成される。有機パッシベーション膜109は、アクリル樹脂の他、シリコーン樹脂、エポキシ樹脂、ポリイミド樹脂等でも形成することが出来る。有機パッシベーション膜109は平坦化膜としての役割を持っているので、厚く形成される。有機パッシベーション膜109の膜厚は1~4μmであるが、多くの場合は2μm程度である。 The inorganic passivation film (insulating film) 108 is covered to cover the contact electrode 107 to protect the entire TFT. The inorganic passivation film 108 is formed by CVD in the same manner as the first base film 101. An organic passivation film 109 is formed to cover the inorganic passivation film 108. The organic passivation film 109 is formed of a photosensitive acrylic resin. The organic passivation film 109 can be formed of a silicone resin, an epoxy resin, a polyimide resin or the like in addition to the acrylic resin. The organic passivation film 109 has a role as a planarizing film and is therefore formed thick. The film thickness of the organic passivation film 109 is 1 to 4 μm, but in most cases it is about 2 μm.
 画素電極112とコンタクト電極107との導通を取るために、無機パッシベーション膜108および有機パッシベーション膜109にスルーホール130が形成される。有機パッシベーション膜109は感光性の樹脂を使用している。感光性の樹脂を塗付後、この樹脂を露光すると、光が当たった部分のみが特定の現像液に溶解する。すなわち、感光性樹脂を用いることによって、フォトレジストの形成を省略することが出来る。有機パッシベーション膜109にスルーホール130を形成したあと、230℃程度で有機パッシベーション膜を焼成することによって有機パッシベーション膜109が完成する。 In order to electrically connect the pixel electrode 112 and the contact electrode 107, through holes 130 are formed in the inorganic passivation film 108 and the organic passivation film 109. The organic passivation film 109 uses a photosensitive resin. After application of the photosensitive resin, when the resin is exposed, only the light-exposed part is dissolved in the specific developer. That is, formation of a photoresist can be omitted by using a photosensitive resin. After forming the through holes 130 in the organic passivation film 109, the organic passivation film 109 is completed by baking the organic passivation film at about 230.degree.
 その後コモン電極110となるITO(Indium Tin Oxide)をスパッタリングによって形成し、スルーホール130およびその周辺からITOを除去するようにパターニングする。コモン電極110は各画素共通に平面状に形成することが出来る。その後、容量絶縁膜111となるSiNをCVDによって全面に形成する。その後、スルーホール130内において、コンタクト電極107と画素電極112の導通をとるためのスルーホールを容量絶縁膜111および無機パッシベーション膜108に形成する。なお、容量絶縁膜111は、コモン電極110と画素電極112との間に保持容量を形成するので、容量絶縁膜111と呼ばれる。 Thereafter, ITO (Indium Tin Oxide) to be a common electrode 110 is formed by sputtering, and is patterned so as to remove the ITO from the through holes 130 and the periphery thereof. The common electrode 110 can be formed flat in common to each pixel. Thereafter, SiN to be a capacitive insulating film 111 is formed on the entire surface by CVD. Thereafter, in the through hole 130, a through hole for electrically connecting the contact electrode 107 and the pixel electrode 112 is formed in the capacitive insulating film 111 and the inorganic passivation film 108. Note that the capacitive insulating film 111 is called a capacitive insulating film 111 because a storage capacitance is formed between the common electrode 110 and the pixel electrode 112.
 その後、ITOをスパッタリングによって形成し、パターニングして画素電極112を形成する。画素電極112の平面形状は図2に記載されている。画素電極112の上に配向膜材料をフレキソ印刷あるいはインクジェット等によって塗布し、焼成して配向膜113を形成する。配向膜113の配向処理には偏光紫外線による光配向が用いられる。 Thereafter, ITO is formed by sputtering and patterned to form a pixel electrode 112. The planar shape of the pixel electrode 112 is described in FIG. An alignment film material is applied on the pixel electrode 112 by flexo printing, inkjet, or the like, and baked to form an alignment film 113. For alignment processing of the alignment film 113, photo alignment by polarized ultraviolet light is used.
 画素電極112とコモン電極110の間に電圧が印加されると図3に示すような電気力線が発生する。この電界によって液晶分子301を回転させ、液晶層300を通過する光の量を画素毎に制御することによって画像を形成する。 When a voltage is applied between the pixel electrode 112 and the common electrode 110, an electric line of force as shown in FIG. 3 is generated. The liquid crystal molecules 301 are rotated by this electric field, and the amount of light passing through the liquid crystal layer 300 is controlled for each pixel to form an image.
 図3において、液晶層300を挟んで対向基板200が配置されている。対向基板200の内側には、カラーフィルタ201が形成されている。カラーフィルタ201は画素毎に、赤、緑、青のカラーフィルタが形成されており、これによってカラー画像が形成される。カラーフィルタ201とカラーフィルタ201の間にはブラックマトリクス202が形成され、画像のコントラストを向上させている。なお、ブラックマトリクス202はTFTの遮光膜としての役割も有し、TFTに光電流が流れることを防止している。 In FIG. 3, the counter substrate 200 is disposed with the liquid crystal layer 300 interposed therebetween. A color filter 201 is formed on the inside of the counter substrate 200. In the color filter 201, red, green and blue color filters are formed for each pixel, whereby a color image is formed. A black matrix 202 is formed between the color filter 201 and the color filter 201 to improve the contrast of the image. The black matrix 202 also has a role as a light shielding film of the TFT, and prevents a photocurrent from flowing to the TFT.
 カラーフィルタ201およびブラックマトリクス202を覆ってオーバーコート膜203が形成されている。カラーフィルタ201およびブラックマトリクス202の表面は凹凸となっているために、オーバーコート膜203によって表面を平らにしている。また、オーバーコート膜203はカラーフィルタ201の顔料が液晶層300を汚染することを防止する役割も有する。オーバーコート膜203の上には、液晶分子301の初期配向を決めるための配向膜113が形成される。配向膜113の配向処理はTFT基板100側の配向膜113と同様、偏光紫外線による光配向法が用いられる。 An overcoat film 203 is formed to cover the color filters 201 and the black matrix 202. Since the surfaces of the color filter 201 and the black matrix 202 are uneven, the surface is made flat by the overcoat film 203. The overcoat film 203 also has a role of preventing the pigment of the color filter 201 from contaminating the liquid crystal layer 300. An alignment film 113 for determining the initial alignment of the liquid crystal molecules 301 is formed on the overcoat film 203. Similar to the alignment film 113 on the TFT substrate 100 side, the alignment process of the alignment film 113 uses a photoalignment method by polarized ultraviolet light.
 なお、以上の構成は例であり、例えば、品種によってTFT基板100における無機パッシベーション膜108が形成されていない場合もある。また、スルーホール130の形成プロセスも品種によって異なる場合がある。 The above configuration is an example. For example, the inorganic passivation film 108 in the TFT substrate 100 may not be formed depending on the type. Also, the process of forming the through holes 130 may differ depending on the type.
 画素電極112の形状は、図2に限らず、例えば図4のような構造もあり得る。この場合は、スリット1121が横方向(x方向)とθ度、例えば5度乃至15度傾いており、櫛歯電極1122もスリット1121と同様、横方向(x方向)とθ度、例えば5度乃至15度傾いている。そして、誘電率異方性が正の液晶を使用した場合は、配向膜の配向方向ALはx方向である。すなわち、櫛歯電極1122が配向膜113の配向方向ALと、θ度の角をなしている点は図2と同じである。したがって、以後、本明細書では、画素電極112の方向は、櫛歯電極1122の方向として定義する。なお、図4の場合も、誘電率異方性が負の場合は、配向膜113の配向方向は90度回転したy方向となる。 The shape of the pixel electrode 112 is not limited to that shown in FIG. 2, but may have a structure as shown in FIG. In this case, the slit 1121 is inclined in the lateral direction (x direction) by θ degrees, for example 5 to 15 degrees, and the comb electrode 1122 is also in the lateral direction (x direction) with θ degrees, for example 5 degrees It is inclined by 15 degrees. When a liquid crystal with positive dielectric anisotropy is used, the alignment direction AL of the alignment film is the x direction. That is, it is the same as FIG. 2 in that the comb electrode 1122 forms an angle of θ degrees with the alignment direction AL of the alignment film 113. Therefore, hereinafter, the direction of the pixel electrode 112 is defined as the direction of the comb electrode 1122 in the present specification. Also in the case of FIG. 4, when the dielectric anisotropy is negative, the alignment direction of the alignment film 113 is rotated by 90 degrees and is in the y direction.
 配向膜113はポリアミド酸あるいはポリアミド酸エステルをイミド化した膜が用いられる。図5は光配向を示す模式図である。光配向は、波長が250nm程度の偏光紫外線を、基板100に形成された配向膜113に照射することによって行われる。図5の中央の図は、基板100に形成された配向膜113が横方向(x方向)に配向軸を持つように、縦方向(y方向)に偏光軸UVPを有する紫外線を照射した状態を示す平面図である。以後、基板はTFT基板100で代表させるが、対向基板200の場合も同様である。また、TFT基板100を液晶表示パネル20と置き換えても良い。配向膜は、図5で示すようなポリイミドがあらゆる方向にランダムに配列した構成となっている。図5の右側の図は、縦方向に主鎖を有するポリイミドPIに対して縦方向に偏光軸UVPを有する紫外線を照射した状態を示す模式図である。この場合、偏光紫外線によってシクロブタン環が開裂し、ポリイミドPIが分断される。 As the alignment film 113, a film in which a polyamic acid or a polyamic acid ester is imidized is used. FIG. 5 is a schematic view showing photoalignment. The photoalignment is performed by irradiating the alignment film 113 formed on the substrate 100 with polarized ultraviolet light having a wavelength of about 250 nm. The figure in the center of FIG. 5 shows a state in which ultraviolet light having a polarization axis UVP in the longitudinal direction (y direction) is irradiated so that the alignment film 113 formed on the substrate 100 has the alignment axis in the lateral direction (x direction). It is a top view shown. Hereinafter, the substrate is represented by the TFT substrate 100, but the same applies to the opposite substrate 200. Also, the TFT substrate 100 may be replaced with the liquid crystal display panel 20. The alignment film has a configuration in which polyimides are randomly arranged in all directions as shown in FIG. The figure on the right side of FIG. 5 is a schematic view showing a state in which the polyimide PI having the main chain in the longitudinal direction is irradiated with the ultraviolet light having the polarization axis UVP in the longitudinal direction. In this case, the cyclobutane ring is cleaved by polarized ultraviolet light, and the polyimide PI is cleaved.
 一方、図5の上側の図は、横方向に主鎖を有するポリイミドPIに、縦方向に偏光軸UVPを有する紫外線を照射した状態を示す模式図である。この場合は、ポリイミドは分断されることはない。そうすると、配向膜113は、ポリイミドが分断されない方向である横方向(x方向)に配向軸ALを持つことになる。 On the other hand, the upper drawing of FIG. 5 is a schematic view showing a state in which the polyimide PI having the main chain in the horizontal direction is irradiated with the ultraviolet light having the polarization axis UVP in the vertical direction. In this case, the polyimide is not divided. Then, the alignment film 113 has the alignment axis AL in the lateral direction (x direction) which is a direction in which the polyimide is not divided.
 この状態の配向膜113が形成された基板をy軸に沿って湾曲すると、この方向ではポリイミドの分子は分断されているので、機械的に弱く、配向膜113の剥離等が生ずる。一方、この状態の配向膜113が形成された基板をx軸に沿って湾曲した場合は、ポリイミドPIは分断されていないので、機械的強度は低下していないため、配向膜113の剥離等は生じにくい。 When the substrate on which the alignment film 113 in this state is formed is curved along the y-axis, the polyimide molecules are separated in this direction, so that they are mechanically weak and peeling of the alignment film 113 or the like occurs. On the other hand, when the substrate on which the alignment film 113 in this state is formed is curved along the x-axis, since the polyimide PI is not divided, the mechanical strength is not lowered. It is hard to occur.
 図6は、基板100に形成された配向膜113が縦方向(y方向)に配向軸ALを持つように、横方向(x方向)に偏光軸UVPを有する紫外線を照射した状態を示す平面図である。図6の中央の図は、y方向を湾曲軸として、基板の端部をx方向にロール状に湾曲させた状態を示している。このような偏光紫外線を照射した場合、横方向(x方向)に主鎖を有するポリイミドはシクロブタン環が開裂することによって分断される。 FIG. 6 is a plan view showing a state in which ultraviolet light having a polarization axis UVP is applied in the lateral direction (x direction) so that the alignment film 113 formed on the substrate 100 has the alignment axis AL in the longitudinal direction (y direction). It is. The central view of FIG. 6 shows a state in which the end of the substrate is curved in a roll in the x direction with the y direction as the bending axis. When irradiated with such polarized ultraviolet light, the polyimide having a main chain in the lateral direction (x direction) is cleaved by cleavage of the cyclobutane ring.
 図6の上側の図の構造式は、横方向(x方向)に主鎖を有するポリイミドを構成するシクロブタン環が偏光紫外線によって、開裂した状態を示している。また、波状の曲線PIはポリイミドの鎖が紫外線によって分断された状態を示している。この場合、横方向(x方向)に主鎖を有するポリイミドは、横方向(x方向)にも縦方向(y方向)にも強度が弱くなっている。 The structural formula in the upper drawing of FIG. 6 shows a state in which a cyclobutane ring constituting a polyimide having a main chain in the lateral direction (x direction) is cleaved by polarized ultraviolet light. Further, the wavy curve PI shows a state in which the polyimide chain is divided by ultraviolet light. In this case, the polyimide having a main chain in the lateral direction (x direction) is weak in strength both in the lateral direction (x direction) and in the longitudinal direction (y direction).
 一方、図6の右側の図は、縦方向に主鎖を有するポリイミドPIに対し、横方向に偏光軸UVPを有する紫外線を照射した状態を示す模式図である。この場合は、ポリイミドPIは分断されることはない。そうすると、配向膜113は、ポリイミドが分断されない方向である縦方向(y方向)に配向軸ALを持つことになる。 On the other hand, the figure on the right side of FIG. 6 is a schematic view showing a state in which the ultraviolet light having the polarization axis UVP in the lateral direction is irradiated to the polyimide PI having the main chain in the longitudinal direction. In this case, the polyimide PI is not divided. Then, the alignment film 113 has the alignment axis AL in the longitudinal direction (y direction) in which the polyimide is not divided.
 一方、ポリイミドPIは、主鎖の方向と直角の方向には強度が弱い。図6の右側の波線PIはポリイミドの鎖を示すが、波線の延在方向には強度が大きいが、波線PIと直角方向には強度が弱い。したがって、図6では、ロール状あるいはS字型に湾曲する方向にはポリイミドの強度が弱く、配向膜113が基板から剥がれ易い構成となっている。 On the other hand, polyimide PI has low strength in the direction perpendicular to the direction of the main chain. The wavy line PI on the right side of FIG. 6 shows a polyimide chain, but the strength is large in the extending direction of the wavy line but weak in the direction perpendicular to the wavy line PI. Therefore, in FIG. 6, the strength of the polyimide is weak in the direction of bending in a roll shape or an S shape, and the alignment film 113 is easily peeled off from the substrate.
 図7は本発明の特徴を表す基板100の湾曲方向と配向膜113の配向軸ALの方向を示す模式図である。図7の中央の図は、y方向を湾曲軸として、基板100の端部をx方向にロール状に湾曲させた状態を示している。図7の中央の図面は、端部をロール状に湾曲させたに基板100において、基板100に形成された配向膜113を光配向する偏光紫外線の偏光軸UVPの方向と、配向膜113の配向軸ALの方向を示す平面図である。偏光紫外線の配向軸UVPは縦方向(y方向)であり、偏光紫外線によって配向処理をうけた配向膜113の配向軸ALは横方向(x方向)である。 FIG. 7 is a schematic view showing the bending direction of the substrate 100 and the direction of the alignment axis AL of the alignment film 113, which show the feature of the present invention. The central view of FIG. 7 shows a state in which the end of the substrate 100 is curved in a roll in the x direction with the y direction as the bending axis. In the central drawing of FIG. 7, in the substrate 100 in which the end is curved in a roll shape, the direction of the polarization axis UVP of polarized ultraviolet light for photo-orienting the alignment film 113 formed on the substrate 100 and the alignment of the alignment film 113 It is a top view which shows the direction of axis AL. The alignment axis UVP of the polarized ultraviolet light is in the longitudinal direction (y direction), and the alignment axis AL of the alignment film 113 subjected to the alignment process by the polarized ultraviolet light is in the lateral direction (x direction).
 図7の上側の図は、横方向(x方向)に主鎖を有するポリイミドの構造式であるが、この方向に主鎖を有するポリイミドPIは偏光紫外線によって、シクロブタン環が開裂しない。したがって、配向膜113の配向軸ALはx方向となる。また、この方向に主鎖を有するポリイミドは強度が強いので、x方向に沿って湾曲してもポリイミドPIは剥離しにくい。 The upper drawing of FIG. 7 shows a structural formula of a polyimide having a main chain in the lateral direction (x direction), but the polyimide PI having a main chain in this direction does not cleave a cyclobutane ring by polarized ultraviolet light. Therefore, the alignment axis AL of the alignment film 113 is in the x direction. In addition, since the polyimide having a main chain in this direction is strong, the polyimide PI is difficult to peel even if it is curved along the x direction.
 図7の右側の図は、縦方向(y方向)に主鎖を有するポリイミドの構造式であるが、この方向に主鎖を有するポリイミドは偏光紫外線によって、シクロブタン環が開裂する。したがって、ポリイミドPIは縦方向には強度が弱い。 The figure on the right side of FIG. 7 shows a structural formula of a polyimide having a main chain in the longitudinal direction (y direction), but in the polyimide having a main chain in this direction, the cyclobutane ring is cleaved by polarized ultraviolet light. Therefore, the polyimide PI has low strength in the longitudinal direction.
 図7の中央の図における波線PIは、横方向に主鎖を有するポリイミドPIは分断されていないことを示している。したがって、横方向(x方向)に沿ってロール状あるいはS字型に湾曲しても配向膜113はストレスに強いので、剥離することは無い。一方、縦方向に主鎖を有するポリイミドPIは断裂しているので、ストレスには弱くなっているが、この方向には、基板100は湾曲しないので、配向膜113の剥離は生じない。したがって、図7のような構成であれば、液晶表示装置を湾曲させても、配向膜113の剥離は生じにくい。 A wavy line PI in the central diagram of FIG. 7 indicates that the polyimide PI having a main chain in the lateral direction is not divided. Therefore, even if the alignment film 113 is curved in a roll shape or an S-shape along the lateral direction (x direction), the alignment film 113 is resistant to stress and therefore does not peel off. On the other hand, although the polyimide PI having the main chain in the longitudinal direction is torn, it is weak to stress, but since the substrate 100 is not curved in this direction, peeling of the alignment film 113 does not occur. Therefore, with the configuration as shown in FIG. 7, peeling of the alignment film 113 hardly occurs even when the liquid crystal display device is curved.
 ここで、配向膜113の配向軸ALの方向と液晶表示パネルの湾曲方向とが同じ方向であるということは、0度±10度以内で一致するということである。なお、この範囲は、より好ましくは、0度±1度以内の範囲である。実施例2以後で述べる、液晶表示パネル20が折り曲げられている場合についても同様である。また、別の表現をすれば、配向膜113の配向軸ALの方向と、液晶表示パネルの湾曲軸若しくは折り曲げ軸は、90度±10度以内で一致するともいえる。なお、この範囲は、より好ましくは90度±1度以内の範囲である。 Here, that the direction of the alignment axis AL of the alignment film 113 and the bending direction of the liquid crystal display panel are the same direction means that they coincide with each other within 0 ° ± 10 °. This range is more preferably within 0 ° ± 1 °. The same applies to the case where the liquid crystal display panel 20 is bent as described in the second and subsequent embodiments. In other words, it can be said that the direction of the alignment axis AL of the alignment film 113 and the bending axis or bending axis of the liquid crystal display panel coincide within 90 degrees ± 10 degrees. More preferably, this range is within 90 ° ± 1 °.
 ところで、フレキシブル液晶表示装置の使用態様、フレキシブル液晶表示装置の仕様については、種々の態様が存在する。図8はフレキシブル液晶表示装置の使用態様を示す表である。使用態様には、フレキシブル液晶表示装置を湾曲させて使用する場合と、折りたたんで収容するような場合がある。湾曲して使用する場合としては、端部をロール状にして使用するような場合、S字型にする場合、円筒にして使用するような場合がある。いずれの態様においても、基板及び配向膜には、第1の方向には曲げストレスが生ずるが、第1の方向と直角方向には曲げストレスがかからない態様である。 By the way, various modes exist about the usage aspect of a flexible liquid crystal display device, and the specification of a flexible liquid crystal display device. FIG. 8 is a table showing the usage of the flexible liquid crystal display device. There are cases where the flexible liquid crystal display device is bent and used, or folded and stored. In the case of using in a curved state, in the case of using the end portion in a roll shape, in the case of using an S-shape, or in using a cylinder in some cases. In any of the embodiments, bending stress is generated in the first direction on the substrate and the alignment film, but no bending stress is applied in the direction perpendicular to the first direction.
 折りたたんで収容するような場合は、2つ折りと、4つ折り以上の場合がある。3つ折りの場合は、2つ折りで代表させることが出来る。4つ折り以上の場合は、4つ折りで代表させることが出来る。4つ折りの場合は、折り曲げ軸が2軸存在し、第1の軸と第2の軸が交差するということである。第1の軸と第2の軸が交差しない場合は、2つ折りに準じて考えればよい。 When it is folded and accommodated, it may be folded in two or in four or more. In the case of three-fold, it can be represented by two-fold. In the case of four-fold or more, it can be represented by four-fold. In the case of four-fold, there are two bending axes, and the first axis and the second axis intersect. If the first axis and the second axis do not intersect, it may be considered in accordance with the two fold.
 図9は図8のような使用態様に対応した、配向膜113に関連した仕様である。図9において、配向膜の配向方向行において、配向膜の配向方向がTFT基板内において、垂直方向あるいは水平方向のいずれか単一の場合、配向方向は単一ではあるが、配向方向が斜め方向である場合、TFT基板内に配向膜の領域が複数存在する場合がある。配向膜領域が複数存在する場合は、マスクを用いて光配向を行う。 FIG. 9 shows specifications associated with the alignment film 113 corresponding to the usage mode as shown in FIG. In FIG. 9, in the alignment direction row of the alignment film, when the alignment direction of the alignment film is either vertical or horizontal in the TFT substrate, the alignment direction is single but the alignment direction is oblique. In this case, a plurality of alignment film regions may exist in the TFT substrate. When there are a plurality of alignment film regions, light alignment is performed using a mask.
 配向膜の配向方向に関連して、画素電極における櫛歯電極の長軸方向の向きが問題となる。すなわち、画素電極おける櫛歯電極の長軸方向の向きは、液晶の配向方向に関連して、液晶層にドメインを発生しないように選定する必要がある。画素電極の長軸方向が斜め方向の場合は、配向膜の配向方向が斜め方向である場合に対応する。 The direction of the major axis direction of the comb electrode in the pixel electrode becomes a problem in relation to the alignment direction of the alignment film. That is, the direction of the major axis direction of the comb-tooth electrode in the pixel electrode needs to be selected so as not to generate a domain in the liquid crystal layer in relation to the alignment direction of the liquid crystal. The case where the major axis direction of the pixel electrode is oblique corresponds to the case where the alignment direction of the alignment film is oblique.
 また、配向膜の配向方向及び画素電極の長軸方向の向きは使用する液晶材料によって決める必要がある。液晶の誘電率異方性が正である場合、配向方向とθ度、例えば、5度至15度の方向に画素電極おける櫛歯電極の長軸方向を配置し、液晶の誘電率異方性が負である場合、配向方向と直角方向とθ度、例えば、5度乃至15度成す方向に画素電極おける櫛歯電極の長軸方向を配置する。 In addition, the alignment direction of the alignment film and the direction of the long axis direction of the pixel electrode need to be determined depending on the liquid crystal material used. When the dielectric anisotropy of the liquid crystal is positive, the long axis direction of the comb electrode in the pixel electrode is disposed in the orientation direction and the θ degree, for example, 5 ° to 15 °, and the dielectric anisotropy of the liquid crystal Is negative, the major axis direction of the comb-tooth electrode in the pixel electrode is disposed in a direction perpendicular to the alignment direction and in a direction forming θ degrees, for example, 5 degrees to 15 degrees.
 図10は、誘電率異方性が正の液晶を用いた場合の、本発明による構成を記載したものである。図10において、基板100は、端部において、矢印RDで示すように、x方向にロールされるように、湾曲している。配向膜113の剥離を生じさせないように、配向膜113の配向方向ALはx方向となっている。 FIG. 10 describes the configuration according to the present invention in the case of using liquid crystal with positive dielectric anisotropy. In FIG. 10, the substrate 100 is curved at its end so as to be rolled in the x direction as indicated by the arrow RD. The alignment direction AL of the alignment film 113 is the x direction so as not to cause peeling of the alignment film 113.
 図10の右側の図は、この場合の画素電極112の方向を示している。すなわち、画素電極112の櫛歯電極1122の方向は、配向膜113の配向軸ALの方向と角度θをなしている。これによって、液晶層におけるドメインの発生を防止するとともに、湾曲した場合の配向膜113の剥離を防止することが出来る。 The right side of FIG. 10 shows the direction of the pixel electrode 112 in this case. That is, the direction of the comb electrode 1122 of the pixel electrode 112 forms an angle θ with the direction of the alignment axis AL of the alignment film 113. Thus, generation of domains in the liquid crystal layer can be prevented, and peeling of the alignment film 113 when it is curved can be prevented.
 図11は、誘電率異方性が負の液晶を用いた場合の、本発明による構成を記載したものである。基板100の湾曲方向、配向膜113の配向軸AL等は図10同じである。すなわち、基板100を湾曲させる方向を、配向膜113の強度が強い方向とすることによって配向膜113の剥離を防止している。 FIG. 11 describes the configuration according to the present invention in the case of using liquid crystal with negative dielectric anisotropy. The bending direction of the substrate 100, the alignment axis AL of the alignment film 113, and the like are the same as in FIG. That is, peeling of the alignment film 113 is prevented by setting the direction in which the substrate 100 is curved to a direction in which the strength of the alignment film 113 is strong.
 図11が図10と異なる点は、画素電極112における櫛歯電極1122の延在方向が、配向膜113の配向軸ALと90度の方向に対してθだけ傾いている点である。これによって、誘電率異方性が負の場合において、ドメインの発生を防止している。つまり、図11の構成によれば、誘電率異方性が負の場合において、液晶表示装置を湾曲して使用しても、配向膜113の剥離を防止し、かつ、ドメインの発生を防止することが出来る。 11 is different from FIG. 10 in that the extending direction of the comb electrode 1122 in the pixel electrode 112 is inclined by θ with respect to the direction of 90 degrees with respect to the alignment axis AL of the alignment film 113. This prevents the generation of domains when the dielectric anisotropy is negative. That is, according to the configuration of FIG. 11, in the case where the dielectric anisotropy is negative, the peeling of the alignment film 113 is prevented and the generation of the domain is prevented even if the liquid crystal display device is used by bending. I can do it.
 本実施例は折りたたむことが可能な液晶表示装置について本発明を適用した場合の例である。図12は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。図12は基板100の右側が折り曲げ線FLで折り曲げられて、x軸方向がX1からX2に変わったことを示している。以下に示す図も同様である。折り曲げるということは、非常に小さな曲率半径で液晶表示装置を曲げると同義である。つまり、折り曲げ線付近において、折り曲げ線と直角方向において、配向膜113に大きなストレスが生ずる。したがって、光配向をした後、x方向において、配向膜113の強度が劣化しないように、折り曲げ線FLと直角方向に配向膜113の配向軸ALがくるようにすればよい。 This embodiment is an example where the present invention is applied to a foldable liquid crystal display device. FIG. 12 is a schematic view of a liquid crystal display device which can be folded along the folding line FL. FIG. 12 shows that the right side of the substrate 100 is bent along the bending line FL, and the x-axis direction is changed from X1 to X2. The same is true for the figures shown below. Bending is equivalent to bending a liquid crystal display with a very small radius of curvature. That is, in the vicinity of the bending line, a large stress is generated in the alignment film 113 in the direction perpendicular to the bending line. Therefore, after the light alignment, the alignment axis AL of the alignment film 113 may be perpendicular to the bending line FL so that the strength of the alignment film 113 does not deteriorate in the x direction.
 つまり、図12の構成において、偏光紫外線の偏光軸UVP方向、配向膜113の配向軸AL方向は図10の場合と同様である。図12は誘電率異方性が正の場合の液晶を用いているので、画素電極112の櫛歯の延在方向は配向軸ALと角度θだけ傾いた方向になっている。 That is, in the configuration of FIG. 12, the polarization axis UVP direction of the polarized ultraviolet light and the orientation axis AL direction of the alignment film 113 are the same as in the case of FIG. In FIG. 12, since the liquid crystal in the case where the dielectric anisotropy is positive is used, the extending direction of the comb teeth of the pixel electrode 112 is a direction inclined by the angle θ with the alignment axis AL.
 図13は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置において、誘電率異方性が負の液晶を使用した場合の模式図である。図13において、基板100の折り曲げ軸FL、折り曲げ方向、光配向に使用される偏光紫外線の偏光軸UVP方向、配向膜113の配向方向ALは図12と同じである。 FIG. 13 is a schematic view in the case of using liquid crystal with negative dielectric anisotropy in a liquid crystal display which can be folded along a folding line FL. 13, the bending axis FL of the substrate 100, the bending direction, the polarization axis UVP of polarized ultraviolet light used for optical alignment, and the alignment direction AL of the alignment film 113 are the same as in FIG.
 図13が図12と異なる点は、画素電極112の櫛歯電極1121の方向が配向軸と90度をなす方向に対し、角度θだけ傾いている点である。この理由は、図11で説明したのと同様、液晶層におけるドメインの発生を防止することである。 13 is different from FIG. 12 in that the direction of the comb electrode 1121 of the pixel electrode 112 is inclined by an angle θ with respect to the direction forming 90 degrees with the orientation axis. The reason for this is to prevent the generation of domains in the liquid crystal layer, as described in FIG.
 以上で説明したように、折りたたむことが出来る液晶表示装置においても、ドメインの発生を防止するとともに、配向膜113の剥がれを防止することが出来る。 As described above, even in the liquid crystal display device which can be folded, generation of domains can be prevented and peeling of the alignment film 113 can be prevented.
 実施例3は、液晶表示装置を2つ折りにする場合の他の構成を示すものである。図14は実施例3における1態様を示す模式図である。図14の左側の図は、図12等と同様、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。配向膜113の配向軸ALの方向と折り曲げ線FLの方向等も図12と同じである。 Example 3 shows another configuration in the case of folding the liquid crystal display device in two. FIG. 14 is a schematic view showing one aspect in the third embodiment. The figure on the left side of FIG. 14 is a schematic view of a liquid crystal display device which can be folded along a folding line FL, as in FIG. 12 and the like. The direction of the alignment axis AL of the alignment film 113, the direction of the bending line FL, etc. are the same as in FIG.
 図14が図12と異なる点は、配向膜113に強いストレスがかかる、折り曲げ線FL付近は、光配向を行っていないことである。すなわち、配向膜113に光配向処理を行わなければその部分の配向膜113の強度は劣化が無い。したがって、配向膜113が剥離する危険はさらに小さくなる。図14において、配向膜113に光配向を行わない領域は折り曲げ線FLを含む、幅w1である。幅w1は例えば液晶表示パネルの厚さと同じである。 14 is different from FIG. 12 in that strong stress is applied to the alignment film 113 and no photo-alignment is performed near the bending line FL. That is, if the alignment film 113 is not subjected to the light alignment process, the strength of the alignment film 113 in that portion does not deteriorate. Therefore, the risk of peeling off the alignment film 113 is further reduced. In FIG. 14, a region in which the alignment film 113 is not subjected to the light alignment has a width w1 including the folding line FL. The width w1 is, for example, the same as the thickness of the liquid crystal display panel.
 つまり、折り曲げるということは、液晶表示パネルの厚さと同じ曲率半径で曲げると同義と考えることが出来る。したがって、ストレスが集中する幅w1の部分に光配向処理を行わなければよい。しかし、光配向処理を行わない部分は、バックライトからの光が漏れるので、対向基板200の対応する部分に遮光膜としてのブラックマトリクスを形成しておく必要がる。なお、図14における画素電極112の櫛歯電極1122の延在方向は、液晶が正の誘電率をもつ場合は図12と同様で、液晶が負の誘電率を持つ場合は図13と同様である。 That is, bending can be considered synonymous with bending with the same radius of curvature as the thickness of the liquid crystal display panel. Therefore, the light alignment process may not be performed on the portion of the width w1 where the stress is concentrated. However, since light from the backlight leaks in a portion where the light alignment processing is not performed, it is necessary to form a black matrix as a light shielding film on the corresponding portion of the counter substrate 200. The extending direction of the comb electrode 1122 of the pixel electrode 112 in FIG. 14 is the same as FIG. 12 when the liquid crystal has a positive dielectric constant, and the same as FIG. 13 when the liquid crystal has a negative dielectric constant. is there.
 図14における他の態様は、図14の折り曲げ線FLを含む幅w1の領域には、他の領域よりも、弱い光配向を施しておくことである。光配向が弱ければ、液晶が十分配向されず、黒レベルが上昇する。すなわち、コントラストが低下する。しかし、液晶は粘性を持っているので、図14の右側の図において、幅w1の領域の両側の液晶が十分に配向されていれば、図14の幅w1の領域ではその両側の液晶の影響を受けて、他の領域と同様に配向される場合がありうる。したがって、対向基板200等にブラックマトリクスを形成しなくとも、コントラストの低下を抑えることが出来る場合もある。 Another mode in FIG. 14 is to apply weaker light orientation to the area of width w1 including the folding line FL in FIG. 14 than the other areas. If the light alignment is weak, the liquid crystal is not sufficiently aligned and the black level rises. That is, the contrast is reduced. However, since the liquid crystal has viscosity, if the liquid crystal on both sides of the area of width w1 is sufficiently oriented in the right side of FIG. 14, the influence of the liquid crystals on both sides of the area of width w1 of FIG. And may be oriented in the same manner as other regions. Therefore, in some cases, the reduction in contrast can be suppressed without forming a black matrix on the counter substrate 200 or the like.
 図14の第1の態様の特徴は、基板100全面に配向膜113を形成し、折り曲げ領域w1に対して紫外線による光配向処理を行わないことである。このためには、光配向処理をするときに、幅w1についてマスクを用い、紫外線を照射しないようにすればよい。一方、図14の第2の態様の特徴は、基板100全面に配向膜113を形成し、折り曲げ領域w1に対して、他の部分よりも弱い紫外線による光配向処理を行う必要がある。このような場合、使用する偏光紫外線に対して、半透過するようなマスクを使用することが出来る。このようなマスクは、いわゆるハーフトーン露光を行う場合に使用されている。 The feature of the first embodiment of FIG. 14 is that the alignment film 113 is formed on the entire surface of the substrate 100, and the optical alignment processing by the ultraviolet light is not performed on the bent region w1. For this purpose, a mask may be used for the width w1 when performing the light alignment process, and ultraviolet light may not be emitted. On the other hand, the feature of the second embodiment of FIG. 14 is that the alignment film 113 is formed on the entire surface of the substrate 100, and the bent region w1 needs to be subjected to photoalignment treatment with ultraviolet light weaker than other portions. In such a case, it is possible to use a mask that is semitransparent to the polarized ultraviolet light used. Such a mask is used when performing so-called halftone exposure.
 図15は実施例3における他の態様を示す模式図である。図15の左側の図は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。図15が図14と異なる点は、配向膜113の配向方向が折り曲げ線と平行方向であり、この方向は図6等で説明したように、ポリイミドが断裂するために、配向膜113が弱くなっている方向である。すなわち、折り曲げ線FLに沿って基板100を折り曲げると配向膜が剥離しやすい。 FIG. 15 is a schematic view showing another aspect in the third embodiment. The left side of FIG. 15 is a schematic view of the liquid crystal display device which can be folded along the folding line FL. The point in which FIG. 15 differs from FIG. 14 is that the alignment direction of the alignment film 113 is parallel to the bending line, and as described in FIG. 6 etc., the alignment film 113 becomes weak because the polyimide is torn. Direction. That is, when the substrate 100 is bent along the bending line FL, the alignment film is easily peeled off.
 これを対策するために、図15では、右側の図に示すように、折り曲げ線FLを含み、例えば、幅w1の領域に光配向処理を施さない。光配向を施さなければこの部分は、配向膜113の機械的な強度が低下することはないので、配向膜113が剥離しにくい。配向膜113に配向処理を施さない部分では、バックライトからの光が漏れるので、この部分に対応して、対向基板200等に遮光膜であるブラックマトリクス等を形成する必要がある。 In order to cope with this, in FIG. 15, as shown in the right-hand drawing, the folding line FL is included, and for example, the region of the width w1 is not subjected to the light alignment processing. In this portion, the mechanical strength of the alignment film 113 is not reduced unless the light alignment is performed, so the alignment film 113 is not easily peeled off. Since light from the backlight leaks in a portion where the alignment film 113 is not subjected to the alignment process, it is necessary to form a black matrix or the like as a light shielding film on the counter substrate 200 etc. corresponding to this portion.
 折り曲げる場合は、ストレスが大きい領域は図15の右側の図の幅w1で示すように、液晶表示パネルの板厚程度と、範囲が限られるので、遮光する領域もわずかで済む。したがって、表示領域を大きく低下させるということは無い。製品の要求から、配向膜113の配向方向を図15のようにする必要がある場合があり、その場合には、本発明の構成を採用することによって、配向膜113の剥離を防止することが出来る。 In the case of bending, as shown by the width w1 of the right side of FIG. 15, the area where the stress is large is limited to about the thickness of the liquid crystal display panel, so the light shielding area may be small. Therefore, the display area is not greatly reduced. From the requirements of the product, it may be necessary to set the alignment direction of the alignment film 113 as shown in FIG. 15. In that case, peeling of the alignment film 113 can be prevented by adopting the configuration of the present invention. It can.
 図15の場合も、図14と同様、基板100全面に配向膜113を形成し、折り曲げ線FLを含む領域w1に対して紫外線照射を行わないようなマスクを用いて光配向処理を行えばよい。 Also in the case of FIG. 15, as in FIG. 14, the alignment film 113 may be formed on the entire surface of the substrate 100, and the photoalignment process may be performed using a mask that does not irradiate the ultraviolet light to the region w1 including the bending line FL. .
 実施例4は、液晶表示装置を2つ折りにする場合のさらに他の構成を示すものである。図16は実施例3における1態様を示す模式図である。図16の左側の図は、図14等と同様、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。配向膜113の配向軸ALの方向と折り曲げ線FLの方向等も図14と同じである。 The fourth embodiment shows still another configuration in which the liquid crystal display device is folded in half. FIG. 16 is a schematic view showing one aspect in the third embodiment. The drawing on the left side of FIG. 16 is a schematic view of a liquid crystal display device which can be folded along a folding line FL, as in FIG. 14 and the like. The direction of the alignment axis AL of the alignment film 113, the direction of the bending line FL, etc. are the same as in FIG.
 図16の右側の図は本実施例の特徴を示す平面図である。図16の右側の図において、配向膜113は、折り曲げ線FLを含む幅w1の領域を除く、基板100全面に形成されている。すなわち、基板100において、幅w1の領域では、配向膜113ではなく、容量絶縁膜111が露出している。ストレスのかかる折り曲げ領域に配向膜113が存在していないので、液晶表示装置を折り曲げても、配向膜113が剥離することは無い。 The right side of FIG. 16 is a plan view showing the features of this embodiment. In the drawing on the right side of FIG. 16, the alignment film 113 is formed on the entire surface of the substrate 100 except the area of the width w1 including the bending line FL. That is, in the substrate 100, in the region of the width w1, not the alignment film 113 but the capacitance insulating film 111 is exposed. Since the alignment film 113 does not exist in the stressed bending region, the alignment film 113 is not peeled off even when the liquid crystal display device is bent.
 配向膜113は、フレキソ印刷、あるいは、インクジェット等で形成される場合が多い。フレキソ印刷の場合は、印刷版を図16のような形状にしておけばよい。また、インクジェットは、塗布範囲を図16のようにプログラムしておけばよい。一方、紫外線による光配向処理については、折り曲げ部分には、配向膜113が存在していないので、紫外線を照射しても、配向膜113が劣化することは無いので、マスクを用いずに基板全面に照射することも可能である。しかし、光配向する紫外線は波長が250nm程度のエネルギーの大きい紫外線なので、露出している容量絶縁膜111、あるいは、対向基板200側であれば、オーバーコート膜203が劣化する危険もある。これを防止するには、配向膜113が形成されていない幅w1の領域に対してマスクを行い、紫外線照射を避けるようにしてもよい。 The alignment film 113 is often formed by flexographic printing, inkjet, or the like. In the case of flexographic printing, the printing plate may be shaped as shown in FIG. In addition, the application range of the inkjet may be programmed as shown in FIG. On the other hand, in the photo-alignment process using ultraviolet light, since the alignment film 113 does not exist in the bent portion, the alignment film 113 is not deteriorated even when irradiated with ultraviolet light, so the entire surface of the substrate is not used. It is also possible to However, since the ultraviolet light to be photo-aligned is a large energy ultraviolet light having a wavelength of about 250 nm, there is a risk that the overcoat film 203 may be deteriorated if it is on the exposed capacitive insulating film 111 or the counter substrate 200 side. In order to prevent this, the region of width w 1 where the alignment film 113 is not formed may be masked to avoid ultraviolet irradiation.
 図17は実施例4における他の態様を示す模式図である。図17の左側の図は、折り曲げ線FLに沿って折りたたむことが出来る液晶表示装置の模式図である。図17が図16と異なる点は、配向膜113の配向方向ALが折り曲げ線と平行方向であり、この方向は図6等で説明したように、ポリイミドが断裂するために、配向膜113が弱くなっている方向である。すなわち、折り曲げ線FLに沿って基板100を折り曲げると配向膜113が剥離しやすい。 FIG. 17 is a schematic view showing another aspect in the fourth embodiment. The left side of FIG. 17 is a schematic view of a liquid crystal display device which can be folded along a folding line FL. 17 differs from FIG. 16 in that the alignment direction AL of the alignment film 113 is parallel to the bending line, and as described with FIG. 6 etc., the alignment film 113 is weak because the polyimide is torn. It is the direction in which That is, when the substrate 100 is bent along the bending line FL, the alignment film 113 is easily peeled off.
 これに対して、図17では、右側の図に示すように、折り曲げ線FLを含み、例えば、幅w1の領域に配向膜113を形成しない。配向膜113が存在しなければ、配向膜113の劣化による配向膜剥がれもない。図17の右側に示すような配向膜113の形成方法は、図16において説明したのと同様である。図16の右側の図と図17の右側の図が異なる点は、配向膜113の配向方向のみである。製品の要求から、配向膜113の配向方向を図17のようにする必要がある場合があり、その場合には、本発明の構成を採用することによって、配向膜の剥離を防止することが出来る。 On the other hand, in FIG. 17, as shown in the right side of the drawing, the folding line FL is included, and for example, the alignment film 113 is not formed in the area of the width w1. If the alignment film 113 does not exist, there is no peeling of the alignment film due to the deterioration of the alignment film 113. The method of forming the alignment film 113 as shown on the right side of FIG. 17 is the same as that described in FIG. The right side of FIG. 16 differs from the right side of FIG. 17 only in the alignment direction of the alignment film 113. Depending on the requirements of the product, the alignment direction of the alignment film 113 may need to be as shown in FIG. 17. In this case, peeling of the alignment film can be prevented by adopting the configuration of the present invention. .
 本実施例は、液晶表示装置を4つ折りにする場合であって、第1の折り曲げ線FL1と第2の折り曲げ線FL2が交差する場合の構成である。4つ折りにする場合であっても第1の折り曲げ線FL1と第2の折り曲げ線FL2が平行な場合は、実施例2乃至4の2つ折りと同じ構成でよい。 The present embodiment is a case where the liquid crystal display device is folded in four, and the first bending line FL1 and the second bending line FL2 cross each other. If the first folding line FL1 and the second folding line FL2 are parallel even in the case of four-fold, the same configuration as the two-fold in the second to fourth embodiments may be employed.
 図18は、実施例5における第1の態様を示す模式図である。図18の左側の図は、4つ折りの態様を示す斜視図である。図18の左側の図において、液晶表示装置が、第1の折り曲げ線FL1及び第2の折り曲げ線FL2によって、図の湾曲した矢印のように折り曲げられる。そして、第1の折り曲げ線FL1と第2の折り曲げ線FL2が交差している。 FIG. 18 is a schematic view showing a first aspect in the fifth embodiment. The left side of FIG. 18 is a perspective view showing a form of four fold. In the left side of FIG. 18, the liquid crystal display device is bent by the first bending line FL1 and the second bending line FL2 as shown by the curved arrows in the drawing. The first bending line FL1 and the second bending line FL2 intersect with each other.
 図18は基板100の右側が折り曲げ線FL1で折り曲げられて、x軸方向がX1からX2に変わったことを示している。以下に示す図も同様である。また、図18は基板100の下側が折り曲げ線FL2で折り曲げられて、y軸方向がY1からY2に変わったことを示している。以下に示す図も同様である。 FIG. 18 shows that the right side of the substrate 100 is bent at a bending line FL1, and the x-axis direction changes from X1 to X2. The same is true for the figures shown below. FIG. 18 shows that the lower side of the substrate 100 is bent at a bending line FL2, and the y-axis direction is changed from Y1 to Y2. The same is true for the figures shown below.
 図18において、折り曲げ線FL1、FL2で区画された4つの領域の配向膜は全て同じ方向であるx方向に光配向を受けている。この配向方向は、図7等で説明したように、折り曲げ線FL1に対しては、配向膜113の剥離は生じにくい。一方、この配向方向は、折り曲げ線FL2に対しては、配向膜113の剥離が生じやすい。 In FIG. 18, the alignment films in the four regions divided by the folding lines FL1 and FL2 are all photo-aligned in the x direction, which is the same direction. In this alignment direction, as described with reference to FIG. 7 and the like, peeling of the alignment film 113 is unlikely to occur with respect to the bending line FL1. On the other hand, in this alignment direction, peeling of the alignment film 113 is likely to occur with respect to the bending line FL2.
 図18の右側の図は、これを対策する配向膜113の配向処理を示す平面図である。図18の右側の図において、配向膜113は基板100全面に形成されている。光配向処理は、配向膜113の配向軸ALがx方向になるように配向処理を受けている。図18の特徴は、折り曲げ線FL2を含む領域w1に対して、光配向処理を行っていない。したがって、この領域の配向膜113の強度は劣化していないために、折り曲げられても配向膜113は剥離しにくい。 The figure on the right side of FIG. 18 is a plan view showing the alignment process of the alignment film 113 to cope with this. In the right side of FIG. 18, the alignment film 113 is formed on the entire surface of the substrate 100. In the photo-alignment process, the alignment process is performed such that the alignment axis AL of the alignment film 113 is in the x direction. The feature of FIG. 18 does not perform the light alignment process on the region w1 including the folding line FL2. Therefore, since the strength of the alignment film 113 in this region is not deteriorated, the alignment film 113 is not easily peeled off even if it is bent.
 このような図18の構成を実現する製造方法、効果等は実施例3において説明したのと同様である。したがって、図18の構成によれば、4つ折りにした場合であっても、配向膜113のはがれを抑制することが出来る。なお、配向膜113に対し、配向処理をしていない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例3で説明したのと同様である。 The manufacturing method for realizing such a configuration of FIG. 18, the effects and the like are similar to those described in the third embodiment. Therefore, according to the configuration of FIG. 18, peeling of the alignment film 113 can be suppressed even in the case of four folds. A light shielding film of black matrix or the like is formed on the alignment film 113 in the area of the width w1 which is not subjected to the alignment process as described in the third embodiment.
 図19は、実施例5における第2の態様を示す模式図である。図19の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、図18の左側の図と同じである。すなわち、図19の左側の図の構成は、第2の折り曲げ線FL2付近において、配向膜113がはがれやすい。 FIG. 19 is a schematic view showing a second aspect in the fifth embodiment. The left side of FIG. 19 is a perspective view showing the manner of bending of the liquid crystal display device, but is the same as the left side of FIG. That is, in the configuration on the left side of FIG. 19, the alignment film 113 is easily peeled off in the vicinity of the second bending line FL2.
 図19の右側の図は、本態様の特徴を示す平面図である。図19の右側の図において、第2の折り曲げ線FL2を含む幅w1の領域には、配向膜113が形成されていない。すなわち、この領域には配向膜113が存在していないので、配向膜113が剥離することは無い。この態様は、液晶表示装置を4つ折りする場合に、実施例4の構成を応用したものである。配向膜113の形成方法、配向処理等は実施例4で説明したのと同様である。また、配向膜113が形成されていない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例4で説明したのと同様である。 The figure on the right side of FIG. 19 is a plan view showing the features of this embodiment. In the drawing on the right side of FIG. 19, the alignment film 113 is not formed in the region of the width w1 including the second bending line FL2. That is, since the alignment film 113 does not exist in this region, the alignment film 113 is not peeled off. This embodiment is an application of the configuration of the fourth embodiment when the liquid crystal display device is folded in four. The method of forming the alignment film 113, the alignment treatment, and the like are the same as those described in the fourth embodiment. In addition, a light shielding film made of a black matrix or the like is formed in the region of width w1 where the alignment film 113 is not formed, as in the fourth embodiment.
 図20は、実施例5における第3の態様を示す模式図である。図20の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、図18の左側の図と同じである。図20の右側の図は、本態様の特徴を示す平面図である。すなわち、配向膜113は全面に形成されているが、折り曲げ線FL1およびFL2を含む幅w1の領域には、光配向処理を行わない。光配向処理を行わなければ配向膜強度の劣化は無いので、配向膜113の剥離も生じない。 FIG. 20 is a schematic view showing a third aspect in the fifth embodiment. The drawing on the left side of FIG. 20 is a perspective view showing the manner of bending of the liquid crystal display device, and is the same as the drawing on the left side of FIG. The figure on the right side of FIG. 20 is a plan view showing the features of this embodiment. That is, although the alignment film 113 is formed on the entire surface, the optical alignment process is not performed on the region of the width w1 including the bending lines FL1 and FL2. If the optical alignment processing is not performed, the strength of the alignment film does not deteriorate, so peeling of the alignment film 113 does not occur.
 図20の構成は、実施例3で説明した構成を適用することによって形成することが可能である。また、配向膜113に対し、配向処理をしていない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例3で説明したのと同様である。 The configuration of FIG. 20 can be formed by applying the configuration described in the third embodiment. In addition, a light shielding film made of a black matrix or the like is formed on the alignment film 113 in the region of the width w1 which is not subjected to the alignment processing, as described in the third embodiment.
 なお、図20の場合、折り曲げストレスがかかる領域は、折り曲げ線FL1、FL2を含む幅w1の領域のみである。したがって、配向膜の配向方向ALは、図20に示すx方向である場合のみでなく、y方向である場合にも適用することが出来る。すなわち、製品仕様によって、配向膜の配向方向をy方向にする場合であっても図20の構成を応用することが出来る。 In the case of FIG. 20, the area to which bending stress is applied is only the area of width w1 including the bending lines FL1 and FL2. Therefore, the alignment direction AL of the alignment film can be applied not only to the x direction shown in FIG. 20 but also to the y direction. That is, the configuration of FIG. 20 can be applied even when the alignment direction of the alignment film is set to the y direction according to the product specification.
 図21は、実施例5における第4の態様を示す模式図である。図21の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、図20の左側の図と同じである。図21の右側の図は、本態様の特徴を示す平面図である。すなわち、折り曲げ線FL1およびFL2を含む幅w1の領域には、配向膜113を形成しない。配向膜113が存在しなければ配向膜強度の劣化は無いので、配向膜113の剥離も生じない。 FIG. 21 is a schematic view showing a fourth aspect in the fifth embodiment. The left side of FIG. 21 is a perspective view showing the manner of bending of the liquid crystal display device, but is the same as the left side of FIG. The drawing on the right side of FIG. 21 is a plan view showing the features of this aspect. That is, the alignment film 113 is not formed in the region of the width w1 including the folding lines FL1 and FL2. If the alignment film 113 does not exist, the strength of the alignment film does not deteriorate, so peeling of the alignment film 113 does not occur.
 図21の構成は、実施例4で説明した構成を適用することによって形成することが可能である。また、配向膜113が存在していない幅w1の領域には、ブラックマトリクス等による遮光膜を形成する点についても、実施例4で説明したのと同様である。 The configuration of FIG. 21 can be formed by applying the configuration described in the fourth embodiment. In addition, a light shielding film made of a black matrix or the like is formed in a region of width w1 where the alignment film 113 does not exist, as in the fourth embodiment.
 なお、図21の場合も、折り曲げストレスがかかる領域は、折り曲げ線FL1、FL2を含む幅w1の領域のみである。したがって、配向膜113の配向方向は、図21に示すx方向である場合のみでなく、y方向である場合にも適用することが出来る。すなわち、製品仕様によって、配向膜の配向方向をy方向にする場合であっても図21の構成を応用することが出来る。 Also in the case of FIG. 21, the area to which bending stress is applied is only the area of width w1 including the bending lines FL1 and FL2. Therefore, the alignment direction of the alignment film 113 can be applied not only to the x direction shown in FIG. 21 but also to the y direction. That is, the configuration of FIG. 21 can be applied even when the alignment direction of the alignment film is set to the y direction according to product specifications.
 本実施例は、液晶表示装置を4つ折りにする場合であって、第1の折り曲げ線と第2の折り曲げ線が交差する場合の他の構成である。実施例6はこのような4つ折りの場合であっても、第1の折り曲げ線FL1、第2の折り曲げ線FL2に沿った領域についても、他の領域と同様に配向処理を行うことが出来る構成である。 The present embodiment is another configuration in the case where the liquid crystal display device is folded in four, and in which the first bending line and the second bending line intersect. In the sixth embodiment, even in the case of such four-fold, the alignment process can be performed on the area along the first bending line FL1 and the second bending line FL2 as in the other areas. It is.
 図22の左側の図は、液晶表示装置の折り曲げの態様を示す斜視図であるが、折り曲げ状態は、実施例3における図18等の左側の図と同じである。図22の左側の図が、実施例3の図18等の左側の図と異なっている点は、配向膜113の機械的が強い方向である、配向膜113の配向方向が、基板の辺に対して45度となっている点である。これによって、折り曲げ線FL1、FL2付近における配向膜113の強度が弱い部分を無くし、配向膜113を基板全面に均一に形成して、かつ、4つ折りを可能としている。 The left drawing of FIG. 22 is a perspective view showing a bending mode of the liquid crystal display device, but the bending state is the same as the left drawing of FIG. 18 etc. in the third embodiment. The left side of FIG. 22 is different from the left side of FIG. 18 of the third embodiment in that the mechanical direction of the alignment film 113 is strong, and the alignment direction of the alignment film 113 is the side of the substrate. It is a point that is 45 degrees against. By this, a portion where the strength of the alignment film 113 is weak in the vicinity of the folding lines FL1 and FL2 is eliminated, the alignment film 113 is uniformly formed on the entire surface of the substrate, and four-fold can be made.
 図22の右上側の図は、本実施例における配向膜113の配向方向ALを示す平面図である。図22において、配向方向ALは、点線で示す折り曲げ線FL2に対してη傾いている。ηの中心値は45度である。ηの範囲は、好ましくは、45度±1度であるが、45度±10度までは許容可能である。 The drawing on the upper right side of FIG. 22 is a plan view showing the alignment direction AL of the alignment film 113 in this embodiment. In FIG. 22, the alignment direction AL is inclined by η with respect to a bending line FL2 indicated by a dotted line. The central value of η is 45 degrees. The range of η is preferably 45 ° ± 1 ° but acceptable up to 45 ° ± 10 °.
 図22の右下の図は、誘電率異方性が正の場合の液晶を使用したときの画素電極112の形状を示したものである。図22において、画素電極112の櫛歯電極1121の延在方向は配向膜113の配向方向ALに対してθだけずれでいる。θの値は、5度乃至15度である。これは、実施例1等で説明したように、液晶層におけるドメインの発生を防止するためである。 The lower right part of FIG. 22 shows the shape of the pixel electrode 112 when liquid crystal is used when the dielectric anisotropy is positive. In FIG. 22, the extending direction of the comb electrode 1121 of the pixel electrode 112 is shifted by θ with respect to the alignment direction AL of the alignment film 113. The value of θ is 5 degrees to 15 degrees. This is to prevent the generation of domains in the liquid crystal layer as described in the first embodiment and the like.
 図23は、誘電率異方性が負の液晶を使用した場合に、液晶表示装置を4つ折りにする場合の構成を示す図である。図23の左側の図は、図22の左側の図と同じである。また、図23の右上の図も図22の右上の図と同じである。すなわち、折り曲げ線FL1およびFL2に沿って液晶表示装置を折り曲げる場合の配向膜113の配向方向ALが折り曲げ線FL2に対してηの角度となっている。 FIG. 23 is a diagram showing a configuration in the case where a liquid crystal display device is folded in four when liquid crystal having a negative dielectric anisotropy is used. The left side of FIG. 23 is the same as the left side of FIG. Also, the upper right drawing of FIG. 23 is the same as the upper right drawing of FIG. That is, the alignment direction AL of the alignment film 113 when the liquid crystal display device is folded along the folding lines FL1 and FL2 is at an angle of η with respect to the folding line FL2.
 図23の右下の図は、誘電率異方性が負の液晶に対応する画素電極112の形状である。画素電極112の櫛歯電極1121の延在方向は、配向方向ALに対する90度の方向からθだけずれている。θの値は、5度乃至15度である。これは、実施例1等で説明したように、液晶層におけるドメインの発生を防止するためである。 The lower right part of FIG. 23 shows the shape of the pixel electrode 112 corresponding to the liquid crystal with negative dielectric anisotropy. The extending direction of the comb-tooth electrode 1121 of the pixel electrode 112 is shifted by θ from the direction of 90 degrees with respect to the alignment direction AL. The value of θ is 5 degrees to 15 degrees. This is to prevent the generation of domains in the liquid crystal layer as described in the first embodiment and the like.
 このように、実施例6の構成においては、液晶表示装置を4つ折りにする場合においても、折り曲げ線に沿った所定の幅、例えばw1に対して、配向膜113を光配向処理しない、あるいは、配向膜113を形成しないというような構成をとる必要がない。したがって、基板100に対し、配向膜113を均一に塗布し、かつ、均一に光配向処理することが出来る。これに対応した、ブラックマトリクス等による遮光膜の形成も不要となる。ただし、第1の折り曲げ線FL1及び第2の折り曲げ線Fl2に沿った配向膜の強さは、配向膜の強度が弱い方向と強い方向の中間的な値となる。 As described above, in the configuration of the sixth embodiment, even when the liquid crystal display device is folded in four, the alignment film 113 is not subjected to the light alignment treatment for a predetermined width along the folding line, for example w1. There is no need to adopt a configuration in which the alignment film 113 is not formed. Therefore, the alignment film 113 can be uniformly applied to the substrate 100 and the light alignment process can be uniformly performed. The formation of a light shielding film by a black matrix or the like corresponding to this is also unnecessary. However, the strength of the alignment film along the first bending line FL1 and the second bending line Fl2 is an intermediate value between the direction in which the strength of the alignment film is weak and the direction in which the strength of the alignment film is strong.
 以上の説明は、主として、TFT基板100側に形成された配向膜113について行ったが、対向基板200側に形成された配向膜113についても同様である。ただし、対向基板200側に形成した配向膜113の下地膜は、図3に示すように、オーバーコート膜203である。また、TFT基板100側の配向膜113と対向基板側の配向膜113の配向方向ALは一致している。 The above description is mainly made on the alignment film 113 formed on the TFT substrate 100 side, but the same applies to the alignment film 113 formed on the counter substrate 200 side. However, the base film of the alignment film 113 formed on the opposite substrate 200 side is an overcoat film 203 as shown in FIG. Further, the alignment directions AL of the alignment film 113 on the TFT substrate 100 side and the alignment film 113 on the counter substrate side are the same.
 以上の説明では、IPS方式の液晶表示装置はコモン電極110の上側に画素電極112が形成されているとして説明したが、本発明は、画素電極112の上にスリットを有するコモン電極110が形成されている場合のIPS方式の液晶表示装置についても適用することが出来る。この場合は、画素電極112の櫛歯電極1121が延在する方向が、コモン電極110のスリットが延在方向であるとして置き換えればよい。 In the above description, the IPS type liquid crystal display device is described as having the pixel electrode 112 formed on the upper side of the common electrode 110, but in the present invention, the common electrode 110 having a slit is formed on the pixel electrode 112. The invention can also be applied to a liquid crystal display device of the IPS type in the case of In this case, the direction in which the comb electrode 1121 of the pixel electrode 112 extends may be replaced with the slit in the common electrode 110 as the extending direction.
 11…走査線、 12…映像信号線、 13…画素、 20…液晶表示パネル、 30…表示領域、 40…端子領域、 100…TFT基板、 101…第1下地膜、 102…第2下地膜、 103…半導体層、 104…ゲート絶縁膜、 105…ゲート電極、 106…層間絶縁膜、 107…コンタクト電極、 108…無機パッシベーション膜、 109…有機パッシベーション膜、 110…コモン電極、 111…容量絶縁膜、 112…画素電極、 113…配向膜、 120…第1スルーホール、 130…第2スルーホール、 140…第3スルーホール、 200…対向基板、 201…カラーフィルタ、 202…ブラックマトリクス、 203…オーバーコート膜、 300…液晶層、 301…液晶分子、 500…フレキシブル配線基板、 1121…スリット、
 1122…櫛歯電極、 AL…配向方向、 D…ドレイン部、 S…ソース部、 FL…折り曲げ線、 LDD…Light Doped Drain、 PI…ポリイミド、
 UVP…偏光紫外線の偏光軸、 RD…ロール方向
11 scanning line 12 video signal line 13 pixel 20 liquid crystal display panel 30 display area 40 terminal area 100 TFT substrate 101 first undercoating film 102 second undercoating film 103: semiconductor layer, 104: gate insulating film, 105: gate electrode, 106: interlayer insulating film, 107: contact electrode, 108: inorganic passivation film, 109: organic passivation film, 110: common electrode, 111: capacitance insulating film, 112: pixel electrode, 113: alignment film, 120: first through hole, 130: second through hole, 140: third through hole, 200: opposing substrate, 201: color filter, 202: black matrix, 203: overcoat Film, 300: liquid crystal layer, 301: liquid crystal molecule, 500: flexible wiring substrate, 1121 Slit,
1122 ... comb electrodes, AL ... orientation, D ... drain unit, S ... source unit, FL ... folding lines, LDD ... Light Doped Drain, PI ... polyimide,
UVP: Polarization axis of polarized UV, RD: Roll direction

Claims (20)

  1.  第1の基板に第1の光配向膜が形成され、第2の基板に第2の光配向膜が形成され、前記第1の基板と前記第2の基板の間に液晶が挟持され、第1の方向を湾曲軸または折り曲げ軸として湾曲または折り曲げることが可能な液晶表示装置であって、
     前記第1の光配向膜および前記第2の光配向膜の配向軸の方向は、前記第1の方向と90度±10度の範囲で一致することを特徴とする液晶表示装置。
    A first photoalignment film is formed on a first substrate, a second photoalignment film is formed on a second substrate, a liquid crystal is sandwiched between the first substrate and the second substrate, 1. A liquid crystal display device which can be bent or bent with the direction 1 as a bending axis or bending axis,
    The direction of the alignment axis of the first photo alignment film and the second photo alignment film coincides with the first direction within a range of 90 ° ± 10 °.
  2.  前記第1の光配向膜および前記第2の光配向膜の配向軸の方向は、前記第1の方向と90度±1度の範囲で一致することを特徴とする請求項1に記載の液晶表示装置。 The liquid crystal according to claim 1, wherein the direction of the alignment axis of the first photo alignment film and the direction of the alignment axis of the second photo alignment film coincide with the first direction within a range of 90 ° ± 1 °. Display device.
  3.  前記液晶表示装置は、櫛歯電極を有する画素電極と絶縁膜を挟んで対向するコモン電極を有する液晶表示装置であり、前記液晶は誘電率異方性が正であり、
     前記画素電極の櫛歯電極の延在方向と前記第1の光配向膜の配向方向は5度乃至10度ずれていることを特徴とする請求項1に記載の液晶表示装置。
    The liquid crystal display device is a liquid crystal display device having a common electrode opposed to a pixel electrode having a comb electrode and an insulating film, and the liquid crystal has positive dielectric anisotropy.
    2. The liquid crystal display device according to claim 1, wherein the extending direction of the comb electrode of the pixel electrode and the alignment direction of the first light alignment film are deviated by 5 degrees to 10 degrees.
  4.  前記液晶表示装置は、櫛歯電極を有する画素電極と絶縁膜を挟んで対向するコモン電極を有する液晶表示装置であり、前記液晶は誘電率異方性が負であり、
     前記画素電極の櫛歯電極の延在方向と直角の方向と、前記第1の光配向膜の配向方向は5度乃至10度ずれていることを特徴とする請求項1に記載の液晶表示装置。
    The liquid crystal display device is a liquid crystal display device having a common electrode opposed to a pixel electrode having a comb electrode and an insulating film, and the liquid crystal has negative dielectric anisotropy.
    2. The liquid crystal display device according to claim 1, wherein the direction perpendicular to the extending direction of the comb electrode of the pixel electrode and the alignment direction of the first light alignment film are deviated by 5 degrees to 10 degrees. .
  5.  前記第1の光配向膜と第2の光配向膜は、シクロブタン環を有するポリイミドであることを特徴とする請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the first photo alignment film and the second photo alignment film are polyimides having a cyclobutane ring.
  6.  前記第1の光配向膜は、表示領域全面に形成され、同じ方向に配向軸を有しており、前記第2の光配向膜は、表示領域全面に形成され、同じ方向に配向軸を有していることを特徴とする請求項1に記載の液晶表示装置。 The first photo alignment film is formed on the entire display area and has an alignment axis in the same direction, and the second photo alignment film is formed on the entire display area and has an alignment axis in the same direction. The liquid crystal display device according to claim 1, characterized in that:
  7.  前記第1の光配向膜の配向軸の方向と前記第2の光配向膜の配向軸の方向は一致していることを特徴とする請求項6に記載の液晶表示装置。 7. The liquid crystal display device according to claim 6, wherein the direction of the alignment axis of the first photo alignment film coincides with the direction of the alignment axis of the second photo alignment film.
  8.  第1の基板と第2の基板の間に液晶が挟持され、第1の方向を湾曲軸または折り曲げ軸として、第2の方向に湾曲または折り曲げることが可能な液晶表示装置の製造方法であって、
     前記第1の基板に第1の配向膜を形成し、前記第1の配向膜を前記第2の方向に配向軸を有するように、偏光紫外線を用いて光配向させ、
     前記第2の基板に第2の配向膜を形成し、前記第2の配向膜を前記第2の方向に配向軸を有するように、偏光紫外線を用いて光配向させることを特徴とする液晶表示装置の製造方法。
    A method of manufacturing a liquid crystal display device, in which liquid crystal is held between a first substrate and a second substrate, and can be bent or bent in a second direction with the first direction as a bending axis or a bending axis. ,
    A first alignment film is formed on the first substrate, and the first alignment film is photoaligned using polarized ultraviolet light so as to have an alignment axis in the second direction,
    A liquid crystal display characterized in that a second alignment film is formed on the second substrate, and the second alignment film is photo-aligned using polarized ultraviolet light so as to have an alignment axis in the second direction. Device manufacturing method.
  9.  前記第1の配向膜の配向軸を前記第2の方向と0度±10度の範囲で一致するように、偏光紫外線を用いて光配向させ、
     前記第2の配向膜の配向軸を前記第2の方向と0度±10度の範囲で一致するように、偏光紫外線を用いて光配向させることを特徴とする請求項8に記載の液晶表示装置の製造方法。
    Photoalignment is performed using polarized ultraviolet light so that the alignment axis of the first alignment film coincides with the second direction within the range of 0 ° ± 10 °.
    9. The liquid crystal display according to claim 8, wherein the photoalignment is performed using polarized ultraviolet light so that the alignment axis of the second alignment film coincides with the second direction in the range of 0 ° ± 10 °. Device manufacturing method.
  10.  前記第1の配向膜の配向軸を前記第2の方向と0度±1度の範囲で一致するように、偏光紫外線を用いて光配向させ、
     前記第2の配向膜の配向軸を前記第2の方向と0度±1度の範囲で一致するように、偏光紫外線を用いて光配向させることを特徴とする請求項8に記載の液晶表示装置の製造方法。
    Photoalignment is performed using polarized ultraviolet light so that the alignment axis of the first alignment film coincides with the second direction within the range of 0 ° ± 1 °.
    9. The liquid crystal display according to claim 8, wherein the photoalignment is performed using polarized ultraviolet light so that the alignment axis of the second alignment film coincides with the second direction in the range of 0 ° ± 1 °. Device manufacturing method.
  11.  前記第1の配向膜の配向軸と前記第2の配向膜の配向軸を一致させように偏光紫外線を用いて光配向させることを特徴とする請求項8に記載の液晶表示装置の製造方法。 9. The method of manufacturing a liquid crystal display device according to claim 8, wherein the photoalignment is performed using polarized ultraviolet light so that the alignment axis of the first alignment film and the alignment axis of the second alignment film coincide with each other.
  12.  表示領域全体に配向膜を形成し、表示領域全体において、配向軸は同一方向であることを特徴とする請求項8に記載の液晶表示装置の製造方法。 9. The method for manufacturing a liquid crystal display device according to claim 8, wherein an alignment film is formed over the entire display area, and the alignment axis is in the same direction over the entire display area.
  13.  第1の基板と第2の基板の間に液晶が挟持され、第1の方向を第1の折り曲げ軸として折り曲げることが出来る液晶表示装置であって、
     前記第1の基板と前記第2の基板は配向膜を有し、前記第1の基板と前記第2の基板において、前記第1の折り曲げ軸を含む第1の幅を有する第1の領域の前記液晶に対する配向能力は、前記第1の領域以外における前記液晶に対する配向能力よりも小さく、
     前記第1の領域以外の部分においては、前記配向膜は偏光紫外線による配向処理を受けていることを特徴とする液晶表示装置。
    A liquid crystal display device in which liquid crystal is held between a first substrate and a second substrate and which can be bent with a first direction as a first bending axis,
    The first substrate and the second substrate have an alignment film, and in the first substrate and the second substrate, a first region having a first width including the first bending axis. The alignment ability for the liquid crystal is smaller than the alignment ability for the liquid crystal other than the first region,
    A liquid crystal display device characterized in that the alignment film is subjected to alignment treatment with polarized ultraviolet light in portions other than the first region.
  14.  前記第1の領域には前記配向膜が存在しないことを特徴とする請求項13に記載の液晶表示装置。 14. The liquid crystal display device according to claim 13, wherein the alignment film does not exist in the first region.
  15.  前記第1の領域には前記配向膜が存在し、前記第1の領域の前記配向膜は、偏光紫外線による配向処理を受けていないことを特徴とする請求項13に記載の液晶表示装置。 The liquid crystal display device according to claim 13, wherein the alignment film is present in the first region, and the alignment film in the first region is not subjected to alignment treatment with polarized ultraviolet light.
  16.  前記第1の領域には前記配向膜が存在し、前記第1の領域の前記配向膜は、偏光紫外線による配向処理を受けており、
     前記第1の領域の前記配向膜の配向能力は前記第1の領域以外の前記配向膜における配向能力よりも小さいことを特徴とする請求項13に記載の液晶表示装置。
    The alignment film is present in the first region, and the alignment film in the first region is subjected to alignment treatment with polarized ultraviolet light,
    14. The liquid crystal display device according to claim 13, wherein the alignment ability of the alignment film in the first region is smaller than that in the alignment film other than the first region.
  17.  前記液晶表示装置はさらに第2の方向を第2の折り曲げ軸として折り曲げることが出来、前記第1の折り曲げ軸と前記第2の折り曲げ軸は交差し、
     前記第2の折り曲げ軸を含む第2の幅を有する第2の領域における液晶分子に対する配向能力は、前記第1の領域及び前記第2の領域を除く領域における液晶分子に対する配向能力よりも小さく、
     前記第1の領域および前記第2の領域以外の部分においては、前記配向膜は偏光紫外線による配向処理を受けていることを特徴とする請求項13に記載の液晶表示装置。
    The liquid crystal display may be further bent with a second direction as a second bending axis, and the first bending axis and the second bending axis intersect with each other.
    The alignment ability for liquid crystal molecules in a second region having a second width including the second bending axis is smaller than the alignment ability for liquid crystal molecules in a region excluding the first region and the second region,
    14. The liquid crystal display device according to claim 13, wherein the alignment film is subjected to alignment treatment with polarized ultraviolet light in portions other than the first region and the second region.
  18.  前記第1の領域及び前記第2の領域には前記配向膜が存在しないことを特徴とする請求項17に記載の液晶表示装置。 The liquid crystal display device according to claim 17, wherein the alignment film is not present in the first region and the second region.
  19.  前記第1の領域及び前記第2の領域には前記配向膜が存在し、前記第1の領域および前記第2の領域の前記配向膜は、偏光紫外線による配向処理を受けていないことを特徴とする請求項17に記載の液晶表示装置。 The alignment film is present in the first region and the second region, and the alignment film in the first region and the second region is not subjected to an alignment treatment with polarized ultraviolet light. The liquid crystal display device according to claim 17.
  20.  前記第1の領域及び前記第2の領域には前記配向膜が存在し、前記第1の領域および前記第2の領域の前記配向膜は、偏光紫外線による配向処理を受けており、
     前記第1の領域および前記第2の領域の前記配向膜の配向能力は、前記第1の領域および前記第2の領域を除く領域の前記配向膜における配向能力よりも小さいことを特徴とする請求項17に記載の液晶表示装置。
    The alignment film is present in the first region and the second region, and the alignment film in the first region and the second region is subjected to an alignment treatment with polarized ultraviolet light,
    The alignment capability of the alignment film of the first region and the second region is smaller than that of the alignment film of the region excluding the first region and the second region. Item 18. A liquid crystal display device according to item 17.
PCT/JP2018/039627 2017-12-14 2018-10-25 Liquid crystal display device and method of manufacture therefor WO2019116745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-239356 2017-12-14
JP2017239356A JP7038537B2 (en) 2017-12-14 2017-12-14 Liquid crystal display device and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2019116745A1 true WO2019116745A1 (en) 2019-06-20

Family

ID=66820159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039627 WO2019116745A1 (en) 2017-12-14 2018-10-25 Liquid crystal display device and method of manufacture therefor

Country Status (2)

Country Link
JP (1) JP7038537B2 (en)
WO (1) WO2019116745A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054675A (en) * 2008-08-27 2010-03-11 Mitsubishi Electric Corp Alignment processing apparatus, alignment processing method and method of manufacturing liquid crystal panel
WO2013024750A1 (en) * 2011-08-12 2013-02-21 シャープ株式会社 Liquid crystal display
JP2017187530A (en) * 2016-04-01 2017-10-12 株式会社ジャパンディスプレイ Liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738068B2 (en) 2005-12-30 2010-06-15 Lg. Display Co., Ltd. Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054675A (en) * 2008-08-27 2010-03-11 Mitsubishi Electric Corp Alignment processing apparatus, alignment processing method and method of manufacturing liquid crystal panel
WO2013024750A1 (en) * 2011-08-12 2013-02-21 シャープ株式会社 Liquid crystal display
JP2017187530A (en) * 2016-04-01 2017-10-12 株式会社ジャパンディスプレイ Liquid crystal display device

Also Published As

Publication number Publication date
JP2019105784A (en) 2019-06-27
JP7038537B2 (en) 2022-03-18

Similar Documents

Publication Publication Date Title
KR100504532B1 (en) Multi-domain liquid crystal display device
KR101604650B1 (en) Display substrate, method for manufacturing the same and method for manufacturing display panel
US8077284B2 (en) Substrate for a display device, a method for repairing the same, a method for repairing a display device and a liquid-crystal display device
US20090002588A1 (en) Display device and method of manufacturing the same
US8300181B2 (en) Method of fabricating liquid crystal display and liquid crystal display obtained by the method
US20160041441A1 (en) Display panel and method for manufacturing the same
JP2004348131A5 (en)
JP5015434B2 (en) Horizontal electric field type liquid crystal display device and manufacturing method thereof
KR101282563B1 (en) Liquid crystal display device and fabrication method of the same
JP2007034218A (en) Liquid crystal display device and its manufacturing method
KR20100024533A (en) Method of manufacturing a display substrate, method of manufacturing a display device having the method and display substrate
US7864275B2 (en) Liquid crystal display device with a light blocking film formed on a surface of a substrate that surrounds a phase difference film and an orientation film also formed on the substrate surface between the substrate and the phase difference film
US6850300B2 (en) Multi-domain liquid crystal display device with particular dielectric frames
WO2019116745A1 (en) Liquid crystal display device and method of manufacture therefor
JP4469331B2 (en) Method for forming alignment film of liquid crystal display device
KR100313951B1 (en) Multi-domain liquid crystal display device
KR20080053804A (en) Liquid crystal display device and manufacturing method of the same
WO2011148557A1 (en) Method of manufacture for liquid crystal display device
WO2011142070A1 (en) Liquid crystal display device
KR101265082B1 (en) Method for fabricating liquid crystal display device
JP2010169888A (en) Display panel
JP2024008438A (en) display device
KR20100064465A (en) Liquid crystal display panel and method of manufacturing the same
JP2008096730A (en) Display panel and color filter substrate used therefor
US20120236225A1 (en) Display device substrate, manufacturing method of display device substrate, display device, and manufacturing method of display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888013

Country of ref document: EP

Kind code of ref document: A1