[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019114524A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019114524A1
WO2019114524A1 PCT/CN2018/117169 CN2018117169W WO2019114524A1 WO 2019114524 A1 WO2019114524 A1 WO 2019114524A1 CN 2018117169 W CN2018117169 W CN 2018117169W WO 2019114524 A1 WO2019114524 A1 WO 2019114524A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
focal length
image side
Prior art date
Application number
PCT/CN2018/117169
Other languages
English (en)
French (fr)
Inventor
叶丽慧
李明
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019114524A1 publication Critical patent/WO2019114524A1/zh
Priority to US16/844,719 priority Critical patent/US11650399B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an optical imaging lens, particularly an optical imaging lens composed of seven lenses.
  • the present invention proposes an optical imaging lens that is adaptable to a portable electronic product and has a large aperture and excellent imaging quality.
  • the present invention provides an optical imaging lens.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens having a power; a seventh lens having a negative power; wherein the effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens satisfy f/EPD ⁇ 1.80, and the optical imaging lens The effective focal length f and the air interval T67 between the sixth lens and the seventh lens satisfy 5.5 ⁇ f / T67 ⁇ 11.5.
  • the effective focal length f of the optical imaging lens and the effective focal length f5 of the fifth lens satisfy 0.5 ⁇ f5 / f ⁇ 1.5.
  • the on-axis distance TTL of the side of the first lens to the imaging surface satisfies TTL/ImgH ⁇ 1.70 between half of the diagonal of the effective pixel area on the imaging surface, ImgH.
  • -2 ⁇ f5 / f7 ⁇ -1 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f7 of the seventh lens.
  • 4.5 ⁇ f1/CT1 ⁇ 6.5 is satisfied between the effective focal length f1 of the first lens and the center thickness CT1 of the first lens.
  • a combination focal length f56 of the fifth lens and the sixth lens and a center thickness CT2 of the second lens satisfy 13.0 ⁇ f56 / CT2 ⁇ 21.0.
  • 1.5 ⁇ R6 / R7 ⁇ 3.5 is satisfied between the radius of curvature R6 of the side surface of the third lens image and the radius of curvature R7 of the side surface of the fourth lens object.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R10 of the side surface of the fifth lens image satisfy -5.0 ⁇ R3 / R10 ⁇ -2.0.
  • 0.5 ⁇ CT3 / CT4 ⁇ 1.0 is satisfied between the center thickness CT3 of the third lens and the center thickness CT4 of the fourth lens.
  • the air interval T23 between the second lens and the third lens and the air interval T34 between the third lens and the fourth lens satisfy T34/T23 ⁇ 1.0.
  • a combined focal length f12 of the first lens and the second lens and a combined focal length f56 of the fifth lens and the sixth lens satisfy 1.0 ⁇ f12 / f56 ⁇ 2.0.
  • 9.0 ⁇ f12 / CT4 ⁇ 16.0 is satisfied between the combined focal length f12 of the first lens and the second lens and the center thickness CT4 of the fourth lens.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens of a power; a seventh lens having a negative power; wherein a combination of a focal length f12 of the first lens and the second lens and a center thickness CT4 of the fourth lens satisfies 9.0 ⁇ f12 / CT4 ⁇ 16.0.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens having a power; a seventh lens having a negative power; wherein an on-axis distance TTL of the first lens object side to the imaging surface is satisfied with a half of the diagonal length ImgH of the effective pixel area on the imaging surface TTL/ImgH ⁇ 1.70.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens of the power; a seventh lens having a negative power; wherein the effective focal length f of the optical imaging lens and the effective focal length f5 of the fifth lens satisfy 0.5 ⁇ f5 / f ⁇ 1.5.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens of the power; a seventh lens having a negative power; wherein -2 ⁇ f5 / f7 ⁇ -1 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f7 of the seventh lens.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens of the power; a seventh lens having a negative power; wherein the effective focal length f1 of the first lens and the center thickness CT1 of the first lens satisfy 4.5 ⁇ f1/CT1 ⁇ 6.5.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens of a power; a seventh lens having a negative power; wherein a combined focal length f56 of the fifth lens and the sixth lens and a center thickness CT2 of the second lens satisfy 13.0 ⁇ f56 / CT2 ⁇ 21.0.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens having a power; a seventh lens having a negative power; wherein a radius of curvature R6 of the side surface of the third lens image and a radius of curvature R7 of the side surface of the fourth lens satisfy 1.5 ⁇ R6/R7 ⁇ 3.5.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens having a power; a seventh lens having a negative power; wherein a radius of curvature R3 of the side surface of the second lens object and a radius of curvature R10 of the side surface of the fifth lens image satisfy -5.0 ⁇ R3/R10 ⁇ - 2.0.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens of a power; a seventh lens having a negative power; wherein a center thickness CT3 of the third lens and a center thickness CT4 of the fourth lens satisfy 0.5 ⁇ CT3/CT4 ⁇ 1.0.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens having a power; a seventh lens having a negative power; wherein an air gap T23 between the second lens and the third lens and an air space T34 between the third lens and the fourth lens are satisfied T34/T23 ⁇ 1.0.
  • An aspect of the invention provides an optical imaging lens comprising, in order from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the side of the object a convex surface; a third lens having a power, the image side being a convex surface; a fourth lens having a negative power, the object side being a concave surface; and a fifth lens having a positive power, the image side being a convex surface; a sixth lens having a power; a seventh lens having a negative power; wherein a combined focal length f12 of the first lens and the second lens and a combined focal length f56 of the fifth lens and the sixth lens satisfy 1.0 ⁇ f12/ F56 ⁇ 2.0.
  • the optical imaging lens according to the present invention is applicable to portable electronic products and is an optical imaging lens having a large aperture and good imaging quality.
  • FIG. 1 is a schematic structural view of an optical imaging lens of Embodiment 1;
  • FIG. 2 to FIG. 5 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 6 is a schematic structural view of an optical imaging lens of Embodiment 2;
  • FIG. 11 is a schematic structural view of an optical imaging lens of Embodiment 3.
  • FIG. 16 is a schematic structural view of an optical imaging lens of Embodiment 4.
  • 17 to 20 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 21 is a schematic structural view of an optical imaging lens of Embodiment 5.
  • Figure 26 is a view showing the configuration of an optical imaging lens of Embodiment 6;
  • 27 to 30 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • Figure 31 is a view showing the configuration of an optical imaging lens of Embodiment 7;
  • FIG. 36 is a schematic structural view of an optical imaging lens of Embodiment 8.
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the present application provides an optical imaging lens comprising, from the object side to the image side, a first lens having a positive power, a concave side of the image side, and a second lens having a negative power, the object side being a convex surface; a third lens having a power having a convex side on the image side; a fourth lens having a negative power, the object side being a concave surface; a fifth lens having a positive power, the image side being a convex surface; having a power a sixth lens; a seventh lens having a negative power.
  • the effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens satisfy f/EPD ⁇ 1.80, and the effective focal length f of the optical imaging lens and the sixth lens and the seventh lens
  • the air gap T67 between them satisfies 5.5 ⁇ f / T67 ⁇ 11.5, specifically, 6.65 ⁇ f / T67 ⁇ 11.30.
  • the amount of light passing through can be increased, and the optical imaging lens group has a large aperture advantage, thereby enhancing the imaging effect in the dark environment while reducing the aberration of the edge field of view, so as to effectively control the distortion of the system.
  • the effective focal length f of the optical imaging lens and the effective focal length f5 of the fifth lens satisfy 0.5 ⁇ f5 / f ⁇ 1.5, specifically, 0.71 ⁇ f5 / f ⁇ 1.11.
  • the on-axis distance TTL from the side of the first lens to the imaging surface satisfies TTL/ImgH ⁇ 1.70 between the diagonal of the effective pixel area on the imaging surface, ImgH, specifically, TTL/ ImgH ⁇ 1.69.
  • TTL/ImgH ⁇ 1.70 between the diagonal of the effective pixel area on the imaging surface, ImgH, specifically, TTL/ ImgH ⁇ 1.69.
  • -2 ⁇ f5/f7 ⁇ -1 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f7 of the seventh lens, specifically, -1.78 ⁇ f5 / f7 ⁇ -1.02 is satisfied.
  • the effective focal length f1 of the first lens satisfies 4.5 ⁇ f1/CT1 ⁇ 6.5 between the effective thickness CT1 of the first lens, and specifically, 4.69 ⁇ f1/CT1 ⁇ 6.36 is satisfied. If the center thickness of the lens is too large or too small, it will cause difficulty in lens formation.
  • the above conditional expression can properly balance the focal length and thickness of the first lens, and effectively correct the system phase difference while facilitating processing.
  • the combined focal length f56 of the fifth lens and the sixth lens and the center thickness CT2 of the second lens satisfy 13.0 ⁇ f56/CT2 ⁇ 21.0, specifically, 13.08 ⁇ f56/CT2 ⁇ 20.55.
  • the radius of curvature R6 of the side surface of the third lens image and the radius of curvature R7 of the side surface of the fourth lens object satisfy 1.5 ⁇ R6/R7 ⁇ 3.5, specifically, 1.79 ⁇ R6/R7 ⁇ 3.09. By satisfying the above relationship, it is helpful to reduce the spherical aberration and the generation of astigmatism.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R10 of the side surface of the fifth lens image satisfy -5.0 ⁇ R3 / R10 ⁇ -2.0, specifically, -4.42 ⁇ R3 / R10 ⁇ -2.31.
  • 0.5 ⁇ CT3/CT4 ⁇ 1.0 is satisfied between the center thickness CT3 of the third lens and the center thickness CT4 of the fourth lens, specifically, 0.58 ⁇ CT3/CT4 ⁇ 0.92 is satisfied.
  • the air interval T23 between the second lens and the third lens and the air interval T34 between the third lens and the fourth lens satisfy T34/T23 ⁇ 1.0, specifically, satisfy T34/ T23 ⁇ 0.62.
  • the combined focal length f12 of the first lens and the second lens and the combined focal length f56 of the fifth lens and the sixth lens satisfy 1.0 ⁇ f12/f56 ⁇ 2.0, specifically, satisfy 1.09 ⁇ f12/ F56 ⁇ 1.66.
  • the power of the first lens and the second lens, the fifth lens, and the sixth lens can be properly matched, the total power of the entire optical system can be controlled, and the optical system has a better flat field. Flexibility.
  • the combined focal length f12 of the first lens and the second lens and the center thickness CT4 of the fourth lens satisfy 9.0 ⁇ f12 / CT4 ⁇ 16.0, specifically, 9.72 ⁇ f12 / CT4 ⁇ 15.90.
  • the power of the first lens and the second lens and the center thickness of the fourth lens can be reasonably matched to control the total power of the entire optical system.
  • FIG. 1 is a schematic structural view showing an optical imaging lens of Embodiment 1.
  • the optical imaging lens includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the optical imaging lens.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • the imaging lens further includes a filter E8 having an object side S15 and an image side S16 for filtering out infrared light.
  • a filter E8 having an object side S15 and an image side S16 for filtering out infrared light.
  • light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the first to seventh lenses E1 to E7 have respective effective focal lengths f1 to f7.
  • the first lens E1 to the seventh lens E7 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the optical imaging lens.
  • Table 1 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL (mm) of the optical imaging lens, and the effective pixel area pair of the electronic photosensitive element.
  • Half of the length of the corner is ImgH.
  • Table 2 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are in millimeters (mm).
  • each lens may be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 3 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for each aspherical lens in this embodiment.
  • Fig. 2 shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 3 shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 4 shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 5 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 1, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 1 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • Fig. 6 is a schematic structural view showing an optical imaging lens of Embodiment 2.
  • the optical imaging lens includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the optical imaging lens.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • the imaging lens further includes a filter E8 having an object side S15 and an image side S16 for filtering out infrared light.
  • a filter E8 having an object side S15 and an image side S16 for filtering out infrared light.
  • light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 4 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are all millimeters (mm).
  • Table 6 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 8 shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 2, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 2 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • Fig. 11 is a schematic structural view showing an optical imaging lens of Embodiment 3.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 7 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 8 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are all millimeters (mm).
  • Table 9 below shows the high order coefficient of each aspherical surface S1-S14 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • the optical imaging lens according to Embodiment 3 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • Fig. 16 is a view showing the configuration of an optical imaging lens of Embodiment 4.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 10 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 11 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 12 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 17 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 19 is a view showing a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 20 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 4, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 4 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 13 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 14 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 15 below shows the high order term coefficients of the respective aspherical surfaces S1 to S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24 is a view showing a distortion curve of the optical imaging lens of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • the optical imaging lens according to Embodiment 5 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • Fig. 26 is a schematic structural view showing the optical imaging lens of Embodiment 6.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 16 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 17 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are all millimeters (mm).
  • Table 18 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 27 is a view showing an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 6, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 30 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 6 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 19 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 20 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 21 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 32 is a view showing an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 33 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 34 is a view showing the distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 35 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 7 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • Fig. 36 is a view showing the configuration of an optical imaging lens of Embodiment 8.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 22 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 23 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 24 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 37 shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 8, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 38 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 39 is a view showing the distortion curve of the optical imaging lens of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • 40 shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 8 is suitable for a portable electronic product having a large aperture and good imaging quality.
  • the optical imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have positive refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a concave surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have positive refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 25 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens, the total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 26 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging lens in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 27 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 42 is a graph showing the axial chromatic aberration curve of the optical imaging lens of Example 9, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 43 is a view showing an astigmatism curve of the optical imaging lens of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 44 is a view showing the distortion curve of the optical imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 45 is a graph showing the chromatic aberration of magnification of the optical imaging lens of Embodiment 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
  • the optical imaging lens according to Embodiment 9 is suitable for a portable electronic product having a large aperture and good imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜(E1),其像侧面为凹面;具有负光焦度的第二透镜(E2),其物侧面为凸面;具有光焦度的第三透镜(E3),其像侧面为凸面;具有负光焦度的第四透镜(E4),其物侧面为凹面;具有正光焦度的第五透镜(E5),其像侧面为凸面;具有光焦度的第六透镜(E6);具有负光焦度的第七透镜(E7);其中,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤1.80,并且光学成像镜头的有效焦距f与第六透镜(E6)与第七透镜(E7)之间的空气间隔T67之间满足5.5<f/T67<11.5。光学成像镜头可适用于便携式电子产品,是具有大孔径和优良成像质量的光学成像镜头。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2017年12月12日提交于中国国家知识产权局的、专利申请号为201711318333.9的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种光学成像镜头,特别是由七片镜片组成的光学成像镜头。
背景技术
随着手机、平板电脑等消费电子产品的快速更新换代,市场对产品端成像镜头的要求愈加多样化。现阶段,电子产品以功能佳且轻薄短小的外形为发展趋势,这就要求安装于电子产品内的成像镜头也具有短小的外形以适于安装,并且具有良好的成像质量。
因此,本发明提出了一种可适用于便携式电子产品,具有大孔径和优良成像质量的光学成像镜头。
发明内容
为了解决现有技术中的至少一个问题,本发明提供了一种光学成像镜头。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤1.80,并且光学成像镜头的有效焦距f与第六透镜与第七透镜之间的空气间隔T67之间满足5.5<f/T67<11.5。
根据本发明的一个实施方式,光学成像镜头的有效焦距f与第五透镜的有效焦距f5之间满足0.5<f5/f<1.5。
根据本发明的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH≤1.70。
根据本发明的一个实施方式,第五透镜的有效焦距f5与第七透镜的有效焦距f7之间满足-2<f5/f7<-1。
根据本发明的一个实施方式,第一透镜的有效焦距f1与第一透镜的中心厚度CT1之间满足4.5<f1/CT1<6.5。
根据本发明的一个实施方式,第五透镜与第六透镜的组合焦距f56与第二透镜的中心厚度CT2之间满足13.0<f56/CT2<21.0。
根据本发明的一个实施方式,第三透镜像侧面的曲率半径R6与第四透镜物侧面的曲率半径R7之间满足1.5<R6/R7<3.5。
根据本发明的一个实施方式,第二透镜物侧面的曲率半径R3与第五透镜像侧面的曲率半径R10之间满足-5.0<R3/R10<-2.0。
根据本发明的一个实施方式,第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足0.5<CT3/CT4<1.0。
根据本发明的一个实施方式,第二透镜与第三透镜之间的空气间隔T23与第三透镜与第四透镜之间的空气间隔T34之间满足T34/T23<1.0。
根据本发明的一个实施方式,第一透镜与第二透镜的组合焦距f12与第五透镜与第六透镜的组合焦距f56之间满足1.0<f12/f56<2.0。
根据本发明的一个实施方式,第一透镜与第二透镜的组合焦距f12与第四透镜的中心厚度CT4之间满足9.0<f12/CT4<16.0。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第一透镜与第二透镜的组合焦距f12与第四透镜的中心厚度CT4之间满足9.0<f12/CT4<16.0。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH≤1.70。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,光学成像镜头的有效焦距f与第五透镜的有效焦距f5之间满足0.5<f5/f<1.5。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第五透镜的有效焦距f5与第七透镜的有效焦距f7之间满足-2<f5/f7<-1。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第一透镜的有效焦距f1与第一透镜的中心厚度CT1之间满足4.5<f1/CT1<6.5。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第五透 镜与第六透镜的组合焦距f56与第二透镜的中心厚度CT2之间满足13.0<f56/CT2<21.0。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第三透镜像侧面的曲率半径R6与第四透镜物侧面的曲率半径R7之间满足1.5<R6/R7<3.5。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第二透镜物侧面的曲率半径R3与第五透镜像侧面的曲率半径R10之间满足-5.0<R3/R10<-2.0。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足0.5<CT3/CT4<1.0。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第二透镜与第三透镜之间的空气间隔T23与第三透镜与第四透镜之间的空气间隔T34之间满足T34/T23<1.0。
本发明的一个方面提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜;其中,第一透镜与第二透镜的组合焦距f12与第五透镜与第六透镜的组合焦距f56之间满足1.0<f12/f56<2.0。
根据本发明的光学成像镜头可适用于便携式电子产品,是具有大孔径和良好成像质量的光学成像镜头。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的光学成像镜头的结构示意图;
图2至图5分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图6示出了实施例2的光学成像镜头的结构示意图;
图7至图10分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的光学成像镜头的结构示意图;
图12至图15分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的光学成像镜头的结构示意图;
图17至图20分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的光学成像镜头的结构示意图;
图22至图25分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的光学成像镜头的结构示意图;
图27至图30分别示出了实施例6的光学成像镜头的轴上色差曲线、 象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的光学成像镜头的结构示意图;
图32至图35分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的光学成像镜头的结构示意图;
图37至图40分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的光学成像镜头的结构示意图;以及
图42至图45分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本 申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种光学成像镜头,从物侧至像侧依次包括:具有正光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其像侧面为凸面;具有负光焦度的第四透镜,其物侧面为凹面;具有正光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜;具有负光焦度的第七透镜。
在本申请的实施例中,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤1.80,并且光学成像镜头的有效焦距f与第六透镜与第七透镜之间的空气间隔T67之间满足5.5<f/T67<11.5,具体地,满足6.65≤f/T67≤11.30。通过合理的控制系统的各个透镜的光焦度的正负分配,可有效地平衡控制系统的低阶像差,且能降低公差的敏感性,维持系统的小型化。通过满足上述关系,可加大通光量,使光学成像镜片组具有 大光圈优势,从而在减小边缘视场的像差的同时增强暗环境下的成像效果,以有效地控制系统的畸变量。
在本申请的实施例中,光学成像镜头的有效焦距f与第五透镜的有效焦距f5之间满足0.5<f5/f<1.5,具体地,满足0.71≤f5/f≤1.11。通过满足上述关系,能够控制第五透镜的光焦度、降低公差敏感性,并维持成像系统小型化。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH≤1.70,具体地,满足TTL/ImgH≤1.69。通过满足上述关系,能够对镜头的光学总长度和像高比例进行控制,可有效地压缩成像镜头的总尺寸,以实现成像镜头的超薄特性与小型化。
在本申请的实施例中,第五透镜的有效焦距f5与第七透镜的有效焦距f7之间满足-2<f5/f7<-1,具体地,满足-1.78≤f5/f7≤-1.02。通过满足上述关系,能够控制第五透镜与第七透镜的光焦度,可以有效校正像面近轴范围的畸变,从而提高系统的成像质量。
在本申请的实施例中,第一透镜的有效焦距f1与第一透镜的中心厚度CT1之间满足4.5<f1/CT1<6.5,具体地,满足4.69≤f1/CT1≤6.36。透镜的中心厚度过大或过小会对镜片成型造成困难,满足上述条件式能够合理平衡第一透镜的焦距和厚度,有效矫正系统相差的同时利于加工。
在本申请的实施例中,第五透镜与第六透镜的组合焦距f56与第二透镜的中心厚度CT2之间满足13.0<f56/CT2<21.0,具体地,满足13.08≤f56/CT2≤20.55。通过满足上述关系,能够控制第五透镜与第六透镜的焦距,以及第二透镜的中心厚度,可以矫正系统色差及帮助改善畸变与子午方向慧差。
在本申请的实施例中,第三透镜像侧面的曲率半径R6与第四透镜物侧面的曲率半径R7之间满足1.5<R6/R7<3.5,具体地,满足1.79≤R6/R7≤3.09。通过满足上述关系,有助于减少球差以及像散的产生。
在本申请的实施例中,第二透镜物侧面的曲率半径R3与第五透镜像侧面的曲率半径R10之间满足-5.0<R3/R10<-2.0,具体地,满足-4.42≤R3/R10≤-2.31。通过第二透镜和第五透镜的配合,可以矫正系统的色差,且能够实现各种相差的平衡。
在本申请的实施例中,第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足0.5<CT3/CT4<1.0,具体地,满足0.58≤CT3/CT4≤0.92。通过满足上述关系,有助于镜片尺寸分布均匀、保证组装稳定性,并且减小整个成像系统的像差以及缩短成像系统的总长。
在本申请的实施例中,第二透镜与第三透镜之间的空气间隔T23与第三透镜与第四透镜之间的空气间隔T34之间满足T34/T23<1.0,具体地,满足T34/T23≤0.62。通过控制第二透镜与第三透镜之间的空气间隔以及第三透镜与第四透镜之间的空气间隔,可确保第二透镜与第三透镜之间于光轴上具有足够的间隔距离,避免因为第二透镜与第三透镜彼此过于靠近而产生透镜组装与成型上的困难。
在本申请的实施例中,第一透镜与第二透镜的组合焦距f12与第五透镜与第六透镜的组合焦距f56之间满足1.0<f12/f56<2.0,具体地,满足1.09≤f12/f56≤1.66。通过满足上述关系,能合理搭配第一透镜与第二透镜、第五透镜与第六透镜的光焦度,可以控制整个光学系统的总的光焦度,并使光学系统具有较好的平场曲能力。
在本申请的实施例中,第一透镜与第二透镜的组合焦距f12与第四透镜的中心厚度CT4之间满足9.0<f12/CT4<16.0,具体地,满足9.72≤f12/CT4≤15.90。通过满足上述关系,能够合理搭配第一透镜与第二透镜的光焦度以及第四透镜的中心厚度,以控制整个光学系统的总的光焦度。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的光学成像镜头。
图1为示出了实施例1的光学成像镜头的结构示意图。如图1所示,光学成像镜头包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像镜头的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
该成像镜头还包括用于滤除红外光的具有物侧面S15和像侧面S16的滤光片E8。在该实施例中,来自物体的光依次穿过各表面S1至S16并最终成像在成像表面S17上。
在该实施例中,第一透镜E1至第七透镜E7分别具有各自的有效焦距f1至f7。第一透镜E1至第七透镜E7沿着光轴依次排列并共同决定了光学成像镜头的总有效焦距f。下表1示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL(mm)以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.79 f(mm) 3.83
f2(mm) -26.50 TTL(mm) 5.08
f3(mm) -31.98 ImgH(mm) 3.04
f4(mm) -8.88    
f5(mm) 2.71    
f6(mm) -86.43    
f7(mm) -2.66    
表1
表2示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000001
表2
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018117169-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.4100E-04 5.2819E-02 -1.7533E-01 3.7040E-01 -4.2946E-01 2.6449E-01 -6.6850E-02 0.0000E+00 0.0000E+00
S2 -6.0590E-02 4.7830E-02 2.9203E-01 -1.0040E+00 1.4358E+00 -1.0015E+00 2.7617E-01 0.0000E+00 0.0000E+00
S3 -1.3547E-01 8.8934E-02 2.5071E-01 -9.2800E-01 1.3686E+00 -9.7908E-01 2.7914E-01 0.0000E+00 0.0000E+00
S4 -7.0880E-02 4.3933E-02 1.0105E-02 -2.8090E-02 4.1582E-02 -2.5030E-02 1.0331E-02 0.0000E+00 0.0000E+00
S5 -8.6040E-02 -1.0005E-01 6.1823E-01 -2.7804E+00 7.4881E+00 -1.2599E+01 1.2942E+01 -7.4542E+00 1.8344E+00
S6 -1.4186E-01 9.9935E-02 -5.5614E-01 1.4347E+00 -2.7105E+00 3.4850E+00 -2.7560E+00 1.1790E+00 -2.0332E-01
S7 -1.8288E-01 1.4129E-01 -5.5846E-01 1.4081E+00 -2.7618E+00 3.8196E+00 -3.2524E+00 1.5251E+00 -3.0051E-01
S8 -1.5391E-01 1.8459E-01 -3.6159E-01 4.4382E-01 -3.4557E-01 1.9837E-01 -8.5730E-02 2.4322E-02 -3.1700E-03
S9 -5.6360E-02 1.6625E-01 -3.0213E-01 3.0522E-01 -1.8379E-01 6.8808E-02 -1.5940E-02 2.1250E-03 -1.3000E-04
S10 6.8635E-02 -1.3568E-01 2.1013E-01 -2.0667E-01 1.2934E-01 -5.0260E-02 1.1770E-02 -1.5300E-03 8.4900E-05
S11 7.3545E-02 -1.6039E-01 1.5030E-01 -1.0809E-01 5.3637E-02 -1.7510E-02 3.5440E-03 -3.9000E-04 1.8100E-05
S12 6.3654E-02 -1.1240E-01 7.8434E-02 -3.7350E-02 1.2276E-02 -2.6900E-03 3.7200E-04 -2.9000E-05 1.0400E-06
S13 -1.8916E-01 8.7448E-02 -2.0810E-02 5.1130E-03 -1.6700E-03 4.1100E-04 -5.9000E-05 4.4200E-06 -1.4000E-07
S14 -1.3549E-01 8.0590E-02 -3.4970E-02 1.1049E-02 -2.4500E-03 3.6400E-04 -3.4000E-05 1.8300E-06 -4.3000E-08
表3
图2示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例2
以下参照图6至图10描述根据本申请实施例2的光学成像镜头。
图6为示出了实施例2的光学成像镜头的结构示意图。如图6所示,光学成像镜头包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像镜头的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凹面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
该成像镜头还包括用于滤除红外光的具有物侧面S15和像侧面S16的滤光片E8。在该实施例中,来自物体的光依次穿过各表面S1至S16并最终成像在成像表面S17上
下表4示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.95 f(mm) 3.94
f2(mm) -15.47 TTL(mm) 5.10
f3(mm) 16.69 ImgH(mm) 3.04
f4(mm) -10.01    
f5(mm) 3.03    
f6(mm) -40.43    
f7(mm) -2.54    
表4
表5示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
         折射率 色散系数  
OBJ 球面 无穷 无穷      
STO 球面 无穷 -0.4318      
S1 非球面 1.7121 0.6395 1.55 56.1 0.1025
S2 非球面 7.1856 0.0250     -99.0000
S3 非球面 5.0000 0.2507 1.65 23.5 4.3243
S4 非球面 3.2633 0.3915     5.1502
S5 非球面 40.7435 0.3176 1.55 56.1 -99.0000
S6 非球面 -11.7031 0.1463     98.4680
S7 非球面 -6.5350 0.4271 1.65 23.5 18.4472
S8 非球面 463.4353 0.2607     -99.0000
S9 非球面 -128.1530 0.6735 1.55 56.1 24.2521
S10 非球面 -1.6370 0.0250     -2.1721
S11 非球面 -23.0000 0.4798 1.65 23.5 -64.9719
S12 非球面 -200.0000 0.3716     99.0000
S13 非球面 -18.2972 0.3500 1.55 56.1 2.1275
S14 非球面 1.5091 0.2274     -7.4314
S15 球面 无穷 0.1100 1.52 64.2  
S16 球面 无穷 0.4042      
S17 球面 无穷        
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.2100E-03 3.1379E-02 -1.0027E-01 2.0497E-01 -2.2741E-01 1.3348E-01 -3.2710E-02 0.0000E+00 0.0000E+00
S2 -6.2090E-02 1.1515E-01 -6.4790E-02 -7.0990E-02 1.4514E-01 -9.6720E-02 2.3369E-02 0.0000E+00 0.0000E+00
S3 -1.3934E-01 1.4267E-01 -4.4660E-02 -1.2731E-01 2.2575E-01 -1.5181E-01 4.0663E-02 0.0000E+00 0.0000E+00
S4 -6.9030E-02 1.8105E-02 4.0100E-02 -8.9660E-02 1.4093E-01 -1.1165E-01 4.6760E-02 0.0000E+00 0.0000E+00
S5 -7.6670E-02 -1.2640E-02 -8.9730E-02 -1.7189E-01 1.2458E+00 -2.8083E+00 3.2673E+00 -1.9626E+00 4.7386E-01
S6 -1.1717E-01 7.1514E-02 -5.9413E-01 1.5526E+00 -2.8078E+00 3.6195E+00 -2.9722E+00 1.3489E+00 -2.5634E-01
S7 -1.7405E-01 1.9017E-01 -8.7945E-01 2.3583E+00 -4.5264E+00 6.1440E+00 -5.2556E+00 2.4803E+00 -4.8706E-01
S8 -1.4195E-01 1.7698E-01 -3.7740E-01 5.3731E-01 -5.2119E-01 3.6575E-01 -1.7952E-01 5.3777E-02 -7.0300E-03
S9 -7.8640E-02 1.8742E-01 -2.5828E-01 2.1511E-01 -1.1828E-01 4.6298E-02 -1.3490E-02 2.6670E-03 -2.5000E-04
S10 6.4125E-02 -1.1156E-01 1.5962E-01 -1.4171E-01 7.5450E-02 -2.1710E-02 2.5730E-03 9.3500E-05 -3.5000E-05
S11 1.1662E-01 -2.1898E-01 1.8564E-01 -1.2168E-01 5.9462E-02 -2.2200E-02 5.9870E-03 -9.7000E-04 6.8100E-05
S12 1.0017E-01 -1.7811E-01 1.2655E-01 -5.7780E-02 1.6722E-02 -2.8000E-03 2.0500E-04 3.9000E-06 -1.0000E-06
S13 -2.0999E-01 1.0203E-01 -2.7000E-02 8.3070E-03 -3.1400E-03 8.4100E-04 -1.3000E-04 1.0800E-05 -3.7000E-07
S14 -1.3361E-01 7.8996E-02 -3.1880E-02 9.4240E-03 -2.0000E-03 2.8700E-04 -2.6000E-05 1.3900E-06 -3.2000E-08
表6
图7示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实 施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例3
以下参照图11至图15描述根据本申请实施例3的光学成像镜头。
图11为示出了实施例3的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表7示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.33 f(mm) 4.09
f2(mm) -6.30 TTL(mm) 5.14
f3(mm) 10.84 ImgH(mm) 3.04
f4(mm) -13.74    
f5(mm) 3.74    
f6(mm) 36.41    
f7(mm) -2.43    
表7
表8示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000003
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.0180E-03 2.0190E-03 2.2320E-03 -3.6900E-03 6.1260E-03 -4.5000E-03 1.2020E-03 0.0000E+00 0.0000E+00
S2 -1.9360E-02 9.4442E-02 -1.4838E-01 1.4677E-01 -9.2300E-02 3.3503E-02 -5.1800E-03 0.0000E+00 0.0000E+00
S3 -1.3153E-01 2.4135E-01 -3.3186E-01 3.2562E-01 -2.1386E-01 9.0772E-02 -1.9300E-02 0.0000E+00 0.0000E+00
S4 -1.2842E-01 2.0077E-01 -2.6899E-01 3.2184E-01 -2.6490E-01 1.4862E-01 -2.6620E-02 0.0000E+00 0.0000E+00
S5 -8.3514E-02 2.9669E-02 -2.0133E-01 5.7268E-01 -1.1321E+00 1.4837E+00 -1.2103E+00 5.8213E-01 -1.2731E-01
S6 -1.1124E-01 1.1794E-02 -8.1380E-02 7.9920E-02 1.1122E-01 -4.3105E-01 5.7243E-01 -3.5667E-01 8.4644E-02
S7 -1.5781E-01 -1.0670E-02 2.2101E-01 -1.1147E+00 2.9994E+00 -4.7436E+00 4.4963E+00 -2.3669E+00 5.3305E-01
S8 -1.2473E-01 4.6973E-02 -6.8730E-02 4.7972E-02 4.0086E-02 -1.0946E-01 9.4225E-02 -3.9410E-02 6.8690E-03
S9 -3.6716E-02 1.0094E-01 -1.9640E-01 2.1949E-01 -1.7117E-01 9.1993E-02 -3.2440E-02 6.6710E-03 -5.9000E-04
S10 4.7327E-02 -6.3310E-02 8.0676E-02 -8.8650E-02 6.8776E-02 -3.5300E-02 1.1282E-02 -2.0000E-03 1.4800E-04
S11 1.0162E-01 -2.2159E-01 1.7382E-01 -1.0307E-01 4.8742E-02 -1.8120E-02 4.7610E-03 -7.3000E-04 4.8200E-05
S12 1.4784E-01 -2.7728E-01 2.1083E-01 -1.0764E-01 3.9161E-02 -1.0090E-02 1.7480E-03 -1.8000E-04 8.2800E-06
S13 -1.6770E-01 3.9052E-02 2.9822E-02 -2.4310E-02 8.4690E-03 -1.7200E-03 2.0800E-04 -1.4000E-05 4.1300E-07
S14 -1.3281E-01 7.4781E-02 -2.5470E-02 5.8790E-03 -1.0000E-03 1.2800E-04 -1.2000E-05 6.4800E-07 -1.7000E-08
表9
图12示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例4
以下参照图16至图20描述根据本申请实施例4的光学成像镜头。
图16为示出了实施例4的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10 可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表10示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.25 f(mm) 3.91
f2(mm) -5.82 TTL(mm) 4.85
f3(mm) 10.14 ImgH(mm) 3.04
f4(mm) -19.32    
f5(mm) 4.36    
f6(mm) 21.61    
f7(mm) -2.45    
表10
下表11示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000004
Figure PCTCN2018117169-appb-000005
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.3000E-03 2.4350E-03 2.2500E-04 3.6300E-04 1.0020E-03 -1.5900E-03 5.7900E-04 0.0000E+00 0.0000E+00
S2 -2.1030E-02 8.9680E-02 -1.5059E-01 1.7617E-01 -1.4032E-01 6.6866E-02 -1.4020E-02 0.0000E+00 0.0000E+00
S3 -1.4090E-01 2.5411E-01 -3.3460E-01 3.1129E-01 -1.8939E-01 7.5004E-02 -1.7060E-02 0.0000E+00 0.0000E+00
S4 -1.3969E-01 2.2743E-01 -2.8672E-01 3.0860E-01 -2.3113E-01 1.3538E-01 -2.3460E-02 0.0000E+00 0.0000E+00
S5 -8.5730E-02 3.7429E-02 -2.5877E-01 8.9774E-01 -2.2628E+00 3.7613E+00 -3.8881E+00 2.3035E+00 -5.9143E-01
S6 -1.1918E-01 4.4041E-02 -2.2687E-01 5.5321E-01 -9.5025E-01 1.0442E+00 -6.6205E-01 2.2591E-01 -3.6890E-02
S7 -1.6705E-01 -3.3400E-02 4.6526E-01 -2.2351E+00 6.0551E+00 -9.9471E+00 9.8426E+00 -5.3874E+00 1.2544E+00
S8 -1.3170E-01 3.0846E-02 1.8209E-02 -2.1543E-01 5.2442E-01 -6.6851E-01 4.8726E-01 -1.9327E-01 3.2687E-02
S9 -4.1665E-02 1.3797E-01 -2.8158E-01 3.3781E-01 -2.7920E-01 1.5589E-01 -5.6300E-02 1.1818E-02 -1.0800E-03
S10 2.8928E-02 -1.5570E-02 -3.5700E-03 1.3004E-02 -5.7200E-03 -3.8100E-03 4.0350E-03 -1.2100E-03 1.2200E-04
S11 1.2179E-01 -2.7611E-01 2.1286E-01 -1.0474E-01 3.8736E-02 -1.3460E-02 3.9240E-03 -6.7000E-04 4.6700E-05
S12 2.0678E-01 -3.7426E-01 2.9940E-01 -1.5493E-01 5.5206E-02 -1.3790E-02 2.3370E-03 -2.4000E-04 1.0900E-05
S13 -1.7652E-01 3.4654E-02 3.8970E-02 -2.9120E-02 9.7810E-03 -1.9200E-03 2.2600E-04 -1.5000E-05 4.1900E-07
S14 -1.4614E-01 7.3685E-02 -1.9750E-02 1.9380E-03 3.9000E-04 -1.6000E-04 2.1800E-05 -1.4000E-06 3.7600E-08
表12
图17示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以看出,根据实施例4的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例5
以下参照图21至图25描述根据本申请实施例5的光学成像镜头。
图21为示出了实施例5的光学成像镜头的结构示意图。光学成像镜 头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表13示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.34 f(mm) 3.99
f2(mm) -8.95 TTL(mm) 5.04
f3(mm) -403.59 ImgH(mm) 3.04
f4(mm) -176.90    
f5(mm) 3.06    
f6(mm) -9.80    
f7(mm) -2.93    
表13
下表14示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000006
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.7250E-03 1.5453E-02 -3.1040E-02 4.9826E-02 -4.1370E-02 1.8834E-02 -3.7600E-03 0.0000E+00 0.0000E+00
S2 1.5204E-02 1.5654E-02 -9.3430E-02 1.8583E-01 -1.9139E-01 9.9669E-02 -2.0680E-02 0.0000E+00 0.0000E+00
S3 -7.1067E-03 1.0768E-03 3.3760E-03 3.5990E-03 1.4010E-03 1.7200E-13 -1.6000E-14 -1.5000E-15 -1.3000E-16
S4 -4.6370E-02 1.1812E-02 1.3471E-02 -4.1800E-02 1.2825E-01 -1.4454E-01 8.0093E-02 0.0000E+00 0.0000E+00
S5 -1.0066E-01 1.4840E-01 -8.9789E-01 3.0484E+00 -6.8506E+00 1.0037E+01 -9.0510E+00 4.5561E+00 -9.7325E-01
S6 -1.9991E-01 3.1375E-01 -1.4169E+00 3.8999E+00 -7.2420E+00 9.0139E+00 -7.0252E+00 3.0572E+00 -5.6114E-01
S7 -2.0165E-01 2.3211E-01 -9.7484E-01 2.6402E+00 -5.0474E+00 6.6115E+00 -5.4152E+00 2.4395E+00 -4.5220E-01
S8 -1.2919E-01 1.2431E-01 -2.5998E-01 3.9739E-01 -4.1259E-01 2.9337E-01 -1.3712E-01 3.7406E-02 -4.2300E-03
S9 -7.1767E-02 1.5493E-01 -2.1266E-01 1.7706E-01 -9.4600E-02 3.2899E-02 -8.0600E-03 1.3810E-03 -1.2000E-04
S10 9.7981E-02 -7.6954E-02 8.0850E-02 -1.1229E-01 1.1041E-01 -6.3150E-02 2.0300E-02 -3.4200E-03 2.3600E-04
S11 8.1765E-02 -1.3391E-01 3.6456E-02 2.0154E-02 -2.1300E-02 8.9030E-03 -2.1200E-03 2.8300E-04 -1.6000E-05
S12 8.6159E-02 -1.6471E-01 1.0721E-01 -4.2940E-02 1.1623E-02 -2.0700E-03 2.1700E-04 -1.0000E-05 6.8900E-08
S13 -1.7655E-01 4.8995E-02 1.5298E-02 -1.2660E-02 3.5200E-03 -5.3000E-04 4.5400E-05 -2.1000E-06 4.0100E-08
S14 -1.4818E-01 8.0499E-02 -3.2410E-02 1.0372E-02 -2.4700E-03 3.9300E-04 -3.8000E-05 2.0200E-06 -4.5000E-08
表15
图22示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的光学成 像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例6
以下参照图26至图30描述根据本申请实施例6的光学成像镜头。
图26为示出了实施例6的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凸面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表16示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.30 f(mm) 3.98
f2(mm) -5.99 TTL(mm) 5.00
f3(mm) 10.69 ImgH(mm) 3.04
f4(mm) -17.29    
f5(mm) 3.96    
f6(mm) 38.09    
f7(mm) -2.48    
表16
下表17示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000007
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.9090E-03 5.6770E-03 -9.8300E-03 1.7598E-02 -1.5430E-02 7.2170E-03 -1.4600E-03 0.0000E+00 0.0000E+00
S2 -1.9100E-02 8.6256E-02 -1.2836E-01 1.2043E-01 -7.2050E-02 2.4953E-02 -3.8000E-03 0.0000E+00 0.0000E+00
S3 -1.3577E-01 2.4483E-01 -3.1980E-01 2.9056E-01 -1.7189E-01 6.4246E-02 -1.2310E-02 0.0000E+00 0.0000E+00
S4 -1.3345E-01 2.0860E-01 -2.4874E-01 2.2894E-01 -1.0687E-01 1.3799E-02 2.1254E-02 0.0000E+00 0.0000E+00
S5 -8.5941E-02 6.5282E-02 -3.9949E-01 1.2936E+00 -2.7981E+00 3.8990E+00 -3.3398E+00 1.6227E+00 -3.4272E-01
S6 -1.1217E-01 1.3737E-02 1.3863E-02 -4.0401E-01 1.3590E+00 -2.3454E+00 2.3215E+00 -1.2329E+00 2.6989E-01
S7 -1.5899E-01 -3.8693E-02 5.2710E-01 -2.3499E+00 5.8866E+00 -8.9276E+00 8.1798E+00 -4.1688E+00 9.0913E-01
S8 -1.3263E-01 4.7609E-02 -2.7040E-02 -8.7870E-02 2.7016E-01 -3.4856E-01 2.4642E-01 -9.3930E-02 1.5313E-02
S9 -4.9077E-02 1.2362E-01 -2.2393E-01 2.4556E-01 -1.8621E-01 9.5474E-02 -3.1590E-02 6.0500E-03 -5.0000E-04
S10 3.3765E-02 -3.3139E-02 3.6122E-02 -3.7610E-02 2.9874E-02 -1.7090E-02 6.2040E-03 -1.2100E-03 9.6100E-05
S11 1.0592E-01 -2.5046E-01 1.9351E-01 -9.8570E-02 3.6713E-02 -1.1880E-02 3.2040E-03 -5.3000E-04 3.5200E-05
S12 1.7581E-01 -3.3785E-01 2.7132E-01 -1.4236E-01 5.1533E-02 -1.2900E-02 2.1410E-03 -2.1000E-04 9.1100E-06
S13 -1.9181E-01 4.0481E-02 4.3609E-02 -3.4270E-02 1.1919E-02 -2.4000E-03 2.8800E-04 -1.9000E-05 5.4600E-07
S14 -1.5883E-01 8.7715E-02 -2.8130E-02 5.6290E-03 -7.4000E-04 6.7200E-05 -4.7000E-06 2.7700E-07 -9.5000E-09
表18
图27示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例7
以下参照图31至图35描述根据本申请实施例7的光学成像镜头。
图31为示出了实施例7的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表19示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.29 f(mm) 4.00
f2(mm) -7.62 TTL(mm) 5.04
f3(mm) 20.21 ImgH(mm) 3.07
f4(mm) -24.74    
f5(mm) 3.68    
f6(mm) -24.25    
f7(mm) -2.70    
表19
下表20示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000008
Figure PCTCN2018117169-appb-000009
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.1000E-04 1.7892E-02 -4.4950E-02 7.5512E-02 -6.9080E-02 3.3996E-02 -7.0900E-03 0.0000E+00 0.0000E+00
S2 -5.4320E-02 1.8366E-01 -2.7700E-01 2.5549E-01 -1.4363E-01 4.4636E-02 -5.9200E-03 0.0000E+00 0.0000E+00
S3 -1.5816E-01 3.3063E-01 -4.6726E-01 4.3502E-01 -2.4033E-01 6.9169E-02 -8.0400E-03 3.7640E-03 -2.1100E-03
S4 -1.2163E-01 1.8611E-01 -1.8827E-01 7.4125E-02 1.3342E-01 -1.7857E-01 8.0133E-02 0.0000E+00 0.0000E+00
S5 -9.2800E-02 3.4590E-02 -1.7848E-01 5.0201E-01 -9.0718E-01 9.8824E-01 -5.2899E-01 7.6411E-02 2.3655E-02
S6 -1.2582E-01 -4.2008E-02 2.1599E-01 -8.8255E-01 2.0854E+00 -3.0062E+00 2.6632E+00 -1.3297E+00 2.8277E-01
S7 -1.2488E-01 -1.0527E-01 5.1962E-01 -1.8567E+00 4.1401E+00 -5.7972E+00 5.0396E+00 -2.4918E+00 5.3719E-01
S8 -7.4873E-02 -1.9914E-02 2.2267E-02 -1.0530E-02 -1.8180E-02 4.7130E-02 -4.0130E-02 1.5264E-02 -2.0100E-03
S9 1.9573E-02 -3.3480E-02 -4.1900E-03 2.5517E-02 -3.7060E-02 2.7385E-02 -1.0920E-02 2.2270E-03 -1.8000E-04
S10 6.9441E-02 -8.9088E-02 1.1654E-01 -1.0718E-01 5.9480E-02 -2.0610E-02 4.5950E-03 -6.2000E-04 3.8800E-05
S11 -4.6439E-02 -5.8547E-02 6.8529E-02 -4.3920E-02 1.4051E-02 -1.1100E-03 -5.6000E-04 1.6200E-04 -1.3000E-05
S12 -6.9075E-02 -8.5600E-05 4.1560E-03 1.0620E-03 -2.4600E-03 1.2390E-03 -3.0000E-04 3.7000E-05 -1.8000E-06
S13 -5.3273E-02 3.3982E-02 -1.2640E-02 4.8780E-03 -1.5800E-03 3.4200E-04 -4.5000E-05 3.2800E-06 -1.0000E-07
S14 -3.8817E-02 2.0321E-02 -5.8800E-03 4.0000E-04 2.3800E-04 -7.9000E-05 1.0900E-05 -7.2000E-07 1.8500E-08
表21
图32示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图31至图35可以看出,根据实施例7的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例8
以下参照图36至图40描述根据本申请实施例8的光学成像镜头。
图36为示出了实施例8的光学成像镜头的结构示意图。光学成像镜 头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表22示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.40 f(mm) 4.12
f2(mm) -6.38 TTL(mm) 5.17
f3(mm) 12.02 ImgH(mm) 3.12
f4(mm) -26.54    
f5(mm) 3.23    
f6(mm) -18.98    
f7(mm) -2.52    
表22
下表23示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000010
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.2420E-03 2.1570E-03 -1.0800E-03 1.7560E-03 -8.0000E-04 2.5300E-04 -8.8000E-05 0.0000E+00 0.0000E+00
S2 -3.9730E-02 1.3593E-01 -2.0751E-01 2.0462E-01 -1.2793E-01 4.5642E-02 -7.0200E-03 0.0000E+00 0.0000E+00
S3 -1.5004E-01 3.1038E-01 -4.6394E-01 5.2703E-01 -4.4236E-01 2.7487E-01 -1.2337E-01 3.7560E-02 -6.0200E-03
S4 -1.3126E-01 2.1452E-01 -2.3885E-01 1.3550E-01 8.5715E-02 -1.6314E-01 7.6924E-02 0.0000E+00 0.0000E+00
S5 -7.8233E-02 1.8429E-02 -5.7390E-02 -1.7716E-01 1.0145E+00 -2.1301E+00 2.3739E+00 -1.3682E+00 3.2388E-01
S6 -1.0017E-01 -1.3683E-01 6.2009E-01 -2.1340E+00 4.5115E+00 -5.9198E+00 4.7579E+00 -2.1440E+00 4.1301E-01
S7 -1.1643E-01 -6.4557E-02 2.9219E-01 -1.1494E+00 2.7362E+00 -3.9637E+00 3.5242E+00 -1.7712E+00 3.8395E-01
S8 -7.5609E-02 -3.3648E-02 1.1295E-01 -2.7965E-01 4.3645E-01 -4.1519E-01 2.3938E-01 -7.8390E-02 1.1405E-02
S9 -2.8649E-03 -1.7954E-02 1.4708E-02 -2.7040E-02 1.7152E-02 -2.5000E-03 -1.8100E-03 8.1300E-04 -9.4000E-05
S10 8.1185E-02 -8.3114E-02 1.0975E-01 -1.3179E-01 9.8856E-02 -4.6130E-02 1.3455E-02 -2.2500E-03 1.6300E-04
S11 -6.1204E-02 2.4709E-02 -2.2540E-02 3.9800E-04 5.9990E-03 -2.8400E-03 6.4100E-04 -7.5000E-05 3.5900E-06
S12 -1.1352E-01 8.1313E-02 -7.0960E-02 4.3414E-02 -1.8460E-02 5.4230E-03 -1.0400E-03 1.1400E-04 -5.5000E-06
S13 -5.6809E-02 3.3802E-02 -1.0250E-02 4.0030E-03 -1.5000E-03 3.5800E-04 -4.9000E-05 3.5400E-06 -1.1000E-07
S14 -4.2986E-02 2.1429E-02 -7.4900E-03 1.8710E-03 -3.6000E-04 5.0400E-05 -4.8000E-06 2.8200E-07 -7.5000E-09
表24
图37示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图38示出了实施例8的光学成 像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图36至图40可以看出,根据实施例8的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
实施例9
以下参照图41至图45描述根据本申请实施例9的光学成像镜头。
图41为示出了实施例9的光学成像镜头的结构示意图。光学成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凸面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凹面,像侧面S8可为凸面。
第五透镜E5可具有正光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凸面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表25示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜头的总有效焦距f、光学成像镜头的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) 3.35 f(mm) 3.89
f2(mm) -6.48 TTL(mm) 5.06
f3(mm) 13.37 ImgH(mm) 3.12
f4(mm) -26.42    
f5(mm) 3.73    
f6(mm) -24.31    
f7(mm) -2.99    
表25
下表26示出了该实施例中的光学成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018117169-appb-000011
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.3840E-03 1.1655E-02 -2.6360E-02 4.3515E-02 -3.8050E-02 1.8005E-02 -3.6500E-03 0.0000E+00 0.0000E+00
S2 -5.0260E-02 2.1747E-01 -4.0475E-01 4.7060E-01 -3.3896E-01 1.3681E-01 -2.3540E-02 0.0000E+00 0.0000E+00
S3 -1.7586E-01 4.1278E-01 -7.0349E-01 8.3569E-01 -6.3817E-01 2.8422E-01 -5.5440E-02 0.0000E+00 0.0000E+00
S4 -1.4650E-01 2.1830E-01 -1.8432E-01 -9.7880E-02 5.0701E-01 -5.2052E-01 2.0102E-01 0.0000E+00 0.0000E+00
S5 -7.8374E-02 1.5079E-02 -4.9260E-02 -3.0355E-01 1.6618E+00 -3.6514E+00 4.2834E+00 -2.6069E+00 6.5226E-01
S6 -8.6009E-02 -1.5797E-01 6.0777E-01 -2.1024E+00 4.6414E+00 -6.4016E+00 5.4247E+00 -2.5835E+00 5.2674E-01
S7 -8.9624E-02 -7.8173E-02 8.4972E-02 -3.7329E-01 1.1557E+00 -2.0533E+00 2.2222E+00 -1.3383E+00 3.3976E-01
S8 -3.4364E-02 -6.9564E-02 1.1048E-01 -2.5724E-01 4.1301E-01 -3.9664E-01 2.2911E-01 -7.5040E-02 1.0893E-02
S9 2.6075E-02 -5.3063E-02 2.2603E-02 -1.1130E-02 -1.8130E-02 3.2003E-02 -1.8390E-02 4.5350E-03 -4.0000E-04
S10 5.1063E-02 -2.6325E-02 -1.3470E-02 5.7869E-02 -8.1580E-02 5.8737E-02 -2.2440E-02 4.3580E-03 -3.4000E-04
S11 -4.4090E-02 -4.4537E-02 4.9937E-02 -4.6360E-02 2.6107E-02 -8.4500E-03 1.5950E-03 -1.6000E-04 7.0500E-06
S12 -6.8473E-02 1.1526E-02 -7.9800E-03 2.6920E-03 1.3200E-04 -2.4000E-04 4.8900E-05 -3.6000E-06 6.1700E-08
S13 -6.3481E-02 3.0023E-02 4.7170E-03 -6.3000E-03 1.9820E-03 -3.2000E-04 2.8600E-05 -1.3000E-06 1.7500E-08
S14 -6.4758E-02 3.5992E-02 -1.5330E-02 5.5000E-03 -1.4900E-03 2.6900E-04 -3.0000E-05 1.8700E-06 -5.0000E-08
表27
图42示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图43示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图45示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图41至图45可以看出,根据实施例9的光学成像镜头适用于便携式电子产品,具有大孔径和良好的成像质量。
概括地说,在上述实施例1至9中,各条件式满足下面表28的条件。
条件式/实施例 1 2 3 4 5 6 7 8 9
f/EPD 1.73 1.70 1.75 1.78 1.80 1.66 1.65 1.60 1.57
f/T67 8.98 10.59 11.30 9.68 8.89 10.04 7.72 8.87 6.65
f12/CT4 9.72 11.43 14.61 15.90 9.87 15.25 11.15 15.31 12.50
TTL/ImgH 1.67 1.68 1.69 1.59 1.66 1.64 1.64 1.66 1.62
f5/f 0.71 0.77 0.92 1.11 0.77 0.99 0.92 0.78 0.96
f5/f7 -1.02 -1.19 -1.54 -1.78 -1.04 -1.60 -1.36 -1.28 -1.25
f1/CT1 6.36 6.18 5.19 5.68 5.43 5.11 4.84 4.69 4.93
f56/CT2 13.20 13.08 16.11 17.29 18.60 17.07 19.70 17.72 20.55
R6/R7 3.09 1.79 2.18 2.10 2.24 2.14 1.85 2.22 2.30
R3/R10 -4.42 -3.05 -2.74 -2.31 -3.00 -2.33 -3.35 -3.49 -3.29
CT3/CT4 0.64 0.74 0.88 0.92 0.58 0.90 0.64 0.86 0.79
T34/T23 0.28 0.37 0.62 0.61 0.33 0.57 0.42 0.48 0.53
f12/f56 1.53 1.49 1.66 1.57 1.09 1.59 1.18 1.49 1.35
表28
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。 本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (24)

  1. 一种光学成像镜头,从物侧至像侧依次包括:
    具有正光焦度的第一透镜,其像侧面为凹面;
    具有负光焦度的第二透镜,其物侧面为凸面;
    具有光焦度的第三透镜,其像侧面为凸面;
    具有负光焦度的第四透镜,其物侧面为凹面;
    具有正光焦度的第五透镜,其像侧面为凸面;
    具有光焦度的第六透镜;
    具有负光焦度的第七透镜;
    其特征在于,
    光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤1.80,并且光学成像镜头的有效焦距f与第六透镜与第七透镜之间的空气间隔T67之间满足5.5<f/T67<11.5。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与第五透镜的有效焦距f5之间满足0.5<f5/f<1.5。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH≤1.70。
  4. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第五透镜的有效焦距f5与第七透镜的有效焦距f7之间满足-2<f5/f7<-1。
  5. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第一透镜的中心厚度CT1之间满足4.5<f1/CT1<6.5。
  6. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第五透镜与第六透镜的组合焦距f56与第二透镜的中心厚度CT2之间满足 13.0<f56/CT2<21.0。
  7. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第三透镜像侧面的曲率半径R6与第四透镜物侧面的曲率半径R7之间满足1.5<R6/R7<3.5。
  8. 根据权利要求1至3中任一项所述的光学成像镜头,其特征在于,第二透镜物侧面的曲率半径R3与第五透镜像侧面的曲率半径R10之间满足-5.0<R3/R10<-2.0。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足0.5<CT3/CT4<1.0。
  10. 根据权利要求1至3以及10中任一项所述的光学成像镜头,其特征在于,第二透镜与第三透镜之间的空气间隔T23与第三透镜与第四透镜之间的空气间隔T34之间满足T34/T23<1.0。
  11. 根据权利要求1至3以及10中任一项所述的光学成像镜头,其特征在于,第一透镜与第二透镜的组合焦距f12与第五透镜与第六透镜的组合焦距f56之间满足1.0<f12/f56<2.0。
  12. 根据权利要求1所述的光学成像镜头,其特征在于,第一透镜与第二透镜的组合焦距f12与第四透镜的中心厚度CT4之间满足9.0<f12/CT4<16.0。
  13. 一种光学成像镜头,从物侧至像侧依次包括:
    具有正光焦度的第一透镜,其像侧面为凹面;
    具有负光焦度的第二透镜,其物侧面为凸面;
    具有光焦度的第三透镜,其像侧面为凸面;
    具有负光焦度的第四透镜,其物侧面为凹面;
    具有正光焦度的第五透镜,其像侧面为凸面;
    具有光焦度的第六透镜;
    具有负光焦度的第七透镜;
    其特征在于,第一透镜与第二透镜的组合焦距f12与第四透镜的中心厚度CT4之间满足9.0<f12/CT4<16.0。
  14. 根据权利要求13所述的光学成像镜头,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH≤1.70。
  15. 根据权利要求13所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤1.80,并且光学成像镜头的有效焦距f与第六透镜与第七透镜之间的空气间隔T67之间满足5.5<f/T67<11.5。
  16. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,光学成像镜头的有效焦距f与第五透镜的有效焦距f5之间满足0.5<f5/f<1.5。
  17. 根据权利要求13至15中任一项所述的光学成像镜头,其特征在于,第五透镜的有效焦距f5与第七透镜的有效焦距f7之间满足-2<f5/f7<-1。
  18. 根据权利要求17所述的光学成像镜头,其特征在于,第一透镜的有效焦距f1与第一透镜的中心厚度CT1之间满足4.5<f1/CT1<6.5。
  19. 根据权利要求17所述的光学成像镜头,其特征在于,第五透镜与第六透镜的组合焦距f56与第二透镜的中心厚度CT2之间满足13.0<f56/CT2<21.0。
  20. 根据权利要求13至15及18至19中任一项所述的光学成像镜头,其特征在于,第三透镜像侧面的曲率半径R6与第四透镜物侧面的曲率半径R7之间满足1.5<R6/R7<3.5。
  21. 根据权利要求13至15及18至19中任一项所述的光学成像镜头,其特征在于,第二透镜物侧面的曲率半径R3与第五透镜像侧面的曲率半径R10之间满足-5.0<R3/R10<-2.0。
  22. 根据权利要求13至15及18至19中任一项所述的光学成像镜头,其特征在于,第三透镜的中心厚度CT3与第四透镜的中心厚度CT4之间满足0.5<CT3/CT4<1.0。
  23. 根据权利要求13至15及18至19中任一项所述的光学成像镜头,其特征在于,第二透镜与第三透镜之间的空气间隔T23与第三透镜与第四透镜之间的空气间隔T34之间满足T34/T23<1.0。
  24. 根据权利要求13至15及18至19中任一项所述的光学成像镜头,其特征在于,第一透镜与第二透镜的组合焦距f12与第五透镜与第六透镜的组合焦距f56之间满足1.0<f12/f56<2.0。
PCT/CN2018/117169 2017-12-12 2018-11-23 光学成像镜头 WO2019114524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/844,719 US11650399B2 (en) 2017-12-12 2020-04-09 Optical imaging lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711318333.9 2017-12-12
CN201711318333.9A CN108051898B (zh) 2017-12-12 2017-12-12 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/844,719 Continuation US11650399B2 (en) 2017-12-12 2020-04-09 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019114524A1 true WO2019114524A1 (zh) 2019-06-20

Family

ID=62124196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117169 WO2019114524A1 (zh) 2017-12-12 2018-11-23 光学成像镜头

Country Status (3)

Country Link
US (1) US11650399B2 (zh)
CN (1) CN108051898B (zh)
WO (1) WO2019114524A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051898B (zh) * 2017-12-12 2023-06-16 浙江舜宇光学有限公司 光学成像镜头
TWI660196B (zh) 2018-03-30 2019-05-21 大立光電股份有限公司 攝像用光學鏡頭、取像裝置及電子裝置
CN108732727B (zh) 2018-08-03 2024-01-23 浙江舜宇光学有限公司 光学成像系统
CN109270663B (zh) * 2018-11-27 2021-03-16 广东旭业光电科技股份有限公司 一种光学成像镜头及应用该光学成像镜头的摄像装置
CN109491047B (zh) * 2018-12-07 2024-01-30 浙江舜宇光学有限公司 光学成像镜头
CN109633861B (zh) * 2018-12-21 2024-07-30 江西特莱斯光学有限公司 一种大光圈摄远镜头
JP2022536204A (ja) * 2019-08-21 2022-08-12 コアフォトニクス リミテッド 大きなセンサフォーマットのための小さな総トラック長
CN110542992B (zh) 2019-09-06 2024-06-11 浙江舜宇光学有限公司 光学成像系统
CN111273429B (zh) * 2020-03-25 2024-12-31 东莞市美光达光学科技有限公司 一种光学成像系统
CN111308666A (zh) * 2020-04-02 2020-06-19 南昌欧菲精密光学制品有限公司 光学成像镜头、成像模组及电子装置
WO2022041054A1 (zh) * 2020-08-27 2022-03-03 欧菲光集团股份有限公司 光学系统、摄像模组和电子设备
CN111929820B (zh) * 2020-09-02 2021-03-09 诚瑞光学(苏州)有限公司 摄像光学镜头
WO2024054067A1 (ko) * 2022-09-07 2024-03-14 삼성전자 주식회사 렌즈 어셈블리 및 그를 포함하는 전자 장치
CN116500765B (zh) * 2023-06-30 2023-10-03 江西联益光学有限公司 光学镜头
CN119045167A (zh) * 2024-10-31 2024-11-29 江西联益光学有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547072A (zh) * 2015-09-17 2017-03-29 先进光电科技股份有限公司 光学成像系统
JP2017097197A (ja) * 2015-11-25 2017-06-01 株式会社タムロン 広角レンズ及び撮像装置
CN107367827A (zh) * 2017-09-13 2017-11-21 浙江舜宇光学有限公司 光学成像镜头
CN107436481A (zh) * 2017-09-20 2017-12-05 浙江舜宇光学有限公司 摄像透镜组
CN108051898A (zh) * 2017-12-12 2018-05-18 浙江舜宇光学有限公司 光学成像镜头
CN207799215U (zh) * 2017-12-12 2018-08-31 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018805B2 (en) * 2013-10-14 2018-07-10 Samsung Electro-Mechanics Co., Ltd. Lens module
TWI510804B (zh) * 2014-08-01 2015-12-01 Largan Precision Co Ltd 取像用光學鏡組、取像裝置及電子裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106547072A (zh) * 2015-09-17 2017-03-29 先进光电科技股份有限公司 光学成像系统
JP2017097197A (ja) * 2015-11-25 2017-06-01 株式会社タムロン 広角レンズ及び撮像装置
CN107367827A (zh) * 2017-09-13 2017-11-21 浙江舜宇光学有限公司 光学成像镜头
CN107436481A (zh) * 2017-09-20 2017-12-05 浙江舜宇光学有限公司 摄像透镜组
CN108051898A (zh) * 2017-12-12 2018-05-18 浙江舜宇光学有限公司 光学成像镜头
CN207799215U (zh) * 2017-12-12 2018-08-31 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20200233187A1 (en) 2020-07-23
CN108051898B (zh) 2023-06-16
US11650399B2 (en) 2023-05-16
CN108051898A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019114524A1 (zh) 光学成像镜头
WO2019210738A1 (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2019227877A1 (zh) 光学成像镜头
WO2018090609A1 (zh) 光学成像系统及摄像装置
WO2019210672A1 (zh) 光学成像系统
WO2020107935A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2019091170A1 (zh) 摄像透镜组
WO2019141210A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2020029613A1 (zh) 光学成像镜头
WO2019205821A1 (zh) 光学成像镜头
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2019062136A1 (zh) 摄像透镜组
WO2019052220A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2020019796A1 (zh) 光学成像系统
WO2019214334A1 (zh) 摄像镜头组
WO2019052144A1 (zh) 光学成像镜头
WO2019056776A1 (zh) 光学成像镜头
WO2019233159A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889317

Country of ref document: EP

Kind code of ref document: A1