[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019111922A1 - Pump - Google Patents

Pump Download PDF

Info

Publication number
WO2019111922A1
WO2019111922A1 PCT/JP2018/044656 JP2018044656W WO2019111922A1 WO 2019111922 A1 WO2019111922 A1 WO 2019111922A1 JP 2018044656 W JP2018044656 W JP 2018044656W WO 2019111922 A1 WO2019111922 A1 WO 2019111922A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
flat plate
pump
support member
outer edge
Prior art date
Application number
PCT/JP2018/044656
Other languages
French (fr)
Japanese (ja)
Inventor
宏志 浅野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019111922A1 publication Critical patent/WO2019111922A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/08Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having peristaltic action
    • F04B45/10Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having peristaltic action having plate-like flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the present invention relates to a pump for transporting a fluid using bending vibration.
  • Patent Document 1 there is a pump having a structure shown in Patent Document 1.
  • the pump shown to patent document 1 is provided with the housing
  • the actuator is flat.
  • the actuator is disposed in the internal space of the housing opposite to one wall of the housing.
  • the wall to which the actuator faces has a thin central portion and functions as a passive diaphragm.
  • An intake port is provided at the center of the passive diaphragm.
  • the outer edge of the actuator has an opening, which serves as an exhaust port.
  • Vibration of the actuator causes a change in pressure in the pump chamber between the actuator and the passive diaphragm.
  • the passive diaphragm vibrates due to this change in pressure.
  • Intake and exhaust are realized by the combination of the vibration of these actuators and the vibration of the passive diaphragm.
  • an object of the present invention is to provide a pump capable of achieving higher flow rate and higher pressure than conventional configurations.
  • a pump according to the present invention includes a first diaphragm, a second diaphragm, a discharge port, a first support member, and a second support member. They form a pump chamber.
  • a piezoelectric element is disposed on one main surface.
  • the second diaphragm is spaced apart and opposed to the one main surface or the other main surface of the first diaphragm, and has a suction port at the center or substantially the center in a plan view.
  • the discharge port is provided on the outer edge side than the centers of the suction port, the first diaphragm, and the second diaphragm in plan view from the first diaphragm to the second diaphragm.
  • the first support member vibratably supports the outer edge of the first diaphragm.
  • the second support member supports the second diaphragm at a position between the inlet and the outer edge of the second diaphragm but not in contact with the outer edge.
  • the outer edge of the second diaphragm becomes the free end of the bending vibration of the second diaphragm.
  • the movable range of the vibration direction (the direction parallel to the thickness direction of the pump chamber) of the outer edge of the second diaphragm is widened, and the flow rate and pressure are improved.
  • the second support member is in contact at a position including the free vibration node of the second diaphragm.
  • the inner end of the second support member may be in contact with the outer edge of the suction port.
  • the positional relationship between the bending vibration of the second diaphragm and the bending vibration of the first diaphragm is spatially close to a 90 ° phase difference.
  • the second diaphragm preferably has substantially the same area as the first diaphragm in the aspect in which the inner end of the second support member substantially contacts the outer edge of the air inlet.
  • the volume of the pump chamber is increased. This improves the flow rate.
  • the second diaphragm is formed between the first diaphragm and the second diaphragm in a mode in which the inner end of the second support member mentioned above substantially contacts the outer edge of the intake port.
  • the pressure fluctuation due to the bending vibration of the first diaphragm of the pump chamber causes the bending vibration of the second mode to occur.
  • the traveling wave conditions are reliably met. This improves the flow rate.
  • the second support member is circumferentially formed when the main surface of the second diaphragm is viewed in plan.
  • the second diaphragm is circumferentially supported. This makes it possible to form a flow path toward the entire circumference, and to easily improve the mechanical strength of the support mechanism of the second diaphragm.
  • the second support member preferably has a size that does not inhibit free vibration.
  • the contact portion of the second support member with the second diaphragm is preferably a high elastic modulus member.
  • the high elastic modulus member suppresses unnecessary leakage of the vibration of the second diaphragm to the second support member. This improves the flow rate and pressure.
  • the discharge port is preferably provided between one first support member and the adjacent first support member in the plurality of first support members.
  • the first diaphragm, the discharge port, the first support member, and the outer holding portion can be simultaneously formed. Further, in this configuration, since the first diaphragm and the holding portion are the same member, the height accuracy of the pump chamber can be easily obtained.
  • the discharge port may be formed in a first support member provided circumferentially along the outer edge of the first diaphragm.
  • the wall may be provided with the first diaphragm and the second diaphragm to form the pump chamber, and the discharge port may be provided in the wall.
  • one suction port is formed at the center of the main surface of the second diaphragm in plan view.
  • the second diaphragm is preferably a regular polygon.
  • the distance from the suction port to the outer edge is substantially the same in all directions.
  • the vibration is transmitted about the central axis substantially symmetrically, so that a uniform radial flow can be generated regardless of the orientation.
  • the second diaphragm is preferably circular.
  • the first diaphragm is preferably a regular polygon.
  • the distance from the suction port to the outer edge is substantially the same in all directions.
  • the vibration is transmitted about the central axis substantially symmetrically, so that the energy loss of fluid transportation can be reduced.
  • the first diaphragm is preferably circular.
  • the distance from the inlet to the outer edge is the same in all directions.
  • the vibration is transmitted symmetrically about the central axis, the energy loss of fluid transportation can be reduced.
  • the third support member for vibratably supporting the outer edge of the second diaphragm be provided outside the outer edge of the second diaphragm.
  • the second diaphragm can be easily attached to the housing of the pump.
  • FIGS. 3A and 3B are diagrams showing the operating principle of the pump according to the first embodiment of the present invention.
  • FIG. 4A, FIG. 4B, and FIG. 4C are diagrams showing one configuration example of the support member.
  • It is side surface sectional drawing which shows the structure of the pump which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a side cross-sectional view showing the configuration of a pump according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the configuration of the pump according to the first embodiment of the present invention.
  • the pump 10 includes a flat plate 20, a flat plate 30, a piezoelectric element 40, a wall 50, a wall 202, a wall 302, a wall 700, a support 60, a support member 70, a support member 201, and A support member 301 is provided.
  • the flat plate 20 is a disk having a predetermined thickness and diameter. The thickness and the diameter are set based on the resonance frequency when the flat plate 20 vibrates by the piezoelectric element 40.
  • the flat plate 20 corresponds to the "first diaphragm" in the present invention.
  • the flat plate 20 is not limited to a circular shape, but may be a substantially circular shape or a substantially regular polygon shape including a regular polygon shape.
  • the piezoelectric element 40 is disposed on one main surface of the flat plate 20.
  • the piezoelectric element 40 is a disk.
  • the piezoelectric element 40 is composed of a cylindrical piezoelectric body and a pair of driving electrodes.
  • One of the pair of drive electrodes is disposed on one main surface of the piezoelectric body, and the other of the pair of drive electrodes is disposed on the other main surface of the piezoelectric body.
  • the piezoelectric element 40 is disposed on one main surface of the flat plate 20. At this time, in plan view, the center of the piezoelectric element 40 and the center of the flat plate 20 substantially coincide with each other.
  • the flat plate 30 is a disk having a predetermined thickness and diameter. Similar to the flat plate 20, the flat plate 30 is not limited to a circular shape, and may be a substantially regular polygon including a substantially circular shape and a regular polygon. Thereby, since the vibration in the flat plate 30 is transmitted to the central axis symmetry, the fluid flow in the uniform radial direction (direction from the center toward the outer periphery) can be generated. That is, the difference in fluid flow depending on the orientation is suppressed. In particular, when the flat plate 30 is circular, it is possible to most effectively generate a uniform flow of fluid in the radial direction (the direction from the center toward the outer periphery). That is, the difference in fluid flow depending on the orientation is most effectively suppressed.
  • the flat plate 30 is opposed to the other main surface opposite to the arrangement surface (one main surface) of the piezoelectric element 40 in the flat plate 20.
  • the flat plate 30 and the flat plate 20 are separated by a predetermined distance in the direction orthogonal to the flat plate surface.
  • An area where the flat plate 20 and the flat plate 30 face each other at a distance functions as a substantial pump chamber 100 of the pump 10.
  • the center PO of the flat plate 30 substantially coincides with the center of the flat plate 20 in plan view of the pump 10, and this coincides with the center of the pump chamber 100.
  • a suction port 101 is formed which penetrates the flat plate 30 from the one main surface side to the other main surface.
  • the inlet 101 is cylindrical.
  • the suction port 101 is not limited to a cylindrical shape, and may have another shape. Further, the diameter may not be constant from one end of the suction port 101 to the other end. The minimum area and the maximum area of the opening area of the suction port 101 are appropriately set in accordance with the necessary suction capacity of the pump 10.
  • the thickness of the flat plate 30 is thinner than the thickness of the flat plate 20, and the diameter of the flat plate 30 is shorter than the diameter of the flat plate 20.
  • the flat plate 30 is shaped to produce similar bending vibrations as the pressure in the pump chamber 100 changes due to the bending vibrations of the flat plate 20. That is, the flat plate 30 has a shape that can passively vibrate with respect to the vibration of the flat plate 20. At this time, the flat plate 30 vibrates with a predetermined phase difference (phase delay) with respect to the flat plate 20. Thereby, the fluctuation of the height of the pump chamber 100 behaves like a traveling wave traveling from the center PO of the flat plate 20 and the flat plate 30 toward the outer edges OE 20 and OE 30. Therefore, the fluid flows from the center PO of the flat plate 20 and the flat plate 30 toward the outer edges OE 20 and OE 30.
  • the wall 202, the wall 50, the wall 302, and the wall 700 are made of a highly rigid material, and each has an annular shape.
  • the wall 202, the wall 50, the wall 302, and the wall 700 are stacked in this order in the thickness direction of the pump 10 (the direction perpendicular to the main surfaces of the flat plate 20 and the flat plate 30).
  • the wall 202 is disposed at substantially the same position as the flat plate 20
  • the wall 302 is disposed at substantially the same position as the flat plate 30.
  • the central openings of the wall 202 and the wall 50 are larger than the flat plate 20 and overlap the flat plate 20 in plan view.
  • the central openings of the wall 302 and the wall 700 are larger than the flat plate 30 and overlap the flat plate 30 in plan view.
  • the flat plate 20 and the flat plate 30 are disposed in the central open area formed by the laminated members consisting of the wall 202, the wall 50, the wall 302, and the wall 700.
  • the side wall of the housing of the pump 10 is formed by the laminated member including the wall 202, the wall 50, the wall 302, and the wall 700.
  • the support 60 is made of a highly rigid material, and has an annular shape.
  • the area of the central opening of the support 60 is small compared to the wall 202, the wall 50, the wall 302, and the wall 700.
  • the support 60 is in contact with a surface of the wall 700 opposite to the contact surface with the wall 302. At this time, the central opening of the support 60 overlaps the suction port 101 of the flat plate 30 in plan view of the pump 10.
  • the housing of the pump 10 has a structure in which the flat plate 20 is one main surface, the support 60 is the other main surface, and the laminated member including the wall 202, the wall 50, the wall 302, and the wall 700 is a side wall. .
  • the support member 201 is connected to the outer edge OE 20 of the flat plate 20 and the inner wall surface of the wall 202, and has a shape having a predetermined elasticity, for example, a shape having a spring property.
  • the support member 201 is formed substantially uniformly over the entire circumference of the outer edge OE 20 of the flat plate 20.
  • the flat plate 20 is supported by the housing in a state where the outer edge OE 20 can vibrate. Therefore, the flat plate 20 generates a bending vibration in which the outer edge OE 20 is a free end.
  • the flat plate 20, the support member 201, and the wall 202 are preferably integrally formed.
  • an opening is provided in one flat plate member by laser processing or the like so as to form the support member 201.
  • the flat plate 20, the support member 201, and the wall 202 are easily integrally formed.
  • the flat plate 20 can be easily arrange
  • this opening becomes the discharge port 102 of the pump 10.
  • the discharge port 102 is formed in the outer edge OE 20 of the flat plate 20. Further, the manufacturing process is simplified as compared to forming the support member 201 and the discharge port 102 separately.
  • the support member 301 is connected to the outer edge OE 30 of the flat plate 30 and the inner wall surface of the wall 302, and has a shape having a predetermined elasticity, for example, a shape having a spring property.
  • the support member 301 is formed substantially uniformly over the entire circumference of the outer edge OE 30 of the flat plate 30.
  • the flat plate 30 is supported by the housing in a state where the outer edge OE 30 can vibrate. Therefore, the flat plate 30 generates a bending vibration in which the outer edge OE 30 becomes a free end.
  • the flat plate 30, the support member 301, and the wall 302 are preferably integrally formed.
  • an opening is provided by laser processing or the like so as to form the support member 301 in one flat plate member.
  • the flat plate 30, the support member 301, and the wall 302 are easily integrally formed.
  • the flat plate 30 can be easily arrange
  • the support member 70 is composed of a main body 71 and an adhesive layer 72.
  • the main body 71 is a highly rigid material and is annular.
  • the adhesive layer 72 is a high elasticity member and is disposed on one opening surface of the main body 71.
  • the highly elastic member is, for example, a silicone resin, an epoxy resin, or the like.
  • the support member 70 is in contact with the node N30 of the bending vibration of the flat plate 30. More specifically, the support member 70 is in contact with the flat plate 30 so as to include the entire circumference of the circular node N 30 generated in the bending vibration of the flat plate 30.
  • the adhesive layer 72 is disposed in contact with the flat plate 30.
  • the end surface of the main body 71 opposite to the adhesive layer 72 is in contact with the surface of the support 60 facing the flat plate 30.
  • FIG. 3 is a view showing the operating principle of the pump according to the first embodiment of the present invention.
  • the upper part of FIG. 3 (A) is a side view showing the movement of each flat plate at the time of inhalation in the configuration according to the first embodiment of the present invention, and the lower part of FIG. 3 (A) is an inhalation in the conventional configuration. It is a side view which shows the movement of each flat plate of time.
  • the upper part of FIG. 3 (B) is a side view showing the movement of each flat plate at the time of discharge in the configuration according to the first embodiment of the present invention, and the lower part of FIG. 3 (B) is discharge in the conventional configuration. It is a side view which shows the movement of each flat plate of time. 3A and 3B, dotted lines indicate default positions of the flat plates 20 and 20P and the flat plates 30 and 30P (positions in a state where the pump 10 is not driven).
  • the outer edge OE 30 of the flat plate 30 is not fixed, and the center PO of the flat plate 30 of the present application And the outer edge OE 30 is longer than the distance between the flat plate 30 and the node.
  • the node of the flat plate 30 is at an intermediate position between the center PO and the outer edge OE30. That is, in the flat plate 30 of the configuration of the present application, a node exists in the middle in the radial direction, and the outer edge OE 30 is movable. As a result, the planar area and volume of the pump chamber 100 become larger than in the conventional configuration, and the flow rate and pressure can be improved.
  • the outer edge OE 30 of the flat plate 30 is closer to the flat plate 20 than the default position.
  • the outer edge OE30 of the flat plate 30 is on the opposite side of the flat plate 20 than the default position.
  • the outer edge OE 30 and the flat plate 20 are closer to each other than the conventional configuration, and the backflow from the outer edge of the pump chamber 100 can be suppressed.
  • the outer edge OE 30 and the flat plate 20 are separated from each other as compared with the conventional configuration, and the flow rate can be improved.
  • the outer edge of the flat plate 30P is fixed in the conventional configuration. Therefore, the nodes of the flat plate 30P of the conventional configuration coincide with the outer edge.
  • the node position of the flat plate 30P of the conventional configuration and the node position of the flat plate 30 of the configuration of the present application become the same. Accordingly, the volume of the pump chamber 100 of the present configuration in which the outer edge OE 30 is outside the node and the outer edge OE 30 is movable is larger than the volume of the pump chamber 100 P of the conventional configuration. Thereby, the flow rate of the pump 10 of this application improves rather than the flow rate of the pump of conventional structure.
  • the outer edge OE 30 of the flat plate 30 is closer to the flat plate 20 than the default position at the time of inhalation.
  • the outer edge of the flat plate 30P does not move from the default position.
  • the side opening area of the pump chamber 100 is smaller at the time of suction as compared with the conventional configuration. Therefore, in the configuration of the present application, the backflow on the side of the pump chamber 100 at the time of suction is suppressed. As a result, the pump 10 of the present invention can improve the flow rate and pressure.
  • the position at which the support member 70 abuts the flat plate 30 includes the node, so that the vibration of the flat plate 30 can be suppressed from being inhibited by the support member 70. That is, damping of the vibration of the flat plate 30 by the support member 70 can be suppressed.
  • the pump 10 is improved in pump efficiency, and the flow rate and pressure can be improved.
  • the portion where the support member 70 abuts on the flat plate 30 is the adhesive layer 72, and the adhesive layer 72 is a high elastic member. Therefore, the vibration energy leaks from the flat plate 30 to the support member 70 Is suppressed. As a result, the pump 10 further improves the pump efficiency, and enables further improvement of the flow rate and pressure with respect to the same input voltage as the conventional configuration.
  • FIG. 4A, FIG. 4B, and FIG. 4C are diagrams showing one configuration example of the support member.
  • 4A shows a default state of vibration of the flat plate 30, and
  • FIGS. 4B and 4C show a state where the flat plate 30 vibrates and changes from the default state.
  • the main body 71 of the support member 70 is made of a highly rigid material as described above, and the end on the side that contacts the flat plate 30 The shape gradually tapers towards the The end of the tapered end of the main body 71 is in contact with the flat plate 30. At this time, it is preferable that the tapered end of the main body 71 and the node of the flat plate 30 coincide with each other. As a result, the leakage of vibrational energy from the flat plate 30 to the support member 70 as described above can be suppressed more effectively.
  • the adhesive layer 72 is made of a highly elastic member as described above, and is shaped to cover the tapered end of the main body 71.
  • the adhesive layer 72 is also in contact with the flat plate 30. Thereby, the flat plate 30 is bonded on the surface by the support member 70.
  • the support member 70 can support and fix the flat plate 30 securely. Further, since the adhesive layer 72 is deformed by the vibration of the flat plate 30, the support member 70 can suppress the inhibition of the vibration while fixing the flat plate 30.
  • the tapered shape may be a shape having a rounded tip (a shape subjected to R-chamfering). It may be shaped to form an acute angle.
  • the side surface of the adhesive layer 72 is flush with the side surface of the main body 71 in the default state.
  • the adhesive layer 72 is not limited to the same one, and the adhesive layer 72 can be omitted.
  • each of the support member 201, the support member 301, and the support member 70 may have a configuration in which a circumferential portion is formed.
  • the flat plate 20 and the flat plate 30 are stably supported by being formed over the entire circumference, it is preferable.
  • the vibration is transmitted to the central axis more accurately, energy loss in fluid transportation can be reduced.
  • the width (the length in the direction orthogonal to the circumferential direction (the direction from the center toward the outer edge)) of the support member 70 is not particularly set, but at least the contact portion to the flat plate 30 As small as the tapered tip described above, it is preferable to be as small as possible.
  • this width may have a certain size.
  • the pump 10 may have a size that can obtain the pump performance required for the pump 10 in terms of function.
  • the wall 700 is formed of a laminated member of the first portion 710 and the second portion 720.
  • the first portion 710 is integrally formed with the main body 71 of the support member 70, and the first portion 710 and the main body 71 are connected at at least one place (not shown).
  • the second portion 720 is integrally formed with the adhesive layer 72 of the support member 70, and the second portion 720 and the adhesive layer 72 are connected at at least one point (not shown).
  • Such a configuration facilitates the positioning of the support member 70 with respect to the housing.
  • FIG. 5 is a side sectional view showing the configuration of a pump according to a second embodiment of the present invention.
  • the pump 10A according to the second embodiment differs from the pump 10 according to the first embodiment in that the support member 301 is omitted.
  • the other basic configuration of the pump 10A is the same as that of the pump 10, and the description of the same parts will be omitted.
  • the flat plate 30 is supported only by the support member 70.
  • the pump 10A can realize high flow rate and high pressure as the pump 10 does.
  • FIG. 6 is a side cross-sectional view showing the structure of a pump according to a third embodiment of the present invention.
  • FIG. 7 is an exploded perspective view showing the configuration of a pump according to a third embodiment of the present invention.
  • the pump 10B according to the third embodiment is different from the pump 10 according to the first embodiment in the shape of the flat plate 30B and the support position of the flat plate 30B.
  • the other configuration of the pump 10B is similar to that of the pump 10, and the description of the same parts will be omitted.
  • the flat plate 30 ⁇ / b> B has substantially the same shape as the flat plate 20.
  • the thickness of the flat plate 30B is thinner than the thickness of the flat plate 20.
  • the shape of the flat plate 30B is set such that the primary resonant frequency of the flat plate 20 and the secondary resonant frequency of the flat plate 30B substantially coincide with each other.
  • a cylindrical suction port 101B penetrating the flat plate 30B in the thickness direction is formed at the center PO of the flat plate 30B.
  • the support member 70 is disposed near the center PO of the flat plate 30B.
  • the support member 70 is annular.
  • the annular inner side surface of the support member 70 is substantially flush with the outer edge OE101 of the suction port 101B.
  • the width of the support member 70 is substantially the same as the aspect shown in the first embodiment.
  • the flat plate 20 when the flat plate 20 generates bending vibration in the primary mode, pressure fluctuation of the pump chamber 100B occurs.
  • the flat plate 30B receives the pressure fluctuation of the pump chamber 100B to generate a bending vibration of a secondary mode having the center PO as a fixed end and the outer edge OE 30 as a free end.
  • the positional relationship between the standing wave of the bending vibration of the flat plate 20 and the standing wave of the bending vibration of the flat plate 30B in the radial direction (direction from the center toward the outer edge) of the flat plate 20 and the flat plate 30B is approximately 90 It has a phase difference of °. Further, since the vibration of the flat plate 30B is excited by the pressure generated by the vibration of the flat plate 20, a temporal phase delay occurs. Due to the spatial phase difference and the temporal phase difference, the height variation of the pump chamber 100B resembles a traveling wave function, and the fluid is transported from the center of the pump chamber 100B toward the outer edge.
  • FIG. 8 is a side view schematically showing the operation of a pump according to a third embodiment of the present invention.
  • broken lines indicate default positions of the flat plate 20 and the flat plate 30B.
  • the pump 10B transports the fluid by sequentially repeating the states ST1, ST2, ST3 and ST4 shown in FIG.
  • the center of the flat plate 20 is farther from the flat plate 30B than the default state, and the outer edge of the flat plate 20 is closer to the flat plate 30B than the default state.
  • the flat plate 30B is approximately at the default position and flat.
  • the pump chamber 100B has a negative pressure with respect to the outside, and the fluid is sucked.
  • the flat plate 20 is approximately at the default position and flat.
  • the region between the center and the node in flat plate 30B is farther from flat plate 20 than in the default state, and the outer edge of flat plate 30B is closer to flat plate 20 than in the default state.
  • the pump chamber 100B is negatively pressurized to the outside, and the fluid is sucked.
  • the position where the distance between the flat plate 20 and the flat plate 30B is the longest moves from the center to the outer edge side.
  • the center of the flat plate 20 is closer to the flat plate 30B than the default state, and the outer edge of the flat plate 20 is farther from the flat plate 30B than the default state.
  • the flat plate 30B is approximately at the default position and flat.
  • the distance between the flat plate 20 and the flat plate 30B is shortened at the center of the pump chamber 100B, and the distance between the flat plate 20 and the flat plate 30B is increased from the center toward the outer edge. For this reason, the fluid drawn into the pump chamber 100B in the states ST1 and ST2 is pushed out and discharged in the outer edge direction.
  • the flat plate 20 is approximately at the default position and flat.
  • the region between the center and the node of the flat plate 30B is closer to the flat plate 30B than the default state, and the outer edge of the flat plate 30B is farther from the flat plate 20 than the default state.
  • the distance between flat plate 20 and flat plate 30B becomes shorter, and this distance becomes longer from the center toward the outer edge. Therefore, the fluid pushed outward in the state ST3 is further pushed outward and discharged.
  • the pump 10B can repeat the operation of discharging the fluid sucked from the suction port 101B from the outer edge side of the flat plate 20 and the flat plate 30B.
  • the entire surface of the flat plate 20 and the flat plate 30B is the movable range at substantially the same frequency. Therefore, the volume of the pump chamber 100B can be improved, and a high flow rate can be realized.
  • FIG. 9 is a side cross-sectional view showing the configuration of a pump according to a fourth embodiment of the present invention.
  • the pump 10C according to the fourth embodiment differs from the pump 10 according to the first embodiment in the shape of the support member 201C.
  • the other configuration of the pump 10C is the same as that of the pump 10, and the description of the same parts will be omitted.
  • the support member 201C is a portion on the inner peripheral side of the annular (circumferential) wall 202C, and is a portion not connected (bonded, adhered) to the wall 50 in the wall 202C.
  • the support member 201 C is connected to the outer edge OE 20 of the flat plate 20. That is, the support member 201C is formed circumferentially along the outer edge OE20 of the flat plate 20.
  • the wall 202C is made of a member different from the flat plate 20 and has flexibility. Therefore, the support member 201C has flexibility. Thereby, the flat plate 20 is vibratably supported.
  • the support member 201C is provided with a plurality of through holes penetrating between the main surfaces.
  • the plurality of through holes serve as the discharge port 102.
  • the plurality of through holes are preferably arranged circumferentially along the outer edge OE 20 of the flat plate 20.
  • the pump 10C can obtain the same function and effect as the pump 10 of the first embodiment.
  • FIG. 10 is a side cross-sectional view showing the structure of a pump according to a fifth embodiment of the present invention.
  • the pump 10D according to the fifth embodiment differs from the pump 10 according to the first embodiment in the formation position of the discharge port 102.
  • the other configuration of the pump 10D is the same as that of the pump 10, and the description of the same portions will be omitted.
  • the outlet 102 is shaped to penetrate the wall 50 from the inner surface to the outer surface.
  • the pump chamber 100 communicates with the outside of the pump 10D.
  • the number and the size of the discharge ports 102 may be appropriately set based on the characteristics of the pump 10D. Along with this, no hole is formed in the support member 201.
  • the pump 10D can obtain the same effects as the pump 10.
  • the suction port 101 is formed at the center PO of the flat plate 30 in the configurations shown in the first, second, fourth and fifth embodiments described above.
  • the suction port 101 may be near the center PO.
  • the suction port 101 is preferably formed so as to include the center PO of the flat plate 30, and it is preferable that the center of the suction port 101 coincides with the center PO of the flat plate 30.
  • the third embodiment since one suction port 101 is formed at the center PO, the flow of fluid along the radial direction (the direction from the center PO toward the outer periphery) of the pump chamber 100 is not blocked by the suction port 101.
  • the cross section may be cylindrical shape of a regular polygon.
  • positions the piezoelectric element 40 in the surface on the opposite side to the surface facing the flat plate 30 in the flat plate 20 was shown.
  • the piezoelectric element 40 can be disposed on the surface of the flat plate 20 facing the flat plate 30.
  • the volume of the pump chamber 100 can be increased by disposing the piezoelectric element 40 on the surface of the flat plate 20 opposite to the surface facing the flat plate 30, and the flat plate 20, the piezoelectric element 40, and the flat plate 30 by vibration. Contact can be suppressed.
  • the support member 70 is in contact with the position of the node in the flat plate 30 or the central region in the flat plate 30B. However, it is possible to obtain at least the effect if the support member 70 is a position between the suction port 101 and the outer edge OE 30 in the flat plate 30 and not in contact with the outer edge OE 30.
  • the pump which concerns on each above-mentioned embodiment is applicable to a sphygmomanometer, a breast pump, a negative pressure closing therapy apparatus etc., for example.
  • the device performance of a sphygmomanometer, a breast pump, a negative pressure closing therapy apparatus etc. improves by using the pump which concerns on the above-mentioned each embodiment.
  • 10, 10A, 10B, 10C, 10D pump 20: flat plate 30, 30B: flat plate OE 30: outer edge 40: piezoelectric element 50, 202, 202C, 302, 700: wall 60: support 70: support member 71: main body 72: Adhesive layer 100, 100 B: pump chamber 101, 101 B: suction port 102: discharge port 201, 201 C: support member 301: support member OE 20: outer edge OE 30: outer edge PO: center

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Provided is a pump (10), comprising: a flat plate (20); a flat plate (30); a discharge port (102); a supporting member (201); and a supporting member (70). The flat plate (20) has one main surface on which a piezoelectric element (40) is disposed. The flat plate (30) faces the other main surface of the flat plate (20), and has a suction port (101) at the center or substantially the center thereof in plan view. The discharge port (102) is provided through the flat plate (20) to the flat plate (30) in plan view on a side closer to an outer edge than the center of the suction port (101), the flat plate (20), and the flat plate (30). The supporting member (201) supports the outer edge of the flat plate (20) in a manner that the flat plate (20) can vibrate. The supporting member (70) supports the flat plate (30) between the suction port (101) and an outer edge (OE30) of the flat plate (30) and at a position not in contact with the outer edge (OE30).

Description

ポンプpump
 この発明は、屈曲振動を用いて流体を搬送するポンプに関する。 The present invention relates to a pump for transporting a fluid using bending vibration.
 従来、例えば、特許文献1に示す構造を有するポンプがある。特許文献1に示すポンプは、内部空間を有する筐体と、アクチュエータとを備える。 Conventionally, for example, there is a pump having a structure shown in Patent Document 1. The pump shown to patent document 1 is provided with the housing | casing which has interior space, and an actuator.
 アクチュエータは、平板状である。アクチュエータは、筐体の内部空間に、筐体の1つの壁に対向して配置されている。アクチュエータが対向する壁は、中央部の厚みが薄く、受動振動板として機能する。受動振動板の中央には、吸気口が設けられている。また、アクチュエータの外縁には開口があり、排気口となっている。 The actuator is flat. The actuator is disposed in the internal space of the housing opposite to one wall of the housing. The wall to which the actuator faces has a thin central portion and functions as a passive diaphragm. An intake port is provided at the center of the passive diaphragm. In addition, the outer edge of the actuator has an opening, which serves as an exhaust port.
 アクチュエータが振動すると、アクチュエータと受動振動板との間のポンプ室に圧力の変化が生じる。受動振動板は、この圧力の変化によって振動する。吸気と排気は、これらアクチュエータの振動と受動振動板の振動との組合せによって実現される。 Vibration of the actuator causes a change in pressure in the pump chamber between the actuator and the passive diaphragm. The passive diaphragm vibrates due to this change in pressure. Intake and exhaust are realized by the combination of the vibration of these actuators and the vibration of the passive diaphragm.
特許第5177331号明細書Patent No. 5177331 Specification
 しかしながら、特許文献1に示すようなポンプでは、受動振動板の外縁が固定されているので、高い流量や高い圧力を得難い。 However, in the pump shown in Patent Document 1, since the outer edge of the passive diaphragm is fixed, it is difficult to obtain a high flow rate and a high pressure.
 したがって、本発明の目的は、従来構成よりも高い流量と高い圧力とを実現可能なポンプを提供することにある。 Therefore, an object of the present invention is to provide a pump capable of achieving higher flow rate and higher pressure than conventional configurations.
 この発明のポンプは、第1振動板、第2振動板、吐出口、第1支持部材、および、第2支持部材を備える。それらによって、ポンプ室が形成される。第1振動板は、一方主面に圧電素子が配置されている。第2振動板は、第1振動板の一方主面または他方主面に離間して対向し、平面視の中央または略中央に吸入口を有する。吐出口は、第1振動板から第2振動板に平面視して、吸入口および第1振動板と第2振動板の中心よりも外縁側に設けられている。第1支持部材は、第1振動板の外縁を振動可能に支持する。第2支持部材は、吸入口と第2振動板の外縁との間であって該外縁に接しない位置で第2振動板を支持する。 A pump according to the present invention includes a first diaphragm, a second diaphragm, a discharge port, a first support member, and a second support member. They form a pump chamber. In the first diaphragm, a piezoelectric element is disposed on one main surface. The second diaphragm is spaced apart and opposed to the one main surface or the other main surface of the first diaphragm, and has a suction port at the center or substantially the center in a plan view. The discharge port is provided on the outer edge side than the centers of the suction port, the first diaphragm, and the second diaphragm in plan view from the first diaphragm to the second diaphragm. The first support member vibratably supports the outer edge of the first diaphragm. The second support member supports the second diaphragm at a position between the inlet and the outer edge of the second diaphragm but not in contact with the outer edge.
 この構成では、第2振動板の外縁は、第2振動板のベンディング振動の自由端になる。これにより、第2振動板の外縁の振動方向(ポンプ室の厚み方向に平行な方向)の可動範囲が広くなり、流量、圧力が向上する。 In this configuration, the outer edge of the second diaphragm becomes the free end of the bending vibration of the second diaphragm. As a result, the movable range of the vibration direction (the direction parallel to the thickness direction of the pump chamber) of the outer edge of the second diaphragm is widened, and the flow rate and pressure are improved.
 また、この発明のポンプでは、第2支持部材は、第2振動板の自由振動のノードを含む位置で接していることが好ましい。 In the pump according to the present invention, preferably, the second support member is in contact at a position including the free vibration node of the second diaphragm.
 この構成では、第2振動板のベンディング振動が第2支持部材によって阻害されることが抑制される。これにより、流量、圧力が更に向上する。 In this configuration, the bending vibration of the second diaphragm is suppressed from being inhibited by the second support member. This further improves the flow rate and pressure.
 また、この発明のポンプでは、第2支持部材の内端は、吸入口の外縁に略接している態様であってもよい。 In the pump of the present invention, the inner end of the second support member may be in contact with the outer edge of the suction port.
 この構成では、第2振動板のベンディング振動と第1振動板のベンディング振動との位置関係が、空間的に90°位相差に近い関係となる。これにより、ポンプ室の高さの変動が進行波関数に近似し、流量が向上する。 In this configuration, the positional relationship between the bending vibration of the second diaphragm and the bending vibration of the first diaphragm is spatially close to a 90 ° phase difference. Thereby, the fluctuation of the height of the pump chamber approximates to the traveling wave function, and the flow rate is improved.
 また、この発明のポンプでは、上述の第2支持部材の内端が吸気口の外縁に略接する態様において、第2振動板は、第1振動板と略同じ面積であることが好ましい。 In the aspect of the pump according to the present invention, the second diaphragm preferably has substantially the same area as the first diaphragm in the aspect in which the inner end of the second support member substantially contacts the outer edge of the air inlet.
 この構成では、ポンプ室の体積が大きくなる。これにより、流量が向上する。 In this configuration, the volume of the pump chamber is increased. This improves the flow rate.
 また、この発明のポンプでは、上述の第2支持部材の内端が吸気口の外縁に略接する態様において、第2振動板は、第1振動板と第2振動板との間に形成されるポンプ室の第1振動板のベンディング振動による圧力変動によって、2次モードのベンディング振動を生じる形状である。 Further, in the aspect of the pump according to the present invention, the second diaphragm is formed between the first diaphragm and the second diaphragm in a mode in which the inner end of the second support member mentioned above substantially contacts the outer edge of the intake port. The pressure fluctuation due to the bending vibration of the first diaphragm of the pump chamber causes the bending vibration of the second mode to occur.
 この構成では、進行波条件が確実に満たされる。これにより、流量が向上する。 In this configuration, the traveling wave conditions are reliably met. This improves the flow rate.
 また、この発明のポンプでは、第2支持部材は、第2振動板の主面を平面視した場合において周状に形成されていることが好ましい。 In the pump according to the present invention, preferably, the second support member is circumferentially formed when the main surface of the second diaphragm is viewed in plan.
 この構成では、第2振動板が周状で支持される。これにより、全周に向かう流路を形成でき、第2振動板の支持機構の機械的な強度を向上し易い。 In this configuration, the second diaphragm is circumferentially supported. This makes it possible to form a flow path toward the entire circumference, and to easily improve the mechanical strength of the support mechanism of the second diaphragm.
 また、この発明のポンプでは、第2支持部材は、自由振動を阻害しない大きさであることが好ましい。 Further, in the pump of the present invention, the second support member preferably has a size that does not inhibit free vibration.
 この構成では、第2支持部材による第2振動板の振動の減衰が抑制される。これにより、流量、圧力が向上する。 In this configuration, damping of the vibration of the second diaphragm by the second support member is suppressed. This improves the flow rate and pressure.
 また、この発明のポンプでは、第2支持部材における第2振動板との当接部は、高弾性率部材であることが好ましい。 Further, in the pump of the present invention, the contact portion of the second support member with the second diaphragm is preferably a high elastic modulus member.
 この構成では、高弾性率部材によって、第2振動板の振動の第2支持部材への不要な漏洩が抑制される。これにより、流量、圧力が向上する。 In this configuration, the high elastic modulus member suppresses unnecessary leakage of the vibration of the second diaphragm to the second support member. This improves the flow rate and pressure.
 また、この発明のポンプでは、吐出口は、複数の第1支持部材における、1の第1支持部材と隣接する第1支持部材との間に設けられることが好ましい。 Further, in the pump according to the present invention, the discharge port is preferably provided between one first support member and the adjacent first support member in the plurality of first support members.
 この構成では、第1振動板、吐出口、第1支持部材、および、さらに外側の保持部が同時に形成可能になる。また、この構成では、第1振動板と保持部とが同一部材となるので、ポンプ室の高さ精度が得やすい。 In this configuration, the first diaphragm, the discharge port, the first support member, and the outer holding portion can be simultaneously formed. Further, in this configuration, since the first diaphragm and the holding portion are the same member, the height accuracy of the pump chamber can be easily obtained.
 また、この発明のポンプでは、吐出口は、第1振動板の外縁に沿って周状に設けられた第1支持部材に、形成されていてもよい。 Further, in the pump according to the present invention, the discharge port may be formed in a first support member provided circumferentially along the outer edge of the first diaphragm.
 この構成でも、吐出口としての機能は実現できる。 Even with this configuration, the function as the discharge port can be realized.
 また、この発明のポンプでは、第1振動板と第2振動板とともにポンプ室を形成する壁を備え、吐出口は、壁に設けられていてもよい。 In the pump according to the present invention, the wall may be provided with the first diaphragm and the second diaphragm to form the pump chamber, and the discharge port may be provided in the wall.
 この構成でも、吐出口としての機能は実現できる。 Even with this configuration, the function as the discharge port can be realized.
 また、この発明のポンプでは、吸入口は、第2振動板の主面を平面視して中央に1つ形成されていることが好ましい。 Further, in the pump according to the present invention, it is preferable that one suction port is formed at the center of the main surface of the second diaphragm in plan view.
 この構成では、ポンプ室の径方向(中心から外周へ向かう方向)に沿った流体の流れが吸入口によって妨げられない。 In this configuration, the flow of fluid along the radial direction (the direction from the center toward the outer periphery) of the pump chamber is not blocked by the suction port.
 また、この発明のポンプでは、第2振動板は、正多角形であることが好ましい。 Further, in the pump of the present invention, the second diaphragm is preferably a regular polygon.
 この構成では、吸入口から外縁までの距離が全方位において略同じになる。これにより、振動が略中心軸対称に伝わるため、方位によることなく均一な径方向の流れを生成できる。 In this configuration, the distance from the suction port to the outer edge is substantially the same in all directions. As a result, the vibration is transmitted about the central axis substantially symmetrically, so that a uniform radial flow can be generated regardless of the orientation.
 また、この発明のポンプでは、第2振動板は、円形であることが好ましい。 Further, in the pump of the present invention, the second diaphragm is preferably circular.
 この構成では、吸入口から外縁までの距離が全方位において同じになる。これにより、振動が中心軸対称に伝わるため、方位によることなく均一な径方向の流れを生成できる。 In this configuration, the distance from the inlet to the outer edge is the same in all directions. As a result, since the vibration is transmitted symmetrically about the central axis, uniform radial flow can be generated regardless of the orientation.
 また、この発明のポンプでは、第1振動板は、正多角形であることが好ましい。 Further, in the pump of the present invention, the first diaphragm is preferably a regular polygon.
 この構成では、吸入口から外縁までの距離が全方位において略同じになる。これにより、振動が略中心軸対称に伝わるため、流体搬送のエネルギー損失を小さくできる。 In this configuration, the distance from the suction port to the outer edge is substantially the same in all directions. As a result, the vibration is transmitted about the central axis substantially symmetrically, so that the energy loss of fluid transportation can be reduced.
 また、この発明のポンプでは、第1振動板は、円形であることが好ましい。 Further, in the pump of the present invention, the first diaphragm is preferably circular.
 この構成では、吸入口から外縁までの距離が全方位において同じになる。これにより、振動が中心軸対称に伝わるため、流体搬送のエネルギー損失を小さくできる。 In this configuration, the distance from the inlet to the outer edge is the same in all directions. As a result, since the vibration is transmitted symmetrically about the central axis, the energy loss of fluid transportation can be reduced.
 また、この発明のポンプでは、第2振動板の外縁を振動可能に支持する第3支持部材を、第2振動板の外縁の外側に備えることが好ましい。 Further, in the pump of the present invention, it is preferable that the third support member for vibratably supporting the outer edge of the second diaphragm be provided outside the outer edge of the second diaphragm.
 この構成では、第2振動板をポンプの筐体に取り付けやすい。 In this configuration, the second diaphragm can be easily attached to the housing of the pump.
 この発明によれば、従来構成よりも高い流量と高い圧力と実現できる。 According to the present invention, it is possible to realize higher flow rate and higher pressure than the conventional configuration.
本発明の第1の実施形態に係るポンプの構成を示す側面断面図である。It is a side sectional view showing the composition of the pump concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係るポンプの構成を示す分解斜視図である。It is an exploded perspective view showing composition of a pump concerning a 1st embodiment of the present invention. 図3(A)、図3(B)は、本発明の第1の実施形態に係るポンプの動作原理を示す図である。FIGS. 3A and 3B are diagrams showing the operating principle of the pump according to the first embodiment of the present invention. 図4(A)、図4(B)、図4(C)は、支持部材の一構成例を示す図である。FIG. 4A, FIG. 4B, and FIG. 4C are diagrams showing one configuration example of the support member. 本発明の第2の実施形態に係るポンプの構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the pump which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るポンプの構成を示す側面断面図である。It is a side sectional view showing the composition of the pump concerning a 3rd embodiment of the present invention. 本発明の第3の実施形態に係るポンプの構成を示す分解斜視図である。It is an exploded perspective view showing composition of a pump concerning a 3rd embodiment of the present invention. 本発明の第3の実施形態に係るポンプの動作を概略的に示す側面図である。It is a side view showing roughly operation of a pump concerning a 3rd embodiment of the present invention. 本発明の第4の実施形態に係るポンプの構成を示す側面断面図である。It is a side sectional view showing the composition of the pump concerning a 4th embodiment of the present invention. 本発明の第5の実施形態に係るポンプの構成を示す側面断面図である。It is a side sectional view showing the composition of the pump concerning a 5th embodiment of the present invention.
 本発明の第1の実施形態に係るポンプについて、図を参照して説明する。図1は、本発明の第1の実施形態に係るポンプの構成を示す側面断面図である。図2は、本発明の第1の実施形態に係るポンプの構成を示す分解斜視図である。 A pump according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side cross-sectional view showing the configuration of a pump according to a first embodiment of the present invention. FIG. 2 is an exploded perspective view showing the configuration of the pump according to the first embodiment of the present invention.
 図1、図2に示すように、ポンプ10は、平板20、平板30、圧電素子40、壁50、壁202、壁302、壁700、支持体60、支持部材70、支持部材201、および、支持部材301を備える。 As shown in FIGS. 1 and 2, the pump 10 includes a flat plate 20, a flat plate 30, a piezoelectric element 40, a wall 50, a wall 202, a wall 302, a wall 700, a support 60, a support member 70, a support member 201, and A support member 301 is provided.
 平板20は、所定の厚みおよび径からなる円板である。厚みおよび径は、平板20が圧電素子40によって振動する際の共振周波数に基づいて設定されている。平板20は、本発明の「第1振動板」に対応する。なお、平板20は、円形に限らず、略円形、正多角形を含む略正多角形であってもよい。これにより、平板20における振動が中心軸対称に伝わるため、流体搬送のエネルギー損失を小さくできる。特に、平板20が円形の場合、最も効果的に流体搬送のエネルギー損失を小さくできる。 The flat plate 20 is a disk having a predetermined thickness and diameter. The thickness and the diameter are set based on the resonance frequency when the flat plate 20 vibrates by the piezoelectric element 40. The flat plate 20 corresponds to the "first diaphragm" in the present invention. The flat plate 20 is not limited to a circular shape, but may be a substantially circular shape or a substantially regular polygon shape including a regular polygon shape. As a result, since the vibrations in the flat plate 20 are transmitted in a central axis symmetry, the energy loss of fluid transportation can be reduced. In particular, when the flat plate 20 is circular, the energy loss of fluid transportation can be reduced most effectively.
 圧電素子40は、平板20の一方主面に配置されている。圧電素子40は、円板である。図示を省略しているが、圧電素子40は、円柱形の圧電体と、一対の駆動用電極とからなる。一対の駆動用電極の一方は、圧電体の一方主面に配置され、一対の駆動用電極の他方は、圧電体の他方主面に配置されている。圧電素子40は、平板20の一方主面に配置されている。この際、平面視において、圧電素子40の中心と平板20の中心とは略一致している。 The piezoelectric element 40 is disposed on one main surface of the flat plate 20. The piezoelectric element 40 is a disk. Although not shown, the piezoelectric element 40 is composed of a cylindrical piezoelectric body and a pair of driving electrodes. One of the pair of drive electrodes is disposed on one main surface of the piezoelectric body, and the other of the pair of drive electrodes is disposed on the other main surface of the piezoelectric body. The piezoelectric element 40 is disposed on one main surface of the flat plate 20. At this time, in plan view, the center of the piezoelectric element 40 and the center of the flat plate 20 substantially coincide with each other.
 平板30は、所定の厚みおよび径からなる円板である。なお、平板30は、平板20と同様に、円形に限らず、略円形、正多角形を含む略正多角形であってもよい。これにより、平板30における振動が中心軸対称に伝わるため、均一な径方向(中心から外周へ向かう方向)の流体の流れを生成できる。すなわち、方位による流体の流れの差が抑制される。特に、平板30が円形の場合、最も効果的に均一な径方向(中心から外周へ向かう方向)の流体の流れを生成できる。すなわち、方位による流体の流れの差が最も効果的に抑制される。 The flat plate 30 is a disk having a predetermined thickness and diameter. Similar to the flat plate 20, the flat plate 30 is not limited to a circular shape, and may be a substantially regular polygon including a substantially circular shape and a regular polygon. Thereby, since the vibration in the flat plate 30 is transmitted to the central axis symmetry, the fluid flow in the uniform radial direction (direction from the center toward the outer periphery) can be generated. That is, the difference in fluid flow depending on the orientation is suppressed. In particular, when the flat plate 30 is circular, it is possible to most effectively generate a uniform flow of fluid in the radial direction (the direction from the center toward the outer periphery). That is, the difference in fluid flow depending on the orientation is most effectively suppressed.
 平板30は、平板20における圧電素子40の配置面(一方主面)と反対側の他方主面に対向している。平板30と平板20とは、それぞれの平板面に直交する方向に所定の距離で離間している。この平板20と平板30とが距離をおいて対向する領域が、ポンプ10の実質的なポンプ室100として機能する。 The flat plate 30 is opposed to the other main surface opposite to the arrangement surface (one main surface) of the piezoelectric element 40 in the flat plate 20. The flat plate 30 and the flat plate 20 are separated by a predetermined distance in the direction orthogonal to the flat plate surface. An area where the flat plate 20 and the flat plate 30 face each other at a distance functions as a substantial pump chamber 100 of the pump 10.
 平板30の中心POは、ポンプ10の平面視において、平板20の中心と略一致しており、これはポンプ室100の中心に一致する。平板30の中心POには、平板30を一方主面側から他方主面まで貫通する吸入口101が形成されている。吸入口101は、円筒形である。なお、吸入口101は円筒形に限るものではなく、他の形状であってもよい。また、吸入口101の一端から他端にかけて径が一定でなくてもよい。吸入口101の開口面積の最小面積および最大面積は、ポンプ10としての必要な吸入能力に応じて適宜設定されている。 The center PO of the flat plate 30 substantially coincides with the center of the flat plate 20 in plan view of the pump 10, and this coincides with the center of the pump chamber 100. At the center PO of the flat plate 30, a suction port 101 is formed which penetrates the flat plate 30 from the one main surface side to the other main surface. The inlet 101 is cylindrical. In addition, the suction port 101 is not limited to a cylindrical shape, and may have another shape. Further, the diameter may not be constant from one end of the suction port 101 to the other end. The minimum area and the maximum area of the opening area of the suction port 101 are appropriately set in accordance with the necessary suction capacity of the pump 10.
 平板30の厚みは、平板20の厚みよりも薄く、平板30の径は、平板20の径よりも短い。平板30は、平板20のベンディング振動によってポンプ室100の圧力が変動するのに伴って、同様のベンディング振動を生じる形状である。すなわち、平板30は、平板20の振動に対して受動振動可能な形状である。この際、平板30は、平板20に対して所定の位相差(位相遅れ)をもってベンディング振動する。これにより、ポンプ室100の高さの変動は、平板20および平板30の中心POから外縁OE20、OE30に向かって進行する進行波のように振る舞う。したがって、流体は、平板20および平板30の中心POから外縁OE20、OE30に向かって流れる。 The thickness of the flat plate 30 is thinner than the thickness of the flat plate 20, and the diameter of the flat plate 30 is shorter than the diameter of the flat plate 20. The flat plate 30 is shaped to produce similar bending vibrations as the pressure in the pump chamber 100 changes due to the bending vibrations of the flat plate 20. That is, the flat plate 30 has a shape that can passively vibrate with respect to the vibration of the flat plate 20. At this time, the flat plate 30 vibrates with a predetermined phase difference (phase delay) with respect to the flat plate 20. Thereby, the fluctuation of the height of the pump chamber 100 behaves like a traveling wave traveling from the center PO of the flat plate 20 and the flat plate 30 toward the outer edges OE 20 and OE 30. Therefore, the fluid flows from the center PO of the flat plate 20 and the flat plate 30 toward the outer edges OE 20 and OE 30.
 壁202、壁50、壁302、壁700は高剛性の材料からなり、それぞれに円環形である。壁202、壁50、壁302、壁700は、ポンプ10の厚み方向(平板20、平板30の主面に直交する方向)に、この順に積層されている。ポンプ10の厚み方向において、壁202は、平板20と略同じ位置に配置され、壁302は、平板30と略同じ位置に配置されている。壁202および壁50の中央開口は、平板20よりも大きく、平面視で平板20に重なっている。壁302および壁700の中央開口は、平板30よりも大きく、平面視で平板30に重なっている。すなわち、平板20および平板30は、壁202、壁50、壁302、壁700からなる積層部材によって形成される中央の開口領域内に配置されている。このように、これら壁202、壁50、壁302、壁700からなる積層部材によって、ポンプ10の筐体の側壁が形成されている。 The wall 202, the wall 50, the wall 302, and the wall 700 are made of a highly rigid material, and each has an annular shape. The wall 202, the wall 50, the wall 302, and the wall 700 are stacked in this order in the thickness direction of the pump 10 (the direction perpendicular to the main surfaces of the flat plate 20 and the flat plate 30). In the thickness direction of the pump 10, the wall 202 is disposed at substantially the same position as the flat plate 20, and the wall 302 is disposed at substantially the same position as the flat plate 30. The central openings of the wall 202 and the wall 50 are larger than the flat plate 20 and overlap the flat plate 20 in plan view. The central openings of the wall 302 and the wall 700 are larger than the flat plate 30 and overlap the flat plate 30 in plan view. That is, the flat plate 20 and the flat plate 30 are disposed in the central open area formed by the laminated members consisting of the wall 202, the wall 50, the wall 302, and the wall 700. Thus, the side wall of the housing of the pump 10 is formed by the laminated member including the wall 202, the wall 50, the wall 302, and the wall 700.
 支持体60は、高剛性の材料からなり、円環形である。支持体60の中央開口の面積は、壁202、壁50、壁302、壁700と比べて小さい。支持体60は、壁700における壁302との当接面と反対側の面に当接している。この際、ポンプ10の平面視において、支持体60の中央開口は、平板30の吸入口101と重なっている。 The support 60 is made of a highly rigid material, and has an annular shape. The area of the central opening of the support 60 is small compared to the wall 202, the wall 50, the wall 302, and the wall 700. The support 60 is in contact with a surface of the wall 700 opposite to the contact surface with the wall 302. At this time, the central opening of the support 60 overlaps the suction port 101 of the flat plate 30 in plan view of the pump 10.
 このように、ポンプ10の筐体は、平板20を一方主面とし、支持体60を他方主面とし、壁202、壁50、壁302、壁700からなる積層部材を側壁とする構造からなる。 As described above, the housing of the pump 10 has a structure in which the flat plate 20 is one main surface, the support 60 is the other main surface, and the laminated member including the wall 202, the wall 50, the wall 302, and the wall 700 is a side wall. .
 支持部材201は、平板20の外縁OE20と壁202の内壁面とに繋がっており、所定の弾性を有する形状、例えばバネ性を有する形状からなる。支持部材201は、平板20の外縁OE20の全周に亘って、略均等に形成されている。 The support member 201 is connected to the outer edge OE 20 of the flat plate 20 and the inner wall surface of the wall 202, and has a shape having a predetermined elasticity, for example, a shape having a spring property. The support member 201 is formed substantially uniformly over the entire circumference of the outer edge OE 20 of the flat plate 20.
 この構成によって、平板20は、外縁OE20が振動可能な状態で、筐体に支持される。したがって、平板20は、外縁OE20が自由端となるベンディング振動を生じる。 By this configuration, the flat plate 20 is supported by the housing in a state where the outer edge OE 20 can vibrate. Therefore, the flat plate 20 generates a bending vibration in which the outer edge OE 20 is a free end.
 平板20、支持部材201、および、壁202は、一体形成されていることが好ましい。例えば、1つの平板部材に、支持部材201を形成するように、レーザ加工等によって開口を設ける。これにより、平板20、支持部材201、および、壁202は、容易に一体形成される。そして、この一体形成された形状によって、平板20を、ポンプ10の筐体における所望位置に容易に配置でき、ポンプ室の高さ精度を得やすい。 The flat plate 20, the support member 201, and the wall 202 are preferably integrally formed. For example, an opening is provided in one flat plate member by laser processing or the like so as to form the support member 201. Thereby, the flat plate 20, the support member 201, and the wall 202 are easily integrally formed. And by this integrally formed shape, the flat plate 20 can be easily arrange | positioned in the desired position in the housing | casing of the pump 10, and it is easy to obtain the height precision of a pump chamber.
 また、この開口は、ポンプ10の吐出口102となる。これにより、吐出口102は、平板20の外縁OE20に形成される。また、支持部材201と吐出口102とを別々に形成するよりも、製造工程が簡素化される。 Further, this opening becomes the discharge port 102 of the pump 10. Thus, the discharge port 102 is formed in the outer edge OE 20 of the flat plate 20. Further, the manufacturing process is simplified as compared to forming the support member 201 and the discharge port 102 separately.
 支持部材301は、平板30の外縁OE30と壁302の内壁面とに繋がっており、所定の弾性を有する形状、例えばバネ性を有する形状からなる。支持部材301は、平板30の外縁OE30の全周に亘って、略均等に形成されている。 The support member 301 is connected to the outer edge OE 30 of the flat plate 30 and the inner wall surface of the wall 302, and has a shape having a predetermined elasticity, for example, a shape having a spring property. The support member 301 is formed substantially uniformly over the entire circumference of the outer edge OE 30 of the flat plate 30.
 この構成によって、平板30は、外縁OE30が振動可能な状態で、筐体に支持される。したがって、平板30は、外縁OE30が自由端となるベンディング振動を生じる。 By this configuration, the flat plate 30 is supported by the housing in a state where the outer edge OE 30 can vibrate. Therefore, the flat plate 30 generates a bending vibration in which the outer edge OE 30 becomes a free end.
 平板30、支持部材301、および、壁302は、一体形成されていることが好ましい。例えば、1つの平板部材に、支持部材301を形成するように、レーザ加工等によって開口を設ける。これにより、平板30、支持部材301、および、壁302は、容易に一体形成される。そして、この一体形成された形状によって、平板30を、ポンプ10の筐体における所望位置に容易に配置でき、ポンプ室の高さ精度を得やすい。 The flat plate 30, the support member 301, and the wall 302 are preferably integrally formed. For example, an opening is provided by laser processing or the like so as to form the support member 301 in one flat plate member. Thereby, the flat plate 30, the support member 301, and the wall 302 are easily integrally formed. And by this integrally formed shape, the flat plate 30 can be easily arrange | positioned in the desired position in the housing | casing of the pump 10, and it is easy to obtain the height precision of a pump chamber.
 支持部材70は、主体71と接着層72とからなる。主体71は、高剛性の材料であり、円環状である。接着層72は、高弾性部材であり、主体71の一方の開口面に配置されている。高弾性部材は、例えば、シリコーン樹脂、エポキシ樹脂等である。支持部材70は、平板30のベンディング振動のノードN30に当接している。より具体的には、支持部材70は、平板30のベンディング振動において発生する円状のノードN30の全周を含むようにして、平板30に当接している。この際、支持部材70では、接着層72が平板30に当接するように配置されている。そして、主体71における接着層72と反対側の端面は、支持体60における平板30に対向する面に当接している。 The support member 70 is composed of a main body 71 and an adhesive layer 72. The main body 71 is a highly rigid material and is annular. The adhesive layer 72 is a high elasticity member and is disposed on one opening surface of the main body 71. The highly elastic member is, for example, a silicone resin, an epoxy resin, or the like. The support member 70 is in contact with the node N30 of the bending vibration of the flat plate 30. More specifically, the support member 70 is in contact with the flat plate 30 so as to include the entire circumference of the circular node N 30 generated in the bending vibration of the flat plate 30. At this time, in the support member 70, the adhesive layer 72 is disposed in contact with the flat plate 30. The end surface of the main body 71 opposite to the adhesive layer 72 is in contact with the surface of the support 60 facing the flat plate 30.
 このような構成からなるポンプ10は、図3に示すように動作する。図3は、本発明の第1の実施形態に係るポンプの動作原理を示す図である。図3(A)の上段は、本願の第1の実施形態に係る構成での吸入時の各平板の動きを示す側面図であり、図3(A)の下段は、従来の構成での吸入時の各平板の動きを示す側面図である。図3(B)の上段は、本願の第1の実施形態に係る構成での吐出時の各平板の動きを示す側面図であり、図3(B)の下段は、従来の構成での吐出時の各平板の動きを示す側面図である。なお、図3(A)、図3(B)では、点線は、平板20、20Pおよび平板30、30Pのデフォルト位置(ポンプ10が駆動していない状態での位置)を示す。 The pump 10 having such a configuration operates as shown in FIG. FIG. 3 is a view showing the operating principle of the pump according to the first embodiment of the present invention. The upper part of FIG. 3 (A) is a side view showing the movement of each flat plate at the time of inhalation in the configuration according to the first embodiment of the present invention, and the lower part of FIG. 3 (A) is an inhalation in the conventional configuration. It is a side view which shows the movement of each flat plate of time. The upper part of FIG. 3 (B) is a side view showing the movement of each flat plate at the time of discharge in the configuration according to the first embodiment of the present invention, and the lower part of FIG. 3 (B) is discharge in the conventional configuration. It is a side view which shows the movement of each flat plate of time. 3A and 3B, dotted lines indicate default positions of the flat plates 20 and 20P and the flat plates 30 and 30P (positions in a state where the pump 10 is not driven).
 図3(A)の上段および図3(B)の上段に示すように、本願の実施形態に係る構成では、平板30の外縁OE30が固定されておらず、本願の構成の平板30の中心POと外縁OE30との距離は、平板30のノードとの距離よりも長くなる。言い換えれば、平板30のノードは、中心POと外縁OE30との途中位置になる。すなわち、本願の構成の平板30では、径方向の途中にノードが存在し、外縁OE30は可動する。これにより、ポンプ室100の平面面積および体積は、従来構成よりも大きくなり、流量および圧力を向上できる。 As shown in the upper part of FIG. 3A and the upper part of FIG. 3B, in the configuration according to the embodiment of the present application, the outer edge OE 30 of the flat plate 30 is not fixed, and the center PO of the flat plate 30 of the present application And the outer edge OE 30 is longer than the distance between the flat plate 30 and the node. In other words, the node of the flat plate 30 is at an intermediate position between the center PO and the outer edge OE30. That is, in the flat plate 30 of the configuration of the present application, a node exists in the middle in the radial direction, and the outer edge OE 30 is movable. As a result, the planar area and volume of the pump chamber 100 become larger than in the conventional configuration, and the flow rate and pressure can be improved.
 また、本願の構成では、吸入時に、平板30の外縁OE30は、デフォルト位置よりも平板20側にある。一方、吐出時に、平板30の外縁OE30は、デフォルト位置よりも平板20と反対側にある。これにより、吸入時には、外縁OE30と平板20とが、従来構成よりも近接し、ポンプ室100の外縁からの逆流を抑制できる。また、吐出時には、外縁OE30と平板20とが、従来構成よりも離れ、流量を向上できる。 Further, in the configuration of the present application, at the time of inhalation, the outer edge OE 30 of the flat plate 30 is closer to the flat plate 20 than the default position. On the other hand, at the time of discharge, the outer edge OE30 of the flat plate 30 is on the opposite side of the flat plate 20 than the default position. Thereby, at the time of suction, the outer edge OE 30 and the flat plate 20 are closer to each other than the conventional configuration, and the backflow from the outer edge of the pump chamber 100 can be suppressed. Moreover, at the time of discharge, the outer edge OE 30 and the flat plate 20 are separated from each other as compared with the conventional configuration, and the flow rate can be improved.
 一方で、図3(A)の下段に示すように、従来の構成では、平板30Pの外縁は固定されている。したがって、従来の構成の平板30Pのノードは外縁に一致する。 On the other hand, as shown in the lower part of FIG. 3A, the outer edge of the flat plate 30P is fixed in the conventional configuration. Therefore, the nodes of the flat plate 30P of the conventional configuration coincide with the outer edge.
 ここで、同じベンディング振動であれば、従来の構成の平板30Pのノード位置と本願の構成の平板30のノード位置は同じになる。したがって、外縁OE30がノードよりも外側にあり、外縁OE30が可動する本願の構成のポンプ室100の体積は、従来の構成のポンプ室100Pの体積よりも大きくなる。これにより、本願のポンプ10の流量は、従来の構成のポンプの流量よりも向上する。 Here, in the case of the same bending vibration, the node position of the flat plate 30P of the conventional configuration and the node position of the flat plate 30 of the configuration of the present application become the same. Accordingly, the volume of the pump chamber 100 of the present configuration in which the outer edge OE 30 is outside the node and the outer edge OE 30 is movable is larger than the volume of the pump chamber 100 P of the conventional configuration. Thereby, the flow rate of the pump 10 of this application improves rather than the flow rate of the pump of conventional structure.
 また、図3(A)の上段に示すように、本願の構成では、吸入時に、平板30の外縁OE30は、デフォルト位置よりも平板20側にある。一方、図3(A)の下段に示すように、従来の構成では、平板30Pの外縁はデフォルト位置から移動しない。 Further, as shown in the upper part of FIG. 3A, in the configuration of the present application, the outer edge OE 30 of the flat plate 30 is closer to the flat plate 20 than the default position at the time of inhalation. On the other hand, as shown in the lower part of FIG. 3A, in the conventional configuration, the outer edge of the flat plate 30P does not move from the default position.
 したがって、本願の構成では、従来の構成と比較して、吸入時に、ポンプ室100の側方の開口面積が小さくなる。これにより、本願の構成では、吸入時におけるポンプ室100の側方における逆流が抑制される。この結果、本願のポンプ10は、流量、圧力を向上できる。 Therefore, in the configuration of the present application, the side opening area of the pump chamber 100 is smaller at the time of suction as compared with the conventional configuration. Thereby, in the configuration of the present application, the backflow on the side of the pump chamber 100 at the time of suction is suppressed. As a result, the pump 10 of the present invention can improve the flow rate and pressure.
 さらに、本実施形態のポンプ10では、支持部材70における平板30への当接位置がノードを含む位置であるので、平板30の振動が支持部材70によって阻害されることを抑制できる。すなわち、支持部材70による平板30の振動の減衰が抑制できる。これにより、ポンプ10は、ポンプ効率が向上し、流量、圧力の向上が可能になる。 Furthermore, in the pump 10 of the present embodiment, the position at which the support member 70 abuts the flat plate 30 includes the node, so that the vibration of the flat plate 30 can be suppressed from being inhibited by the support member 70. That is, damping of the vibration of the flat plate 30 by the support member 70 can be suppressed. As a result, the pump 10 is improved in pump efficiency, and the flow rate and pressure can be improved.
 また、本実施形態のポンプ10では、支持部材70が平板30に当接する部分が接着層72であり、接着層72が高弾性部材であるので、平板30から支持部材70への振動エネルギーの漏洩が抑制される。これにより、ポンプ10は、ポンプ効率がさらに向上し、従来構成と同一の入力電圧に対して、流量、圧力の更なる向上が可能になる。 Further, in the pump 10 of the present embodiment, the portion where the support member 70 abuts on the flat plate 30 is the adhesive layer 72, and the adhesive layer 72 is a high elastic member. Therefore, the vibration energy leaks from the flat plate 30 to the support member 70 Is suppressed. As a result, the pump 10 further improves the pump efficiency, and enables further improvement of the flow rate and pressure with respect to the same input voltage as the conventional configuration.
 なお、支持部材70の構成は、次の構成であることが好ましい。図4(A)、図4(B)、図4(C)は、支持部材の一構成例を示す図である。図4(A)は、平板30の振動のデフォルト状態を示し、図4(B)、図4(C)は、平板30が振動してデフォルト状態から変化した状態を示す。 In addition, it is preferable that the structure of the supporting member 70 is the following structure. FIG. 4A, FIG. 4B, and FIG. 4C are diagrams showing one configuration example of the support member. 4A shows a default state of vibration of the flat plate 30, and FIGS. 4B and 4C show a state where the flat plate 30 vibrates and changes from the default state.
 図4(A)、図4(B)、図4(C)に示すように、支持部材70における主体71は、上述のように高剛性の材料からなり、平板30に当接する側の端部に向かって、徐々に先細りする形状である。そして、主体71における先細りする先端の端部が平板30に当接している。この際、主体71の先細りする先端と平板30のノードとが一致することが好ましい。これにより、上述のような、平板30から支持部材70への振動エネルギーの漏洩をより効果的に抑制できる。 As shown in FIGS. 4 (A), 4 (B) and 4 (C), the main body 71 of the support member 70 is made of a highly rigid material as described above, and the end on the side that contacts the flat plate 30 The shape gradually tapers towards the The end of the tapered end of the main body 71 is in contact with the flat plate 30. At this time, it is preferable that the tapered end of the main body 71 and the node of the flat plate 30 coincide with each other. As a result, the leakage of vibrational energy from the flat plate 30 to the support member 70 as described above can be suppressed more effectively.
 接着層72は、上述のように高弾性部材からなり、主体71における先細りする先端を覆う形状である。接着層72は、平板30にも当接している。これにより、平板30は、支持部材70によって面で接着される。 The adhesive layer 72 is made of a highly elastic member as described above, and is shaped to cover the tapered end of the main body 71. The adhesive layer 72 is also in contact with the flat plate 30. Thereby, the flat plate 30 is bonded on the surface by the support member 70.
 このような構成によって、支持部材70は、平板30を確実に支持、固定できる。さらに、接着層72は、平板30の振動によって変形するので、支持部材70は、平板30を固定しながら、振動の阻害を抑制できる。 With such a configuration, the support member 70 can support and fix the flat plate 30 securely. Further, since the adhesive layer 72 is deformed by the vibration of the flat plate 30, the support member 70 can suppress the inhibition of the vibration while fixing the flat plate 30.
 なお、先細り形状は、図4(A)、図4(B)、図4(C)に示すように、先端が丸みを帯びた形状(R面取りされた形状)であってもよく、所定の鋭角を形成する形状であってもよい。また、図4(A)、図4(B)、図4(C)では、接着層72の側面は、デフォルト状態で、主体71の側面と面一になっている。しかしながら、面一に限るものではなく、接着層72は省略も可能である。 In addition, as shown in FIG. 4 (A), FIG. 4 (B), and FIG. 4 (C), the tapered shape may be a shape having a rounded tip (a shape subjected to R-chamfering). It may be shaped to form an acute angle. 4A, 4B, and 4C, the side surface of the adhesive layer 72 is flush with the side surface of the main body 71 in the default state. However, the adhesive layer 72 is not limited to the same one, and the adhesive layer 72 can be omitted.
 また、上述の説明では、支持部材201、支持部材301、支持部材70が、それぞれに全周に亘って形成される構成を示した。しかしながら、支持部材201、支持部材301、支持部材70は、それぞれに周状の一部が形成される構成であってもよい。ただし、全周に亘って形成されることによって、平板20、および、平板30が安定して支持されるため、好適である。さらには、全周の全ての角度方向(方位)で支持されることで、角度方向(方位)間での振動に対する負荷のバラツキがなくなる。したがって、方位による流体の流れの差を抑制できる。また、振動がより正確に中心軸対称に伝わるため、流体搬送のエネルギー損失を小さくできる。 Further, in the above description, the configuration in which the support member 201, the support member 301, and the support member 70 are formed over the entire circumference is shown. However, each of the support member 201, the support member 301, and the support member 70 may have a configuration in which a circumferential portion is formed. However, since the flat plate 20 and the flat plate 30 are stably supported by being formed over the entire circumference, it is preferable. Furthermore, by supporting in all the angular directions (orientations) of the entire circumference, the variation in load for vibration between the angular directions (orientations) is eliminated. Therefore, it is possible to suppress the difference in fluid flow due to the orientation. In addition, since the vibration is transmitted to the central axis more accurately, energy loss in fluid transportation can be reduced.
 また、上述の説明では、支持部材70の幅(周方向に直交する方向(中心から外縁に向かう方向)の長さ)を特に設定していないが、少なくとも平板30への当接部分に関しては、上述の先細り形状の先端のように、可能な限り小さいことが好ましい。しかしながら、この幅は、ある程度の大きさを持っていてもよい。例えば、機能的には、平板30から支持部材70への振動エネルギーの漏洩を加味して、ポンプ10として要求されるポンプ性能を得られる程度の大きさであればよい。 In the above description, the width (the length in the direction orthogonal to the circumferential direction (the direction from the center toward the outer edge)) of the support member 70 is not particularly set, but at least the contact portion to the flat plate 30 As small as the tapered tip described above, it is preferable to be as small as possible. However, this width may have a certain size. For example, in consideration of leakage of vibrational energy from the flat plate 30 to the support member 70, the pump 10 may have a size that can obtain the pump performance required for the pump 10 in terms of function.
 また、本実施形態では、壁700を第1部分710と第2部分720との積層部材で構成している。この場合、第1部分710は、支持部材70の主体71と一体形成して、これら第1部分710と主体71とは、少なくとも一箇所(図示を省略)で連接している。同様に、第2部分720は、支持部材70の接着層72と一体形成して、これら第2部分720と接着層72とは、少なくとも一箇所(図示を省略)で連接している。このような構成によって、筐体に対する支持部材70の位置決めが容易になる。 Further, in the present embodiment, the wall 700 is formed of a laminated member of the first portion 710 and the second portion 720. In this case, the first portion 710 is integrally formed with the main body 71 of the support member 70, and the first portion 710 and the main body 71 are connected at at least one place (not shown). Similarly, the second portion 720 is integrally formed with the adhesive layer 72 of the support member 70, and the second portion 720 and the adhesive layer 72 are connected at at least one point (not shown). Such a configuration facilitates the positioning of the support member 70 with respect to the housing.
 次に、本発明の第2の実施形態に係るポンプについて、図を参照して説明する。図5は、本発明の第2の実施形態に係るポンプの構成を示す側面断面図である。 Next, a pump according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a side sectional view showing the configuration of a pump according to a second embodiment of the present invention.
 図5に示すように、第2の実施形態に係るポンプ10Aは、第1の実施形態に係るポンプ10に対して、支持部材301を省略した点において異なる。ポンプ10Aの他の基本的な構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 5, the pump 10A according to the second embodiment differs from the pump 10 according to the first embodiment in that the support member 301 is omitted. The other basic configuration of the pump 10A is the same as that of the pump 10, and the description of the same parts will be omitted.
 図5に示すように、ポンプ10Aでは、平板30は、支持部材70のみによって支持されている。 As shown in FIG. 5, in the pump 10A, the flat plate 30 is supported only by the support member 70.
 このような構成であっても、第1の実施形態と同様に、平板30の外縁OE30は、振動の自由端となる。したがって、ポンプ10Aは、ポンプ10と同様に、高い流量、および、高い圧力を実現できる。 Even in such a configuration, the outer edge OE30 of the flat plate 30 becomes a free end of vibration as in the first embodiment. Therefore, the pump 10A can realize high flow rate and high pressure as the pump 10 does.
 次に、本発明の第3の実施形態に係るポンプについて、図を参照して説明する。図6は、本発明の第3の実施形態に係るポンプの構成を示す側面断面図である。図7は、本発明の第3の実施形態に係るポンプの構成を示す分解斜視図である。 Next, a pump according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a side cross-sectional view showing the structure of a pump according to a third embodiment of the present invention. FIG. 7 is an exploded perspective view showing the configuration of a pump according to a third embodiment of the present invention.
 図6、図7に示すように、第3の実施形態に係るポンプ10Bは、第1の実施形態に係るポンプ10に対して、平板30Bの形状および平板30Bの支持位置において異なる。ポンプ10Bの他の構成は、ポンプ10と同様であり、同様の箇所の説明は書略する。 As shown in FIGS. 6 and 7, the pump 10B according to the third embodiment is different from the pump 10 according to the first embodiment in the shape of the flat plate 30B and the support position of the flat plate 30B. The other configuration of the pump 10B is similar to that of the pump 10, and the description of the same parts will be omitted.
 図6、図7に示すように、平板30Bは、平板20と略同じ形状からなる。平板30Bの厚みは、平板20の厚みよりも薄い。この際、平板30Bの形状は、平板20の1次共振周波数と平板30Bの2次共振周波数とが略一致するように設定されている。平板30Bの中心POには、平板30Bを厚み方向に貫通する円筒形の吸入口101Bが形成されている。 As shown in FIGS. 6 and 7, the flat plate 30 </ b> B has substantially the same shape as the flat plate 20. The thickness of the flat plate 30B is thinner than the thickness of the flat plate 20. At this time, the shape of the flat plate 30B is set such that the primary resonant frequency of the flat plate 20 and the secondary resonant frequency of the flat plate 30B substantially coincide with each other. A cylindrical suction port 101B penetrating the flat plate 30B in the thickness direction is formed at the center PO of the flat plate 30B.
 支持部材70は、平板30Bの中心PO付近に配置されている。支持部材70は、円環状である。支持部材70の円環形の内側の側面は、吸入口101Bの外縁OE101に対して略面一である。支持部材70の幅は、第1の実施形態に示した態様と略同じである。 The support member 70 is disposed near the center PO of the flat plate 30B. The support member 70 is annular. The annular inner side surface of the support member 70 is substantially flush with the outer edge OE101 of the suction port 101B. The width of the support member 70 is substantially the same as the aspect shown in the first embodiment.
 このような構成によって、ポンプ10Bでは、平板20が1次モードでベンディング振動を生じると、ポンプ室100Bの圧力変動が生じる。平板30Bは、このポンプ室100Bの圧力変動をうけて、中心POを固定端とし、外縁OE30を自由端とする2次モードのベンディング振動を生じる。 With such a configuration, in the pump 10B, when the flat plate 20 generates bending vibration in the primary mode, pressure fluctuation of the pump chamber 100B occurs. The flat plate 30B receives the pressure fluctuation of the pump chamber 100B to generate a bending vibration of a secondary mode having the center PO as a fixed end and the outer edge OE 30 as a free end.
 これにより、平板20および平板30Bの放射方向(中心から外縁に向かう方向)での平板20のベンディング振動の定在波と平板30Bのベンディング振動の定在波との位置関係が空間的に略90°の位相差を有する。また、平板30Bの振動は、平板20の振動で生成された圧力によって励振されるため、時間的な位相遅れが発生する。これら空間的位相差と時間的位相差によって、ポンプ室100Bの高さの変動は、進行波関数に類似し、流体は、ポンプ室100Bの中心から外縁方向に搬送される。 Thereby, the positional relationship between the standing wave of the bending vibration of the flat plate 20 and the standing wave of the bending vibration of the flat plate 30B in the radial direction (direction from the center toward the outer edge) of the flat plate 20 and the flat plate 30B is approximately 90 It has a phase difference of °. Further, since the vibration of the flat plate 30B is excited by the pressure generated by the vibration of the flat plate 20, a temporal phase delay occurs. Due to the spatial phase difference and the temporal phase difference, the height variation of the pump chamber 100B resembles a traveling wave function, and the fluid is transported from the center of the pump chamber 100B toward the outer edge.
 図8は、本発明の第3の実施形態に係るポンプの動作を概略的に示す側面図である。図8において、破線は、平板20および平板30Bのデフォルト位置を示している。ポンプ10Bは、図8に示すステートST1、ST2、ST3、ST4を順次繰り返すことによって、流体を搬送する。 FIG. 8 is a side view schematically showing the operation of a pump according to a third embodiment of the present invention. In FIG. 8, broken lines indicate default positions of the flat plate 20 and the flat plate 30B. The pump 10B transports the fluid by sequentially repeating the states ST1, ST2, ST3 and ST4 shown in FIG.
 ステートST1では、平板20の中央は、デフォルト状態よりも平板30Bから離間し、平板20の外縁は、デフォルト状態よりも平板30B側に近接する。平板30Bは、略デフォルト位置にあり、平坦である。これにより、ポンプ室100Bは外部に対して負圧になり、流体が吸入される。 In the state ST1, the center of the flat plate 20 is farther from the flat plate 30B than the default state, and the outer edge of the flat plate 20 is closer to the flat plate 30B than the default state. The flat plate 30B is approximately at the default position and flat. As a result, the pump chamber 100B has a negative pressure with respect to the outside, and the fluid is sucked.
 ステートST2では、平板20は、略デフォルト位置にあり、平坦である。平板30Bにおける中心とノードとの間の領域は、デフォルト状態よりも平板20から離間し、平板30Bの外縁は、デフォルト状態よりも平板20側に近接する。この場合も、ポンプ室100Bは外部に対して負圧になり、流体が吸入される。さらに、平板20と平板30Bとの距離が最も長い位置(部分的な体積が最も多きな位置)は、中心から外縁側に移動する。 In the state ST2, the flat plate 20 is approximately at the default position and flat. The region between the center and the node in flat plate 30B is farther from flat plate 20 than in the default state, and the outer edge of flat plate 30B is closer to flat plate 20 than in the default state. Also in this case, the pump chamber 100B is negatively pressurized to the outside, and the fluid is sucked. Furthermore, the position where the distance between the flat plate 20 and the flat plate 30B is the longest (the position where the partial volume is the largest) moves from the center to the outer edge side.
 ステートST3では、平板20の中央は、デフォルト状態よりも平板30B側に近接し、平板20の外縁は、デフォルト状態よりも平板30Bから離間する。平板30Bは、略デフォルト位置にあり、平坦である。これにより、ポンプ室100Bの中央では平板20と平板30Bとの距離が短くなり、中央から外縁に向かうにしたがって、平板20と平板30Bとの距離は長くなる。このため、ステートST1、ST2でポンプ室100Bに吸入された流体は、外縁方向に押し出され、吐出される。 In the state ST3, the center of the flat plate 20 is closer to the flat plate 30B than the default state, and the outer edge of the flat plate 20 is farther from the flat plate 30B than the default state. The flat plate 30B is approximately at the default position and flat. Thus, the distance between the flat plate 20 and the flat plate 30B is shortened at the center of the pump chamber 100B, and the distance between the flat plate 20 and the flat plate 30B is increased from the center toward the outer edge. For this reason, the fluid drawn into the pump chamber 100B in the states ST1 and ST2 is pushed out and discharged in the outer edge direction.
 ステートST4では、平板20は、略デフォルト位置にあり、平坦である。平板30Bの中心とノードとの間の領域は、デフォルト状態よりも平板30B側に近接し、平板30Bの外縁は、デフォルト状態よりも平板20から離間する。これにより、ポンプ室100Bの中央とノードとの間の領域では平板20と平板30Bとの距離が短くなり、中央から外縁に向かうにしたがって、この距離は長くなる。このため、ステートST3で外縁方向に押し出された流体は、さらに外縁方向に押し出され、吐出される。 In the state ST4, the flat plate 20 is approximately at the default position and flat. The region between the center and the node of the flat plate 30B is closer to the flat plate 30B than the default state, and the outer edge of the flat plate 30B is farther from the flat plate 20 than the default state. As a result, in the region between the center of pump chamber 100B and the node, the distance between flat plate 20 and flat plate 30B becomes shorter, and this distance becomes longer from the center toward the outer edge. Therefore, the fluid pushed outward in the state ST3 is further pushed outward and discharged.
 このような動作によって、ポンプ10Bは、吸入口101Bから吸入した流体を、平板20および平板30Bの外縁側から吐出する動作を繰り返すことができる。 By such an operation, the pump 10B can repeat the operation of discharging the fluid sucked from the suction port 101B from the outer edge side of the flat plate 20 and the flat plate 30B.
 また、この構成では、平板20と平板30Bとは、略同一の周波数で、それぞれ全面が可動域となる。これにより、ポンプ室100Bの体積を向上でき、高い流量を実現できる。 Further, in this configuration, the entire surface of the flat plate 20 and the flat plate 30B is the movable range at substantially the same frequency. Thereby, the volume of the pump chamber 100B can be improved, and a high flow rate can be realized.
 また、この構成では、平板30Bの中心POの領域が支持されているので、支持部材70に対しては、ポンプ室100Bの圧力変動に応じた垂直応力(平板30Bの主面に直交する方向の応力)のみが作用し、水平応力(平板30Bの主面に平行な方向の応力)は作用しない。これにより、支持部材70の不要振動による振動エネルギーの漏洩が抑制され、振動のためのエネルギー効率が向上する。 Further, in this configuration, since the region of the center PO of the flat plate 30B is supported, the vertical stress (in the direction orthogonal to the main surface of the flat plate 30B) according to the pressure fluctuation of the pump chamber 100B is applied to the support member 70. Only the stress) acts, and the horizontal stress (stress in the direction parallel to the main surface of the flat plate 30B) does not act. Thereby, the leakage of the vibrational energy due to the unnecessary vibration of the support member 70 is suppressed, and the energy efficiency for the vibration is improved.
 なお、本実施形態では、平板30Bの振動に2次モードを利用する態様を示したが、他次のモードを利用することも可能である。 In the present embodiment, a mode in which the secondary mode is used for the vibration of the flat plate 30B is shown, but it is also possible to use another mode.
 次に、本発明の第4の実施形態に係るポンプについて、図を参照して説明する。図9は、本発明の第4の実施形態に係るポンプの構成を示す側面断面図である。 Next, a pump according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a side cross-sectional view showing the configuration of a pump according to a fourth embodiment of the present invention.
 図9に示すように、第4の実施形態に係るポンプ10Cは、第1の実施形態に係るポンプ10に対して、支持部材201Cの形状において異なる。ポンプ10Cの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 9, the pump 10C according to the fourth embodiment differs from the pump 10 according to the first embodiment in the shape of the support member 201C. The other configuration of the pump 10C is the same as that of the pump 10, and the description of the same parts will be omitted.
 支持部材201Cは、環状(周状)の壁202Cにおける内周側の部分であり、壁202Cにおける壁50に接続(接合、接着)されていない部分である。支持部材201Cは、平板20の外縁OE20に接続している。すなわち、支持部材201Cは、平板20の外縁OE20に沿って周状に形成されている。 The support member 201C is a portion on the inner peripheral side of the annular (circumferential) wall 202C, and is a portion not connected (bonded, adhered) to the wall 50 in the wall 202C. The support member 201 C is connected to the outer edge OE 20 of the flat plate 20. That is, the support member 201C is formed circumferentially along the outer edge OE20 of the flat plate 20.
 壁202Cは、平板20とは異なる部材からなり、可撓性を有する。したがって、支持部材201Cは、可撓性を有する。これにより、平板20は、振動可能に支持される。 The wall 202C is made of a member different from the flat plate 20 and has flexibility. Therefore, the support member 201C has flexibility. Thereby, the flat plate 20 is vibratably supported.
 支持部材201Cには、主面間を貫通する複数の貫通孔が設けられている。これら複数の貫通孔が、吐出口102となる。複数の貫通孔は、平板20の外縁OE20に沿って周状に配置されることが好ましい。 The support member 201C is provided with a plurality of through holes penetrating between the main surfaces. The plurality of through holes serve as the discharge port 102. The plurality of through holes are preferably arranged circumferentially along the outer edge OE 20 of the flat plate 20.
 このような構成により、ポンプ10Cは、第1の実施形態のポンプ10と同様の作用効果を得ることができる。 With such a configuration, the pump 10C can obtain the same function and effect as the pump 10 of the first embodiment.
 次に、本発明の第5の実施形態に係るポンプについて、図を参照して説明する。図10は、本発明の第5の実施形態に係るポンプの構成を示す側面断面図である。 Next, a pump according to a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 10 is a side cross-sectional view showing the structure of a pump according to a fifth embodiment of the present invention.
 図10に示すように、第5の実施形態に係るポンプ10Dは、第1の実施形態に係るポンプ10に対して、吐出口102の形成位置において異なる。ポンプ10Dの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 10, the pump 10D according to the fifth embodiment differs from the pump 10 according to the first embodiment in the formation position of the discharge port 102. The other configuration of the pump 10D is the same as that of the pump 10, and the description of the same portions will be omitted.
 吐出口102は、壁50を内面から外面に貫通する形状である。これにより、ポンプ室100とポンプ10Dの外部とは連通する。なお、吐出口102の個数および大きさは、ポンプ10Dの特性に基づいて適宜設定すればよい。これに伴い、支持部材201には、孔が形成されていない。 The outlet 102 is shaped to penetrate the wall 50 from the inner surface to the outer surface. Thus, the pump chamber 100 communicates with the outside of the pump 10D. The number and the size of the discharge ports 102 may be appropriately set based on the characteristics of the pump 10D. Along with this, no hole is formed in the support member 201.
 このような構成により、ポンプ10Dは、ポンプ10と同様の作用効果を得ることができる。 With such a configuration, the pump 10D can obtain the same effects as the pump 10.
 なお、上述の第1、第2、第4、第5の実施形態に示した構成では、平板30の中心POに吸入口101を形成する態様を示した。この場合、吸入口101が中心PO付近にあってもよい。しかしながら、吸入口101は、平板30の中心POを含むように形成することが好ましく、さらには、吸入口101の中心は平板30の中心POに一致することが好ましい。これは、第3の実施形態も同様である。また、吸入口101が中心POに1つ形成されることによって、ポンプ室100の径方向(中心POから外周へ向かう方向)に沿った流体の流れが吸入口101によって妨げられない。 In the configurations shown in the first, second, fourth and fifth embodiments described above, the aspect in which the suction port 101 is formed at the center PO of the flat plate 30 is shown. In this case, the suction port 101 may be near the center PO. However, the suction port 101 is preferably formed so as to include the center PO of the flat plate 30, and it is preferable that the center of the suction port 101 coincides with the center PO of the flat plate 30. The same applies to the third embodiment. In addition, since one suction port 101 is formed at the center PO, the flow of fluid along the radial direction (the direction from the center PO toward the outer periphery) of the pump chamber 100 is not blocked by the suction port 101.
 また、上述の各実施形態では、吸入口が円筒形である態様を示したが、断面が正多角形の筒状であってもよい。 Moreover, in the above-mentioned each embodiment, although the aspect which is a cylindrical inlet was shown, the cross section may be cylindrical shape of a regular polygon.
 また、上述の各実施形態では、平板20における平板30に対向する面と反対側の面に圧電素子40を配置する態様を示した。しかしながら、平板20における平板30に対向する面に圧電素子40を配置することが可能になる。しかしながら、平板20における平板30に対向する面と反対側の面に圧電素子40を配置する態様とすることで、ポンプ室100の体積を大きくでき、振動による平板20および圧電素子40と平板30との接触を抑制できる。 Moreover, in the above-mentioned each embodiment, the aspect which arrange | positions the piezoelectric element 40 in the surface on the opposite side to the surface facing the flat plate 30 in the flat plate 20 was shown. However, the piezoelectric element 40 can be disposed on the surface of the flat plate 20 facing the flat plate 30. However, the volume of the pump chamber 100 can be increased by disposing the piezoelectric element 40 on the surface of the flat plate 20 opposite to the surface facing the flat plate 30, and the flat plate 20, the piezoelectric element 40, and the flat plate 30 by vibration. Contact can be suppressed.
 また、支持部材70は、平板30におけるノードの位置、または、平板30Bにおける中心領域に当接する態様を示した。しかしながら、支持部材70は、平板30における吸入口101と外縁OE30との間であって該外縁OE30に接しない位置であれば、少なくとも効果を得ることが可能である。 In addition, the support member 70 is in contact with the position of the node in the flat plate 30 or the central region in the flat plate 30B. However, it is possible to obtain at least the effect if the support member 70 is a position between the suction port 101 and the outer edge OE 30 in the flat plate 30 and not in contact with the outer edge OE 30.
 また、上述の各実施形態の構成は、適宜、組合せが可能であり、それぞれの組合せに応じた作用効果を得ることができる。 Further, the configurations of the above-described embodiments can be combined as appropriate, and an operation and effect corresponding to each combination can be obtained.
 また、上述の各実施形態に係るポンプは、例えば、血圧計、搾乳器、陰圧閉鎖療法装置等に利用可能である。そして、上述の各実施形態に係るポンプを用いることによって、血圧計、搾乳器、陰圧閉鎖療法装置等の装置性能は向上する。 Moreover, the pump which concerns on each above-mentioned embodiment is applicable to a sphygmomanometer, a breast pump, a negative pressure closing therapy apparatus etc., for example. And the device performance of a sphygmomanometer, a breast pump, a negative pressure closing therapy apparatus etc. improves by using the pump which concerns on the above-mentioned each embodiment.
10、10A、10B、10C、10D:ポンプ
20:平板
30、30B:平板
OE30:外縁
40:圧電素子
50、202、202C、302、700:壁
60:支持体
70:支持部材
71:主体
72:接着層
100、100B:ポンプ室
101、101B:吸入口
102:吐出口
201、201C:支持部材
301:支持部材
OE20:外縁
OE30:外縁
PO:中心
10, 10A, 10B, 10C, 10D: pump 20: flat plate 30, 30B: flat plate OE 30: outer edge 40: piezoelectric element 50, 202, 202C, 302, 700: wall 60: support 70: support member 71: main body 72: Adhesive layer 100, 100 B: pump chamber 101, 101 B: suction port 102: discharge port 201, 201 C: support member 301: support member OE 20: outer edge OE 30: outer edge PO: center

Claims (17)

  1.  一方主面に圧電素子が配置された第1振動板と、
     前記第1振動板の前記一方主面または他方主面に離間して対向し、平面視の中央または略中央に吸入口を有する第2振動板と、
     前記第1振動板から前記第2振動板に平面視して、前記吸入口および前記第1振動板と前記第2振動板の中心よりも外縁側に設けられた吐出口と、
     前記第1振動板の外縁を振動可能に支持する第1支持部材と、
     前記吸入口と前記第2振動板の外縁との間であって該外縁に接しない位置で、前記第2振動板を支持する第2支持部材と、
     を備える、ポンプ。
    A first diaphragm in which a piezoelectric element is disposed on one main surface,
    A second diaphragm which faces the first main surface or the second main surface of the first diaphragm at a distance from and has a suction port at the center or substantially the center of a plan view;
    A discharge port provided on an outer edge side of a center of the suction port, the first diaphragm, and the second diaphragm in plan view of the first diaphragm to the second diaphragm;
    A first support member vibratably supporting an outer edge of the first diaphragm;
    A second support member for supporting the second diaphragm at a position between the suction port and the outer edge of the second diaphragm and not in contact with the outer edge;
    , With a pump.
  2.  前記第2支持部材は、前記第2振動板の自由振動のノードを含む位置で接している、
     請求項1に記載のポンプ。
    The second support member contacts at a position including a node of free vibration of the second diaphragm.
    The pump according to claim 1.
  3.  前記第2支持部材の内端は、前記吸入口の外縁に略接している、
     請求項1に記載のポンプ。
    The inner end of the second support member is substantially in contact with the outer edge of the suction port,
    The pump according to claim 1.
  4.  前記第2振動板は、前記第1振動板と略同じ面積である、
     請求項3に記載のポンプ。
    The second diaphragm has substantially the same area as the first diaphragm.
    The pump according to claim 3.
  5.  前記第2振動板は、前記第1振動板と前記第2振動板との間に形成されるポンプ室の前記第1振動板のベンディング振動による圧力変動によって、2次モードのベンディング振動を生じる形状である、
     請求項3または請求項4に記載のポンプ。
    The second diaphragm has a shape that causes bending vibration in a secondary mode by pressure fluctuation due to bending vibration of the first diaphragm of the pump chamber formed between the first diaphragm and the second diaphragm. Is
    The pump according to claim 3 or 4.
  6.  前記第2支持部材は、前記第2振動板の主面を平面視した場合において周状に形成されている、
     請求項1乃至請求項5のいずれかに記載のポンプ。
    The second support member is circumferentially formed when the main surface of the second diaphragm is viewed in plan.
    The pump according to any one of claims 1 to 5.
  7.  前記第2支持部材は、第2振動板の自由振動を阻害しない大きさである、
     請求項2乃至請求項6のいずれかに記載のポンプ。
    The second support member has a size that does not inhibit free vibration of the second diaphragm.
    The pump according to any one of claims 2 to 6.
  8.  前記第2支持部材における前記第2振動板との当接部は、高弾性率部材である、
     請求項1乃至請求項7のいずれかに記載のポンプ。
    The contact portion of the second support member with the second diaphragm is a high elastic modulus member.
    The pump according to any one of claims 1 to 7.
  9.  前記吐出口は、複数の第1支持部材における、1の第1支持部材と隣接する第1支持部材との間に設けられている、
     請求項1乃至請求項8のいずれかに記載のポンプ。
    The discharge port is provided between one first support member and an adjacent first support member in a plurality of first support members.
    A pump according to any one of the preceding claims.
  10.  前記吐出口は、前記第1振動板の外縁に沿って周状に設けられた前記第1支持部材に、形成されている、
     請求項1乃至請求項8のいずれかに記載のポンプ。
    The discharge port is formed in the first support member circumferentially provided along the outer edge of the first diaphragm.
    A pump according to any one of the preceding claims.
  11.  前記第1振動板と前記第2振動板とともにポンプ室を形成する壁を備え、
     前記吐出口は、前記壁に設けられている、
     請求項1乃至請求項10のいずれかに記載のポンプ。
    A wall that forms a pump chamber together with the first diaphragm and the second diaphragm;
    The outlet is provided in the wall,
    The pump according to any one of claims 1 to 10.
  12.  前記吸入口は、前記第2振動板の主面を平面視して中央に1つ形成されている、
     請求項1乃至請求項11のいずれかに記載のポンプ。
    The suction port is formed at the center of the main surface of the second diaphragm in plan view.
    The pump according to any one of claims 1 to 11.
  13.  前記第2振動板は、正多角形である、
     請求項1乃至請求項12のいずれかに記載のポンプ。
    The second diaphragm is a regular polygon,
    The pump according to any one of claims 1 to 12.
  14.  前記第2振動板は、円形である、
     請求項13に記載のポンプ。
    The second diaphragm is circular,
    14. A pump according to claim 13.
  15.  前記第1振動板は、正多角形である、
     請求項1乃至請求項14のいずれかに記載のポンプ。
    The first diaphragm is a regular polygon,
    The pump according to any one of claims 1 to 14.
  16.  前記第1振動板は、円形である、
     請求項15に記載のポンプ。
    The first diaphragm is circular,
    The pump of claim 15.
  17.  前記第2振動板の外縁を振動可能に支持する第3支持部材を、前記第2振動板の外縁の外側に備える、
     請求項1乃至請求項16のいずれかに記載のポンプ。
    A third support member that vibratably supports the outer edge of the second diaphragm is provided outside the outer edge of the second diaphragm.
    17. A pump according to any of the preceding claims.
PCT/JP2018/044656 2017-12-08 2018-12-05 Pump WO2019111922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235657 2017-12-08
JP2017-235657 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019111922A1 true WO2019111922A1 (en) 2019-06-13

Family

ID=66751057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044656 WO2019111922A1 (en) 2017-12-08 2018-12-05 Pump

Country Status (1)

Country Link
WO (1) WO2019111922A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148008A1 (en) * 2008-06-03 2009-12-10 株式会社村田製作所 Piezoelectric micro-blower
JP2014098396A (en) * 2010-05-21 2014-05-29 Murata Mfg Co Ltd Fluid pump
TWI606936B (en) * 2016-09-05 2017-12-01 研能科技股份有限公司 Fluid control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148008A1 (en) * 2008-06-03 2009-12-10 株式会社村田製作所 Piezoelectric micro-blower
JP2014098396A (en) * 2010-05-21 2014-05-29 Murata Mfg Co Ltd Fluid pump
TWI606936B (en) * 2016-09-05 2017-12-01 研能科技股份有限公司 Fluid control device

Similar Documents

Publication Publication Date Title
CN111492142B (en) Pump and method of operating the same
JP6052475B2 (en) Fluid control device
US10947965B2 (en) Blower
US11635072B2 (en) Pump
CN108317093B (en) Blower fan
WO2019131706A1 (en) Pump
CN109477478B (en) Valve and gas control device
JP6904436B2 (en) Pump and fluid control
JP6741176B2 (en) Pumps and fluid controls
US10125760B2 (en) Pump
US11879449B2 (en) Piezoelectric pump with vibrating plate, protrusion and valve arrangement
JP2019031946A (en) Fluid control device, sphygmomanometer, milking machine and negative-pressure wound therapy device
WO2019111922A1 (en) Pump
US11300115B2 (en) Pump and fluid control device
US11566615B2 (en) Pump and fluid control apparatus
JP2020041500A (en) pump
WO2019111982A1 (en) Pump
JP2019190343A (en) pump
JP2023126990A (en) Pump and fluid control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP