[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019111607A1 - エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材 - Google Patents

エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材 Download PDF

Info

Publication number
WO2019111607A1
WO2019111607A1 PCT/JP2018/040831 JP2018040831W WO2019111607A1 WO 2019111607 A1 WO2019111607 A1 WO 2019111607A1 JP 2018040831 W JP2018040831 W JP 2018040831W WO 2019111607 A1 WO2019111607 A1 WO 2019111607A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
curing agent
resin composition
fiber
resin curing
Prior art date
Application number
PCT/JP2018/040831
Other languages
English (en)
French (fr)
Inventor
唯我 浅井
孝介 池内
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201880073511.2A priority Critical patent/CN111417667B/zh
Priority to JP2019558078A priority patent/JP7322709B2/ja
Publication of WO2019111607A1 publication Critical patent/WO2019111607A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin curing agent, an epoxy resin composition containing the epoxy resin curing agent and an epoxy resin, a cured product thereof, and a fiber-reinforced composite comprising a cured product of the epoxy resin composition and a reinforcing fiber. It relates to the material.
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRP since the molding method of CFRP is different in automobile structural material application, wind power generation blade application, pressure vessel application, and aerospace application, the required characteristics for the matrix resin for CFRP also differ depending on the application.
  • wind power generation blades have come to be molded by injection molding, vacuum assisted resin transfer molding (Va-RTM) or light-RTM.
  • Va-RTM vacuum assisted resin transfer molding
  • reinforcing fibers are arranged in advance in a mold consisting of an upper mold and a lower mold using a film or FRP, and the inside of the mold is evacuated to form an epoxy resin composition as a matrix resin. It is filled at normal pressure to impregnate into reinforcing fibers and then the epoxy resin is cured and shaped.
  • an epoxy resin composition in which an epoxy resin and an epoxy resin curing agent are mixed is usually filled into a mold due to the characteristics of the molding method. It takes several tens of minutes. Therefore, it is required that the epoxy resin composition used in these molding methods have a low viscosity and a long pot life.
  • an epoxy resin curing agent isophorone diamine, a polyamine compound having a polyether skeleton, and the like are used.
  • the filament winding method is a method in which the outer surface of a liner is coated with a reinforcing fiber yarn in which a reinforcing fiber yarn is impregnated with a matrix resin such as an epoxy resin composition, and then the matrix resin is cured.
  • a matrix resin such as an epoxy resin composition
  • CFRP for automobile structural materials is molded by the high cycle RTM method.
  • the conventional RTM method is one of closed mold molding using a pair of upper and lower molds, a fiber reinforced preform is disposed in the mold, and after clamping and sealing the mold, epoxy resin is injected from the injection hole A resin such as a composition is injected into a mold and impregnated into a fiber reinforced preform, and then the resin is cured and then released.
  • the conventional RTM method requires several hours for molding time (preform placement, resin impregnation, resin curing, and mold release), and therefore, in the production of CFRP for automotive structural material applications, a higher productivity high cycle is achieved.
  • the RTM method is used.
  • the molding technology by the high cycle RTM method significantly reduced all of the placement time of the fiber reinforced preform, the impregnation time of the resin, the curing time of the resin, and the mold release time, and reduced the total molding time to about 10 minutes. It is a thing.
  • the high cycle RTM method in the process from resin impregnation to curing, for example, in the high pressure RTM method, which is a type of high cycle RTM method, reinforcing fibers are placed in a pair of upper and lower molds and sealed to seal the inside of the molds. Reduce pressure.
  • the epoxy resin which is the main component of the epoxy resin composition
  • the epoxy resin curing agent are pumped from separate tanks to the mixing head in the form of mist and injected immediately into the mold after collision mixing to impregnate the carbon fiber. And cure the epoxy resin.
  • the epoxy resin composition is injected at high pressure from a plurality of injection holes in order to increase the filling speed into the mold and the impregnation speed into the carbon fiber.
  • AEP N-aminoethyl piperazine
  • IPDA isophorone diamine
  • An object of the present invention is to provide a pot life of an epoxy resin composition obtained which contains N-aminoethyl piperazine and / or isophorone diamine which is widely used as an epoxy resin curing agent component, which is rapidly curable and has a low viscosity.
  • An epoxy resin curing agent capable of improving the heat resistance of a cured product, an epoxy resin composition containing the same and a cured product thereof, and a fiber reinforced composite material comprising the cured product of the epoxy resin composition and reinforcing fibers It is.
  • an epoxy resin curing agent containing at least one compound selected from the group consisting of N-aminoethyl piperazine and isophorone diamine and bis (aminomethyl) cyclohexane Found that the above problems can be solved.
  • the present invention relates to the following [1] to [9].
  • An epoxy resin curing agent containing at least one compound (A) selected from the group consisting of N-aminoethyl piperazine and isophorone diamine and bis (aminomethyl) cyclohexane (B).
  • A selected from the group consisting of N-aminoethyl piperazine and isophorone diamine and bis (aminomethyl) cyclohexane
  • B bis (aminomethyl) cyclohexane
  • the epoxy resin cured as described in the above [1], wherein the mass ratio of the (A) component to the (B) component satisfies 0.575 ⁇ (A) / [(A) + (B)] ⁇ 1.
  • Agent [3] The epoxy resin curing agent according to the above [1] or [2], wherein the component (A) is N-aminoethyl piperazine.
  • the epoxy resin curing agent of the present invention comprises at least one compound (A) selected from the group consisting of N-aminoethyl piperazine (AEP) and isophorone diamine (IPDA), and bis (aminomethyl) cyclohexane (B) contains.
  • AEP N-aminoethyl piperazine
  • IPDA isophorone diamine
  • B bis (aminomethyl) cyclohexane
  • the present invention improves various characteristics derived from AEP and IPDA by blending bis (aminomethyl) cyclohexane in an epoxy resin curing agent containing AEP and IPDA which are widely used as an epoxy resin curing agent component, It has been found that the rapid curing property, low viscosity and long pot life of the obtained epoxy resin composition can be achieved, and the heat resistance of the cured product can be improved.
  • the epoxy resin curing agent of the present invention contains, as component (A), at least one compound selected from the group consisting of N-aminoethyl piperazine (AEP) and isophorone diamine (IPDA). These compounds are widely used as epoxy resin curing agent components and are excellent in economy.
  • AEP has the advantages of rapid curing and low viscosity, and improved toughness of the cured product of the resulting epoxy resin composition.
  • IPDA also has the advantage that the pot life of the resulting epoxy resin composition is extended and the heat resistance of the cured product is increased.
  • At least one compound selected from the group consisting of AEP and IPDA can be appropriately selected as the component (A) used in the present invention, according to the desired performance and application.
  • AEP and IPDA are used in combination, the content ratio thereof is not particularly limited.
  • AEP and IPDA may be used at a mass ratio of 1/99 to 99/1, preferably 5/95 to 95/5.
  • the component (A) is N-aminoethyl piperazine or N-amino ethyl piperazine and isophorone from the viewpoint of rapid curing and low viscosity. It is preferably a mixture of diamines, more preferably N-aminoethyl piperazine.
  • the epoxy resin curing agent of the present invention contains a predetermined amount of bis (aminomethyl) cyclohexane as the component (B).
  • the epoxy resin composition containing the epoxy resin curing agent containing the said (A) component rapid curability, low viscosity, long pot life can be achieved, and the heat resistance of the cured product can also be improved.
  • methyl) cyclohexane include 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane, and one of these may be used alone. Or two or more kinds can be used in combination.
  • 1,3-bis (aminomethyl) cyclohexane is preferable.
  • Bis (aminomethyl) cyclohexane may be in cis form, trans form or a mixture thereof.
  • the molar ratio of cis form / trans form is preferably 5/95 to 95/5, more preferably 10/90 to 90/10. .
  • the epoxy resin curing agent of the present invention preferably satisfies a mass ratio of component (A) to component (B) of 0.575 ⁇ (A) / [(A) + (B)] ⁇ 1.
  • a mass ratio of component (A) to component (B) 0.575 ⁇ (A) / [(A) + (B)] ⁇ 1.
  • the mass ratio (A) / [(A) + (B)] is 1, ie, the component (B) is not contained, the rapid curing property, low viscosity, long pot life or cured product of the resulting epoxy resin composition
  • One of the high heat resistance of can not be achieved.
  • the mass ratio (A) / [(A) + (B)] exceeds 0.575, the proportion of AEP or IPDA in the epoxy resin curing agent is high, which is excellent in economics.
  • various properties derived from AEP or IPDA can be easily expressed.
  • the mass ratio (A) / [(A) + (A) of the epoxy resin curing agent of the present invention is obtained.
  • B) is preferably 0.95 or less, more preferably 0.90 or less, still more preferably 0.85 or less, and from the viewpoint of expressing various properties derived from AEP or IPDA, more preferably 0. 60 or more, more preferably 0.65 or more, still more preferably 0.70 or more, and still more preferably 0.75 or more.
  • the epoxy resin curing agent of the present invention may contain a known curing agent other than the component (A) and the component (B), a known curing accelerator, an additive, a solvent, and the like.
  • curing agents other than the components (A) and (B) include polyamine compounds having two or more amino groups in the molecule other than the components (A) and (B), or modified products thereof.
  • polyamine compound examples include linear aliphatic polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexamethylenediamine, 2-methylpentamethylenediamine and trimethylhexamethylenediamine; o Aromatic ring-containing aliphatic polyamine compounds such as xylylenediamine, m-xylylenediamine, p-xylylenediamine; mensene diamine, norbornane diamine, tricyclodecane diamine, adamantane diamine, diaminocyclohexane, 1,4-diamino- 2-Methylcyclohexane, 1,4-diamino-3,6-diethylcyclohexane, diaminodiethylmethylcyclohexane, 3,3'-dimethyl-4,4'-diaminodi Polyamine compounds
  • the content thereof is preferably 50% by mass or less, more preferably 30% by mass, based on the total amount of the epoxy resin curing agent of the present invention, from the viewpoint of efficiently expressing the effects of the present invention.
  • the following content is more preferably 20% by mass or less, still more preferably 15% by mass or less, still more preferably 10% by mass or less, still more preferably 5% by mass or less, still more preferably 1% by mass or less.
  • a minimum is 0 mass%.
  • curing accelerators examples include phenol compounds such as bisphenol A and styrenated phenol and salts thereof; sulfonic acid compounds such as p-toluenesulfonic acid and methanesulfonic acid and salts or esters thereof; salicylic acid and benzoic acid Carboxylic acid compounds and salts thereof; mercaptan-terminated polysulfide compounds; guanidine compounds; alkanolamine compounds and the like. These can be used singly or in combination of two or more.
  • the content thereof is preferably 50% by mass or less, more preferably 30% by mass, based on the total amount of the epoxy resin curing agent of the present invention, from the viewpoint of efficiently expressing the effects of the present invention. % Or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, still more preferably 10% by mass or less, still more preferably 5% by mass or less, still more preferably 1% by mass or less, still more preferably Is 0.5 mass% or less. Moreover, a minimum is 0 mass%.
  • the content of the curing accelerator in the epoxy resin curing agent may be in the above range, and the concentration of the curing accelerator may be appropriately varied during preparation or use of the epoxy resin curing agent.
  • the compounding ratio of the curing accelerator to the epoxy resin curing agent may be constant during molding of the epoxy resin composition containing the curing agent, or the curing accelerator is supplied while forming a concentration gradient during molding. For example, it may be varied.
  • the total content of the components (A) and (B) is preferably 50% by mass or more based on the total amount of the epoxy resin curing agent of the present invention. More preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 85% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more, particularly preferably 99% by mass or more (The upper limit is 100% by mass).
  • the epoxy resin curing agent of the present invention preferably has a viscosity at a temperature of 25 ° C. of 150 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less, still more preferably 60 mPa ⁇ s or less.
  • the lower limit value of the viscosity of the epoxy resin curing agent at a temperature of 25 ° C. is not particularly limited, but is preferably 10 mPa ⁇ s or more from the viewpoint of miscibility with the epoxy resin.
  • the viscosity of the epoxy resin curing agent can be measured using an E-type viscometer.
  • a use apparatus the kind of compounding components, a mixture ratio, etc., it can select suitably.
  • component (A), component (B) and, if necessary, other compounding components may be brought into contact simultaneously and mixed, or some components constituting the epoxy resin curing agent may be supplied while giving a concentration gradient. , May be mixed.
  • each component contained in the epoxy resin curing agent and the epoxy resin may be simultaneously mixed and prepared. From the viewpoint of preventing gelation from progressing before use, it is preferable that the components contained in the epoxy resin curing agent be brought into contact and mixed immediately before use.
  • the temperature at which each component contained in the epoxy resin curing agent is mixed is preferably 5 to 30 ° C., more preferably 10 to 25 ° C., from the viewpoint of suppressing the increase in viscosity. It is.
  • the mixing time is preferably in the range of 0.1 to 15 minutes, more preferably 0.2 to 10 minutes, and still more preferably 0.5 to 5 minutes.
  • the epoxy resin composition of the present invention contains the epoxy resin curing agent of the present invention and an epoxy resin.
  • the epoxy resin any epoxy resin having a glycidyl group that reacts with active amine hydrogen in the epoxy resin curing agent of the present invention can be used, but from the viewpoint of excellent mechanical strength of the cured product
  • an epoxy resin containing an aromatic ring or an alicyclic structure in the molecule more preferably at least one member selected from the group consisting of bisphenol A epoxy resin and bisphenol F epoxy resin, and bisphenol A epoxy resin Is more preferred.
  • an epoxy resin represented by the following general formula (1) is particularly preferable in view of low viscosity and sufficient mechanical strength of a cured product.
  • R 11 to R 14 each independently represent an alkyl group having 1 to 6 carbon atoms, and p, q, r, and s each independently represent an integer of 0 to 4.
  • a plurality of R 12 , a plurality of R 13 and a plurality of R 14 may be all the same as or different from each other Y 1 and Y 2 are each independently a single bond, —CH 2 —, —CH ( CH 3 ) — or —C (CH 3 ) 2 —
  • R 15 is —CH 2 CH (OH) — or —CH (OH) CH 2 —
  • m represents the average number of repeating units, It is a number between 0 and 0.2.
  • R 11 to R 14 are preferably an alkyl group having 1 to 4 carbon atoms, and at least one selected from the group consisting of a methyl group, an ethyl group, an isopropyl group and a t-butyl group is more preferable.
  • Each of p, q, r and s is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably all 0s.
  • Y 1 and Y 2 are preferably —CH 2 — or —C (CH 3 ) 2 —, more preferably —C (CH 3 ) 2 —.
  • m is preferably 0 to 0.15, and more preferably 0.01 to 0.1.
  • the epoxy equivalent of the epoxy resin is preferably 300 g / equivalent or less, more preferably 220 g / equivalent or less, still more preferably 200 g / equivalent or less, from the viewpoint of achieving both the low viscosity and fast curing of the epoxy resin composition. Still more preferably, it is 180 g / equivalent or less.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • the epoxy resin composition of the present invention further uses other components such as fillers, modifying components such as plasticizers, flow control components such as thixotropic agents, pigments, leveling agents, tackifiers, and fine particles of elastomers. You may make it contain according to.
  • the content of the epoxy resin curing agent in the epoxy resin composition of the present invention is the ratio of the number of active amine hydrogens in the epoxy resin curing agent to the number of epoxy groups in the epoxy resin (active amine hydrogen in the epoxy resin curing agent)
  • Number / the number of epoxy groups in the epoxy resin) is preferably 1 / 0.8 to 1 / 1.2, more preferably 1 / 0.9 to 1 / 1.1, further preferably 1/1. is there.
  • the ratio may finally be in the above range, and may be constant during molding of the epoxy resin composition or may be varied during molding.
  • the viscosity at a temperature of 40 ° C. of the epoxy resin composition of the present invention is preferably 400 mPa ⁇ s or less, more preferably 350 mPa ⁇ s or less, and still more preferably 300 mPa ⁇ s or less.
  • productivity is improved when used for FRP applications.
  • the viscosity of the epoxy resin composition can be measured using an E-type viscometer, specifically by the method described in the examples.
  • the epoxy resin composition of the present invention preferably has a gelation time at a temperature of 80 ° C. of 30 minutes or less, more preferably 25 minutes or less, still more preferably 20 minutes or less, still more preferably 15 from the viewpoint of rapid curing. It is less than a minute.
  • the gelation time is preferably 0.5 minutes or more, more preferably 1.0 minutes or more.
  • the gelation time at a temperature of 120 ° C. is preferably 10 minutes or less, more preferably 8.0 minutes or less, still more preferably 5.0 minutes or less, and still more preferably 3.0 minutes or less. Further, from the viewpoint of workability, the gelation time is preferably 0.2 minutes or more, more preferably 0.5 minutes or more.
  • the gelation time can be measured using a rheometer by the method described in the examples. Specifically, storage modulus G ′ and loss modulus G ′ ′ of the epoxy resin composition are measured at a temperature of 80 ° C. (or 120 ° C.), a frequency of 1 Hz, and a plate distance of 0.5 mm using a rheometer The point at which G ′ and G ′ ′ intersect is the gelation time.
  • curing agent, an epoxy resin, and the other component as needed can be mixed and manufactured using a well-known method and apparatus.
  • the temperature at the time of mixing each component contained in an epoxy resin composition can be suitably adjusted according to the viscosity of an epoxy resin, from a viewpoint of suppressing a viscosity rise, Preferably it is 120 degrees C or less, More preferably, it is 100 degrees C or less It is preferably 30 ° C. or more, more preferably 50 ° C. or more from the viewpoint of the miscibility of the epoxy resin.
  • the mixing time is preferably in the range of 0.1 to 15 minutes, more preferably 0.2 to 10 minutes, and still more preferably 0.5 to 5 minutes.
  • molding methods mentioned later, for example can be used.
  • the cured product of the epoxy resin composition of the present invention (hereinafter, also simply referred to as "the cured product of the present invention") is obtained by curing the above-described epoxy resin composition of the present invention by a known method.
  • the curing conditions of the epoxy resin composition are appropriately selected according to the application and the form, and are not particularly limited.
  • the form of the cured product of the present invention is also not particularly limited, and can be selected according to the application.
  • the application of the epoxy resin composition is a paint
  • the cured product of the composition is usually in the form of a film.
  • the cured product of the present invention is preferably a matrix resin of a fiber-reinforced composite material described later.
  • the epoxy resin composition of the present invention has a high glass transition temperature (Tg) of a cured product from the viewpoint of improving the productivity of a molded product when used for a fiber reinforced composite material etc. and from the viewpoint of the heat resistance of the molded product. Is preferred.
  • Tg glass transition temperature
  • the mold cycle can be shortened because mold release is possible without cooling the mold to a low temperature when used for a fiber reinforced composite material or the like.
  • the heat resistance of the molded article is also improved.
  • a differential scanning calorimeter is used to make a difference from 30.degree. C.
  • the Tg determined by performing scanning thermal analysis is preferably 100 ° C. or more, more preferably 110 ° C. or more, still more preferably 120 ° C. or more, and still more preferably 123 ° C. or more.
  • the Tg of the cured product can be measured specifically by the method described in the examples.
  • the epoxy resin composition containing the epoxy resin curing agent according to the present invention is characterized by rapid curing, low viscosity, long pot life, and high heat resistance of the cured product. It is preferable that it is especially for carbon fiber reinforced composites (CFRP).
  • a fiber reinforced composite material includes a cured product of the epoxy resin composition and a reinforcing fiber, and is obtained by impregnating the reinforcing resin with the epoxy resin composition and then curing the composition. it can.
  • the FRP may further contain a foam in addition to the cured product of the epoxy resin composition and the reinforcing fibers.
  • the reinforcing fibers include glass fibers, carbon fibers, boron fibers, aramid fibers, cellulose fibers, nanocellulose fibers and metal fibers.
  • the reinforcing fibers may be used alone or in combination of two or more.
  • carbon fiber is preferable from the viewpoint of strength and lightness of the obtained composite material.
  • the carbon fiber used for CFRP may be manufactured using rayon, polyacrylonitrile (PAN) or the like as a raw material, or may be manufactured by spinning using a pitch of petroleum or coal as a raw material.
  • PAN polyacrylonitrile
  • the fiber length is preferably 1 mm or more, more preferably 3 mm or more, still more preferably 6 mm or more, as the average fiber length of the non-continuous fiber to be used from the viewpoint of the strength of the obtained FRP. Preferably it is 10 mm or more.
  • the upper limit of the average fiber length of the non-continuous fiber to be used is preferably 500 cm or less, more preferably 300 cm or less, and still more preferably 100 cm or less, from the viewpoint of formability.
  • the average fiber length can be measured by visual observation, observation by an optical microscope, a scanning electron microscope (SEM) or the like. 100 fibers can be randomly selected to measure the length, and the average fiber length of number average can be calculated.
  • the average fiber diameter of the reinforcing fibers is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and still more preferably 4 to 20 ⁇ m. When the average fiber diameter is in this range, processing is easy, and the elastic modulus and strength of the obtained FRP are excellent.
  • the average fiber diameter can be measured by observation with a scanning electron microscope (SEM) or the like. The length can be measured by randomly selecting 50 or more fibers, and the average fiber diameter of number average can be calculated.
  • the fineness of the reinforcing fiber is preferably 20 to 4,500 tex, and more preferably 50 to 4,000 tex. When the fineness is in this range, the impregnation of the epoxy resin composition is easy, and the elastic modulus and the strength of the obtained FRP are excellent.
  • the fineness can be determined by determining the weight of long fibers of an arbitrary length and converting it to the weight per 1,000 m.
  • the number of filaments is usually about 500 to about 60,000, and a reinforcing fiber can be preferably used.
  • Examples of the form of the reinforcing fiber include various forms such as a monofilament or a multifilament simply arranged to cross in one direction or alternately, a fabric such as a woven fabric, a non-woven fabric or a mat.
  • a fabric such as a woven fabric, a non-woven fabric or a mat.
  • the form of a monofilament, a fabric, a nonwoven fabric or a mat is preferable, and the form of a fabric is more preferable.
  • the foam material is not particularly limited, but examples thereof include foam materials composed of resin materials such as polyvinyl chloride resin, polyurethane resin, polystyrene resin, polyolefin resin, acrylic resin, phenol resin, polymethacrylimide resin, epoxy resin, etc.
  • resin materials such as polyvinyl chloride resin, polyurethane resin, polystyrene resin, polyolefin resin, acrylic resin, phenol resin, polymethacrylimide resin, epoxy resin, etc.
  • the epoxy resin curing agent and epoxy resin composition of the present invention are quick-curing, the epoxy resin curing agent and the epoxy resin are mixed immediately before molding. After that, it is preferable to carry out the impregnation and curing of the reinforcing fiber, preferably within 10 minutes, more preferably within 5 minutes.
  • methods for producing fiber reinforced composite materials include low pressure RTM method, medium pressure RTM method, high pressure RTM method, compression RTM method, liquid compression molding method, liquid laydown method, liquid laydown method, spray laydown method, surface RTM method, prepreg compression molding It is preferable to have a step of forming by a method or a wet compression molding (WCM) method, and a Dynamic Fluid Compression Molding method.
  • WCM wet compression molding
  • the low pressure RTM method, the medium pressure RTM method, or the high pressure RTM method is preferable from the viewpoint of application to the high cycle RTM method, the medium pressure RTM method or the high pressure RTM method is more preferable. Is more preferably a high pressure RTM method.
  • low pressure in the low pressure RTM method means that the pressure at the time of pumping when the epoxy resin which is the main agent of the epoxy resin composition and the epoxy resin curing agent are pumped and mixed is less than 0.5 MPa Say that.
  • the "medium pressure” in the medium pressure RTM method refers to a pressure of 0.5 MPa or more and less than 7 MPa
  • the "high pressure” in the high pressure RTM method refers to a pressure of 7 MPa or more and 20 MPa or less. Since the epoxy resin composition of the present invention is rapidly curable and has a low viscosity, it can be filled quickly into the mold and impregnated into the reinforcing fiber quickly and rapidly, so that the molding time can be significantly shortened.
  • the epoxy resin curing agent and the epoxy resin composition of the present invention are particularly suitable for the above molding method.
  • medium to large-sized FRPs for automobile structural materials and building materials can be produced with high productivity by applying the epoxy resin curing agent and epoxy resin composition of the present invention. .
  • a collision mixing mixer as an apparatus for mixing an epoxy resin which is a main component of an epoxy resin composition, and an epoxy resin curing agent.
  • reinforcing fibers are placed in a pair of upper and lower molds and sealed, and the inside of the mold is depressurized.
  • the epoxy resin, which is the main component of the epoxy resin composition, and the epoxy resin curing agent are filled in separate tanks, and each is discharged at a high speed from very small holes (orifices) in the mixing chamber of the collision mixing mixer. Make collision mixing.
  • the epoxy resin composition thus prepared is injected at high pressure into a mold to impregnate the reinforcing fibers, and then the epoxy resin is cured.
  • a dynamic mixer as an apparatus for mixing an epoxy resin, which is a main component of an epoxy resin composition, and an epoxy resin curing agent.
  • the dynamic mixer is provided with a cylindrical high-speed rotating body having irregularities on the surface.
  • an epoxy resin which is a main component of an epoxy resin composition and an epoxy resin curing agent are filled in separate tanks, each is sent to a dynamic mixer, and the two components of the main agent and the curing agent are mixed by the rotating body. .
  • the epoxy resin composition thus prepared is poured into a mold to impregnate the reinforcing fibers and then the epoxy resin is cured.
  • the low pressure RTM method is advantageous in the case where the compounding ratio of the epoxy resin and the epoxy resin curing agent is largely different, in view of the device cost and the space saving of the device.
  • a static mixer is a tubular reactor incorporating one or more static mixers consisting of a large number of mixing elements. For example, an epoxy resin which is a main component of an epoxy resin composition and an epoxy resin curing agent are filled in separate tanks, and each is sent to a static mixer.
  • the epoxy resin composition thus prepared is poured into a mold to impregnate the reinforcing fibers and then the epoxy resin is cured.
  • the medium pressure RTM method is advantageous in that the epoxy resin composition can be pumped into the mold and in terms of equipment cost.
  • the reinforced fiber and the foamed material may be disposed in the mold to produce the FRP in the same manner as described above. it can.
  • the epoxy resin curing agent and epoxy resin composition of the present invention can be suitably used for the liquid compression molding (LCM) method, liquid laydown method, and wet compression molding (WCM) method.
  • LCM liquid compression molding
  • WCM wet compression molding
  • the epoxy resin composition is cast on a reinforcing fiber (on the reinforcing fiber and the foam when the FRP further includes a foam), and then heat compression is applied to strengthen The epoxy resin is cured while being impregnated into the fibers.
  • the Dynamic Fluid Compression Molding method is an improvement method of the LCM method, the liquid laydown method, and the WCM method, and is characterized in that the pressure in the mold is reduced during heat compression.
  • the temperature at which the epoxy resin composition is injected into a mold or impregnated into reinforcing fibers is preferably 30 to 120 ° C., more preferably 50 to 100 ° C.
  • the temperature at the time of mixing the epoxy resin curing agent and the epoxy resin can also be set individually.
  • the temperature at which the epoxy resin curing agent is mixed is preferably 5 to 30 ° C., more preferably 10 to 25 ° C., from the viewpoint of suppressing an increase in viscosity.
  • the temperature at the time of mixing of the epoxy resin can be appropriately adjusted according to the viscosity of the epoxy resin, but it is preferably 30 to 120 ° C., more preferably 50 to 100 ° C.
  • the temperature may be constant during molding or may be varied during molding.
  • the impregnation time of the epoxy resin composition to the reinforcing fiber is preferably 0.1 to 15 minutes, more preferably 0.2 to 10 minutes, still more preferably 0.5 to 5 minutes, from the viewpoint of moldability and productivity. It is.
  • the discharge rate at the time of injecting the epoxy resin composition into the mold is preferably 5 to 400 g per second, more preferably 10 to 100 g per second, still more preferably 20 to 60 g per second from the viewpoint of moldability and productivity. .
  • the speed may be constant during molding or may be varied during molding.
  • the curing temperature of the epoxy resin composition is preferably 50 to 200 ° C., more preferably 80 to 150 ° C., and still more preferably 100 to 150 ° C.
  • the curing temperature may be constant during molding or may be varied during molding.
  • the curing time of the epoxy resin composition is preferably 0.1 to 15 minutes, more preferably 0.2 to 10 minutes, and still more preferably 0.5 to 5 minutes, from the viewpoint of moldability and productivity.
  • the fiber-reinforced composite material of the present invention is preferably a structural material for automobiles and a building material, particularly a structural material for automobiles.
  • Structural materials for automobiles include bumpers, spoilers, cowlings, front grills, garnishes, bonnets, trunk lids, fender panels, door panels, roof panels, instrument panels, door trims, quarter trims, roof linings, pillar garnishes, deck trims, and tonoboards.
  • the viscosity of the epoxy resin composition was measured at 40 ° C. and 80 ° C., respectively, using an E-type viscometer “TVE-22H type viscometer cone plate type” (manufactured by Toki Sangyo Co., Ltd.). In the measurement at 80 ° C., the measurement was started immediately after preparing the epoxy resin composition by mixing the epoxy resin and the epoxy resin curing agent, and the measured value was read every 30 seconds to confirm the temporal change of the viscosity. The lower the viscosity at 40 ° C. and the viscosity after 80 ° C. for 30 seconds, the lower the initial viscosity, the higher the filling properties at the time of molding, and the better the moldability. In addition, the change in viscosity with time in measurement at 80 ° C. is small, and the lower the viscosity is maintained, the longer the pot life is.
  • Tg Glass transition temperature
  • Examples 1 to 7 and Comparative Examples 1 to 3 (Preparation of Epoxy Resin Curing Agent and Epoxy Resin Composition)
  • Component (A) N-aminoethyl piperazine (AEP, manufactured by Tosoh Corp.) and isophorone diamine (IPDA, manufactured by EVONIK), and component (B) 1,3-bis (aminomethyl) cyclohexane (1,1) 3-BAC, manufactured by Mitsubishi Gas Chemical Co., Ltd., cis / trans ratio 77/23) was blended by mass parts shown in Table 1 and mixed to obtain an epoxy resin curing agent.
  • AEP N-aminoethyl piperazine
  • IPDA isophorone diamine
  • the epoxy resin curing agent and the main component bisphenol A liquid epoxy resin (“jER 825", manufactured by Mitsubishi Chemical Corporation), the number of active amine hydrogens in the epoxy resin curing agent, and the epoxy resin as the main component
  • the epoxy resin composition was prepared by blending and mixing so that the number of epoxy groups in the composition is equimolar.
  • the obtained epoxy resin curing agent and epoxy resin composition were evaluated by the above-mentioned method. The results are shown in Table 1.
  • R 15 is —CH 2 CH (OH) — or —CH (OH) CH 2 —.
  • the epoxy resin compositions of Examples 1 to 3 maintain quick curing property. However, the viscosity was lowered, the pot life was extended, and the heat resistance of the cured product was further improved. Moreover, compared with the epoxy resin composition of Comparative Example 2 using only IPDA which is the component (A) as the epoxy resin curing agent, the epoxy resin compositions of Examples 4 to 6 have low pot life while maintaining low pot life. The viscosity was improved, and the curing speed and the heat resistance of the cured product were improved. As compared with the epoxy resin composition of Comparative Example 3, the epoxy resin composition of Example 7 was improved in the viscosity, the pot life, the curing rate and the heat resistance of the cured product.
  • Example 8 (manufacture of CFRP)
  • the epoxy resin composition of Example 1 was hand lay-up molded at room temperature to obtain a carbon fiber fabric ("CO6343" manufactured by Toray Industries, Inc., T300 plain weave cloth, 3 K, 198 g / m 2 , 0.25 mm thickness, 4 ply) To make a CFRP base material. Subsequently, the CFRP base material was placed on an aluminum upper and lower mold preheated to 120 ° C. in an oven, the mold was immediately closed, and heating was performed for 3 minutes to cure the epoxy resin composition to obtain CFRP. The obtained CFRP can be easily released from the aluminum upper and lower molds, and it has been confirmed that the curing of the epoxy resin composition has progressed in a short time. In addition, the appearance was good without any defect due to the infiltration of the epoxy resin composition into the carbon fiber being low.
  • CO6343 manufactured by Toray Industries, Inc., T300 plain weave cloth, 3 K, 198 g / m 2 , 0.25 mm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

N-アミノエチルピペラジン及びイソホロンジアミンからなる群から選ばれる少なくとも1種の化合物(A)と、ビス(アミノメチル)シクロヘキサン(B)とを含有するエポキシ樹脂硬化剤、該エポキシ樹脂硬化剤とエポキシ樹脂とを含有するエポキシ樹脂組成物及びその硬化物、並びに、該エポキシ樹脂組成物の硬化物と強化繊維とを含む繊維強化複合材である。

Description

エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材
 本発明は、エポキシ樹脂硬化剤、該エポキシ樹脂硬化剤とエポキシ樹脂とを含有するエポキシ樹脂組成物及びその硬化物、並びに、該エポキシ樹脂組成物の硬化物と、強化繊維とを含む繊維強化複合材に関する。
 炭素繊維強化複合材(以下「CFRP(Carbon Fiber Reinforced Plastics)」ともいう)は、非常に高い弾性率、強度を有し、かつ軽量であることから金属代替材料として注目されている。CFRPは特に自動車構造材用途、風力発電ブレード用途、圧力容器用途、航空宇宙用途への需要が加速することが見込まれており、CFRPに用いられる炭素繊維と、エポキシ樹脂等のマトリクス樹脂の需要も近年増大している。
 ところで、自動車構造材用途、風力発電ブレード用途、圧力容器用途、航空宇宙用途それぞれにおいてCFRPの成形方法が異なることから、CFRP用のマトリクス樹脂に対する要求特性も用途によって異なっている。
 例えば風力発電ブレードは、インフュージョン成形、Va-RTM法(Vacuum Assist Resin Transfer Molding)又はLight-RTM法にて成形されるようになってきた。これらの方法では、例えば、フィルムやFRPを使用した上型と、下型とからなる型内に予め強化繊維を配置し、この金型内を真空引きし、マトリクス樹脂となるエポキシ樹脂組成物を常圧で充填して強化繊維へ含浸させ、次いで、該エポキシ樹脂を硬化させて成形する。
 インフュージョン成形やVa-RTM法、Light-RTM法による成形では、その成形法の特徴上、エポキシ樹脂とエポキシ樹脂硬化剤とを混合したエポキシ樹脂組成物を金型内へ充填するのに、通常は数十分程度かかる。そのため、これらの成形法に使用されるエポキシ樹脂組成物には低粘度でかつポットライフが長いことが要求される。エポキシ樹脂硬化剤としては、イソホロンジアミン、ポリエーテル骨格のポリアミン化合物等が使用されている。
 また、圧力容器用途のCFRPにおいては、フィラメントワインディング法による成形が用いられる。フィラメントワインディング法は、強化繊維糸にエポキシ樹脂組成物などのマトリクス樹脂を含浸させた強化繊維糸を用いてライナーの外表面を被覆した後、該マトリクス樹脂を硬化させる方法である。この方法に用いるエポキシ樹脂組成物は、ポットライフが短く速硬化性であると、成形前の段階でエポキシ樹脂が硬化してしまう。したがってフィラメントワインディング法には速硬化性のエポキシ樹脂組成物は適用できない。
 これに対し自動車構造材用途のCFRPは、ハイサイクルRTM法にて成形されている。これは従来のRTM法を改良したものである。
 従来のRTM法は上下一対の金型を使用した密閉型成形の一つであり、該金型内に繊維強化プリフォームを配置し、金型をクランプして密閉した後、注入孔からエポキシ樹脂組成物等の樹脂を金型内に注入して繊維強化プリフォームに含浸させ、次いで該樹脂を硬化させた後、離型するという方法である。しかしながら従来のRTM法では、成形時間(プリフォームの配置、樹脂含浸、樹脂硬化、及び離型まで)に数時間を要するため、自動車構造材用途のCFRPの製造では、より生産性の高いハイサイクルRTM法が用いられている。
 ハイサイクルRTM法による成形技術は、繊維強化プリフォームの配置時間、樹脂の含浸時間、樹脂の硬化時間、及び離型時間のすべてを大幅に短縮し、トータルの成形時間を10分程度まで短縮したものである。ハイサイクルRTM法において、樹脂の含浸から硬化までの工程では、例えばハイサイクルRTM法の一種である高圧RTM法において、上下一対の金型内に強化繊維を配置して密閉し、金型内を減圧にする。次いで、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを、別々のタンクからミキシングヘッドへミスト状態で圧送し、衝突混合後に速やかに金型内に注入して炭素繊維に含浸させ、エポキシ樹脂を硬化させる。衝突混合後のエポキシ樹脂組成物は、金型内への充填速度及び炭素繊維への含浸速度を高めるため、複数の注入孔から高圧注入される。
 従来のRTM法向けのエポキシ樹脂組成物に用いるエポキシ樹脂硬化剤として、汎用品であるN-アミノエチルピペラジン(AEP)、イソホロンジアミン(IPDA)、又はこれらの混合物を用いることが知られている(例えば、特許文献1及び非特許文献1を参照)。
特表平9-507262号公報
小川、「エポキシ樹脂を中心としたRIM成形について」、熱硬化性樹脂、1986年、Vol.7、No.2、p.87-99
 ハイサイクルRTM法などによる成形に用いられるエポキシ樹脂硬化剤、及び該硬化剤とエポキシ樹脂とを含有するエポキシ樹脂組成物においては、速硬化性でかつ低粘度であること、ポットライフが長いこと、及び、硬化物のガラス転移温度(Tg)が高く耐熱性が良好であることが望まれる。
 しかしながら、AEPは速硬化性であり初期粘度が低い一方で、ポットライフが短く、得られるエポキシ樹脂組成物の硬化物のTgが低くなるという問題がある。またIPDAはポットライフが長く、得られるエポキシ樹脂組成物の硬化物のTgは比較的高くなるが、硬化速度が遅く初期粘度が高いという問題があった。AEPとIPDAのそれぞれの欠点を改善すべくこれらを混合したとしても、ハイサイクルRTM法などによる成形に用いられるエポキシ樹脂硬化剤としては十分満足のいく性能は得られなかった。
 本発明の課題は、エポキシ樹脂硬化剤成分として汎用されているN-アミノエチルピペラジン及び/又はイソホロンジアミンを含有し、速硬化性でかつ低粘度であり、得られるエポキシ樹脂組成物のポットライフ及び硬化物の耐熱性を改善し得るエポキシ樹脂硬化剤、これを含有するエポキシ樹脂組成物及びその硬化物、並びに、該エポキシ樹脂組成物の硬化物と強化繊維とを含む繊維強化複合材を提供することにある。
 本発明者は上記課題を解決するため鋭意検討した結果、N-アミノエチルピペラジン及びイソホロンジアミンからなる群から選ばれる少なくとも1種の化合物と、ビス(アミノメチル)シクロヘキサンとを含有するエポキシ樹脂硬化剤により、上記課題を解決できることを見出した。
 すなわち、本発明は下記[1]~[9]に関する。
[1]N-アミノエチルピペラジン及びイソホロンジアミンからなる群から選ばれる少なくとも1種の化合物(A)と、ビス(アミノメチル)シクロヘキサン(B)とを含有するエポキシ樹脂硬化剤。
[2]前記(A)成分と(B)成分との質量比が0.575<(A)/[(A)+(B)]<1を満たす、上記[1]に記載のエポキシ樹脂硬化剤。
[3]前記(A)成分がN-アミノエチルピペラジンである、上記[1]又は[2]に記載のエポキシ樹脂硬化剤。
[4]前記(B)成分が1,3-ビス(アミノメチル)シクロヘキサンである、上記[1]~[3]のいずれか1項に記載のエポキシ樹脂硬化剤。
[5]前記(A)成分及び(B)成分の合計含有量が50質量%以上である、上記[1]~[4]のいずれか1項に記載のエポキシ樹脂硬化剤。
[6]上記[1]~[5]のいずれか1項に記載のエポキシ樹脂硬化剤と、エポキシ樹脂とを含有するエポキシ樹脂組成物。
[7]上記[6]に記載のエポキシ樹脂組成物の硬化物。
[8]上記[6]に記載のエポキシ樹脂組成物の硬化物と、強化繊維とを含む繊維強化複合材。
[9]前記強化繊維が炭素繊維である、上記[8]に記載の繊維強化複合材。
 本発明によれば、エポキシ樹脂硬化剤成分として汎用されているN-アミノエチルピペラジンやイソホロンジアミンをエポキシ樹脂硬化剤として用いながら、ハイサイクルRTM法などによって自動車用構造材や建材などのCFRPを生産性よく製造できるエポキシ樹脂硬化剤及びエポキシ樹脂組成物を提供することができる。
 当該エポキシ樹脂組成物はポットライフが長いため作業性が良好である。また、CFRPをはじめとするFRPのマトリクス樹脂として用いると、強化繊維への含浸性に優れ、速硬化性であることから金型からの離型が可能になるまでの時間も短く、FRPの生産性を向上させることができる。さらに、得られるFRPの耐熱性も良好になる。
[エポキシ樹脂硬化剤]
 本発明のエポキシ樹脂硬化剤は、N-アミノエチルピペラジン(AEP)及びイソホロンジアミン(IPDA)からなる群から選ばれる少なくとも1種の化合物(A)と、ビス(アミノメチル)シクロヘキサン(B)とを含有する。
 本発明は、エポキシ樹脂硬化剤成分として汎用されているAEPやIPDAを含有するエポキシ樹脂硬化剤において、ビス(アミノメチル)シクロヘキサンを配合することにより、AEPとIPDAに由来する諸特性を改善し、得られるエポキシ樹脂組成物の速硬化性、低粘度、ロングポットライフを達成し、硬化物の耐熱性も向上できることを見出したものである。
<(A)成分>
 本発明のエポキシ樹脂硬化剤は、(A)成分として、N-アミノエチルピペラジン(AEP)及びイソホロンジアミン(IPDA)からなる群から選ばれる少なくとも1種の化合物を含有する。これらの化合物はエポキシ樹脂硬化剤成分として汎用されており経済性に優れる。
 エポキシ樹脂硬化剤の性能として、AEPは速硬化性かつ低粘度であり、得られるエポキシ樹脂組成物の硬化物の靭性が向上するという利点を有する。またIPDAは、得られるエポキシ樹脂組成物のポットライフが長くなり、かつ硬化物の耐熱性が高くなるという利点を有する。これらの特性を考慮し、所望する性能及び用途に応じて、本発明に用いる(A)成分としてAEP及びIPDAからなる群から選ばれる少なくとも1種の化合物を適宜選択することができる。
 AEPとIPDAを併用する場合、その含有量比にも特に制限はなく、例えば、AEPとIPDAを質量比で1/99~99/1、好ましくは5/95~95/5の割合で用いることができる。
 ハイサイクルRTM法などによる成形に用いられるエポキシ樹脂硬化剤である場合、速硬化性でかつ低粘度であるという点から、(A)成分はN-アミノエチルピペラジン、又はN-アミノエチルピペラジンとイソホロンジアミンの混合物であることが好ましく、N-アミノエチルピペラジンであることがより好ましい。
<(B)成分>
 本発明のエポキシ樹脂硬化剤は、(B)成分として所定量のビス(アミノメチル)シクロヘキサンを含有する。これにより、前記(A)成分を含有するエポキシ樹脂硬化剤を含むエポキシ樹脂組成物において速硬化性、低粘度、ロングポットライフを達成し、硬化物の耐熱性も向上させることができる
 ビス(アミノメチル)シクロヘキサンとしては、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサンが挙げられ、これらのうち1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも1,3-ビス(アミノメチル)シクロヘキサンが好ましい。
 なおビス(アミノメチル)シクロヘキサンは、シス体、トランス体、又はこれらの混合物のいずれであってもよい。ビス(アミノメチル)シクロヘキサンがシス体とトランス体の混合物である場合、シス体/トランス体のモル比は、好ましくは5/95~95/5、より好ましくは10/90~90/10である。
 本発明のエポキシ樹脂硬化剤は、(A)成分と(B)成分との質量比が0.575<(A)/[(A)+(B)]<1を満たすことが好ましい。質量比(A)/[(A)+(B)]が1、すなわち(B)成分を含有しない場合は、得られるエポキシ樹脂組成物の速硬化性、低粘度、ロングポットライフ、又は硬化物の高耐熱性のいずれかが達成できなくなる。また、質量比(A)/[(A)+(B)]が0.575を超える場合は、エポキシ樹脂硬化剤中のAEP又はIPDAの割合が高くなるため経済性に優れる。また、AEP又はIPDAに由来する諸特性を発現し易くなる。
 得られるエポキシ樹脂組成物において速硬化性、低粘度、ロングポットライフ、及び硬化物の高耐熱性を得る観点から、本発明のエポキシ樹脂硬化剤における質量比(A)/[(A)+(B)]は、好ましくは0.95以下、より好ましくは0.90以下、さらに好ましくは0.85以下であり、AEP又はIPDAに由来する諸特性を発現する観点からは、より好ましくは0.60以上、さらに好ましくは0.65以上、よりさらに好ましくは0.70以上、よりさらに好ましくは0.75以上である。
 本発明のエポキシ樹脂硬化剤は、前記(A)成分及び(B)成分以外の公知の硬化剤や、公知の硬化促進剤、添加剤、及び溶剤等を含有していてもよい。
 前記(A)成分及び(B)成分以外の硬化剤としては、前記(A)成分及び(B)成分以外の、分子内に2つ以上のアミノ基を有するポリアミン化合物又はその変性体などが挙げられる。当該ポリアミン化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、トリメチルヘキサメチレンジアミン等の鎖状脂肪族ポリアミン化合物;o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン等の芳香環含有脂肪族ポリアミン化合物;メンセンジアミン、ノルボルナンジアミン、トリシクロデカンジアミン、アダマンタンジアミン、ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-3,6-ジエチルシクロヘキサン、ジアミノジエチルメチルシクロヘキサン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルメタン等の脂環式構造を有するポリアミン化合物;フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、2,2’-ジエチル-4,4’-メチレンジアニリン等の芳香族ポリアミン化合物;N,N’-ビス(アミノエチル)ピペラジン等の複素環式構造を有するポリアミン化合物;ポリエーテルポリアミン化合物等が挙げられる。また、当該ポリアミン化合物の変性体としては、上記化合物のマンニッヒ変性物、エポキシ変性物、マイケル付加物、マイケル付加・重縮合物、スチレン変性物、ポリアミド変性物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 本発明の効果を効率的に発現する観点から、当該硬化剤を含有する場合、その含有量は、本発明のエポキシ樹脂硬化剤全量に対して好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下、よりさらに好ましくは15質量%以下、よりさらに好ましくは10質量%以下、よりさらに好ましくは5質量%以下、よりさらに好ましくは1質量%以下である。また、下限は0質量%である。
 公知の硬化促進剤としては、ビスフェノールA、スチレン化フェノール等のフェノール系化合物及びその塩;p-トルエンスルホン酸、メタンスルホン酸等のスルホン酸系化合物及びその塩あるいはエステル化物;サリチル酸、安息香酸等のカルボン酸系化合物及びその塩;メルカプタン末端ポリサルファイド化合物;グアニジン系化合物;アルカノールアミン系化合物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 本発明の効果を効率的に発現する観点から、当該硬化促進剤を含有する場合、その含有量は、本発明のエポキシ樹脂硬化剤全量に対して好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下、よりさらに好ましくは15質量%以下、よりさらに好ましくは10質量%以下、よりさらに好ましくは5質量%以下、よりさらに好ましくは1質量%以下、よりさらに好ましくは0.5質量%以下である。また、下限は0質量%である。
 エポキシ樹脂硬化剤中の硬化促進剤の含有量は最終的に上記範囲となればよく、エポキシ樹脂硬化剤の調製時又は使用時に硬化促進剤の濃度を適宜変動させてもよい。例えば、硬化促進剤のエポキシ樹脂硬化剤に対する配合割合は該硬化剤を含有するエポキシ樹脂組成物の成形中、一定であってもよいし、成形中に硬化促進剤を濃度勾配をつけながら供給するなどして変動させてもよい。
 但し、本発明の効果を効率的に発現する観点からは、前記(A)成分及び(B)成分の合計含有量を、本発明のエポキシ樹脂硬化剤全量に対して好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、よりさらに好ましくは85質量%以上、よりさらに好ましくは90質量%以上、よりさらに好ましくは95質量%以上、特に好ましくは99質量%以上(上限は100質量%)となるようにする。
 本発明のエポキシ樹脂硬化剤は、温度25℃における粘度が好ましくは150mPa・s以下、より好ましくは100mPa・s以下、さらに好ましくは60mPa・s以下である。温度25℃における粘度が150mPa・s以下であると、エポキシ樹脂との混和が容易であり、FRP用途に用いた際には生産性が向上する。エポキシ樹脂硬化剤の温度25℃における粘度の下限値には特に制限はないが、エポキシ樹脂との混和性の点から、好ましくは10mPa・s以上である。エポキシ樹脂硬化剤の粘度は、E型粘度計を用いて測定できる。
 本発明のエポキシ樹脂硬化剤の製造方法には特に制限はなく、使用形態や使用装置、配合成分の種類及び配合割合等に応じて適宜選択することができる。例えば(A)成分、(B)成分、及び必要に応じその他の配合成分を同時に接触させて混合してもよいし、エポキシ樹脂硬化剤を構成する一部の成分を濃度勾配をつけながら供給し、混合してもよい。また後述するように、エポキシ樹脂組成物の調製時に、エポキシ樹脂硬化剤に含まれる各成分とエポキシ樹脂とを同時に混合して調製してもよい。
 使用前にゲル化が進行するのを避ける観点から、エポキシ樹脂硬化剤に含まれる各成分は使用直前に接触させて混合することが好ましい。エポキシ樹脂硬化剤を単独で調製する場合、エポキシ樹脂硬化剤に含まれる各成分を混合する際の温度は、粘度上昇を抑制する観点から、好ましくは5~30℃、より好ましくは10~25℃である。また、混合時間は好ましくは0.1~15分、より好ましくは0.2~10分、さらに好ましくは0.5~5分の範囲である。
[エポキシ樹脂組成物]
 本発明のエポキシ樹脂組成物は、前記本発明のエポキシ樹脂硬化剤とエポキシ樹脂とを含有するものである。該エポキシ樹脂としては、本発明のエポキシ樹脂硬化剤中の活性アミン水素と反応するグリシジル基を持つエポキシ樹脂であればいずれも使用することができるが、硬化物の機械的強度に優れる観点からは、分子内に芳香環又は脂環式構造を含むエポキシ樹脂であることが好ましく、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂からなる群から選ばれる1種以上がより好ましく、ビスフェノールA型エポキシ樹脂がさらに好ましい。中でも、低粘度でかつ硬化物の機械的強度を確保できる観点から下記一般式(1)で示されるエポキシ樹脂が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R11~R14はそれぞれ独立に炭素数1~6のアルキル基であり、p、q、r、及びsはそれぞれ独立に0~4の整数である。複数のR11、複数のR12、複数のR13、及び複数のR14はすべて同一でもよく、互いに異なってもよい。Y及びYはそれぞれ独立に、単結合、-CH-、-CH(CH)-、又は-C(CH-である。R15は-CHCH(OH)-、又は-CH(OH)CH-である。mは平均繰り返し単位数を示し、0~0.2の数である。)
 R11~R14は炭素数1~4のアルキル基であることが好ましく、メチル基、エチル基、イソプロピル基、及びt-ブチル基からなる群から選ばれる少なくとも1種がより好ましい。
 p、q、r、及びsはいずれも0~2の整数であることが好ましく、0又は1であることがより好ましく、すべて0であることがさらに好ましい。
 Y及びYは-CH-、又は-C(CH-であることが好ましく、-C(CH-であることがより好ましい。
 また、低粘度でかつ硬化物の機械的強度を確保できる観点から、mは0~0.15であることが好ましく、0.01~0.1であることがより好ましい。
 また、エポキシ樹脂のエポキシ当量は、エポキシ樹脂組成物の低粘度性及び速硬化性を両立する観点から、好ましくは300g/当量以下、より好ましくは220g/当量以下、さらに好ましくは200g/当量以下、よりさらに好ましくは180g/当量以下である。
 エポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 本発明のエポキシ樹脂組成物には、さらに、充填材、可塑剤などの改質成分、揺変剤などの流動調整成分、顔料、レベリング剤、粘着付与剤、エラストマー微粒子などのその他の成分を用途に応じて含有させてもよい。
 本発明のエポキシ樹脂組成物中の前記エポキシ樹脂硬化剤の含有量は、エポキシ樹脂中のエポキシ基の数に対するエポキシ樹脂硬化剤中の活性アミン水素数の比(エポキシ樹脂硬化剤中の活性アミン水素数/エポキシ樹脂中のエポキシ基数)が、好ましくは1/0.8~1/1.2、より好ましくは1/0.9~1/1.1、さらに好ましくは1/1となる量である。当該比は最終的に上記範囲となればよく、エポキシ樹脂組成物の成形中一定であってもよいし、成形中に変動させてもよい。
 本発明のエポキシ樹脂組成物の温度40℃における粘度は、好ましくは400mPa・s以下、より好ましくは350mPa・s以下、さらに好ましくは300mPa・s以下である。温度40℃における粘度が400mPa・s以下であると、FRP用途に用いた際には生産性が向上する。エポキシ樹脂組成物の温度40℃における粘度の下限値には特に制限はないが、FRPの成形において、レイノルズ数の上昇により金型内で乱流が生じて強化繊維に乱れが生じることを抑制する点から、好ましくは150mPa・s以上である。エポキシ樹脂組成物の粘度は、E型粘度計を用いて、具体的には実施例に記載の方法で測定できる。
 本発明のエポキシ樹脂組成物は、速硬化性の観点から、温度80℃におけるゲル化時間が、好ましくは30分以下、より好ましくは25分以下、さらに好ましくは20分以下、よりさらに好ましくは15分以下である。また、作業性の観点からは、当該ゲル化時間は、好ましくは0.5分以上、より好ましくは1.0分以上である。
 また、温度120℃におけるゲル化時間は、好ましくは10分以下、より好ましくは8.0分以下、さらに好ましくは5.0分以下、よりさらに好ましくは3.0分以下である。また、作業性の観点からは、当該ゲル化時間は、好ましくは0.2分以上、より好ましくは0.5分以上である。
 上記ゲル化時間はレオメーターを用いて、実施例に記載の方法で測定できる。具体的には、レオメーターを用いて温度80℃(又は120℃)、周波数1Hz、プレート間距離0.5mmでエポキシ樹脂組成物の貯蔵弾性率G’、損失弾性率G’’を測定し、G’とG’’とが交差する点をゲル化時間とする。
 本発明のエポキシ樹脂組成物の製造方法には特に制限はなく、エポキシ樹脂硬化剤、エポキシ樹脂、及び必要に応じ他の成分を公知の方法及び装置を用いて混合し、製造することができる。エポキシ樹脂組成物に含まれる各成分の混合順序にも特に制限はなく、前記エポキシ樹脂硬化剤を調製した後、これをエポキシ樹脂と混合してもよく、エポキシ樹脂硬化剤を構成する各成分及びエポキシ樹脂を同時に混合してもよい。
 使用前にゲル化が進行するのを避ける観点から、エポキシ樹脂組成物に含まれる各成分は使用直前に接触させて混合することが好ましい。エポキシ樹脂組成物に含まれる各成分を混合する際の温度は、エポキシ樹脂の粘度に応じて適宜調整できるが、粘度上昇を抑制する観点から、好ましくは120℃以下、より好ましくは100℃以下であり、エポキシ樹脂の混和性の観点から、好ましくは30℃以上、より好ましくは50℃以上である。また、混合時間は好ましくは0.1~15分、より好ましくは0.2~10分、さらに好ましくは0.5~5分の範囲である。装置としては、例えば後述する各種成形方法において例示される装置を用いることができる。
[硬化物]
 本発明のエポキシ樹脂組成物の硬化物(以下、単に「本発明の硬化物」ともいう)は、上述した本発明のエポキシ樹脂組成物を公知の方法で硬化させたものである。エポキシ樹脂組成物の硬化条件は用途、形態に応じて適宜選択され、特に限定されない。
 本発明の硬化物の形態も特に限定されず、用途に応じて選択することができる。例えばエポキシ樹脂組成物の用途が塗料である場合、当該組成物の硬化物は通常、膜状である。なお本発明の効果を有効に発揮する観点からは、本発明の硬化物は後述する繊維強化複合材のマトリックス樹脂であることが好ましい。
 本発明のエポキシ樹脂組成物は、繊維強化複合材などに用いた際の成形品の生産性を向上させる観点、及び成形品の耐熱性の観点から、硬化物のガラス転移温度(Tg)が高い方が好ましい。エポキシ樹脂組成物の硬化物のTgが高いと、繊維強化複合材などに用いた際に金型を低い温度まで冷却しなくても離型可能であるため、成形サイクルを短縮できる。また、成形品の耐熱性も良好になる。
 例えば本発明のエポキシ樹脂組成物は、温度120℃で15分硬化させて得られた硬化物について、示差走査熱量計を用いて、昇温速度5℃/分の条件で30~250℃まで示差走査熱分析を行うことにより求められるTgが好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上、よりさらに好ましくは123℃以上である。硬化物のTgは、具体的には実施例に記載の方法で測定できる。
[繊維強化複合材(FRP)]
 本発明のエポキシ樹脂硬化剤を含有するエポキシ樹脂組成物は、速硬化性、低粘度、ロングポットライフであり、及び硬化物が高耐熱性であるという特徴を有することから、繊維強化複合材用であることが好ましく、特に、炭素繊維強化複合材(CFRP)用であることが好ましい。
 繊維強化複合材は、前記エポキシ樹脂組成物の硬化物と、強化繊維とを含むものであり、強化繊維に前記エポキシ樹脂組成物を含浸させた後、該組成物を硬化させることにより得ることができる。FRPは、前記エポキシ樹脂組成物の硬化物と強化繊維の他に、さらに発泡材を含んでもよい。
 強化繊維としては、例えば、ガラス繊維、炭素繊維、ボロン繊維、アラミド繊維、セルロース繊維、ナノセルロース繊維及び金属繊維などが挙げられる。強化繊維は1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、得られる複合材の強度及び軽量性の観点からは炭素繊維が好ましい。
 CFRPに用いられる炭素繊維は、レーヨンやポリアクリロニトリル(PAN)などを原料として製造したものであってもよいし、石油や石炭などのピッチを原料として紡糸して製造したものであってもよい。また、炭素繊維の端材を再利用した再生品や、CFRPから樹脂を除去した再生品の炭素繊維を用いることもできる。
 強化繊維は、連続繊維と非連続繊維のいずれを用いることもできる。非連続繊維を用いる場合、その繊維長は、得られるFRPの強度の観点から、使用する非連続繊維の平均繊維長として好ましくは1mm以上、より好ましくは3mm以上、さらに好ましくは6mm以上、よりさらに好ましくは10mm以上である。また、使用する非連続繊維の平均繊維長の上限は、賦型性の観点から、好ましくは500cm以下、より好ましくは300cm以下、さらに好ましくは100cm以下である。なお、平均繊維長は、目視、光学顕微鏡、走査型電子顕微鏡(SEM)などによる観察によって測定することが可能である。100本の繊維を無作為に選んで長さを測定し、個数平均の平均繊維長を算出することができる。
 強化繊維の平均繊維径は、1~100μmであることが好ましく、3~50μmがより好ましく、4~20μmであることがさらに好ましい。平均繊維径がこの範囲であると、加工が容易であり、得られるFRPの弾性率及び強度が優れたものとなる。なお、平均繊維径は走査型電子顕微鏡(SEM)などによる観察によって測定することが可能である。50本以上の繊維を無作為に選んで長さを測定し、個数平均の平均繊維径を算出することができる。
 強化繊維の繊度は、20~4,500texが好ましく、50~4,000texがより好ましい。繊度がこの範囲であると、エポキシ樹脂組成物の含浸が容易であり、得られるFRPの弾性率及び強度が優れたものとなる。なお、繊度は任意の長さの長繊維の重量を求めて、1,000m当たりの重量に換算して求めることができる。フィラメント数は通常、500~60,000程度の強化繊維を好ましく用いることができる。
 強化繊維の形態としては、例えば単にモノフィラメント又はマルチフィラメントを一方向又は交互に交差するように並べたもの、編織物等の布帛、不織布あるいはマット等の種々の形態が挙げられる。これらのうち、モノフィラメント、布帛、不織布あるいはマットの形態が好ましく、布帛の形態がより好ましい。
 発泡材としては特に制限はないが、例えばポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、アクリル樹脂、フェノール樹脂、ポリメタクリルイミド樹脂、エポキシ樹脂等の樹脂材料から構成される発泡材が挙げられる。
 繊維強化複合材の製造方法には特に制限はないが、本発明のエポキシ樹脂硬化剤及びエポキシ樹脂組成物は速硬化性であるため、エポキシ樹脂硬化剤と、エポキシ樹脂とを成形の直前に混合した後、好ましくは10分以内、より好ましくは5分以内に、強化繊維への含浸及び硬化を行うことが好ましい。
 この観点から、繊維強化複合材の製造方法は、低圧RTM法、中圧RTM法、高圧RTM法、コンプレッションRTM法、リキッドコンプレッションモールディング法、リキッドレイダウン法、スプレーレイダウン法、サーフェイスRTM法、プリプレグコンプレッションモールディング法又はウェットコンプレッションモールディング(WCM)法、及びDynamic Fluid Compression Molding法により成形する工程を有することが好ましい。これらの成形法の中でも、ハイサイクルRTM法に適用する観点から、低圧RTM法、中圧RTM法、又は高圧RTM法が好ましく、中圧RTM法又は高圧RTM法がより好ましく、成形速度の観点からは高圧RTM法がさらに好ましい。
 なお本明細書において、低圧RTM法における「低圧」とは、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを圧送して混合する際の圧送時の圧力が0.5MPa未満であることをいう。同様に、中圧RTM法における「中圧」とは上記圧力が0.5MPa以上、7MPa未満、高圧RTM法における「高圧」とは上記圧力が7MPa以上、20MPa以下であるものを指す。
 本発明のエポキシ樹脂組成物は速硬化性でかつ低粘度であるため、金型内への充填及び強化繊維への含浸が速く、速やかに硬化するため、成形時間を大幅に短縮できる。したがって本発明のエポキシ樹脂硬化剤及びエポキシ樹脂組成物は、上記成形法に特に好適である。また、上記成形法を用いることにより、本発明のエポキシ樹脂硬化剤及びエポキシ樹脂組成物を適用して、自動車用構造材や建材用などの中~大型のFRPを生産性よく製造することができる。
 高圧RTM法では、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを混合する装置として衝突混合ミキサーを使用することが好ましい。例えば、上下一対の金型内に強化繊維を配置して密閉し、金型内を減圧にする。次いで、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを別々のタンクに充填し、それぞれを非常に小さい穴(オリフィス)から高速で吐出し、衝突混合ミキサーのミキシングチャンバー内で衝突混合させる。このようにして調製したエポキシ樹脂組成物を金型内に高圧注入して強化繊維に含浸させ、次いで、エポキシ樹脂を硬化させる。
 低圧RTM法では、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを混合する装置としてダイナミックミキサーを使用することが好ましい。ダイナミックミキサーは、表面に凹凸を有する筒状の高速回転体を備えている。例えば、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを別々のタンクに充填し、それぞれをダイナミックミキサーに送液して前記回転体により主剤と硬化剤の2液を混合する。このようにして調製したエポキシ樹脂組成物を金型内に注入して強化繊維に含浸させ、次いで、エポキシ樹脂を硬化させる。低圧RTM法は、エポキシ樹脂とエポキシ樹脂硬化剤との配合比が大きく異なる場合や、装置コスト、装置の省スペース化の観点で有利である。
 中圧RTM法では、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを混合する装置としてスタティックミキサーを使用することが好ましい。スタティックミキサーは、多数のミキシングエレメントからなる静止型混合器を1個以上組み込んだ管型反応器である。例えば、エポキシ樹脂組成物の主剤であるエポキシ樹脂と、エポキシ樹脂硬化剤とを別々のタンクに充填し、それぞれをスタティックミキサーに送液する。スタティックミキサーのねじれたエレメントに主剤と硬化剤の2液を通すことで、分割・転換・反転等の作用より2液が混合される。このようにして調製したエポキシ樹脂組成物を金型内に注入して強化繊維に含浸させ、次いで、エポキシ樹脂を硬化させる。中圧RTM法は、金型内にエポキシ樹脂組成物を圧送できること、及び、装置コストの観点で有利である。
 FRPが前記エポキシ樹脂組成物の硬化物と強化繊維の他にさらに発泡材を含む場合は、前記金型内に強化繊維及び発泡材を配置して、前記と同様にFRPの製造を行うことができる。
 リキッドコンプレッションモールディング(LCM)法、リキッドレイダウン法、及びウェットコンプレッションモールディング(WCM)法にも本発明のエポキシ樹脂硬化剤及びエポキシ樹脂組成物を好適に用いることができる。LCM法、リキッドレイダウン法、及びWCM法では、強化繊維上(FRPがさらに発泡材を含む場合は、強化繊維及び発泡材上)にエポキシ樹脂組成物を流延させた後、加熱圧縮して強化繊維へ含浸させながらエポキシ樹脂を硬化させる。Dynamic Fluid Compression Molding法は、LCM法、リキッドレイダウン法、及びWCM法の改良方法であり、加熱圧縮の際に金型内を減圧することが特徴である。
 FRPの成形において、エポキシ樹脂組成物を金型内に注入、又は強化繊維に含浸させる際の温度は、好ましくは30~120℃、より好ましくは50~100℃である。エポキシ樹脂硬化剤とエポキシ樹脂とを別々のタンクから供給して成形直前に混合する場合、エポキシ樹脂硬化剤とエポキシ樹脂との混合時の温度は、個別に設定することもできる。エポキシ樹脂硬化剤の混合時の温度は、粘度上昇を抑制する観点から、好ましくは5~30℃、より好ましくは10~25℃である。またエポキシ樹脂の混合時の温度は、エポキシ樹脂の粘度に応じて適宜調整できるが、好ましくは30~120℃、より好ましくは50~100℃である。上記温度は成形中一定であってもよいし、成形中に変動させてもよい。
 エポキシ樹脂組成物の強化繊維への含浸時間は、成形性及び生産性の観点から、好ましくは0.1~15分、より好ましくは0.2~10分、さらに好ましくは0.5~5分である。
 エポキシ樹脂組成物を金型内に注入する際の吐出速度は、成形性及び生産性の観点から、好ましくは毎秒5~400g、より好ましくは毎秒10~100g、さらに好ましくは毎秒20~60gである。上記速度は成形中一定であってもよいし、成形中に変動させてもよい。
 エポキシ樹脂組成物の硬化温度は、好ましくは50~200℃、より好ましくは80~150℃、さらに好ましくは100~150℃である。硬化温度は成形中一定であってもよいし、成形中に変動させてもよい。硬化温度が50℃以上であれば、エポキシ樹脂の硬化が十分に進み、得られるFRPの機械的特性が優れたものとなる。また、200℃以下であれば、金型温度調整にかかるコストが低く済む。エポキシ樹脂組成物の硬化時間は、成形性及び生産性の観点から、好ましくは0.1~15分、より好ましくは0.2~10分、さらに好ましくは0.5~5分である。
 本発明のエポキシ樹脂硬化剤又はエポキシ樹脂組成物を用いて、上記の成形法によりFRPを生産性よく製造することができる。本発明の繊維強化複合材は、自動車用構造材や建材、特に自動車用構造材であることが好ましい。自動車用構造材としては、バンパー、スポイラー、カウリング、フロントグリル、ガーニッシュ、ボンネット、トランクリッド、フェンダーパネル、ドアパネル、ルーフパネル、インストルメントパネル、ドアトリム、クオータートリム、ルーフライニング、ピラーガーニッシュ、デッキトリム、トノボード、パッケージトレイ、ダッシュボード、コンソールボックス、キッキングプレート、スイッチベース、シートバックボード、シートフレーム、アームレスト、サンバイザ、インテークマニホールド、エンジンヘッドカバー、エンジンアンダーカバー、オイルフィルターハウジング等が挙げられる。
 以下に実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、各種測定及び評価は以下の方法に従って行った。
(粘度)
 E型粘度計「TVE-22H型粘度計 コーンプレートタイプ」(東機産業(株)製)を用いて、40℃及び80℃にてそれぞれエポキシ樹脂組成物の粘度を測定した。80℃での測定においては、エポキシ樹脂及びエポキシ樹脂硬化剤を混合してエポキシ樹脂組成物を調製した直後に測定を開始し、30秒ごとに測定値を読み取って粘度の経時変化を確認した。
 40℃における粘度、及び80℃30秒経過後における粘度が低いほど、初期粘度が低く、成形時の充填性が高くなり成形性が良好であることを示す。また、80℃での測定における粘度の経時変化が少なく、低粘度を維持しているほどポットライフが長いことを示す。
(ゲル化時間)
 レオメーター「ARES-G2」(TAインスツルメント製)を用いて、80℃及び120℃で測定を行った。80℃(又は120℃)に加温したアルミプレート間にエポキシ樹脂組成物を充填し、温度80℃(又は120℃)、周波数1Hz、プレート間距離0.5mmで貯蔵弾性率G’、損失弾性率G’’を測定して、G’とG’’とが交差する点をゲル化時間とした。ゲル化時間が短いほど速硬化性であることを示す。
(ガラス転移温度(Tg))
 エポキシ樹脂組成物の硬化物のTgは、120℃で15分加熱して硬化させたエポキシ樹脂組成物について、示差走査熱量計「DSC 6200」(セイコーインスツル(株)製)を用いて、昇温速度5℃/分の条件で30~250℃まで示差走査熱分析を行うことにより求めた。
実施例1~7及び比較例1~3(エポキシ樹脂硬化剤及びエポキシ樹脂組成物の調製)
 (A)成分であるN-アミノエチルピペラジン(AEP、東ソー(株)製)及びイソホロンジアミン(IPDA、EVONIK製)、並びに成分(B)である1,3-ビス(アミノメチル)シクロヘキサン(1,3-BAC、三菱瓦斯化学(株)製、シス/トランス比=77/23)を、表1に示す質量部で配合して混合し、エポキシ樹脂硬化剤を得た。
 さらに、このエポキシ樹脂硬化剤と、主剤であるビスフェノールA型液状エポキシ樹脂(「jER825」、三菱化学(株)製)とを、エポキシ樹脂硬化剤中の活性アミン水素数と、主剤であるエポキシ樹脂中のエポキシ基数とが等モルとなるよう配合して混合し、エポキシ樹脂組成物を調製した。
 得られたエポキシ樹脂硬化剤及びエポキシ樹脂組成物について、前述の方法で評価を行った。結果を表1に示す。なお、エポキシ樹脂jER825は下記構造式で示され、エポキシ当量は175g/当量、m=0.035である。
Figure JPOXMLDOC01-appb-C000002
 上記式中、R15は-CHCH(OH)-、又は-CH(OH)CH-である。
Figure JPOXMLDOC01-appb-T000003
 表1より、エポキシ樹脂硬化剤として(A)成分であるAEPのみを用いた比較例1のエポキシ樹脂組成物と比較して、実施例1~3のエポキシ樹脂組成物は速硬化性を維持しつつ、低粘度化され、ポットライフが長くなり、さらに硬化物の耐熱性が向上した。また、エポキシ樹脂硬化剤として(A)成分であるIPDAのみを用いた比較例2のエポキシ樹脂組成物と比較して、実施例4~6のエポキシ樹脂組成物はポットライフを維持しつつ、低粘度化され、硬化速度及び硬化物の耐熱性が向上した。
 比較例3のエポキシ樹脂組成物と比較して、実施例7のエポキシ樹脂組成物は粘度、ポットライフ、硬化速度及び硬化物の耐熱性がいずれも改善された。
実施例8(CFRPの製造)
 実施例1のエポキシ樹脂組成物を、室温でのハンドレイアップ成形により、炭素繊維織物(東レ(株)製「CO6343」、T300平織りクロス、3K、198g/m、0.25mm厚、4ply)に含浸させてCFRP基材を作製した。続いて、オーブン内で予め120℃に加熱したアルミ上下型にCFRP基材を載せ、速やかに型を閉じ、3分加熱してエポキシ樹脂組成物を硬化させてCFRPを得た。得られたCFRPはアルミ上下型から容易に離型することができ、エポキシ樹脂組成物の硬化が短時間で進行していることが確認できた。またエポキシ樹脂組成物の炭素繊維への含浸性が低いことなどによる欠陥もなく、外観が良好であった。
 本発明によれば、エポキシ樹脂硬化剤成分として汎用されているN-アミノエチルピペラジンやイソホロンジアミンをエポキシ樹脂硬化剤として用いながら、ハイサイクルRTM法などによって自動車用構造材や建材などのCFRPを生産性よく製造できるエポキシ樹脂硬化剤及びエポキシ樹脂組成物を提供することができる。
 当該エポキシ樹脂組成物はポットライフが長いため作業性が良好である。また、CFRPをはじめとするFRPのマトリクス樹脂として用いると、強化繊維への含浸性に優れ、速硬化性であることから金型からの離型が可能になるまでの時間も短く、FRPの生産性を向上させることができる。さらに、得られるFRPの耐熱性も良好になる。
 

Claims (9)

  1.  N-アミノエチルピペラジン及びイソホロンジアミンからなる群から選ばれる少なくとも1種の化合物(A)と、ビス(アミノメチル)シクロヘキサン(B)とを含有するエポキシ樹脂硬化剤。
  2.  前記(A)成分と(B)成分との質量比が0.575<(A)/[(A)+(B)]<1を満たす、請求項1に記載のエポキシ樹脂硬化剤。
  3.  前記(A)成分がN-アミノエチルピペラジンである、請求項1又は2に記載のエポキシ樹脂硬化剤。
  4.  前記(B)成分が1,3-ビス(アミノメチル)シクロヘキサンである、請求項1~3のいずれか1項に記載のエポキシ樹脂硬化剤。
  5.  前記(A)成分及び(B)成分の合計含有量が50質量%以上である、請求項1~4のいずれか1項に記載のエポキシ樹脂硬化剤。
  6.  請求項1~5のいずれか1項に記載のエポキシ樹脂硬化剤と、エポキシ樹脂とを含有するエポキシ樹脂組成物。
  7.  請求項6に記載のエポキシ樹脂組成物の硬化物。
  8.  請求項6に記載のエポキシ樹脂組成物の硬化物と、強化繊維とを含む繊維強化複合材。
  9.  前記強化繊維が炭素繊維である、請求項8に記載の繊維強化複合材。
     
PCT/JP2018/040831 2017-12-07 2018-11-02 エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材 WO2019111607A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880073511.2A CN111417667B (zh) 2017-12-07 2018-11-02 环氧树脂固化剂、环氧树脂组合物及其固化物、以及纤维增强复合材料
JP2019558078A JP7322709B2 (ja) 2017-12-07 2018-11-02 エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235361 2017-12-07
JP2017-235361 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019111607A1 true WO2019111607A1 (ja) 2019-06-13

Family

ID=66751394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040831 WO2019111607A1 (ja) 2017-12-07 2018-11-02 エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材

Country Status (4)

Country Link
JP (1) JP7322709B2 (ja)
CN (1) CN111417667B (ja)
TW (1) TWI785141B (ja)
WO (1) WO2019111607A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179413A1 (ja) * 2019-03-06 2020-09-10 三菱瓦斯化学株式会社 エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材
WO2020204011A1 (ja) * 2019-03-29 2020-10-08 首都高メンテナンス神奈川株式会社 硬化剤、防滑コーティング剤、防滑コーティング被膜の形成方法および防滑被覆材
CN112358633A (zh) * 2020-10-23 2021-02-12 广州市聚欣盈复合材料科技有限公司 一种碳布-环氧树脂复合材料及其制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11945906B2 (en) 2020-09-15 2024-04-02 Mitsubishi Gas Chemical Company, Inc. Epoxy resin curing agent, epoxy resin composition, and use of amine composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254731A (ja) * 1988-04-04 1989-10-11 Fuji Kasei Kogyo Kk 一成分系加熱硬化性エポキシ樹脂組成物
JPH083282A (ja) * 1994-06-22 1996-01-09 Mitsubishi Gas Chem Co Inc エポキシ樹脂硬化剤
JP2007224285A (ja) * 2006-01-27 2007-09-06 Mitsubishi Gas Chem Co Inc エポキシ樹脂硬化剤及びエポキシ樹脂組成物
WO2017179358A1 (ja) * 2016-04-12 2017-10-19 三菱瓦斯化学株式会社 エポキシ樹脂硬化剤、エポキシ樹脂組成物、炭素繊維強化複合材
CN107602819A (zh) * 2017-08-17 2018-01-19 湖北绿色家园材料技术股份有限公司 一种低成本、高硬度、高光泽环氧石材面胶固化剂的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598325B2 (en) * 2006-01-27 2009-10-06 Mitsubishi Gas Chemical Company, Inc. Diglycidyl/isophoronediamine adduct, diglycidyl/1,3-bis(aminomethyl)cyclohexane adduct, isophoronediamine and 1,3-bis(aminomethyl)cyclohexane
US9309352B2 (en) * 2011-01-27 2016-04-12 Toray Industries, Inc. Epoxy resin composition for resin transfer molding of fiber-reinforced composite material, fiber-reinforced composite material, and method for producing same
KR102332174B1 (ko) * 2014-04-15 2021-12-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 섬유강화 복합재료

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254731A (ja) * 1988-04-04 1989-10-11 Fuji Kasei Kogyo Kk 一成分系加熱硬化性エポキシ樹脂組成物
JPH083282A (ja) * 1994-06-22 1996-01-09 Mitsubishi Gas Chem Co Inc エポキシ樹脂硬化剤
JP2007224285A (ja) * 2006-01-27 2007-09-06 Mitsubishi Gas Chem Co Inc エポキシ樹脂硬化剤及びエポキシ樹脂組成物
WO2017179358A1 (ja) * 2016-04-12 2017-10-19 三菱瓦斯化学株式会社 エポキシ樹脂硬化剤、エポキシ樹脂組成物、炭素繊維強化複合材
CN107602819A (zh) * 2017-08-17 2018-01-19 湖北绿色家园材料技术股份有限公司 一种低成本、高硬度、高光泽环氧石材面胶固化剂的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179413A1 (ja) * 2019-03-06 2020-09-10 三菱瓦斯化学株式会社 エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材
JPWO2020179413A1 (ja) * 2019-03-06 2020-09-10
JP7459861B2 (ja) 2019-03-06 2024-04-02 三菱瓦斯化学株式会社 エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材
WO2020204011A1 (ja) * 2019-03-29 2020-10-08 首都高メンテナンス神奈川株式会社 硬化剤、防滑コーティング剤、防滑コーティング被膜の形成方法および防滑被覆材
CN112358633A (zh) * 2020-10-23 2021-02-12 广州市聚欣盈复合材料科技有限公司 一种碳布-环氧树脂复合材料及其制备方法与应用
CN112358633B (zh) * 2020-10-23 2022-05-10 广州市聚欣盈复合材料科技股份有限公司 一种碳布-环氧树脂复合材料及其制备方法与应用

Also Published As

Publication number Publication date
TWI785141B (zh) 2022-12-01
JPWO2019111607A1 (ja) 2020-12-10
CN111417667A (zh) 2020-07-14
JP7322709B2 (ja) 2023-08-08
TW201930392A (zh) 2019-08-01
CN111417667B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
TWI730067B (zh) 環氧樹脂硬化劑、環氧樹脂組成物及碳纖維強化複合材
JP7322709B2 (ja) エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材
TW201734081A (zh) 製造纖維複合材料之液體浸漬法用的潛伏性環氧樹脂調合物
JPWO2013081060A1 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料とその製造方法
KR20170069941A (ko) 섬유 강화 복합체의 제조용 액체 함침법을 위한 잠재성 에폭시 수지 제형
CN113906079B (zh) 环氧树脂固化剂、环氧树脂组合物和其固化物、以及纤维增强复合材料
JP7459861B2 (ja) エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材
JP6845141B2 (ja) 樹脂組成物
JP6878944B2 (ja) エポキシ樹脂硬化剤、エポキシ樹脂組成物、繊維強化複合材
JP7279869B1 (ja) エポキシ樹脂組成物及びその硬化物、繊維強化複合材、高圧ガス容器
JP7334484B2 (ja) エポキシ樹脂硬化剤、エポキシ樹脂組成物及びその硬化物、並びに繊維強化複合材
TWI729088B (zh) 環氧樹脂組成物、碳纖維強化複合材及其製造方法
JP7107966B2 (ja) 硬化性樹脂系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884858

Country of ref document: EP

Kind code of ref document: A1