WO2019106724A1 - Elevator monitoring system - Google Patents
Elevator monitoring system Download PDFInfo
- Publication number
- WO2019106724A1 WO2019106724A1 PCT/JP2017/042654 JP2017042654W WO2019106724A1 WO 2019106724 A1 WO2019106724 A1 WO 2019106724A1 JP 2017042654 W JP2017042654 W JP 2017042654W WO 2019106724 A1 WO2019106724 A1 WO 2019106724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- elevator
- car
- monitoring system
- external device
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/02—Control systems without regulation, i.e. without retroactive action
- B66B1/06—Control systems without regulation, i.e. without retroactive action electric
- B66B1/14—Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B17/00—Hoistway equipment
- B66B17/14—Applications of loading and unloading equipment
- B66B17/16—Applications of loading and unloading equipment for loading and unloading mining-hoist cars or cages
- B66B17/20—Applications of loading and unloading equipment for loading and unloading mining-hoist cars or cages by moving vehicles into, or out of, the cars or cages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
Definitions
- the present invention relates to a monitoring system for elevators.
- Patent Document 1 describes a system for moving a cleaning robot by elevators to each floor of a building. This system outputs an alarm when an abnormality occurs in the cleaning robot.
- An object of the present invention is to provide an elevator monitoring system capable of implementing individual measures based on individual attribute information of robots that can get on and off the elevator car.
- the elevator monitoring system comprises a receiving unit for receiving identification information of a robot capable of getting on and off the elevator car, and individual attribute information of the robot stored in advance in association with the identification information received by the receiving unit.
- the control command determined based on the individual attribute information of the robot previously stored in association with the identification information received by the reception unit and the external device output unit for transmitting the notification information determined based on the external device to the elevator And a command unit to transmit to the system.
- notification information determined based on individual attribute information of the robot is transmitted to the external device.
- a control command determined based on individual attribute information of the robot is transmitted to the elevator system. Therefore, individual measures can be implemented based on individual attribute information of robots that can get on and off the elevator car.
- FIG. 1 is a configuration diagram for explaining an elevator monitoring system in a first embodiment.
- 5 is a flowchart showing an operation example of a monitoring system of elevators in the first embodiment.
- 7 is a flowchart showing an operation example of a monitoring system of elevators in a second embodiment.
- 15 is a flowchart showing an operation example of a monitoring system of elevators in the third embodiment.
- FIG. 17 is a configuration diagram for illustrating a monitoring system of elevators in a fourth embodiment.
- 21 is a flowchart showing an operation example of a monitoring system of elevators in the fourth embodiment.
- FIG. 18 is a configuration diagram for illustrating a monitoring system of elevators in a fifth embodiment.
- 21 is a flowchart showing an operation example of a monitoring system of elevators in a fifth embodiment.
- 21 is a flowchart showing an operation example of a monitoring system of elevators in a sixth embodiment.
- FIG. 21 is a flow chart showing an operation example of a monitoring system of elevators in a seventh embodiment. It is a hardware block diagram of a monitoring system.
- FIG. 1 is a configuration diagram for explaining an elevator monitoring system according to a first embodiment.
- the elevator system 1 controls the operation of the elevator in the building.
- the operation of the elevator includes, for example, movement of a car and opening and closing of a door.
- the elevator system 1 may, for example, control the movement of one car.
- the elevator system 1 may control, for example, the movement of a plurality of cars provided in different hoistways. That is, the elevator system 1 may be, for example, a group management system of elevators.
- the robot system 2 controls a robot moving in the building.
- the robot can get on and off the elevator car.
- the robot system 2 can communicate with the elevator system 1.
- the robot system 2 may control, for example, a plurality of robots of the same type.
- the robot system 2 may control, for example, a plurality of robots of different types.
- the robot wirelessly communicates with, for example, the robot system 2.
- the wireless communication between the robot and the robot system 2 is performed, for example, via a communication device installed in a building.
- the robot may move, for example, in accordance with a command from the robot system 2.
- the robot may, for example, move autonomously.
- the robot transmits, for example, elevator call information to the robot system 2.
- the robot may transmit, for example, information indicating the operation state of itself to the robot system 2.
- the call information from the robot includes, for example, identification information of the robot, a boarding floor, and a destination floor.
- the robot system 2 transmits, for example, call information from a robot to the elevator system 1.
- the robot system 2 may transmit, to the elevator system 1, information indicating an operation state of the robot, for example, together with call information from the robot.
- the elevator system 1 moves the car from the boarding floor of the robot to the destination floor, for example, based on call information from the robot.
- the monitoring system 3 monitors elevators and robots in the building.
- the monitoring system 3 can communicate with the elevator system 1.
- the elevator system 1 transmits, for example, identification information of a robot included in call information received from the robot system 2 to the monitoring system 3. That is, the elevator system 1 transmits, for example, identification information of a robot that has accessed the elevator system 1 to the monitoring system 3.
- the elevator system 1 may transmit, to the monitoring system 3, information indicating the operation state of the robot, for example, together with identification information of the robot.
- the elevator system 1 transmits, for example, information related to the state of an elevator to be controlled to the monitoring system 3.
- the information related to the state of the elevator includes, for example, the boarding weight and operating mode of the car.
- the riding weight of the car is detected, for example, by a weighing device (not shown).
- the operation mode of the elevator includes, for example, normal operation and controlled operation.
- the control operation includes, for example, a power failure control operation and an earthquake control operation.
- the monitoring system 3 in the first embodiment includes a receiving unit 4, a robot attribute storage unit 5, a robot state determination unit 6, an elevator state determination unit 7, a command unit 8, and an external device output unit 9. .
- the receiver 4 receives the identification information of the robot.
- the receiving unit 4 acquires, for example, robot identification information transmitted from the elevator system 1 to the monitoring system 3.
- the receiving unit 4 may acquire, for example, information indicating the operation state of the robot in addition to identification information of the robot.
- the robot attribute storage unit 5 stores individual attribute information of the robot.
- the robot attribute information stored in the robot attribute storage unit 5 is associated with the identification information of the robot.
- the attribute information of the robot includes at least the return floor of the robot.
- the return floor of the robot is, for example, a floor set in advance as a movement destination when the robot breaks down.
- the attribute information of the robot includes, for example, a coping method when the robot fails.
- the attribute information of the robot includes, for example, the weight of the robot.
- the robot attribute information includes, for example, the type of the robot.
- the type of robot is classified based on, for example, the height, weight or use of the robot.
- the robot state determination unit 6 determines the state of the robot having the identification information received by the reception unit 4.
- the method of determining the state of the robot is determined based on, for example, the attribute information stored in the robot attribute storage unit 5 in association with the identification information of the robot.
- the state of the robot may be determined based on, for example, information indicating the operation state of the robot.
- the state of the robot is expressed as, for example, "normal” or "fault".
- robot state information information indicating the state of the robot determined by the robot state determination unit 6 is also referred to as “robot state information”.
- the elevator state determination unit 7 determines the state of the elevator based on the information transmitted from the elevator system 1 to the monitoring system 3.
- the state of the elevator is expressed, for example, as “during normal operation”, “during power outage control operation” or “during earthquake control operation” according to the operation mode included in the information transmitted from the elevator system 1. .
- elevator state information information indicating the state of the elevator determined by the elevator state determination unit 7 is also referred to as “elevator state information”.
- the elevator state determination unit 7 detects disaster information based on, for example, elevator state information.
- the disaster information is, for example, information indicating whether or not a disaster has occurred, and the type of the disaster that has occurred.
- the disaster information is represented as "no disaster”.
- the disaster information is represented as "power failure”.
- the disaster information is represented as "earthquake”.
- the command unit 8 transmits a control command to the elevator system 1.
- the content of the control command is determined based on, for example, robot state information and elevator state information.
- the elevator system 1 receives a control command from the command unit 8, the elevator system 1 controls the operation of the elevator according to the content of the control command.
- the external device output unit 9 transmits the notification information to the external device.
- the content of the notification information is determined based on, for example, robot state information and elevator state information.
- the external device receives the notification information from the external device output unit 9, the external device notifies of the content of the notification information. Notification by the external device is performed, for example, by at least one of screen display and voice announcement.
- the notification information is information indicating whether the state of the robot is normal or broken and whether the state of the elevator is in normal operation or in controlled operation.
- the external device that is the transmission destination of the notification information is, for example, a portable terminal owned by the administrator.
- the mobile terminal of the administrator is, for example, a mobile phone, a smartphone or a tablet PC.
- the manager's mobile terminal may be, for example, a dedicated terminal for exchanging information with the monitoring system 3.
- FIG. 2 is a flowchart showing an operation example of the elevator monitoring system in the first embodiment.
- step S101 the robot is identified based on the identification information received from the elevator system 1.
- step S102 the state of the identified robot is determined.
- step S103 the state of the elevator is determined.
- step S104 the contents of the notification information and the control command are determined based on the robot state information and the elevator state information.
- step S105 notification information is transmitted to the external device.
- step S106 a control command is transmitted to the elevator system 1.
- the receiving unit 4 receives the identification information of the robot that can get on and off the elevator car.
- the external device output unit 9 is an external device that is determined based on the individual attribute information of the robot stored in advance in association with the identification information received by the receiving unit 4, the state information of the robot, and the elevator state information.
- Send to The command unit 8 instructs the elevator system 1 on the control command determined based on the individual attribute information of the robot stored in advance in association with the identification information received by the receiving unit 4, the state information of the robot, and the elevator state information.
- FIG. 3 is a flowchart showing an operation example of the elevator monitoring system in the second embodiment.
- FIG. 3 shows a part of the operation of the monitoring system which is different from FIG.
- Step S201 is performed subsequent to step S101 of FIG.
- the robot attribute storage unit 5 refers to the attribute information of the robot identified in step S101.
- step S202 it is determined whether the state of the robot is a failure.
- step S203 If it is determined in step S202 that the state of the robot is faulty, step S203 is performed. In step S203, the coping method at the time of failure of the robot is acquired from the attribute information of the robot.
- step S103 of FIG. 2 is performed. If it is determined in step S202 that the state of the robot is normal, step S103 in FIG. 2 is performed without performing step S203.
- step S203 When step S203 is performed, in step S105 of FIG. 2, notification information indicating a countermeasure for a failure of the robot is transmitted to the external device.
- the external device output unit 9 reports information indicating a coping method at the time of failure included in the attribute information of the robot. Send to an external device. Therefore, when an abnormality occurs in the robot, the administrator can cope with the problem smoothly based on the notified countermeasure.
- the external device output unit 9 may transmit, to the external device, notification information indicating how to handle the failure of the robot, for example, when the robot is broken and no disaster occurs.
- FIG. 4 is a flowchart showing an operation example of the elevator monitoring system according to the third embodiment.
- FIG. 4 shows parts of the operation of the monitoring system different from FIG.
- Step S301 is performed subsequent to step S101 of FIG.
- the robot attribute storage unit 5 refers to the attribute information of the robot identified in step S101.
- step S302 it is determined whether the state of the robot is a failure.
- step S303 is performed.
- the return floor of the robot is acquired from the attribute information of the robot.
- step S103 of FIG. 2 is performed. If it is determined in step S302 that the state of the robot is normal, step S103 in FIG. 2 is performed without performing step S303.
- step S303 When step S303 is performed, in step S106 in FIG. 2, a control command for moving the car to the return floor of the robot is transmitted to the elevator system 1.
- the command unit 8 when the robot whose identification information is received by the reception unit 4 fails, the command unit 8 generates a control command for moving the car to the return floor included in the attribute information of the robot. Send. As a result, the caretaker can quickly recover the broken robot at the return floor.
- another elevator control may be implemented preferentially. That is, for example, when the robot is broken down and no disaster occurs, the command unit 8 may transmit a control command for moving the car to the return floor of the robot.
- FIG. 5 is a configuration diagram for explaining an elevator monitoring system in a fourth embodiment.
- the monitoring system 3 includes the receiving unit 4, the robot attribute storage unit 5, the robot state determination unit 6, the elevator state determination unit 7, the command unit 8, the external device output unit 9, and rescue.
- the order determination unit 10 is provided.
- the rescue order determination unit 10 determines the rescue order of a plurality of cars provided in different hoistways.
- the rescue order is determined, for example, based on the estimated number of passengers in each car.
- the rescue order is, for example, the order in which the number of passengers in the car is large.
- the rescue order determination unit 10 may also determine the rescue order even when disaster information indicating that a disaster that is not a power failure has occurred is detected, for example.
- the number of passengers in the elevator car is estimated from, for example, the weight included in the boarding weight of the car and the attribute information of the robot who is in the car. Which robot is in the car is detected by the elevator system 1 based on, for example, the history of call information from each robot or the detection results of various sensors provided in the elevator.
- the case where the total weight of the robot in the car is 30 kg and the boarding weight of the car is 170 kg will be described.
- 170-30 140 kg is obtained by subtracting the weight of the robot from the riding weight of the car.
- the total weight of the passengers is 140 kg.
- the weight of the passenger is set to 60 kg per person, 140/60 ⁇ 2.3 will be the estimated number of passengers in the car.
- the command unit 8 in the fourth embodiment transmits, for example, a control command for causing a plurality of elevators to perform rescue operation according to the rescue order. That is, the command unit 8 transmits, for example, a control command for moving a plurality of cars provided in different hoistways to a specific floor according to the rescue order.
- the specific floor is, for example, the nearest floor or a pre-set evacuation floor or the like.
- FIG. 6 is a flowchart showing an operation example of the elevator monitoring system according to the fourth embodiment.
- step S401 for example, it is detected that the state of the elevator is in control operation at power failure.
- step S402 attribute information of the robot that is in the car of each elevator is acquired.
- step S403 the weight of the robot that is in the car of each elevator is calculated from the attribute information of the robot.
- step S404 for each elevator, the weight of the robot is subtracted from the weight of the car.
- step S405 the number of passengers in each elevator car is estimated from the calculation result in step S404.
- step S406 a control command for performing the rescue operation is transmitted to the elevator system 1 in order from the elevator with the largest estimated number of passengers.
- the rescue order determination unit 10 estimates the number of passengers in the car from the boarding weight of the car and the weight included in the attribute information of the robot, and the estimated number of passengers. Determine the rescue order of multiple cars based on.
- the command unit 8 transmits a control command for moving a plurality of cars provided in different hoistways to a specific floor according to the rescue order determined by the rescue order determination unit 10. Therefore, for example, even when the robot is in the elevator car at the time of disaster occurrence, the rescue operation can be performed with priority given to the elevator having a large number of passengers.
- Embodiment 5 The fifth embodiment will be described below. Descriptions of portions overlapping with the first, second, third, or fourth embodiments are appropriately omitted.
- FIG. 7 is a configuration diagram for explaining an elevator monitoring system according to the fifth embodiment.
- the monitoring system 3 includes a receiving unit 4, a robot attribute storage unit 5, a robot state determination unit 6, an elevator state determination unit 7, a command unit 8, an external device output unit 9 and a joiner.
- a determination unit 11 is provided.
- the sharing determination unit 11 determines whether the robot and the passenger are sharing in the same elevator car.
- the sharing determination unit 11 may also perform this determination, for example, when disaster information indicating that a non-earthquake disaster is occurring is detected.
- a car in which a robot and a passenger join together is also referred to as a “car in a shared state”.
- the determination by the sharing determination unit 11 is performed based on, for example, the boarding weight of the car and the weight included in the attribute information of the robot that is in the car. Which robot is in the car is detected by the elevator system 1 based on, for example, the history of call information from each robot or the detection results of various sensors provided in the elevator.
- the sharing determination unit 11 compares, for example, the boarding weight of the car with the total weight of the robots in the car. If the robot is not in the car, the total weight of the robot is zero. For example, when the boarding weight of the car and the total weight of the robot coincide with each other, the passenger determining unit 11 determines that the robot and the passenger do not join because the passenger is not on the car. For example, when the boarding weight of the car and the total weight of the robot do not match, the sharing determination unit 11 determines that the robot and the passenger are sharing.
- FIG. 8 is a flowchart showing an operation example of the elevator monitoring system according to the fifth embodiment.
- step S501 for example, it is detected that the state of the elevator is in seismic control operation.
- step S502 the weight of the robot is acquired from the attribute information of the robot that is in the elevator car.
- step S503 the boarding weight of the elevator car is obtained.
- step S504 it is determined whether the robot and the passenger join in the elevator car.
- the robot and the passenger ride on the same car based on the boarding weight of the car and the weight included in the attribute information of the robot. Determine if there is. For this reason, for example, it is possible to take measures in consideration of the safety of the passengers in the elevator car at the time of disaster occurrence.
- FIG. 9 is a flowchart showing an operation example of a monitoring system of elevators in the sixth embodiment.
- FIG. 9 shows parts of the operation of the monitoring system different from FIG.
- Step S601 is performed subsequent to step S504 in FIG.
- notification information indicating whether the robot and the passenger ride in the same car is transmitted to the external device.
- the external device output unit 9 transmits, to at least an external device, notification information indicating a car in a state where the robot and the passenger join together.
- external device output unit 9 indicates, for example, notification information indicating a car in a sharing state when it is determined by joining determination unit 11 that the robot and the passenger are joining in the same car. To the external device. For this reason, when a disaster occurs, the situation in the elevator car can be notified to the manager in detail.
- the notified content is, for example, a judgment material when determining the order of elevator rescue when an earthquake occurs.
- Embodiment 7 The seventh embodiment will be described below. The description of the portions overlapping with the first, second, third, fourth, fifth or sixth embodiment is appropriately omitted.
- FIG. 10 is a flowchart showing an operation example of the elevator monitoring system according to the seventh embodiment.
- FIG. 10 shows parts of the operation of the monitoring system different from FIG.
- Step S701 is performed subsequent to step S504 in FIG.
- step S701 the degree of danger of the robot riding in the car in the sharing state is acquired.
- the degree of danger of the robot is preset, for example, based on the type of the robot included in the attribute information.
- the degree of risk of the robot is, for example, stored in advance in the robot attribute storage unit 5.
- step S702 the degree of risk based on the number of passengers in the car in the sharing state is calculated.
- the degree of risk based on the number of passengers in the car may be calculated based on, for example, the boarding weight of the car that also includes the weight of the robot.
- the degree of risk based on the number of passengers in the car may be calculated based on, for example, the total weight of the passengers obtained by subtracting the weight of the robot from the weight of getting in the car.
- the degree of risk based on the number of passengers in the car may be calculated based on, for example, the number of passengers estimated from the total weight of the passengers.
- step S703 the final degree of risk of the car in the sharing state is determined from the degree of risk of the robot acquired in step S701 and the degree of risk based on the number of passengers calculated in step S702.
- step S704 notification information indicating the final degree of risk of the car in the sharing state is transmitted to the external device.
- the risk of a robot less than 1 m high is “low”
- the risk of a robot 1 m or more and less than 1.5 m is “medium”
- the risk of a robot 1.5 m or more is It is “high”.
- the risk based on the number of passengers in the car is "low” when the boarding weight of the car is less than 50% of the rated load, and the car's boarding weight is 50% or more and less than 75% of the rated load If it is "medium”, it is "high” if the ride weight of the car is 75% or more of the rated load capacity.
- the final degree of risk of the car in a state of combination is determined by a combination of the degree of risk according to the height of the robot and the degree of risk according to the weight of the car. For example, if the height of the robot is 1.2 m and the boarding weight of the car is 60% of the rated load capacity, the final risk of the car is "medium".
- the operation shown in FIG. 10 is performed, for example, for each of the cars in the sharing state when there are a plurality of cars in the sharing state. That is, the final degree of risk is determined for each car in the shared state.
- the external device output unit 9 transmits, to the external device, notification information indicating the degree of danger of the car in the sharing state calculated based on the type included in the attribute information of the robot. For this reason, when the robot and the passenger join in the same car of the elevator, it is possible to notify the manager of the degree of danger based on the type of the robot. As a result, for example, when there are a plurality of cars in a shared state at the time of an earthquake, rescue operations can be performed with priority to cars with higher risk.
- the elevator system 1 may be formed, for example, as one elevator control device.
- the robot system 2 may be formed, for example, as one robot control device.
- the monitoring system 3 may be formed, for example, as one monitoring device.
- FIG. 11 is a hardware configuration diagram of the monitoring system.
- the processing circuit may be dedicated hardware 50.
- the processing circuit may comprise a processor 51 and a memory 52.
- the processing circuit is partially formed as dedicated hardware 50 and may further include a processor 51 and a memory 52.
- FIG. 11 shows an example in which the processing circuit is partially formed as the dedicated hardware 50 and includes the processor 51 and the memory 52.
- the processing circuit may for example be a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA or The combination is applicable.
- each function of the monitoring system 3 is realized by software, firmware, or a combination of software and firmware.
- the software and firmware are described as a program and stored in the memory 52.
- the processor 51 reads out and executes the program stored in the memory 52 to implement the functions of the respective units.
- the processor 51 is also referred to as a central processing unit (CPU), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
- the memory 52 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD or the like.
- a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD or the like.
- the processing circuit can implement each function of the monitoring system 3 by hardware, software, firmware, or a combination thereof.
- Each function of elevator system 1 and robot system 2 is also realized by a processing circuit similar to the processing circuit shown in FIG.
- the present invention can be used for a system for monitoring an elevator where a robot can get on and off a car.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
Abstract
Provided is an elevator monitoring system with which individual handling of robots that are capable of getting in and out of an elevator car can be performed on the basis of the individual attribute information of each robot. This elevator monitoring system (3) comprises: a receiving unit (4) that receives identification information of a robot that is capable of getting in and out of an elevator car; an external device output unit (9) that transmits, to an external device, notification information determined on the basis of individual attribute information of the robot that has been pre-stored in association with the identification information received by the receiving unit (4); and a command unit (8) that transmits, to an elevator system (1), a control command determined on the basis of the individual attribute information of the robot that has been pre-stored in association with the identification information received by the receiving unit (4).
Description
この発明は、エレベーターの監視システムに関する。
The present invention relates to a monitoring system for elevators.
下記特許文献1には、建物の各階にエレベーターで清掃ロボットを移動させるシステムが記載されている。このシステムは、清掃ロボットに異常が発生した場合に警報を出力する。
Patent Document 1 below describes a system for moving a cleaning robot by elevators to each floor of a building. This system outputs an alarm when an abnormality occurs in the cleaning robot.
特許文献1に記載されたシステムでは、個々のロボットによって異なり得る性質又は特徴に応じて個別の対処を実施することができない。
In the system described in Patent Document 1, individual measures can not be implemented depending on the nature or characteristics that may differ depending on individual robots.
この発明は、上記の課題を解決するためになされた。その目的は、エレベーターのかごに乗降可能なロボットの個別の属性情報に基づいて個別の対処を実施することができるエレベーターの監視システムを提供することである。
This invention was made in order to solve said subject. An object of the present invention is to provide an elevator monitoring system capable of implementing individual measures based on individual attribute information of robots that can get on and off the elevator car.
この発明に係るエレベーターの監視システムは、エレベーターのかごに乗降可能なロボットの識別情報を受信する受信部と、受信部によって受信された識別情報と関連付けて予め記憶されたロボットの個別の属性情報に基づいて決定された報知情報を外部機器に送信する外部機器出力部と、受信部によって受信された識別情報と関連付けて予め記憶されたロボットの個別の属性情報に基づいて決定された制御指令をエレベーターシステムに送信する指令部と、を備える。
The elevator monitoring system according to the present invention comprises a receiving unit for receiving identification information of a robot capable of getting on and off the elevator car, and individual attribute information of the robot stored in advance in association with the identification information received by the receiving unit. The control command determined based on the individual attribute information of the robot previously stored in association with the identification information received by the reception unit and the external device output unit for transmitting the notification information determined based on the external device to the elevator And a command unit to transmit to the system.
この発明によれば、例えば、ロボットの個別の属性情報に基づいて決定された報知情報が外部機器に送信される。また、例えば、ロボットの個別の属性情報に基づいて決定された制御指令がエレベーターシステムに送信される。このため、エレベーターのかごに乗降可能なロボットの個別の属性情報に基づいて個別の対処を実施することができる。
According to this invention, for example, notification information determined based on individual attribute information of the robot is transmitted to the external device. Also, for example, a control command determined based on individual attribute information of the robot is transmitted to the elevator system. Therefore, individual measures can be implemented based on individual attribute information of robots that can get on and off the elevator car.
以下、添付の図面を参照して実施の形態について説明する。各図では、同一又は相当する部分に同一の符号が付される。重複する説明は、適宜簡略化あるいは省略する。
Hereinafter, embodiments will be described with reference to the attached drawings. In each of the drawings, the same or corresponding parts are denoted by the same reference numerals. Duplicate descriptions will be simplified or omitted as appropriate.
実施の形態1.
図1は、実施の形態1におけるエレベーターの監視システムを説明するための構成図である。Embodiment 1
FIG. 1 is a configuration diagram for explaining an elevator monitoring system according to a first embodiment.
図1は、実施の形態1におけるエレベーターの監視システムを説明するための構成図である。
FIG. 1 is a configuration diagram for explaining an elevator monitoring system according to a first embodiment.
エレベーターシステム1は、建物内のエレベーターの動作を制御する。エレベーターの動作には、例えば、かごの移動及び扉の開閉等が含まれる。
The elevator system 1 controls the operation of the elevator in the building. The operation of the elevator includes, for example, movement of a car and opening and closing of a door.
エレベーターシステム1は、例えば、1つのかごの移動を制御してもよい。エレベーターシステム1は、例えば、異なる昇降路に設けられた複数のかごの移動を制御してもよい。つまり、エレベーターシステム1は、例えば、エレベーターの群管理システムであってもよい。
The elevator system 1 may, for example, control the movement of one car. The elevator system 1 may control, for example, the movement of a plurality of cars provided in different hoistways. That is, the elevator system 1 may be, for example, a group management system of elevators.
ロボットシステム2は、建物内を移動するロボットを制御する。ロボットは、エレベーターのかごに乗降可能である。ロボットシステム2は、エレベーターシステム1と通信可能である。
The robot system 2 controls a robot moving in the building. The robot can get on and off the elevator car. The robot system 2 can communicate with the elevator system 1.
ロボットシステム2は、例えば、種別が同一の複数のロボットを制御してもよい。ロボットシステム2は、例えば、種別が異なる複数のロボットを制御してもよい。
The robot system 2 may control, for example, a plurality of robots of the same type. The robot system 2 may control, for example, a plurality of robots of different types.
ロボットは、例えば、ロボットシステム2と無線通信を行う。ロボットとロボットシステム2との無線通信は、例えば、建物内に設置された通信機を介して行われる。ロボットは、例えば、ロボットシステム2からの指令に従って移動してもよい。ロボットは、例えば、自律移動してもよい。
The robot wirelessly communicates with, for example, the robot system 2. The wireless communication between the robot and the robot system 2 is performed, for example, via a communication device installed in a building. The robot may move, for example, in accordance with a command from the robot system 2. The robot may, for example, move autonomously.
ロボットは、例えば、エレベーターの呼び情報をロボットシステム2に送信する。ロボットは、例えば、自己の動作状態を示す情報をロボットシステム2に送信してもよい。
The robot transmits, for example, elevator call information to the robot system 2. The robot may transmit, for example, information indicating the operation state of itself to the robot system 2.
ロボットからの呼び情報には、例えば、当該ロボットの識別情報、乗車階及び行先階が含まれる。ロボットシステム2は、例えば、ロボットからの呼び情報をエレベーターシステム1に送信する。ロボットシステム2は、例えば、ロボットからの呼び情報と併せて、当該ロボットの動作状態を示す情報をエレベーターシステム1に送信してもよい。
The call information from the robot includes, for example, identification information of the robot, a boarding floor, and a destination floor. The robot system 2 transmits, for example, call information from a robot to the elevator system 1. The robot system 2 may transmit, to the elevator system 1, information indicating an operation state of the robot, for example, together with call information from the robot.
エレベーターシステム1は、例えば、ロボットからの呼び情報に基づいて、当該ロボットの乗車階から行先階までかごを移動させる。
The elevator system 1 moves the car from the boarding floor of the robot to the destination floor, for example, based on call information from the robot.
監視システム3は、建物内のエレベーター及びロボットを監視する。監視システム3は、エレベーターシステム1と通信可能である。
The monitoring system 3 monitors elevators and robots in the building. The monitoring system 3 can communicate with the elevator system 1.
エレベーターシステム1は、例えば、ロボットシステム2から受信した呼び情報に含まれるロボットの識別情報を監視システム3に送信する。つまり、エレベーターシステム1は、例えば、エレベーターシステム1にアクセスしたロボットの識別情報を監視システム3に送信する。エレベーターシステム1は、例えば、ロボットの識別情報と併せて、当該ロボットの動作状態を示す情報を監視システム3に送信してもよい。
The elevator system 1 transmits, for example, identification information of a robot included in call information received from the robot system 2 to the monitoring system 3. That is, the elevator system 1 transmits, for example, identification information of a robot that has accessed the elevator system 1 to the monitoring system 3. The elevator system 1 may transmit, to the monitoring system 3, information indicating the operation state of the robot, for example, together with identification information of the robot.
エレベーターシステム1は、例えば、制御対象であるエレベーターの状態に関連する情報を監視システム3に送信する。エレベーターの状態に関連する情報には、例えば、かごの乗車重量及び運転モード等が含まれる。かごの乗車重量は、例えば、図示しない秤装置によって検出される。
The elevator system 1 transmits, for example, information related to the state of an elevator to be controlled to the monitoring system 3. The information related to the state of the elevator includes, for example, the boarding weight and operating mode of the car. The riding weight of the car is detected, for example, by a weighing device (not shown).
エレベーターの運転モードには、例えば、通常運転及び管制運転等が含まれる。管制運転には、例えば、停電時管制運転及び地震時管制運転等が含まれる。
The operation mode of the elevator includes, for example, normal operation and controlled operation. The control operation includes, for example, a power failure control operation and an earthquake control operation.
図1に示すように、実施の形態1における監視システム3は、受信部4、ロボット属性記憶部5、ロボット状態判定部6、エレベーター状態判定部7、指令部8及び外部機器出力部9を備える。
As shown in FIG. 1, the monitoring system 3 in the first embodiment includes a receiving unit 4, a robot attribute storage unit 5, a robot state determination unit 6, an elevator state determination unit 7, a command unit 8, and an external device output unit 9. .
受信部4は、ロボットの識別情報を受信する。受信部4は、例えば、エレベーターシステム1から監視システム3に送信されたロボットの識別情報を取得する。受信部4は、例えば、ロボットの識別情報と併せて、当該ロボットの動作状態を示す情報を取得してもよい。
The receiver 4 receives the identification information of the robot. The receiving unit 4 acquires, for example, robot identification information transmitted from the elevator system 1 to the monitoring system 3. The receiving unit 4 may acquire, for example, information indicating the operation state of the robot in addition to identification information of the robot.
ロボット属性記憶部5は、ロボットの個別の属性情報を記憶する。ロボット属性記憶部5に記憶されたロボットの属性情報は、当該ロボットの識別情報と関連付けられている。
The robot attribute storage unit 5 stores individual attribute information of the robot. The robot attribute information stored in the robot attribute storage unit 5 is associated with the identification information of the robot.
ロボットの属性情報には、少なくとも当該ロボットの帰着階が含まれる。ロボットの帰着階とは、例えば、当該ロボットが故障した場合の移動先として予め設定された階である。
The attribute information of the robot includes at least the return floor of the robot. The return floor of the robot is, for example, a floor set in advance as a movement destination when the robot breaks down.
ロボットの属性情報には、例えば、当該ロボットの故障時の対処方法が含まれる。
The attribute information of the robot includes, for example, a coping method when the robot fails.
ロボットの属性情報には、例えば、当該ロボットの重量が含まれる。
The attribute information of the robot includes, for example, the weight of the robot.
ロボットの属性情報には、例えば、当該ロボットの種別が含まれる。ロボットの種別は、例えば、ロボットの高さ、重量又は用途等に基づいて分類されている。
The robot attribute information includes, for example, the type of the robot. The type of robot is classified based on, for example, the height, weight or use of the robot.
ロボット状態判定部6は、受信部4によって受信された識別情報を有するロボットの状態を判定する。ロボットの状態を判定する方法は、例えば、当該ロボットの識別情報と関連付けてロボット属性記憶部5に記憶されている属性情報に基づいて決定される。ロボットの状態は、例えば、当該ロボットの動作状態を示す情報に基づいて判定されてもよい。ロボットの状態は、例えば、「正常」又は「故障」等として表される。
The robot state determination unit 6 determines the state of the robot having the identification information received by the reception unit 4. The method of determining the state of the robot is determined based on, for example, the attribute information stored in the robot attribute storage unit 5 in association with the identification information of the robot. The state of the robot may be determined based on, for example, information indicating the operation state of the robot. The state of the robot is expressed as, for example, "normal" or "fault".
以下、ロボット状態判定部6によって判定されたロボットの状態を示す情報を「ロボット状態情報」とも呼ぶ。
Hereinafter, information indicating the state of the robot determined by the robot state determination unit 6 is also referred to as “robot state information”.
エレベーター状態判定部7は、エレベーターシステム1から監視システム3に送信された情報に基づいて、エレベーターの状態を判定する。エレベーターの状態は、例えば、エレベーターシステム1から送信された情報に含まれる運転モードに応じて、「通常運転中」、「停電時管制運転中」又は「地震時管制運転中」等として表される。
The elevator state determination unit 7 determines the state of the elevator based on the information transmitted from the elevator system 1 to the monitoring system 3. The state of the elevator is expressed, for example, as "during normal operation", "during power outage control operation" or "during earthquake control operation" according to the operation mode included in the information transmitted from the elevator system 1. .
以下、エレベーター状態判定部7によって判定されたエレベーターの状態を示す情報を「エレベーター状態情報」とも呼ぶ。
Hereinafter, information indicating the state of the elevator determined by the elevator state determination unit 7 is also referred to as “elevator state information”.
エレベーター状態判定部7は、例えば、エレベーター状態情報に基づいて災害情報を検出する。災害情報は、例えば、災害が発生しているか否か、及び、発生した災害の種別を示す情報である。
The elevator state determination unit 7 detects disaster information based on, for example, elevator state information. The disaster information is, for example, information indicating whether or not a disaster has occurred, and the type of the disaster that has occurred.
例えば、エレベーター状態情報が「通常運転中」である場合、災害情報は、「災害なし」として表される。例えば、エレベーター状態情報が「停電時管制運転中」である場合、災害情報は「停電」として表される。例えば、エレベーター状態情報が「地震時管制運転中」である場合、災害情報は「地震」として表される。
For example, when the elevator status information is "during normal operation", the disaster information is represented as "no disaster". For example, when the elevator status information is "control operation at power failure", the disaster information is represented as "power failure". For example, when the elevator status information is "during earthquake control", the disaster information is represented as "earthquake".
指令部8は、制御指令をエレベーターシステム1に送信する。制御指令の内容は、例えば、ロボット状態情報及びエレベーター状態情報に基づいて決定される。エレベーターシステム1は、指令部8から制御指令を受信した場合、当該制御指令の内容に従ってエレベーターの動作を制御する。
The command unit 8 transmits a control command to the elevator system 1. The content of the control command is determined based on, for example, robot state information and elevator state information. When the elevator system 1 receives a control command from the command unit 8, the elevator system 1 controls the operation of the elevator according to the content of the control command.
外部機器出力部9は、報知情報を外部機器に送信する。報知情報の内容は、例えば、ロボット状態情報及びエレベーター状態情報に基づいて決定される。外部機器は、外部機器出力部9から報知情報を受信した場合、当該報知情報の内容を報知する。外部機器による報知は、例えば、画面表示及び音声アナウンスの少なくとも一方によって行われる。
The external device output unit 9 transmits the notification information to the external device. The content of the notification information is determined based on, for example, robot state information and elevator state information. When the external device receives the notification information from the external device output unit 9, the external device notifies of the content of the notification information. Notification by the external device is performed, for example, by at least one of screen display and voice announcement.
報知情報の内容としては、例えば、ロボット状態情報及びエレベーター状態情報がそのまま用いられてもよい。この場合、報知情報は、ロボットの状態が正常であるのか故障であるのか、及び、エレベーターの状態が通常運転中であるのか管制運転中であるのか、を示す情報となる。
As the contents of the notification information, for example, robot state information and elevator state information may be used as they are. In this case, the notification information is information indicating whether the state of the robot is normal or broken and whether the state of the elevator is in normal operation or in controlled operation.
報知情報の送信先となる外部機器は、例えば、管理者が所持する携帯端末である。管理者の携帯端末は、例えば、携帯電話、スマートフォン又はタブレットPC等である。管理者の携帯端末は、例えば、監視システム3と情報をやり取りするための専用端末でもよい。
The external device that is the transmission destination of the notification information is, for example, a portable terminal owned by the administrator. The mobile terminal of the administrator is, for example, a mobile phone, a smartphone or a tablet PC. The manager's mobile terminal may be, for example, a dedicated terminal for exchanging information with the monitoring system 3.
図2は、実施の形態1におけるエレベーターの監視システムの動作例を示すフローチャートである。
FIG. 2 is a flowchart showing an operation example of the elevator monitoring system in the first embodiment.
ステップS101では、エレベーターシステム1から受信した識別情報に基づいてロボットが識別される。
In step S101, the robot is identified based on the identification information received from the elevator system 1.
ステップS102では、識別されたロボットの状態が判定される。
In step S102, the state of the identified robot is determined.
ステップS103では、エレベーターの状態が判定される。
In step S103, the state of the elevator is determined.
ステップS104では、ロボット状態情報及びエレベーター状態情報に基づいて、報知情報及び制御指令の内容が決定される。
In step S104, the contents of the notification information and the control command are determined based on the robot state information and the elevator state information.
ステップS105では、報知情報が外部機器へ送信される。
In step S105, notification information is transmitted to the external device.
ステップS106では、制御指令がエレベーターシステム1へ送信される。
At step S106, a control command is transmitted to the elevator system 1.
実施の形態1によれば、受信部4は、エレベーターのかごに乗降可能なロボットの識別情報を受信する。外部機器出力部9は、受信部4によって受信された識別情報と関連付けて予め記憶されたロボットの個別の属性情報、当該ロボットの状態情報及びエレベーター状態情報に基づいて決定された報知情報を外部機器に送信する。指令部8は、受信部4によって受信された識別情報と関連付けて予め記憶されたロボットの個別の属性情報、当該ロボットの状態情報及びエレベーター状態情報に基づいて決定された制御指令をエレベーターシステム1に送信する。このため、エレベーターのかごに乗降可能なロボットの個別の属性情報に基づいて個別の対処を実施することができる。具体的には、例えば、ロボットに異常が発生した際に、その旨を管理者に報知するとともに、適切なエレベーター制御を実施することができる。
According to the first embodiment, the receiving unit 4 receives the identification information of the robot that can get on and off the elevator car. The external device output unit 9 is an external device that is determined based on the individual attribute information of the robot stored in advance in association with the identification information received by the receiving unit 4, the state information of the robot, and the elevator state information. Send to The command unit 8 instructs the elevator system 1 on the control command determined based on the individual attribute information of the robot stored in advance in association with the identification information received by the receiving unit 4, the state information of the robot, and the elevator state information. Send. Therefore, individual measures can be implemented based on individual attribute information of robots that can get on and off the elevator car. Specifically, for example, when an abnormality occurs in a robot, it is possible to notify an administrator of that fact and to implement appropriate elevator control.
実施の形態2.
以下、実施の形態2について説明する。実施の形態1と重複する部分の説明は適宜省略される。 Second Embodiment
The second embodiment will be described below. Descriptions of parts overlapping withEmbodiment 1 will be omitted as appropriate.
以下、実施の形態2について説明する。実施の形態1と重複する部分の説明は適宜省略される。 Second Embodiment
The second embodiment will be described below. Descriptions of parts overlapping with
実施の形態2におけるエレベーターの監視システムを説明するための構成図は、図1と同様である。
The block diagram for demonstrating the monitoring system of the elevator in Embodiment 2 is the same as that of FIG.
図3は、実施の形態2におけるエレベーターの監視システムの動作例を示すフローチャートである。
FIG. 3 is a flowchart showing an operation example of the elevator monitoring system in the second embodiment.
実施の形態2における監視システムの動作は、図2のステップS102を除いて実施の形態1と同様である。図3は、監視システムの動作のうち図2と異なる部分を示している。
The operation of the monitoring system in the second embodiment is the same as that of the first embodiment except for step S102 in FIG. FIG. 3 shows a part of the operation of the monitoring system which is different from FIG.
ステップS201は、図2のステップS101の次に行われる。ステップS201では、ステップS101で識別されたロボットの属性情報がロボット属性記憶部5から参照される。
Step S201 is performed subsequent to step S101 of FIG. In step S201, the robot attribute storage unit 5 refers to the attribute information of the robot identified in step S101.
ステップS202では、ロボットの状態が故障であるか否かが判定される。
In step S202, it is determined whether the state of the robot is a failure.
ステップS202でロボットの状態が故障であると判定された場合、ステップS203が行われる。ステップS203では、ロボットの属性情報から当該ロボットの故障時の対処方法が取得される。
If it is determined in step S202 that the state of the robot is faulty, step S203 is performed. In step S203, the coping method at the time of failure of the robot is acquired from the attribute information of the robot.
ステップS203の次には、図2のステップS103が行われる。ステップS202でロボットの状態が正常であると判定された場合、ステップS203は行われずに図2のステップS103が行われる。
After step S203, step S103 of FIG. 2 is performed. If it is determined in step S202 that the state of the robot is normal, step S103 in FIG. 2 is performed without performing step S203.
ステップS203が行われた場合、図2のステップS105では、ロボットの故障時の対処方法を示す報知情報が外部機器へ送信される。
When step S203 is performed, in step S105 of FIG. 2, notification information indicating a countermeasure for a failure of the robot is transmitted to the external device.
実施の形態2によれば、外部機器出力部9は、受信部4によって識別情報が受信されたロボットが故障した場合に、当該ロボットの属性情報に含まれる故障時の対処方法を示す報知情報を外部機器へ送信する。このため、管理者は、ロボットに異常が発生した際に、報知された対処方法に基づいて円滑に対処することができる。
According to the second embodiment, when the robot whose identification information has been received by the reception unit 4 breaks down, the external device output unit 9 reports information indicating a coping method at the time of failure included in the attribute information of the robot. Send to an external device. Therefore, when an abnormality occurs in the robot, the administrator can cope with the problem smoothly based on the notified countermeasure.
なお、例えば、災害が発生していることを示す災害情報が検出された場合には、他の情報の報知が優先的に実施されてもよい。つまり、外部機器出力部9は、例えば、ロボットが故障し且つ災害が発生していない場合に、当該ロボットの故障時の対処方法を示す報知情報を外部機器へ送信してもよい。
Note that, for example, when disaster information indicating that a disaster has occurred is detected, notification of other information may be preferentially performed. That is, the external device output unit 9 may transmit, to the external device, notification information indicating how to handle the failure of the robot, for example, when the robot is broken and no disaster occurs.
実施の形態3.
以下、実施の形態3について説明する。実施の形態1又は2と重複する部分の説明は適宜省略される。 Third Embodiment
The third embodiment will be described below. Descriptions of parts overlapping with Embodiment 1 or 2 will be omitted as appropriate.
以下、実施の形態3について説明する。実施の形態1又は2と重複する部分の説明は適宜省略される。 Third Embodiment
The third embodiment will be described below. Descriptions of parts overlapping with
実施の形態3におけるエレベーターの監視システムを説明するための構成図は、図1と同様である。
The block diagram for demonstrating the monitoring system of the elevator in Embodiment 3 is the same as that of FIG.
図4は、実施の形態3におけるエレベーターの監視システムの動作例を示すフローチャートである。
FIG. 4 is a flowchart showing an operation example of the elevator monitoring system according to the third embodiment.
実施の形態3における監視システムの動作は、図2のステップS102を除いて実施の形態1及び2と同様である。図4は、監視システムの動作のうち図2と異なる部分を示している。
The operation of the monitoring system in the third embodiment is the same as in the first and second embodiments except for step S102 in FIG. FIG. 4 shows parts of the operation of the monitoring system different from FIG.
ステップS301は、図2のステップS101の次に行われる。ステップS301では、ステップS101で識別されたロボットの属性情報がロボット属性記憶部5から参照される。
Step S301 is performed subsequent to step S101 of FIG. In step S301, the robot attribute storage unit 5 refers to the attribute information of the robot identified in step S101.
ステップS302では、ロボットの状態が故障であるか否かが判定される。
In step S302, it is determined whether the state of the robot is a failure.
ステップS302でロボットの状態が故障であると判定された場合、ステップS303が行われる。ステップS303では、ロボットの属性情報から当該ロボットの帰着階が取得される。
If it is determined in step S302 that the state of the robot is faulty, step S303 is performed. In step S303, the return floor of the robot is acquired from the attribute information of the robot.
ステップS303の次には、図2のステップS103が行われる。ステップS302でロボットの状態が正常であると判定された場合、ステップS303は行われずに図2のステップS103が行われる。
After step S303, step S103 of FIG. 2 is performed. If it is determined in step S302 that the state of the robot is normal, step S103 in FIG. 2 is performed without performing step S303.
ステップS303が行われた場合、図2のステップS106では、ロボットの帰着階へかごを移動させるための制御指令がエレベーターシステム1へ送信される。
When step S303 is performed, in step S106 in FIG. 2, a control command for moving the car to the return floor of the robot is transmitted to the elevator system 1.
実施の形態3によれば、指令部8は、受信部4によって識別情報が受信されたロボットが故障した場合に、当該ロボットの属性情報に含まれる帰着階へかごを移動させるための制御指令を送信する。このため、管理人は、故障したロボットを帰着階で迅速に回収することができる。
According to the third embodiment, when the robot whose identification information is received by the reception unit 4 fails, the command unit 8 generates a control command for moving the car to the return floor included in the attribute information of the robot. Send. As a result, the caretaker can quickly recover the broken robot at the return floor.
なお、例えば、災害が発生していることを示す災害情報が検出された場合には、他のエレベーター制御が優先的に実施されてもよい。つまり、指令部8は、例えば、ロボットが故障し且つ災害が発生していない場合に、当該ロボットの帰着階へかごを移動させるための制御指令を送信してもよい。
In addition, for example, when disaster information indicating that a disaster is occurring is detected, another elevator control may be implemented preferentially. That is, for example, when the robot is broken down and no disaster occurs, the command unit 8 may transmit a control command for moving the car to the return floor of the robot.
実施の形態4.
以下、実施の形態4について説明する。実施の形態1、2又は3と重複する部分の説明は適宜省略される。 Fourth Embodiment
The fourth embodiment will be described below. Descriptions of portions overlapping with the first, second, or third embodiment are appropriately omitted.
以下、実施の形態4について説明する。実施の形態1、2又は3と重複する部分の説明は適宜省略される。 Fourth Embodiment
The fourth embodiment will be described below. Descriptions of portions overlapping with the first, second, or third embodiment are appropriately omitted.
図5は、実施の形態4におけるエレベーターの監視システムを説明するための構成図である。
FIG. 5 is a configuration diagram for explaining an elevator monitoring system in a fourth embodiment.
図5に示すように、実施の形態4における監視システム3は、受信部4、ロボット属性記憶部5、ロボット状態判定部6、エレベーター状態判定部7、指令部8、外部機器出力部9及び救出順決定部10を備える。
As shown in FIG. 5, the monitoring system 3 according to the fourth embodiment includes the receiving unit 4, the robot attribute storage unit 5, the robot state determination unit 6, the elevator state determination unit 7, the command unit 8, the external device output unit 9, and rescue. The order determination unit 10 is provided.
救出順決定部10は、例えば、停電が発生していることを示す災害情報が検出された場合に、異なる昇降路内に設けられた複数のかごの救出順を決定する。救出順は、例えば、推定された各かご内の乗客数に基づいて決定される。救出順は、例えば、かご内の乗客数が多い順となる。なお、救出順決定部10は、例えば、停電でない災害が発生していることを示す災害情報が検出された場合にも、救出順を決定してもよい。
For example, when disaster information indicating that a power failure has occurred is detected, the rescue order determination unit 10 determines the rescue order of a plurality of cars provided in different hoistways. The rescue order is determined, for example, based on the estimated number of passengers in each car. The rescue order is, for example, the order in which the number of passengers in the car is large. The rescue order determination unit 10 may also determine the rescue order even when disaster information indicating that a disaster that is not a power failure has occurred is detected, for example.
エレベーターのかご内の乗客数は、例えば、当該かごの乗車重量及び当該かごに乗車中であるロボットの属性情報に含まれる重量から推定される。どのロボットがかごに乗車中であるかということは、例えば、各ロボットからの呼び情報の履歴又はエレベーターに設けられた各種センサの検出結果等に基づいて、エレベーターシステム1により検出される。
The number of passengers in the elevator car is estimated from, for example, the weight included in the boarding weight of the car and the attribute information of the robot who is in the car. Which robot is in the car is detected by the elevator system 1 based on, for example, the history of call information from each robot or the detection results of various sensors provided in the elevator.
具体例として、かごに乗車中であるロボットの合計重量が30kgであり、当該かごの乗車重量が170kgである場合について説明する。この場合、当該かごの乗車重量からロボットの重量を減算すると、170-30=140kgとなる。つまり、乗客の合計重量は140kgである。そして、乗客の重量を1人あたり60kgと設定すると、140/60≒2.3人が当該かご内の推定乗客数となる。
As a specific example, the case where the total weight of the robot in the car is 30 kg and the boarding weight of the car is 170 kg will be described. In this case, 170-30 = 140 kg is obtained by subtracting the weight of the robot from the riding weight of the car. In other words, the total weight of the passengers is 140 kg. Then, if the weight of the passenger is set to 60 kg per person, 140/60 ≒ 2.3 will be the estimated number of passengers in the car.
実施の形態4における指令部8は、例えば、救出順に従って複数のエレベーターに救出運転を実施させるための制御指令を送信する。つまり、指令部8は、例えば、異なる昇降路内に設けられた複数のかごを救出順に従って特定階へ移動させるための制御指令を送信する。特定階は、例えば、最寄階又は予め設定された避難階等である。
The command unit 8 in the fourth embodiment transmits, for example, a control command for causing a plurality of elevators to perform rescue operation according to the rescue order. That is, the command unit 8 transmits, for example, a control command for moving a plurality of cars provided in different hoistways to a specific floor according to the rescue order. The specific floor is, for example, the nearest floor or a pre-set evacuation floor or the like.
図6は、実施の形態4におけるエレベーターの監視システムの動作例を示すフローチャートである。
FIG. 6 is a flowchart showing an operation example of the elevator monitoring system according to the fourth embodiment.
ステップS401では、例えば、エレベーターの状態が停電時管制運転中であることが検出される。
In step S401, for example, it is detected that the state of the elevator is in control operation at power failure.
ステップS402では、各エレベーターのかごに乗車中であるロボットの属性情報が取得される。
In step S402, attribute information of the robot that is in the car of each elevator is acquired.
ステップS403では、ロボットの属性情報から、各エレベーターのかごに乗車中であるロボットの重量が算出される。
In step S403, the weight of the robot that is in the car of each elevator is calculated from the attribute information of the robot.
ステップS404では、各エレベーターについて、かごの乗車重量からロボットの重量が減算される。
In step S404, for each elevator, the weight of the robot is subtracted from the weight of the car.
ステップS405では、ステップS404での算出結果から、各エレベーターのかご内の乗客数が推定される。
In step S405, the number of passengers in each elevator car is estimated from the calculation result in step S404.
ステップS406では、推定乗客数の多いエレベーターから順番に救出運転を実施させるための制御指令がエレベーターシステム1へ送信される。
In step S406, a control command for performing the rescue operation is transmitted to the elevator system 1 in order from the elevator with the largest estimated number of passengers.
実施の形態4によれば、救出順決定部10は、災害が発生した場合に、かごの乗車重量及びロボットの属性情報に含まれる重量からかご内の乗客数を推定し、推定された乗客数に基づいて複数のかごの救出順を決定する。指令部8は、異なる昇降路内に設けられた複数のかごを救出順決定部10によって決定された救出順に従って特定階へ移動させるための制御指令を送信する。このため、例えば、災害発生時にエレベーターのかごにロボットが乗車している場合であっても、乗客数の多いエレベーターを優先して救出運転を実施させることができる。
According to the fourth embodiment, when the disaster occurs, the rescue order determination unit 10 estimates the number of passengers in the car from the boarding weight of the car and the weight included in the attribute information of the robot, and the estimated number of passengers. Determine the rescue order of multiple cars based on. The command unit 8 transmits a control command for moving a plurality of cars provided in different hoistways to a specific floor according to the rescue order determined by the rescue order determination unit 10. Therefore, for example, even when the robot is in the elevator car at the time of disaster occurrence, the rescue operation can be performed with priority given to the elevator having a large number of passengers.
実施の形態5.
以下、実施の形態5について説明する。実施の形態1、2、3又は4と重複する部分の説明は適宜省略される。Embodiment 5
The fifth embodiment will be described below. Descriptions of portions overlapping with the first, second, third, or fourth embodiments are appropriately omitted.
以下、実施の形態5について説明する。実施の形態1、2、3又は4と重複する部分の説明は適宜省略される。
The fifth embodiment will be described below. Descriptions of portions overlapping with the first, second, third, or fourth embodiments are appropriately omitted.
図7は、実施の形態5におけるエレベーターの監視システムを説明するための構成図である。
FIG. 7 is a configuration diagram for explaining an elevator monitoring system according to the fifth embodiment.
図7に示すように、実施の形態5における監視システム3は、受信部4、ロボット属性記憶部5、ロボット状態判定部6、エレベーター状態判定部7、指令部8、外部機器出力部9及び相乗り判定部11を備える。
As shown in FIG. 7, the monitoring system 3 according to the fifth embodiment includes a receiving unit 4, a robot attribute storage unit 5, a robot state determination unit 6, an elevator state determination unit 7, a command unit 8, an external device output unit 9 and a joiner. A determination unit 11 is provided.
相乗り判定部11は、例えば、地震が発生していることを示す災害情報が検出された場合に、エレベーターの同一のかごにロボットと乗客とが相乗りしているか否かを判定する。なお、相乗り判定部11は、例えば、地震でない災害が発生していることを示す災害情報が検出された場合にも、この判定を行ってもよい。以下、ロボットと乗客とが相乗りしているかごを「相乗り状態のかご」とも呼ぶ。
For example, when disaster information indicating that an earthquake is occurring is detected, the sharing determination unit 11 determines whether the robot and the passenger are sharing in the same elevator car. The sharing determination unit 11 may also perform this determination, for example, when disaster information indicating that a non-earthquake disaster is occurring is detected. Hereinafter, a car in which a robot and a passenger join together is also referred to as a “car in a shared state”.
相乗り判定部11による判定は、例えば、かごの乗車重量及び当該かごに乗車中であるロボットの属性情報に含まれる重量に基づいて行われる。どのロボットがかごに乗車中であるかということは、例えば、各ロボットからの呼び情報の履歴又はエレベーターに設けられた各種センサの検出結果等に基づいて、エレベーターシステム1により検出される。
The determination by the sharing determination unit 11 is performed based on, for example, the boarding weight of the car and the weight included in the attribute information of the robot that is in the car. Which robot is in the car is detected by the elevator system 1 based on, for example, the history of call information from each robot or the detection results of various sensors provided in the elevator.
相乗り判定部11は、例えば、かごの乗車重量と当該かごに乗車中であるロボットの合計重量とを比較する。ロボットが当該かごに乗車していなければ、ロボットの合計重量はゼロとなる。相乗り判定部11は、例えば、当該かごの乗車重量とロボットの合計重量とが一致した場合、当該かごに乗客は乗車していないため、ロボットと乗客とが相乗りしていないと判定する。相乗り判定部11は、例えば、当該かごの乗車重量とロボットの合計重量とが一致しない場合、ロボットと乗客とが相乗りしていると判定する。
The sharing determination unit 11 compares, for example, the boarding weight of the car with the total weight of the robots in the car. If the robot is not in the car, the total weight of the robot is zero. For example, when the boarding weight of the car and the total weight of the robot coincide with each other, the passenger determining unit 11 determines that the robot and the passenger do not join because the passenger is not on the car. For example, when the boarding weight of the car and the total weight of the robot do not match, the sharing determination unit 11 determines that the robot and the passenger are sharing.
図8は、実施の形態5におけるエレベーターの監視システムの動作例を示すフローチャートである。
FIG. 8 is a flowchart showing an operation example of the elevator monitoring system according to the fifth embodiment.
ステップS501では、例えば、エレベーターの状態が地震時管制運転中であることが検出される。
In step S501, for example, it is detected that the state of the elevator is in seismic control operation.
ステップS502では、エレベーターのかごに乗車中であるロボットの属性情報から当該ロボットの重量が取得される。
In step S502, the weight of the robot is acquired from the attribute information of the robot that is in the elevator car.
ステップS503では、エレベーターのかごの乗車重量が取得される。
In step S503, the boarding weight of the elevator car is obtained.
ステップS504では、エレベーターのかご内でロボットと乗客とが相乗りしているか否かが判定される。
In step S504, it is determined whether the robot and the passenger join in the elevator car.
実施の形態5によれば、相乗り判定部11は、災害が発生した場合に、かごの乗車重量及びロボットの属性情報に含まれる重量に基づいて、ロボットと乗客とが同一のかごに相乗りしているか否かを判定する。このため、例えば、災害発生時にエレベーターのかご内に居る乗客の安全性を考慮した対処を実施することができる。
According to the fifth embodiment, when a disaster occurs, the robot and the passenger ride on the same car based on the boarding weight of the car and the weight included in the attribute information of the robot. Determine if there is. For this reason, for example, it is possible to take measures in consideration of the safety of the passengers in the elevator car at the time of disaster occurrence.
実施の形態6.
以下、実施の形態6について説明する。実施の形態1、2、3、4又は5と重複する部分の説明は適宜省略される。 Sixth Embodiment
The sixth embodiment will be described below. Descriptions of portions overlapping with the first, second, third, fourth or fifth embodiment are appropriately omitted.
以下、実施の形態6について説明する。実施の形態1、2、3、4又は5と重複する部分の説明は適宜省略される。 Sixth Embodiment
The sixth embodiment will be described below. Descriptions of portions overlapping with the first, second, third, fourth or fifth embodiment are appropriately omitted.
実施の形態6におけるエレベーターの監視システムを説明するための構成図は、図7と同様である。
The block diagram for demonstrating the monitoring system of the elevator in Embodiment 6 is the same as that of FIG.
図9は、実施の形態6におけるエレベーターの監視システムの動作例を示すフローチャートである。
FIG. 9 is a flowchart showing an operation example of a monitoring system of elevators in the sixth embodiment.
実施の形態6における監視システムの動作は、図8のステップS501からステップS504までは実施の形態5と同様である。図9は、監視システムの動作のうち図8と異なる部分を示している。
The operation of the monitoring system in the sixth embodiment is the same as that of the fifth embodiment from step S501 to step S504 in FIG. FIG. 9 shows parts of the operation of the monitoring system different from FIG.
ステップS601は、図8のステップS504の次に行われる。ステップS601では、例えば、ロボットと乗客とが同一のかごに相乗りしているか否かを示す報知情報が外部機器へ送信される。外部機器出力部9は、少なくとも、ロボットと乗客との相乗り状態にあるかごを示す報知情報を外部機器へ送信する。
Step S601 is performed subsequent to step S504 in FIG. In step S601, for example, notification information indicating whether the robot and the passenger ride in the same car is transmitted to the external device. The external device output unit 9 transmits, to at least an external device, notification information indicating a car in a state where the robot and the passenger join together.
実施の形態6によれば、外部機器出力部9は、例えば、相乗り判定部11によってロボットと乗客とが同一のかごに相乗りしていると判定された場合に、相乗り状態のかごを示す報知情報を外部機器へ送信する。このため、災害発生時にエレベーターのかご内の状況を管理者に対して詳細に報知することができる。報知された内容は、例えば、地震発生時のエレベーター救出順を決める際の判断材料になる。
According to the sixth embodiment, external device output unit 9 indicates, for example, notification information indicating a car in a sharing state when it is determined by joining determination unit 11 that the robot and the passenger are joining in the same car. To the external device. For this reason, when a disaster occurs, the situation in the elevator car can be notified to the manager in detail. The notified content is, for example, a judgment material when determining the order of elevator rescue when an earthquake occurs.
実施の形態7.
以下、実施の形態7について説明する。実施の形態1、2、3、4、5又は6と重複する部分の説明は適宜省略される。Embodiment 7
The seventh embodiment will be described below. The description of the portions overlapping with the first, second, third, fourth, fifth or sixth embodiment is appropriately omitted.
以下、実施の形態7について説明する。実施の形態1、2、3、4、5又は6と重複する部分の説明は適宜省略される。
The seventh embodiment will be described below. The description of the portions overlapping with the first, second, third, fourth, fifth or sixth embodiment is appropriately omitted.
実施の形態7におけるエレベーターの監視システムを説明するための構成図は、図7と同様である。
The block diagram for demonstrating the monitoring system of the elevator in Embodiment 7 is the same as that of FIG.
図10は、実施の形態7におけるエレベーターの監視システムの動作例を示すフローチャートである。
FIG. 10 is a flowchart showing an operation example of the elevator monitoring system according to the seventh embodiment.
実施の形態7における監視システムの動作は、図8のステップS501からステップS504までは実施の形態5と同様である。図10は、監視システムの動作のうち図8と異なる部分を示している。
The operation of the monitoring system in the seventh embodiment is the same as that of the fifth embodiment from step S501 to step S504 in FIG. FIG. 10 shows parts of the operation of the monitoring system different from FIG.
ステップS701は、図8のステップS504の次に行われる。ステップS701では、相乗り状態のかごに乗車しているロボットの危険度が取得される。
Step S701 is performed subsequent to step S504 in FIG. In step S701, the degree of danger of the robot riding in the car in the sharing state is acquired.
ロボットの危険度は、例えば、属性情報に含まれるロボットの種別に基づいて予め設定されている。ロボットの危険度は、例えば、ロボット属性記憶部5に予め記憶されている。
The degree of danger of the robot is preset, for example, based on the type of the robot included in the attribute information. The degree of risk of the robot is, for example, stored in advance in the robot attribute storage unit 5.
ステップS702では、相乗り状態のかご内の乗客数に基づく危険度が算出される。
In step S702, the degree of risk based on the number of passengers in the car in the sharing state is calculated.
かご内の乗客数に基づく危険度は、例えば、ロボットの重量も含んだかごの乗車重量に基づいて算出されてもよい。
The degree of risk based on the number of passengers in the car may be calculated based on, for example, the boarding weight of the car that also includes the weight of the robot.
かご内の乗客数に基づく危険度は、例えば、かごの乗車重量からロボットの重量を減算することで得られる乗客の合計重量に基づいて算出されてもよい。
The degree of risk based on the number of passengers in the car may be calculated based on, for example, the total weight of the passengers obtained by subtracting the weight of the robot from the weight of getting in the car.
かご内の乗客数に基づく危険度は、例えば、乗客の合計重量から推定された乗客の人数に基づいて算出されてもよい。
The degree of risk based on the number of passengers in the car may be calculated based on, for example, the number of passengers estimated from the total weight of the passengers.
ステップS703では、ステップS701で取得されたロボットの危険度及びステップS702で算出された乗客数に基づく危険度から、相乗り状態のかごの最終的な危険度が決定される。
In step S703, the final degree of risk of the car in the sharing state is determined from the degree of risk of the robot acquired in step S701 and the degree of risk based on the number of passengers calculated in step S702.
ステップS704では、相乗り状態のかごの最終的な危険度を示す報知情報が外部機器へ送信される。
In step S704, notification information indicating the final degree of risk of the car in the sharing state is transmitted to the external device.
具体例として、ロボットの種別がロボットの高さに基づいて分類されている場合について説明する。例えば、高さ1m未満のロボットの危険度は「低」であり、高さ1m以上1.5m未満のロボットの危険度は「中」であり、高さ1.5m以上のロボットの危険度は「高」である。例えば、かご内の乗客数に基づく危険度は、かごの乗車重量が定格積載量の50%未満の場合は「低」であり、かごの乗車重量が定格積載量の50%以上75%未満の場合は「中」であり、かごの乗車重量が定格積載量の75%以上の場合は「高」である。この場合、相乗り状態のかごの最終的な危険度は、ロボットの高さに応じた危険度とかごの乗車重量に応じた危険度との組み合わせで決定される。例えば、ロボットの高さが1.2mであり、かごの乗車重量が定格積載量の60%であった場合、当該かごの最終的な危険度は「中」となる。
As a specific example, the case where the robot type is classified based on the height of the robot will be described. For example, the risk of a robot less than 1 m high is "low", the risk of a robot 1 m or more and less than 1.5 m is "medium", and the risk of a robot 1.5 m or more is It is "high". For example, the risk based on the number of passengers in the car is "low" when the boarding weight of the car is less than 50% of the rated load, and the car's boarding weight is 50% or more and less than 75% of the rated load If it is "medium", it is "high" if the ride weight of the car is 75% or more of the rated load capacity. In this case, the final degree of risk of the car in a state of combination is determined by a combination of the degree of risk according to the height of the robot and the degree of risk according to the weight of the car. For example, if the height of the robot is 1.2 m and the boarding weight of the car is 60% of the rated load capacity, the final risk of the car is "medium".
図10に示す動作は、例えば、相乗り状態のかごが複数存在する場合、相乗り状態のかごのそれぞれについて実施される。つまり、相乗り状態のかご毎に最終的な危険度が決定される。
The operation shown in FIG. 10 is performed, for example, for each of the cars in the sharing state when there are a plurality of cars in the sharing state. That is, the final degree of risk is determined for each car in the shared state.
実施の形態7によれば、外部機器出力部9は、ロボットの属性情報に含まれる種別に基づいて算出された相乗り状態のかごの危険度を示す報知情報を外部機器へ送信する。このため、エレベーターの同一のかごにロボットと乗客とが相乗りしている場合に、ロボットの種別に基づく危険度を管理者に対して報知することができる。これにより、例えば、地震発生時に相乗り状態のかごが複数存在する場合に、より危険度が高いかごに対する救出活動を優先して行うことができる。
According to the seventh embodiment, the external device output unit 9 transmits, to the external device, notification information indicating the degree of danger of the car in the sharing state calculated based on the type included in the attribute information of the robot. For this reason, when the robot and the passenger join in the same car of the elevator, it is possible to notify the manager of the degree of danger based on the type of the robot. As a result, for example, when there are a plurality of cars in a shared state at the time of an earthquake, rescue operations can be performed with priority to cars with higher risk.
実施の形態1から7において、エレベーターシステム1は、例えば、1つのエレベーター制御装置として形成されてもよい。実施の形態1から7において、ロボットシステム2は、例えば、1つのロボット制御装置として形成されてもよい。実施の形態1から7において、監視システム3は、例えば、1つの監視装置として形成されてもよい。
In the first to seventh embodiments, the elevator system 1 may be formed, for example, as one elevator control device. In the first to seventh embodiments, the robot system 2 may be formed, for example, as one robot control device. In the first to seventh embodiments, the monitoring system 3 may be formed, for example, as one monitoring device.
図11は、監視システムのハードウェア構成図である。
FIG. 11 is a hardware configuration diagram of the monitoring system.
監視システム3における受信部4、ロボット属性記憶部5、ロボット状態判定部6、エレベーター状態判定部7、指令部8、外部機器出力部9、救出順決定部10及び相乗り判定部11の各機能は、処理回路により実現される。処理回路は、専用ハードウェア50であってもよい。処理回路は、プロセッサ51およびメモリ52を備えていてもよい。処理回路は、一部が専用ハードウェア50として形成され、更にプロセッサ51およびメモリ52を備えていてもよい。図11は、処理回路が、その一部が専用ハードウェア50として形成され、プロセッサ51およびメモリ52を備えている場合の例を示している。
The functions of the receiving unit 4, the robot attribute storage unit 5, the robot state determination unit 6, the elevator state determination unit 7, the command unit 8, the external device output unit 9, the rescue order determination unit 10, and the joining determination unit 11 in the monitoring system 3 , Realized by the processing circuit. The processing circuit may be dedicated hardware 50. The processing circuit may comprise a processor 51 and a memory 52. The processing circuit is partially formed as dedicated hardware 50 and may further include a processor 51 and a memory 52. FIG. 11 shows an example in which the processing circuit is partially formed as the dedicated hardware 50 and includes the processor 51 and the memory 52.
処理回路の少なくとも一部が、少なくとも1つの専用ハードウェア50である場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。
When at least a part of the processing circuit is at least one dedicated hardware 50, the processing circuit may for example be a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA or The combination is applicable.
処理回路が少なくとも1つのプロセッサ51および少なくとも1つのメモリ52を備える場合、監視システム3の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアはプログラムとして記述され、メモリ52に格納される。プロセッサ51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。プロセッサ51は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPとも呼ぶ。メモリ52は、例えば、RAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等が該当する。
When the processing circuit includes at least one processor 51 and at least one memory 52, each function of the monitoring system 3 is realized by software, firmware, or a combination of software and firmware. The software and firmware are described as a program and stored in the memory 52. The processor 51 reads out and executes the program stored in the memory 52 to implement the functions of the respective units. The processor 51 is also referred to as a central processing unit (CPU), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. The memory 52 corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, an EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD or the like.
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、監視システム3の各機能を実現することができる。なお、エレベーターシステム1及びロボットシステム2の各機能も、図11に示す処理回路と同様の処理回路により実現される。
Thus, the processing circuit can implement each function of the monitoring system 3 by hardware, software, firmware, or a combination thereof. Each function of elevator system 1 and robot system 2 is also realized by a processing circuit similar to the processing circuit shown in FIG.
以上のように、この発明は、かごにロボットが乗降し得るエレベーターを監視するシステムに利用できる。
As described above, the present invention can be used for a system for monitoring an elevator where a robot can get on and off a car.
1 エレベーターシステム
2 ロボットシステム
3 監視システム
4 受信部
5 ロボット属性記憶部
6 ロボット状態判定部
7 エレベーター状態判定部
8 指令部
9 外部機器出力部
10 救出順決定部
11 相乗り判定部
50 専用ハードウェア
51 プロセッサ
52 メモリReference Signs List 1 elevator system 2 robot system 3 monitoring system 4 reception unit 5 robot attribute storage unit 6 robot state determination unit 7 elevator state determination unit 8 command unit 9 external device output unit 10 rescue order determination unit 11 joining determination unit 50 dedicated hardware 51 processor 52 memory
2 ロボットシステム
3 監視システム
4 受信部
5 ロボット属性記憶部
6 ロボット状態判定部
7 エレベーター状態判定部
8 指令部
9 外部機器出力部
10 救出順決定部
11 相乗り判定部
50 専用ハードウェア
51 プロセッサ
52 メモリ
Claims (7)
- エレベーターのかごに乗降可能なロボットの識別情報を受信する受信部と、
前記受信部によって受信された識別情報と関連付けて予め記憶されたロボットの個別の属性情報に基づいて決定された報知情報を外部機器に送信する外部機器出力部と、
前記受信部によって受信された識別情報と関連付けて予め記憶されたロボットの個別の属性情報に基づいて決定された制御指令をエレベーターシステムに送信する指令部と、
を備えたエレベーターの監視システム。 A receiver for receiving identification information of a robot capable of getting on and off the elevator car;
An external device output unit that transmits notification information determined based on individual attribute information of the robot stored in advance in association with the identification information received by the reception unit to an external device;
A command unit for transmitting to the elevator system a control command determined based on individual attribute information of the robot stored in advance in association with the identification information received by the receiving unit;
An elevator surveillance system equipped with. - 前記外部機器出力部は、ロボットが故障した場合に、当該ロボットの属性情報に含まれる故障時の対処方法を示す報知情報を送信する請求項1に記載のエレベーターの監視システム。 The elevator monitoring system according to claim 1, wherein, when the robot breaks down, the external device output unit transmits notification information indicating how to handle the failure included in the attribute information of the robot.
- 前記指令部は、ロボットが故障した場合に、当該ロボットの属性情報に含まれる帰着階へかごを移動させるための制御指令を送信する請求項1又は請求項2に記載のエレベーターの監視システム。 The elevator monitoring system according to claim 1 or 2, wherein the command unit transmits a control command for moving a car to a return floor included in attribute information of the robot when the robot breaks down.
- 災害が発生した場合に、かごの乗車重量及びロボットの属性情報に含まれる重量に基づいて複数のかごの救出順を決定する救出順決定部、
を更に備え、
前記指令部は、複数のかごを前記救出順決定部によって決定された救出順に従って特定階へ移動させるための制御指令を送信する請求項1から請求項3のいずれか1項に記載のエレベーターの監視システム。 A rescue order determination unit that determines the rescue order of the plurality of cars based on the boarding weight of the car and the weight included in the attribute information of the robot when a disaster occurs;
And further
The elevator according to any one of claims 1 to 3, wherein the command unit transmits a control command for moving a plurality of cars to a specific floor according to the rescue order determined by the rescue order determination unit. Monitoring system. - 災害が発生した場合に、ロボットと乗客とが同一のかごに相乗りしているか否かを判定する相乗り判定部、
を更に備えた請求項1から請求項4のいずれか1項に記載のエレベーターの監視システム。 A sharing determination unit that determines whether a robot and a passenger ride in the same car when a disaster occurs,
The elevator monitoring system according to any one of claims 1 to 4, further comprising: - 前記外部機器出力部は、前記相乗り判定部によってロボットと乗客とが同一のかごに相乗りしていると判定された場合に、相乗り状態のかごを示す報知情報を送信する請求項5に記載のエレベーターの監視システム。 The elevator according to claim 5, wherein the external device output unit transmits notification information indicating a car in a sharing state when it is determined by the sharing determination unit that the robot and the passenger are sharing the same car. Monitoring system.
- 前記外部機器出力部は、ロボットの属性情報に含まれる種別に基づいて算出された相乗り状態のかごの危険度を示す報知情報を送信する請求項6に記載のエレベーターの監視システム。 The elevator monitoring system according to claim 6, wherein the external device output unit transmits notification information indicating the degree of danger of the car in a sharing state calculated based on the type included in the attribute information of the robot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/042654 WO2019106724A1 (en) | 2017-11-28 | 2017-11-28 | Elevator monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/042654 WO2019106724A1 (en) | 2017-11-28 | 2017-11-28 | Elevator monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019106724A1 true WO2019106724A1 (en) | 2019-06-06 |
Family
ID=66665457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/042654 WO2019106724A1 (en) | 2017-11-28 | 2017-11-28 | Elevator monitoring system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019106724A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113086782A (en) * | 2021-03-30 | 2021-07-09 | 生益电子股份有限公司 | Method, system and device for sharing elevator by people and AGV |
CN113401750A (en) * | 2020-03-16 | 2021-09-17 | 奥的斯电梯公司 | Interactive safety control between elevator system and machine passenger |
CN114728758A (en) * | 2019-12-16 | 2022-07-08 | 株式会社日立制作所 | Elevator control system and elevator control method |
CN114873391A (en) * | 2022-04-25 | 2022-08-09 | 北京云迹科技股份有限公司 | Floor determining method of robot and related equipment |
US11513522B2 (en) * | 2019-11-22 | 2022-11-29 | Lg Electronics Inc. | Robot using an elevator and method for controlling the same |
JP7226627B1 (en) | 2022-06-22 | 2023-02-21 | 三菱電機株式会社 | Elevator controller and elevator system |
EP4296211A4 (en) * | 2021-02-22 | 2024-11-06 | Panasonic Ip Man Co Ltd | Elevator control device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06282329A (en) * | 1993-03-29 | 1994-10-07 | Sogo Keibi Hoshiyou Kk | Movement control system for moving body |
JP2012017184A (en) * | 2010-07-08 | 2012-01-26 | Hitachi Ltd | Elevator system to be ridden with autonomous mobile device |
WO2013141206A1 (en) * | 2012-03-19 | 2013-09-26 | シャープ株式会社 | Robot device, information-providing device, and information-providing system |
JP2013216408A (en) * | 2012-04-05 | 2013-10-24 | Mitsubishi Electric Building Techno Service Co Ltd | Conveyance elevator system for a plurality of robots, elevator control device, robot of elevator utilization type, and method of controlling elevator conveying a plurality of robots |
JP2015131381A (en) * | 2014-01-15 | 2015-07-23 | ファナック株式会社 | Robot remote monitoring system in remote location |
-
2017
- 2017-11-28 WO PCT/JP2017/042654 patent/WO2019106724A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06282329A (en) * | 1993-03-29 | 1994-10-07 | Sogo Keibi Hoshiyou Kk | Movement control system for moving body |
JP2012017184A (en) * | 2010-07-08 | 2012-01-26 | Hitachi Ltd | Elevator system to be ridden with autonomous mobile device |
WO2013141206A1 (en) * | 2012-03-19 | 2013-09-26 | シャープ株式会社 | Robot device, information-providing device, and information-providing system |
JP2013216408A (en) * | 2012-04-05 | 2013-10-24 | Mitsubishi Electric Building Techno Service Co Ltd | Conveyance elevator system for a plurality of robots, elevator control device, robot of elevator utilization type, and method of controlling elevator conveying a plurality of robots |
JP2015131381A (en) * | 2014-01-15 | 2015-07-23 | ファナック株式会社 | Robot remote monitoring system in remote location |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11513522B2 (en) * | 2019-11-22 | 2022-11-29 | Lg Electronics Inc. | Robot using an elevator and method for controlling the same |
CN114728758A (en) * | 2019-12-16 | 2022-07-08 | 株式会社日立制作所 | Elevator control system and elevator control method |
CN114728758B (en) * | 2019-12-16 | 2024-01-05 | 株式会社日立制作所 | Elevator control system and elevator control method |
CN113401750A (en) * | 2020-03-16 | 2021-09-17 | 奥的斯电梯公司 | Interactive safety control between elevator system and machine passenger |
EP4296211A4 (en) * | 2021-02-22 | 2024-11-06 | Panasonic Ip Man Co Ltd | Elevator control device |
CN113086782A (en) * | 2021-03-30 | 2021-07-09 | 生益电子股份有限公司 | Method, system and device for sharing elevator by people and AGV |
CN114873391A (en) * | 2022-04-25 | 2022-08-09 | 北京云迹科技股份有限公司 | Floor determining method of robot and related equipment |
CN114873391B (en) * | 2022-04-25 | 2024-02-06 | 北京云迹科技股份有限公司 | Floor determination method of robot and related equipment |
JP7226627B1 (en) | 2022-06-22 | 2023-02-21 | 三菱電機株式会社 | Elevator controller and elevator system |
JP2024001604A (en) * | 2022-06-22 | 2024-01-10 | 三菱電機株式会社 | Elevator control device and elevator system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019106724A1 (en) | Elevator monitoring system | |
JP6222162B2 (en) | Elevator apparatus and elevator restoration method | |
JP6173653B2 (en) | Elevator safety system | |
JP6960946B2 (en) | Door anomaly detection system and elevator system | |
JP6715219B2 (en) | Elevator notification control system and elevator notification control method | |
JP2013180857A (en) | Elevator system | |
JP6040867B2 (en) | Elevator monitoring equipment | |
US20080067006A1 (en) | Elevator System | |
JP5787806B2 (en) | Robot transport elevator system, elevator control device, elevator-utilizing robot, and elevator control method for transporting robot | |
KR20180022599A (en) | Communication with a trapped passenger in a transportation system | |
JP6398879B2 (en) | Elevator work status monitoring device and work status monitoring method | |
JP2011046494A (en) | Elevator control device | |
KR102348616B1 (en) | Elevator remote monitoring system | |
JPWO2018134891A1 (en) | Elevator automatic recovery system | |
KR20190077558A (en) | Recovery system | |
CN109384110B (en) | Elevator system | |
KR102348615B1 (en) | elevator system | |
CN107337038B (en) | Elevator emergency feeder balancing | |
JP6593706B2 (en) | Elevator remote monitoring system | |
JP6673393B2 (en) | Elevator system with diagnostic function | |
TWI666161B (en) | Apparatus and method for registering recovery information for elevator | |
JP2009037424A (en) | Control system and control method | |
WO2017216961A1 (en) | State information communication device and remote monitoring system for elevators | |
JP6319520B2 (en) | Elevator signal transmission apparatus and elevator signal transmission method | |
JP2009173388A (en) | Elevator operation control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17933370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17933370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |