[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019103560A1 - Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치 - Google Patents

Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치 Download PDF

Info

Publication number
WO2019103560A1
WO2019103560A1 PCT/KR2018/014649 KR2018014649W WO2019103560A1 WO 2019103560 A1 WO2019103560 A1 WO 2019103560A1 KR 2018014649 W KR2018014649 W KR 2018014649W WO 2019103560 A1 WO2019103560 A1 WO 2019103560A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
slot
symbol
transmission
count
Prior art date
Application number
PCT/KR2018/014649
Other languages
English (en)
French (fr)
Inventor
최국헌
강지원
김규석
이길봄
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/766,667 priority Critical patent/US11153127B2/en
Priority to EP18880158.3A priority patent/EP3691168B1/en
Publication of WO2019103560A1 publication Critical patent/WO2019103560A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for transmitting and receiving SRS and a communication apparatus therefor.
  • Massive MTC Machine Type Communications
  • mMTC massive MTC
  • URLLC Ultra-Reliable and Low Latency Communication
  • the present invention provides a method for transmitting an SRS by a terminal.
  • Another object of the present invention is to provide a terminal for transmitting SRS
  • a method for transmitting a Sounding Reference Signal includes: transmitting, in a first slot, an SRS transmission and an uplink channel transmission Dropping a transmission of an SRS symbol in which collision occurred in the first slot and transmitting an SRS symbol in which no collision occurs in the first slot; And transmitting an SRS symbol in a second slot based on a hopping pattern set for the dropped SRS symbol, wherein when the transmission count of the last SRS symbol in which no collision occurs in the first slot is K, The transmission count for the first SRS symbol transmitted in 2 slots may be K + 1.
  • the second slot is a slot in which the SRS transmission is set after the first slot.
  • a terminal for transmitting a Sounding Reference Signal includes: a processor; And a Radio Frequency (RF) unit coupled to the processor to transmit or receive a radio signal, wherein when the SRS transmission and the transmission of the uplink channel conflict in the first slot, Dropping the transmission of the generated SRS symbol, transmitting the SRS symbol in which no collision occurs in the first slot, and transmitting the SRS symbol in the second slot based on the hopping pattern set for the dropped SRS symbol And a transmission count of a first SRS symbol transmitted in the second slot is K + 1 when a transmission count of a last SRS symbol in which no collision occurs in the first slot is K.
  • RF Radio Frequency
  • the transmission count K may not include the number of transmissions for the SRS symbol in which the collision occurred.
  • the hopping pattern may be determined based on the transfer count.
  • the transmission count of the first SRS symbol in which the collision occurred in the first slot and the transmission count of the first symbol of the second SRS may be equal to K + 1.
  • Radio Resource Control RRC
  • the SRS may be a periodic or semi-static SRS, and the uplink signal may be a Physical Uplink Control Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the SRS may be an aperiodic SRS
  • the uplink signal may be a Physical Uplink Control Channel (PUCCH) including a beam failure recover request.
  • PUCCH Physical Uplink Control Channel
  • FIG. 1 is a diagram illustrating a wireless communication system for implementing the present invention.
  • FIG. 2A illustrates a TXRU virtualization model option 1 (sub-array model)
  • FIG. 2B illustrates a TXRU virtualization model option 2 (full connection model).
  • 3 is a block diagram for hybrid beamforming.
  • Figure 4 is an illustration of an example of a beam mapped to BRS symbols in hybrid beamforming.
  • Figure 5 is an exemplary diagram illustrating symbol / sub-symbol alignment between different numerologies.
  • FIG. 6 is a diagram illustrating an LTE hopping pattern.
  • FIG. 7 is a diagram illustrating an NR Priority rule (partial SRS symbols dropping) in a collision between Periodic / Semi-Persistent SRS and sPUCCH.
  • FIG. 8 is a diagram illustrating a sPUCCH collision example (P / SP SRS) when n SRS is set to sounding over a slot at a period of 8 symbols.
  • 9 is a diagram illustrating an example of sPUCCH collision when n SRS is set to sounding over one slot.
  • FIG. 10 is a diagram illustrating an example of a sounding problem in partial symbol dropping of AP SRS.
  • FIG. 11 shows a modified SRS transmission counting Fig.
  • FIG. 12 is a diagram of a modified SRS transmission counting initialization example.
  • 13 is a diagram illustrating an example of SRS transmission counting modified when AP SRS collides with PUCCH and partial symbols are dropped.
  • FIG. 14 is a block diagram illustrating a process of transmitting an SRS signal by a UE according to an embodiment of the present invention.
  • the UE collectively refers to a mobile stationary or stationary user equipment such as a UE (User Equipment), an MS (Mobile Station), and an AMS (Advanced Mobile Station). It is also assumed that the base station collectively refers to any node at a network end that communicates with a terminal such as a Node B, an eNode B, a base station, an AP (access point), and a gNode B.
  • a terminal such as a Node B, an eNode B, a base station, an AP (access point), and a gNode B.
  • a terminal or a user equipment can receive information from a base station through a downlink, and the terminal can also transmit information through an uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist depending on the type of information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SFDMA single carrier frequency division multiple access
  • CDMA may be implemented in radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • the TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (Evolved UMTS) using E-UTRA, adopts OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is an evolved version of 3GPP LTE.
  • FIG. 1 is a diagram illustrating a wireless communication system for implementing the present invention.
  • a wireless communication system includes a base station (BS) 10 and one or more terminals (UE) 20.
  • the transmitter may be part of the BS 10, and the receiver may be part of the UE 20.
  • the BS 10 may include a processor 11, a memory 12, and a radio frequency (RF) unit 13 (transmitter and receiver).
  • Processor 11 may be configured to implement the proposed procedures and / or methods described in the present application.
  • the memory 12 is coupled with the processor 11 to store various information for operating the processor 11.
  • the RF unit 13 is coupled to the processor 11 to transmit and / or receive radio signals.
  • the UE 20 may include a processor 21, a memory 22 and an RF unit 23 (transmitter and receiver).
  • the processor 21 may be configured to implement the proposed procedures and / or methods described in this application.
  • the memory 22 is coupled with the processor 21 to store various information for operating the processor 21.
  • the RF unit 23 is coupled to the processor 21 to transmit and / or receive radio signals.
  • the BS 10 and / or the UE 20 may have a single antenna and multiple antennas. When at least one of the BS 10 and the UE 20 has multiple antennas, the wireless communication system may be referred to as a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the processor 21 of the terminal and the processor 11 of the base station each include an operation of processing signals and data except for the functions of the terminal 20 and the base station 10 to receive or transmit signals and the storage function, But for the sake of convenience of explanation, the processors 11 and 21 are not specifically referred to below. It is possible to say that a processor performs a series of operations such as data processing, not a function of receiving or transmitting a signal, even though the processors 11 and 21 are not mentioned.
  • Layers of the air interface protocol between the terminal 20 and the wireless communication system (network) of the base station 10 are divided into a first layer L1 based on the lower three layers of an open system interconnection (OSI) , A second layer (L2), and a third layer (L3).
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • An RRC (Radio Resource Control) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal 10 and the base station 20 can exchange RRC messages through the RRC layer with the wireless communication network.
  • the root value is set to be divided into a group hopping number (u) and a sequence hopping number (v) as follows.
  • the sequence-group number u in the slot n s is determined as follows according to the group hopping pattern f gh (ns) and the sequence-shift pattern f ss .
  • Sequence group hopping can be activated or deactivated through Group-hopping-enabled , a cell-specific parameter provided by an upper layer. If the PUSCH for a particular UE does not correspond to a retransmission of the same transport block as part of a competition based on a Random Access Response Grant or a random access procedure, the upper layer parameter Disable-sequence-group- sequence through a hopping - may be a group hopping is disabled.
  • the group hopping pattern f gh (n s ) may be different for PUSCH, PUCCH, and SRS, as follows.
  • the pseudo-random sequence c (i) is defined in section 7.2.
  • a pseudo-random sequence generator is provided at the beginning of each radio frame Lt; / RTI > Is given in Section 5.5.1.5.
  • sequence-shift pattern The Lt; / RTI > Is given in Section 5.5.1.5.
  • Sequence hopping is a process in which the length of the reference signals is .
  • the basic sequence number v in the basic sequence group of the slot n s is defined as follows.
  • the parameter sequcne-hopping-enabled which is provided to the upper layer, determines whether or not sequence hopping is enabled.
  • the pseudo-random sequence c (i) is defined in section 7.2.
  • a pseudo-random sequence generator is provided at the beginning of each radio frame Lt; / RTI > Is given in Section 5.5.1.5, Is given in Section 5.5.1.3., Where Is set cell-specifically by the upper layer.
  • the pseudo-random sequences are defined by a gold sequence of length 31.
  • n 0,1, ..., M PN -1
  • the output sequence c (n) of length M PN is defined as:
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod2
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod2
  • the initialization of the second m-sequence is based on the application of the sequence .
  • the wavelength is shortened, and it is possible to install a plurality of antenna elements in the same area.
  • a total of 64 (8x8) antenna elements can be installed in a 30-GHz band in a 2-dimension array at 0.5 lambda (wavelength) intervals on a panel of 4 by 4 cm with a wavelength of 1 cm. Therefore, in mmW, multiple antenna elements can be used to increase the beamforming (BF) gain and increase the coverage or increase the throughput.
  • BF beamforming
  • TXRU Transceiver Unit
  • independent beamforming is possible for each frequency resource.
  • TXRU Transceiver Unit
  • Such an analog beamforming method has a disadvantage in that it is not possible to perform frequency selective beamforming since only one beam direction can be formed in the entire bandwidth.
  • Hybrid beamforming with B TXRUs that are fewer than Q antenna elements in the middle of digital beamforming (Digital BF) and analog beamforming (analog BF) can be considered.
  • Digital BF digital beamforming
  • analog beamforming analog beamforming
  • FIG. 2A illustrates a TXRU virtualization model option 1 (sub-array model)
  • FIG. 2B illustrates a TXRU virtualization model option 2 (full connection model).
  • 2A and 2B show representative examples of a connection method of a TXRU and an antenna element.
  • the TXRU virtualization model shows the relationship between the output signal of the TXRU and the output signal of the antenna elements.
  • 2A shows a manner in which a TXRU is connected to a sub-array, in which case the antenna element is connected to only one TXRU.
  • 2B shows the manner in which a TXRU is connected to all antenna elements, in which case the antenna element is connected to all TXRUs.
  • W represents a phase vector multiplied by an analog phase shifter. That is, the direction of the analog beam forming is determined by W.
  • the mapping between the CSI-RS antenna ports and the TXRUs may be 1-to-1 or 1-to-many.
  • 3 is a block diagram for hybrid beamforming.
  • analog beamforming refers to an operation of performing precoding (or combining) in the RF stage.
  • the hybrid beamforming technique the number of RF chains and the number of D / A (or A / D) converters are reduced by precoding (or combining) each of the baseband stage and the RF stage, It has an advantage that it can achieve performance close to forming.
  • the hybrid beamforming structure may be represented by N transceiver units (TXRU) and M physical antennas.
  • the digital beamforming for the L data layers to be transmitted from the transmitting side can be represented by an N by L matrix, and then the converted N digital signals are converted into an analog signal through the TXRU and then represented by an M by N matrix Analog beamforming is applied.
  • the number of the digital beams is L, and the number of the analog beams is N.
  • the base station is designed to change the analog beamforming on a symbol-by-symbol basis, thereby considering more efficient beamforming for a terminal located in a specific area.
  • N TXRU and M RF antennas as one antenna panel in FIG. 3, a method of introducing a plurality of antenna panels applicable to independent hybrid beamforming in the New RAT system .
  • the base station may differ from terminal to terminal. Therefore, the base station must allocate a specific subframe (at least a synchronization signal, system information, paging, SF), it is possible to consider a beam sweeping operation in which a plurality of analog beams to be applied by a base station are changed on a symbol-by-symbol basis so that all terminals can have a reception opportunity.
  • a specific subframe at least a synchronization signal, system information, paging, SF
  • Figure 4 is an illustration of an example of a beam mapped to BRS symbols in hybrid beamforming.
  • FIG. 4 schematically shows the beam sweeping operation for a synchronization signal and system information in a downlink (DL) transmission process.
  • the physical resource (or physical channel) through which the system information of the New RAT system is transmitted in a broadcast manner is referred to as xPBCH (physical broadcast channel).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels within one symbol can be simultaneously transmitted, and a single analog beam (corresponding to a specific antenna panel) is applied as shown in Fig. 4
  • BRS Beam RS
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • RS Reference signal
  • the RS used as a reference signal (RS) for measuring a beam is designated as BRS, but may be named as another name.
  • the synchronization signal or the xPBCH can be transmitted by applying all of the analog beams in the analog beam group so that an arbitrary terminal can receive it well.
  • NR is considering a method that supports Scalable Numerology.
  • the subcarrier spacing of NR is represented by (2n ⁇ 15) kHz and n is an integer. From the nested viewpoint, the above subset or superset (at least 15,30,60,120,240, and 480kHz) is considered as the main subcarrier spacing.
  • Lt; RTI ID 0.0 > and / or < / RTI > sub-symbol alignment by adjusting to have the same CP overhead rate accordingly.
  • Figure 5 is an exemplary diagram illustrating symbol / sub-symbol alignment between different numerologies.
  • numerology is determined as a structure in which the above time / frequency granularity is dynamically allocated according to each service (eMMB, URLLC, mMTC) and scenarios (high speed, etc.).
  • One numerology has one SCS and CP, and each SCS and CP are set to RRC.
  • the subframe length is a fixed length of 1ms (TTI is either a slot (14 symbols) or a mini-slot (URLLC) or multi-slot unit depending on the SCS or usage (e.g. URLLC) and the TTI is also a RRC signaling (One TTI duration determines how transmission is made on physical layer)
  • TTI is either a slot (14 symbols) or a mini-slot (URLLC) or multi-slot unit depending on the SCS or usage (e.g. URLLC) and the TTI is also a RRC signaling (One TTI duration determines how transmission is made on physical layer)
  • the number of subcarriers per RB is 12.
  • the PUCCH formats can be classified as shown in Table 1 according to the duration / payload size.
  • the hopping pattern may be set to UE-specific RRC signaling (however, overlapping is not allowed).
  • - SRS can be frequency-hopped and transmitted using a hopping pattern for each subframe in which a cell / terminal-specific SRS is transmitted.
  • the start position and hopping formula of the SRS frequency domain is interpreted by the following equation (1).
  • N SRS represents the hopping progress interval in the time domain
  • N b is the number of branches allocated to the tree level b
  • b can be determined by the B SRS setting in the dedicated RRC.
  • the LTE hopping pattern parameter can be set by UE-specific RRC signaling.
  • the NR supports inter-slot and intra-slot antenna switching.
  • the guard interval can be set.
  • the UE In the case of 1T2R (or 1Tx2Rx) and 2T4R (or 2Tx4Rx), the UE consists of two SRS resources, one symbol or two symbols.
  • the UE In the case of 1T4R (or 1Tx4Rx), the UE is composed of four single SRS resources, which are a single symbol and a single port. Each port of a configured resource is associated with a different UE antenna.
  • SRS resources in one slot can be partial symbol dropping according to the priority rule or full symbol dropping of all SRS symbols when SRS dropping is applied when colliding with SRS and sPUCCH or other UL channel.
  • the base station and the terminal operate according to a predefined priority rule.
  • FIG. 7 shows an example of a NR Priority rule (partial SRS symbols dropping) in a collision between P / SP SRS and sPUCCH.
  • the slots shown in FIG. 7 are shown only in the slots where the SRS is set.
  • P / SP SRS transmission is set to 10, 11, 12, and 13 symbols as an example.
  • the sPUCCH with aperiodic CSI reporting is sent in 12,13 symbols, 12,13 symbols will collide.
  • 10,11 symbols are transmitted by SRS and 12,13 symbols are transmitted by sPUCCH.
  • AP SRS and AP PUCCH (ap CSI) do not perform scheduling in the beginning at the base station, it is determined that collision does not occur.
  • the BS performs resource scheduling, it is possible to know whether a collision between the SRS and the PUCCH occurs.
  • Table 2 only sPUCCH is described, but collision between lPUCCHs may also occur.
  • the length of the PUCCH is variable, it is necessary to improve the existing n SRS .
  • n SRS is considered as a functional form of l ', r, n s , n f in LTE function form, the following sounding problem may occur.
  • FIG. 8 shows an example of the sPUCCH collision (P / SP SRS) when n SRS is set to sounding over a slot at a period of 8 symbols. Also, FIG. 8 shows a case where Full SRS symbols dropping and sounding over a slot are set for a target sounding BW.
  • FIG. 9 shows an example of sPUCCH collision when n SRS is set to sounding over one slot. Also, FIG. 9 shows a case where only one slot sounding is set for the target sounding BW. In FIG. 9, since all the SRSs are dropped, the target sounding BW can be covered in the next slot.
  • n + 3T_srs is required to complete the sounding according to the target BW.
  • the sounding completion time can be delayed depending on whether the sounding of the target sounding BW of the full / partial dropping SRS symbols is performed in several slots or in one slot.
  • FIG. 10 shows an example of a sounding problem in partial symbol dropping of AP SRS.
  • the target sounding may fail even though it is a single slot. Therefore, it is important to set the sounding to be completed in the slot where the next AP SRS is triggered.
  • the SRS is assigned to 2 symbols and it is set equal to the SRS set at the time of the previous SRS trigger, the sounding for the target BW is not completed.
  • n SRS can operate according to the SRS sounding configuration as follows.
  • P / SP SRS refers to Periodic / Semi-persistent SRS.
  • SRS transmission counting can be considered when partial SRS drops after full symbols collision or partial SRS drop after partial symbols collision.
  • TSRS denotes a period of a slot for transmitting SRS
  • 2 denotes a symbol index
  • r denotes a repetition factor
  • Equation (2) Modified SRS transmission counting Can be expressed by Equation (2) as follows.
  • FIG. 11 shows a modified SRS transmission counting As shown in Fig.
  • the SRS transmission count used at the time of transmitting the next SRS becomes equal to the transmission count of the dropped SRS symbol after the SRS collides with the PUCCH so that the hopping pattern of the dropped SRS symbols and the The hopping pattern of the SRS symbols to be transmitted is the same.
  • C is the collision counter, also referred to as the collision count, and indicates the number of slots where the SRS and PUCCH collide, regardless of whether the collision is partial or full.
  • C can be initialized together when the RRC connection setup is initialized.
  • n SRS, C represents the modified SRS transmission count when the collision occurs C times
  • n SRS, C + 1 represents the modified SRS transmission count when the transmission occurs C + 1 times. For example, if an additional collision occurs when transmitting an SRS using the SRS transmission count when the collision occurs C times, the collision count becomes C + 1, and when SRS is transmitted next, n SRS, SRS is transmitted using n SRS, C + 1, which is subtracted by the transmission count of the SRS symbols.
  • the SRS symbol is re-transmitted from the dropped SRS symbol, so that the completion of the SRS is delayed.
  • n SRS can be reset (initialized) in SRS transmission slot after collision. This is the same effect as initializing since it is not necessary to apply n SRS 'since all SRS symbols have been dropped in the previous slot.
  • Equation (4) This can be expressed as Equation (4).
  • the equations for the modified SRS transmission counter can be set via RRC.
  • the modified SRS transmission counting can be applied to the AP SRS triggered after the collision.
  • SRS transmission counting for AP SRS can be basically expressed by the following equation.
  • the modified SRS transmission counting used in the next triggered AP SRS slot is as follows.
  • FIG. 13 shows an example of SRS transmission counting modified when AP SRS collides with PUCCH and a partial symbol is dropped.
  • AP SRS is set to 2 symbols in the n + a slot. Therefore, if the existing SRS transmission count is used and AP SRS is assumed to be 2 symbols, the hopping pattern is applied using n SRS counts 0 and 1 at symbol index 10 and 11 in slot n + a, and SRS , It is necessary to wait until the next SRS to cover the entire target frequency band. On the other hand, if the modified SRS transmission count is used, the hopping pattern of the dropped SRS symbols is applied in the next SRS, so that the entire target frequency band can be covered without waiting for the next SRS.
  • FIG. 14 is a block diagram illustrating a process of transmitting an SRS signal by a UE according to an embodiment of the present invention.
  • a method for transmitting an SRS by a UE includes the steps of: dropping transmission of an SRS symbol colliding in a first slot according to a priority order when SRS transmission and transmission of an uplink channel conflict in the first slot; A step (S1401) of transmitting an SRS symbol in which no collision occurs in one slot; And transmitting the SRS symbol in the second slot based on the hopping pattern considering the dropped or transmitted SRS symbol in the first slot (S1402).
  • the transmission count for the first SRS symbol transmitted in the second slot is K + 1.
  • the second slot means a slot in which the SRS transmission is performed after the first slot. That is, in the case of regular or semi-fixed SRS, the first and second slots are set according to the SRS transmission period, and in the case of the occasional SRS, the second slot is set according to DCI etc. after the first slot.
  • the transmission count K does not include the number of transmissions for the SRS symbol in which the collision occurred.
  • the hopping pattern is determined based on the transfer count. Also, the transmission count of the first SRS symbol in which the collision occurred in the first slot and the transmission count of the first symbol of the second SRS are equal to K + 1.
  • information on the hopping pattern is provided through Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • the SRS is a periodic or semi-fixed SRS
  • the uplink signal is a Physical Uplink Control Channel (PUCCH).
  • the SRS is an aperiodic SRS
  • the uplink signal is a Physical Uplink Control Channel (PUCCH) including a beam failure recover request.
  • the method of transmitting and receiving SRS and the communication device therefor are industrially applicable in various wireless communication systems such as 3GPP LTE / LTE-A system, NR (5G) communication system, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

단말이 사운딩 참조 신호(Sounding Reference Signal; SRS)를 전송하는 방법에 있어서, 제 1 슬롯에서 SRS 전송과 상향 링크 채널의 전송이 충돌하는 경우, 상기 제 1 슬롯에서 충돌이 발생한 SRS 심볼의 전송을 드롭(drop)하고 상기 제 1 슬롯에서 충돌이 발생하지 않은 SRS 심볼을 전송하는 단계; 상기 드롭된 SRS 심볼에 대해 설정된 호핑 패턴에 기초하여 제 2 슬롯에서 SRS 심볼을 전송하는 단계를 포함하고, 상기 제 1 슬롯에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트가 K일 때, 상기 제 2 슬롯에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1이다.

Description

SRS를 전송 및 수신하는 방법과 이를 위한 통신 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 SRS를 전송 및 수신하는 방법과 이를 위한 통신 장치에 관한 것이다.
New radio access technology (RAT) 시스템이 도입되는 경우 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존 RAT에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다.
또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이, New RAT에서는 enhanced mobile broadband communication (eMBB), massive MTC (mMTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 서비스들을 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제는 단말이 SRS를 전송하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 기지국이 SRS를 수신하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 SRS를 전송하는 단말을 제공하는 데 있다
본 발명에서 이루고자 하는 또 다른 기술적 과제는 SRS를 수신하는 기지국을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 일 실시 예에 따른 단말이 사운딩 참조 신호(Sounding Reference Signal; SRS)를 전송하는 방법은, 제 1 슬롯에서 SRS 전송과 상향 링크 채널의 전송이 충돌하는 경우, 상기 제 1 슬롯에서 충돌이 발생한 SRS 심볼의 전송을 드롭(drop)하고 상기 제 1 슬롯에서 충돌이 발생하지 않은 SRS 심볼을 전송하는 단계; 상기 드롭된 SRS 심볼에 대해 설정된 호핑 패턴에 기초하여 제 2 슬롯에서 SRS 심볼을 전송하는 단계를 포함하고, 상기 제 1 슬롯에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트가 K일 때, 상기 제 2 슬롯에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1일 수 있다.
상기 제 2 슬롯은 상기 제 1 슬롯 이후에 SRS 전송이 설정된 슬롯이다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 일 실시 예에 따른 사운딩 참조 신호(Sounding Reference Signal; SRS)를 전송하는 단말은, 프로세서; 및 상기 프로세서와 결합되어 무선 신호를 전송 또는 수신하는 RF (Radio Frequency) 유닛을 포함하고, 상기 프로세서는 제 1 슬롯에서 SRS 전송과 상향 링크 채널의 전송이 충돌하는 경우, 상기 제 1 슬롯에서 충돌이 발생한 SRS 심볼의 전송을 드롭(drop)하고, 상기 제 1 슬롯에서 충돌이 발생하지 않은 SRS 심볼을 전송하고, 상기 드롭된 SRS 심볼에 대해 설정된 호핑 패턴에 기초하여 제 2 슬롯에서 SRS 심볼을 전송하도록 구성되고, 상기 제 1 슬롯에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트가 K일 때, 상기 제 2 슬롯에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1일 수 있다.
상기 전송 카운트 K는 충돌이 발생한 SRS 심볼에 대한 전송 횟수를 포함하지 않을 수 있다.
상기 호핑 패턴은 상기 전송 카운트에 기초하여 결정될 수 있다.
상기 제 1 슬롯에서 충돌이 발생한 첫 번째 SRS 심볼의 전송 카운트와 상기 제 2 SRS의 첫 번째 심볼의 전송 카운트는 K+1로 동일할 수 있다.
상기 호핑 패턴에 대한 정보는 Radio Resource Control (RRC)를 통해 제공될 수 있다.
상기 SRS는 주기적 또는 반 고정적 SRS이고, 상기 상향 링크 신호는 PUCCH (Physical Uplink Control Channel)일 수 있다.
상기 SRS는 비주기적 SRS이고, 상기 상향 링크 신호는 beam failure recover request를 포함하는 PUCCH (Physical Uplink Control Channel)일 수 있다.
본 발명의 실시 예에 따라, SRS를 전송하는데 있어서, resource hopping 시 다른 UL 채널 과의 충돌로 인해, SRS 심볼들이 drop 됨으로 인해 hopping 시 target BW에 대한 full sounding을 위해 걸리는 시간이 증가하게 될 때, counting of SRS transmission 파라미터를 수정하여, 이러한 delay를 줄일 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명을 구현하기 위한 무선통신 시스템을 예시한 도면이다.
도 2a TXRU virtualization model option 1(sub-array model)을 나타낸 도면이고, 도 2b는 TXRU virtualization model option 2(full connection model)을 나타낸 도면이다.
도 3은 하이브리드 빔포밍을 위한 블록도를 나타낸 도면이다.
도 4는 하이브리드 빔포밍에서 BRS 심볼들에 맵핑된 빔의 예를 도시한 도면이다.
도 5는 다른 numerology 간의 심볼/서브-심볼 alignment를 나타내는 예시적인 도면이다.
도 6은 LTE 호핑 패턴을 예시한 도면이다.
도 7은 Periodic/Semi-Persistent SRS와 sPUCCH간의 충돌 시 NR Priority rule (partial SRS symbols dropping)를 예시한 도면이다.
도 8은 n SRS가 8 symbols 주기로 slot에 걸친 sounding이 설정 될 경우, sPUCCH 충돌 예시(P/SP SRS)에 대한 도면이다.
도 9는 n SRS가 하나의 slot에 걸친 sounding이 설정 될 경우, sPUCCH 충돌 예시에 대한 도면이다.
도 10은 AP SRS의 partial symbols dropping 시 sounding문제 예시에 대한 도면이다.
도 11은 수정 된 SRS transmission counting
Figure PCTKR2018014649-appb-img-000001
의 예시에 대한 도면이다.
도 12는 수정 된 SRS transmission counting 초기화 예시에 대한 도면이다.
도 13은 AP SRS와 PUCCH 충돌하여, partial symbol이 drop 될 때 수정 된 SRS transmission counting 예시에 대한 도면이다.
도 14는 본 발명의 일 실시 예에 따른 단말이 SRS 신호를 전송하는 과정을 도시한 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A, 5G 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point), gNode B 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 본 발명을 구현하기 위한 무선통신 시스템을 예시한 도면이다.
도 1을 참조하면, 무선통신 시스템은 기지국(BS) (10) 및 하나 이상의 단말(UE) (20)를 포함한다. 하향링크에서, 송신기는 BS (10)의 일부일 수 있고, 수신기는 UE (20)의 일부일 수 있다. 상향링크에서, BS (10)는 프로세서 (11), 메모리 (12), 및 무선 주파수 (RF) 유닛 (13)(송신기 및 수신기)을 포함 할 수 있다. 프로세서 (11)는 UE (20) 본 출원에 기재된 제안된 절차들 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리 (12)는 프로세서 (11)와 결합되어 프로세서 (11)를 동작시키기 위한 다양한 정보를 저장한다. RF 유닛 (13)은 프로세서 (11)와 결합되어 무선 신호를 송신 및/또는 수신한다. UE (20)는 프로세서 (21), 메모리 (22) 및 RF 유닛 (23)(송신기 및 수신기)을 포함 할 수 있다. 프로세서 (21)는 본 출원에서 설명된 제안된 절차 및/또는 방법을 구현하도록 구성 될 수 있다. 메모리 (22)는 프로세서 (21)와 결합되어 프로세서 (21)를 동작시키기 위한 다양한 정보를 저장한다. RF 유닛 (23)은 프로세서 (21)와 결합되어 무선 신호를 송신 및/또는 수신한다. BS (10) 및/또는 UE (20)는 단일 안테나 및 다중 안테나를 가질 수 있다. BS (10) 및 UE (20) 중 적어도 하나가 다중 안테나를 갖는 경우, 무선 통신 시스템은 MIMO (multiple input multiple output) 시스템으로 불릴 수 있다.
본 명세서에서 단말의 프로세서(21)와 기지국의 프로세서(11)는 각각 단말(20) 및 기지국(10)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(11, 21)를 언급하지 않는다. 특별히 프로세서(11, 21)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
단말(20)과 기지국(10)이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말(10), 기지국(20)은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
LTE에서의 시퀀스 호핑(hopping)
Root 값은 다음과 같이 Group hopping number(u) 과 sequence hopping number(v)로 구분 되어 설정 되고 있다.
Figure PCTKR2018014649-appb-img-000002
슬롯 n s 내의 Sequence-group number u 는 group hopping pattern f gh(ns)와 sequence-shift pattern f ss에 따라 다음과 같이 결정된다.
u=(f gh(n s)+f ss)mod30
서로 다른 호핑 패턴들은 17개가 있고, 서로 다른 시퀀스-쉬프트 패턴들은 30개가 있다. 시퀀스 그룹 호핑은 상위 계층에서 제공하는 셀 특정 파라미터인 Group-hopping-enabled를 통해 활성화 또는 비활성화 할 수 있다. 특정 UE에 대한 PUSCH가 Random Access Response Grant 또는 random access 절차에 기반한 경쟁의 일부로서 동일한 전송 블록의 재전송에 해당하지 않는 한, 시퀀스-그룹 호핑이 셀 단위로 활성화 되더라도 상위 계층 파라미터 Disable-sequence-group-hopping를 통해 시퀀스-그룹 호핑이 비활성화 될 수 있다.
그룹 호핑 패턴 f gh(n s)는 PUSCH, PUCCH, 및 SRS에 대해 다를 수 있으며, 다음과 같다.
Figure PCTKR2018014649-appb-img-000003
의사-랜덤(Pseudo-random) 시퀀스 c(i)는 7.2절에 정의 되어있다. 의사-랜덤 시퀀스 생성기는 각 라디오 프레임의 시작 부분에서
Figure PCTKR2018014649-appb-img-000004
로 초기화 되며,
Figure PCTKR2018014649-appb-img-000005
은 5.5.1.5절에 주어져 있다.
SRS에 대하여, 시퀀스-쉬프트 패턴
Figure PCTKR2018014649-appb-img-000006
Figure PCTKR2018014649-appb-img-000007
으로 주어지며, 여기서
Figure PCTKR2018014649-appb-img-000008
는 5.5.1.5절에 주어져 있다.
시퀀스 호핑은 참조 신호들의 길이가
Figure PCTKR2018014649-appb-img-000009
일 때만 적용된다.
참조 신호들의 길이가
Figure PCTKR2018014649-appb-img-000010
일 때, 기본 시퀀스 그룹 내의 기본 시퀀스 번호는 v=0으로 주어진다.
참조 신호들의 길이가
Figure PCTKR2018014649-appb-img-000011
일 때, 슬롯 n s의 기본 시퀀스 그룹내의 기본 시퀀스 번호 v는 다음과 같이 정의된다.
Figure PCTKR2018014649-appb-img-000012
여기서 의사-랜덤 시퀀스 c(i)는 7.2절에 주어진다. 상위 계층으로 제공되는 파라미터 sequcne-hopping-enabled는 시퀀스 호핑의 활성화 여부를 결정한다.
SRS에 대하여, 의사-랜덤 시퀀스 c(i)는 7.2절에 정의 되어있다. 의사-랜덤 시퀀스 생성기는 각 라디오 프레임의 시작 부분에서
Figure PCTKR2018014649-appb-img-000013
로 초기화 되며,
Figure PCTKR2018014649-appb-img-000014
는 5.5.1.5절에 주어져 있고,
Figure PCTKR2018014649-appb-img-000015
는 5.5.1.3.절에 주어져 있고, 여기서
Figure PCTKR2018014649-appb-img-000016
는 상위 계층에 의해 셀-특정적으로 설정된다.
사운딩 참조 신호들에서
Figure PCTKR2018014649-appb-img-000017
이다.
LTE에서의 의사-랜덤(Pseudo-random) 시퀀스 생성
의사-랜덤 시퀀스들은 길이 31의 골드 시퀀스로 정의된다. n=0,1,..,M PN-1 일 때, 길이 M PN의 아웃풋 시퀀스 c(n)는 다음과 같이 정의된다.
c(n)=(x 1(n+N c)+x 2(n+N c))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
여기서 N C=1600이고, 첫번째 m-시퀀스는 x 1(0)=1, x 1(n)=0, n=1,2,..,30으로 초기화 된다. 두번째 m-시퀀스의 초기화는 시퀀스의 적용에 기초한 값으로
Figure PCTKR2018014649-appb-img-000018
로 표시된다.
아날로그 빔포밍(Analog Beamforming)
Millimeter Wave(mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 element의 설치가 가능하다. 즉 30GHz 대역에서 파장은 1cm로써 4 by 4 cm의 panel에 0.5 lambda(파장) 간격으로 2-dimension 배열 형태로 총 64(8x8)의 안테나 element 설치가 가능하다. 그러므로 mmW에서는 다수개의 안테나 element를 사용하여 빔포밍(BF) 이득을 높여 커버리지를 증가시키거나 쓰루풋(throughput)을 높일수 있다.
이 경우에 안테나 element 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나, 100여개의 안테나 element 모두에 TXRU를 설치하기에는 비용 측면에서 실효적이지 못하다. 그러므로 하나의 TXRU에 다수개의 안테나 element를 맵핑(mapping)하고 아날로그 위상 쉬프터(analog phase shifter)로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍을 해줄 수 없는 단점이 있다.
디지털 빔포밍(Digital BF)와 아날로그 빔포밍(analog BF)의 중간 형태로 Q개의 안테나 element보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍(하이브리드 BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
도 2a TXRU virtualization model option 1(sub-array model)을 나타낸 도면이고, 도 2b는 TXRU virtualization model option 2(full connection model)을 나타낸 도면이다.
도 2a 및 도 2b는 TXRU와 안테나 element의 연결 방식의 대표적인 일 예들을 나타낸다. 여기서 TXRU virtualization 모델은 TXRU의 출력 신호와 antenna elements의 출력 신호의 관계를 나타낸다. 도 2a는 TXRU가 sub-array에 연결된 방식을 나타내는데, 이 경우에 안테나 element는 하나의 TXRU에만 연결된다. 이와 달리 도 2b는 TXRU가 모든 안테나 element에 연결된 방식을 나타내는데, 이 경우에 안테나 element는 모든 TXRU에 연결된다. 도 2a 및 도 2b에서 W는 아날로그 위상 쉬프터에 의해 곱해지는 위상 벡터를 나타낸다. 즉 W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트들과 TXRU들과의 맵핑은 1-to-1 또는 1-to-many 일 수 있다.
하이브리드 빔포밍(Hybrid Beamforming)
도 3은 하이브리드 빔포밍을 위한 블록도를 나타낸 도면이다.
New RAT 시스템에서는 다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법의 사용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF 빔포밍)은 RF 단에서 프리코딩(Precoding) (또는 컴바이닝(Combining))을 수행하는 동작을 의미한다. 상기 하이브리드 빔포밍 기법은 Baseband 단과 RF 단은 각각 프리코딩(Precoding) (또는 컴바이닝(Combining))을 방식을 사용함으로써 RF chain 수와 D/A (또는 A/D) converter 수를 줄이면서도 Digital 빔포밍에 근접하는 성능을 낼 수 있다는 장점을 가진다. 설명의 편의상 도 3에 도시한 바와 같이 상기 하이브리드 빔포밍 구조는 N개 Transceiver unit (TXRU)와 M개의 물리적 안테나로 표현될 수 있다. 그러면, 송신 측에서 전송할 L개 Data layer에 대한 디지털 빔포밍은 N by L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M by N 행렬로 표현되는 아날로그 빔포밍이 적용된다.
이때, 도 3에서 디지털 빔의 개수는 L개 이며, 아날로그 빔의 개수는 N개이다. 더 나아가서 New RAT 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방향을 고려하고 있다. 더 나아가, 도 3에서 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, New RAT 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려하고 있다.
기지국이 복수의 아날로그 빔을 활용하는 경우 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로, 기지국은 적어도 동기 신호(Synchronization signal), 시스템 정보(System information), 페이징(Paging) 등에 대해서는 특정 서브프레임(SF)에서 기지국이 적용할 복수 아날로그 빔들을 심볼 별로 바꾸어 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 동작을 고려할 수 있다.
도 4는 하이브리드 빔포밍에서 BRS 심볼들에 맵핑된 빔의 예를 도시한 도면이다.
도 4는 하향링크(DL) 전송 과정에서 동기 신호와 시스템 정보에 대해 상기 빔 스위핑 동작을 도식화하여 도시하고 있다. 도 4에서 New RAT 시스템의 시스템 정보가 브로드캐스팅 방식으로 전송되는 물리 자원(또는 물리 채널)을 xPBCH(physical broadcast channel)으로 명명하였다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시 전송될 수 있으며, 아날로그 빔 별 채널을 측정하기 위해 도 4에 도시한 바와 같이 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 Reference signal (RS)인 Beam RS (BRS)를 도입하는 방안을 고려할 수 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 도 4에서는 빔을 측정하기 위한 RS (Reference Signal)로 사용되는 RS로 BRS로 명명하였으나 다른 호칭으로 명명될 수도 있다. 이때, BRS와는 달리 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 group 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
NR Numerology 특징
NR에서는 Scalable Numerology를 지원하는 방식을 고려하고 있다. 즉 NR의 subcarrier spacing은 (2n×15)kHz, n은 정수로 나타내고 있으며, nested 관점에서 위의 subset 또는 superset (적어도 15,30,60,120,240, and 480kHz)가 주요 subcarrier spacing으로 고려되고 있다. 이에 따른 동일한 CP 오버헤드 비율을 갖도록 조절함으로써 다른 numerology 간의 심볼 또는 서브-심볼 alignment를 지원하도록 설정되었다. 도 5는 다른 numerology 간의 심볼/서브-심볼 alignment를 나타내는 예시적인 도면이다.
또한, 각 서비스들(eMMB, URLLC, mMTC) 과 시나리오들(high speed 등등)에 따라 위의 시간/주파수 granularity가 dynamic 하게 할당되는 구조로 numerology가 결정된다.
New RAT에서의 주요 agreement는 다음과 같다
- 400 MHz 가 한 NR carrier 당 할당할 수 있는 최대 대역폭이다(Bandwidth).
- 100 MHz 까지는 Rel 15 표준문서 참조한다.
- Scalable numerology를 채택한다. 즉 15KHz*(2 n) 이 된다(15~480kHz).
- 하나의 numerology는 하나의 SCS와 CP를 갖게 되며, 각 SCS와 CP는 RRC 설정된다.
- 서브프레임 길이는 1ms로 고정된 길이 이다(TTI는 SCS에 따라 또는 용도(예를 들어, URLLC)에 따라 슬롯 (14 symbols) 또는 mini-slot(URLLC) 또는 multi slot 단위가 되고 TTI 또한 RRC 시그널링된다(one TTI duration determines how transmission is made on physical layer)
- 즉 모든 numerology는 1ms 마다 정렬된다.
- 각 RB 당 Subcarrier 수는 12개로 통일한다.
- 슬롯 내의 symbol 수: 7 또는 14 (SCS가 60kHz 보다 작을 때), 14(SCS가 60kHz 보다 클 때)
NR PUCCH 포맷들
PUCCH 포맷들은 지속시간(duration)/페이로드(payload) 크기에 따라 표 1과 같이 분류될 수 있다.
- Short PUCCH는 format 0(<=2 bits), format 2(>2 bits)
- Long PUCCH는 format 1 (<= 2bits), format 3 (>2, [>N] bits), format 4 (2>2, [<=N] bits)
- PUCCH에 관하여 Transmit diversity scheme은 Rel-15에서는 지원되지 않는다.
- 단말의 동시 PUSCH 및 PUCCH는 Rel-15에서 지원되지 않는다.
Format PUCCH length in OFDM symbols Number of bits [Usage] Etc.
0 1-2 <=2 HARQ, SR Sequence selection
1 4-14 <=2 HARQ, [SR] Sequence modulation (BPSK, QPSK)
2 1-2 >2 HARQ, CSI, [SR] [CP-OFDM]
3 4-14 [>N] HARQ, CSI, [SR] DFT-s-OFDM (no UE multiplexing)
4 4-14 >2, [<=N] HARQ, CSI, [SR] DFT-s-OFDM (Pre DFT OCC)
LTE 시스템에서의 SRS 호핑(hopping) 특징
- 주기적 SRS 트리거링(triggering type 0) 시에만 SRS hopping 동작을 수행한다.
- SRS 자원들의 할당은 predefined hopping pattern으로 제공된다.
- 호핑 패턴(Hopping pattern)은 단말-특정(UE specific) 하게 RRC 시그널링으로 설정될 수 있다(단, 오버래핑(overlapping)은 허용되지 않음).
- 셀/단말-특정 SRS가 전송되는 서브프레임 마다 호핑 패턴을 이용하여 SRS가 주파수 호핑되어 전송될 수 있다.
- SRS 주파수 도메인의 시작 위치 및 호핑 공식은 다음 수학식 1을 통해 해석된다.
Figure PCTKR2018014649-appb-img-000019
여기서, n SRS는 시간 domain에서 hopping 진행 간격을 나타내고, N b는 tree level b에 할당된 branches 수, b는 dedicated RRC에서 B SRS 설정으로 결정될 수 있다.
도 6는 LTE 호핑 패턴을 예시한 도면이다(n s=1 --> n s=4).
LTE 호핑 패턴 설정의 예시를 설명한다.
셀-특정 RRC 시그널링으로 LTE 호핑 패턴 파라미터를 설정할 수 있는데, 일 예로서 C SRS=1,
Figure PCTKR2018014649-appb-img-000020
=100, n f=1, n s=1과 같이 설정될 수 있다.
다음으로 단말-특정 RRC 시그널링으로 LTE 호핑 패턴 파라미터를 설정할 수 있는데, 일 예로서 UE A: B SRS=1, b hop=0, n RRC=22, T SRS=10, UE B: B SRS=2, b hop=0, n RRC=10, T SRS=5, UE C: B SRS=3, b hop=2, n RRC=23, T SRS=2와 같이 설정할 수 있다.
NR Antenna switching 특징
NR에서는 inter-slot 및 intra-slot antenna switching을 지원한다. Intra-slot antenna switching에서는 가드 구간이 설정될 수 있다. 1T2R (또는 1Tx2Rx) 및 2T4R (또는 2Tx4Rx)의 경우에 단말은 1심볼 또는 2심볼인 두 개의 SRS 자원들로 구성된다. 1T4R (또는 1Tx4Rx)의 경우에 단말은 모두 단일 심볼 및 단일 포트인 4개의 SRS 리소스로 구성된다. 구성된 자원의 각 포트는 다른 UE 안테나와 연관된다.
RAN1 #90에서 결정된 Agreement는 다음 표 2와 같다.
Figure PCTKR2018014649-appb-img-000021
하나의 slot 내의 SRS resources는 SRS 와 sPUCCH 또는 다른 UL channel 과 충돌 시 SRS dropping이 적용될 때 Priority rule에 따라 partial symbols dropping이 되거나 모든 SRS symbols의 full symbols dropping이 될 수 있다. 이러한 충돌 동작에 대해서 기지국과 단말은 미리 정의한 priority rule에 따라 동작하게 된다.
도 7은 P/SP SRS와 sPUCCH간의 충돌 시 NR Priority rule (partial SRS symbols dropping)에 대한 예시를 도시하고 있다. 도 7에 도시된 slot들은 SRS가 설정된 slot들만 도시되어 있다.
도 7에서는 예시로 10,11,12,13 symbols에 P/SP SRS 전송을 설정 하였다. 이때slot n에 대하여, sPUCCH with aperiodic CSI reporting가 12,13 symbols에 전송 된다면, 12,13 symbols은 충돌 나게 된다. 하지만, 미리 정의 된 priority rule에 따라 10,11 symbols은 SRS가 12,13 symbols은 sPUCCH가 전송 하게 된다. 다만, ap SRS와 ap PUCCH(ap CSI)는 기지국에서 애초에 같이 스케줄링을 하지 않기 때문에 충돌이 발생하지 않는 것으로 결정한다. 또한, 기지국이 자원 스케줄링을 하므로, SRS와 PUCCH간의 충돌이 발생하는지 여부를 알 수 있다. 또한, 표2에는 sPUCCH만을 기재하고 있으나, lPUCCH간의 충돌도 발생할 수 있다. 또한, PUCCH의 길이가 가변적이므로 기존의 n SRS를 개선할 필요가 있다.
여기서 symbol level로 counting of SRS transmission n SRS가 정의 되면, 이 n SRS에 따라 frequency hopping 과 antenna switching이 symbol 단위로 수행 된다. 따라서, n SRS의 정의가 LTE의 함수 형태로 l', r, n s, n f의 함수 상태로 고려 된다면, 다음과 같은 sounding 문제가 발생 될 수 있다.
도 8은 n SRS가 8 symbols 주기로 slot에 걸친 sounding이 설정 될 경우, sPUCCH 충돌 예(P/SP SRS)를 도시하고 있다. 또한, 도 8이 예는 Full SRS symbols dropping 경우 및 Target sounding BW에 대하여 Slot에 걸친 sounding이 설정 될 때이다.
도 8과 같이 target sounding BW 전체의 sounding을 연속 되는 2개의 SRS slot에 전송 하는 경우(e.g. 전송 가능 BW 가 너무 작은 단말들(e.g. cell edge 단말들)의 하나의 slot에서 sounding 가능한 최대 BW 보다 좀 더 큰 sounding BW가 요구 될 경우) 8 SRS symbol들에 걸친 sounding이 필요하다고 하자. 하지만, 2번째 slot에서 즉 n SRS=4,5,6,7일 때, sPUCCH와 full SRS symbols(i.e. 4symbols)이 충돌 나서, priority rule에 따라, SRS symbol들이 dropping 되었다. 다음 slot(즉 n+2T_srs)에서 n SRS=8,9,10,11에서 hopping pattern에 의해 다시 n SRS=0,1,2,3이 적용 되었을 때의 hopping pattern으로 sounding이 된다면, 결국 n+3T_srs가 지나야 target BW에 따른 sounding이 완료 되게 된다.
도 9는 n SRS가 하나의 slot에 걸친 sounding이 설정 될 경우, sPUCCH 충돌 예를 도시하고 있다. 또한, 도 9는 Target sounding BW에 대하여 단 하나의 Slot sounding으로 설정 될 때이다. 도 9에서는 모든 SRS가 dropping되므로 다음 슬롯에서 target sounding BW 모두 커버할 수 있으므로 문제가 되지 않는다.
반면에, Partial SRS symbol dropping 경우 Target sounding BW에 대하여 Slot에 걸친 sounding이 될 때 문제가 발생한다.
도 8에서 부분적인 symbol에서 dropping이 된다고 보면, 위의 full symbol drop경우와 같이 target sounding BW에 대하여, sounding이 되지 않는다. 결국 n+3T_srs가 지나야 target BW에 따른 sounding이 완료 되게 된다.
결국 full/partial dropping 되는 SRS symbols 들의 target sounding BW에 대하여 여러 slot에 걸쳐서 sounding을 할지, 아니면, 하나의 slot에서 가능하게 할지 에 따라 sounding 완료 시점이 delay 될 수 있다.
또한, Target sounding BW에 대하여 AP SRS 전송 경우에도 문제가 발생할 수 있다.
도 10은 AP SRS의 partial symbols dropping 시 sounding문제 예시를 도시하고 있다.
AP SRS symbols와 PUCCH와 충돌 시에도, 비록 단일 slot 이지만, target sounding이 실패 하는 경우가 발생한다. 따라서 다음 AP SRS가 trigger 되는 slot에서 sounding이 완료 되도록 설정하는 것이 중요하다. 예시로 AP SRS가 slot n에서 4 symbols로 설정 되었고, 따라서, n SRS=0,1,2,3으로 되는데, 마지막 2 symbols가 PUCCH로 사용 되어, priority rule에 의해 마지막 2 SRS symbols이 dropping 되었다. 하지만, 다음 n+a slot에서 AP가 triggering 될 때, 만약에 2 symbol로 SRS가 할당 되고, 이전 SRS trigger 시점에서 설정된 SRS와 동일하게 설정 되면, target BW에 대한 sounding이 완료가 되지 못한다.
이러한 문제들은 기존
Figure PCTKR2018014649-appb-img-000022
값에 따라 resource hopping이 결정 되기 때문에 발생 되는 것이다. 여기서 l'는 OFDM symbol index를 나타낸다.
따라서, 이 문제를 해결 하기 위해서 충돌 된 후 n SRS 값을 어떻게 할 것인가에 대한 정의(predefined)나 수정이 필요하게 된다.
제안 1
P/SP SRS 와 다른 UL 채널들의 충돌로 인해, Partial SRS symbols 그리고/또는 Full SRS symbols이 drop 될 경우, SRS sounding 설정에 따라 n SRS가 다음과 같이 동작 할 수 있다. 여기서 P/SP SRS는 Periodic/Semi-persistent SRS를 지칭한다.
위에서 제기한 문제들은 Target BW의 sounding을 위해 multiple slot에 걸처서 SRS가 설정 될 경우 즉 설정 된 hop 수가 한 slot 내에 설정 되는 SRS symbol 수 N srs_sym보다 클 때 (i.e.
Figure PCTKR2018014649-appb-img-000023
) 발생한다. 다시 말해서, hop 수(N b)가 slot당 설정되는 n sym_SRS보다 더 클 때, 즉, 하나의 슬롯에서 target BW이 모두 커버되지 못해 다음 slot들에서 SRS를 추가적으로 전송해야 할 때를 의미한다.
따라서, Full symbols 충돌나서 SRS drop되거나 partial symbols 충돌나서 partial SRS drop 될 때 다음과 같이 SRS transmission counting을 고려할 수 있다. 바로 이전 SRS slot 전송 time에 충돌이 일어난 심볼 시점의 n SRS'(e.g. 현 n slot에 대하여 n-T_srs slot에서 10,11,12,13 index 심볼들에 SRS가 설정 되고, 이때 12,13 심볼들에서 충돌 났다면, 12 index(l'=2)를 이용해서 계산 된 n SRS를 의미하게 된다. 즉n SRS'=n SRS(n-T SRS, 2, r)과 현 SRS 전송 slot 시점에서 가장 먼저 설정 된 SRS 심볼에 대하여 계산 된 n SRS''(e.g. 현 n slot에서의 SRS symbols l'에 대하여 l'=0일 때 계산된 SRS transmission counting, 즉 n SRS''=n SRS(n,0,r))라고 할 때, 수정 된
Figure PCTKR2018014649-appb-img-000024
를 이용하여, SRS transmission counting을 수행한다. 여기서 TSRS는 SRS를 전송하는 slot의 주기를 의미하고, 2는 심볼 인덱스를 의미하고, r은 반복 인자 (repetition factor)를 의미한다.
수정 된 SRS transmission counting
Figure PCTKR2018014649-appb-img-000025
는 다음과 같이 수학식 2로 나타낼 수 있다.
Figure PCTKR2018014649-appb-img-000026
도 11은 수정 된 SRS transmission counting
Figure PCTKR2018014649-appb-img-000027
의 예시를 도시하고 있다.
Slot n+T_srs에서 n SRS 4, 5, 6, 7이 전송하려고 했으나, n SRS 6, 7에서 PUCCH와 충돌이 발생하게 되면, 우선순위에 따라 PUCCH가 전송되고 충돌이 발생한 SRS의 전송은 드롭(drop)된다. 따라서, 충돌이 발생한 슬롯 slot n+T_srs 중에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트를 K라 하면, 도 11 에서는 K는 5가 된다. 그리고 그 이후 SRS를 전송하는 슬롯인 slot n+2T_SRS에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1이 되며, 도 11에서는 K+1은 6이 된다. 따라서 결과적으로, 충돌이 발생하게 되더라도
Figure PCTKR2018014649-appb-img-000028
는 SRS를 전송하는 슬롯에서 1씩 증가하는 값을 갖도록 설정된다. 이는
Figure PCTKR2018014649-appb-img-000029
가 충돌에 따라 전송이 드롭된 SRS에 대한 전송 횟수를 포함하지 않는 것을 의미한다.
즉, SRS 호핑 패턴을 적용하는데 있어서,
Figure PCTKR2018014649-appb-img-000030
를 이용하게 되면, SRS와 PUCCH가 충돌한 이후에, 다음 SRS를 전송시에 이용되는 SRS 전송 카운트는 드롭된 SRS 심볼의 전송 카운트와 동일해지므로, 결과적으로 드롭된 SRS 심볼들의 호핑 패턴과 그 이후에 전송되는 SRS 심볼들의 호핑 패턴은 동일하다.
이를 일반화 하면 다음 수학식 3과 같다.
Figure PCTKR2018014649-appb-img-000031
여기서 C는 collision counter로서 충돌 카운트로도 지칭될 수 있고, SRS와 PUCCH가 충돌되는 slot의 개수를 나타내며, 해당 충돌이 partial인지 full인지 여부는 무관하다. C는 RRC 연결 설정이 초기화 될 때 같이 초기화 될 수 있다.
여기서 n SRS,C는 충돌이 C번 발생했을 때의 수정된 SRS 전송 카운트를 나타내고, n SRS,C+1은 전송이 C+1번 발생했을 때의 수정된 SRS 전송 카운트를 나타낸다. 예를 들어, 충돌이 C번 발생했을 때의 SRS 전송 카운트를 이용하여 SRS를 전송할 때 충돌이 추가적으로 발생하면, 충돌 카운트는 C+1이 되고, 그 다음에 SRS를 전송할 때는 n SRS,C에서 드롭된 SRS 심볼들의 전송 카운트만큼 차감한 n SRS,C+1을 이용하여 SRS를 전송한다 된다.
충돌이 발생하고 나면 drop된 SRS 심볼부터 다시 전송을 하게 되므로, SRS가 완료되는 시점은 delay된다.
도 12는 수정 된 SRS transmission counting 초기화 예시 (full SRS symbols drop 경우,
Figure PCTKR2018014649-appb-img-000032
)를 도시하고 있다.
Full symbols dropping 경우는 충돌 난 다음 SRS 전송 slot에서 n SRS는 reset(초기화) 될 수 있다. 이는 이전 슬롯에서 SRS 심볼들이 전부 드롭 됐으므로, n SRS'를 적용할 필요는 없기 때문에 초기화 하는 것과 같은 효과를 나타낸다.
이를 수학식 4로 표현하면 다음과 같다.
Figure PCTKR2018014649-appb-img-000033
상기 수정된 SRS transmission counter에 대한 수학식들은 RRC를 통해 설정될 수 있다.
제안 2
AP(aperiodic) SRS가 triggering 될 때, partial SRS symbols이 drop 될 경우 수정 된 SRS transmission counting을 충돌 이후 triggering 되는 AP SRS에 대하여 적용 할 수 있다.
AP SRS를 위한 SRS transmission counting은 기본적으로 다음 수식으로 나타낼 수 있다.
Figure PCTKR2018014649-appb-img-000034
이전 AP SRS slot에서 충돌되어 drop된 SRS 심볼 수가 n drop이라고 할 때, 충돌 되고 다음 triggered 된 AP SRS slot에서 사용 되는 수정 된 SRS transmission counting은 다음과 같다.
Figure PCTKR2018014649-appb-img-000035
Figure PCTKR2018014649-appb-img-000036
는 현재 triggered된 AP SRS 바로 이전에 triggered 된 AP SRS에서 충돌이 발생 하면, on 충돌이 발생 하지 않으면 off를 나타낸다.
Figure PCTKR2018014649-appb-img-000037
따라서 SRS와 PUCCH의 collision에 대하여 대응할지 여부를 필요에 따라 dynamic하게 결정할 수 있으며, a는 RRC 또는 DCI로 설정할 수 있다.
도 13은 AP SRS와 PUCCH 충돌하여, partial symbol이 drop 될 때 수정 된 SRS transmission counting 예를 도시하고 있다. 여기서 n+a slot에서 AP SRS는 2symbols로 설정 됨을 가정한다. 따라서 기존의 SRS 전송 카운트를 이용하고 AP SRS가 2symbols로 가정한다면, slot n+a에서는 symbol index 10, 11에서 n SRS 카운트 0, 1을 이용하여 호핑 패턴을 적용하게 되어, slot n에서 전송된 SRS와 동일한 주파수 대역만이 커버되므로, 타겟 주파수 대역 전체를 커버하려면 다음 SRS까지 기다려야 한다. 반면에, 수정된 SRS 전송 카운트를 이용하게 되면, 드롭된 SRS 심볼들의 호핑 패턴을 그 다음 SRS에서 적용하므로 다음 SRS까지 기다리지 않고도 타겟 주파수 대역 전체를 커버할 수 있게된다.
도 14는 본 발명의 일 실시 예에 따른 단말이 SRS 신호를 전송하는 과정을 도시한 블록도이다.
단말이 SRS를 전송하는 방법은, 상기 제 1 슬롯에서 SRS 전송과 상향 링크 채널의 전송이 충돌하는 경우, 우선순위에 따라 제 1 슬롯에서 충돌이 발생한 SRS 심볼의 전송을 드롭(drop)하고 상기 제 1 슬롯에서 충돌이 발생하지 않은 SRS 심볼을 전송하는 단계(S1401); 상기 제 1 슬롯에서 드롭된 또는 전송된 SRS 심볼을 고려한 호핑 패턴에 기초하여 제 2 슬롯에서 SRS 심볼을 전송하는 단계(S1402)를 포함한다.
상기 제 1 슬롯에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트가 K일 때, 상기 제 2 슬롯에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1이다.
또한, 여기서 상기 제 2 슬롯은 상기 제 1 슬롯 이후에 SRS 전송이 설정된 슬롯을 의미한다. 즉, 정기적인 또는 반 고정적인 SRS인 경우에는 제 1 및 제 2 슬롯들은 SRS 전송 주기에 따라 설정되고, 비정기적인 SRS인 경우에 제 2 슬롯은 제 1 슬롯 이후에 DCI 등에 따라 설정된다.
상기 전송 카운트 K는 충돌이 발생한 SRS 심볼에 대한 전송 횟수를 포함하지 않는다. 또한, 상기 호핑 패턴은 상기 전송 카운트에 기초하여 결정된다. 또한, 상기 제 1 슬롯에서 충돌이 발생한 첫 번째 SRS 심볼의 전송 카운트와 상기 제 2 SRS의 첫 번째 심볼의 전송 카운트는 K+1로 동일하다. 또한, 상기 호핑 패턴에 대한 정보는 Radio Resource Control (RRC)를 통해 제공된다. 또한, 상기 SRS는 주기적 또는 반 고정적 SRS이고, 상기 상향 링크 신호는 PUCCH (Physical Uplink Control Channel)이다. 또한, 상기 SRS는 비주기적 SRS이고, 상기 상향 링크 신호는 beam failure recover request를 포함하는 PUCCH (Physical Uplink Control Channel)이다.
이하에서는, 도 1을 참조하여 SRS 신호를 전송하는 단말의 동작을 설명한다.
사운딩 참조 신호(Sounding Reference Signal; SRS)를 전송하는 단말(20)은, 프로세서(21); 및 상기 프로세서(21)와 결합되어 무선 신호를 전송 또는 수신하는 RF (Radio Frequency) 유닛(23)을 포함하고, 상기 프로세서(21)는 상기 제 1 슬롯에서 SRS 전송과 상향 링크 채널의 전송이 충돌하는 경우, 상기 제 1 슬롯에서 충돌이 발생한 SRS 심볼의 전송을 드롭(drop)하고, 상기 제 1 슬롯에서 상기 충돌이 발생하지 않은 SRS 심볼을 전송하고 상기 드롭된 SRS 심볼에 대해 설정된 호핑 패턴에 기초하여 제 2 슬롯에서 SRS 심볼을 전송하도록 구성되고, 상기 제 1 슬롯에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트가 K일 때, 상기 제 2 슬롯에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1이다.
본 기술은 NR SRS의 resource hopping 시 다른 UL 채널 과의 충돌로 인해, SRS 심볼들이 drop 됨으로 인해hopping 시 target BW에 대한 full sounding을 위해 걸리는 시간이 증가하게 될 때, 이러한 delay를 줄이기 위하여, counting of SRS transmission 파라미터를 수정하여, SRS resource hopping 시 이용하는 것을 나타내는 기술이다. LTE와 달리 NR에서는 사용하는 BW가 확장됐기 때문에, target BW에 대한 full sounding을 위해 필요한 슬롯의 개수도 늘어나게 된다. 이 경우 SRS와 PUCCH의 충돌로 인해 전체 SRS를 재전송할 경우 시간이 오래 걸리게 되므로, 충돌로 인해 드롭된 SRS부터 재전송을 함으로써 full sounding에 소요되는 시간을 단축시킬 수 있다.
이상에서 설명된 실시 예들 및 제안들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
SRS를 전송 및 수신하는 방법과 이를 위한 통신 장치는 3GPP LTE/LTE-A 시스템, NR(5G) 통신 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

Claims (14)

  1. 단말이 사운딩 참조 신호(Sounding Reference Signal; SRS)를 전송하는 방법에 있어서,
    제 1 슬롯에서 SRS 전송과 상향 링크 채널의 전송이 충돌하는 경우, 상기 제 1 슬롯에서 충돌이 발생한 SRS 심볼의 전송을 드롭(drop)하고 상기 제 1 슬롯에서 충돌이 발생하지 않은 SRS 심볼을 전송하는 단계;
    상기 드롭된 SRS 심볼에 대해 설정된 호핑 패턴에 기초하여 제 2 슬롯에서 SRS 심볼을 전송하는 단계를 포함하고,
    상기 제 1 슬롯에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트가 K일 때, 상기 제 2 슬롯에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1이고,
    상기 제 2 슬롯은 상기 제 1 슬롯 이후에 SRS 전송이 설정된 슬롯인, SRS를 전송하는 방법.
  2. 제 1 항에 있어서,
    상기 전송 카운트 K는 상기 충돌이 발생한 SRS 심볼에 대한 전송 횟수를 포함하지 않는, SRS를 전송하는 방법.
  3. 제 1 항에 있어서,
    상기 호핑 패턴은 상기 전송 카운트에 기초하여 결정되는, SRS를 전송하는 방법.
  4. 제 1 항에 있어서,
    상기 제 1 슬롯에서 충돌이 발생한 첫 번째 SRS 심볼의 전송 카운트와 상기 제 2 SRS의 첫 번째 심볼의 전송 카운트는 K+1로 동일한, SRS를 전송하는 방법.
  5. 제 1 항에 있어서,
    상기 호핑 패턴에 대한 정보는 Radio Resource Control (RRC)를 통해 제공되는, SRS를 전송하는 방법.
  6. 제 1 항에 있어서,
    상기 SRS는 주기적 또는 반 고정적 SRS이고, 상기 상향 링크 신호는 PUCCH (Physical Uplink Control Channel)인, SRS를 전송하는 방법.
  7. 제 1 항에 있어서,
    상기 SRS는 비주기적 SRS이고, 상기 상향 링크 신호는 beam failure recover request를 포함하는 PUCCH (Physical Uplink Control Channel)인, SRS를 전송하는 방법.
  8. 사운딩 참조 신호(Sounding Reference Signal; SRS)를 전송하는 단말에 있어서,
    프로세서; 및
    상기 프로세서와 결합되어 무선 신호를 전송 또는 수신하는 RF (Radio Frequency) 유닛을 포함하고,
    상기 프로세서는:
    제 1 슬롯에서 SRS 전송과 상향 링크 채널의 전송이 충돌하는 경우, 상기 제 1 슬롯에서 충돌이 발생한 SRS 심볼의 전송을 드롭(drop)하고,
    상기 제 1 슬롯에서 충돌이 발생하지 않은 SRS 심볼을 전송하고,
    상기 드롭된 SRS 심볼에 대해 설정된 호핑 패턴에 기초하여 제 2 슬롯에서 SRS 심볼을 전송하도록 구성되고,
    상기 제 1 슬롯에서 충돌이 발생하지 않은 마지막 SRS 심볼의 전송 카운트가 K일 때, 상기 제 2 슬롯에서 전송되는 첫 번째 SRS 심볼에 대한 전송 카운트는 K+1이고,
    상기 제 2 슬롯은 상기 제 1 슬롯 이후에 SRS 전송이 설정된 슬롯인, 단말.
  9. 제 8 항에 있어서,
    상기 전송 카운트 K는 충돌이 발생한 SRS 심볼에 대한 전송 횟수를 포함하지 않는, 단말.
  10. 제 8 항에 있어서,
    상기 호핑 패턴은 상기 전송 카운트에 기초하여 결정되는, 단말.
  11. 제 8 항에 있어서,
    상기 제 1 슬롯에서 충돌이 발생한 첫 번째 SRS 심볼의 전송 카운트와 상기 제 2 SRS의 첫 번째 심볼의 전송 카운트는 K+1로 동일한, 단말.
  12. 제 8 항에 있어서,
    상기 호핑 패턴에 대한 정보는 Radio Resource Control (RRC)를 통해 제공되는, 단말.
  13. 제 8 항에 있어서,
    상기 SRS는 주기적 또는 반 고정적 SRS이고, 상기 상향 링크 신호는 PUCCH (Physical Uplink Control Channel)인, 단말.
  14. 제 8 항에 있어서,
    상기 SRS는 비주기적 SRS이고, 상기 상향 링크 신호는 beam failure recover request를 포함하는 PUCCH (Physical Uplink Control Channel)인, 단말.
PCT/KR2018/014649 2017-11-24 2018-11-26 Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치 WO2019103560A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/766,667 US11153127B2 (en) 2017-11-24 2018-11-26 Method for transmitting and receiving SRS and communication device therefor
EP18880158.3A EP3691168B1 (en) 2017-11-24 2018-11-26 Method for transmitting and receiving srs and communication device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762590377P 2017-11-24 2017-11-24
US62/590,377 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019103560A1 true WO2019103560A1 (ko) 2019-05-31

Family

ID=66630692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014649 WO2019103560A1 (ko) 2017-11-24 2018-11-26 Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치

Country Status (3)

Country Link
US (1) US11153127B2 (ko)
EP (1) EP3691168B1 (ko)
WO (1) WO2019103560A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628801A (zh) * 2020-05-28 2020-09-04 维沃移动通信有限公司 射频前端器件控制方法及用户设备
WO2021093139A1 (en) * 2020-01-03 2021-05-20 Zte Corporation Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
CN112911639A (zh) * 2019-11-19 2021-06-04 维沃移动通信有限公司 上行传输方法、配置方法、终端及网络侧设备
WO2021155505A1 (en) * 2020-02-05 2021-08-12 Qualcomm Incorporated Repetition and time domain cover code based sounding reference signal resources for antenna switching
CN114389649A (zh) * 2019-07-29 2022-04-22 Oppo广东移动通信有限公司 一种信息配置方法及装置、终端
CN115516926A (zh) * 2020-05-15 2022-12-23 苹果公司 针对srs天线切换的ue功率节省

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842894B (zh) * 2017-11-27 2021-12-14 华硕电脑股份有限公司 无线通信系统中减少波束恢复程序中断的方法和设备
US11166267B2 (en) 2018-08-17 2021-11-02 Qualcomm Incorporated DCI triggered SRS enhancements
US20230054488A1 (en) * 2020-02-21 2023-02-23 Qualcomm Incorporated Sounding reference signal configuration for at least two transmission/reception points
KR20230154980A (ko) * 2021-03-23 2023-11-09 텔레폰악티에볼라겟엘엠에릭슨(펍) 충돌을 처리하기 위한 방법 및 장치
US11470624B1 (en) 2021-03-31 2022-10-11 PanPsy Technologies, LLC Wireless device processes for enhanced uplink transmission
CN117223247A (zh) * 2021-05-04 2023-12-12 高通股份有限公司 用于探通参考信号资源集的保护时段

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150195063A1 (en) * 2012-08-31 2015-07-09 Samsung Electronics Co., Ltd. Method and apparatus for operating sounding in wireless communication system in which uplink control channel resource dynamically changes
WO2016163805A1 (ko) * 2015-04-10 2016-10-13 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호의 전송을 제어하는 방법 및 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101770208B1 (ko) * 2009-07-10 2017-08-22 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 신호 송신 방법 및 이를 위한 장치
US10057893B2 (en) * 2012-05-10 2018-08-21 Qualcomm Incorporated Interaction of sounding reference signals with uplink channels for coordinated multi-point operations
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
KR102222880B1 (ko) * 2013-10-11 2021-03-04 삼성전자 주식회사 셀룰러 이동 통신 시스템에서 srs 전송 방법 및 장치
US10790949B2 (en) * 2014-06-20 2020-09-29 Qualcomm Incorporated SRS in dual connectivity
US10588141B2 (en) * 2016-06-29 2020-03-10 Qualcomm Incorporated Multiple antennas and interruption time values for sounding reference signal (SRS) switching
ES2734998T3 (es) * 2016-08-12 2019-12-13 Ericsson Telefon Ab L M Formatos de descarga de un segmento
US10873481B2 (en) * 2017-11-27 2020-12-22 Qualcomm Incorporated Reference signal transmission window and timing considerations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150195063A1 (en) * 2012-08-31 2015-07-09 Samsung Electronics Co., Ltd. Method and apparatus for operating sounding in wireless communication system in which uplink control channel resource dynamically changes
WO2016163805A1 (ko) * 2015-04-10 2016-10-13 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호의 전송을 제어하는 방법 및 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Details on SRS Design", RL-1718450, 3GPP TSG-RAN WG1 #90BIS, 3 October 2017 (2017-10-03), Prague, Czech Republic, XP051353048 *
HUAWEI ET AL.: "Remaining Details of SRS Design", R1 -1719441, 3GPP TSG RAN WG1 MEETING #91, 18 November 2017 (2017-11-18), Reno, USA, XP051369331 *
LG ELECTRONICS: "On SRS Design", R1-1719914, 3GPP TSG RAN WG1 MEETING NR #91, 18 November 2017 (2017-11-18), Reno, USA, XP051369627 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389649A (zh) * 2019-07-29 2022-04-22 Oppo广东移动通信有限公司 一种信息配置方法及装置、终端
CN114389649B (zh) * 2019-07-29 2023-06-30 Oppo广东移动通信有限公司 一种信息配置方法及装置、终端
CN112911639B (zh) * 2019-11-19 2023-07-18 维沃移动通信有限公司 上行传输方法、配置方法、终端及网络侧设备
CN112911639A (zh) * 2019-11-19 2021-06-04 维沃移动通信有限公司 上行传输方法、配置方法、终端及网络侧设备
WO2021093139A1 (en) * 2020-01-03 2021-05-20 Zte Corporation Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
US11916815B2 (en) 2020-01-03 2024-02-27 Zte Corporation Methods and devices for enhancement on sounding reference signal (SRS) transmission signaling
WO2021155505A1 (en) * 2020-02-05 2021-08-12 Qualcomm Incorporated Repetition and time domain cover code based sounding reference signal resources for antenna switching
CN115516926A (zh) * 2020-05-15 2022-12-23 苹果公司 针对srs天线切换的ue功率节省
EP4150971A4 (en) * 2020-05-15 2024-03-06 Apple Inc. UE POWER SAVING FOR SRS ANTENNA CIRCUIT
US11979829B2 (en) 2020-05-15 2024-05-07 Apple Inc. UE power saving for SRS antenna switching
WO2021238851A1 (zh) * 2020-05-28 2021-12-02 维沃移动通信有限公司 射频前端器件控制方法及用户设备
CN111628801B (zh) * 2020-05-28 2022-02-01 维沃移动通信有限公司 射频前端器件控制方法及用户设备
CN111628801A (zh) * 2020-05-28 2020-09-04 维沃移动通信有限公司 射频前端器件控制方法及用户设备

Also Published As

Publication number Publication date
EP3691168B1 (en) 2022-01-26
EP3691168A4 (en) 2020-11-25
EP3691168A1 (en) 2020-08-05
US20200366531A1 (en) 2020-11-19
US11153127B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2019103560A1 (ko) Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
WO2018151554A1 (ko) Srs 설정 정보를 수신하는 방법 및 이를 위한 단말
WO2018203738A1 (ko) 무선 통신 시스템에서 릴레이 단말이 사이드링크 신호의 전력을 제어하는 방법 및 이를 위한 장치
WO2018231024A1 (ko) Srs 시퀀스를 생성하는 방법 및 이를 위한 단말
WO2021071343A1 (ko) 무선 통신 시스템에서 상향링크 또는 하향링크의 송수신을 위한 자원 설정 방법 및 장치
WO2018030854A1 (ko) 무선 통신 시스템에서 단말이 다른 단말에게 데이터를 전송하는 방법
WO2018147699A1 (ko) 무선 통신 시스템에서 d2d 단말이 통신 장치와 통신 링크를 형성하는 방법 및 이를 위한 장치
WO2018226065A1 (ko) Nr에서 이중 연결을 지원하는 방법 및 장치
WO2018174494A1 (ko) 임의 접속 프리앰블을 전송하는 방법과 사용자기기, 및 임의 접속 프리앰블을 수신하는 방법 및 기지국
WO2018143741A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널을 전송하는 방법 및 이를 위한 장치
WO2019022329A1 (ko) Srs를 전송하는 방법 및 이를 위한 단말
WO2016048074A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2019098712A1 (ko) Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
WO2017171322A2 (ko) 차세대 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2018174537A1 (ko) 무선 통신 시스템에서 전송 다이버시티 기법에 의하여 전송된 v2x 신호의 디코딩 방법 및 상기 방법을 이용하는 단말
WO2019059739A1 (ko) 피드백 정보의 송신 및 수신 방법과 이를 위한 차량체
WO2016163848A1 (ko) 무선 통신 시스템에서 우선순위를 고려하여 d2d 신호를 송수신 하는 방법 및 장치
WO2018182263A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2018030812A1 (en) Method and apparatus for supporting mechanisms for flexible duplex operations at symbol level in wireless communication system
WO2016163814A1 (ko) 무선 통신 시스템에서 다수의 d2d 신호를 송수신 하는 방법 및 장치
WO2018199684A1 (ko) 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2018093103A1 (ko) 가용 자원에 대한 정보를 전송하는 방법 및 이를 위한 장치
WO2018174401A1 (ko) 무선통신 시스템에서 srs 전송을 위한 제어 정보를 수신하는 방법 및 이를 위한 단말
WO2019160292A1 (ko) 비면허 대역에서 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018135913A1 (ko) 무선 통신 시스템에서 릴레이 d2d 통신을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018880158

Country of ref document: EP

Effective date: 20200427

NENP Non-entry into the national phase

Ref country code: DE