[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019198546A1 - 空燃比制御装置 - Google Patents

空燃比制御装置 Download PDF

Info

Publication number
WO2019198546A1
WO2019198546A1 PCT/JP2019/014105 JP2019014105W WO2019198546A1 WO 2019198546 A1 WO2019198546 A1 WO 2019198546A1 JP 2019014105 W JP2019014105 W JP 2019014105W WO 2019198546 A1 WO2019198546 A1 WO 2019198546A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
nox concentration
target
engine
Prior art date
Application number
PCT/JP2019/014105
Other languages
English (en)
French (fr)
Inventor
田中 誠
賢健 和田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980023498.4A priority Critical patent/CN111936731B/zh
Priority to DE112019001841.8T priority patent/DE112019001841T5/de
Publication of WO2019198546A1 publication Critical patent/WO2019198546A1/ja
Priority to US17/062,953 priority patent/US11268468B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient

Definitions

  • the present disclosure relates to an engine air-fuel ratio control device.
  • the amount of NOx emission can be reduced by controlling the lean degree of the air-fuel ratio in the air-fuel mixture.
  • misfire occurs and combustion fluctuation increases. This is not preferable because it causes a decrease in drivability.
  • Patent Document 1 a technology that suppresses deterioration of the combustion state of the engine by detecting combustion fluctuations from fluctuations in engine rotation speed and torque fluctuations and performing air-fuel ratio control so as not to exceed the lean limit based on the detection results. It has been proposed (see, for example, Patent Document 1).
  • the present disclosure has been made in view of the above problems, and a main object thereof is to provide an air-fuel ratio control device for an engine that can perform appropriate air-fuel ratio control.
  • an air-fuel ratio control device that sets a target air-fuel ratio and performs air-fuel ratio control based on the target air-fuel ratio
  • a lean combustion determination unit that determines that the target air-fuel ratio is set leaner than the stoichiometric air-fuel ratio, and that lean combustion is performed in the engine by the target air-fuel ratio
  • a target NOx setting unit that sets a target NOx concentration according to the operating conditions of the engine
  • a correction unit that corrects the target air-fuel ratio based on the target NOx concentration and the actual NOx concentration when it is determined that the lean combustion is being performed; It has.
  • the NOx emission amount increases as the combustion temperature increases, and the NOx emission amount tends to decrease as the combustion temperature decreases.
  • the combustion state of the engine according to the NOx emission amount Can be grasped. For example, when the NOx emission amount is large, it can be estimated that the combustion temperature is high, that is, the combustion state is good. When the NOx emission amount is small, the combustion temperature is low, that is, the combustion state is not good. I can guess.
  • the target air-fuel ratio is corrected based on the target NOx concentration and the actual NOx concentration.
  • appropriate air-fuel ratio control can be performed in order to stabilize combustion while optimizing the amount of NOx emitted from the engine.
  • FIG. 1 is a diagram showing a schematic configuration of an engine control system
  • FIG. 2 is a diagram showing the relationship between the excess air ratio ⁇ , the NOx concentration, and the combustion stability index COV in the air-fuel ratio lean region
  • FIG. 3 is a flowchart showing the correction value calculation process
  • FIG. 4 is a diagram showing the relationship between the intake air flow rate, the engine rotation speed, and the delay time.
  • FIG. 5 is a diagram showing the relationship between the NOx concentration deviation and the target air-fuel ratio correction value.
  • FIG. 6 is a flowchart showing a target air-fuel ratio correction process.
  • FIG. 7 is a time chart specifically showing processing for correcting the target air-fuel ratio
  • FIG. 8 is a time chart specifically showing processing for correcting the target air-fuel ratio.
  • an engine control system is constructed for a spark ignition type on-vehicle multi-cylinder gasoline engine that is an internal combustion engine.
  • fuel injection is performed with an electronic control unit (hereinafter referred to as ECU) as a center. Control of quantity, ignition timing, etc. are to be implemented.
  • An air cleaner 12 is provided at the most upstream portion of the intake pipe 11 of the engine 10, and an air flow meter 13 for detecting an intake air amount (intake flow rate) is provided downstream of the air cleaner 12.
  • a throttle valve 14 whose opening degree is adjusted by a throttle actuator 15 such as a DC motor is provided on the downstream side of the air flow meter 13.
  • the opening degree of the throttle valve 14 (throttle opening degree) is detected by a throttle opening degree sensor built in the throttle actuator 15.
  • a surge tank 16 is provided downstream of the throttle valve 14, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16.
  • the surge tank 16 is connected to an intake manifold 18 that introduces air into each cylinder of the engine 10. In the intake manifold 18, an electromagnetically driven fuel injection that injects fuel near the intake port of each cylinder. A valve 19 is attached.
  • An intake valve 21 and an exhaust valve 22 are respectively provided in the intake port and the exhaust port of the engine 10, and an air / fuel mixture is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust valve 22.
  • the exhaust after combustion is discharged to the exhaust pipe 24 by the opening operation.
  • a spark plug 27 is attached to the cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the spark plug 27 at a desired ignition timing through an ignition device (igniter) (not shown) including an ignition coil. Is done. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 27, and the air-fuel mixture introduced into the combustion chamber 23 is ignited and used for combustion.
  • a three-way catalyst 31 and a NOx catalyst 33 are arranged as an exhaust purification device for purifying CO, HC, NOx, etc. in the exhaust gas.
  • the three-way catalyst 31 purifies the three components of HC, CO, and NOx in the exhaust near the theoretical air-fuel ratio.
  • the NOx catalyst 33 is a NOx occlusion reduction type catalyst that occludes NOx in the exhaust during combustion at a lean air-fuel ratio, and stores the NOx occluded in rich components (CO, HC, etc.) during combustion at a rich air-fuel ratio. React with and purify.
  • An air-fuel ratio sensor 32 (specifically an A / F sensor) is provided upstream of the three-way catalyst 31, and a NOx sensor 34 is provided between the three-way catalyst 31 and the NOx catalyst 33.
  • the cylinder block of the engine 10 includes a coolant temperature sensor 36 that detects the coolant temperature, and a crank angle sensor that outputs a rectangular crank angle signal at every predetermined crank angle of the engine 10 (for example, at a cycle of 30 ° CA). 35 is provided.
  • the ECU 40 is an electronic control unit mainly composed of a microcomputer, and performs various controls of the engine 10 using detection signals from various sensors.
  • the ECU 40 includes a microcomputer 41 for engine control, an electronic drive unit (EDU 42) for driving an injector, a memory 43 for data backup, and the like.
  • the microcomputer 41 calculates the required fuel injection amount according to the engine operating conditions such as the engine speed and the engine load, for example, generates an injection pulse from the injection time calculated based on the required injection amount, and sends it to the EDU 42. Output.
  • the fuel injection valve 19 is driven to open in accordance with the injection pulse, and fuel for the required injection amount is injected.
  • the ECU 40 corresponds to an “air-fuel ratio control device”.
  • the memory 43 is a storage unit such as a backup RAM or an EEPROM that can retain the stored contents even after the IG switch is turned off.
  • the microcomputer 41 has a function of performing air-fuel ratio feedback control, and controls the fuel injection amount based on the deviation between the target air-fuel ratio and the actual air-fuel ratio detected by the air-fuel ratio sensor 32. Carry out the fuel ratio feedback control.
  • the target air-fuel ratio is set leaner than the stoichiometric air-fuel ratio, and lean combustion control based on the lean target air-fuel ratio is performed.
  • the microcomputer 41 determines whether or not the lean combustion can be performed according to the operating condition of the engine 10, and when the microcomputer 41 can perform the lean combustion, the engine combustion mode is set to the lean combustion mode and the target sky that is the lean value is set.
  • Air-fuel ratio feedback control is performed based on the fuel ratio.
  • the NOx emission amount increases as the combustion temperature increases, and the NOx emission amount tends to decrease as the combustion temperature decreases, and the engine corresponds to the NOx emission amount. It is thought that 10 combustion states can be grasped. For example, when the NOx emission amount is large, it can be estimated that the combustion temperature is high, that is, the combustion state is good. When the NOx emission amount is small, the combustion temperature is low, that is, the combustion state is not good. I can guess.
  • the target air-fuel ratio is corrected based on the target NOx concentration and the actual NOx concentration.
  • the target NOx concentration may be set according to the operating condition of the engine 10, and specifically, is set based on the engine rotation speed and the engine load (or required torque).
  • the actual NOx concentration is the actual NOx concentration in the exhaust discharged from the engine 10 and is obtained from the detection value of the NOx sensor 34.
  • FIG. 2 shows the relationship between the excess air ratio ⁇ (air-fuel ratio) and NOx concentration in the air-fuel ratio lean region, and the relationship between the excess air ratio ⁇ and the combustion stability index COV (Coefficient of Variation) of the engine 10.
  • the combustion stability index COV is an index indicating the combustion stability, and the larger the value, the more unstable the combustion.
  • the NOx concentration tends to decrease as the excess air ratio ⁇ increases, that is, the lean degree increases, and the combustion stability index COV increases as the excess air ratio ⁇ increases, that is, the lean degree increases. It tends to grow.
  • the target air-fuel ratio (excess air ratio ⁇ ) at the time of lean combustion is set within the range of X in the figure. That is, in the air-fuel ratio lean region, there are an air-fuel ratio rich limit value determined by the NOx allowable limit and an air-fuel ratio lean limit value determined by the combustion stability allowable limit.
  • the range X is between the lean limit value.
  • the rotational fluctuation limit value is determined because the rotational fluctuation of the engine 10 increases as the lean degree of the air-fuel ratio increases.
  • the microcomputer 41 corrects the target air-fuel ratio so that the lean degree becomes larger. Thereby, the NOx concentration is reduced. Further, when the actual NOx concentration is lower than the target NOx concentration, the microcomputer 41 corrects the target air-fuel ratio so that the lean degree becomes smaller. Thereby, the combustion stability is improved.
  • the target air-fuel ratio correction value ⁇ is calculated based on the actual NOx concentration and the target NOx concentration, and the correction value ⁇ is stored in the memory 43 and updated as appropriate.
  • the process of calculating the correction value ⁇ is performed as the learning process, and the correction value ⁇ is stored in the memory 43 as the learning value.
  • a configuration in which the calculation of the correction value ⁇ is not performed as the learning process may be employed. In such a case, the correction value ⁇ is erased when the ignition switch of the vehicle is turned off, and the correction value ⁇ is calculated again after the ignition switch is turned on.
  • This calculation process is a process periodically performed by the microcomputer 41.
  • step S101 the execution condition determination process determines whether or not the execution condition for calculating the correction value of the target air-fuel ratio is satisfied.
  • the microcomputer 41 determines success or failure for each of the following first to fifth conditions.
  • the microcomputer 41 first determines that various learnings that affect the combustion state of the engine 10 have been completed as the first condition. Specifically, learning about driving of the fuel injection valve 19 (for example, valve closing timing or valve opening timing), reference position learning for a variable valve mechanism (for example, VCT or VVL), and EGR valve reference position learning for an external EGR function are completed. Determine that you are doing. That is, when various learnings that affect the combustion state of the engine 10 are not completed, the NOx emission amount and the combustion stability vary, and it is considered that the correction value of the target air-fuel ratio cannot be calculated properly due to the influence. Therefore, the condition is not satisfied.
  • the microcomputer 41 determines that the engine 10 is not in a transient operation state as the second condition. Specifically, it is determined that the amount of change in the required torque is within a predetermined range over a preset period. That is, it is considered that the NOx emission amount is not stable during the transient operation and immediately after the transient operation, and there is a high possibility that the correction value of the target air-fuel ratio cannot be calculated appropriately. Whether or not the engine is in a transient operation state is determined based on parameters correlated with the operation state of the engine 10 such as engine speed, engine load, intake air flow rate, intake air pressure, fuel injection amount, vehicle speed, and acceleration. It is also possible to determine. Alternatively, it may be determined from a change in the NOx amount of the exhaust.
  • the microcomputer 41 determines that the air-fuel ratio sensor 32 and the NOx sensor 34 are both active as the third condition, determines that various failure histories do not exist as the fourth condition, As five conditions, it is determined that lean operation is in progress (that is, a state excluding stoichiometric and rich purge).
  • step S102 based on the determination result in step S101, it is determined whether or not the execution condition is satisfied, that is, whether or not all of the first to fifth conditions are satisfied. In this case, if the execution condition is satisfied, the process proceeds to the subsequent step S103, and if the execution condition is not satisfied, the present process is terminated.
  • step S103 it is determined whether the NOx concentration raising flag F is 0 or not.
  • the target NOx concentration is set based on the operating conditions of the engine 10. Specifically, the target NOx concentration is set based on the engine speed and the required torque. However, the target NOx concentration may be set based on the engine coolant temperature, the operating state of the EGR valve, the operating state of the movable drive valve, etc. in addition to the engine speed and the required torque.
  • the rotational fluctuation amount ⁇ NE of the engine 10 is calculated. Specifically, the rotational fluctuation amount ⁇ NE is calculated from the amount of change within a predetermined time with respect to the engine rotational speed detected by the crank angle sensor 35.
  • the method of calculating the rotational fluctuation amount ⁇ NE is arbitrary. For example, when the in-cylinder pressure sensor is mounted on the engine 10, the rotational fluctuation amount ⁇ NE can be calculated from the variation in the in-cylinder pressure for each combustion. is there.
  • step S106 it is determined whether or not the rotational fluctuation amount ⁇ NE is less than a preset threshold value TH.
  • a preset threshold value TH For example, if the combustion state of the engine 10 is deteriorated, it is conceivable that the rotational fluctuation of the engine 10 becomes large and the rotational fluctuation amount ⁇ NE becomes equal to or greater than the threshold value TH. However, here, the description will proceed on the assumption that the combustion state of the engine 10 has not deteriorated and the rotational fluctuation amount ⁇ NE is less than the threshold value TH. If the rotational fluctuation amount ⁇ NE is less than the threshold value TH, the process proceeds to step S107.
  • step S107 the intake flow rate is detected based on the information from the air flow meter 13, and in the subsequent step S108, a transport delay handling process for the NOx concentration is performed based on the intake flow rate and the rotational speed NE.
  • a transport delay handling process for the NOx concentration is performed based on the intake flow rate and the rotational speed NE.
  • the microcomputer 41 calculates the exhaust delay time based on the intake flow rate and the rotational speed NE using the relationship shown in FIG. Then, the target NOx concentration is corrected in consideration of the delay time.
  • the time constant of the first-order lag based on the transport of exhaust gas is switched according to the intake flow rate.
  • the NOx concentration at the position of the NOx sensor 34 in the exhaust pipe 24 can be matched with the combustion timing in the engine 10.
  • a target air-fuel ratio correction value ⁇ is calculated based on the NOx concentration deviation.
  • the microcomputer 41 calculates the correction value ⁇ as a positive value, and if the NOx concentration deviation is negative, that is, If the actual NOx concentration is lower than the target NOx concentration, the correction value ⁇ is calculated as a negative value.
  • the correction value ⁇ is a correction amount that is added to the target air-fuel ratio. If the correction value ⁇ is positive, the target air-fuel ratio is corrected so that the lean degree is increased (that is, increased). .
  • the correction value ⁇ is negative, the target air-fuel ratio is corrected so that the lean degree becomes smaller (that is, reduced). It is also possible to calculate the correction value ⁇ as a correction coefficient that is multiplied by the target air-fuel ratio.
  • the correction value ⁇ is calculated based on the NOx concentration deviation using the relationship of FIG. 5
  • the NOx concentration deviation is positive (when actual NOx concentration> target NOx concentration)
  • the larger the NOx concentration deviation is on the positive side the larger the positive value is calculated as the correction value ⁇ .
  • the NOx concentration deviation is negative (when actual NOx concentration ⁇ target NOx concentration)
  • the larger the NOx concentration deviation is on the negative side the larger the negative value is calculated as the correction value ⁇ . It has been.
  • the correction sensitivity differs between the positive correction value ⁇ and the negative correction value ⁇ , that is, the correction for increasing the lean degree of the target air-fuel ratio and the correction for reducing the lean degree. ing. More specifically, the correction sensitivity is higher in the correction on the side of decreasing the lean degree than on the side of increasing the lean degree of the target air-fuel ratio.
  • the correction gain is a correction ratio for the NOx concentration deviation.
  • the correction value ⁇ is stored in the memory 43 in step S112.
  • the correction value ⁇ may be stored in the memory 43 as a learning value.
  • a plurality of operation regions are determined according to the engine operation state such as the engine rotation speed and the engine load, and a correction value ⁇ is stored for each operation region. Note that which operation region is used as the storage destination of the correction value ⁇ may be determined in consideration of the exhaust delay described above.
  • the past value may be overwritten (updated) with the current correction value ⁇ while performing the smoothing process.
  • the correction value ⁇ may be updated sequentially while performing the moving average process.
  • step S106 If it is determined in step S106 that the rotational fluctuation amount ⁇ NE is greater than or equal to the threshold value TH, the process proceeds to step S113. For example, if the lean degree of the target air-fuel ratio becomes excessively large, it is considered that the rotational fluctuation of the engine 10 becomes excessive.
  • step S113 the target NOx concentration is raised. That is, in step S113, the target NOx concentration is changed to a higher side in order to give priority to stabilizing the combustion state rather than reducing the NOx concentration.
  • 1 is set to the NOx concentration raising flag F.
  • step S103 When 1 is set to the NOx concentration raising flag F, a negative determination is made in step S103. Therefore, the process proceeds from step S103 to step S115, and it is determined whether or not a predetermined time has elapsed since the NOx concentration raising flag F is set to 1.
  • step S115 it may be determined whether or not a predetermined time has elapsed after the rotational fluctuation amount ⁇ NE becomes less than the threshold value TH after the target NOx concentration is raised in step S113. If the predetermined time has not elapsed, step S115 is denied and the present process is temporarily terminated. If the predetermined time has elapsed, step S115 is affirmed and the process proceeds to step S116.
  • step S116 as the target NOx concentration lowering process, a process of gradually changing the target NOx concentration toward the concentration before the change is performed.
  • a lower limit value of the target NOx concentration is set based on the actual NOx concentration when the rotational fluctuation amount ⁇ NE is equal to or greater than the threshold value TH (that is, when deterioration of the combustion state is determined), and the lower limit value is set.
  • the value may be used to limit the reduction of the target NOx concentration.
  • the target NOx concentration is gradually changed while limiting the amount of change per time.
  • the actual NOx concentration when the rotational fluctuation amount ⁇ NE is equal to or greater than the threshold value TH is set as the lower limit value of the target NOx concentration.
  • the rotational fluctuation amount ⁇ NE is equal to or greater than the threshold value TH.
  • a value on the higher concentration side or lower concentration side than that may be set as the lower limit value of the target NOx concentration.
  • This correction process is a process periodically performed by the microcomputer 41.
  • step S201 it is determined whether correction of the target air-fuel ratio by the correction value ⁇ is permitted. Specifically, whether each condition of (1) the engine combustion mode is the lean combustion mode and (2) failure history (diagnostic information) is not stored for the exhaust system of the engine 10 is satisfied. judge. If each condition is satisfied, the process proceeds to step S202, and the target air-fuel ratio is corrected by adding the correction value ⁇ to the reference value of the target air-fuel ratio. If each condition is not satisfied, the present process is terminated without correcting the target air-fuel ratio.
  • the reference value of the target air-fuel ratio is an initial value when the target air-fuel ratio is corrected, and may be a predetermined lean air-fuel ratio value.
  • the reference value may be determined in consideration of the relationship of FIG. 2, for example, the reference value may be determined based on a range X in which both the NOx concentration and the combustion stability index COV are smaller than the allowable limit. In this case, an intermediate value in the range X, a rich side limit value in the range X, a lean side limit value in the range X, and the like may be used as reference values.
  • the reference value is determined either on the rich side (side where the lean degree becomes smaller) than the rich side limit value of the range X or on the lean side (side where the lean degree becomes larger) than the lean side limit value. It may be.
  • the reference value of the target air-fuel ratio is set to a value that is richer than the rich-side limit value of the range X, and when priority is given to reducing NOx concentration, the reference value of the target air-fuel ratio Is a value on the lean side of the lean limit value of the range X.
  • the correction value ⁇ calculated in the processing of FIG. 3 is stored in the memory 43 as a learning value, the correction value ⁇ is used as the reference value (initial value) of the target air-fuel ratio in the next vehicle travel (next trip). It is good to set as.
  • FIG. 7 shows an example in which excessive rotational fluctuation does not occur in the illustrated period
  • FIG. 8 shows an example in which excessive rotational fluctuation occurs in the illustrated period. 7 and 8, the correction of the target air-fuel ratio based on the NOx concentration is started at the timings ta0 and tb0, respectively.
  • a reference value is set as the target air-fuel ratio at the timing ta0.
  • This reference value is, for example, a value on the rich side (side on which the lean degree becomes smaller) than the range X shown in FIG.
  • the target air-fuel ratio is corrected based on the NOx concentration deviation which is the deviation between the actual NOx concentration and the target NOx concentration.
  • the reference value of the target air-fuel ratio is a richer value than the range X
  • the actual NOx concentration is larger and the NOx concentration deviation is positive (that is, actual NOx concentration> target NOx concentration). Therefore, the correction value ⁇ becomes a positive value, and the target air-fuel ratio is corrected so that the lean degree becomes larger. As the degree of leanness of the target air-fuel ratio increases, the actual NOx concentration is gradually reduced.
  • the NOx concentration deviation becomes substantially zero, and the target air-fuel ratio increase correction is completed.
  • the target air-fuel ratio is corrected so that the lean degree is increased, the rotation fluctuation amount ⁇ NE increases, but the degree is small and the rotation fluctuation amount ⁇ NE is kept within the allowable limit.
  • the reference value richer than the range X shown in FIG. 2 is set as the target air-fuel ratio at the timing of tb0, and after tb0, the actual NOx concentration and the target
  • the target air-fuel ratio is corrected based on the NOx concentration deviation that is a deviation from the NOx concentration.
  • the target air-fuel ratio is corrected so that the lean degree is increased, and the actual NOx concentration is gradually reduced.
  • the target NOx concentration is raised, and accordingly the target air-fuel ratio is corrected to the rich side (side to reduce the lean degree). That is, at the timing of tb1, the target NOx concentration is reduced in accordance with the determination that the combustion state of the engine 10 has deteriorated in the situation where the target air-fuel ratio is corrected to the side where the lean degree is increased. Be raised. Thereby, combustion stabilization is achieved. Note that, at the timing of tb1, instead of increasing the target NOx concentration, the target air-fuel ratio may be corrected to the rich side (side to reduce the lean degree).
  • the rotational fluctuation amount ⁇ NE becomes less than the threshold value TH, and at the timing of tb2 when a predetermined time has passed in this state, the target NOx concentration is returned to the lowering side.
  • a lower limit value of the target NOx concentration is set based on the actual NOx concentration when the rotational fluctuation amount ⁇ NE reaches the threshold value TH (that is, the actual NOx concentration at tb1). Pulling is limited (timing of tb3). As a result, even if the target NOx concentration is lowered again, the occurrence of rotational fluctuation of the engine 10 associated therewith can be suppressed.
  • the target air-fuel ratio is corrected based on the target NOx concentration and the actual NOx concentration. As a result, appropriate air-fuel ratio control can be performed in order to stabilize combustion while optimizing the NOx emission amount from the engine 10.
  • the correction value ⁇ is set as a positive value, the target air-fuel ratio is corrected to the side where the lean degree is increased, and the correction is performed when the actual NOx concentration is lower than the target NOx concentration.
  • the value ⁇ is set to a negative value, and the target air-fuel ratio is corrected so as to reduce the lean degree.
  • the lean degree of the target air-fuel ratio can be adjusted with higher accuracy than the configuration in which the lean degree of the target air-fuel ratio is adjusted based on the rotational fluctuation of the engine 10.
  • the target air-fuel ratio is corrected with a correction gain that is larger than.
  • the actual NOx concentration is lower than the target NOx concentration, it is conceivable that the NOx concentration is too low and the combustion state of the engine 10 is unstable. Therefore, in such a state, the correction gain of the target air-fuel ratio is increased so that the unstable combustion state can be quickly resolved.
  • the actual NOx concentration is higher than the target NOx concentration, it is possible to suppress the occurrence of hunting while suppressing unintended deterioration of the combustion state.
  • a reference value of the target air-fuel ratio is determined on the rich side of the rich-side limit value of the air-fuel ratio, and the reference value is used as the initial value of the target air-fuel ratio.
  • the fuel ratio was corrected. Therefore, optimization of the target air-fuel ratio, that is, optimization of air-fuel ratio control can be realized while giving priority to ensuring the combustion stability of the engine 10.
  • the target air-fuel ratio is corrected to the side where the lean degree is increased
  • the target NOx concentration is changed to the side where the target NOx concentration is increased.
  • the target NOx concentration was gradually changed toward the concentration before the change. Thereby, the sudden change of a combustion state can be suppressed.
  • the lower limit value of the target NOx concentration is set based on the actual NOx concentration when the deterioration of the combustion state is determined. I did it. Thereby, after the deterioration of the combustion state occurs, it is possible to suitably suppress the deterioration of the combustion state again due to the reduction of the target NOx concentration.
  • ⁇ NOx emissions from engine 10 are not stable during transient operation.
  • the target air-fuel ratio is not corrected when it is determined that the engine 10 is in a transient operation, it is possible to suppress an obstacle to optimization of the air-fuel ratio control.
  • the target air-fuel ratio is corrected by taking into account the delay until the exhaust reaches the NOx concentration detector after combustion in the engine 10. Thereby, appropriate air-fuel ratio control can be performed while matching the phases of the target NOx concentration and the actual NOx concentration.
  • the state of deterioration of combustion and the state of NOx emission differ for each operation region.
  • the correction value ⁇ is stored for each operation region, the optimization of the air-fuel ratio control can be suitably realized in any engine operation region. .
  • ⁇ Other embodiments when the rotational fluctuation amount ⁇ NE becomes equal to or greater than the threshold value TH, the target NOx concentration is temporarily increased, and then, when the target NOx concentration is decreased again, the rotational fluctuation amount ⁇ NE becomes equal to or greater than the threshold value TH.
  • the lower limit value of the target NOx concentration is set based on the actual NOx concentration at that time, but this may be changed. That is, the lean upper limit value of the target air-fuel ratio may be set based on the target air-fuel ratio when the rotational fluctuation amount ⁇ NE becomes equal to or greater than the threshold value TH. In this case, the target NOx concentration is gradually reduced while the upper limit guard of the target air-fuel ratio is being applied. In the process of FIG.
  • step S116 when the target NOx concentration reduction is limited by the lean upper limit value of the target air-fuel ratio that is set based on the target air-fuel ratio when the rotational fluctuation amount ⁇ NE is equal to or greater than the threshold value TH in step S116.
  • the target air / fuel ratio when the rotational fluctuation amount ⁇ NE is equal to or greater than the threshold value TH may be used as a reference, and a leaner or richer value than that may be set as the lean upper limit value of the target air / fuel ratio. According to this configuration, it is possible to suitably suppress the deterioration of the combustion state again due to the shift of the target air-fuel ratio to the lean side after the deterioration of the combustion state occurs.
  • the target air-fuel ratio is corrected with a larger correction gain than when the actual NOx concentration is higher than the target NOx concentration. It may be changed. For example, contrary to the above, when the actual NOx concentration is lower than the target NOx concentration, it is possible to correct the target air-fuel ratio with a smaller correction gain than when the actual NOx concentration is higher than the target NOx concentration. . In each of these cases, the correction gain may be the same.
  • the NOx sensor 34 is disposed downstream of the three-way catalyst 31 in the exhaust passage.
  • the NOx sensor 34 may be disposed upstream of the three-way catalyst 31.
  • a NOx sensor may be added downstream of the NOx catalyst 33, and the state of the NOx catalyst 33 may be monitored by the NOx sensor and the NOx sensor 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

空燃比制御装置(40)は、火花点火式のエンジン(10)において、目標空燃比を設定し、その目標空燃比に基づいて空燃比制御を行う。また、空燃比制御装置(40)は、目標空燃比が理論空燃比よりもリーン側で設定され、かつその目標空燃比によりエンジンにおいてリーン燃焼が行われることを判定するリーン燃焼判定部と、エンジンの運転条件に応じて目標NOx濃度を設定する目標NOx設定部と、エンジンの排気通路においてNOx濃度検出部(34)により検出された実NOx濃度を取得する取得部と、リーン燃焼が行われていると判定される場合に、目標NOx濃度と実NOx濃度とに基づいて、目標空燃比を補正する補正部と、を備えている。

Description

空燃比制御装置 関連出願の相互参照
 本出願は、2018年4月9日に出願された日本出願番号2018-074959号に基づくもので、ここにその記載内容を援用する。
 本開示は、エンジンの空燃比制御装置に関する。
 理論空燃比よりも希薄空燃比の混合気を燃焼させることが可能なエンジンにおいては、混合気における空燃比のリーン度合いを制御することによりNOxの排出量を軽減することができる。しかしながら、空燃比がリーン限界を超えると失火が発生することで燃焼変動が大きくなる。これは、運転性の低下の要因となるため好ましくない。
 従来、エンジンの回転速度の変動やトルクの変動から燃焼変動を検出し、その検出結果に基づいてリーン限界を超えないように空燃比制御を行うことで、エンジンの燃焼状態の悪化を抑える技術が提案されている(例えば特許文献1参照)。
特開平7-166938号公報
 しかしながら、上述したように燃焼変動に基づいて空燃比制御を行う構成では、燃焼変動の判定閾値を大きくすることで、内燃機関の燃焼状態が明確に悪化するまでその状態が検出できないことが懸念される一方、判定閾値を小さくすることで、正常な燃焼であっても燃焼状態が悪化していると誤検出されることが懸念される。このように、NOxの排出量の削減を図りつつ燃焼の安定化を図る上で、空燃比制御には未だ改善の余地がある。
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、適正なる空燃比制御を実施することができるエンジンの空燃比制御装置を提供することにある。
 以下、上記課題を解決するための手段について記載する。
 本開示は、
 火花点火式のエンジンにおいて、目標空燃比を設定し、その目標空燃比に基づいて空燃比制御を行う空燃比制御装置であって、
 前記目標空燃比が理論空燃比よりもリーン側で設定され、かつその目標空燃比により前記エンジンにおいてリーン燃焼が行われることを判定するリーン燃焼判定部と、
 前記エンジンの運転条件に応じて目標NOx濃度を設定する目標NOx設定部と、
 前記エンジンの排気通路においてNOx濃度検出部により検出された実NOx濃度を取得する取得部と、
 前記リーン燃焼が行われていると判定される場合に、前記目標NOx濃度と前記実NOx濃度とに基づいて、前記目標空燃比を補正する補正部と、
を備えている。
 エンジンにおいてリーン燃焼が行われる場合には、燃焼温度が高いほどNOx排出量が多くなり、燃焼温度が低いほどNOxの排出量が少なくなる傾向があり、そのNOx排出量に応じてエンジンの燃焼状態を把握することができると考えられる。例えば、NOx排出量が多い場合には、燃焼温度が高い状態、つまり燃焼状態が良好であると推測でき、NOx排出量が少ない場合には、燃焼温度が低い状態、つまり燃焼状態が良好でないと推測できる。
 本開示では、上記の関係性に着目し、リーン燃焼が行われていると判定される場合において、目標NOx濃度と実NOx濃度とに基づいて、目標空燃比を補正するようにした。これにより、エンジンからのNOx排出量の適正化を図りつつ燃焼の安定化を図る上で、適切な空燃比制御を実施することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、エンジン制御システムの概略構成を示す図であり、 図2は、空燃比リーン領域において空気過剰率λとNOx濃度及び燃焼安定指数COVとの関係とを示す図であり、 図3は、補正値算出処理を示すフローチャートであり、 図4は、吸気流量及びエンジン回転速度と遅れ時間との関係を示す図であり、 図5は、NOx濃度偏差と目標空燃比の補正値との関係を示す図であり、 図6は、目標空燃比の補正処理を示すフローチャートであり、 図7は、目標空燃比が補正される処理を具体的に示すタイムチャートであり、 図8は、目標空燃比が補正される処理を具体的に示すタイムチャートである。
 以下、本開示の空燃比制御装置を具体化した一実施形態を図面に基づいて説明する。
 本実施形態は、内燃機関である火花点火式の車載多気筒ガソリンエンジンを対象にエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施することとしている。先ず、図1を用いてエンジン制御システムの概略構成を説明する。
 エンジン10の吸気管11の最上流部にはエアクリーナ12が設けられ、このエアクリーナ12の下流側には吸入空気量(吸気流量)を検出するためのエアフローメータ13が設けられている。エアフローメータ13の下流側には、DCモータ等のスロットルアクチュエータ15によって開度調節されるスロットルバルブ14が設けられている。スロットルバルブ14の開度(スロットル開度)は、スロットルアクチュエータ15に内蔵されたスロットル開度センサにより検出されるようになっている。スロットルバルブ14の下流側にはサージタンク16が設けられ、このサージタンク16には吸気管圧力を検出するための吸気管圧力センサ17が設けられている。また、サージタンク16には、エンジン10の各気筒に空気を導入する吸気マニホールド18が接続されており、吸気マニホールド18において各気筒の吸気ポート近傍には燃料を噴射供給する電磁駆動式の燃料噴射弁19が取り付けられている。
 エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ21及び排気バルブ22が設けられており、吸気バルブ21の開動作により空気と燃料との混合気が燃焼室23内に導入され、排気バルブ22の開動作により燃焼後の排気が排気管24に排出される。エンジン10のシリンダヘッドには各気筒毎に点火プラグ27が取り付けられており、点火プラグ27には、点火コイル等よりなる図示しない点火装置(イグナイタ)を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ27の対向電極間に火花放電が発生し、燃焼室23内に導入した混合気が着火され燃焼に供される。
 排気管24には、排出ガス中のCO,HC,NOx等を浄化する排気浄化装置として三元触媒31及びNOx触媒33が配置されている。三元触媒31は、理論空燃比近傍で排気中のHC,CO及びNOxの三成分を浄化する。NOx触媒33はNOx吸蔵還元型触媒であって、リーン空燃比での燃焼時には排気中のNOxを吸蔵し、リッチ空燃比での燃焼時には、吸蔵されているNOxをリッチ成分(CO,HCなど)と反応させて浄化する。三元触媒31の上流側には空燃比センサ32(詳しくはA/Fセンサ)が設けられており、三元触媒31とNOx触媒33との間にはNOxセンサ34が設けられている。
 その他に、エンジン10のシリンダブロックには、冷却水温を検出する冷却水温センサ36や、エンジン10の所定クランク角毎に(例えば30°CA周期で)矩形状のクランク角信号を出力するクランク角度センサ35が設けられている。
 上述した各種センサの出力は、エンジン制御を司るECU40に入力される。ECU40は、マイクロコンピュータを主体として構成された電子制御ユニットであり、各種センサの検出信号を用いてエンジン10の各種制御を実施する。ECU40は、エンジン制御用のマイコン41、インジェクタ駆動用の電子駆動装置(EDU42)、データバックアップ用のメモリ43等から構成されている。マイコン41は、例えばエンジン回転速度やエンジン負荷等のエンジン運転条件に応じて、燃料の要求噴射量を算出するとともに、この要求噴射量に基づき算出される噴射時間から噴射パルスを生成し、EDU42に出力する。EDU42では、噴射パルスに応じて燃料噴射弁19を開弁駆動して、要求噴射量分の燃料を噴射させる。ECU40が「空燃比制御装置」に相当する。メモリ43は、IGスイッチのオフ後にも記憶内容を保持することが可能なバックアップRAMやEEPROM等の記憶部である。
 マイコン41は、空燃比フィードバック制御を実施する機能を有しており、目標空燃比と、空燃比センサ32により検出された実空燃比との偏差に基づいて燃料噴射量を制御することにより、空燃比フィードバック制御を実施する。本実施形態では、その空燃比フィードバック制御として、目標空燃比を理論空燃比よりもリーン側で設定し、そのリーン目標空燃比に基づくリーン燃焼制御を実施する。例えば、マイコン41は、エンジン10の運転条件に応じてリーン燃焼を実施可能であるか否かを判定し、実施可能である場合に、エンジン燃焼モードをリーン燃焼モードとし、リーン値である目標空燃比に基づいて空燃比フィードバック制御を実施する。
 ところで、エンジン10においてリーン燃焼が行われる場合には、燃焼温度が高いほどNOx排出量が多くなり、燃焼温度が低いほどNOxの排出量が少なくなる傾向があり、そのNOx排出量に応じてエンジン10の燃焼状態を把握することができると考えられる。例えば、NOx排出量が多い場合には、燃焼温度が高い状態、つまり燃焼状態が良好であると推測でき、NOx排出量が少ない場合には、燃焼温度が低い状態、つまり燃焼状態が良好でないと推測できる。
 そこで本実施形態では、上記の関係性に着目し、リーン燃焼が行われていると判定される場合において、目標NOx濃度と実NOx濃度とに基づいて、目標空燃比を補正するようにしている。ここで、目標NOx濃度は、エンジン10の運転条件に応じて設定されるとよく、具体的には、エンジン回転速度及びエンジン負荷(又は要求トルク)に基づいて設定される。また、実NOx濃度は、エンジン10から排出される排気中の実際のNOx濃度であり、NOxセンサ34の検出値から求められる。
 図2には、空燃比リーン領域において空気過剰率λ(空燃比)及びNOx濃度の関係と、空気過剰率λ及びエンジン10の燃焼安定指数COV(Coefficient of Variation)の関係とを示す。なお、燃焼安定指数COVは燃焼安定性を示す指標であり、その値が大きいほど燃焼が不安定であることを示す。
 図2に示すように、NOx濃度は、空気過剰率λが大きくなるほど、すなわちリーン度合いが大きくなるほど低くなる傾向にあり、燃焼安定指数COVは、空気過剰率λが大きくなるほど、すなわちリーン度合いが大きくなるほど大きくなる傾向にある。この場合、NOx濃度の上限値と燃焼安定指数COVの上限値とを考慮すると、リーン燃焼時の目標空燃比(空気過剰率λ)は、図のXの範囲内で設定されるのが望ましい。つまり、空燃比リーン領域では、NOx許容限度により定められる空燃比のリッチ側限界値と、燃焼安定性の許容限度により定められる空燃比のリーン側限界値とが存在し、それらリッチ側限界値とリーン側限界値との間が範囲Xとなっている。なお、空燃比のリーン度合いが大きくなると、エンジン10の回転変動が大きくなることから、回転変動限界値が定められている。
 リーン燃焼モードでは、マイコン41は、実NOx濃度が目標NOx濃度よりも高い場合に、目標空燃比を、リーン度合いが大きくなる側に補正する。これにより、NOx濃度が低減される。また、マイコン41は、実NOx濃度が目標NOx濃度よりも低い場合に、目標空燃比を、リーン度合いが小さくなる側に補正する。これにより、燃焼安定性の向上が図られる。
 本実施形態では、実NOx濃度と目標NOx濃度とに基づいて目標空燃比の補正値Δλを算出する構成としており、その補正値Δλはメモリ43にて記憶され、適宜更新される。要するに、補正値Δλを算出する処理が学習処理として実施され、補正値Δλが学習値としてメモリ43に記憶される。ただし、補正値Δλの算出を学習処理として実施しない構成であってもよい。かかる場合には、車両のイグニッションスイッチのオフ時に補正値Δλが消去され、イグニッションスイッチのオン後に再び補正値Δλが算出される。
 次に、リーン燃焼モードにおいて目標空燃比の補正値を算出する処理を図3のフローチャートを参照して説明する。この算出処理は、マイコン41にて定期的に実施される処理である。
 図3において、ステップS101では、実施条件判定処理により、目標空燃比の補正値を算出する実施条件の成否を判定する。本実施形態では、マイコン41が、以下に示す第1~第5条件についてそれぞれ成否を判定する。
 マイコン41は、まず第1条件として、エンジン10の燃焼状態に影響を与える各種学習が終了していることを判定する。具体的には、燃料噴射弁19の駆動(例えば閉弁タイミングや開弁タイミング)に関する学習、可変動弁機構(例えばVCTやVVL)の基準位置学習、外部EGR機能のEGR弁基準位置学習が終了していることを判定する。つまり、エンジン10の燃焼状態に影響を与える各種学習が未完了である場合には、NOx排出量や燃焼安定性にばらつきが生じ、その影響によって目標空燃比の補正値を適正に算出できないと考えられるため、条件不成立とされる。
 マイコン41は、第2条件として、エンジン10が過渡運転状態でないことを判定する。具体的には、要求トルクの変化量が予め設定された期間に亘って所定の範囲内となっていることを判定する。つまり、過渡運転時及び過渡運転直後は、NOx排出量が安定せず、目標空燃比の補正値を適正に算出できない可能性が高くなると考えられる。なお、過渡運転状態であるか否かの判定については、エンジン回転速度、エンジン負荷、吸気流量、吸気圧、燃料噴射量、車速、加速度等のエンジン10の運転状態と相関のあるパラメータに基づいて判定することも可能である。また、排気のNOx量の変化から判定してもよい。
 また、マイコン41は、第3条件として、空燃比センサ32及びNOxセンサ34がともに活性状態であることを判定し、第4条件として、各種の故障履歴が存在していないことを判定し、第5条件として、リーン運転中(すなわちストイキ及びリッチパージを除く状態)であることを判定する。
 そして、続くステップS102では、ステップS101の判定結果に基づいて、実施条件が成立しているか否か、すなわち上記第1~第5の条件が全て成立しているか否かを判定する。この場合、実施条件が成立していれば、後続のステップS103に進み、実施条件が成立していなければ、そのまま本処理を終了する。
 ステップS103では、NOx濃度引き上げフラグFが0であるか否かを判定する。NOx濃度引き上げフラグFは初期状態がF=0であり、ここではまずはF=0であるとして説明を進める。F=0の場合、ステップS104に進む。
 ステップS104では、エンジン10の運転条件に基づいて、目標NOx濃度を設定する。具体的には、エンジン回転速度及び要求トルクに基づいて目標NOx濃度を設定する。ただし、エンジン回転速度及び要求トルクに加えて、エンジン冷却水温、EGR弁の作動状態、可動駆動弁の作動状態等に基づいて、目標NOx濃度を設定してもよい。
 続くステップS105では、エンジン10の回転変動量ΔNEを算出する。具体的には、クランク角度センサ35により検出されるエンジン回転速度について所定時間内の変化量により回転変動量ΔNEを算出する。なお、回転変動量ΔNEの算出方法については任意であり、例えばエンジン10に筒内圧センサが搭載されている場合には、燃焼ごとの筒内圧のばらつきから回転変動量ΔNEを算出することも可能である。
 その後、ステップS106では、回転変動量ΔNEが予め設定された閾値TH未満であるか否かを判定する。例えばエンジン10の燃焼状態が悪化していると、エンジン10の回転変動が大きくなり、回転変動量ΔNEが閾値TH以上になることが考えられる。ただしここでは、エンジン10の燃焼状態が悪化しておらず、回転変動量ΔNEが閾値TH未満であることを想定して、説明を進める。回転変動量ΔNEが閾値TH未満である場合、ステップS107に進む。
 ステップS107では、エアフローメータ13からの情報に基づいて吸気流量を検出し、続くステップS108では、吸気流量と回転速度NEとに基づいて、NOx濃度の輸送遅れ対応処理を実施する。排気管24では、エンジン10から排出された排気がNOxセンサ34に到達するまでにはある程度の時間を要する。このような遅れについては吸気流量が少ないほど、また回転速度NEが小さいほど長くなる。マイコン41は、例えば図4の関係を用い、吸気流量及び回転速度NEに基づいて、排気の遅れ時間を算出する。そして、その遅れ時間を考慮して目標NOx濃度を補正する。この場合、排気の輸送に基づく1次遅れの時定数が吸気流量に応じて切り替えられることとなる。これにより、排気管24におけるNOxセンサ34の位置でのNOx濃度を、エンジン10での燃焼のタイミングに合わせ込むことが可能となる。
 続くステップS109では、NOxセンサ34からの情報に基づいて実NOx濃度を検出する。その後、ステップS110では、実NOx濃度から目標NOx濃度を減算することによりNOx濃度偏差を算出する(NOx濃度偏差=実NOx濃度-目標NOx濃度)。
 その後、ステップS111では、NOx濃度偏差に基づいて、目標空燃比の補正値Δλを算出する。この場合、マイコン41は、NOx濃度偏差が正であれば、すなわち実NOx濃度が目標NOx濃度よりも高ければ、補正値Δλを正の値として算出し、NOx濃度偏差が負であれば、すなわち実NOx濃度が目標NOx濃度よりも低ければ、補正値Δλを負の値として算出する。補正値Δλは、目標空燃比に対して加算される補正量であり、補正値Δλが正であれば、目標空燃比が、リーン度合いが大きくなる側に補正される(すなわち増補正される)。また、補正値Δλが負であれば、目標空燃比が、リーン度合いが小さくなる側に補正される(すなわち減補正される)。なお、補正値Δλを、目標空燃比に対して乗算される補正係数として算出することも可能である。
 補正値Δλの算出についてより詳しく説明する。本実施形態では、図5の関係を用い、NOx濃度偏差に基づいて、補正値Δλを算出する。図5では、NOx濃度偏差が正である場合(実NOx濃度>目標NOx濃度である場合)に、NOx濃度偏差が正側に大きいほど、補正値Δλとして正側に大きい値が算出される関係が定められている。また、NOx濃度偏差が負である場合(実NOx濃度<目標NOx濃度である場合)に、NOx濃度偏差が負側に大きいほど、補正値Δλとして負側に大きい値が算出される関係が定められている。
 また、図5では、正側の補正値Δλと負側の補正値Δλ、すなわち目標空燃比のリーン度合いを大きくする側の補正とリーン度合いを小さくする側の補正とで、補正の感度が異なっている。具体的には、目標空燃比のリーン度合いを大きくする側の補正よりも、リーン度合いを小さくする側の補正の方が補正の感度が大きくなっている。これにより、実NOx濃度が目標NOx濃度よりも低い場合に、実NOx濃度が目標NOx濃度よりも高い場合に比べて大きい補正ゲインで目標空燃比が補正される。補正ゲインは、それぞれNOx濃度偏差に対する補正比率である。
 補正値Δλの算出後において、ステップS112では、補正値Δλをメモリ43に記憶する。補正値Δλは、学習値としてメモリ43に記憶されるとよい。ここで、メモリ43には、エンジン回転速度やエンジン負荷といったエンジン運転状態に応じて複数の運転領域が定められており、その運転領域ごとに補正値Δλが記憶される。なお、何れの運転領域を補正値Δλの記憶先とするかを、上述した排気の遅れを考慮して決定するようにしてもよい。対象となる運転領域に既に補正値Δλが記憶されている場合には、なまし処理を行いつつ今回の補正値Δλにより過去値を上書き(更新)するとよい。移動平均処理を行いつつ補正値Δλを順次更新してもよい。
 また、上述したステップS106において回転変動量ΔNEが閾値TH以上であると判定された場合には、ステップS113に進む。例えば、目標空燃比のリーン化に伴いそのリーン度合いが大きくなりすぎていると、エンジン10の回転変動が過大になることが考えられる。
 ステップS113では、目標NOx濃度の引き上げ処理を実施する。つまり、ステップS113では、NOx濃度の低減よりも燃焼状態を安定させることを優先すべく、目標NOx濃度を高く側に変更する。この場合、目標NOx濃度を引き上げることにより、NOx濃度偏差(=実NOx濃度-目標NOx濃度)が小さくなるか、又は負側に大きい値となるため、補正値Δλが小さくなるか、又は負側に大きくなる。つまり、燃焼安定性の向上を図るべく、目標空燃比が、リーン度合いを小さくする側に補正される。続くステップS114では、NOx濃度引き上げフラグFに1をセットする。
 NOx濃度引き上げフラグFに1がセットされると、ステップS103において否定判定がなされるようになる。そのため、ステップS103からステップS115に進み、NOx濃度引き上げフラグFに1がセットされてから所定時間が経過したか否かを判定する。なお、ステップS115では、ステップS113での目標NOx濃度の引き上げ後に回転変動量ΔNEが閾値TH未満となってから、所定時間が経過したか否かを判定してもよい。所定時間の経過前であれば、ステップS115を否定して本処理を一旦終了し、所定時間の経過後でれば、ステップS115を肯定してステップS116に進む。
 ステップS116では、目標NOx濃度の引き下げ処理として、目標NOx濃度を、変更前の濃度に向けて徐々に変化させる処理を実施する。この場合、目標NOx濃度を引き下げていくと、それに伴い目標空燃比のリーン化が進み、再びエンジン10の回転変動が生じることが懸念される。そのため、ステップS116では、回転変動量ΔNEが閾値TH以上となった時(すなわち燃焼状態の悪化が判定された時)の実NOx濃度に基づいて、目標NOx濃度の下限値を設定し、その下限値で、目標NOx濃度の引き下げを制限するとよい。目標NOx濃度の変更は、時間当たりの変化量を制限しつつ、徐々に行われる。
 なお、本実施形態では、回転変動量ΔNEが閾値TH以上となった時の実NOx濃度を目標NOx濃度の下限値として設定するが、これに代えて、回転変動量ΔNEが閾値TH以上となった時の実NOx濃度を基準とし、それよりも高濃度側又は低濃度側の値を、目標NOx濃度の下限値として設定してもよい。
 ここで、目標空燃比の補正処理を図6に基づいて説明する。この補正処理は、マイコン41にて定期的に実施される処理である。
 図6において、ステップS201では、補正値Δλによる目標空燃比の補正が許可されているか否かを判定する。具体的には、(1)エンジン燃焼モードがリーン燃焼モードになっていること、(2)エンジン10の排気系に関して故障履歴(ダイアグ情報)が記憶されていないことの各条件を満たしているかを判定する。各条件を満たしている場合には、ステップS202に進み、目標空燃比の基準値に補正値Δλを加算することで、目標空燃比を補正する。また、各条件を満たしていない場合には、目標空燃比を補正せずに本処理を終了する。
 目標空燃比の基準値は、目標空燃比の補正が実施される場合の初期値であり、予め定められたリーン空燃比の値であるとよい。また、基準値は、図2の関係を考慮して定められるとよく、例えば、NOx濃度及び燃焼安定指数COVが共に許容限度よりも小さくなる範囲Xに基づいて基準値が定められるとよい。この場合、範囲X内の中間値、範囲Xのリッチ側限界値、範囲Xのリーン側限界値等を基準値とすることが考えられる。又は、範囲Xのリッチ側限界値よりもリッチ側(リーン度合いが小さくなる側)と、リーン側限界値よりもリーン側(リーン度合いが大きくなる側)とのいずれかにおいて、基準値が定められていてもよい。例えば燃焼安定性を優先する場合には、目標空燃比の基準値を、範囲Xのリッチ側限界値よりもリッチ側の値とし、NOx濃度低減を優先する場合には、目標空燃比の基準値を、範囲Xのリーン側限界値よりもリーン側の値とする。
 図3の処理で算出された補正値Δλが学習値としてメモリ43に記憶されている場合、次回の車両走行(次回トリップ)では、その補正値Δλを、目標空燃比の基準値(初期値)として設定するとよい。
 ここで、目標空燃比が補正される処理を、図7及び図8を参照してより具体的に説明する。図7には、図示する期間内において過度な回転変動が生じていない事例を示し、図8には、図示する期間内において過度な回転変動が生じている事例を示している。図7及び図8では、それぞれta0,tb0のタイミングで、NOx濃度に基づく目標空燃比の補正が開始されるものとなっている。
 図7において、ta0のタイミングでは、目標空燃比として基準値が設定されている。この基準値は、例えば図2に示す範囲Xよりもリッチ側(リーン度合いが小さくなる側)の値である。ta0以降において、実NOx濃度と目標NOx濃度との偏差であるNOx濃度偏差に基づいて、目標空燃比が補正される。
 この場合、目標空燃比の基準値が範囲Xよりもリッチ側の値であることから、実NOx濃度が多めになっており、NOx濃度偏差が正(すなわち実NOx濃度>目標NOx濃度)であるために、補正値Δλが正の値となり、目標空燃比が、リーン度合いが大きくなる側に補正される。そして、目標空燃比のリーン度合いが大きくなることに伴い、実NOx濃度が徐々に減じられる。
 その後、ta1のタイミングでは、NOx濃度偏差が略ゼロになり、目標空燃比の増補正が完了する。なお、図7では、目標空燃比が、リーン度合いが大きくなる側に補正されるために回転変動量ΔNEの増加が生じるものの、その程度は小さく、回転変動量ΔNEは許容限界以内にとどめられる。
 また、図8では、図7と同様に、tb0のタイミングで、目標空燃比として、図2に示す範囲Xよりもリッチ側の基準値が設定されており、tb0以降において、実NOx濃度と目標NOx濃度との偏差であるNOx濃度偏差に基づいて、目標空燃比が補正される。これにより、目標空燃比が、リーン度合いが大きくなる側に補正され、実NOx濃度が徐々に減じられる。
 また、図8のtb1のタイミングでは、NOx濃度偏差がゼロになる前、すなわち目標空燃比の補正が完了する前に、エンジン10で回転変動が生じ、回転変動量ΔNEが閾値THに達する。目標空燃比のリーン度合いを徐々に大きくする場合には、想定よりも早期に燃焼状態が乱れて回転変動が過剰に大きくなることが考えられる。例えば、吸入空気量のずれやエンジン機差等に起因して、空燃比と燃焼安定性(COV)との関係性が正常な関係からずれていると、想定外の目標空燃比で意図しない回転変動が生じることが考えられる。
 そして、tb1のタイミングでは、目標NOx濃度が引き上げられ、それに伴い目標空燃比がリッチ側(リーン度合いを小さくする側)に補正される。つまり、tb1のタイミングでは、リーン度合いを大きくする側への目標空燃比の補正が実施されている状況において、エンジン10の燃焼状態が悪化していると判定されることに伴い、目標NOx濃度が引き上げられる。これにより、燃焼安定化が図られる。なお、tb1のタイミングにおいて、目標NOx濃度が引き上げられることに代えて、目標空燃比がリッチ側(リーン度合いを小さくする側)に補正される構成になっていてもよい。
 その後、tb1以降において、回転変動量ΔNEが閾値TH未満となり、その状態のまま所定時間が経過したtb2のタイミングでは、目標NOx濃度が引き下げる側に戻される。この場合、回転変動量ΔNEが閾値THに達した時の実NOx濃度(すなわちtb1での実NOx濃度)に基づいて、目標NOx濃度の下限値が設定され、その下限値で、目標NOx濃度の引き下げが制限される(tb3のタイミング)。これにより、再び目標NOx濃度を引き下げていっても、それに伴うエンジン10の回転変動の発生が抑制できる。
 以上詳述した本実施形態によれば、以下の優れた効果が期待できる。
 リーン燃焼が行われていると判定される場合において、目標NOx濃度と実NOx濃度とに基づいて、目標空燃比を補正するようにした。これにより、エンジン10からのNOx排出量の適正化を図りつつ燃焼の安定化を図る上で、適切な空燃比制御を実施することができる。
 実NOx濃度が目標NOx濃度よりも高い場合に、補正値Δλを正の値として、目標空燃比をリーン度合いが大きくなる側に補正し、実NOx濃度が目標NOx濃度よりも低い場合に、補正値Δλを負の値として、目標空燃比をリーン度合いが小さくなる側に補正するようにした。これにより、空燃比とNOx濃度と燃焼安定性との関係を考慮しつつ、適正な空燃比制御を実現することができる。また、エンジン10の回転変動に基づいて目標空燃比のリーン度合いを調整する構成に比べて、高精度に目標空燃比のリーン度合いを調整することができる。
 実NOx濃度が目標NOx濃度よりも低い場合(すなわち目標空燃比のリーン度合いを小さくする場合)に、実NOx濃度が目標NOx濃度よりも高い場合(すなわち目標空燃比のリーン度合いを大きくする場合)に比べて大きい補正ゲインで目標空燃比を補正するようにした。ここで、実NOx濃度が目標NOx濃度よりも低い場合には、NOx濃度が過少であり、エンジン10の燃焼状態が不安定になっていることが考えられる。そのため、かかる状態においては、目標空燃比の補正ゲインを大きくして、燃焼不安定の状態をいち早く解消できるようにしている。また、実NOx濃度が目標NOx濃度よりも高い場合において、意図しない燃焼状態の悪化を抑制しつつハンチングの発生を抑制できる。
 空燃比リーン領域において、空燃比のリッチ側限界値よりもリッチ側で、目標空燃比の基準値を定めておき、その基準値を目標空燃比の初期値として用いて、NOx濃度に基づく目標空燃比の補正を実施するようにした。そのため、エンジン10の燃焼安定性の確保を優先しつつも、目標空燃比の適正化、すなわち空燃比制御の適正化を実現できる。
 リーン度合いを大きくする側への目標空燃比の補正が実施されている状況において、エンジン10の燃焼状態が悪化していると判定された場合に、目標NOx濃度を引き上げる側に変更するようにした。これにより、目標空燃比のリーン度合いを大きくしていく過程で、意図するよりも早期に燃焼状態の悪化が生じても、その燃焼状態の悪化に適正に対処できる。
 目標NOx濃度の引き上げにより燃焼状態の悪化が解消された後において、目標NOx濃度を変更前の濃度に向けて徐々に変化させるようにした。これにより、燃焼状態の急変を抑制できる。
 燃焼状態の悪化に伴い目標NOx濃度が引き上げられ、その後再び目標NOx濃度が引き下げられる場合に、燃焼状態の悪化が判定された時の実NOx濃度に基づいて、目標NOx濃度の下限値を設定するようにした。これにより、燃焼状態の悪化が生じた後において、目標NOx濃度を低減させることに起因して再び燃焼状態が悪化することを好適に抑制できる。
 過渡運転時はエンジン10からのNOx排出量が安定しない。この点、エンジン10の過渡運転時であると判定された場合に、目標空燃比の補正を実施しないようにしたため、空燃比制御の適正化の妨げになることを抑制できる。
 エンジン10での燃焼後に排気がNOx濃度検出部に到達するまでの遅れを加味して目標空燃比の補正を行うようにした。これにより、目標NOx濃度と実NOx濃度との位相を合わせつつ、適正な空燃比制御を実施できる。
 エンジン10においては、運転領域ごとに、燃焼悪化の状況やNOx排出の状況が異なる。この点、複数のエンジン運転領域を設定しておき、その運転領域ごとに補正値Δλを記憶するようにしたため、いずれのエンジン運転領域においても空燃比制御の適正化を好適に実現することができる。
 <他の実施形態>
 ・上記実施形態では、回転変動量ΔNEが閾値TH以上となることに伴い目標NOx濃度が一旦引き上げられ、その後、目標NOx濃度が再び引き下げられる際に、回転変動量ΔNEが閾値TH以上となった時の実NOx濃度に基づいて、目標NOx濃度の下限値を設定する構成としたが、これを変更してもよい。すなわち、回転変動量ΔNEが閾値TH以上となった時の目標空燃比に基づいて、目標空燃比のリーン上限値を設定するとよい。この場合、目標空燃比の上限ガードがかけられつつ、目標NOx濃度が徐々に引き下げられる。図3の処理では、ステップS116において、回転変動量ΔNEが閾値TH以上となった時の目標空燃比に基づき設定された目標空燃比のリーン上限値により、目標NOx濃度の引き下げが制限されるとよい。なお、回転変動量ΔNEが閾値TH以上となった時の目標空燃比を基準とし、それよりもリーン側又はリッチ側の値を、目標空燃比のリーン上限値として設定してもよい。本構成によれば、燃焼状態の悪化が生じた後において、目標空燃比をリーン側にシフトさせることに起因して再び燃焼状態が悪化することを好適に抑制できる。
 ・上記実施形態では、実NOx濃度が目標NOx濃度よりも低い場合に、実NOx濃度が目標NOx濃度よりも高い場合に比べて大きい補正ゲインで目標空燃比を補正する構成としたが、これを変更してもよい。例えば、上記とは逆に、実NOx濃度が目標NOx濃度よりも低い場合に、実NOx濃度が目標NOx濃度よりも高い場合に比べて小さい補正ゲインで目標空燃比を補正することも可能である。また、それら各場合において、補正ゲインが同じであってもよい。
 ・上記実施形態では、NOxセンサ34を三元触媒31よりも排気通路における下流側に配設したが、NOxセンサ34を三元触媒31よりも上流側に配設することも可能である。また、NOx触媒33の下流側にNOxセンサを追加し、このNOxセンサと上記NOxセンサ34とによってNOx触媒33の状態を監視する構成としてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  火花点火式のエンジン(10)において、目標空燃比を設定し、その目標空燃比に基づいて空燃比制御を行う空燃比制御装置(40)であって、
     前記目標空燃比が理論空燃比よりもリーン側で設定され、かつその目標空燃比により前記エンジンにおいてリーン燃焼が行われることを判定するリーン燃焼判定部と、
     前記エンジンの運転条件に応じて目標NOx濃度を設定する目標NOx設定部と、
     前記エンジンの排気通路においてNOx濃度検出部(34)により検出された実NOx濃度を取得する取得部と、
     前記リーン燃焼が行われていると判定される場合に、前記目標NOx濃度と前記実NOx濃度とに基づいて、前記目標空燃比を補正する補正部と、
    を備えている空燃比制御装置。
  2.  前記補正部は、前記実NOx濃度が前記目標NOx濃度よりも高い場合に、前記目標空燃比を、リーン度合いが大きくなる側に補正し、前記実NOx濃度が前記目標NOx濃度よりも低い場合に、前記目標空燃比を、リーン度合いが小さくなる側に補正する請求項1に記載の空燃比制御装置。
  3.  前記補正部は、前記実NOx濃度が前記目標NOx濃度よりも低い場合に、前記実NOx濃度が前記目標NOx濃度よりも高い場合に比べて大きい補正ゲインで前記目標空燃比を補正する請求項2に記載の空燃比制御装置。
  4.  空燃比リーン領域における空燃比及びNOx濃度の関係においてNOx許容限度により定められる空燃比のリッチ側限界値、又はそのリッチ側限界値よりもリッチ側で、前記目標空燃比の基準値を定めておき、
     前記補正部は、前記基準値を前記目標空燃比の初期値として用いて、前記目標空燃比の補正を実施する請求項1乃至請求項3のいずれか1つに記載の空燃比制御装置。
  5.  前記補正部によりリーン度合いを大きくする側への前記目標空燃比の補正が実施されている状況において、前記エンジンでの燃焼状態の悪化の有無を判定する燃焼状態判定部と、
     前記燃焼状態が悪化していると判定された場合に、前記目標NOx濃度を引き上げる側に変更するNOx濃度変更部と、
    を備える請求項1乃至請求項4のいずれか1つに記載の空燃比制御装置。
  6.  前記NOx濃度変更部は、前記目標NOx濃度の引き上げにより前記燃焼状態の悪化が解消された後において、前記目標NOx濃度を変更前の濃度に向けて徐々に変化させる請求項5に記載の空燃比制御装置。
  7.  前記燃焼状態の悪化に伴い前記NOx濃度変更部により前記目標NOx濃度が引き上げられた場合において、前記燃焼状態の悪化が判定された時の実NOx濃度に基づいて、前記目標NOx濃度の下限値を設定する請求項5又は請求項6に記載の空燃比制御装置。
  8.  前記燃焼状態の悪化に伴い前記NOx濃度変更部により前記目標NOx濃度が引き上げられた場合において、前記燃焼状態の悪化が判定された時の目標空燃比に基づいて、当該目標空燃比のリーン上限値を設定する請求項5又は請求項6に記載の空燃比制御装置。
  9.  前記エンジンの過渡運転時であるか否かを判定する過渡運転判定部を備え、
     前記補正部は、前記過渡運転判定部により前記過渡運転時であると判定された場合に、前記目標空燃比の補正を実施しない請求項1乃至請求項8のいずれか1つに記載の空燃比制御装置。
  10.  前記補正部は、前記エンジンでの燃焼後に排気が前記NOx濃度検出部に到達するまでの遅れを加味して前記目標空燃比の補正を行う請求項1乃至請求項9のいずれか1つに記載の空燃比制御装置。
PCT/JP2019/014105 2018-04-09 2019-03-29 空燃比制御装置 WO2019198546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023498.4A CN111936731B (zh) 2018-04-09 2019-03-29 空燃比控制装置
DE112019001841.8T DE112019001841T5 (de) 2018-04-09 2019-03-29 Steuerungsvorrichtung für ein Luft-Kraftstoff-Verhältnis
US17/062,953 US11268468B2 (en) 2018-04-09 2020-10-05 Air-fuel ratio control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-074959 2018-04-09
JP2018074959A JP6844576B2 (ja) 2018-04-09 2018-04-09 空燃比制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/062,953 Continuation US11268468B2 (en) 2018-04-09 2020-10-05 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
WO2019198546A1 true WO2019198546A1 (ja) 2019-10-17

Family

ID=68163628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014105 WO2019198546A1 (ja) 2018-04-09 2019-03-29 空燃比制御装置

Country Status (5)

Country Link
US (1) US11268468B2 (ja)
JP (1) JP6844576B2 (ja)
CN (1) CN111936731B (ja)
DE (1) DE112019001841T5 (ja)
WO (1) WO2019198546A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026756A (ja) * 2018-08-10 2020-02-20 日本特殊陶業株式会社 エンジン制御装置及エンジン制御方法
JP7518707B2 (ja) 2020-09-09 2024-07-18 株式会社Subaru エンジン制御装置
DE102022211757A1 (de) * 2022-11-08 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Verbrennungsmotors für gasförmige Kraftstoffe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229934A (ja) * 1998-02-09 1999-08-24 Yanmar Diesel Engine Co Ltd 希薄燃焼ガス機関
JPH11229847A (ja) * 1998-02-12 1999-08-24 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2010048184A (ja) * 2008-08-22 2010-03-04 Toyota Motor Corp エンジンの空燃比制御装置
JP2010196526A (ja) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd 圧縮着火式内燃機関の燃焼制御装置
JP2010285908A (ja) * 2009-06-10 2010-12-24 Toyota Motor Corp 内燃機関の制御装置
JP2016118111A (ja) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2017166356A (ja) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592919A (en) 1993-12-17 1997-01-14 Fuji Jukogyo Kabushiki Kaisha Electronic control system for an engine and the method thereof
JP3350187B2 (ja) * 1993-12-17 2002-11-25 富士重工業株式会社 希薄燃焼エンジンの空燃比制御装置
EP0687809B1 (en) * 1994-06-17 2001-08-29 Hitachi, Ltd. An output torque control apparatus and method for an internal combustion engine
JP2005113729A (ja) * 2003-10-06 2005-04-28 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4182878B2 (ja) * 2003-10-09 2008-11-19 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2007016655A (ja) * 2005-07-06 2007-01-25 Toyota Industries Corp 内燃機関の排気浄化装置
JP4349344B2 (ja) * 2005-08-23 2009-10-21 トヨタ自動車株式会社 エンジンの制御装置
JP4574610B2 (ja) * 2006-12-15 2010-11-04 本田技研工業株式会社 内燃機関の制御装置
JP2011069277A (ja) * 2009-09-25 2011-04-07 Toyota Motor Corp 内燃機関装置および内燃機関の燃料噴射制御方法並びに車両
EP2354485A1 (en) * 2010-01-13 2011-08-10 Delphi Technologies Holding S.à.r.l. Exhaust system for compression-ignition engine
JP4852162B2 (ja) 2010-04-07 2012-01-11 三菱電機株式会社 内燃機関の制御装置
CN102859173B (zh) * 2010-04-22 2014-12-17 万国引擎知识产权有限责任公司 压燃发动机及分配来自压燃发动机的发动机排出尾气中的烟雾和NOx的方法
US9273640B2 (en) * 2010-06-18 2016-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
US10352263B2 (en) * 2010-07-15 2019-07-16 Toyota Jidosha Kabushiki Kaisha Fuel injection amount control apparatus for an internal combustion engine
DE102011017486A1 (de) * 2011-04-19 2012-10-25 Daimler Ag Betriebsverfahren für einen Kraftfahrzeug-Dieselmotor mit einer Abgasreinigungsanlage
WO2013049335A2 (en) * 2011-09-28 2013-04-04 Continental Controls Corporation Automatic set point adjustment system and method for engine air-fuel ratio control system
US9506414B2 (en) * 2013-10-01 2016-11-29 GM Global Technology Operations LLC Cold start emissions reduction diagnostic system for an internal combustion engine
CN105874190B (zh) * 2013-11-14 2019-01-08 丰田自动车株式会社 用于内燃机的控制器
DE102014202002B4 (de) * 2014-02-04 2016-11-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine
DE102014205156A1 (de) * 2014-03-19 2015-09-24 Eberspächer Exhaust Technology GmbH & Co. KG Abgasanlage
JP6492733B2 (ja) * 2015-02-16 2019-04-03 いすゞ自動車株式会社 排気浄化システム
JP6507824B2 (ja) * 2015-04-27 2019-05-08 三菱自動車工業株式会社 エンジンの制御装置
GB2546488B (en) * 2016-01-19 2020-05-13 Ford Global Tech Llc An engine exhaust gas recirculation system with at least one exhaust recirculation treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229934A (ja) * 1998-02-09 1999-08-24 Yanmar Diesel Engine Co Ltd 希薄燃焼ガス機関
JPH11229847A (ja) * 1998-02-12 1999-08-24 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2010048184A (ja) * 2008-08-22 2010-03-04 Toyota Motor Corp エンジンの空燃比制御装置
JP2010196526A (ja) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd 圧縮着火式内燃機関の燃焼制御装置
JP2010285908A (ja) * 2009-06-10 2010-12-24 Toyota Motor Corp 内燃機関の制御装置
JP2016118111A (ja) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2017166356A (ja) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
DE112019001841T5 (de) 2020-12-31
US11268468B2 (en) 2022-03-08
JP2019183733A (ja) 2019-10-24
US20210017924A1 (en) 2021-01-21
CN111936731B (zh) 2022-12-09
CN111936731A (zh) 2020-11-13
JP6844576B2 (ja) 2021-03-17

Similar Documents

Publication Publication Date Title
JP4089601B2 (ja) 内燃機関の燃料噴射制御装置
US6644017B2 (en) Device for and method of controlling air-fuel ratio of internal combustion engine
JP5278466B2 (ja) 気筒間空燃比ばらつき異常検出装置
US11268468B2 (en) Air-fuel ratio control device
US8718902B2 (en) Control apparatus and control method of multiple cylinder
JP4007384B2 (ja) 内燃機関の空燃比制御装置
JP2009250058A (ja) 酸素濃度センサの劣化判定装置及び劣化判定システム
JP6149828B2 (ja) 内燃機関の制御装置
US8463532B2 (en) Control device for engine
JP2021042733A (ja) 内燃機関の制御装置
JP2009191791A (ja) 内燃機関の制御装置
US10612484B2 (en) Control apparatus for engine
JP2007187119A (ja) 内燃機関の空燃比制御方法
JP4321406B2 (ja) 内燃機関の燃料供給量制御装置
JP2010048184A (ja) エンジンの空燃比制御装置
JP5083044B2 (ja) 空燃比検出手段の劣化診断装置及び劣化診断方法
JPH07269407A (ja) エンジンの失火検出装置
JP2009024496A (ja) 内燃機関の空燃比制御装置
JP2004036393A (ja) 筒内噴射式内燃機関の空燃比制御装置
JP2684885B2 (ja) 内燃機関の燃料噴射量制御装置
JP2681965B2 (ja) 内燃機関の空燃比制御装置
JPH08291739A (ja) 空燃比制御装置
JP2017115802A (ja) 内燃機関の空燃比制御装置
JP3800049B2 (ja) エンジンの排気浄化装置
JP4329610B2 (ja) 内燃機関の燃料噴射量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784462

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19784462

Country of ref document: EP

Kind code of ref document: A1