WO2019192362A1 - 电子设备、用户设备、方法和计算机可读存储介质 - Google Patents
电子设备、用户设备、方法和计算机可读存储介质 Download PDFInfo
- Publication number
- WO2019192362A1 WO2019192362A1 PCT/CN2019/079813 CN2019079813W WO2019192362A1 WO 2019192362 A1 WO2019192362 A1 WO 2019192362A1 CN 2019079813 W CN2019079813 W CN 2019079813W WO 2019192362 A1 WO2019192362 A1 WO 2019192362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prs
- group
- user equipment
- electronic device
- network side
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000004891 communication Methods 0.000 claims abstract description 149
- 230000005540 biological transmission Effects 0.000 claims description 39
- 238000012545 processing Methods 0.000 claims description 35
- 238000010586 diagram Methods 0.000 description 112
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 65
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 65
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 65
- 230000006870 function Effects 0.000 description 27
- 238000013461 design Methods 0.000 description 23
- 230000011664 signaling Effects 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000010267 cellular communication Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005571 horizontal transmission Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000005570 vertical transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
Definitions
- Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to electronic devices, user devices, methods, and computer readable storage media. More specifically, the present disclosure relates to a method of determining a location of a PRS (Positioning Reference Signal), an electronic device used as a network side device, a user equipment, and a device used as a network side device.
- PRS Positioning Reference Signal
- the PRS can be used to locate a User Equipment (UE). Since the LTE system does not employ large-scale multi-antenna technology, a narrow beam with high directivity and high gain cannot be formed. Therefore, in the LTE communication system, the positioning method is designed for the reference signal propagation delay. For example, the LTE communication system can calculate the location of the UE by measuring the time difference of arrival of the signal using the OTDOA (Observed Time Difference of Arrival) technique. Further, in the LTE communication system, a single network side device is used to perform sequential scanning in different directions.
- OTDOA Observed Time Difference of Arrival
- NR New Radio
- CRS Cell-specific Reference Signal
- a method of determining a location of a positioning reference signal PRS comprising: acquiring a subcarrier spacing of a resource block RB; and determining a positioning reference signal PRS in the RB according to the subcarrier spacing Time-frequency position.
- an electronic device for use as a network side device including processing circuitry configured to: acquire an electronic device in a group consisting of electronic devices for locating a user device And determining a time-frequency position of the positioning reference signal PRS for the electronic device according to the number of the electronic device in the group.
- a user equipment including processing circuitry, configured to: respectively receive a positioning reference signal PRS from a plurality of network side devices, wherein a time frequency of a PRS for each network side device The location is determined according to the number of the network side device in the group of the plurality of network side devices; and the beam transmission angle information of each network side device is determined according to the PRS received from each network side device.
- a wireless communication method performed by an electronic device, comprising: obtaining a number in a group of electronic devices that are used to locate a user device; and The number of the electronic device in the group determines the time-frequency position of the positioning reference signal PRS for the electronic device.
- a wireless communication method performed by a user equipment, comprising: receiving positioning reference signals PRS from a plurality of network side devices, respectively, wherein a time frequency of a PRS for each network side device The location is determined according to the number of the network side device in the group of the plurality of network side devices; and the beam transmission angle information of each network side device is determined according to the PRS received from each network side device.
- a computer readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform a wireless communication method in accordance with the present disclosure.
- the location of the PRS can be determined from the subcarrier spacing, thereby more rationally designing the PRS for the NR communication system to optimize positioning of the UE.
- FIG. 1 is a schematic diagram showing an application scenario according to an embodiment of the present disclosure
- FIG. 2 is a flowchart illustrating a method of determining a location of a PRS, in accordance with an embodiment of the present disclosure
- 3(a) is a PDCCH (Physical Downlink Control Channel), a DMRS (Demodulation Reference Signal), and a CSI-RS (Channel State Information Reference Signal) when the subcarrier spacing is 15 kHz.
- PDCCH Physical Downlink Control Channel
- DMRS Demodulation Reference Signal
- CSI-RS Channel State Information Reference Signal
- FIG. 3(b) is a schematic diagram showing a configuration of a PDCCH, a DMRS, and a CSI-RS when a subcarrier spacing is 30 kHz;
- FIG. 3(c) is a diagram showing a configuration of a PDCCH, a DMRS, and a CSI-RS when a subcarrier spacing is 60 kHz;
- FIG. 3(d) is a schematic diagram showing a configuration of a PDCCH, a DMRS, and a CSI-RS when a subcarrier spacing is 120 kHz;
- 3(e) is a diagram showing a configuration of a PDCCH, a DMRS, and a CSI-RS when a subcarrier spacing is 240 kHz;
- FIG. 3(f) is a diagram showing a configuration of a PDCCH, a DMRS, and a CSI-RS when a subcarrier spacing is 480 kHz;
- 4(a) is a diagram showing a configuration of a PRS when a subcarrier spacing is 15 kHz or 30 kHz according to an embodiment of the present disclosure
- 4(b) is a diagram showing a configuration of a PRS when a subcarrier spacing is 60 kHz according to an embodiment of the present disclosure
- 4(c) is a diagram showing a configuration of a PRS when a subcarrier spacing is 120 kHz according to an embodiment of the present disclosure
- 4(d) is a diagram showing a configuration of a PRS when a subcarrier spacing is 240 kHz or 480 kHz according to an embodiment of the present disclosure
- FIG. 5 is a flowchart illustrating a method of grouping PRSs according to an embodiment of the present disclosure
- 6(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when a subcarrier spacing is 15 kHz or 30 kHz according to an embodiment of the present disclosure
- 6(b) is a schematic diagram showing a configuration in which PRSs are divided into three groups when a subcarrier spacing is 15 kHz or 30 kHz according to an embodiment of the present disclosure
- 6(c) is a schematic diagram showing a configuration in which PRSs are divided into four groups when the subcarrier spacing is 15 kHz or 30 kHz according to an embodiment of the present disclosure
- FIG. 7(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when a subcarrier spacing is 60 kHz according to an embodiment of the present disclosure
- 7(b) is a schematic diagram showing a configuration in which PRSs are divided into three groups when a subcarrier spacing is 60 kHz according to an embodiment of the present disclosure
- 7(c) is a schematic diagram showing a configuration in which PRSs are divided into four groups when the subcarrier spacing is 60 kHz according to an embodiment of the present disclosure
- FIG. 8(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when a subcarrier spacing is 120 kHz according to an embodiment of the present disclosure
- 8(b) is a schematic diagram showing a configuration in which PRSs are divided into three groups when the subcarrier spacing is 120 kHz according to an embodiment of the present disclosure
- 8(c) is a schematic diagram showing a configuration in which PRSs are divided into four groups when the subcarrier spacing is 120 kHz according to an embodiment of the present disclosure
- 9(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when a subcarrier spacing is 240 kHz or 480 kHz according to an embodiment of the present disclosure
- 9(b) is a schematic diagram showing a configuration in which PRSs are divided into three groups when the subcarrier spacing is 240 kHz or 480 kHz according to an embodiment of the present disclosure
- 9(c) is a schematic diagram showing a configuration in which PRSs are divided into four groups when the subcarrier spacing is 240 kHz or 480 kHz according to an embodiment of the present disclosure
- FIG. 10(a) is a schematic diagram showing a configuration in which PRSs are divided into three groups when a subcarrier spacing is 15 kHz or 30 kHz according to another embodiment of the present disclosure
- 10(b) is a schematic diagram showing a configuration in which PRSs are divided into three groups when a subcarrier spacing is 60 kHz according to another embodiment of the present disclosure
- FIG. 10(c) is a diagram showing a configuration of dividing a PRS into three groups when a subcarrier spacing is 120 kHz according to another embodiment of the present disclosure
- 10(d) is a schematic diagram showing a configuration in which PRSs are divided into three groups when the subcarrier spacing is 240 kHz or 480 kHz according to another embodiment of the present disclosure
- 11(a) is a schematic diagram showing a configuration in which PRSs are divided into three groups when a subcarrier spacing is 15 kHz or 30 kHz according to still another embodiment of the present disclosure
- 11(b) is a schematic diagram showing a configuration in which PRSs are divided into three groups when a subcarrier spacing is 60 kHz according to still another embodiment of the present disclosure
- 11(c) is a schematic diagram showing a configuration in which PRSs are divided into three groups when a subcarrier spacing is 120 kHz according to still another embodiment of the present disclosure
- 11(d) is a configuration diagram showing dividing a PRS into three groups when a subcarrier spacing is 240 kHz or 480 kHz according to still another embodiment of the present disclosure
- FIG. 12 is a flowchart illustrating a method of grouping PRSs and correcting positions of PRSs according to an embodiment of the present disclosure
- FIG. 13 is a configuration diagram illustrating group-based frequency shifting of a PRS position, according to an embodiment of the present disclosure
- FIG. 14 is a configuration diagram illustrating group-based frequency shifting of a PRS position, according to an embodiment of the present disclosure
- FIG. 15 is a configuration diagram illustrating UE-based frequency shifting of a PRS location, according to an embodiment of the present disclosure
- FIG. 16 is a configuration diagram illustrating UE-based frequency shifting of a PRS location, according to an embodiment of the present disclosure
- FIG. 17 is a configuration diagram illustrating UE-based frequency shifting of a PRS location, according to an embodiment of the present disclosure.
- FIG. 18 is a block diagram showing an example of a configuration of an electronic device according to an embodiment of the present disclosure.
- FIG. 19 is a signaling flowchart illustrating determining a location of a PRS of each network side device, according to an embodiment of the present disclosure
- FIG. 20 is a signaling flowchart illustrating determining a location of a PRS of each network side device, according to an embodiment of the present disclosure
- 21 is a signaling flowchart illustrating determining a location of a PRS of each network side device, according to an embodiment of the present disclosure
- FIG. 22 is a signaling flowchart illustrating determining a location of a PRS of each network side device, according to an embodiment of the present disclosure
- FIG. 23 is a signaling flowchart illustrating determining a location of a PRS of each network side device, according to an embodiment of the present disclosure
- FIG. 24 is a signaling flowchart illustrating determining a location of a PRS of each network side device, according to an embodiment of the present disclosure
- 25 is a schematic diagram showing beam scanning directions of two network side devices according to an embodiment of the present disclosure.
- FIG. 26 is a block diagram showing an example of a configuration of an electronic device according to an embodiment of the present disclosure.
- FIG. 27(a) is a signaling flowchart illustrating that a user equipment and a network side device respectively perform beam scanning in a TDD (Time Division Duplexing) mode according to an embodiment of the present disclosure
- FIG. 27(b) is a signaling flowchart illustrating that a user equipment and a network side device respectively perform beam scanning in an FDD (Frequency Division Duplexing) mode according to an embodiment of the present disclosure
- FIG. 28 is a flowchart illustrating a wireless communication method performed by an electronic device as a network side device, according to an embodiment of the present disclosure
- 29 is a flowchart illustrating a wireless communication method performed by a user equipment, in accordance with an embodiment of the present disclosure
- FIG. 30 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
- FIG. 31 is a block diagram showing a second example of a schematic configuration of an eNB
- 32 is a block diagram showing an example of a schematic configuration of a smartphone
- Fig. 33 is a block diagram showing an example of a schematic configuration of a car navigation device.
- Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
- FIG. 1 is a schematic diagram showing an application scenario of the present disclosure.
- a network side device 1 and a network side device 2 there are two network side devices around the UE: a network side device 1 and a network side device 2, and the two network side devices can send a PRS to the UE for positioning the UE.
- at least one of the network side device 1 and the network side device 2 may be located in the same cell as the UE.
- the network side device 1, the network side device 2, and the UE as shown in FIG. 1 may all be located in the NR communication system.
- FIG. 1 only shows a case where the UE is located by two network side devices, and the UE may be located by more than two network side devices.
- the present disclosure proposes, as such a scenario, an electronic device as a network side device, a user device, a method of determining a location of a PRS, a wireless communication method performed by an electronic device as a network side device, and a wireless communication method performed by the user device And a computer readable storage medium to more rationally design the PRS for the NR communication system to optimize positioning of the UE.
- the communication system according to the present disclosure may be a 5G (5 Generation, 5th generation) NR communication system.
- the network side device may be any type of TRP (Transmit and Receive Port).
- the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
- the TRP can provide services to the user equipment and be controlled by the base station equipment. That is, the base station device provides a service to the user equipment through the TRP.
- the network side device described in the present disclosure may also be a base station device, and may be, for example, an eNB or a gNB (a base station in a 5th generation communication system).
- the user equipment may be a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device, or an in-vehicle terminal such as a car navigation device. ).
- the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
- MTC machine type communication
- M2M machine-to-machine
- the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
- step S210 a subcarrier spacing of an RB (Resource Block) is acquired.
- step S220 the time-frequency position of the PRS in the RB is determined according to the subcarrier spacing.
- the above method may be used in an NR communication system.
- subcarrier spacings in the NR communication system including, but not limited to, 15KHZ, 30KHZ, 60KHZ, 120KHZ, 240KHZ, and 480KHZ. Therefore, in step S210, the subcarrier spacing of the RB is first acquired.
- the design of the PRS in this disclosure is for RB. This is because the PRS can be transmitted on one or more RBs, and the pattern of PRSs on the one or more RBs may be the same.
- the bandwidth for transmitting the PRS can be configured, for example, Indicates the bandwidth used to transmit the PRS, specifically the ratio of the bandwidth used to transmit the PRS to the bandwidth occupied by one RB. Since the pattern of the PRSs on each RB is the same, how to design the location of the PRS in the RB is exemplified by an RB in the following description of the present disclosure.
- the subcarrier spacing of the RB may be acquired by various ways, for example, by obtaining a high layer configuration to determine the subcarrier spacing of the RB, so that the location of the PRS in the RB is determined according to the subcarrier spacing of the RB in step S220. Further, the location of the PRS may include a time domain location and a frequency domain location.
- the position of the PRS can be determined according to different subcarrier intervals, so that the PRS can be more rationally designed for the NR communication system.
- step S220 includes: determining a time domain location and a frequency domain location of a plurality of REs (Resource Elements) occupied by the PRS in the RB.
- an RB has a length of 14 OFDM symbols in the time domain, a length of 12 subcarriers in the frequency domain, and an RE in the time domain of 1 OFDM symbol in the frequency domain. The length is 1 subcarrier. That is, each RB includes 168 REs, and the PRS can occupy multiple REs of the 168 REs. Therefore, step S220 may include determining a location of each of the plurality of REs occupied by the PRS, including a time domain location and a frequency domain location. That is, step S220 may include the steps of determining the time domain location of the RE and determining the frequency domain location of the RE.
- step S220 may include that the plurality of REs do not overlap with each of the PDCCH, the DMRS, and the CSI-RS in the RB.
- PDCCH, DMRS, and CSI-RS are all existing reference signals in LTE systems, so these reference signals are also needed in NR systems. Therefore, in accordance with embodiments of the present disclosure, the PRS needs to avoid the location of these existing reference signals. That is, each RE needs to be non-overlapping with each of the PDCCH, DMRS, and CSI-RS, that is, orthogonal to each of the PDCCH, DMRS, and CSI-RS.
- the step of determining the time domain location of the RE in step S220 may include: each of the plurality of REs and PDCCHs, DMRSs, and CSI-RSs in the time domain Do not overlap. That is, the time domain location of the RE is determined such that each RE is orthogonal to each of the PDCCH, DMRS, and CSI-RS in the time domain.
- FIG. 3(a) to 3(f) are diagrams showing the configuration of PDCCH, DMRS, and CSI-RS at different subcarrier intervals.
- FIG. 3(a) is a schematic diagram showing the configuration of PDCCH, DMRS, and CSI-RS when the subcarrier spacing is 15 kHz
- FIG. 3(b) is a diagram showing PDCCH, DMRS, and CSI when the subcarrier spacing is 30 kHz.
- FIG. 3(c) is a schematic diagram showing the configuration of the PDCCH, the DMRS, and the CSI-RS when the subcarrier spacing is 60 kHz
- FIG. 3(d) is a diagram showing the PDCCH, the DMRS, and the PDCCH when the subcarrier spacing is 120 kHz. Schematic diagram of the configuration of the CSI-RS; FIG. 3(e) is a schematic diagram showing the configuration of the PDCCH, the DMRS, and the CSI-RS when the subcarrier spacing is 240 kHz; and FIG. 3(f) shows the PDCCH when the subcarrier spacing is 480 kHz. Schematic diagram of the configuration of DMRS and CSI-RS.
- the PDCCH occupies the first 3 OFDM symbols of the RB
- the CSI-RS occupies the upper two subcarriers of the OFDM symbol numbered 4.
- DMRSs For configurations with subcarrier spacings of 15 kHz and 30 kHz, DMRSs occupy OFDM symbols numbered 3, 5, 8, and 11; for configurations with subcarrier spacing of 60 kHz, DMRSs occupy OFDM symbols numbered 3, 7, and 11;
- the carrier spacing is 120 kHz, the DMRS occupies OFDM symbols numbered 3 and 11; for a configuration with subcarrier spacing of 240 kHz and 480 kHz, the DMRS occupies an OFDM symbol numbered 3.
- determining the time domain location of the RE may include that the RE does not overlap with each of the PDCCH, the DMRS, and the CSI-RS in the time domain.
- the coordinates (l, k) can be used to indicate the position of the RE occupied by the PRS.
- l represents the coordinates of the time domain position of the RE
- k represents the coordinates of the frequency domain position of the RE. That is to say, the RE occupied by the PRS is located in the lth OFDM symbol in the time domain and in the kth subcarrier in the frequency domain.
- the bandwidth used to transmit the PRS Indicates the bandwidth used to transmit the PRS, specifically the ratio of the bandwidth used to transmit the PRS to the bandwidth occupied by one RB.
- the bandwidth of the transmission PRS may be greater than the bandwidth of one RB, the subcarriers on the entire bandwidth of the transmission PRS are numbered together.
- the number of k is from 0 to 11 for convenience of explanation.
- the time domain position l of the RE can be determined by the following formula:
- ⁇ f represents the subcarrier spacing
- the determining of the time domain location of the RE may further include: maximizing a span of the plurality of REs included in the PRS over the time domain of the RB. That is to say, as many as possible, multiple REs occupied by the PRS are distributed over all OFDM symbols of the RB. For example, in addition to OFDM symbols occupied by PDCCH, DMRS, and CSI-RS, there is a PRS on each OFDM symbol. As shown in the above formula (1), for a configuration in which the subcarrier spacing is 15 kHz and 30 kHz, PRS is provided on the OFDM symbols numbered 6, 7, 9, 10, 12, and 13, and the configuration for other subcarrier spacing is also akin.
- the location of the PRS can be orthogonal to the PDCCH, DMRS, and CSI-RS, such that the reference signal design of the NR communication system is compatible with the LTE communication system.
- the determining of the frequency domain position of the RE in step S220 may include: maximizing the span of the plurality of REs included in the PRS in the frequency domain of the RB. That is to say, as much as possible, multiple REs occupied by the PRS are distributed over all subcarriers of the RB.
- the step of determining the frequency domain position of the RE in step S220 may further include: the number of REs occupied by the PRS on each OFDM symbol does not exceed two. For example, a PRS on each OFDM occupies two REs. In this way, frequency resources can be saved.
- FIG. 4(a)-4(d) are diagrams showing the configuration of a PRS in different subcarrier configurations, according to an embodiment of the present disclosure.
- FIG. 4(a) is a schematic diagram showing a configuration of a PRS when a subcarrier spacing is 15 kHz or 30 kHz according to an embodiment of the present disclosure
- FIG. 4(b) is a diagram showing subcarriers according to an embodiment of the present disclosure.
- Schematic diagram of the configuration of the PRS when the interval is 60 kHz
- FIG. 4(c) is a schematic diagram showing the configuration of the PRS when the subcarrier spacing is 120 kHz according to an embodiment of the present disclosure
- FIG. 4(d) is a diagram illustrating an embodiment according to the present disclosure.
- Schematic diagram of the PRS when the subcarrier spacing is 240KHZ or 480KHZ.
- FIG. 4(a) to FIG. 4(d) in addition to the OFDM symbols occupied by the PDCCH, the DMRS, and the CSI-RS, there is a PRS on each OFDM symbol. Further, the PRS occupies two REs on each OFDM symbol. In addition, for a configuration in which the subcarrier spacing is 30KHZ, 60KHZ, 120KHZ, 240KHZ, and 480KHZ, there is a PRS on each subcarrier. As a result, the span of the PRS in the frequency domain and the span in the time domain can be maximized, and resources on the frequency can be saved. It is to be noted that FIGS. 4(a) to 4(d) show only one possible PRS design scheme for each subcarrier spacing, but the present disclosure is not limited thereto.
- determining the frequency domain location of the RE in step S220 may further include determining a frequency domain location of the RE according to a time domain location of the RE.
- determining the frequency domain location of the RE in step S220 may further include determining a frequency domain location of the RE according to at least one of the following parameters: a physical layer cell identifier of a cell where the user equipment to be located is located; The bandwidth used to transmit the PRS; and the bandwidth used to transmit downstream data.
- the frequency domain position k of the RE can be determined according to the following formula:
- the value of k can be related.
- one cell is adjacent to six cells. Therefore, with such a design, adjacent cells can be prevented from adopting the same PRS configuration, thereby avoiding interference.
- the PRS can be used to locate the user equipment, so the location of the PRS can be designed for the user equipment to be located. Of course, the location of the PRS can also be designed for the cell.
- the physical layer cell identifier of a certain cell may be indicated, and the PRS thus designed is a PRS for the cell, that is, applicable to all user equipments in the cell.
- the frequency domain location of the RE may be determined based only on the time domain location of the RE and the physical layer cell identity of the cell in which the user equipment to be located is located.
- the value of k thus calculated is in the range of [0, 11], that is, the frequency domain position of the RE on each RB transmitting the PRS, regardless of the bandwidth of the transmission PRS.
- the value of k may also be with related. That is, the frequency domain location of the RE may be determined according to the time domain location of the RE, the physical layer cell identity of the cell in which the user equipment to be located is located, the bandwidth used to transmit the PRS, and the bandwidth used to transmit the downlink data.
- the bandwidth used for transmitting downlink data may be specifically a ratio of a bandwidth used for transmitting downlink data to a bandwidth occupied by one RB.
- one RB occupies 12 subcarriers, and assuming that the bandwidth for transmitting downlink data is 24 subcarriers, The value is 2. for The calculation method is similar.
- FIG. 4(a) the configuration shown in FIG. 4(a) can be obtained.
- the value of the PRS may be different, so the present disclosure is not limited to the position of the PRS shown in FIG. 4(a).
- the situation for other subcarrier spacing is also similar.
- the position of the PRS can be determined according to the subcarrier spacing.
- the time domain location of the PRS may be determined according to the subcarrier spacing
- the frequency domain location of the PRS is determined according to the time domain location of the PRS.
- the frequency domain location of the PRS may be determined according to the physical layer cell identifier of the cell where the user equipment to be located is located, the bandwidth used for transmitting the PRS, and/or the bandwidth used to transmit the downlink data. In this way, the position of the PRS can be designed more rationally according to the NR communication system.
- the PRS may also be grouped to be distributed to a plurality of network side devices that locate the user equipment.
- FIG. 5 is a flowchart illustrating a method of grouping PRSs according to an embodiment of the present disclosure.
- the PRS of the determined location is divided into a plurality of groups.
- the PRSs of the plurality of groups are respectively allocated to the plurality of network side devices for positioning the user equipment.
- the number of groups into which the PRS is divided may be the same as the number of network side devices that locate the user equipment. That is, when two network side devices are used to locate the user equipment, the PRS is divided into two groups; when the three network side devices are used to locate the user equipment, the PRS is divided into three groups; when four network sides are used; When the device locates the user equipment, the PRS is divided into four groups. And so on.
- PRSs can be grouped and allocated to a plurality of network side devices.
- the grouped PRS can be used for beamforming and beam angle based positioning, so that multiple network side devices can cooperate to locate the user equipment, thereby optimizing the positioning of the user equipment.
- step S230 may include allocating one or more REs on the same subcarrier occupied by the PRS into the same group. That is to say, the PRSs numbered 0 to the PRSs on the subcarriers numbered 11 can be assigned to different groups in turn. That is, different groups of REs are orthogonal in the frequency domain, and REs in the same group can use the same frequency domain resources.
- FIG. 6(a) to 6(c) show a case where PRSs are grouped according to the above manner when the subcarrier spacing is 15 kHz or 30 kHz.
- FIG. 6(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when the subcarrier spacing is 15 kHz or 30 kHz according to one embodiment of the present disclosure
- FIG. 6(b) is a diagram showing one according to the present disclosure.
- FIG. 6(c) is a diagram showing dividing the PRS into four when the subcarrier spacing is 15 kHz or 30 kHz according to an embodiment of the present disclosure. Schematic diagram of the group configuration.
- the subcarriers are numbered from top to bottom, respectively, 11-0 (this numbering will also be used hereinafter in the present disclosure), and the PRS is occupied on the subcarrier numbered 10
- Two REs are assigned to the group numbered 1; on the subcarrier numbered 9, the PRS occupies two REs, and the two REs are assigned to the group numbered 0;
- the PRS occupies an RE, and the RE is assigned to the group with the number 0;
- the PRS occupies an RE, and the RE is assigned to the group with the number 1;
- the PRS occupies two REs on the subcarriers of 4, the two REs are assigned to the group numbered 0; on the subcarriers numbered 3, the PRS occupies two REs, and the two REs are allocated to The group numbered 1: On the subcarrier numbered 1, the PRS occupies an RE, and the RE is assigned to the group numbered 1.
- the PRS occupies an RE, and the RE is assigned to the group numbered 1.
- the PRS occupies two REs on the subcarrier numbered 10, and the two REs are assigned to number 1. Group; if the PRS occupies two REs on the subcarrier numbered 9, the two REs are assigned to the group numbered 2; on the subcarrier numbered 7, the PRS occupies an RE, and the RE is allocated.
- the PRS occupies one RE, then the RE is assigned to the group numbered 1: on the subcarrier number 4, the PRS occupies two REs, The two REs are assigned to the group numbered 2; on the subcarriers numbered 3, the PRS occupies two REs, and the two REs are assigned to the group numbered 0; the PRS is on the subcarrier number 1 If one RE is occupied, the RE is assigned to the group numbered 1. On the subcarrier with the number 0, the PRS occupies an RE, and the RE is assigned to the group numbered 0.
- the PRS occupies two REs on the subcarrier numbered 10, and the two REs are assigned to number 2 Group; if the PRS occupies two REs on the subcarrier numbered 9, the two REs are assigned to the group with the number 0; on the subcarrier with the number 7, the PRS occupies an RE, and the RE is allocated.
- the PRS occupies one RE, then the RE is assigned to the group numbered 2; on the subcarrier number 4, the PRS occupies two REs, The two REs are assigned to the group numbered 3; on the subcarriers numbered 3, the PRS occupies two REs, then the two REs are assigned to the group numbered 1; on the subcarriers numbered 1 on the PRS If one RE is occupied, the RE is assigned to the group numbered 1. On the subcarrier with the number 0, the PRS occupies one RE, and the RE is assigned to the group numbered 3.
- FIG. 7(a) to 7(c) show the case where the PRSs are grouped according to the above manner when the subcarrier spacing is 60 kHz.
- FIG. 7(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when the subcarrier spacing is 60 kHz according to one embodiment of the present disclosure
- FIG. 7(b) is a diagram illustrating an embodiment according to the present disclosure.
- FIG. 7(c) is a diagram showing a configuration in which PRS is divided into four groups when the subcarrier spacing is 60 kHz according to an embodiment of the present disclosure.
- the PRS occupies an RE on the subcarrier numbered 11, and the RE is assigned to the group numbered 0;
- the PRS occupies two REs, and the two REs are assigned to the group numbered 1.
- the PRS occupies one RE, and the RE is assigned to the number 0. Group; if the PRS occupies an RE on the subcarrier numbered 8, the RE is assigned to the group with the number 1; on the subcarrier with the number 7, the PRS occupies an RE, and the RE is assigned to the number.
- the PRS occupies an RE on the subcarrier numbered 11, and the RE is assigned to the group numbered 0;
- the PRS occupies two REs, and the two REs are assigned to the group numbered 1.
- the PRS occupies one RE, and the RE is assigned to the number 2 Group; if the PRS occupies an RE on the subcarrier numbered 8, the RE is assigned to the group with the number 0; on the subcarrier with the number 7, the PRS occupies an RE, and the RE is assigned to the number.
- the PRS occupies an RE on the subcarrier numbered 6
- the RE is assigned to the group numbered 2; on the subcarrier number 5, the PRS occupies an RE, and the RE is allocated.
- the PRS occupies two REs, then the two REs are assigned to the group with the number 2; on the subcarrier with the number 3, the PRS occupies one RE.
- the RE is assigned to the group with the number 0; on the subcarrier with the number 2, the PRS occupies an RE, and the RE is assigned to the group with the number 1; If the PRS on the subcarrier numbered 1 occupies an RE, the RE is assigned to the group numbered 2; on the subcarrier with the number 0, the PRS occupies an RE, and the RE is assigned to the group numbered 0. .
- the PRS occupies an RE on the subcarrier numbered 11, and the RE is assigned to the group numbered 0;
- the PRS occupies two REs, and the two REs are assigned to the group numbered 2;
- the PRS occupies one RE, and the RE is assigned to the number 0.
- the RE is assigned to the group numbered 1; on the subcarrier number 2, the PRS occupies an RE, and the RE is assigned to the group numbered 3; If the PRS occupies an RE on the subcarrier with the number 1, the RE is assigned to the group with the number 1. On the subcarrier with the number 0, the PRS occupies an RE, and the RE is assigned to the number 3. group.
- FIG. 8(a) to 8(c) show the case where the PRSs are grouped according to the above manner when the subcarrier spacing is 120 kHz.
- FIG. 8(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when the subcarrier spacing is 120 kHz according to one embodiment of the present disclosure
- FIG. 8(b) is a diagram showing an embodiment according to the present disclosure.
- FIG. 8(c) is a schematic diagram showing a configuration in which PRS is divided into four groups when the subcarrier spacing is 120 kHz according to an embodiment of the present disclosure.
- the PRS occupies an RE on the subcarrier numbered 11, and the RE is assigned to the group numbered 0;
- the PRS occupies two REs, and the two REs are assigned to the group numbered 1.
- the PRS occupies two REs, and the two REs are allocated to A group numbered 0;
- the PRS occupies an RE, and the RE is assigned to the group numbered 1: on the subcarrier numbered 7, the PRS occupies an RE, and the RE is used.
- the PRS occupies an RE, then the RE is assigned to the group with the number 1; on the subcarrier with the number 5, the PRS occupies an RE, then This RE is assigned to the group numbered 1.
- the PRS occupies two REs, and the two REs are assigned to the group numbered 0; on the subcarrier number 3, the PRS is occupied.
- Two REs are assigned to the group numbered 1; on the subcarrier number 2, the PRS occupies an RE, and the RE is assigned to the number 0. If the PRS occupies an RE on the subcarrier numbered 1, the RE is assigned to the group with the number 1; on the subcarrier with the number 0, the PRS occupies an RE, and the RE is assigned the number 0. Group.
- the PRS occupies an RE on the subcarrier numbered 11, and the RE is assigned to the group numbered 0;
- the PRS occupies two REs, and the two REs are assigned to the group numbered 1.
- the PRS occupies two REs, and the two REs are allocated to The group numbered 2; on the subcarrier numbered 8, the PRS occupies an RE, and the RE is assigned to the group with the number 0; on the subcarrier with the number 7, the PRS occupies an RE, and the RE is used.
- the PRS occupies one RE, then the RE is assigned to the group numbered 2; on the subcarrier number 5, the PRS occupies one RE, then This RE is assigned to the group numbered 1; on the subcarrier number 4, the PRS occupies two REs, then the two REs are assigned to the group numbered 2; on the subcarrier number 3, the PRS is occupied.
- Two REs are assigned to the group numbered 0; on the subcarrier number 2, the PRS occupies an RE, and the RE is assigned to the number 1.
- Group if the PRS occupies an RE on the subcarrier numbered 1, the RE is assigned to the group numbered 2; on the subcarrier with the number 0, the PRS occupies an RE, and the RE is assigned to the number Group of 0.
- the PRS occupies an RE on the subcarrier numbered 11, and the RE is assigned to the group numbered 0;
- the PRS occupies two REs, and the two REs are assigned to the group numbered 2;
- the PRS occupies two REs, and the two REs are allocated to A group numbered 0;
- the PRS occupies an RE, and the RE is assigned to the group numbered 2;
- the PRS occupies an RE, and the RE is used.
- the PRS occupies an RE, then the RE is assigned to the group with the number 2; on the subcarrier with the number 5, the PRS occupies an RE, then This RE is assigned to the group numbered 1; on the subcarrier number 4, the PRS occupies two REs, then the two REs are assigned to the group numbered 3; on the subcarriers numbered 3, the PRS occupies Two REs are assigned to the group numbered 1; on the subcarrier number 2, the PRS occupies an RE, and the RE is assigned to the number 3 If the PRS occupies an RE on the subcarrier numbered 1, the RE is assigned to the group with the number 1; on the subcarrier with the number 0, the PRS occupies an RE, and the RE is assigned to the number 3. Group.
- FIG. 9(a) to 9(c) show a case where PRSs are grouped according to the above manner when the subcarrier spacing is 240 kHz or 480 kHz.
- FIG. 9(a) is a schematic diagram showing a configuration in which PRS is divided into two groups when the subcarrier spacing is 240 kHz or 480 kHz according to one embodiment of the present disclosure
- FIG. 9(b) is a diagram showing one according to the present disclosure.
- FIG. 9(c) is a diagram showing dividing the PRS into four when the subcarrier spacing is 240KHZ or 480KHZ according to an embodiment of the present disclosure. Schematic diagram of the group configuration.
- the PRS occupies two REs on the subcarrier numbered 11, and the two REs are assigned to the number 0. Group; on the subcarrier numbered 10, the PRS occupies two REs, and the two REs are assigned to the group numbered 1: on the subcarrier numbered 9, the PRS occupies two REs, then the two The RE is assigned to the group with the number 0; on the subcarrier with the number 8, the PRS occupies one RE, then the RE is assigned to the group with the number 1; on the subcarrier with the number 7, the PRS occupies one RE, then Assign this RE to the group numbered 0; on the subcarrier numbered 6, the PRS occupies one RE, then the RE is assigned to the group numbered 1; on the subcarrier number 5, the PRS occupies two RE, the two REs are assigned to the group numbered 1; on the subcarriers numbered 4, the PRS occupies two RE
- the PRS occupies an RE on the subcarrier numbered 1
- the RE is assigned to the group with the number 1
- the PRS occupies an RE, and the RE is allocated to The group numbered 0.
- the PRS occupies two REs on the subcarrier numbered 11, and the two REs are assigned to the number 10 Group; on the subcarrier numbered 1, the PRS occupies two REs, and the two REs are assigned to the group numbered 1: on the subcarrier numbered 9, the PRS occupies two REs, then the two The RE is assigned to the group numbered 2; on the subcarrier numbered 8, the PRS occupies one RE, and the RE is assigned to the group with the number 0; on the subcarrier with the number 7, the PRS occupies one RE, then Assign this RE to the group numbered 1.
- the PRS occupies one RE, then the RE is assigned to the group numbered 2; on the subcarrier number 5, the PRS occupies two RE, the two REs are assigned to the group numbered 1; on the subcarriers numbered 4, the PRS occupies two REs, then the two REs are assigned to the group numbered 2; If the PRS occupies two REs on the subcarrier, the two REs are assigned to the group with the number 0. On the subcarrier with the number 2, the PRS occupies an RE, and the RE is assigned to the number. a group of 1; if the PRS occupies an RE on the subcarrier numbered 1, the RE is assigned to the group numbered 2; on the subcarrier numbered 0, the PRS occupies an RE, and the RE is allocated to The group numbered 0.
- the PRS occupies two REs on the subcarrier numbered 11, and the two REs are assigned to the number 0. Group; on the subcarrier numbered 10, the PRS occupies two REs, and the two REs are assigned to the group numbered 2; on the subcarriers numbered 9, the PRS occupies two REs, then the two RE is assigned to the group with the number 0; on the subcarrier with the number 8, the PRS occupies one RE, then the RE is assigned to the group with the number 2; on the subcarrier with the number 7, the PRS occupies one RE, then Assign this RE to the group numbered 0; on the subcarrier numbered 6, the PRS occupies one RE, then the RE is assigned to the group numbered 2; on the subcarrier number 5, the PRS occupies two RE, the two REs are assigned to the group with the number 1; on the subcarrier with the number 4, the PRS occupies two
- step S230 may include allocating one or more REs on the same OFDM symbol occupied by the PRS into the same group. That is, the OFDM symbols numbered 0 and the PRSs on the OFDM symbols numbered 13 can be sequentially assigned to different groups. That is, different groups of REs are orthogonal in the time domain, and REs in the same group can use the same time domain resources.
- FIG. 10(a) to 10(d) show three sets of cases in which PRSs are grouped according to the above manner under different subcarrier intervals.
- FIG. 10(a) is a schematic diagram showing a configuration in which PRSs are divided into three groups when the subcarrier spacing is 15 kHz or 30 kHz according to another embodiment of the present disclosure
- FIG. 10(b) is a diagram showing the disclosure according to the present disclosure.
- Another embodiment is a schematic diagram of a configuration in which PRS is divided into three groups when the subcarrier spacing is 60 kHz
- FIG. 10(c) is a diagram showing that PRS is divided into three groups when the subcarrier spacing is 120 kHz according to another embodiment of the present disclosure.
- FIG. 10(d) is a diagram showing a configuration in which PRSs are divided into three groups when the subcarrier spacing is 240 kHz or 480 kHz according to another embodiment of the present disclosure.
- the PRS occupies two REs on the OFDM symbol numbered 6, and the two REs are assigned to number 1.
- the PRS occupies two REs on the OFDM symbol numbered 5, and the two REs are assigned to the number 0. Group; on the OFDM symbol numbered 6, the PRS occupies two REs, and the two REs are assigned to the group numbered 1: on the OFDM symbol numbered 8, the PRS occupies two REs, and the two REs Assigned to the group numbered 0; PRS occupies two REs on the OFDM symbol numbered 9, assigns the two REs to the group numbered 1: on the OFDM symbol numbered 10, the PRS occupies two REs The two REs are assigned to the group numbered 2; the PRS occupies two REs on the OFDM symbol numbered 12, and the two REs are assigned to the group numbered 2, on the OFDM symbol numbered 13 The PRS occupies two REs and assigns the two REs to the group numbered 0.
- the PRS occupies two REs on the OFDM symbol numbered 5, and the two REs are assigned to the number 0. Group; on the OFDM symbol numbered 6, the PRS occupies two REs, and the two REs are assigned to the group numbered 1: on the OFDM symbol numbered 7, the PRS occupies two REs, and the two REs Assigned to the group numbered 2; the PRS occupies two REs on the OFDM symbol numbered 8, assigning the two REs to the group numbered 0; the PRS occupies two REs on the OFDM symbol numbered 9
- the two REs are assigned to the group numbered 1: the PRS occupies two REs on the OFDM symbol numbered 10, and the two REs are assigned to the group numbered 2; on the OFDM symbol numbered 12
- the PRS occupies two REs, and the two REs are assigned to the group numbered 2.
- the PRS occupies two REs on the OFDM symbol numbered 13
- the PRS occupies two REs on the OFDM symbol numbered 5, and the two REs are assigned to the number 0. Group; on the OFDM symbol numbered 6, the PRS occupies two REs, and the two REs are assigned to the group numbered 1: on the OFDM symbol numbered 7, the PRS occupies two REs, and the two REs Assigned to the group numbered 2; the PRS occupies two REs on the OFDM symbol numbered 8, assigning the two REs to the group numbered 0; the PRS occupies two REs on the OFDM symbol numbered 9
- the two REs are assigned to the group numbered 1: the PRS occupies two REs on the OFDM symbol numbered 10, and the two REs are assigned to the group numbered 2; on the OFDM symbol numbered 11
- the PRS occupies two REs, and the two REs are assigned to the group numbered 1.
- the PRS occupies two REs on the OFDM symbol numbered 12
- FIG. 10(a) to FIG. 10(d) one or more REs on the same OFDM symbol occupied by the PRS are allocated to the same group.
- Figures 10(a) - 10(d) are merely exemplary and not limiting.
- the case of dividing into two groups and four groups is also similar, and the disclosure does not repeat this.
- step S230 may include allocating one or more REs on the same subcarrier occupied by the PRS into different groups, and allocating one or more REs on the same OFDM symbol occupied by the PRS to In different groups. That is to say, the time domain location and the frequency domain location of multiple REs in the same group are orthogonal.
- FIG. 11(a) to 11(d) illustrate, in three groups, a case where PRSs are grouped according to the above manner at different subcarrier intervals.
- FIG. 11(a) is a schematic diagram showing a configuration in which PRS is divided into three groups when the subcarrier spacing is 15 kHz or 30 kHz according to still another embodiment of the present disclosure
- FIG. 11(b) is a diagram showing the disclosure according to the present disclosure.
- FIG. 11(c) is a diagram showing that PRS is divided into three groups when the subcarrier spacing is 120 kHz according to still another embodiment of the present disclosure.
- FIG. 11(d) is a diagram showing a configuration in which PRSs are divided into three groups when the subcarrier spacing is 240 kHz or 480 kHz according to still another embodiment of the present disclosure.
- the PRS occupies two REs on the OFDM symbol numbered 6, and the two REs are assigned to different groups; the PRS is on the OFDM symbol numbered 7. Two REs are occupied, and the two REs are assigned to different groups; on the OFDM symbol numbered 9, the PRS occupies two REs, and the two REs are assigned to different groups; in the OFDM symbol numbered 10
- the upper PRS occupies two REs, and the two REs are assigned to different groups; on the OFDM symbol numbered 12, the PRS occupies two REs, and the two REs are assigned to different groups; at number 13
- the PRS on the OFDM symbol occupies two REs, which are assigned to different groups.
- the PRS occupies two REs, and the two REs are assigned to different groups; on the subcarrier with number 9, the PRS occupies two REs, these two The RE is assigned to a different group; on the subcarrier numbered 4, the PRS occupies two REs, and the two REs are assigned to different groups; on the subcarrier numbered 3, the PRS occupies two REs, which Two REs are assigned to different groups. 11(b), 11(c), and 11(d) are also similar situations, and are not described herein again.
- one or more REs on the same OFDM symbol occupied by the PRS are allocated to different groups, and one or more of the same subcarriers occupied by the PRS are used.
- the REs are assigned to different groups.
- Figures 11(a) - 11(d) are merely exemplary and not limiting.
- the case of dividing into two groups and four groups is also similar, and the disclosure does not repeat this.
- n represents the number of the group
- ⁇ f represents the subcarrier spacing
- floor() represents the rounding down.
- the time domain location of the RE of a certain group may be determined according to the subcarrier spacing, and the frequency domain location of the RE of the group is determined according to the time domain location of the RE and the number of the group. Further, the frequency domain location of the RE of the group may be determined according to at least one of the following parameters: a physical layer cell identifier of a cell where the user equipment to be located is located; a bandwidth used for transmitting the PRS; and a downlink for transmission The bandwidth of the data.
- n represents the number of the group
- ⁇ f represents the subcarrier spacing
- floor() represents the rounding down.
- the time domain location of the RE of the group may be determined according to the subcarrier spacing and the number of the group, and the RE of the group is determined according to the time domain location of the RE and the number of the group.
- Frequency domain location Further, the frequency domain location of the RE of the group may be determined according to at least one of the following parameters: a physical layer cell identifier of a cell where the user equipment to be located is located; a bandwidth used for transmitting the PRS; and a downlink for transmission The bandwidth of the data.
- n represents the number of the group
- ⁇ f represents the subcarrier spacing
- floor() represents the rounding down.
- the time domain location of the RE of the group may be determined according to the subcarrier spacing and the number of the group, and the RE of the group is determined according to the time domain location of the RE and the number of the group.
- Frequency domain location Further, the frequency domain location of the RE of the group may be determined according to at least one of the following parameters: a physical layer cell identifier of a cell where the user equipment to be located is located; a bandwidth used for transmitting the PRS; and a downlink for transmission The bandwidth of the data.
- the designed PRSs may be grouped to be assigned to different network side devices that locate the user equipment. Thereby, multiple network side devices can be coordinated to locate the user equipment, which saves the positioning time.
- the grouped PRS can be used for beamforming and beam angle based positioning to make positioning more accurate. In this way, the PRS can be designed more rationally for the NR communication system and the positioning of the user equipment can be optimized.
- the position of the PRS in order to make the design of the PRS more diverse and rationalized, the position of the PRS can also be corrected after grouping the PRS as described above.
- FIG. 12 is a flowchart illustrating a method of grouping PRSs and correcting the position of a PRS, according to an embodiment of the present disclosure.
- step S250 before step S240, the position of the grouped PRS is corrected.
- step S240 the PRSs of the plurality of groups are respectively allocated to the plurality of network side devices.
- the PRS allocated to the plurality of network side devices may be the PRS after the position correction.
- step S250 may include setting an offset parameter for correcting the position of the PRS.
- the offset parameter may be used to offset the frequency domain location of the RE of the PRS, that is, offset the frequency domain position of the RE of the group from the offset parameter subcarriers of the group, and thus the location of the PRS Correction or offset can also be referred to as frequency shifting the position of the PRS.
- the offset parameter may include a group based offset parameter and/or a user equipment based offset parameter.
- a group based offset parameter and/or a user equipment based offset parameter.
- the offset parameter includes a group-based offset parameter; as shown in the formula (23), the offset parameter includes an offset parameter based on the user equipment; as shown in the formula (24), the offset parameter Includes group based offset parameters and user device based offset parameters.
- the offset parameter after determining the frequency domain position k of the RE occupied by the PRS of each group as described above, it may be used. To correct the value of k, for example, The value is added to the value of k.
- group-based offset parameters may be determined according to the number n of the group That is to say, the position of the grouped PRS can be corrected according to the number of the group. For example, it can be calculated by the following formula
- the function of the group number n is a variable, including but not limited to a linear function, a quadratic function, an exponential function, a power function, etc., which is not limited in this disclosure.
- the RE of the different group may generate a collision after the offset of the frequency domain position, and therefore the formula (25) may also be used. Further corrections are shown as shown in the following formula (26):
- 13 and 14 illustrate a configuration diagram of group-based frequency shifting of PRS locations, in accordance with an embodiment of the present disclosure.
- Group-based offset parameter for group numbered 1 Group-based offset parameter for group number 2
- the frequency domain position of the RE occupied by the PRS of the group numbered 0 is shifted upward by one subcarrier, and the number of PRSs of the group numbered 1 is occupied.
- the frequency domain location of the RE moves up 2 subcarriers, and the frequency domain location of the RE occupied by the PRS of the group numbered 2 moves up 3 subcarriers, and the frequency domain location of the RE occupied by the PRS of the group numbered 3 Moved 4 subcarriers up.
- the position of the conflicting RE does not occur, and therefore p n0 of each group is 0.
- Group-based offset parameter for group numbered 1 Group-based offset parameter for group number 2
- the frequency domain position of the RE occupied by the PRS of the group numbered 0 has not moved, and the frequency of the RE occupied by the PRS of the group numbered 1
- the domain location moves up 2 subcarriers.
- the frequency domain of the RE occupied by the PRS of group 2 moves up 4 subcarriers, and the frequency domain of the RE occupied by the PRS of group 3 moves up 6 Subcarriers.
- the position of the conflicting RE does not occur, and therefore p n0 of each group is 0.
- the user equipment based offset parameter assigned to a certain network side device may be determined according to at least one of the following parameters: The quality of the link between the network side device and the user equipment; and the identifier of the user equipment.
- the link quality between the network side device and the user equipment may include the link quality between the network side device and the user equipment on each subcarrier of the RB. That is to say, the location of the grouped PRS can be corrected according to the link quality between the network side device and the user equipment and/or the identifier of the user equipment. That is, there are the following formulas (27)-(29):
- the p UEn indicates an offset parameter related to the link quality between the network side device and the user equipment
- the p RNTI indicates an offset parameter related to the identifier of the user equipment.
- the user equipment may be determined according to the identifier of the user equipment, including but not limited to RNTI (Radio Network Tempory Identity).
- RNTI Radio Network Tempory Identity
- Offset parameter the p RNTI may be a function that takes the identity of the user equipment as a variable, and the present disclosure does not limit the type of the function.
- the identity of the user equipment is not associated with each group, the offset parameters based on the user equipment are the same for different groups.
- FIG. 15 is a configuration diagram illustrating UE-based frequency shifting of a PRS location, according to an embodiment of the present disclosure.
- the frequency domain positions of the REs occupied by the PRSs of the numbers 0, 1, 2, and 3 are all shifted upward by 4 subcarriers.
- the position of the conflicting RE does not occur, and therefore p n0 of each group is 0.
- the user equipment based offset parameter may be determined according to the link quality on each subcarrier between the network side device and the user equipment. Further, the RE occupied by the PRS can be moved to the subcarrier with better link quality.
- FIG. 16 is a configuration diagram illustrating UE-based frequency shifting of a PRS location, according to an embodiment of the present disclosure.
- the user equipment based offset parameter is determined based on the link quality between the network side device and the user equipment on each subcarrier. Further, it is assumed that the link quality between each network side device and the user equipment is similar, and the link quality on the subcarriers numbered 6-11 is greater than the link quality on the subcarriers numbered 0-5.
- the link quality on the subcarriers numbered 6-11 is greater than the link quality on the subcarriers numbered 0-5.
- the REs occupied by the PRSs of the groups numbered 0, 1, 2, and 3 are all moved to the subcarriers numbered 6-11.
- the position of the conflicting RE does not occur, and therefore p n0 of each group is 0.
- the offset parameter based on the user equipment may be determined according to the link quality between the network side device and the user equipment and the identity of the user equipment. That is to say, the offset may be first performed based on the identifier of the user equipment, and then the RE occupied by the PRS is moved to the subcarrier with better link quality.
- FIG. 17 is a configuration diagram illustrating UE-based frequency shifting of a PRS location, according to an embodiment of the present disclosure.
- the RE occupied by the PRS of each group is moved to the subcarriers 6-11. In the example shown in FIG. 17, the position of the conflicting RE does not occur, and therefore p n0 of each group is 0.
- Group-based offset parameters are described in detail as described above And user equipment based offset parameters According to an embodiment of the present disclosure, the group-based offset parameter and the user equipment-based offset parameter may also be combined to implement the correction of the PRS position, which is not further described in this disclosure.
- the offset of the frequency domain position of the grouped PRS can be performed using the offset parameter.
- Such offset parameters may include a group based offset parameter and a user equipment based offset parameter, wherein the group based offset parameter is related to the group number, and the user equipment based offset parameter is independent of the group number, and Information related to the user equipment, such as the identity of the user equipment and/or the quality of the link on each subcarrier between the network side equipment and the user equipment. That is, according to an embodiment of the present disclosure, the location of the PRS allocated to the network side device may be modified according to at least one of the following parameters: link quality between the network side device and the user equipment; identifier of the user equipment ; and the number of the group. In this way, the design of the PRS can be enriched, and the design of the PRS can be more diversified. At the same time, the information related to user equipment and groups is also considered in the design of PRS, which makes the design of PRS more reasonable.
- a PRS for an NR communication system can be designed according to different subcarriers. Further, the PRS may be divided into a plurality of groups to be allocated to a plurality of network side devices for locating the user equipment. In addition, in order to make the design of the PRS more reasonable and versatile, the position of the PRS can also be corrected. In this way, the PRS can be designed more rationally for the NR communication system and the positioning of the user equipment can be optimized.
- FIG. 18 is a block diagram showing an example of a configuration of an electronic device 1800 according to an embodiment of the present disclosure.
- the electronic device 1800 herein may be a network side device in a wireless communication system, and particularly may be a wireless communication system, such as a base station device or a TRP in an NR communication system.
- the electronic device 1800 can include a communication unit 1810 and a computing unit 1820.
- various units of the electronic device 1800 may be included in the processing circuit. It should be noted that the electronic device 1800 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
- the communication unit 1810 may acquire a number in a group of electronic devices 1800 that are composed of electronic devices for locating the user device.
- the electronic devices that locate the user equipment may all be network side devices, and the group includes a plurality of such network side devices.
- the computing unit 1820 may determine a time-frequency location for the PRS of the electronic device 1800 according to the number of the electronic device 1800 in the group.
- the electronic device 1800 may determine a time-frequency position of a PRS for the electronic device 1800 according to a number in a group consisting of electronic devices that locate the user device, thereby causing The electronic devices can cooperate to locate the user equipment, saving time in positioning.
- a group of electronic devices that locate a user device and a number of each electronic device in a group may be determined by a positioning server or an electronic device that provides a service to the user device.
- the location server includes, but is not limited to, an E-SMLC (Evolved Serving Mobile Location Center).
- the communication unit 1810 may receive the number of the electronic device 1800 in the group and other information about the group from the positioning server.
- other electronic devices in the group may also receive the number of other electronic devices in the group and other information about the group from the location server.
- the electronic device 1800 when the electronic device 1800 is not a network side device that provides a service for the user device, the electronic device 1800 may also receive the electronic device from other electronic devices in the group, that is, network side devices that provide services for the user device. 1800 The number in the group and other information about the group. In addition, other electronic devices in the group other than the electronic device 1800 and the network side device serving the user device may also receive the number of other electronic devices in the group and other information about the group from the network side device that provides the service for the user device. .
- the electronic device 1800 when the electronic device 1800 is a network side device that provides a service to the user device, the electronic device 1800 may determine a group that locates the user device and a number of each electronic device in the group.
- the electronic device 1800 further includes a determining unit 1830 for determining a group that locates the user equipment and a number of each electronic device in the group.
- the determining unit 1830 may determine a group consisting of electronic devices for locating the user equipment from among the plurality of network side devices.
- the plurality of network side devices may be network side devices within a certain range around the user equipment, and the determining unit 1830 may select a plurality of network side devices from the plurality of network side devices to form the foregoing group.
- the electronic device 1800 is a network side device that provides services to user devices, the electronic device 1800 is also included in the group.
- the determining unit 1830 may select a group from a plurality of network side devices according to at least one of the following parameters: link quality between each of the plurality of network side devices and the user equipment The location of each network side device; the coverage of each network side device; and the antenna array information of each network side device.
- each network side device may report information such as its location, coverage, and antenna array to the electronic device 1800, so that the electronic device 1800 acquires the information.
- the user equipment may send a reference signal to multiple network side devices around the user equipment, so that each network side device measures parameters such as signal to noise ratio or power of the received signal by using the reference signal to determine each network side device and user. The quality of the link between devices.
- each network side device may also report the measured link quality to the electronic device 1800.
- the electronic device 1800 may select some network side devices with better link quality from the plurality of network side devices as the foregoing group, and may further determine one or more of the foregoing parameters to determine the group. Network side device.
- the network side devices in the group may be numbered according to a certain rule, for example, numbers 0, 1, ..., N-1.
- the number of the electronic device 1800 in the group and the number of other electronic devices in the group in the group can be determined.
- the location server determines a group consisting of the network side devices that are located for the user equipment, a similar manner to the foregoing embodiment may also be adopted, and the disclosure is not described herein again.
- each network side device in the group needs to know the time-frequency location of the PRS for the network side device, and the user equipment needs to know the time-frequency location of the PRS of all the network-side devices in the group.
- each network side device in the group may separately calculate a PRS for the network side device according to the number of the network side device in the group.
- the time-frequency location may also be calculated by the network-side device serving the user equipment for the time-frequency location of the PRS for each network-side device in the group.
- the time-frequency location of the PRS for each network-side device may be separately calculated by the user equipment according to the number of each network-side device in the group, or may be acquired from each network-side device for each The time-frequency location of the PRS of the network-side device may also acquire the time-frequency location of the PRS for each network-side device in the group from the network-side device that provides the service for the user equipment.
- the electronic device 1800 may transmit the number of the other electronic device in the group to other electronic through the communication unit 1810.
- the device is used by other electronic devices to determine the time-frequency location of the PRS for other electronic devices based on the number of other electronic devices in the group. That is to say, each network side device separately calculates the time-frequency position of the PRS for the network side device. Since the electronic device 1800 only needs to send the number of other electronic devices to other electronic devices, the signaling overhead can be saved.
- the calculating unit 1820 may further determine a time frequency of the PRS for the other electronic device according to the number of the other electronic devices in the group.
- Location, and communication unit 1810 can transmit the time-frequency location of the PRS for other electronic devices to other electronic devices. That is to say, the electronic device 1800 can calculate the time-frequency position of the PRS of all the network-side devices in the group, thereby reducing the calculation amount of other network-side devices.
- the communication unit 1810 may also transmit the number of the electronic device in the group and the number of the other electronic device in the group to the user.
- the communication unit 1810 may also transmit a time-frequency location of the PRS for the electronic device 1800 to the user equipment.
- other electronic devices in the group other than the electronic device 1800 may also transmit the time-frequency locations of the PRSs for other electronic devices to the user devices.
- the electronic device 1800 may also send the time-frequency position of the PRS of all the network-side devices in the group to the user device.
- the group parameter may also be sent to the required device, and the required device may include A network side device serving the user equipment, a network side device other than the network side device serving the user equipment in the group, a user equipment, and the like, and calculating a time frequency position of the corresponding PRS for the equipment for these needs.
- the manner of sending may be sent by broadcast or by unicast.
- the group parameters may include, for example, identification information of all network side devices included in the group and parameters related to the group such as the number of each network side device.
- the offset parameter may also be sent to the required device for use in the These required devices calculate the time-frequency position of the corresponding PRS.
- the method of sending may be sent by broadcast or by unicast.
- the offset parameter may include, for example, the group-based offset parameter and the user equipment-based offset parameter described in the foregoing.
- the positioning time slot configuration parameter may also be sent to the required device to The equipment used for these needs performs the configuration of the positioning slot.
- the method of sending may be sent by broadcast or by unicast.
- the positioning slot configuration parameter may include, for example, a positioning initial slot, a positioning continuous slot length, a beam scanning direction, a beam scanning period, and the like, and positioning related parameters.
- FIGS. 19-24 are signaling flow diagrams illustrating determining a location of a PRS for each network side device, in accordance with an embodiment of the present disclosure.
- TRP1 is a TRP serving the UE
- the finally determined group that is located for the UE includes TRP1 and TRP2.
- FIG. 19 to FIG. 24 only an example of initiating a location request by the UE is shown. In fact, a location request may be initiated by an MME (Mobility Management Entity), which is not embodied in the figure. Example.
- MME Mobility Management Entity
- step S1901 a positioning request is initiated by the UE, and the request is sent to the E-SMLC via the MME.
- step S1902 the positioning request parameter is exchanged between the UE and the E-SMLC.
- step S1903 the E-SMLC selects TRP1 and TRP2 from the plurality of TRPs as the TRP group that locates the UE, and determines the numbers of TRP1 and TRP2 in the group.
- step S1904 the E-SMLC transmits the group parameters to TRP1, TRP2, and the UE.
- the E-SMLC may also send offset parameters and/or positioning slot configuration parameters to TRP1, TRP2, and UE.
- step S1905 TRP1 determines the time-frequency location of the PRS for TRP1 according to the number of TRP1 in the group, and TRP2 determines the time-frequency location of the PRS for TRP2 according to the number of TRP2 in the group, and the UE according to The number of TRP1 in the group determines the time-frequency location of the PRS for TRP1, and determines the time-frequency location of the PRS for TRP2 based on the number of TRP2 in the group. It can be seen that, in the embodiment shown in FIG.
- the numbers in the group and the group are determined by the E-SMLC, and the time-frequency positions of the PRSs for the network-side devices are respectively calculated by each network-side device in the group. And the time-frequency location of the PRS of each network side device in the user group is calculated by the user equipment.
- step S2001 a positioning request is initiated by the UE, and the request is sent to the E-SMLC via the MME.
- step S2002 the positioning request parameters are exchanged between the UE and the E-SMLC.
- step S2003 the E-SMLC selects TRP1 and TRP2 from the plurality of TRPs as the TRP group that locates the UE, and determines the numbers of TRP1 and TRP2 in the group.
- step S2004 the E-SMLC transmits the group parameters to TRP1 and TRP2.
- the E-SMLC may also send offset parameters and/or positioning slot configuration parameters to TRP1 and TRP2.
- step S2005 TRP1 determines the time-frequency position of the PRS for TRP1 based on the number of TRP1 in the group, and TRP2 determines the time-frequency position of the PRS for TRP2 according to the number of TRP2 in the group.
- step S2006 TRP1 transmits the time-frequency location of the PRS for TRP1 to the UE.
- group parameters and positioning slot configuration parameters may also be sent.
- step S2007 TRP2 transmits the time-frequency location of the PRS for TRP2 to the UE.
- group parameters and positioning slot configuration parameters may also be sent.
- group parameters and positioning slot configuration parameters may also be sent to the UE by only one of TRP1 and TRP2, and preferably group parameters and positioning slot configuration parameters may be sent to the UE for TRP1.
- the number in the group and the group is determined by the E-SMLC, and the time-frequency position of the PRS for the network-side device is calculated by each network-side device in the group, And the time-frequency location of the PRS of each network side device is sent by each network side device to the user equipment.
- step S2101 a positioning request is initiated by the UE, and the request is sent to the E-SMLC via the MME.
- the positioning request parameter is exchanged between the UE and the E-SMLC.
- step S2103 the E-SMLC selects TRP1 and TRP2 from the plurality of TRPs as the TRP group that locates the UE, and determines the numbers of TRP1 and TRP2 in the group.
- step S2104 the E-SMLC sends the group parameters to TRP1.
- the E-SMLC may also send offset parameters and/or positioning slot configuration parameters to TRP1.
- step S2105 TRP1 determines the time-frequency position of the PRS for TRP1 based on the number of TRP1 in the group, and determines the time-frequency position of the PRS for TRP2 based on the number of TRP2 in the group.
- step S2106 TRP1 transmits the time-frequency position of the PRS for TRP1 and the time-frequency position of the PRS for TRP2 to the UE.
- group parameters and positioning slot configuration parameters may also be sent.
- step S2107 TRP1 transmits the time-frequency position of the PRS for TRP2 to TRP2.
- group parameters and positioning slot configuration parameters may also be sent. It can be seen that in the embodiment shown in FIG.
- the number in the group and the group is determined by the E-SMLC, and the network side device serving the user equipment calculates the PRS for each network side device in the group.
- the time-frequency location sends the time-frequency location of the PRS of each network-side device to the user equipment, and transmits the time-frequency location of the PRS for other network-side devices to other network-side devices.
- step S2201 a positioning request is initiated by the UE, and the request is sent to the E-SMLC via the MME.
- step S2202 the positioning request parameters are exchanged between the UE, TRP1, and E-SMLC.
- step S2203 TRP1 selects TRP1 and TRP2 from a plurality of TRPs as a TRP group that locates the UE, and determines the numbers of TRP1 and TRP2 in the group.
- step S2204 TRP1 transmits the group parameters to TRP2 and the UE.
- TRP1 may also send offset parameters and/or positioning slot configuration parameters to TRP2 and the UE.
- the TRP1 determines the time-frequency position of the PRS for the TRP1 according to the number of the TRP1 in the group, and the TRP2 determines the time-frequency position of the PRS for the TRP2 according to the number of the TRP2 in the group, and the UE according to the UE
- the number of TRP1 in the group determines the time-frequency location of the PRS for TRP1, and determines the time-frequency location of the PRS for TRP2 based on the number of TRP2 in the group. It can be seen that, in the embodiment shown in FIG.
- the number in the group and the group is determined by the network side device that provides the service for the user equipment, and each network side device in the group separately calculates the number for the network side device.
- the time-frequency position of the PRS, and the time-frequency location of the PRS of each network-side device in the user group is calculated by the user equipment.
- step S2301 a positioning request is initiated by the UE, and the request is sent to the E-SMLC via the MME.
- step S2302 the positioning request parameters are exchanged between the UE, TRP1, and E-SMLC.
- step S2303 TRP1 selects TRP1 and TRP2 from the plurality of TRPs as the TRP group that locates the UE, and determines the numbers of TRP1 and TRP2 in the group.
- step S2304 TRP1 sends the group parameters to TRP2.
- TRP1 may also send offset parameters and/or positioning slot configuration parameters to TRP2.
- step S2305 TRP1 determines the time-frequency position of the PRS for TRP1 based on the number of TRP1 in the group, and TRP2 determines the time-frequency position of the PRS for TRP2 based on the number of TRP2 in the group.
- step S2306 TRP1 transmits the time-frequency location of the PRS for TRP1 to the UE.
- group parameters and positioning slot configuration parameters may also be sent.
- step S2307 TRP2 transmits the time-frequency position of the PRS for TRP2 to the UE.
- group parameters and positioning slot configuration parameters may also be sent.
- group parameters and positioning slot configuration parameters may also be sent to the UE by only one TRP1 and TRP2.
- the group parameter and the positioning slot configuration parameter may be sent to the UE for TRP1.
- the number in the group and the group is determined by the network side device that provides the service for the user equipment, and each network side device in the group separately calculates the number for the network side device.
- the time-frequency location of the PRS, and the time-frequency location of the PRS for the network-side device is transmitted by each network-side device to the user equipment.
- step S2401 a positioning request is initiated by the UE, and the request is sent to the E-SMLC via the MME.
- step S2402 the positioning request parameters are exchanged between the UE, TRP1, and E-SMLC.
- step S2403 TRP1 selects TRP1 and TRP2 from a plurality of TRPs as a TRP group that locates the UE, and determines the numbers of TRP1 and TRP2 in the group.
- step S2404 TRP1 determines the time-frequency position of the PRS for TRP1 based on the number of TRP1 in the group, and determines the time-frequency position of the PRS for TRP2 based on the number of TRP2 in the group.
- step S2405 TRP1 transmits the time-frequency position of the PRS for TRP1 and the time-frequency position of the PRS for TRP2 to the UE.
- group parameters and positioning slot configuration parameters may also be sent.
- step S2406 TRP1 transmits the time-frequency position of the PRS for TRP2 to TRP2.
- group parameters and positioning slot configuration parameters may also be sent.
- the number in the group and the group is determined by the network side device serving the user equipment, and the network side device serving the user equipment is calculated for each of the groups.
- the time-frequency location of the PRS of the network-side device sends the time-frequency location of the PRS for each network-side device to the user equipment, and transmits the time-frequency location of the PRS for the other network-side device to the other network-side device.
- the positioning server or the network side device that provides the service to the user equipment may determine the beam scanning direction of each of the network side devices in the group.
- the beam scanning directions of each network side device may be different, that is, the beam scanning planes of the network side devices intersect at two.
- the network side device with the same beam scanning direction may also exist, which is not limited in this disclosure.
- FIG. 25 is a schematic diagram showing beam scanning directions of two network side devices according to an embodiment of the present disclosure.
- the group includes two network side devices, and the beam scanning direction of the network side device on the left side is horizontal, that is, the plane formed by the scanned beam is parallel to the ground, and the beam scanning direction of the network side device on the right side is In the vertical direction, the plane composed of the scanned beams is perpendicular to the ground.
- the positioning server or the network side device that provides the service to the user equipment may also determine a beam scanning period of each of the network side devices in the group.
- the positioning server or the network side device serving the user equipment may determine the beam scanning period according to the beam scanning direction of the network side device. For example, the position of the user equipment in the horizontal direction changes relatively faster than the vertical direction, so the beam scanning period in the horizontal direction can be set smaller than the beam scanning period in the vertical direction.
- the group composed of the network side devices and the body of the number of each network side device in the group may be a network side device serving the user device, or may be a positioning server.
- the body that calculates the time-frequency location of the PRS for each network-side device may be a network-side device that provides services for the user equipment, or may be other network-side devices of the network-side device that provides services for the user equipment, and It can be a user device. Regardless of which of the above devices is calculated for the main body of the time-frequency position of the PRS, the calculation methods are the same, and the calculation method will be described in detail below using the electronic device 1800 as an example.
- the computing unit 1820 may determine the time-frequency location of the PRS in the RB according to the subcarrier spacing of the RB and the number of the electronic device 1800 in the group.
- the time-frequency location of the PRS includes a time domain location and a frequency domain location of each of the plurality of REs occupied by the PRS.
- the computing unit 1820 may determine the time domain location of the PRS based on the subcarrier spacing. Further, the computing unit 1820 can also determine the time domain location of the PRS based on the subcarrier spacing and the number of the electronic device 1800 in the group. Further, according to an embodiment of the present disclosure, the calculating unit 1820 may further determine a frequency domain location of the PRS according to a time domain location of the PRS and a number of the electronic device in the group.
- the computing unit 1820 may determine a time domain location of the PRS such that each of the PDCCH, DMRS, and CSI-RS in the PRS and the RB does not overlap in the time domain.
- the computing unit 1820 may also determine a time-frequency location of the PRS such that: multiple REs occupied by the PRS are located in different OFDM symbols; and/or multiple REs occupied by the PRS are located in different sub-carriers.
- multiple REs occupied by the PRS may be located in different OFDM symbols, that is, multiple REs occupied by the PRS are orthogonal in the time domain, and multiple REs may be used. There are two or more REs located on the same subcarrier.
- multiple REs occupied by the PRS may be located in different subcarriers, that is, multiple REs occupied by the PRS are orthogonal in the frequency domain, and multiple REs may be used. There are two or more REs located on the same OFDM symbol.
- a plurality of REs occupied by the PRS may also be located in different OFDM symbols and located in different subcarriers. That is to say, multiple REs occupied by the PRS are orthogonal in the time domain and in the frequency domain.
- the calculation unit 1820 can calculate the time domain position and the frequency domain position of the plurality of REs occupied by the PRS, for example, by the equations (5)-(21) in the foregoing.
- the calculating unit 1820 may determine a time-frequency location of the PRS according to at least one of the following parameters: a physical layer cell identifier of a cell in which the user equipment is located; a bandwidth for transmitting the PRS; The bandwidth of the downstream data and the number of electronic devices in the group.
- the time-frequency position of the corrected PRS can also be determined based on the offset parameter.
- the offset parameters may include, for example, user equipment based offset parameters and group based offset parameters.
- Computing unit 1820 can determine group based offset parameters based on the number of electronic devices 1800 in the group. Further, the computing unit 1820 can determine the user equipment based offset parameter based on the link quality on each subcarrier between the electronic device 1800 and the user equipment and/or the identity of the user equipment. That is, the calculating unit 1820 may further determine a time-frequency position of the modified PRS according to at least one of the following parameters: a number of the electronic device 1800 in the group, and a sub-carrier between the electronic device 1800 and the user equipment. Link quality; and the identity of the user equipment.
- the calculation unit 1820 can also calculate the time domain position and the frequency domain position of the plurality of REs occupied by the PRS, for example, by the formulas (22)-(32) in the foregoing.
- the electronic device 1800 may further include a scanning unit 1840 for performing beam scanning on the user equipment by using the PRS for the electronic device 1800, so that the user equipment obtains the beam of the electronic device 1800.
- the scanning unit 1840 can perform a beam scanning process according to positioning slot configuration parameters configured for the electronic device 1800.
- the electronic device 1800 can determine the time-frequency position of the PRS for the electronic device 1800 according to the number in the group of the electronic devices that locate the user device, thereby causing the electronic device 1800 It can cooperate with other electronic devices in the group to locate the user equipment, saving time for positioning.
- the grouped PRS can be used for beamforming and beam angle based positioning to make positioning more accurate. In this way, the PRS can be designed more rationally for the NR communication system and the positioning of the user equipment can be optimized.
- FIG. 26 is a block diagram showing a structure of a user equipment 2600 in a wireless communication system according to an embodiment of the present disclosure.
- the user equipment 2600 can include a communication unit 2610 and an angle determination unit 2620.
- each unit of the user equipment 2600 may be included in a processing circuit. It should be noted that the user equipment 2600 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
- the communication unit 2610 may respectively receive PRSs from a plurality of network side devices, wherein a time-frequency location of a PRS for each network side device is a group composed of a plurality of network side devices according to the network side device The number in the number is determined.
- the angle determining unit 2620 may determine beam emission angle information of each network side device according to a PRS received from each network side device. For example, the angle determining unit 2620 may measure the PRS sent by the network side device on the corresponding RE according to the time-frequency position of the PRS for the network side device, so that the beam transmitting angle information of the network side device may be acquired.
- the user equipment 2600 can determine beam transmission angle information of each network side device according to the PRS received from the multiple network side devices, and the beam transmission angle information can be used for the user equipment 2600. Positioning. In this way, beam angle based positioning can be achieved, resulting in more accurate positioning.
- the user equipment 2600 may further include a positioning unit 2630 for determining a location of the user equipment 2600 according to beam emission angle information of each network side device. That is, the location of the user device 2600 can be determined by the user device 2600.
- the location of the user equipment 2600 can be calculated according to any method known in the art, which is not limited in the disclosure.
- the communication unit 2610 may also transmit beam transmission angle information of each network side device to the positioning server for the positioning server to determine the location of the user device 2600.
- the location server includes, but is not limited to, an E-SMLC. That is, the location of the user device 2600 can be determined by the location server.
- the location server obtains the beam transmission angle information of each network side device, the location of the user equipment 2600 can be calculated according to any method known in the art, which is not limited in this disclosure.
- the user equipment 2600 may further include a computing unit 2650 for calculating a time-frequency location of the PRS of each network side device.
- the computing unit 2650 may determine a time-frequency location of a PRS for each network-side device according to a number in the group of each of the plurality of network-side devices. Further, the communication unit 2610 may receive the number of each network side device in the group from a network side device or a positioning server that provides a service to the user equipment. The specific calculation method has been detailed in the foregoing, and will not be described again here.
- the communication unit 2610 may separately receive a time-frequency location of a PRS for the network-side device from each of the plurality of network-side devices.
- the communication unit 2610 may also receive a time-frequency location of a PRS for each network-side device in the group from a network-side device that provides service to the user device 2600.
- the user equipment 2600 may calculate a time-frequency location of a PRS for each network side device, and may also receive a time for a PRS of the network side device from each network side device, respectively. At the frequency location, the time-frequency location of the PRS for each network-side device in the group may also be received from the network-side device serving the user equipment 2600.
- the user equipment 2600 may further include a scanning unit 2640, configured to perform beam scanning on multiple network side devices, for the network side device to acquire beam transmission angle information of the user equipment.
- the beam transmission angle information of the user equipment may include beam transmission angle information of the user equipment for each network side device.
- the beam transmission angle information of the user equipment of a certain network side device may further include beam transmission angle information in multiple scanning directions.
- the network side device may send the acquired beam transmission angle information of the user equipment to the user equipment 2600.
- the positioning unit 2630 may determine the location of the user equipment 2600 according to the beam transmission angle information of each network side device and the beam transmission angle information of the user equipment.
- the communication unit 2610 may also send the beam transmission angle information of the user equipment sent by the network side device to the positioning server, where the positioning information is based on beam emission angle information of each network side device and beam emission angle information of the user equipment. The location of the user device 2600 is determined.
- the user equipment 2600 or the positioning server may determine the location of the user equipment 2600 based on the beam transmission angle information of each network side device and the beam transmission angle information of the user equipment according to any method known in the art, below. Give a non-limiting example.
- the beam scanning direction of TRP1 is horizontal and the beam scanning direction of TRP2 is vertical.
- the UE can obtain the beam emission angle of TRP1 as ⁇ 1 and the beam emission angle of TRP2 is ⁇ 1 .
- the beam transmission angle of the four UEs can be acquired by the beam scanning process of the UE: the horizontal transmission angle ⁇ 2 of the UE for TRP1; the vertical transmission angle ⁇ 2 of the UE for TRP1; and the horizontal emission angle ⁇ 3 of the UE for TRP2; And the vertical emission angle ⁇ 3 of the UE for TRP2.
- the beam transmission angles of the first two UEs are acquired by the TRP1 and sent to the UE, and the beam transmission angles of the latter two UEs are acquired by the TRP2 and sent to the UE.
- the UE or the positioning server may calculate the position of the UE by triangulation, first calculate the two position coordinates by the following formula: with
- (x 1 , y 1 , z 1 ), (x 1 , y 1 , z 1 ) represent the three-dimensional coordinates of TRP1 and TRP2, respectively.
- the final position of the UE can be calculated by the following formula using the weighted average method.
- ⁇ 1 and ⁇ 2 are weighting coefficients, which may be respectively proportional to the maximum received signal to noise ratio at TRP1 and TRP2 when the UE performs beam scanning.
- multiple network side devices can perform beam scanning on the user equipment at the same time to obtain beam transmission angle information of the network side device, and the user equipment can also perform beam scanning on multiple network side devices to obtain Beam emission angle information of the user equipment. In this way, the positioning accuracy of the user equipment can be further improved.
- the beam scanning of the network side device and the beam scanning of the user equipment may be performed in a TDD manner, and the beam scanning of the network side device and the beam scanning of the user equipment may be performed in an FDD manner.
- FIG. 27(a) is a signaling flowchart illustrating that a user equipment and a network side device respectively perform beam scanning in a TDD mode, according to an embodiment of the present disclosure.
- TRP1 and TRP2 perform beam scanning to the UE.
- the UE performs beam scanning to TRP1 and TRP2.
- the beam scanning of these two steps is performed at the same frequency at different times.
- FIG. 27(b) is a signaling flowchart illustrating that a user equipment and a network side device respectively perform beam scanning in an FDD mode, according to an embodiment of the present disclosure.
- TRP1 and TRP2 perform beam scanning to the UE.
- the UE performs beam scanning on TRP1 and TRP2.
- the beam scanning of these two steps is performed at different frequencies at the same time.
- the beam transmission angle information of each network side device may be determined according to the PRS received from the plurality of network side devices, and such beam transmission angle information may be used to locate the user equipment 2600. .
- beam angle based positioning can be achieved, resulting in more accurate positioning.
- the user equipment 2600 can also perform beam scanning on multiple network side devices, thereby further improving the accuracy of positioning.
- the electronic device 1800 may serve as a network side device, that is, the electronic device 1800 may provide a service to the user device 2600, and thus all embodiments related to the electronic device 1800 described in the foregoing are applicable thereto.
- a wireless communication method performed by the electronic device 1800 as a network side device in the wireless communication system according to an embodiment of the present disclosure will be described in detail next.
- FIG. 28 is a flowchart illustrating a wireless communication method performed by an electronic device 1800 as a network side device in a wireless communication system, according to an embodiment of the present disclosure.
- step S2810 the number in the group consisting of the electronic devices for positioning the user equipment is acquired.
- step S2820 the time-frequency position of the positioning reference signal PRS for the electronic device is determined according to the number of the electronic device in the group.
- the numbering of the acquiring electronic device in the group consisting of the electronic device for locating the user device may include receiving the number of the electronic device in the group from the positioning server or other electronic devices in the group.
- the numbering of the acquiring electronic device in the group consisting of the electronic device for positioning the user equipment may include: determining, by the plurality of network side devices, a group of the electronic device for positioning the user equipment; and determining The number of the electronic device in the group and the number of other electronic devices in the group in the group.
- determining, by the plurality of network side devices, the group consisting of the electronic devices for positioning the user equipment may include selecting a group from the plurality of network side devices according to at least one of the following parameters: among the plurality of network side devices The quality of the link between each network side device and the user equipment; the location of each network side device; the coverage of each network side device; and the antenna array information of each network side device.
- the method further comprises: transmitting the numbers of the other electronic devices in the group to the other electronic devices for the other electronic devices to determine the time-frequency locations of the PRSs for the other electronic devices according to the numbers of the other electronic devices in the group.
- the method further comprises: determining a time-frequency location of the PRS for the other electronic device according to the number of the other electronic devices in the group; and transmitting the time-frequency position of the PRS for the other electronic device to the other electronic device.
- the method further comprises: transmitting the number of the electronic device in the group and the number of the other electronic device in the group to the user device, for the user device to determine the time-frequency position of the PRS for each electronic device in the group .
- the method further comprises: transmitting a time-frequency location of the PRS for the electronic device to the user equipment.
- determining the time-frequency location of the positioning reference signal PRS for the electronic device comprises determining the time-frequency position of the PRS in the RB according to the sub-carrier spacing of the resource block RB and the number of the electronic device in the group.
- determining the time-frequency location of the positioning reference signal PRS for the electronic device further comprises: determining a time domain location of the PRS according to the subcarrier spacing; and determining a frequency of the PRS according to the time domain location of the PRS and the number of the electronic device in the group Domain location.
- determining a time-frequency location of the positioning reference signal PRS for the electronic device comprises: determining a time domain location of the PRS such that a physical downlink control channel PDCCH, a demodulation reference signal DMRS, and a channel state information reference signal CSI in the PRS and the RB Each of the -RSs does not overlap in the time domain.
- determining a time-frequency location of the positioning reference signal PRS for the electronic device comprises: determining a time-frequency location of the PRS such that: the plurality of resource elements RE occupied by the PRS are located in different orthogonal frequency division multiplexing OFDM symbols; and/ Or multiple REs occupied by the PRS are located in different subcarriers.
- determining a time-frequency location of the positioning reference signal PRS for the electronic device comprises determining a time-frequency location of the PRS according to at least one of the following parameters: a physical layer cell identifier of a cell in which the user equipment is located; and a bandwidth for transmitting the PRS; The bandwidth used to transmit downlink data; the number of electronic devices in the group; the quality of the link between the electronic device and the user device; and the identity of the user device.
- the method further comprises: beam scanning the user equipment with a PRS for the electronic device.
- electronic device 1800 includes a transmit and receive port TRP in a new wireless NR communication system.
- the main body performing the above method may be the electronic device 1800 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 1800 are applicable thereto.
- a wireless communication method performed by the user equipment 2600 in the wireless communication system according to an embodiment of the present disclosure will be described in detail next.
- FIG. 29 is a flowchart illustrating a wireless communication method performed by user equipment 2600 in a wireless communication system, in accordance with an embodiment of the present disclosure.
- a positioning reference signal PRS is received from a plurality of network side devices, respectively, wherein a time-frequency position of a PRS for each network side device is according to the network side device in multiple networks. The number in the group consisting of side devices is determined.
- step S2920 beam emission angle information of each network side device is determined based on the PRS received from each network side device.
- the method further comprises: determining a location of the user equipment according to beam emission angle information of each network side device.
- the method further comprises: transmitting beam transmission angle information of each network side device to the positioning server, for the positioning server to determine the location of the user equipment.
- the method further includes: performing beam scanning on the plurality of network side devices to obtain beam transmission angle information of the user equipment; and determining the user equipment according to beam emission angle information of each network side device and beam emission angle information of the user equipment s position.
- the method further comprises: receiving, from each of the plurality of network side devices, a time-frequency location of the PRS for the network side device.
- the method further comprises: determining a time-frequency location of the PRS for each network-side device according to the number in the group of each of the plurality of network-side devices.
- the method further comprises: receiving, from the network side device or the positioning server that provides the service for the user equipment, the number of each network side device in the group.
- the subject performing the above method may be the user device 2600 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the user device 2600 are applicable thereto.
- the technology of the present disclosure can be applied to various products.
- the network side device can be implemented as any type of TRP.
- the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
- the TRP can provide services to the user equipment and be controlled by the base station equipment.
- the TRP may have a structure similar to that of the base station device described below, or may have only a structure related to transmitting and receiving information in the base station device.
- the network side device can also be implemented as any type of base station device, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
- the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
- the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
- the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
- RRHs remote wireless headends
- the user device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
- the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
- MTC machine type communication
- M2M machine-to-machine
- the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the user equipments described above.
- FIG. 30 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
- the eNB 3000 includes one or more antennas 3010 and a base station device 3020.
- the base station device 3020 and each antenna 3010 may be connected to each other via an RF cable.
- Each of the antennas 3010 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1820 to transmit and receive wireless signals.
- the eNB 3000 may include a plurality of antennas 3010.
- multiple antennas 3010 can be compatible with multiple frequency bands used by eNB 3000.
- FIG. 30 illustrates an example in which the eNB 3000 includes a plurality of antennas 3010, the eNB 3000 may also include a single antenna 3010.
- the base station device 3020 includes a controller 3021, a memory 3022, a network interface 3023, and a wireless communication interface 3025.
- the controller 3021 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 3020. For example, controller 3021 generates a data packet based on the data in the signal processed by wireless communication interface 3025 and communicates the generated packet via network interface 3023. The controller 3021 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. Controller 3021 may have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
- the memory 3022 includes a RAM and a ROM, and stores programs executed by the controller 3021 and various types of control data such as a terminal list, transmission power data, and scheduling data.
- Network interface 3023 is a communication interface for connecting base station device 3020 to core network 3024. Controller 3021 can communicate with a core network node or another eNB via network interface 3023. In this case, the eNB 3000 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 3023 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 3023 is a wireless communication interface, network interface 3023 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 3025.
- Wireless communication interface 3025 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 3000 via antenna 3010.
- Wireless communication interface 3025 may typically include, for example, baseband (BB) processor 3026 and RF circuitry 3027.
- the BB processor 3026 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
- BB processor 3026 may have some or all of the above described logic functions.
- the BB processor 3026 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
- the update program can cause the function of the BB processor 3026 to change.
- the module can be a card or blade that is inserted into the slot of the base station device 3020. Alternatively, the module can also be a chip mounted on a card or blade.
- the RF circuit 3027 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3010.
- the wireless communication interface 3025 can include a plurality of BB processors 3026.
- multiple BB processors 3026 can be compatible with multiple frequency bands used by eNB 3000.
- the wireless communication interface 3025 can include a plurality of RF circuits 3027.
- multiple RF circuits 3027 can be compatible with multiple antenna elements.
- FIG. 30 illustrates an example in which the wireless communication interface 3025 includes a plurality of BB processors 3026 and a plurality of RF circuits 3027, the wireless communication interface 3025 may also include a single BB processor 3026 or a single RF circuit 3027.
- the eNB 3130 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
- the eNB 3130 includes one or more antennas 3140, a base station device 3150, and an RRH 3160.
- the RRH 3160 and each antenna 3140 may be connected to each other via an RF cable.
- the base station device 3150 and the RRH 3160 can be connected to each other via a high speed line such as a fiber optic cable.
- Each of the antennas 3140 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 3160 to transmit and receive wireless signals.
- the eNB 3130 may include a plurality of antennas 3140.
- multiple antennas 3140 can be compatible with multiple frequency bands used by eNB 3130.
- FIG. 31 illustrates an example in which the eNB 3130 includes a plurality of antennas 3140, the eNB 3130 may also include a single antenna 3140.
- the base station device 3150 includes a controller 3151, a memory 3152, a network interface 3153, a wireless communication interface 3155, and a connection interface 3157.
- the controller 3151, the memory 3152, and the network interface 3153 are the same as the controller 3021, the memory 3022, and the network interface 3023 described with reference to FIG.
- the wireless communication interface 3155 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 3160 via the RRH 3160 and the antenna 3140.
- Wireless communication interface 3155 can typically include, for example, BB processor 3156.
- the BB processor 3156 is identical to the BB processor 3026 described with reference to FIG. 30 except that the BB processor 3156 is connected to the RF circuit 3164 of the RRH 3160 via the connection interface 3157.
- the wireless communication interface 3155 can include a plurality of BB processors 3156.
- multiple BB processors 3156 can be compatible with multiple frequency bands used by eNB 3130.
- FIG. 31 illustrates an example in which the wireless communication interface 3155 includes a plurality of BB processors 3156, the wireless communication interface 3155 may also include a single BB processor 3156.
- connection interface 3157 is an interface for connecting the base station device 3150 (wireless communication interface 3155) to the RRH 3160.
- the connection interface 3157 may also be a communication module for communicating the base station device 3150 (wireless communication interface 3155) to the above-described high speed line of the RRH 3160.
- the RRH 3160 includes a connection interface 3161 and a wireless communication interface 3163.
- connection interface 3161 is an interface for connecting the RRH 3160 (wireless communication interface 3163) to the base station device 3150.
- the connection interface 3161 can also be a communication module for communication in the above high speed line.
- the wireless communication interface 3163 transmits and receives wireless signals via the antenna 3140.
- Wireless communication interface 3163 may typically include, for example, RF circuitry 3164.
- the RF circuit 3164 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3140.
- the wireless communication interface 3163 can include a plurality of RF circuits 3164.
- multiple RF circuits 3164 can support multiple antenna elements.
- FIG. 31 shows an example in which the wireless communication interface 3163 includes a plurality of RF circuits 3164, the wireless communication interface 3163 may also include a single RF circuit 3164.
- the computing unit 1820, the determining unit 1830, and the scanning unit 1840 described by using FIG. 18 can be implemented by the controller 3021 and/or the controller 3151. At least a portion of the functionality can also be implemented by controller 3021 and controller 3151.
- the controller 3021 and/or the controller 3151 can perform a function of grouping network side devices, determining a position of a PRS, and a beam scan function by executing an instruction stored in a corresponding memory.
- FIG. 32 is a block diagram showing an example of a schematic configuration of a smartphone 3200 to which the technology of the present disclosure can be applied.
- the smart phone 3200 includes a processor 3201, a memory 3202, a storage device 3203, an external connection interface 3204, an imaging device 3206, a sensor 3207, a microphone 3208, an input device 3209, a display device 3210, a speaker 3211, a wireless communication interface 3212, and one or more An antenna switch 3215, one or more antennas 3216, a bus 3217, a battery 3218, and an auxiliary controller 3219.
- the processor 3201 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 3200.
- the memory 3202 includes a RAM and a ROM, and stores data and programs executed by the processor 3201.
- the storage device 3203 may include a storage medium such as a semiconductor memory and a hard disk.
- the external connection interface 3204 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 3200.
- USB universal serial bus
- the imaging device 3206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
- Sensor 3207 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
- the microphone 3208 converts the sound input to the smartphone 3200 into an audio signal.
- the input device 3209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 3210, and receives an operation or information input from a user.
- the display device 3210 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 3200.
- the speaker 3211 converts the audio signal output from the smartphone 3200 into sound.
- the wireless communication interface 3212 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
- Wireless communication interface 3212 may typically include, for example, BB processor 3213 and RF circuitry 3214.
- the BB processor 3213 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
- the RF circuit 3214 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3216.
- the wireless communication interface 3212 can be a chip module on which the BB processor 3213 and the RF circuit 3214 are integrated. As shown in FIG.
- the wireless communication interface 3212 can include a plurality of BB processors 3213 and a plurality of RF circuits 3214.
- FIG. 32 illustrates an example in which the wireless communication interface 3212 includes a plurality of BB processors 3213 and a plurality of RF circuits 3214, the wireless communication interface 3212 may also include a single BB processor 3213 or a single RF circuit 3214.
- wireless communication interface 3212 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
- the wireless communication interface 3212 can include a BB processor 3213 and RF circuitry 3214 for each wireless communication scheme.
- Each of the antenna switches 3215 switches the connection destination of the antenna 3216 between a plurality of circuits included in the wireless communication interface 3212, such as circuits for different wireless communication schemes.
- Each of the antennas 3216 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 3212 to transmit and receive wireless signals.
- the smartphone 3200 can include a plurality of antennas 3216.
- FIG. 32 shows an example in which the smartphone 3200 includes a plurality of antennas 3216, the smartphone 3200 may also include a single antenna 3216.
- smart phone 3200 can include an antenna 3216 for each wireless communication scheme.
- the antenna switch 3215 can be omitted from the configuration of the smartphone 3200.
- the bus 3217 includes a processor 3201, a memory 3202, a storage device 3203, an external connection interface 3204, an imaging device 3206, a sensor 3207, a microphone 3208, an input device 3209, a display device 3210, a speaker 3211, a wireless communication interface 3212, and an auxiliary controller 3219. connection.
- Battery 3218 provides power to various blocks of smart phone 3200 shown in FIG. 32 via feeders, which are partially shown as dashed lines in the figure.
- the secondary controller 3219 operates the minimum required function of the smartphone 3200, for example, in sleep mode.
- the angle determining unit 2620, the positioning unit 2630, the scanning unit 2640, and the calculating unit 3650 described by using FIG. 26 can be realized by the processor 3201 or the auxiliary controller 3219. At least a portion of the functionality may also be implemented by processor 3201 or auxiliary controller 3219.
- the processor 3201 or the auxiliary controller 3219 may perform a function of determining a beam transmission angle, positioning, calculating a position of the PRS, and performing beam scanning on the network side device by executing an instruction stored in the memory 3202 or the storage device 3203.
- FIG. 33 is a block diagram showing an example of a schematic configuration of a car navigation device 3320 to which the technology of the present disclosure can be applied.
- the car navigation device 3320 includes a processor 3321, a memory 3322, a global positioning system (GPS) module 3324, a sensor 3325, a data interface 3326, a content player 3327, a storage medium interface 3328, an input device 3329, a display device 3330, a speaker 3331, and a wireless device.
- the processor 3321 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 3320.
- the memory 3322 includes a RAM and a ROM, and stores data and programs executed by the processor 3321.
- the GPS module 3324 measures the position (such as latitude, longitude, and altitude) of the car navigation device 3320 using GPS signals received from GPS satellites.
- Sensor 3325 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
- the data interface 3326 is connected to, for example, the in-vehicle network 3341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
- the content player 3327 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 3328.
- the input device 3329 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 3330, and receives an operation or information input from a user.
- the display device 3330 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or a reproduced content.
- the speaker 3331 outputs the sound of the navigation function or the reproduced content.
- the wireless communication interface 3333 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
- Wireless communication interface 3333 may typically include, for example, BB processor 3334 and RF circuitry 3335.
- the BB processor 3334 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
- the RF circuit 3335 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3337.
- the wireless communication interface 3333 can also be a chip module on which the BB processor 3334 and the RF circuit 3335 are integrated. As shown in FIG.
- the wireless communication interface 3333 can include a plurality of BB processors 3334 and a plurality of RF circuits 3335.
- FIG. 33 shows an example in which the wireless communication interface 3333 includes a plurality of BB processors 3334 and a plurality of RF circuits 3335, the wireless communication interface 3333 may also include a single BB processor 3334 or a single RF circuit 3335.
- the wireless communication interface 3333 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
- the wireless communication interface 3333 may include a BB processor 3334 and an RF circuit 3335 for each wireless communication scheme.
- Each of the antenna switches 3336 switches the connection destination of the antenna 3337 between a plurality of circuits included in the wireless communication interface 3333, such as circuits for different wireless communication schemes.
- Each of the antennas 3337 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 3333 to transmit and receive wireless signals.
- car navigation device 3320 can include a plurality of antennas 3337.
- FIG. 33 shows an example in which the car navigation device 3320 includes a plurality of antennas 3337, the car navigation device 3320 may also include a single antenna 3337.
- car navigation device 3320 can include an antenna 3337 for each wireless communication scheme.
- the antenna switch 3336 can be omitted from the configuration of the car navigation device 3320.
- Battery 3338 provides power to various blocks of car navigation device 3320 shown in FIG. 33 via a feeder, which is partially shown as a dashed line in the figure. Battery 3338 accumulates power supplied from the vehicle.
- the angle determining unit 2620, the positioning unit 2630, the scanning unit 2640, and the computing unit 3650 described by using FIG. 26 can be implemented by the processor 3321. At least a portion of the functionality can also be implemented by processor 3321.
- the processor 3321 can perform a function of determining a beam transmission angle, positioning, calculating a position of the PRS, and performing beam scanning on the network side device by executing an instruction stored in the memory 3322.
- the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 3340 that includes one or more of the car navigation device 3320, the in-vehicle network 3341, and the vehicle module 3342.
- vehicle module 3342 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 3341.
- a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
- a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
- one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
- the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开涉及电子设备、用户设备、方法及计算机可读存储介质。根据本发明的确定定位参考信号PRS的位置的方法包括:获取资源块RB的子载波间隔;以及根据所述子载波间隔确定定位参考信号PRS在所述RB中的时频位置。使用根据本公开的电子设备、用户设备、方法和计算机可读存储介质,可以针对NR通信系统更加合理地设计PRS,以优化对UE的定位。
Description
本申请要求于2018年4月3日提交中国专利局、申请号为201810298383.3、发明名称为“电子设备、用户设备、方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、用户设备、方法和计算机可读存储介质。更具体地,本公开涉及一种确定PRS(Positioning Reference Signal,定位参考信号)的位置的方法、一种用作网络侧设备的电子设备、一种用户设备、一种由用作网络侧设备的电子设备执行的无线通信方法、一种由用户设备执行的无线通信方法以及一种计算机可读存储介质。
在LTE(Long Term Evolution,长期演进)通信系统中,PRS可以用于对UE(User Equipment,用户设备)进行定位。由于LTE系统没有应用大规模多天线技术,因此不能形成具有高度方向性和高增益的窄波束。因此,在LTE通信系统中,定位方式是针对参考信号传播延时设计的。例如,LTE通信系统可以使用OTDOA(Observed Time Difference of Arrival,观测到达时间差)技术通过测量信号的到达时间差来计算UE的位置。此外,在LTE通信系统中,使用单个网络侧设备进行不同方向的顺序扫描。
在NR(New Radio,新无线)通信系统中,一方面,NR通信系统存在多种子载波间隔,并且在LTE通信系统中用于信道估计的CRS(Cell-specific Reference Signal,小区专用参考信号)在NR通信系统中将不再使用,因此NR通信系统无法沿用LTE通信系统中的PRS设计。另一方面,例如OTDOA等基于延时的定位技术对同步的要求很高,因此定位不准确。此外,在LTE系统中,使用单个网络侧设备进行不同方向的顺序扫描会产生很大的开销和较大的延时。
因此,有必要提出一种技术方案,以针对NR通信系统更加合理地 设计PRS,以优化对UE的定位。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、用户设备、方法和计算机可读存储介质,以针对NR通信系统更加合理地设计PRS,以优化对UE的定位。
根据本公开的一方面,提供了一种确定定位参考信号PRS的位置的方法,包括:获取资源块RB的子载波间隔;以及根据所述子载波间隔确定定位参考信号PRS在所述RB中的时频位置。
根据本公开的另一方面,提供了一种用作网络侧设备的电子设备,包括处理电路,被配置为:获取所述电子设备在用于对用户设备进行定位的电子设备组成的组中的编号;以及根据所述电子设备在所述组中的编号确定用于所述电子设备的定位参考信号PRS的时频位置。
根据本公开的另一方面,提供了一种用户设备,包括处理电路,被配置为:分别从多个网络侧设备接收定位参考信号PRS,其中,用于每个网络侧设备的PRS的时频位置是根据所述网络侧设备在所述多个网络侧设备组成的组中的编号确定的;以及根据从每个网络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:获取所述电子设备在用于对用户设备进行定位的电子设备组成的组中的编号;以及根据所述电子设备在所述组中的编号确定用于所述电子设备的定位参考信号PRS的时频位置。
根据本公开的另一方面,提供了一种由用户设备执行的无线通信方法,包括:分别从多个网络侧设备接收定位参考信号PRS,其中,用于每个网络侧设备的PRS的时频位置是根据所述网络侧设备在所述多个网络侧设备组成的组中的编号确定的;以及根据从每个网络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算 机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、用户设备、方法和计算机可读存储介质,可以根据子载波间隔来确定PRS的位置,从而针对NR通信系统更加合理地设计PRS,以优化对UE的定位。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的应用场景的示意图;
图2是示出根据本公开的实施例的确定PRS的位置的方法的流程图;
图3(a)是示出当子载波间隔是15KHZ时PDCCH(Physical Downlink Control Channel,物理下行控制信道)、DMRS(Demodulation Reference Signal,解调参考信号)和CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)的配置示意图;
图3(b)是示出当子载波间隔是30KHZ时PDCCH、DMRS和CSI-RS的配置示意图;
图3(c)是示出当子载波间隔是60KHZ时PDCCH、DMRS和CSI-RS的配置示意图;
图3(d)是示出当子载波间隔是120KHZ时PDCCH、DMRS和CSI-RS的配置示意图;
图3(e)是示出当子载波间隔是240KHZ时PDCCH、DMRS和CSI-RS的配置示意图;
图3(f)是示出当子载波间隔是480KHZ时PDCCH、DMRS和CSI-RS的配置示意图;
图4(a)是示出根据本公开的实施例的当子载波间隔是15KHZ或30KHZ时PRS的配置示意图;
图4(b)是示出根据本公开的实施例的当子载波间隔是60KHZ时PRS 的配置示意图;
图4(c)是示出根据本公开的实施例的当子载波间隔是120KHZ时PRS的配置示意图;
图4(d)是示出根据本公开的实施例的当子载波间隔是240KHZ或480KHZ时PRS的配置示意图;
图5是示出根据本公开的实施例的对PRS进行分组的方法的流程图;
图6(a)是示出根据本公开的一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成两组的配置示意图;
图6(b)是示出根据本公开的一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成三组的配置示意图;
图6(c)是示出根据本公开的一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成四组的配置示意图;
图7(a)是示出根据本公开的一个实施例的当子载波间隔是60KHZ时将PRS分成两组的配置示意图;
图7(b)是示出根据本公开的一个实施例的当子载波间隔是60KHZ时将PRS分成三组的配置示意图;
图7(c)是示出根据本公开的一个实施例的当子载波间隔是60KHZ时将PRS分成四组的配置示意图;
图8(a)是示出根据本公开的一个实施例的当子载波间隔是120KHZ时将PRS分成两组的配置示意图;
图8(b)是示出根据本公开的一个实施例的当子载波间隔是120KHZ时将PRS分成三组的配置示意图;
图8(c)是示出根据本公开的一个实施例的当子载波间隔是120KHZ时将PRS分成四组的配置示意图;
图9(a)是示出根据本公开的一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成两组的配置示意图;
图9(b)是示出根据本公开的一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成三组的配置示意图;
图9(c)是示出根据本公开的一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成四组的配置示意图;
图10(a)是示出根据本公开的另一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成三组的配置示意图;
图10(b)是示出根据本公开的另一个实施例的当子载波间隔是60KHZ时将PRS分成三组的配置示意图;
图10(c)是示出根据本公开的另一个实施例的当子载波间隔是120KHZ时将PRS分成三组的配置示意图;
图10(d)是示出根据本公开的另一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成三组的配置示意图;
图11(a)是示出根据本公开的又一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成三组的配置示意图;
图11(b)是示出根据本公开的又一个实施例的当子载波间隔是60KHZ时将PRS分成三组的配置示意图;
图11(c)是示出根据本公开的又一个实施例的当子载波间隔是120KHZ时将PRS分成三组的配置示意图;
图11(d)是示出根据本公开的又一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成三组的配置示意图;
图12是示出根据本公开的实施例的对PRS进行分组并对PRS的位置进行修正的方法的流程图;
图13是示出根据本公开的实施例的对PRS位置进行基于组的频移的配置示意图;
图14是示出根据本公开的实施例的对PRS位置进行基于组的频移的配置示意图;
图15是示出根据本公开的实施例的对PRS位置进行基于UE的频移的配置示意图;
图16是示出根据本公开的实施例的对PRS位置进行基于UE的频移的配置示意图;
图17是示出根据本公开的实施例的对PRS位置进行基于UE的频移的配置示意图;
图18是示出根据本公开的实施例的电子设备的配置的示例的框图;
图19是示出根据本公开的实施例的确定每个网络侧设备的PRS的位 置的信令流程图;
图20是示出根据本公开的实施例的确定每个网络侧设备的PRS的位置的信令流程图;
图21是示出根据本公开的实施例的确定每个网络侧设备的PRS的位置的信令流程图;
图22是示出根据本公开的实施例的确定每个网络侧设备的PRS的位置的信令流程图;
图23是示出根据本公开的实施例的确定每个网络侧设备的PRS的位置的信令流程图;
图24是示出根据本公开的实施例的确定每个网络侧设备的PRS的位置的信令流程图;
图25是示出根据本公开的实施例的两个网络侧设备的波束扫描方向的示意图;
图26是示出根据本公开的实施例的电子设备的配置的示例的框图;
图27(a)是示出根据本公开的实施例的在TDD(Time Division Duplexing,时分复用)模式下用户设备和网络侧设备分别执行波束扫描的信令流程图;
图27(b)是示出根据本公开的实施例的在FDD(Frequency Division Duplexing,频分复用)模式下用户设备和网络侧设备分别执行波束扫描的信令流程图;
图28是示出根据本公开的实施例的由作为网络侧设备的电子设备执行的无线通信方法的流程图;
图29是示出根据本公开的实施例的由用户设备执行的无线通信方法的流程图;
图30是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图31是示出eNB的示意性配置的第二示例的框图;
图32是示出智能电话的示意性配置的示例的框图;以及
图33是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作 为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.PRS位置的设计;
2.1 PRS的总体设计;
2.2 PRS的分组设计;
2.3 PRS位置的修正;
3.网络侧设备的配置示例;
4.用户设备的配置示例;
5.方法实施例;
6.应用示例。
<1.场景的描述>
图1是示出本公开的应用场景的示意图。如图1所示,在UE的周围存在两个网络侧设备:网络侧设备1和网络侧设备2,这两个网络侧设备 可以向UE发送PRS以用于对UE进行定位。这里,网络侧设备1和网络侧设备2中的至少一个网络侧设备可以与UE位于相同的小区。如图1所示的网络侧设备1、网络侧设备2以及UE都可以位于NR通信系统中。此外,图1仅仅示出了由两个网络侧设备对UE进行定位的情形,还可以由多于两个的网络侧设备对UE进行定位。
本公开针对这样的场景提出了一种作为网络侧设备的电子设备、用户设备、确定PRS的位置的方法、由作为网络侧设备的电子设备执行的无线通信方法、由用户设备执行的无线通信方法以及计算机可读存储介质,以针对NR通信系统更加合理地设计PRS,以优化对UE的定位。
根据本公开的通信系统可以是5G(5 Generation,第5代)的NR通信系统。
根据本公开的网络侧设备可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口)。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在一个示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。也就是说,基站设备通过TRP向用户设备提供服务。此外,在本公开中所述的网络侧设备也可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.PRS位置的设计>
<2.1 PRS的总体设计>
图2是示出根据本公开的实施例的确定PRS的位置的方法的流程图。如图2所示,在步骤S210中,获取RB(Resource Block,资源块)的子载波间隔。
接下来,在步骤S220中,根据子载波间隔确定PRS在RB中的时频位置。
根据本公开的实施例,上述方法可以用于NR通信系统中。在NR通信系统中存在不同的子载波间隔,包括但不限于15KHZ、30KHZ、60KHZ、120KHZ、240KHZ和480KHZ。因此,在步骤S210中,首先获取RB的子载波间隔。值得注意的是,在本公开中对PRS的设计是针对RB而言的。这是因为,可以在一个或多个RB上传输PRS,这一个或多个RB上的PRS的图案可能是相同的。进一步,可以配置用于传输PRS的带宽,例如可以用
表示用于传输PRS的带宽,具体为用于传输PRS的带宽与一个RB所占的带宽的比率。由于每个RB上的PRS的图案是相同的,因此在本公开的下文中以一个RB为例说明了如何设计PRS在RB中的位置。在步骤S210中,可以通过各种途径获取RB的子载波间隔,例如通过获取高层配置来确定RB的子载波间隔,从而在步骤S220中根据RB的子载波间隔来确定PRS在RB中的位置。进一步,PRS的位置可以包括时域位置和频域位置。
如上所述,根据本公开的实施例,可以根据不同的子载波间隔来确定PRS的位置,从而能够针对NR通信系统更加合理地设计PRS。
根据本公开的实施例,步骤S220包括:确定PRS在RB中所占的多个RE(Resource Element,资源元素)的时域位置和频域位置。根本公开的实施例,一个RB在时域上的长度为14个OFDM符号,在频域上的长度为12个子载波,而一个RE在时域上的长度为1个OFDM符号,在频域上的长度为1个子载波。也就是说,每个RB都包括168个RE,而PRS可以占用这168个RE中的多个RE。因此,步骤S220可以包括确定PRS占用的多个RE中的每个RE的位置,包括时域位置和频域位置。也就是说,步骤S220可以包括确定RE的时域位置的步骤以及确定RE的频域位置的步骤。
根据本公开的实施例,步骤S220可以包括:多个RE与RB中的PDCCH、DMRS和CSI-RS中的每一个不重叠。
PDCCH、DMRS和CSI-RS都是LTE系统中现有的参考信号,因此在NR系统中也需要这些参考信号。因此,根据本公开的实施例,PRS需要避开这些已有的参考信号的位置。也就是说,每个RE都需要与PDCCH、DMRS和CSI-RS中的每一个不重叠,即与PDCCH、DMRS和CSI-RS中的每一个正交。
根据本公开的实施例,为了简化PRS的设计,步骤S220中的确定RE的时域位置的步骤可以包括:多个RE与RB中的PDCCH、DMRS和 CSI-RS中的每一个在时域上不重叠。也就是说,确定RE的时域位置以使得每个RE与PDCCH、DMRS和CSI-RS中的每一个在时域上正交。
图3(a)-图3(f)示出了在不同的子载波间隔下的PDCCH、DMRS和CSI-RS的配置示意图。具体地,图3(a)是示出当子载波间隔是15KHZ时PDCCH、DMRS和CSI-RS的配置示意图;图3(b)是示出当子载波间隔是30KHZ时PDCCH、DMRS和CSI-RS的配置示意图;图3(c)是示出当子载波间隔是60KHZ时PDCCH、DMRS和CSI-RS的配置示意图;图3(d)是示出当子载波间隔是120KHZ时PDCCH、DMRS和CSI-RS的配置示意图;图3(e)是示出当子载波间隔是240KHZ时PDCCH、DMRS和CSI-RS的配置示意图;以及图3(f)是示出当子载波间隔是480KHZ时PDCCH、DMRS和CSI-RS的配置示意图。
如图3(a)至图3(f)所示,将一个RB的14个OFDM符号从左至右分别编号为0-13(在本公开的下文中都将沿用这样的编号方式)。由图中可以看出,PDCCH占用RB的前3个OFDM符号,CSI-RS占用编号为4的OFDM符号的上面两个子载波。针对子载波间隔为15KHZ和30KHZ的配置,DMRS占用编号为3、5、8和11的OFDM符号;针对子载波间隔为60KHZ的配置,DMRS占用编号为3、7和11的OFDM符号;针对子载波间隔为120KHZ的配置,DMRS占用编号为3和11的OFDM符号;针对子载波间隔为240KHZ和480KHZ的配置,DMRS占用编号为3的OFDM符号。
因此,如前文所述,确定RE的时域位置可以包括:RE与PDCCH、DMRS和CSI-RS中的每一个在时域上不重叠。这里,可以用坐标(l,k)来表示PRS所占用的RE的位置。其中,l表示RE的时域位置的坐标,k表示RE的频域位置的坐标。也就是说,PRS所占用的RE在时域上位于第l个OFDM符号,在频域上位于第k个子载波。其中,l=[0,13],
表示用于传输下行数据的带宽,具体为用于传输下行数据的带宽与一个RB所占的带宽的比率,
表示用于传输PRS的带宽,具体为用于传输PRS的带宽与一个RB所占的带宽的比率。这里,由于传输PRS的带宽可能大于一个RB的带宽,因此将传输PRS的整个带宽上的子载波一起编号。但是,在下文中仅示出了一个RB上的PRS的图案,因此为了便于说明,k的编号从0至11。根据本公开的实施例,可以由下述公式来确定RE的时域位置l:
其中,Δf表示子载波间隔。
根据本公开的实施例,确定RE的时域位置的步骤还可以包括:使PRS包括的多个RE在RB的时域上的跨度最大化。也就是说,尽可能使得PRS所占用的多个RE遍布RB的所有OFDM符号。例如,除PDCCH、DMRS和CSI-RS占用的OFDM符号以外,每个OFDM符号上都有PRS。如上述公式(1)所示,针对子载波间隔为15KHZ和30KHZ的配置,在编号为6、7、9、10、12和13的OFDM符号上都有PRS,针对其它子载波间隔的配置也是类似的。
由此可见,根据本公开的实施例,PRS的位置可以与PDCCH、DMRS和CSI-RS相正交,从而使得NR通信系统的参考信号设计与LTE通信系统相兼容。
根据本公开的实施例,步骤S220中的确定RE的频域位置的步骤可以包括:PRS包括的多个RE在RB的频域上的跨度最大化。也就是说,尽可能使得PRS所占用的多个RE遍布RB的所有子载波。
进一步,根据本公开的实施例,步骤S220中的确定RE的频域位置的步骤还可以包括:每个OFDM符号上的PRS所占用的RE不超过两个。例如,每个OFDM上PRS占用两个RE。这样一来,可以节约频率资源。
图4(a)-图4(d)示出了根据本公开的实施例的在不同的子载波配置下PRS的配置示意图。具体地,图4(a)是示出根据本公开的实施例的当子载波间隔是15KHZ或30KHZ时PRS的配置示意图;图4(b)是示出根据本公开的实施例的当子载波间隔是60KHZ时PRS的配置示意图;图4(c)是示出根据本公开的实施例的当子载波间隔是120KHZ时PRS的配置示意图;图4(d)是示出根据本公开的实施例的当子载波间隔是240KHZ或480KHZ时PRS的配置示意图。
如图4(a)-图4(d)所示,除PDCCH、DMRS和CSI-RS占用的OFDM符号以外,每个OFDM符号上都有PRS。进一步,在每个OFDM符号上PRS占用两个RE。此外,针对子载波间隔是30KHZ、60KHZ、120KHZ、240KHZ和480KHZ的配置,每个子载波上都有PRS。由此一来,可以最大化PRS在频域上的跨度和时域上的跨度,并且可以节约频 率上的资源。值得注意的是,图4(a)-图4(d)针对每个子载波间隔仅仅示出了一种可能的PRS的设计方案,但是本公开并不限于此。
根据本公开的实施例,步骤S220中的确定RE的频域位置还可以包括根据RE的时域位置来确定RE的频域位置。
进一步,根据本公开的实施例,步骤S220中的确定RE的频域位置可以包括还根据以下参数中的至少一个确定RE的频域位置:待定位的用户设备所在的小区的物理层小区标识;用于传输PRS的带宽;以及用于传输下行数据的带宽。例如,可以根据下述公式来确定RE的频域位置k:
其中,
表示用于传输下行数据的带宽,具体为用于传输下行数据的带宽与一个RB所占的带宽的比率,
表示用于传输PRS的带宽,具体为用于传输PRS的带宽与一个RB所占的带宽的比率,
表示待定位的用户设备所在的小区的物理层小区标识。此外,
如上述公式(4)所述,k的取值可以与
有关。在蜂窝小区架构中,一个小区与六个小区相邻。因此,采用这样的设计,可以避免相邻的小区采用相同的PRS配置,从而避免干扰。此外,PRS可以用于对用户设备进行定位,因此PRS的位置的设计可以是针对待定位的用户设备。当然,也可以针对小区来设计PRS的位置,此时
可以表示某个小区的物理层小区标识,则这样设计出的PRS是针对该小区的PRS,即适用于该小区中的所有用户设备。
根据本公开的实施例,可以仅根据RE的时域位置和待定位的用户设备所在的小区的物理层小区标识来确定RE的频域位置。在这种情况下,上述公式(2)可以简化为k=6m+(16-l+v
shift)mod 6,其中m=0或1。这样算出来的k的取值范围为[0,11],即表示传输PRS的每个RB上的RE的频域位置,而不管传输PRS的带宽。
根据本公开的实施例,如上述公式(2)和(3)所示,k的取值还可以与
和
有关。也就是说,可以根据RE的时域位置、待定位的用户设备所在的小区的物理层小区标识、用于传输PRS的带宽以及用于传输下行数据的带宽来确定RE的频域位置。这里,
表示用于传输下行数据的带宽,具体可以为用于传输下行数据的带宽与一个RB所占的带 宽的比率。根据本公开的实施例,一个RB所占的带宽为12个子载波,假定用于传输下行数据的带宽为24个子载波,则
的值为2。对于
的计算方法类似。
l | k |
6 | 4,10 |
7 | 3,9 |
9 | 1,7 |
10 | 0,6 |
12 | 4,10 |
13 | 3,9 |
如上所述,根据本公开的实施例,可以根据子载波间隔来确定PRS的位置。具体地,可以根据子载波间隔来确定PRS的时域位置,并根据PRS的时域位置来确定PRS的频域位置。进一步,还可以根据待定位的用户设备所在的小区的物理层小区标识、用于传输PRS的带宽和/或用于传输下行数据的带宽来确定PRS的频域位置。这样一来,可以根据NR通信系统更加合理地设计PRS的位置。
<2.2 PRS的分组设计>
根据本公开的实施例,在如上所述确定了PRS的位置以后,还可以对PRS进行分组,以分给对用户设备进行定位的多个网络侧设备。
图5是示出根据本公开的实施例的对PRS进行分组的方法的流程图。如图5所示,在步骤S230中,将确定位置的PRS分成多个组。接下来,在步骤S240中,将多个组的PRS分别分配给用于对用户设备进行定位的多个网络侧设备。
根据本公开的实施例,将PRS分成的组的个数可以与对用户设备进行定位的网络侧设备的个数相同。也就是说,当使用两个网络侧设备对用户设备进行定位时,将PRS分成两组;当使用三个网络侧设备对用户设备进行定位时,将PRS分成三组;当使用四个网络侧设备对用户设备进行定位时,将PRS分成四组。以此类推。
如上所述,根据本公开的实施例,可以对PRS进行分组并分配给多个网络侧设备。这样一来,分组的PRS可以用于波束赋形并进行基于波束角的定位,如此可以使得多个网络侧设备进行协作从而对用户设备进行定位,从而优化对用户设备的定位。
根据本公开的实施例,步骤S230还可以包括对分成的多个组进行编号,例如可以将多个组编号为n,其中n=[0,N-1],N为组的个数。进一步,可以根据组的编号来确定每个组的PRS包括的RE的时域位置和频域位置。下面将详细描述分组的过程。
根据本公开的实施例,步骤S230可以包括将PRS占用的同一个子载波上的一个或多个RE分配到同一个组中。也就是说,可以依次将编号为0的子载波至编号为11的子载波上的PRS分配到不同的组中。即,不同组的RE在频域上正交,同一个组中的RE可以使用相同的频域资源。
图6(a)-图6(c)示出了当子载波间隔是15KHZ或30KHZ时根据上述方式对PRS进行分组的情形。具体地,图6(a)是示出根据本公开的一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成两组的配置示意图;图6(b)是示出根据本公开的一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成三组的配置示意图;图6(c)是示出根据本公开的一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成四组的配置示意图。
如图6(a)所示,假定子载波从上至下编号分别为11-0(在本公开的下文中也将沿用这样的编号方式),则在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为1的子载波上PRS占用了一个RE, 则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图6(b)所示,假定子载波从上至下编号分别为11-0,则在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为2的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为2的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图6(c)所示,假定子载波从上至下编号分别为11-0,则在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为3的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为3的组。
图7(a)-图7(c)示出了当子载波间隔是60KHZ时根据上述方式对PRS进行分组的情形。具体地,图7(a)是示出根据本公开的一个实施例的当子载波间隔是60KHZ时将PRS分成两组的配置示意图;图7(b)是示出根据本公开的一个实施例的当子载波间隔是60KHZ时将PRS分成三组的配置示意图;图7(c)是示出根据本公开的一个实施例的当子载波间隔是60KHZ时将PRS分成四组的配置示意图。
如图7(a)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了一个RE,将这个RE分配到编号为0的组;在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为8的子载波上PRS占用了一个RE,则将这个 RE分配到编号为1的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为5的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为3的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图7(b)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了一个RE,将这个RE分配到编号为0的组;在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为5的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为2的组;在编号为3的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图7(c)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了一个RE,将这个RE分配到编号为0的组;在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为9的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为5的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上 PRS占用了两个RE,则将这两个RE分配到编号为3的组;在编号为3的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为3的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为3的组。
图8(a)-图8(c)示出了当子载波间隔是120KHZ时根据上述方式对PRS进行分组的情形。具体地,图8(a)是示出根据本公开的一个实施例的当子载波间隔是120KHZ时将PRS分成两组的配置示意图;图8(b)是示出根据本公开的一个实施例的当子载波间隔是120KHZ时将PRS分成三组的配置示意图;图8(c)是示出根据本公开的一个实施例的当子载波间隔是120KHZ时将PRS分成四组的配置示意图。
如图8(a)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了一个RE,将这个RE分配到编号为0的组;在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为5的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图8(b)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了一个RE,将这个RE分配到编号为0的组;在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为2的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为7的子载波上PRS占用了一个RE, 则将这个RE分配到编号为1的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为5的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为2的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图8(c)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了一个RE,将这个RE分配到编号为0的组;在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为5的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为3的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为3的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为3的组。
图9(a)-图9(c)示出了当子载波间隔是240KHZ或480KHZ时根据上述方式对PRS进行分组的情形。具体地,图9(a)是示出根据本公开的一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成两组的配置示意图;图9(b)是示出根据本公开的一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成三组的配置示意图;图9(c)是示出根据本公开的一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成四组的配置示意图。
如图9(a)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了两个RE,将这两个RE分配到编号为0的组; 在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为5的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图9(b)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了两个RE,将这两个RE分配到编号为10的组;在编号为1的子载波上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为2的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组;在编号为7的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为5的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为2的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为0的组。
如图9(c)所示,假定子载波从上至下编号分别为11-0,则在编号为11的子载波上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为10的子载波上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为9的子载波上PRS占用了两个RE,则将这两个RE分配到编号为0的组;在编号为8的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为7的子载波上PRS占用了一个RE, 则将这个RE分配到编号为0的组;在编号为6的子载波上PRS占用了一个RE,则将这个RE分配到编号为2的组;在编号为5的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为4的子载波上PRS占用了两个RE,则将这两个RE分配到编号为3的组;在编号为3的子载波上PRS占用了两个RE,则将这两个RE分配到编号为1的组;在编号为2的子载波上PRS占用了一个RE,则将这个RE分配到编号为3的组;在编号为1的子载波上PRS占用了一个RE,则将这个RE分配到编号为1的组;在编号为0的子载波上PRS占用了一个RE,则将这个RE分配到编号为3的组。
如图6(a)-图9(c)所示,将PRS占用的同一个子载波上的一个或多个RE分配到同一个组中。当然,图6(a)-图9(c)仅仅是示例性的,而并非限制性的。
根据本公开的实施例,步骤S230可以包括将PRS占用的同一个OFDM符号上的一个或多个RE分配到同一个组中。也就是说,可以依次将编号为0的OFDM符号至编号为13的OFDM符号上的PRS分配到不同的组中。即,不同组的RE在时域上正交,同一个组中的RE可以使用相同的时域资源。
图10(a)-图10(d)以三组为例示出了在不同的子载波间隔下根据上述方式对PRS进行分组的情形。具体地,图10(a)是示出根据本公开的另一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成三组的配置示意图;图10(b)是示出根据本公开的另一个实施例的当子载波间隔是60KHZ时将PRS分成三组的配置示意图;图10(c)是示出根据本公开的另一个实施例的当子载波间隔是120KHZ时将PRS分成三组的配置示意图;图10(d)是示出根据本公开的另一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成三组的配置示意图。
如图10(a)所示,假定OFDM符号从左至右编号分别为0-13,则在编号为6的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为7的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为9的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为10的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为12的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为13的OFDM符号上PRS占用了两个RE,将这两个RE分配到 编号为0的组。
如图10(b)所示,假定OFDM符号从左至右编号分别为0-13,则在编号为5的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为6的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为8的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为9的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为10的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为12的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组,在编号为13的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组。
如图10(c)所示,假定OFDM符号从左至右编号分别为0-13,则在编号为5的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为6的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为7的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为8的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为9的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为10的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为12的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组,在编号为13的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组。
如图10(d)所示,假定OFDM符号从左至右编号分别为0-13,则在编号为5的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为6的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为7的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为8的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为0的组;在编号为9的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为10的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组;在编号为11的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为1的组;在编号为12的OFDM符号上PRS占用了两个RE,将这两个RE分配到编号为2的组,在编号为13的OFDM符号上PRS占 用了两个RE,将这两个RE分配到编号为0的组。
如图10(a)-图10(d)所示,将PRS占用的同一个OFDM符号上的一个或多个RE分配到同一个组中。当然,图10(a)-图10(d)仅仅是示例性的,而并非限制性的。此外,对于分成两组和四组的情况也是类似的,本公开对此没有赘述。
根据本公开的实施例,步骤S230可以包括将PRS占用的同一个子载波上的一个或多个RE分配到不同的组中,并且将PRS占用的同一个OFDM符号上的一个或多个RE分配到不同的组中。也就是说,同一个组中的多个RE的时域位置和频域位置都是正交的。
图11(a)-图11(d)以三组为例示出了在不同的子载波间隔下根据上述方式对PRS进行分组的情形。具体地,图11(a)是示出根据本公开的又一个实施例的当子载波间隔是15KHZ或30KHZ时将PRS分成三组的配置示意图;图11(b)是示出根据本公开的又一个实施例的当子载波间隔是60KHZ时将PRS分成三组的配置示意图;图11(c)是示出根据本公开的又一个实施例的当子载波间隔是120KHZ时将PRS分成三组的配置示意图;图11(d)是示出根据本公开的又一个实施例的当子载波间隔是240KHZ或480KHZ时将PRS分成三组的配置示意图。
如图11(a)所示,从时域上看,在编号为6的OFDM符号上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为7的OFDM符号上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为9的OFDM符号上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为10的OFDM符号上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为12的OFDM符号上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为13的OFDM符号上PRS占用了两个RE,这两个RE分配给了不同的组。从频域上看,在编号为10的子载波上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为9的子载波上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为4的子载波上PRS占用了两个RE,这两个RE分配给了不同的组;在编号为3的子载波上PRS占用了两个RE,这两个RE分配给了不同的组。图11(b)、图11(c)和图11(d)也是类似的情形,在此不再赘述。
如图11(a)-图11(d)所示,将PRS占用的同一个OFDM符号上的一个或多个RE分配到不同的组中,并且将PRS占用的同一个子载波上的一个或多个RE分配到不同的组中。当然,图11(a)-图11(d)仅仅 是示例性的,而并非限制性的。此外,对于分成两组和四组的情况也是类似的,本公开对此没有赘述。
对于将PRS占用的同一个子载波上的一个或多个RE分配到不同的组中并且将PRS占用的同一个OFDM符号上的一个或多个RE分配到不同的组中的实施例,本公开可以通过下述公式(5)-(21)来确定每个RE的时域位置和频域位置。同样地,用坐标(l,k)来表示PRS所占用的RE的位置。其中,l表示RE的时域位置的坐标,k表示RE的频域位置的坐标。也就是说,PRS所占用的RE在时域上位于第l个OFDM符号,在频域上位于第k个子载波。其中,l=[0,13],
对于分成两组的情况:
n=0,1 (9)
其中,
表示用于传输下行数据的带宽,具体为用于传输下行数据的带宽与一个RB所占的带宽的比率,
表示用于传输PRS的带宽,具体为用于传输PRS的带宽与一个RB所占的带宽的比率,
表示待定位的用户设备所在的小区的物理层小区标识。此外,
n表 示组的编号,Δf表示子载波间隔,floor()表示向下取整。
也就是说,针对两组的情况,可以根据子载波间隔来确定某个组的RE的时域位置,并根据RE的时域位置和组的编号来确定所述组的RE的频域位置。进一步,还可以根据以下参数中的至少一种来确定所述组的RE的频域位置:待定位的用户设备所在的小区的物理层小区标识;用于传输PRS的带宽;以及用于传输下行数据的带宽。
对于分成三组的情况:
n=0,1,2 (16)
其中,
表示用于传输下行数据的带宽,具体为用于传输下行数据的带宽与一个RB所占的带宽的比率,
表示用于传输PRS的带宽, 具体为用于传输PRS的带宽与一个RB所占的带宽的比率,
表示待定位的用户设备所在的小区的物理层小区标识。此外,
n表示组的编号,Δf表示子载波间隔,floor()表示向下取整。
也就是说,针对三组的情况,可以根据子载波间隔和组的编号来确定所述组的RE的时域位置,并根据RE的时域位置和组的编号来确定所述组的RE的频域位置。进一步,还可以根据以下参数中的至少一种来确定所述组的RE的频域位置:待定位的用户设备所在的小区的物理层小区标识;用于传输PRS的带宽;以及用于传输下行数据的带宽。
对于分成四组的情况:
n=0,1,2,3 (21)
其中,
表示用于传输下行数据的带宽,具体为用于传输下行数据的带宽与一个RB所占的带宽的比率,
表示用于传输PRS的带宽,具体为用于传输PRS的带宽与一个RB所占的带宽的比率,
表示待定位的用户设备所在的小区的物理层小区标识。此外,
n表示组的编号,Δf表示子载波间隔,floor()表示向下取整。
也就是说,针对四组的情况,可以根据子载波间隔和组的编号来确定所述组的RE的时域位置,并根据RE的时域位置和组的编号来确定所述组的RE的频域位置。进一步,还可以根据以下参数中的至少一种来确定所述组的RE的频域位置:待定位的用户设备所在的小区的物理层小区标识;用于传输PRS的带宽;以及用于传输下行数据的带宽。
如上所述,根据本公开的实施例,可以将设计好的PRS进行分组,以分配给对用户设备进行定位的不同的网络侧设备。由此,可以使得多个网络侧设备进行协作从而对用户设备进行定位,节约定位的时间。此外,分组的PRS可以用于波束赋形并进行基于波束角的定位,从而使得定位更加精确。这样一来,可以针对NR通信系统更加合理地设计PRS,并优化对用户设备的定位。
<2.3 PRS位置的修正>
根据本公开的实施例,为了使得PRS的设计更加多样化和合理化,在如上所述对PRS进行分组之后,还可以对PRS的位置进行修正。
图12是示出根据本公开的实施例的对PRS进行分组并对PRS的位置进行修正的方法的流程图。如图12所示,在步骤S240之前的步骤S250中,对分组后的PRS的位置进行修正。接下来,在步骤S240中,将多个组的PRS分别分配给多个网络侧设备。这里,分配给多个网络侧设备的PRS可以是进行了位置修正后的PRS。
根据本公开的实施例,步骤S250可以包括设置偏移参数,以用于对PRS的位置进行修正。具体地,该偏移参数可以用于将PRS的RE的频域位置进行偏移,即将某个组的RE的频域位置偏移所述组的偏移参数个子载波,因此对PRS的位置的修正或偏移也可以称为对PRS的位置进行频移。
根据本公开的实施例,偏移参数可以包括:基于组的偏移参数和/或基于用户设备的偏移参数。这里,假定用
来表示偏移参数,用
来表示基于组的偏移参数,并用
来表示基于用户设备的偏移参数,则有下述公式(22)-(24):
如公式(22)所示,偏移参数包括基于组的偏移参数;如公式(23)所示,偏移参数包括基于用户设备的偏移参数;如公式(24)所示,偏移参数包括基于组的偏移参数和基于用户设备的偏移参数。根据本公开的实施例,在如前文所述确定了每个组的PRS所占的RE的频域位置k之后,可以用
来修正k的值,例如可以将
的值添加到k的值上。
进一步,根据本公开的实施例,在根据组的编号确定基于组的偏移参数时,不同组的RE在进行了频域位置的偏移之后可能会产生冲突,因此还可以对公式(25)进一步进行修正,如下述公式(26)所示:
其中,当不同组的RE在进行了基于组的频域位置的偏移之后产生冲突时,p
n0=n,当不同组的RE在进行了频域位置的偏移之后没有产生冲突时,p
n0=0。也就是说,在如上所述根据组的编号确定基于组的偏移参数,并且不同组的RE在进行了频域位置的偏移之后产生冲突时,可以进行额外的偏移p
n0,以解决这种冲突。
图13和图14示出了根据本公开的实施例的对PRS位置进行基于组的频移的配置示意图。
在图13中,分组后的PRS的配置示意图如左图所示,其中,组的个数N=4,也就是说,组的编号n=0,1,2,3。这里假定
也就是说,编号为0的组的基于组的偏移参数
编号为1的组的基于组的偏移参数
编号为2的组的基于组的偏移参数
编号为3的组的基于组的偏移参数
如图13的右图所示,在经过了基于组的频移后,编号为0的组的PRS所占的RE的频域位置向上移动了1个子载波,编号为1的组的PRS所占的RE的频域位置向上移动了2个子载波,编号为2的组的PRS所占的 RE的频域位置向上移动了3个子载波,编号为3的组的PRS所占的RE的频域位置向上移动了4个子载波。在图13所示的示例中,没有出现存在冲突的RE的位置,因此每个组的p
n0都为0。
在图14中,分组后的PRS的配置示意图如左图所示,其中,组的个数N=4,也就是说,组的编号n=0,1,2,3。这里假定
也就是说,编号为0的组的基于组的偏移参数
编号为1的组的基于组的偏移参数
编号为2的组的基于组的偏移参数
编号为3的组的基于组的偏移参数
如图14的右图所示,在经过了基于组的频移后,编号为0的组的PRS所占的RE的频域位置没有移动,编号为1的组的PRS所占的RE的频域位置向上移动了2个子载波,编号为2的组的PRS所占的RE的频域位置向上移动了4个子载波,编号为3的组的PRS所占的RE的频域位置向上移动了6个子载波。在图14所示的示例中,没有出现存在冲突的RE的位置,因此每个组的p
n0都为0。
根据本公开的实施例,可以根据以下参数中的至少一种来确定分配给某个网络侧设备的基于用户设备的偏移参数
该网络侧设备与用户设备之间的链路质量;以及用户设备的标识。这里,网络侧设备与用户设备之间的链路质量可以包括网络侧设备与用户设备之间在该RB的每个子载波上的链路质量。也就是说,可以根据网络侧设备与用户设备之间的链路质量和/或用户设备的标识来对分组后的PRS的位置进行修正。即,有如下公式(27)-(29):
其中,p
UEn表示与网络侧设备与用户设备之间的链路质量相关的偏移参数,p
RNTI表示与用户设备的标识相关的偏移参数。
根据本公开的实施例,在如上所述进行了基于用户设备的偏移之后,不同组的RE可能会产生冲突,因此也可以进行额外的偏移p
n0,以解决这种冲突。类似地,当不同组的RE在进行了基于用户设备的频域位置的偏 移之后产生冲突时,p
n0=n,当不同组的RE在进行了基于用户设备的频域位置的偏移之后没有产生冲突时,p
n0=0。也就是说,上述公式(27)-(29)可以添加一个额外的偏移参数p
n0,如下所示:
根据本公开的实施例,如上所述公式(28)和(31)所示,可以根据用户设备的标识,包括但不限于RNTI(Radio Network Tempory Identity,无线网络临时标识)来确定基于用户设备的偏移参数。例如,p
RNTI可以是以用户设备的标识为变量的函数,本公开对函数的种类不做限定。这里,由于用户设备的标识与每个组并无关联,因此针对不同的组来说,基于用户设备的偏移参数是相同的。
图15是示出根据本公开的实施例的对PRS位置进行基于UE的频移的配置示意图。这里,在图15中,分组后的PRS的配置示意图如左图所示,其中,组的个数N=4,也就是说,组的编号n=0,1,2,3。这里假定基于用户设备的标识来确定基于用户设备的偏移参数,并且p
RNTI=4,因此
如图15的右图所示,在经过了基于用户设备的偏移之后,编号为0、1、2和3的组的PRS所占的RE的频域位置都向上偏移了4个子载波。在图15所示的示例中,没有出现存在冲突的RE的位置,因此每个组的p
n0都为0。
根据本公开的实施例,如上所述公式(27)和(30)所示,可以根据网络侧设备与用户设备之间在每个子载波上的链路质量来确定基于用户设备的偏移参数。进一步,可以将PRS所占的RE移动至链路质量较好的子载波上。
图16是示出根据本公开的实施例的对PRS位置进行基于UE的频移的配置示意图。这里,在图16中,分组后的PRS的配置示意图如左图所示,其中,组的个数N=4,也就是说,组的编号n=0,1,2,3。这里假定基于网络侧设备与用户设备之间在每个子载波上的链路质量来确定基于用户设备的偏移参数。进一步,假定每个网络侧设备与用户设备之间的链路质量类似,并且编号为6-11的子载波上的链路质量大于编号为0-5的子载波上的链路质量。也就是说,对于每个网络侧设备与用户设备之间的链路来说,编号为6-11的子载波上的链路质量都大于编号为0-5的子载波上的 链路质量。如图16的右图所示,在经过了基于用户设备的偏移之后,编号为0、1、2和3的组的PRS所占的RE都移动至编号为6-11的子载波上。在图16所示的示例中,没有出现存在冲突的RE的位置,因此每个组的p
n0都为0。
根据本公开的实施例,如上所述公式(29)和(32)所示,可以根据网络侧设备与用户设备之间的链路质量以及用户设备的标识来确定基于用户设备的偏移参数。也就是说,可以先基于用户设备的标识进行偏移,然后再将PRS所占的RE移动至链路质量较好的子载波上。
图17是示出根据本公开的实施例的对PRS位置进行基于UE的频移的配置示意图。如图17所示,分组后的PRS的配置示意图如左图所示,其中,组的个数N=4,也就是说,组的编号n=0,1,2,3。这里假定每个网络侧设备与用户设备之间的链路质量类似,并且编号为6-11的子载波上的链路质量大于编号为0-5的子载波上的链路质量,并且p
RNTI=4。如图17的右图所示,在图15的基础上,将每个组的PRS所占的RE移动到了6-11号子载波上。在图17所示的示例中,没有出现存在冲突的RE的位置,因此每个组的p
n0都为0。
如上所述,根据本公开的实施例,可以利用偏移参数对分组后的PRS进行频域位置的偏移。这样的偏移参数可以包括基于组的偏移参数和基于用户设备的偏移参数,其中,基于组的偏移参数与组的编号相关,基于用户设备的偏移参数与组的编号无关,而与用户设备的相关信息,例如用户设备的标识和/或网络侧设备与用户设备之间的在每个子载波上的链路质量相关。也就是说,根据本公开的实施例,可以根据以下参数中的至少一种对分配给网络侧设备的PRS的位置进行修正:网络侧设备与用户设备之间的链路质量;用户设备的标识;以及组的编号。这样一来,可以更加丰富PRS的设计,使得PRS的设计更加多样化。同时,在设计PRS时也考虑了与用户设备和组相关的信息,从而使得PRS的设计更加合理。
如上所述,根据本公开的实施例,可以根据不同的子载波设计用于NR通信系统的PRS。进一步,可以将PRS分成多个组以分配给用于对用户设备进行定位的多个网络侧设备。此外,为了使得PRS的设计更加合 理和多样性,还可以对PRS的位置进行修正。这样一来,可以针对NR通信系统更加合理地设计PRS,并优化对用户设备的定位。
<3.网络侧设备的配置示例>
图18是示出根据本公开的实施例的电子设备1800的配置的示例的框图。这里的电子设备1800可以作为无线通信系统中的网络侧设备,具体地可以作为无线通信系统,例如NR通信系统中的基站设备或TRP。
如图18所示,电子设备1800可以包括通信单元1810和计算单元1820。
这里,电子设备1800的各个单元都可以包括在处理电路中。需要说明的是,电子设备1800既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元1810可以获取电子设备1800在用于对用户设备进行定位的电子设备组成的组中的编号。如前文中所述,对用户设备进行定位的电子设备可以都是网络侧设备,并且组中包括多个这样的网络侧设备。编号例如可以为n,n=[0,N-1],N为组中包括的电子设备的个数。
根据本公开的实施例,计算单元1820可以根据电子设备1800在组中的编号确定用于电子设备1800的PRS的时频位置。
如上所述,根据本公开的实施例,电子设备1800可以根据对用户设备进行定位的电子设备组成的组中的编号来确定用于电子设备1800的PRS的时频位置,从而使得该组中的电子设备可以进行协作从而对用户设备进行定位,节约定位的时间。
根据本公开的实施例,可以由定位服务器或者为用户设备提供服务的电子设备来确定对用户设备进行定位的电子设备组成的组以及每个电子设备在组中的编号。定位服务器包括但不限于E-SMLC(Evolved Serving Mobile Location Center,演进服务移动位置中心)。
也就是说,根据本公开的实施例,通信单元1810可以从定位服务器来接收电子设备1800在组中的编号以及关于组的其它信息。此外,组中 其它的电子设备也可以从定位服务器接收其它电子设备在组中的编号以及关于组的其它信息。
根据本公开的实施例,当电子设备1800不是为用户设备提供服务的网络侧设备时,电子设备1800还可以从组中的其它电子设备,即为用户设备提供服务的网络侧设备来接收电子设备1800在组中的编号以及关于组的其它信息。此外,组中除电子设备1800和为用户设备提供服务的网络侧设备以外的其它电子设备也可以从为用户设备提供服务的网络侧设备接收其它电子设备在组中的编号以及关于组的其它信息。
根据本公开的实施例,当电子设备1800是为用户设备提供服务的网络侧设备时,电子设备1800可以确定对用户设备进行定位的组以及每个电子设备在组中的编号。
如图18所示,电子设备1800还包括确定单元1830,用于确定对用户设备进行定位的组以及每个电子设备在组中的编号。
根据本公开的实施例,确定单元1830可以从多个网络侧设备中确定用于对用户设备进行定位的电子设备组成的组。这里,多个网络侧设备可以是用户设备周围一定范围内的网络侧设备,确定单元1830可以从多个网络侧设备中选取多个网络侧设备从而形成上述组。一般来说,由于电子设备1800是为用户设备提供服务的网络侧设备,因此组中也包括电子设备1800。
根据本公开的实施例,确定单元1830可以根据以下参数中的至少一种从多个网络侧设备中选取组:多个网络侧设备中的每个网络侧设备与用户设备之间的链路质量;每个网络侧设备的位置;每个网络侧设备的覆盖范围;以及每个网络侧设备的天线阵列信息。
根据本公开的实施例,每个网络侧设备都可以将其位置、覆盖范围和天线阵列等信息上报给电子设备1800,从而电子设备1800获取这些信息。进一步,用户设备可以向用户设备周围的多个网络侧设备发送参考信号,从而每个网络侧设备通过该参考信号测量接收信号的信噪比或功率等参数,以确定每个网络侧设备与用户设备之间的链路质量。进一步,每个网络侧设备还可以将测量得到的链路质量上报到电子设备1800。根据本公开的实施例,电子设备1800可以从多个网络侧设备中选取链路质量较好的一些网络侧设备作为上述组,还可以综合考虑上述参数中的一种或多种来确定组中的网络侧设备。
进一步,在确定单元1830确定了对用户设备进行定位的网络侧设备组成的组之后,可以按照一定的规则对组中的网络侧设备进行编号,例如编号为0,1,…,N-1。由此,可以确定电子设备1800在组中的编号和组中的其它电子设备在组中的编号。
根据本公开的实施例,在定位服务器确定为用户设备进行定位的网络侧设备组成的组的情况下,也可以采用与上述实施例类似的方式,本公开对此不再赘述。
根据本公开的实施例,组中的每个网络侧设备需要知晓用于该网络侧设备的PRS的时频位置,而用户设备需要知晓组中所有的网络侧设备的PRS的时频位置。为了达到上述目的,根据本公开的实施例,对于网络侧设备来说,可以由组中的每个网络侧设备根据所述网络侧设备在组中的编号分别计算用于该网络侧设备的PRS的时频位置,也可以由为用户设备提供服务的网络侧设备计算用于组中每个网络侧设备的PRS的时频位置。对于用户设备来说,可以由用户设备根据每个网络侧设备在组中的编号分别计算用于每个网络侧设备的PRS的时频位置,也可以分别从每个网络侧设备获取用于每个网络侧设备的PRS的时频位置,还可以从为用户设备提供服务的网络侧设备获取用于组中的每个网络侧设备的PRS的时频位置。
也就是说,根据本公开的实施例,在电子设备1800是为用户设备提供服务的网络侧设备的情况下,电子设备1800可以通过通信单元1810将其它电子设备在组中的编号发送至其它电子设备,以用于其它电子设备根据其它电子设备在组中的编号确定用于其它电子设备的PRS的时频位置。也就是说,每个网络侧设备分别计算用于该网络侧设备的PRS的时频位置,由于电子设备1800只需要向其它电子设备发送其它电子设备的编号,因此可以节约信令开销。
根据本公开的实施例,在电子设备1800是为用户设备提供服务的网络侧设备的情况下,计算单元1820还可以根据组中的其它电子设备的编号确定用于其它电子设备的PRS的时频位置,并且通信单元1810可以将用于其它电子设备的PRS的时频位置发送至其它电子设备。也就是说,电子设备1800可以计算组中所有的网络侧设备的PRS的时频位置,从而减少其它的网络侧设备的计算量。
根据本公开的实施例,在电子设备1800是为用户设备提供服务的网络侧设备的情况下,通信单元1810还可以将电子设备在组中的编号和其 它电子设备在组中的编号发送至用户设备,以用于用户设备确定用于组中的每个电子设备的PRS的时频位置。也就是说,用户设备可以计算用于组中的每个网络侧设备的PRS的时频位置,由于电子设备1800只需要向用户设备发送所有网络侧设备的编号,因此可以节约信令开销。
根据本公开的实施例,通信单元1810还可以将用于电子设备1800的PRS的时频位置发送至用户设备。这里,组中除电子设备1800以外的其它电子设备也可以向用户设备发送用于其它电子设备的PRS的时频位置。可选地,电子设备1800如果也计算了其它电子设备的PRS的时频位置,也可以由电子设备1800向用户设备发送组中所有网络侧设备的PRS的时频位置。
根据本公开的实施例,在定位服务器或者为用户设备提供服务的网络侧设备确定了组以及组中的网络侧设备的编号以后,还可以将组参数发送至需要的设备,需要的设备可以包括为用户设备提供服务的网络侧设备、组中除为用户设备提供服务的网络侧设备以外的其它网络侧设备、用户设备等,以用于这些需要的设备计算相应的PRS的时频位置。这里,发送的方式可以采用广播发送,也可以采用单播发送。组参数例如可以包括组中包括的所有网络侧设备的标识信息以及每个网络侧设备的编号等与组相关的参数。
根据本公开的实施例,在定位服务器或者为用户设备提供服务的网络侧设备确定了组以及组中的网络侧设备的编号以后,还可以将偏移参数发送至上述需要的设备,以用于这些需要的设备计算相应的PRS的时频位置。同样地,发送的方式可以采用广播发送,也可以采用单播发送。这里,偏移参数例如可以包括前文中所述的基于组的偏移参数和基于用户设备的偏移参数。
根据本公开的实施例,在定位服务器或者为用户设备提供服务的网络侧设备确定了组以及组中的网络侧设备的编号以后,还可以将定位时隙配置参数发送至上述需要的设备,以用于这些需要的设备进行定位时隙的配置。同样地,发送的方式可以采用广播发送,也可以采用单播发送。这里,定位时隙配置参数例如可以包括定位的初始时隙、定位持续的时隙长度、波束扫描方向、波束扫描周期等与定位相关的参数。
图19-图24是示出根据本公开的实施例的确定每个网络侧设备的PRS的位置的信令流程图。在图19-图24中,假定TRP1是为UE提供服务的TRP,并且最终确定的为UE定位的组包括TRP1和TRP2。此外, 在图19-图24中,仅示出了由UE发起定位请求的示例,实际上还可以由MME(Mobility Management Entity,移动管理实体)发起定位请求,本公开并未在图中体现这样的示例。
如图19所示,在步骤S1901中,由UE发起定位请求,该请求经由MME发送至E-SMLC。接下来,在步骤S1902中,UE和E-SMLC之间交换定位请求参数。接下来,在步骤S1903中,E-SMLC从多个TRP中选取TRP1和TRP2作为对UE进行定位的TRP组,并确定TRP1和TRP2在组中的编号。接下来,在步骤S1904中,E-SMLC将组参数发送至TRP1、TRP2和UE。可选地,E-SMLC还可以将偏移参数和/或定位时隙配置参数发送至TRP1、TRP2和UE。如上所述,可以采用广播或者单播的方式来发送上述信息。接下来,在步骤S1905中,TRP1根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,TRP2根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置,UE根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,并根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置。由此可见,在图19所示的实施例中,由E-SMLC来确定组和组中的编号,由组中每个网络侧设备分别计算用于该网络侧设备的PRS的时频位置,并且由用户设备计算用户组中每个网络侧设备的PRS的时频位置。
如图20所示,在步骤S2001中,由UE发起定位请求,该请求经由MME发送至E-SMLC。接下来,在步骤S2002中,UE和E-SMLC之间交换定位请求参数。接下来,在步骤S2003中,E-SMLC从多个TRP中选取TRP1和TRP2作为对UE进行定位的TRP组,并确定TRP1和TRP2在组中的编号。接下来,在步骤S2004中,E-SMLC将组参数发送至TRP1和TRP2。可选地,E-SMLC还可以将偏移参数和/或定位时隙配置参数发送至TRP1和TRP2。如上所述,可以采用广播或者单播的方式来发送上述信息。接下来,在步骤S2005中,TRP1根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,TRP2根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置。接下来,在步骤S2006中,TRP1向UE发送用于TRP1的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。接下来,在步骤S2007中,TRP2向UE发送用于TRP2的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。这里,在步骤S2006和步骤S2007中,还可以仅由TRP1和TRP2中的一个TRP向UE发送组参数和定位时隙配置参数,优选地可以为TRP1向UE发送组参数和定位时隙配置参数。由此可见,在图20所示的实施例中,由 E-SMLC来确定组和组中的编号,由组中每个网络侧设备分别计算用于该网络侧设备的PRS的时频位置,并且由每个网络侧设备向用户设备发送每个网络侧设备的PRS的时频位置。
如图21所示,在步骤S2101中,由UE发起定位请求,该请求经由MME发送至E-SMLC。接下来,在步骤S2102中,UE和E-SMLC之间交换定位请求参数。接下来,在步骤S2103中,E-SMLC从多个TRP中选取TRP1和TRP2作为对UE进行定位的TRP组,并确定TRP1和TRP2在组中的编号。接下来,在步骤S2104中,E-SMLC将组参数发送至TRP1。可选地,E-SMLC还可以将偏移参数和/或定位时隙配置参数发送至TRP1。接下来,在步骤S2105中,TRP1根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,并根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置。接下来,在步骤S2106中,TRP1向UE发送用于TRP1的PRS的时频位置和用于TRP2的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。接下来,在步骤S2107中,TRP1向TRP2发送用于TRP2的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。由此可见,在图21所示的实施例中,由E-SMLC来确定组和组中的编号,由为用户设备提供服务的网络侧设备计算用于组中每个网络侧设备的PRS的时频位置,向用户设备发送每个网络侧设备的PRS的时频位置,并向其它网络侧设备发送用于其它网络侧设备的PRS的时频位置。
如图22所示,在步骤S2201中,由UE发起定位请求,该请求经由MME发送至E-SMLC。接下来,在步骤S2202中,UE、TRP1和E-SMLC之间交换定位请求参数。接下来,在步骤S2203中,TRP1从多个TRP中选取TRP1和TRP2作为对UE进行定位的TRP组,并确定TRP1和TRP2在组中的编号。接下来,在步骤S2204中,TRP1将组参数发送至TRP2和UE。可选地,TRP1还可以将偏移参数和/或定位时隙配置参数发送至TRP2和UE。如上所述,可以采用广播或者单播的方式来发送上述信息。接下来,在步骤S2205中,TRP1根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,TRP2根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置,UE根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,并根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置。由此可见,在图22所示的实施例中,由为用户设备提供服务的网络侧设备来确定组和组中的编号,由组中每个网络侧设备分别计算用于该网络侧设备的PRS的时频位置,并且由用户设备计算用户组中每个网络 侧设备的PRS的时频位置。
如图23所示,在步骤S2301中,由UE发起定位请求,该请求经由MME发送至E-SMLC。接下来,在步骤S2302中,UE、TRP1和E-SMLC之间交换定位请求参数。接下来,在步骤S2303中,TRP1从多个TRP中选取TRP1和TRP2作为对UE进行定位的TRP组,并确定TRP1和TRP2在组中的编号。接下来,在步骤S2304中,TRP1将组参数发送至TRP2。可选地,TRP1还可以将偏移参数和/或定位时隙配置参数发送至TRP2。接下来,在步骤S2305中,TRP1根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,TRP2根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置。接下来,在步骤S2306中,TRP1向UE发送用于TRP1的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。接下来,在步骤S2307中,TRP2向UE发送用于TRP2的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。这里,在步骤S2306和步骤S2307中,还可以仅由TRP1和TRP2中的一个TRP向UE发送组参数和定位时隙配置参数,优选地可以为TRP1向UE发送组参数和定位时隙配置参数。由此可见,在图23所示的实施例中,由为用户设备提供服务的网络侧设备来确定组和组中的编号,由组中每个网络侧设备分别计算用于该网络侧设备的PRS的时频位置,并且由每个网络侧设备向用户设备发送用于该网络侧设备的PRS的时频位置。
如图24所示,在步骤S2401中,由UE发起定位请求,该请求经由MME发送至E-SMLC。接下来,在步骤S2402中,UE、TRP1和E-SMLC之间交换定位请求参数。接下来,在步骤S2403中,TRP1从多个TRP中选取TRP1和TRP2作为对UE进行定位的TRP组,并确定TRP1和TRP2在组中的编号。接下来,在步骤S2404中,TRP1根据TRP1在组中的编号来确定用于TRP1的PRS的时频位置,并根据TRP2在组中的编号来确定用于TRP2的PRS的时频位置。接下来,在步骤S2405中,TRP1向UE发送用于TRP1的PRS的时频位置和用于TRP2的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。接下来,在步骤S2406中,TRP1向TRP2发送用于TRP2的PRS的时频位置。可选地,还可以发送组参数和定位时隙配置参数。由此可见,在图24所示的实施例中,由为用户设备提供服务的网络侧设备来确定组和组中的编号,由为用户设备提供服务的网络侧设备计算用于组中每个网络侧设备的PRS的时频位置,向用户设备发送用于每个网络侧设备的PRS的时频位置,并向其它网络侧设备发送用于其它网络侧设备的PRS的时频位置。
根据本公开的实施例,定位服务器或者为用户设备提供服务的网络侧设备可以确定组中的每个网络侧设备的波束扫描方向。例如,每个网络侧设备的波束扫描方向可以各不相同,也就是说,网络侧设备的波束扫描平面两两相交。当然,也可以存在波束扫描方向相同的网络侧设备,本公开对此不做限定。
图25是示出根据本公开的实施例的两个网络侧设备的波束扫描方向的示意图。如图25所示,组中包括两个网络侧设备,左侧的网络侧设备的波束扫描方向为水平方向,即扫描的波束组成的平面与地面平行,右侧的网络侧设备的波束扫描方向为竖直方向,即扫描的波束组成的平面与地面垂直。
根据本公开的实施例,定位服务器或者为用户设备提供服务的网络侧设备还可以确定组中的每个网络侧设备的波束扫描周期。例如,定位服务器或者为用户设备提供服务的网络侧设备可以根据网络侧设备的波束扫描方向来确定波束扫描周期。例如,相比于竖直方向,用户设备在水平方向上的位置变化比较快,因此可以设置水平方向上的波束扫描周期小于在竖直方向上的波束扫描周期。
如上所述,根据本公开的实施例,确定由网络侧设备组成的组以及每个网络侧设备在组中的编号的主体可以是为用户设备提供服务的网络侧设备,也可以是定位服务器。进一步,计算用于每个网络侧设备的PRS的时频位置的主体可以是为用户设备提供服务的网络侧设备,也可以是除为用户设备提供服务的网络侧设备的其它网络侧设备,还可以是用户设备。无论计算PRS的时频位置的主体是上述设备中的哪一个,计算方法都是一致的,在下文中将以电子设备1800为例详细描述计算的方法。
根据本公开的实施例,计算单元1820可以根据RB的子载波间隔和电子设备1800在组中的编号确定PRS在RB中的时频位置。这里,PRS的时频位置包括PRS所占的多个RE中的每个RE的时域位置和频域位置。
根据本公开的实施例,计算单元1820可以根据子载波间隔确定PRS的时域位置。进一步,计算单元1820还可以根据子载波间隔和电子设备1800在组中的编号确定PRS的时域位置。进一步,根据本公开的实施例,计算单元1820还可以根据PRS的时域位置和电子设备在组中的编号确定PRS的频域位置。
根据本公开的实施例,计算单元1820可以确定PRS的时域位置以使 得PRS与RB中的PDCCH、DMRS和CSI-RS中的每一个在时域上不重叠。
根据本公开的实施例,计算单元1820还可以确定PRS的时频位置以使得:PRS占用的多个RE位于不同的OFDM符号;和/或PRS占用的多个RE位于不同的子载波。
如图6(a)-图9(c)所示,PRS占用的多个RE可以位于不同的OFDM符号,也就是说,PRS占用的多个RE在时域上正交,多个RE中可以存在位于相同的子载波上的两个或更多个RE。
如图10(a)-图10(d)所示,PRS占用的多个RE可以位于不同的子载波,也就是说,PRS占用的多个RE在频域上正交,多个RE中可以存在位于相同的OFDM符号上的两个或更多个RE。
如图11(a)-图11(d)所示,PRS占用的多个RE还可以位于不同的OFDM符号并且位于不同的子载波。也就是说,PRS占用的多个RE在时域上和频域上都正交。在这种情况下,计算单元1820例如可以通过前文中的公式(5)-(21)来计算PRS所占的多个RE的时域位置和频域位置。
也就是说,根据本公开的实施例,计算单元1820可以根据以下参数中的至少一个确定PRS的时频位置:用户设备所在的小区的物理层小区标识;用于传输PRS的带宽;用于传输下行数据的带宽以及组中的电子设备的个数。
此外,如前文中所述,还可以根据偏移参数确定修正后的PRS的时频位置。偏移参数例如可以包括基于用户设备的偏移参数和基于组的偏移参数。计算单元1820可以基于电子设备1800在组中的编号确定基于组的偏移参数。进一步,计算单元1820可以基于电子设备1800与用户设备之间的在每个子载波上的链路质量和/或用户设备的标识确定基于用户设备的偏移参数。也就是说,计算单元1820还可以根据以下参数中的至少一个确定修正后的PRS的时频位置:电子设备1800在组中的编号、电子设备1800与用户设备之间的在每个子载波上的链路质量;以及用户设备的标识。
在这种情况下,计算单元1820例如还可以通过前文中的公式(22)-(32)来计算PRS所占的多个RE的时域位置和频域位置。
关于前文中所述的对PRS的设计和分组的实施例全部可以应用于 此,因此本公开对于这部分内容不再赘述。
根据本公开的实施例,如图18所示,电子设备1800还可以包括扫描单元1840,用于利用用于电子设备1800的PRS对用户设备进行波束扫描,以使得用户设备获得电子设备1800的波束发射角度信息。这里,扫描单元1840可以根据为电子设备1800配置的定位时隙配置参数来执行波束扫描过程。
由此可见,根据本公开的实施例的电子设备1800,可以根据对用户设备进行定位的电子设备组成的组中的编号来确定用于电子设备1800的PRS的时频位置,从而使得电子设备1800可以与组中的其它电子设备进行协作从而对用户设备进行定位,节约定位的时间。进一步,分组的PRS可以用于波束赋形并进行基于波束角的定位,从而使得定位更加精确。这样一来,可以针对NR通信系统更加合理地设计PRS,并优化对用户设备的定位。
<4.用户设备的配置示例>
图26是示出根据本公开的实施例的无线通信系统中的用户设备2600的结构的框图。如图26所示,用户设备2600可以包括通信单元2610和角度确定单元2620。
这里,用户设备2600的各个单元都可以包括在处理电路中。需要说明的是,用户设备2600既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元2610可以分别从多个网络侧设备接收PRS,其中,用于每个网络侧设备的PRS的时频位置是根据网络侧设备在多个网络侧设备组成的组中的编号确定的。
根据本公开的实施例,角度确定单元2620可以根据从每个网络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息。例如,角度确定单元2620可以根据用于网络侧设备的PRS的时频位置,在相应的RE上测量该网络侧设备发送的PRS,从而可以获取网络侧设备的波束发射角度信息。
由此可见,根据本公开的实施例,用户设备2600可以根据从多个网 络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息,这样的波束发射角度信息可以用于对用户设备2600进行定位。这样一来,可以实现基于波束角的定位,从而使得定位更加精确。
根据本公开的实施例,如图26所示,用户设备2600还可以包括定位单元2630,用于根据每个网络侧设备的波束发射角度信息确定用户设备2600的位置。也就是说,可以由用户设备2600确定用户设备2600的位置。这里,用户设备2600在获取了每个网络侧设备的波束发射角度信息之后,可以根据本领域中公知的任何方法来计算用户设备2600的位置,本公开对此不做限定。
根据本公开的实施例,通信单元2610还可以将每个网络侧设备的波束发射角度信息发送至定位服务器,以用于定位服务器确定用户设备2600的位置。定位服务器包括但不限于E-SMLC。也就是说,可以由定位服务器来确定用户设备2600的位置。同样地,定位服务器在获取了每个网络侧设备的波束发射角度信息之后,可以根据本领域中公知的任何方法来计算用户设备2600的位置,本公开对此不做限定。
根据本公开的实施例,如图26所示,用户设备2600还可以包括计算单元2650,用于计算每个网络侧设备的PRS的时频位置。
根据本公开的实施例,计算单元2650可以根据多个网络侧设备中的每个网络侧设备在组中的编号确定用于每个网络侧设备的PRS的时频位置。进一步,通信单元2610可以从为用户设备提供服务的网络侧设备或者定位服务器接收每个网络侧设备在组中的编号。具体的计算方法在前文中已经详述过,在此不再赘述。
根据本公开的实施例,通信单元2610可以从多个网络侧设备中的每个网络侧设备分别接收用于该网络侧设备的PRS的时频位置。
根据本公开的实施例,通信单元2610还可以从为用户设备2600提供服务的网络侧设备接收用于组中的每个网络侧设备的PRS的时频位置。
如上所述,根据本公开的实施例,用户设备2600可以计算用于每个网络侧设备的PRS的时频位置,也可以分别从每个网络侧设备接收用于该网络侧设备的PRS的时频位置,还可以从为用户设备2600提供服务的网络侧设备接收用于组中每个网络侧设备的PRS的时频位置。
根据本公开的实施例,如图26所示,用户设备2600还可以包括扫描单元2640,用于对多个网络侧设备进行波束扫描,以用于网络侧设备 获取用户设备的波束发射角度信息。这里,用户设备的波束发射角度信息可以包括针对每个网络侧设备的用户设备的波束发射角度信息。进一步,针对某个网络侧设备的用户设备的波束发射角度信息还可以包括多个扫描方向上的波束发射角度信息。进一步,网络侧设备可以将获取的用户设备的波束发射角度信息发送至用户设备2600。
根据本公开的实施例,定位单元2630可以根据每个网络侧设备的波束发射角度信息和用户设备的波束发射角度信息确定用户设备2600的位置。可选地,通信单元2610也可以将网络侧设备发送来的用户设备的波束发射角度信息发送至定位服务器,由定位服务器根据每个网络侧设备的波束发射角度信息和用户设备的波束发射角度信息确定用户设备2600的位置。
根据本公开的实施例,用户设备2600或者定位服务器可以根据本领域中公知的任何方法来基于每个网络侧设备的波束发射角度信息和用户设备的波束发射角度信息确定用户设备2600的位置,下文给出一个非限制性的示例。
假定TRP1的波束扫描方向为水平方向,TRP2的波束扫描方向为竖直方向,通过TRP1和TRP2的波束扫描过程,UE可以获取TRP1的波束发射角度为α
1,TRP2的波束发射角度为β
1。进一步,通过UE的波束扫描过程,可以获取四个UE的波束发射角度:UE针对TRP1的水平发射角度α
2;UE针对TRP1的竖直发射角度β
2;UE针对TRP2的水平发射角度α
3;以及UE针对TRP2的竖直发射角度β
3。其中,前两个UE的波束发射角度是由TRP1获取并发送至UE的,后两个UE的波束发射角度是由TRP2获取并发送至UE的。
其中,(x
1,y
1,z
1)、(x
1,y
1,z
1)分别表示TRP1和TRP2的三维坐标。
其中,γ
1和γ
2(γ
1+γ
2=1)为加权系数,例如可以分别与当UE进行波束扫描时TRP1和TRP2处的最大接收信噪比成正比。
如上描述了一种确定UE的位置的实施例,但是这个实施例并不是限制性的,仅仅是为了便于说明的目的。
由此可见,根据本公开的实施例,多个网络侧设备可以同时对用户设备进行波束扫描以获取网络侧设备的波束发射角度信息,用户设备也可以对多个网络侧设备进行波束扫描以获取用户设备的波束发射角度信息。这样一来,可以进一步提高对用户设备的定位精度。
根据本公开的实施例,可以采用TDD的方式执行网络侧设备的波束扫描和用户设备的波束扫描,也可以采用FDD的方式执行网络侧设备的波束扫描和用户设备的波束扫描。
图27(a)是示出根据本公开的实施例的在TDD模式下用户设备和网络侧设备分别执行波束扫描的信令流程图。如图27(a)所示,在步骤S2701中,TRP1和TRP2向UE执行波束扫描。接下来,在步骤S2702中,UE向TRP1和TRP2执行波束扫描。这两个步骤的波束扫描是在不同时间相同频率上执行的。
图27(b)是示出根据本公开的实施例的在FDD模式下用户设备和网络侧设备分别执行波束扫描的信令流程图。如图27(b)所示,在步骤S2701中,TRP1和TRP2向UE执行波束扫描。同时,UE向TRP1和TRP2执行波束扫描。这两个步骤的波束扫描是在相同时间不同频率上执行的。
如上所述,根据本公开的用户设备2600,可以根据从多个网络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息,这样的波束发射角度信息可以用于对用户设备2600进行定位。这样一来,可以实现基于波束角的定位,从而使得定位更加精确。此外,用户设备2600也可以对多个网络侧设备执行波束扫描,从而进一步提高定位的精度。
根据本公开的实施例的电子设备1800可以作为网络侧设备,即电子设备1800可以为用户设备2600提供服务,因此在前文中描述的关于电子设备1800的全部实施例都适用于此。
<5.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备1800执行的无线通信方法。
图28是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备1800执行的无线通信方法的流程图。
如图28所示,在步骤S2810中,获取电子设备在用于对用户设备进行定位的电子设备组成的组中的编号。
接下来,在步骤S2820中,根据电子设备在组中的编号确定用于电子设备的定位参考信号PRS的时频位置。
优选地,获取电子设备在用于对用户设备进行定位的电子设备组成的组中的编号可以包括:从定位服务器或者组中的其它电子设备接收电子设备在组中的编号。
优选地,获取电子设备在用于对用户设备进行定位的电子设备组成的组中的编号可以包括:从多个网络侧设备中确定用于对用户设备进行定位的电子设备组成的组;以及确定电子设备在组中的编号和组中的其它电子设备在组中的编号。
优选地,从多个网络侧设备中确定用于对用户设备进行定位的电子设备组成的组可以包括根据以下参数中的至少一种从多个网络侧设备中选取组:多个网络侧设备中的每个网络侧设备与用户设备之间的链路质量;每个网络侧设备的位置;每个网络侧设备的覆盖范围;以及每个网络侧设备的天线阵列信息。
优选地,方法还包括:将其它电子设备在组中的编号发送至其它电子设备,以用于其它电子设备根据其它电子设备在组中的编号确定用于其它电子设备的PRS的时频位置。
优选地,方法还包括:根据组中的其它电子设备的编号确定用于其它电子设备的PRS的时频位置;以及将用于其它电子设备的PRS的时频位置发送至其它电子设备。
优选地,方法还包括:将电子设备在组中的编号和其它电子设备在组中的编号发送至用户设备,以用于用户设备确定用于组中的每个电子设备的PRS的时频位置。
优选地,方法还包括:将用于电子设备的PRS的时频位置发送至用户设备。
优选地,确定用于电子设备的定位参考信号PRS的时频位置包括:根据资源块RB的子载波间隔和电子设备在组中的编号确定PRS在RB中的时频位置。
优选地,确定用于电子设备的定位参考信号PRS的时频位置还包括:根据子载波间隔确定PRS的时域位置;以及根据PRS的时域位置和电子设备在组中的编号确定PRS的频域位置。
优选地,确定用于电子设备的定位参考信号PRS的时频位置包括:确定PRS的时域位置以使得PRS与RB中的物理下行控制信道PDCCH、解调参考信号DMRS和信道状态信息参考信号CSI-RS中的每一个在时域上不重叠。
优选地,确定用于电子设备的定位参考信号PRS的时频位置包括:确定PRS的时频位置以使得:PRS占用的多个资源元素RE位于不同的正交频分复用OFDM符号;和/或PRS占用的多个RE位于不同的子载波。
优选地,确定用于电子设备的定位参考信号PRS的时频位置包括根据以下参数中的至少一个确定PRS的时频位置:用户设备所在的小区的物理层小区标识;用于传输PRS的带宽;用于传输下行数据的带宽;组中的电子设备的个数;电子设备与用户设备之间的链路质量;以及用户设备的标识。
优选地,方法还包括:利用用于电子设备的PRS对用户设备进行波束扫描。
优选地,电子设备1800包括新无线NR通信系统中的发送和接收端口TRP。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备1800,因此前文中关于电子设备1800的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的用户设备2600执行的无线通信方法。
图29是示出根据本公开的实施例的由无线通信系统中的用户设备2600执行的无线通信方法的流程图。
如图29所示,在步骤S2910中,分别从多个网络侧设备接收定位参考信号PRS,其中,用于每个网络侧设备的PRS的时频位置是根据所述网络侧设备在多个网络侧设备组成的组中的编号确定的。
接下来,在步骤S2920中,根据从每个网络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息。
优选地,方法还包括:根据每个网络侧设备的波束发射角度信息确定所述用户设备的位置。
优选地,方法还包括:将每个网络侧设备的波束发射角度信息发送至定位服务器,以用于定位服务器确定用户设备的位置。
优选地,方法还包括:对多个网络侧设备进行波束扫描,以获取用户设备的波束发射角度信息;以及根据每个网络侧设备的波束发射角度信息和用户设备的波束发射角度信息确定用户设备的位置。
优选地,方法还包括:从多个网络侧设备中的每个网络侧设备接收用于网络侧设备的PRS的时频位置。
优选地,方法还包括:根据多个网络侧设备中的每个网络侧设备在组中的编号确定用于每个网络侧设备的PRS的时频位置。
优选地,方法还包括:从为用户设备提供服务的网络侧设备或者定位服务器接收每个网络侧设备在组中的编号。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备2600,因此前文中关于用户设备2600的全部实施例均适用于此。
<6.应用示例>
本公开内容的技术能够应用于各种产品。
网络侧设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备 和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图30是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 3000包括一个或多个天线3010以及基站设备3020。基站设备3020和每个天线3010可以经由RF线缆彼此连接。
天线3010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图30所示,eNB 3000可以包括多个天线3010。例如,多个天线3010可以与eNB 3000使用的多个频带兼容。虽然图30示出其中eNB 3000包括多个天线3010的示例,但是eNB 3000也可以包括单个天线3010。
基站设备3020包括控制器3021、存储器3022、网络接口3023以及无线通信接口3025。
控制器3021可以为例如CPU或DSP,并且操作基站设备3020的较高层的各种功能。例如,控制器3021根据由无线通信接口3025处理的信 号中的数据来生成数据分组,并经由网络接口3023来传递所生成的分组。控制器3021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器3021可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器3022包括RAM和ROM,并且存储由控制器3021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口3023为用于将基站设备3020连接至核心网3024的通信接口。控制器3021可以经由网络接口3023而与核心网节点或另外的eNB进行通信。在此情况下,eNB 3000与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口3023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口3023为无线通信接口,则与由无线通信接口3025使用的频带相比,网络接口3023可以使用较高频带用于无线通信。
无线通信接口3025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线3010来提供到位于eNB 3000的小区中的终端的无线连接。无线通信接口3025通常可以包括例如基带(BB)处理器3026和RF电路3027。BB处理器3026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器3021,BB处理器3026可以具有上述逻辑功能的一部分或全部。BB处理器3026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器3026的功能改变。该模块可以为插入到基站设备3020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路3027可以包括例如混频器、滤波器和放大器,并且经由天线3010来传送和接收无线信号。
如图30所示,无线通信接口3025可以包括多个BB处理器3026。例如,多个BB处理器3026可以与eNB 3000使用的多个频带兼容。如图30所示,无线通信接口3025可以包括多个RF电路3027。例如,多个RF电路3027可以与多个天线元件兼容。虽然图30示出其中无线通信接口3025包括多个BB处理器3026和多个RF电路3027的示例,但是无线通信接口3025也可以包括单个BB处理器3026或单个RF电路3027。
(第二应用示例)
图31是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 3130包括一个或多个天线3140、基站设备3150和RRH 3160。RRH 3160和每个天线3140可以经由RF线缆而彼此连接。基站设备3150和RRH 3160可以经由诸如光纤线缆的高速线路而彼此连接。
天线3140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 3160发送和接收无线信号。如图31所示,eNB 3130可以包括多个天线3140。例如,多个天线3140可以与eNB 3130使用的多个频带兼容。虽然图31示出其中eNB 3130包括多个天线3140的示例,但是eNB 3130也可以包括单个天线3140。
基站设备3150包括控制器3151、存储器3152、网络接口3153、无线通信接口3155以及连接接口3157。控制器3151、存储器3152和网络接口3153与参照图30描述的控制器3021、存储器3022和网络接口3023相同。
无线通信接口3155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 3160和天线3140来提供到位于与RRH 3160对应的扇区中的终端的无线通信。无线通信接口3155通常可以包括例如BB处理器3156。除了BB处理器3156经由连接接口3157连接到RRH 3160的RF电路3164之外,BB处理器3156与参照图30描述的BB处理器3026相同。如图31所示,无线通信接口3155可以包括多个BB处理器3156。例如,多个BB处理器3156可以与eNB 3130使用的多个频带兼容。虽然图31示出其中无线通信接口3155包括多个BB处理器3156的示例,但是无线通信接口3155也可以包括单个BB处理器3156。
连接接口3157为用于将基站设备3150(无线通信接口3155)连接至RRH 3160的接口。连接接口3157还可以为用于将基站设备3150(无线通信接口3155)连接至RRH 3160的上述高速线路中的通信的通信模块。
RRH 3160包括连接接口3161和无线通信接口3163。
连接接口3161为用于将RRH 3160(无线通信接口3163)连接至基站设备3150的接口。连接接口3161还可以为用于上述高速线路中的通信的通信模块。
无线通信接口3163经由天线3140来传送和接收无线信号。无线通信接口3163通常可以包括例如RF电路3164。RF电路3164可以包括例 如混频器、滤波器和放大器,并且经由天线3140来传送和接收无线信号。如图31所示,无线通信接口3163可以包括多个RF电路3164。例如,多个RF电路3164可以支持多个天线元件。虽然图31示出其中无线通信接口3163包括多个RF电路3164的示例,但是无线通信接口3163也可以包括单个RF电路3164。
在图30和图31所示的eNB 3000和eNB 3130中,通过使用图18所描述的计算单元1820、确定单元1830和扫描单元1840可以由控制器3021和/或控制器3151实现。功能的至少一部分也可以由控制器3021和控制器3151实现。例如,控制器3021和/或控制器3151可以通过执行相应的存储器中存储的指令而执行对网络侧设备进行分组、确定PRS的位置的功能以及波束扫描的功能。
<关于终端设备的应用示例>
(第一应用示例)
图32是示出可以应用本公开内容的技术的智能电话3200的示意性配置的示例的框图。智能电话3200包括处理器3201、存储器3202、存储装置3203、外部连接接口3204、摄像装置3206、传感器3207、麦克风3208、输入装置3209、显示装置3210、扬声器3211、无线通信接口3212、一个或多个天线开关3215、一个或多个天线3216、总线3217、电池3218以及辅助控制器3219。
处理器3201可以为例如CPU或片上系统(SoC),并且控制智能电话3200的应用层和另外层的功能。存储器3202包括RAM和ROM,并且存储数据和由处理器3201执行的程序。存储装置3203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口3204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话3200的接口。
摄像装置3206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器3207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风3208将输入到智能电话3200的声音转换为音频信号。输入装置3209包括例如被配置为检测显示装置3210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置3210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管 (OLED)显示器),并且显示智能电话3200的输出图像。扬声器3211将从智能电话3200输出的音频信号转换为声音。
无线通信接口3212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口3212通常可以包括例如BB处理器3213和RF电路3214。BB处理器3213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路3214可以包括例如混频器、滤波器和放大器,并且经由天线3216来传送和接收无线信号。无线通信接口3212可以为其上集成有BB处理器3213和RF电路3214的一个芯片模块。如图32所示,无线通信接口3212可以包括多个BB处理器3213和多个RF电路3214。虽然图32示出其中无线通信接口3212包括多个BB处理器3213和多个RF电路3214的示例,但是无线通信接口3212也可以包括单个BB处理器3213或单个RF电路3214。
此外,除了蜂窝通信方案之外,无线通信接口3212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口3212可以包括针对每种无线通信方案的BB处理器3213和RF电路3214。
天线开关3215中的每一个在包括在无线通信接口3212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线3216的连接目的地。
天线3216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口3212传送和接收无线信号。如图32所示,智能电话3200可以包括多个天线3216。虽然图32示出其中智能电话3200包括多个天线3216的示例,但是智能电话3200也可以包括单个天线3216。
此外,智能电话3200可以包括针对每种无线通信方案的天线3216。在此情况下,天线开关3215可以从智能电话3200的配置中省略。
总线3217将处理器3201、存储器3202、存储装置3203、外部连接接口3204、摄像装置3206、传感器3207、麦克风3208、输入装置3209、显示装置3210、扬声器3211、无线通信接口3212以及辅助控制器3219彼此连接。电池3218经由馈线向图32所示的智能电话3200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器3219例如在睡眠模 式下操作智能电话3200的最小必需功能。
在图32所示的智能电话3200中,通过使用图26所描述的角度确定单元2620、定位单元2630、扫描单元2640和计算单元3650可以由由处理器3201或辅助控制器3219实现。功能的至少一部分也可以由处理器3201或辅助控制器3219实现。例如,处理器3201或辅助控制器3219可以通过执行存储器3202或存储装置3203中存储的指令而执行确定波束发射角度、定位、计算PRS的位置以及对网络侧设备进行波束扫描的功能。
(第二应用示例)
图33是示出可以应用本公开内容的技术的汽车导航设备3320的示意性配置的示例的框图。汽车导航设备3320包括处理器3321、存储器3322、全球定位系统(GPS)模块3324、传感器3325、数据接口3326、内容播放器3327、存储介质接口3328、输入装置3329、显示装置3330、扬声器3331、无线通信接口3333、一个或多个天线开关3336、一个或多个天线3337以及电池3338。
处理器3321可以为例如CPU或SoC,并且控制汽车导航设备3320的导航功能和另外的功能。存储器3322包括RAM和ROM,并且存储数据和由处理器3321执行的程序。
GPS模块3324使用从GPS卫星接收的GPS信号来测量汽车导航设备3320的位置(诸如纬度、经度和高度)。传感器3325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口3326经由未示出的终端而连接到例如车载网络3341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器3327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口3328中。输入装置3329包括例如被配置为检测显示装置3330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置3330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器3331输出导航功能的声音或再现的内容。
无线通信接口3333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口3333通常可以包括例如BB处理器3334和RF电路3335。BB处理器3334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时, RF电路3335可以包括例如混频器、滤波器和放大器,并且经由天线3337来传送和接收无线信号。无线通信接口3333还可以为其上集成有BB处理器3334和RF电路3335的一个芯片模块。如图33所示,无线通信接口3333可以包括多个BB处理器3334和多个RF电路3335。虽然图33示出其中无线通信接口3333包括多个BB处理器3334和多个RF电路3335的示例,但是无线通信接口3333也可以包括单个BB处理器3334或单个RF电路3335。
此外,除了蜂窝通信方案之外,无线通信接口3333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口3333可以包括BB处理器3334和RF电路3335。
天线开关3336中的每一个在包括在无线通信接口3333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线3337的连接目的地。
天线3337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口3333传送和接收无线信号。如图33所示,汽车导航设备3320可以包括多个天线3337。虽然图33示出其中汽车导航设备3320包括多个天线3337的示例,但是汽车导航设备3320也可以包括单个天线3337。
此外,汽车导航设备3320可以包括针对每种无线通信方案的天线3337。在此情况下,天线开关3336可以从汽车导航设备3320的配置中省略。
电池3338经由馈线向图33所示的汽车导航设备3320的各个块提供电力,馈线在图中被部分地示为虚线。电池3338累积从车辆提供的电力。
在图33示出的汽车导航设备3320中,通过使用图26所描述的角度确定单元2620、定位单元2630、扫描单元2640和计算单元3650可以由处理器3321实现。功能的至少一部分也可以由处理器3321实现。例如,处理器3321可以通过执行存储器3322中存储的指令而执行确定波束发射角度、定位、计算PRS的位置以及对网络侧设备进行波束扫描的功能。
本公开内容的技术也可以被实现为包括汽车导航设备3320、车载网络3341以及车辆模块3342中的一个或多个块的车载系统(或车辆)3340。车辆模块3342生成车辆数据(诸如车速、发动机速度和故障信息),并且 将所生成的数据输出至车载网络3341。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。
Claims (36)
- 一种确定定位参考信号PRS的位置的方法,包括:获取资源块RB的子载波间隔;以及根据所述子载波间隔确定定位参考信号PRS在所述RB中的时频位置。
- 根据权利要求1所述的方法,其中,确定所述PRS的时频位置包括:确定所述PRS在所述RB中所占的多个资源元素RE的时域位置和频域位置。
- 根据权利要求2所述的方法,其中,确定所述PRS的时频位置包括:所述多个RE与所述RB中的物理下行控制信道PDCCH、解调参考信号DMRS和信道状态信息参考信号CSI-RS中的每一个不重叠。
- 根据权利要求3所述的方法,其中,确定所述PRS的时频位置包括:所述多个RE与所述RB中的PDCCH、DMRS和CSI-RS中的每一个在时域上不重叠。
- 根据权利要求2所述的方法,其中,确定所述多个RE的时域位置包括:所述多个RE在所述RB的时域上的跨度最大化。
- 根据权利要求2所述的方法,其中,确定所述多个RE的频域位置包括:所述多个RE在所述RB的频域上的跨度最大化。
- 根据权利要求2所述的方法,其中,确定所述多个RE的频域位置包括:每个正交频分复用OFDM符号上的PRS所占用的资源元素RE不超过两个。
- 根据权利要求1所述的方法,其中,还根据以下参数中的至少一 个确定所述PRS的时频位置:待定位的用户设备所在的小区的物理层小区标识;用于传输所述PRS的带宽;以及用于传输下行数据的带宽。
- 根据权利要求1所述的方法,其中,所述方法还包括:将确定位置的PRS分成多个组,并将多个组的PRS分别分配给用于对用户设备进行定位的多个网络侧设备。
- 根据权利要求9所述的方法,其中,将确定位置的PRS分成多个组包括:将PRS占用的同一个子载波上的一个或多个资源元素RE分配到同一个组中;或者将PRS占用的同一个正交频分复用OFDM符号上的一个或多个RE分配到同一个组中;或者将PRS占用的同一个子载波上的一个或多个RE分配到不同的组中,并且将PRS占用的同一个OFDM符号上的一个或多个RE分配到不同的组中。
- 根据权利要求9所述的方法,其中,所述方法还包括根据以下参数中的至少一种对分配给所述网络侧设备的PRS的位置进行修正:所述网络侧设备与所述用户设备之间的链路质量;所述用户设备的标识;以及所述PRS所在的组的编号。
- 一种用作网络侧设备的电子设备,包括处理电路,被配置为:获取所述电子设备在用于对用户设备进行定位的电子设备组成的组中的编号;以及根据所述电子设备在所述组中的编号确定用于所述电子设备的定位参考信号PRS的时频位置。
- 根据权利要求12所述的电子设备,其中,所述处理电路被配置为:从定位服务器或者所述组中的其它电子设备接收所述电子设备在所述组中的编号。
- 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:从多个网络侧设备中确定用于对所述用户设备进行定位的电子设备组成的组;以及确定所述电子设备在所述组中的编号和所述组中的其它电子设备在所述组中的编号。
- 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为根据以下参数中的至少一种从所述多个网络侧设备中选取所述组:所述多个网络侧设备中的每个网络侧设备与所述用户设备之间的链路质量;每个网络侧设备的位置;每个网络侧设备的覆盖范围;以及每个网络侧设备的天线阵列信息。
- 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:将所述其它电子设备在所述组中的编号发送至所述其它电子设备,以用于所述其它电子设备根据所述其它电子设备在所述组中的编号确定用于所述其它电子设备的PRS的时频位置。
- 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:根据所述组中的其它电子设备的编号确定用于所述其它电子设备的PRS的时频位置;以及将用于所述其它电子设备的PRS的时频位置发送至所述其它电子设备。
- 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:将所述电子设备在所述组中的编号和所述其它电子设备在所述组中的编号发送至所述用户设备,以用于所述用户设备确定用于所述组中的每个电子设备的PRS的时频位置。
- 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:将用于所述电子设备的PRS的时频位置发送至所述用户设备。
- 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:根据资源块RB的子载波间隔和所述电子设备在所述组中的编号确定所述PRS在所述RB中的时频位置。
- 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为:根据所述子载波间隔确定所述PRS的时域位置;以及根据所述PRS的时域位置和所述电子设备在所述组中的编号确定所述PRS的频域位置。
- 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为:确定所述PRS的时域位置以使得所述PRS与所述RB中的物理下行控制信道PDCCH、解调参考信号DMRS和信道状态信息参考信号CSI-RS中的每一个在时域上不重叠。
- 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为确定所述PRS的时频位置以使得:所述PRS占用的多个资源元素RE位于不同的正交频分复用OFDM符号;和/或所述PRS占用的多个RE位于不同的子载波。
- 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为根据以下参数中的至少一个确定所述PRS的时频位置:所述用户设备所在的小区的物理层小区标识;用于传输所述PRS的带宽;用于传输下行数据的带宽;所述组中的电子设备的个数;所述电子设备与所述用户设备之间的链路质量;以及所述用户设备的标识。
- 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:利用用于所述电子设备的PRS对所述用户设备进行波束扫描。
- 根据权利要求12-25中任一项所述的电子设备,其中,所述电子设备包括新无线NR通信系统中的发送和接收端口TRP。
- 一种用户设备,包括处理电路,被配置为:分别从多个网络侧设备接收定位参考信号PRS,其中,用于每个网络侧设备的PRS的时频位置是根据所述网络侧设备在所述多个网络侧设备组成的组中的编号确定的;以及根据从每个网络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息。
- 根据权利要求27所述的用户设备,其中,所述处理电路还被配置为:根据每个网络侧设备的波束发射角度信息确定所述用户设备的位置。
- 根据权利要求27所述的用户设备,其中,所述处理电路还被配置为:将每个网络侧设备的波束发射角度信息发送至定位服务器,以用于所述定位服务器确定所述用户设备的位置。
- 根据权利要求27所述的用户设备,其中,所述处理电路还被配置为:对所述多个网络侧设备进行波束扫描,以获取所述用户设备的波束发射角度信息;以及根据每个网络侧设备的波束发射角度信息和所述用户设备的波束发射角度信息确定所述用户设备的位置。
- 根据权利要求27所述的用户设备,其中,所述处理电路还被配置为:从所述多个网络侧设备中的每个网络侧设备接收用于所述网络侧设备的PRS的时频位置。
- 根据权利要求27所述的用户设备,其中,所述处理电路还被配置为:根据所述多个网络侧设备中的每个网络侧设备在所述组中的编号确定用于每个网络侧设备的PRS的时频位置。
- 根据权利要求32所述的用户设备,其中,所述处理电路还被配置为:从为所述用户设备提供服务的网络侧设备或者定位服务器接收每个网络侧设备在所述组中的编号。
- 一种由电子设备执行的无线通信方法,包括:获取所述电子设备在用于对用户设备进行定位的电子设备组成的组中的编号;以及根据所述电子设备在所述组中的编号确定用于所述电子设备的定位参考信号PRS的时频位置。
- 一种由用户设备执行的无线通信方法,包括:分别从多个网络侧设备接收定位参考信号PRS,其中,用于每个网络侧设备的PRS的时频位置是根据所述网络侧设备在所述多个网络侧设备组成的组中的编号确定的;以及根据从每个网络侧设备接收的PRS确定每个网络侧设备的波束发射角度信息。
- 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求1-11、34和35中任一项所述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/770,628 US11239979B2 (en) | 2018-04-03 | 2019-03-27 | Electronic device, user equipment, method and computer readable storage medium |
CN201980005804.1A CN111373770B (zh) | 2018-04-03 | 2019-03-27 | 电子设备、用户设备、方法和计算机可读存储介质 |
US17/547,224 US11831581B2 (en) | 2018-04-03 | 2021-12-10 | Electronic device, user equipment, method and computer readable storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810298383.3A CN110366093A (zh) | 2018-04-03 | 2018-04-03 | 电子设备、用户设备、方法和计算机可读存储介质 |
CN201810298383.3 | 2018-04-03 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/770,628 A-371-Of-International US11239979B2 (en) | 2018-04-03 | 2019-03-27 | Electronic device, user equipment, method and computer readable storage medium |
US17/547,224 Continuation US11831581B2 (en) | 2018-04-03 | 2021-12-10 | Electronic device, user equipment, method and computer readable storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019192362A1 true WO2019192362A1 (zh) | 2019-10-10 |
Family
ID=68099931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079813 WO2019192362A1 (zh) | 2018-04-03 | 2019-03-27 | 电子设备、用户设备、方法和计算机可读存储介质 |
Country Status (3)
Country | Link |
---|---|
US (2) | US11239979B2 (zh) |
CN (2) | CN110366093A (zh) |
WO (1) | WO2019192362A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2583691A (en) * | 2019-02-15 | 2020-11-11 | Samsung Electronics Co Ltd | Methods, apparatus, and systems for transmitting and receiving positioning reference signals in 5G new radio networks |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11736934B2 (en) | 2020-04-28 | 2023-08-22 | Qualcomm Incorporated | Minimum positioning reference signal (PRS) processing when measurement gaps are not configured |
US11693081B2 (en) * | 2020-09-01 | 2023-07-04 | Locaila, Inc | Method for estimating distance using wireless carrier signal phase measurement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101616360A (zh) * | 2009-07-24 | 2009-12-30 | 中兴通讯股份有限公司 | 一种定位参考信号的发送方法及系统 |
WO2011043595A2 (en) * | 2009-10-06 | 2011-04-14 | Pantech Co.,Ltd. | Apparatus and method for transmitting/receiving signal in wireless communication system |
CN105850055A (zh) * | 2013-12-26 | 2016-08-10 | 联发科技(新加坡)私人有限公司 | 具有多天线系统基于定位的波束成形方法 |
CN107483166A (zh) * | 2016-06-08 | 2017-12-15 | 上海朗帛通信技术有限公司 | 一种无线通信中的方法和装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101738162B1 (ko) * | 2009-04-10 | 2017-05-22 | 엘지전자 주식회사 | 무선 통신 시스템에서 포지셔닝 참조 신호 전송 방법 및 장치 |
US9119036B2 (en) * | 2010-05-10 | 2015-08-25 | Telefonaktiebolaget L M Ericsson (Publ) | Enhanced measurement gap configuration support for positioning |
US8948040B2 (en) * | 2010-09-05 | 2015-02-03 | Lg Electronics Inc. | Method and device for deciding location of terminal in a wireless communication system |
US9119102B2 (en) * | 2011-04-04 | 2015-08-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio network node and method for using positioning gap indication for enhancing positioning performance |
EP2975779B1 (en) * | 2013-03-11 | 2018-07-25 | LG Electronics Inc. | Method and apparatus for reporting channel state information in wireless communication system |
WO2016036154A1 (ko) * | 2014-09-04 | 2016-03-10 | 엘지전자(주) | 무선 통신 시스템에서 포지셔닝을 수행하기 위한 방법 및 이를 위한 장치 |
BR112017028337B1 (pt) * | 2015-07-08 | 2023-11-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Dispositivo para fornecer informação de localização, dispositivo para obter informação de posicionamento e métodos relacionados |
CN106341882A (zh) * | 2015-07-17 | 2017-01-18 | 北京信威通信技术股份有限公司 | 一种lte系统的终端定位方法 |
KR20190017994A (ko) * | 2016-06-15 | 2019-02-20 | 콘비다 와이어리스, 엘엘씨 | 새로운 라디오를 위한 업로드 제어 시그널링 |
CN109845129B (zh) * | 2016-08-11 | 2023-10-31 | 交互数字专利控股公司 | 针对新无线电在弹性帧结构中进行波束成形扫描和训练 |
US10932276B2 (en) * | 2016-11-03 | 2021-02-23 | Convida Wireless, Llc | Frame structure in NR |
US11122455B2 (en) * | 2017-02-28 | 2021-09-14 | Lg Electronics Inc. | Method for positioning terminal in wireless communication system and apparatus therefor |
US10746842B2 (en) * | 2017-02-28 | 2020-08-18 | Lg Electronics Inc. | Method and apparatus for transmitting information for position measurement |
US10736074B2 (en) * | 2017-07-31 | 2020-08-04 | Qualcomm Incorporated | Systems and methods to facilitate location determination by beamforming of a positioning reference signal |
-
2018
- 2018-04-03 CN CN201810298383.3A patent/CN110366093A/zh active Pending
-
2019
- 2019-03-27 CN CN201980005804.1A patent/CN111373770B/zh active Active
- 2019-03-27 US US16/770,628 patent/US11239979B2/en active Active
- 2019-03-27 WO PCT/CN2019/079813 patent/WO2019192362A1/zh active Application Filing
-
2021
- 2021-12-10 US US17/547,224 patent/US11831581B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101616360A (zh) * | 2009-07-24 | 2009-12-30 | 中兴通讯股份有限公司 | 一种定位参考信号的发送方法及系统 |
WO2011043595A2 (en) * | 2009-10-06 | 2011-04-14 | Pantech Co.,Ltd. | Apparatus and method for transmitting/receiving signal in wireless communication system |
CN105850055A (zh) * | 2013-12-26 | 2016-08-10 | 联发科技(新加坡)私人有限公司 | 具有多天线系统基于定位的波束成形方法 |
CN107483166A (zh) * | 2016-06-08 | 2017-12-15 | 上海朗帛通信技术有限公司 | 一种无线通信中的方法和装置 |
Non-Patent Citations (1)
Title |
---|
"Physical channels and modulation(Release 15", 3GPP TS 36. 211, vol. RAN WG1, no. V15.1.0, 2 April 2018 (2018-04-02), pages 1 - 8, XP051450741 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2583691A (en) * | 2019-02-15 | 2020-11-11 | Samsung Electronics Co Ltd | Methods, apparatus, and systems for transmitting and receiving positioning reference signals in 5G new radio networks |
GB2583691B (en) * | 2019-02-15 | 2021-11-03 | Samsung Electronics Co Ltd | Methods, apparatus, and systems for transmitting and receiving positioning reference signals in 5G new radio networks |
US11197264B2 (en) | 2019-02-15 | 2021-12-07 | Samsung Electronics Co., Ltd. | Methods and apparatus for transmitting and receiving a positioning reference signal in a wireless communication system |
Also Published As
Publication number | Publication date |
---|---|
US11239979B2 (en) | 2022-02-01 |
US20200382263A1 (en) | 2020-12-03 |
CN110366093A (zh) | 2019-10-22 |
US11831581B2 (en) | 2023-11-28 |
US20220103331A1 (en) | 2022-03-31 |
CN111373770A (zh) | 2020-07-03 |
CN111373770B (zh) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7023353B2 (ja) | サイドリンクを支援する無線通信システムにおいて端末がポジショニング情報を送信する方法及びそのための装置 | |
US20240235624A9 (en) | Electronic device, method and storage medium for wireless communication system | |
JP2023029933A (ja) | 無線通信システムにおける装置と方法、媒体 | |
JP7511004B2 (ja) | 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法 | |
US10368195B2 (en) | Electronic device in wireless communication system and wireless communication method | |
US11824607B2 (en) | Electronic device, method and storage medium for wireless communication system | |
CN106374981B (zh) | 无线通信系统中的电子设备和无线通信方法 | |
USRE49823E1 (en) | Apparatus and method for transmitting and receiving signal in a mobile communication system | |
KR20170038820A (ko) | 무선 통신 시스템에서의 장치 및 방법 | |
US11831581B2 (en) | Electronic device, user equipment, method and computer readable storage medium | |
JP2018534802A (ja) | 無線通信の基地局側及びユーザー装置側で用いられる装置及び方法 | |
CN112740571A (zh) | 针对远程干扰的ssb到ro映射 | |
WO2019105272A1 (zh) | 无线通信系统中的电子设备、方法和计算机可读存储介质 | |
US11330599B2 (en) | Generation and transmission of resource allocation information according to interferences and altitude | |
CN108476504A (zh) | 网络管理侧和用户设备侧的装置及方法、中央管理装置 | |
CN111727647A (zh) | 用于在非正交多址接入(noma)网络中对用户进行分组的装置、方法和计算机程序 | |
CN114375040A (zh) | 部分带宽切换方法、装置及系统 | |
WO2021190435A1 (zh) | 用于无线通信的电子设备和方法、计算机可读存储介质 | |
WO2021179981A1 (zh) | 用于无线通信的电子设备和方法、计算机可读存储介质 | |
WO2020197563A1 (en) | Multi-trp gc-pdcch design considerations | |
US20240364473A1 (en) | Method and apparatus for performing sidelink positioning based on srs in wireless communication system | |
US20240357543A1 (en) | Method and apparatus for performing positioning based on sidelink prs in wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19782204 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19782204 Country of ref document: EP Kind code of ref document: A1 |