WO2019188901A1 - Production method for semiconductor substrate, and set such as polishing composition set - Google Patents
Production method for semiconductor substrate, and set such as polishing composition set Download PDFInfo
- Publication number
- WO2019188901A1 WO2019188901A1 PCT/JP2019/012358 JP2019012358W WO2019188901A1 WO 2019188901 A1 WO2019188901 A1 WO 2019188901A1 JP 2019012358 W JP2019012358 W JP 2019012358W WO 2019188901 A1 WO2019188901 A1 WO 2019188901A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- front surface
- polishing
- back surface
- abrasive grains
- semiconductor substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 160
- 239000004065 semiconductor Substances 0.000 title claims abstract description 151
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 67
- 238000005498 polishing Methods 0.000 title claims description 255
- 239000000203 mixture Substances 0.000 title claims description 170
- 238000012545 processing Methods 0.000 claims abstract description 222
- 239000006061 abrasive grain Substances 0.000 claims description 158
- 239000002245 particle Substances 0.000 claims description 76
- 238000000034 method Methods 0.000 claims description 72
- 238000000227 grinding Methods 0.000 claims description 69
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 61
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 28
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 27
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 22
- 150000003839 salts Chemical class 0.000 claims description 15
- 229910003460 diamond Inorganic materials 0.000 claims description 14
- 239000010432 diamond Substances 0.000 claims description 14
- 230000003746 surface roughness Effects 0.000 claims description 11
- 150000003681 vanadium Chemical class 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 96
- 230000008569 process Effects 0.000 description 46
- 239000007788 liquid Substances 0.000 description 31
- 239000000463 material Substances 0.000 description 23
- 239000000377 silicon dioxide Substances 0.000 description 20
- 239000011163 secondary particle Substances 0.000 description 18
- 150000007513 acids Chemical class 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- -1 permanganates Substances 0.000 description 11
- 238000007517 polishing process Methods 0.000 description 10
- 239000011164 primary particle Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000008119 colloidal silica Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 229910002601 GaN Inorganic materials 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 150000002505 iron Chemical class 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000012286 potassium permanganate Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 241001553178 Arachis glabrata Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- MLIWQXBKMZNZNF-KUHOPJCQSA-N (2e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)CC1=CC1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-KUHOPJCQSA-N 0.000 description 1
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- QLOKJRIVRGCVIM-UHFFFAOYSA-N 1-[(4-methylsulfanylphenyl)methyl]piperazine Chemical compound C1=CC(SC)=CC=C1CN1CCNCC1 QLOKJRIVRGCVIM-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- CEKJAYFBQARQNG-UHFFFAOYSA-N cadmium zinc Chemical compound [Zn].[Cd] CEKJAYFBQARQNG-UHFFFAOYSA-N 0.000 description 1
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 1
- 229940005991 chloric acid Drugs 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- JZBWUTVDIDNCMW-UHFFFAOYSA-L dipotassium;oxido sulfate Chemical compound [K+].[K+].[O-]OS([O-])(=O)=O JZBWUTVDIDNCMW-UHFFFAOYSA-L 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- QWARLPGIFZKIQW-UHFFFAOYSA-N hydrogen peroxide;nitric acid Chemical compound OO.O[N+]([O-])=O QWARLPGIFZKIQW-UHFFFAOYSA-N 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 150000002497 iodine compounds Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- UMPKMCDVBZFQOK-UHFFFAOYSA-N potassium;iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[K+].[Fe+3] UMPKMCDVBZFQOK-UHFFFAOYSA-N 0.000 description 1
- BQFYGYJPBUKISI-UHFFFAOYSA-N potassium;oxido(dioxo)vanadium Chemical compound [K+].[O-][V](=O)=O BQFYGYJPBUKISI-UHFFFAOYSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B7/00—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
- B24B7/20—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
- B24B7/22—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Definitions
- the present invention relates to a method for producing a semiconductor substrate, and a polishing composition set and other sets preferably used in the production method.
- a semiconductor substrate material composed of silicon, gallium nitride, silicon carbide, or the like is usually cut out from an ingot and then formed into a thin semiconductor substrate (semiconductor wafer) having a smooth surface through a lapping process or a polishing process.
- a polishing slurry is supplied between the polishing pad and an object to be processed using a polishing pad after lapping using diamond abrasive grains or instead of lapping. Polishing to be performed is performed.
- the manufactured semiconductor substrate is used as a semiconductor device after an epitaxial growth film (epitaxial film) or the like is formed on its front surface.
- Patent documents 1 to 5 are cited as documents disclosing this type of prior art.
- Patent Document 1 polishing is performed on the front surface of a silicon carbide single crystal substrate on which a processing damage layer has been formed, and etching is performed on the back surface of the silicon carbide single crystal substrate. It has been proposed to suppress the warpage of the substrate while adjusting.
- Patent Documents 2 to 5 by adjusting the average value and standard deviation of the surface roughness of the front and back surfaces of a silicon carbide single crystal substrate having a diameter of 110 mm or more, a good epitaxial film can be formed, and the warp is warped. It describes that a substrate in which the above is suppressed is manufactured.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor substrate manufacturing method capable of highly controlling the substrate shape after manufacturing. Another related object is to provide a polishing composition set, a composition set, and a semiconductor substrate manufacturing set used in the manufacturing method. Yet another related object is to provide a semiconductor substrate whose shape after manufacture is highly controlled.
- a semiconductor substrate manufacturing method including a back surface processing step for processing a back surface of a wafer-like workpiece.
- a processed strain layer exists on the back surface that has undergone the back surface processing step.
- the depth of the working strain layer existing on the back surface is larger than the depth of the working strain layer on the front surface of the semiconductor substrate, or there is no working strain layer on the front surface.
- a workpiece to be a semiconductor substrate generates a compressive stress corresponding to the depth of the processing strain layer.
- a semiconductor substrate on which an epitaxial film or the like is formed on the front surface can be made flatter by offsetting the compressive stress caused by the formation film on the front surface and the compressive stress of the back surface processed strain layer. it can. Thereby, for example, the defect density such as dislocation of the formed film can be reduced, and the film quality can be improved.
- the back surface processing step is a step (surface roughness reduction step) in which the arithmetic average surface roughness Ra of the back surface is 10 nm or less.
- the surface roughness of the back surface is limited. From such a viewpoint, in the above configuration, while the Ra on the back surface of the substrate is limited to 10 nm or less, the processing is performed so that the depth of the processing strain layer is a predetermined value or more. As a result, the shape of the semiconductor substrate in the semiconductor device after manufacturing or in the semiconductor device can be controlled to a higher degree, and a higher quality semiconductor substrate can be obtained.
- the depth of the processed strain layer existing on the back surface is 0.1 ⁇ m or more.
- the depth of the processing strain layer is 0.1 ⁇ m or more.
- the back surface processing step includes a chemical mechanical polishing step.
- the back surface processing step includes a lapping step.
- the back surface processing step includes a grinding step.
- a front surface processing step of processing the front surface of the workpiece is included. Further, both the front surface processing step and the back surface processing step include a step of using abrasive grains.
- the abrasive grains used in the back surface processing step have higher hardness than the abrasive grains used in the front surface processing step.
- the abrasive grains used in the back surface processing step have a larger particle diameter than the abrasive grains used in the front surface processing step.
- the semiconductor substrate is a semiconductor substrate made of silicon carbide.
- the effect by the technique disclosed here is preferably exhibited in a semiconductor substrate made of silicon carbide.
- a polishing composition set used in any of the production methods disclosed herein includes a composition Q1 as a back surface polishing composition used in the back surface processing step and a composition Q2 as a front surface polishing composition used in the front surface processing step. Including.
- the composition Q1 and the composition Q2 are stored separately from each other.
- the back surface polishing composition contains abrasive grains A BF.
- the front surface polishing composition contains abrasive grains A FF.
- the abrasive grains ABF are alumina particles or green silicon carbide particles, and the abrasive grains AFF are silica particles or alumina particles. According to the above configuration, the effects of the technology disclosed herein are preferably realized.
- the backside polishing composition contains a polishing aid CBF .
- the front surface polishing composition contains a polishing aid CFF .
- the grinding aid C BF is permanganic acid or a salt thereof, wherein grinding aid C FF is hydrogen peroxide and vanadium acids.
- composition set used for one of the manufacturing methods disclosed here includes a composition Q3 as a lapping composition used in the back surface processing step and a composition Q4 as a front surface polishing composition used in the front surface processing step. .
- the composition Q3 and the composition Q4 are stored separately from each other.
- the lapping composition contains abrasive grains A BF.
- the front surface polishing composition contains abrasive grains A FF.
- the abrasive grains ABF are diamond particles, and the abrasive grains AFF are silica particles or alumina particles. According to the above configuration, the effects of the technology disclosed herein are preferably realized.
- the front surface polishing composition contains a polishing aid CFF .
- the grinding aid C FF is at least one selected from the group consisting of permanganic acid, permanganates, hydrogen peroxide and vanadium acids.
- a set for manufacturing a semiconductor substrate used in any of the manufacturing methods disclosed herein includes abrasive grains for grinding used in the back surface processing step, and a composition Q5 as a front surface polishing composition used in the front surface processing step.
- the abrasive grains for grinding and the composition Q5 are stored separately from each other.
- the abrasive grains for grinding are diamond particles, and the abrasive grains AFF are silica particles or alumina particles. According to the above configuration, the effects of the technology disclosed herein are preferably realized.
- the front surface polishing composition contains a polishing aid CFF .
- the grinding aid C FF is at least one selected from the group consisting of permanganic acid, permanganates, hydrogen peroxide and vanadium acids. According to the above configuration, in polishing the front surface of the object to be polished, both the polishing rate and the surface quality can be preferably achieved.
- a semiconductor substrate is provided.
- This semiconductor substrate has a front surface and a back surface.
- a working strain layer is present on the back surface. Further, the depth of the working strain layer existing on the back surface is larger than the depth of the working strain layer on the front surface, or no working strain layer exists on the front surface.
- the semiconductor substrate having such a configuration can be highly controlled in shape after manufacturing or in a semiconductor device. For example, what formed the epitaxial film in the front surface of the said semiconductor substrate can become a board
- the semiconductor substrate disclosed here has a front surface and a back surface, and a processing strain layer exists on the back surface.
- the depth of the processing strain layer existing on the back surface is larger than the depth of the processing strain layer on the front surface, or there is no processing strain layer on the front surface of the semiconductor substrate.
- the front surface of the semiconductor substrate is usually a surface on which an epitaxial film, a semiconductor element or the like is formed
- the back surface of the semiconductor substrate is a surface located on the side opposite to the front surface.
- the shape of the semiconductor substrate is not particularly limited, and usually has a disk shape (a circular shape as viewed from above).
- the semiconductor substrate may have a polygonal shape such as a quadrangle when viewed from above.
- the constituent material of the semiconductor substrate is, for example, a single element semiconductor such as silicon or germanium; II-VI compound semiconductor substrate material such as cadmium telluride, zinc selenide, cadmium sulfide, cadmium mercury telluride, zinc cadmium telluride; III-V group compound semiconductor substrate materials such as gallium, gallium arsenide, gallium phosphide, indium phosphide, aluminum gallium arsenide, gallium indium arsenide, indium gallium arsenide, aluminum gallium indium phosphide; silicon carbide, silicon IV-IV compound semiconductor substrate material such as germanium hydride; Of these, a plurality of materials may be used.
- the semiconductor substrate is comprised from silicon carbide.
- Silicon carbide is expected as a semiconductor substrate material with low power loss and excellent heat resistance, and the practical advantage of highly controlling the substrate shape is particularly great.
- a semiconductor substrate according to a preferred embodiment is made of a single crystal whose front surface is silicon carbide.
- the semiconductor substrate according to one aspect is made of a material having a Vickers hardness of 500 Hv or more.
- the Vickers hardness of the constituent material of the semiconductor substrate is preferably 700 Hv or higher (for example, 1000 Hv or higher, typically 1500 Hv or higher).
- Examples of the material having a Vickers hardness of 1500 Hv or higher include diamond, silicon carbide, silicon nitride, titanium nitride, and gallium nitride.
- the substrate disclosed herein may have a single crystal surface of the above material that is mechanically and chemically stable.
- the surface of the semiconductor substrate is preferably composed of any one of diamond, silicon carbide, and gallium nitride, and more preferably composed of silicon carbide.
- the upper limit of Vickers hardness is not particularly limited, but may be about 7000 Hv or less (for example, 5000 Hv or less, typically 3000 Hv or less). In the present specification, the Vickers hardness can be measured based on JIS R 1610: 2003. The international standard corresponding to the JIS standard is ISO 14705: 2000.
- the semiconductor substrate disclosed herein has a processing strain layer at least on the back surface.
- the “work strain layer” refers to a layered region defined by regarding the depth of the work strain (specifically, the work scratch) formed by the work on the semiconductor substrate surface as the layer thickness, It is a layer (surface layer) existing on the surface of the semiconductor substrate.
- the depth of the working strain layer can be measured by observation with a differential interference microscope and polishing. Specifically, it is measured by the method described in Examples described later.
- the depth of the processed strain layer existing on the back surface of the semiconductor substrate is not limited to a specific range, and is relatively determined in relation to the properties of the front surface.
- the difference (D BF ⁇ D FF ) between the processing strain layer depth D FF [ ⁇ m] on the front surface and the processing strain layer depth D BF [ ⁇ m] on the back surface is the difference in the processing strain layer depth. From the viewpoint of obtaining the deformation stress based on this, it is appropriate to be about 0.1 ⁇ m or more.
- the difference (D BF ⁇ D FF ) is about 0.2 ⁇ m or more, more preferably about 0.3 ⁇ m or more, for example, about 0.5 ⁇ m or more (typically about 0.7 ⁇ m or more).
- the difference (D BF ⁇ D FF ) is a typical semiconductor in which an epitaxial film having a predetermined thickness (for example, approximately 5 to 50 ⁇ m, typically approximately 10 to 30 ⁇ m) is formed on the front surface. Suitable for devices. In another aspect, the difference (D BF ⁇ D FF ) is about 2 ⁇ m or more, for example, about 3 ⁇ m or more, or about 3.5 ⁇ m or more (for example, about 3.8 ⁇ m or more). Good. Such a difference is preferably employed for a semiconductor substrate in which the deformation stress that makes the front surface convex after manufacture becomes relatively large.
- the difference (D BF ⁇ D FF ) is suitably about 10 ⁇ m or less, for example.
- the difference (D BF ⁇ D FF ) is about 5 ⁇ m or less, more preferably about 2.5 ⁇ m or less (eg, about 2 ⁇ m or less), for example, about 1.2 ⁇ m or less (typically about 1 ⁇ m). Or about 0.7 ⁇ m or less (for example, about 0.5 ⁇ m or less).
- the difference (D BF ⁇ D FF ) is a typical semiconductor in which an epitaxial film having a predetermined thickness (for example, approximately 5 to 50 ⁇ m, typically approximately 10 to 30 ⁇ m) is formed on the front surface. Suitable for devices.
- the difference (D BF ⁇ D FF ) is about 4.5 ⁇ m or less, for example, about 4 ⁇ m or less, or about 3.5 ⁇ m or less.
- the difference (D BF ⁇ D FF ) can be obtained by setting the working strain layer depth D FF to 0 ⁇ m.
- the depth of the processing strain layer on the back surface of the semiconductor substrate is not particularly limited except that the processing strain layer is present on the front surface and is larger than the front surface side.
- the processing strain layer depth D BF on the back surface is suitably about 0.1 ⁇ m or more, preferably about 0.2 ⁇ m or more, more preferably about 0.3 ⁇ m or more, for example, about 0.5 ⁇ m. It may be above (typically about 0.7 ⁇ m or more), or about 1 ⁇ m or more (for example, about 1.3 ⁇ m or more).
- the processing strain layer depth D BF is Is preferred.
- the processed strain layer depth DBF is about 2 ⁇ m or more, for example, about 3 ⁇ m or more, or about 3.5 ⁇ m or more (for example, about 3.8 ⁇ m or more).
- the processing strain layer depth DBF is preferably used for a semiconductor substrate in which the deformation stress that makes the front surface convex after manufacture becomes relatively large.
- the back surface of the processing strain layer depth D BF is appropriate that example is about 10 ⁇ m or less.
- the working strain layer depth DBF is about 5 ⁇ m or less, more preferably about 2.5 ⁇ m or less (for example, about 2 ⁇ m or less), for example, about 1.2 ⁇ m or less (typically about 1 ⁇ m or less). Or about 0.7 ⁇ m or less (for example, about 0.5 ⁇ m or less).
- a predetermined thickness e.g., approximately 5 ⁇ 50 [mu] m thick, 10 ⁇ 30 [mu] m thick approximately typically
- epitaxial film is typically as formed on the front surface of the Suitable for semiconductor devices.
- the working strain layer depth DBF is about 4.5 ⁇ m or less, for example, about 4 ⁇ m or less, or about 3.5 ⁇ m or less.
- processing strain layer depth D FF on the front surface is not particularly limited as long as it is smaller than the processing strain layer depth D BF on the back surface.
- processing strain layer depth D FF of the front surface is suitably less than 10 [mu] m, preferably less than 5 [mu] m, more preferably less than 1 [mu] m, more preferably less than 0.3 [mu] m (e.g., less than 0.1 [mu] m) It is.
- the lower limit of the working strain layer depth D FF of the front surface is more than 0 .mu.m (e.g. 0 .mu.m greater), may be about 0.1 ⁇ m or more.
- Such a front surface is easy to obtain a high-quality surface, and is suitable for a typical semiconductor device in which an epitaxial film having a predetermined thickness is formed on the front surface.
- the arithmetic average surface roughness Ra of the front surface of the semiconductor substrate disclosed herein is set according to the required surface quality and is not limited to a specific range.
- the Ra is suitably about 10 nm or less, and in applications where a higher quality surface is required, it is preferably less than 5 nm, more preferably less than 1 nm, and even more preferably less than about 0.3 nm.
- the thickness is preferably less than 0.1 nm (for example, less than 0.07 nm, typically about 0.05 nm).
- the lower limit of Ra on the front surface can be, for example, 0.01 nm or more.
- the arithmetic average surface roughness Ra of the back surface of the semiconductor substrate disclosed herein is not particularly limited, and is usually about 20 nm or less.
- Ra of the back surface according to a preferred embodiment is about 10 nm or less (typically less than 10 nm), more preferably less than 5 nm, for example, less than 3 nm, less than 2 nm, or less than 1 nm. (For example, less than 0.3 nm, typically about 0.1 nm).
- the lower limit of Ra on the back surface may be, for example, approximately 0.05 nm or more, approximately 0.5 nm or more, or approximately 1 nm or more.
- Ra of the front surface and the back surface of the semiconductor substrate can be measured using a commercially available atomic force microscope under a measurement area of 10 ⁇ m ⁇ 10 ⁇ m. More specifically, it can be measured by the method described in Examples described later.
- the ratio (L / T) of the substrate length (longest length. Diameter in the case of a disk) L [mm] to the substrate thickness T [mm] is approximately 50 or more. Preferably, it is about 100 or more, more preferably about 150 or more, still more preferably about 200 or more, for example, about 250 or more.
- the upper limit of the ratio (L / T) is suitably about 600 or less, for example, from the viewpoints of substrate strength, handleability, etc., preferably about 400 or less, more preferably about 300 or less, for example about 250. It may be the following.
- the length of the semiconductor substrate disclosed herein (the longest length; the diameter in the case of a disc shape) is not limited to a specific range. From the viewpoint of preferably obtaining the effects of the technology disclosed herein, the length of the substrate is suitably about 20 mm or more, preferably about 45 mm or more, more preferably about 70 mm or more, for example, about It may be 100 mm or more, about 200 mm or more, about 300 mm or more, or about 450 mm or more.
- the large-diameter semiconductor substrate is also excellent in production efficiency.
- the upper limit of the length of the semiconductor substrate is suitably about 500 mm or less, for example, and is preferably about 300 mm or less, more preferably about 220 mm or less, and still more preferably about 200 mm or less from the viewpoint of substrate strength, handleability, and the like. It is 120 mm or less (for example, less than 110 mm), for example, it may be about 100 mm or less, and may be about 80 mm or less.
- the thickness of the semiconductor substrate is appropriately set according to the size (diameter, etc.).
- the thickness of the substrate is usually about 100 ⁇ m or more, suitably about 300 ⁇ m or more (for example, about 350 ⁇ m or more), for example, about 500 ⁇ m or more.
- the thickness is usually about 1500 ⁇ m or less, suitably about 1000 ⁇ m or less, preferably about 800 ⁇ m or less, for example about 500 ⁇ m or less (typically less than 500 ⁇ m). It may be about 400 ⁇ m or less.
- the semiconductor substrate disclosed herein may be warped in an arc shape so that the front side is concave due to compressive stress caused by the processing strain layer.
- a film such as an epitaxial film on the front surface of the semiconductor substrate in which such deformation stress is inherent, the deformation caused by the compressive stress of the film formed on the front surface and the intentionally provided back surface
- the compressive stress of the processing strain layer cancels out, and the semiconductor substrate can have a highly controlled shape in the semiconductor device.
- a semiconductor substrate having an epitaxial film or the like formed on the front surface can be made flatter, and the defect density such as dislocations in the formed film can be reduced to improve the film quality.
- the warpage that makes the front surface concave is suitably, for example, that the depth of the concave is about 0.5 ⁇ m or more, preferably about 1 ⁇ m or more, more preferably about 3 ⁇ m or more, and even more preferably about 5 ⁇ m or more. For example, it may be about 6 ⁇ m or more, or about 8 ⁇ m or more.
- the upper limit of the depth of the recess is usually less than 50 ⁇ m, suitably about 20 ⁇ m or less (for example, less than 20 ⁇ m), preferably about 15 ⁇ m or less, more preferably about 12 ⁇ m or less, It may be about 10 ⁇ m or less, about 8 ⁇ m or less, or about 6 ⁇ m or less.
- a semiconductor substrate having such a warp is a typical semiconductor device in which an epitaxial film having a predetermined thickness (for example, approximately 5 to 50 ⁇ m, typically approximately 10 to 30 ⁇ m) is formed on the front surface. Is preferable.
- the warpage of the front surface of the semiconductor substrate can be evaluated as, for example, GBIR (Global backside ideal range) in the SEMI (Semiconductor equipment and materials international) standard.
- the GBIR adsorbs the entire back surface of the wafer onto a flat chuck surface, and measures the height from the reference surface with respect to the entire surface of the wafer using the back surface as a reference surface, and expresses the distance from the highest height to the lowest height.
- Is. GBIR can be measured using a known surface shape measuring instrument. For example, a surface shape measuring machine “SURFCOM 1500DX” manufactured by Tokyo Seimitsu Co., Ltd. can be used. Specifically, it can measure by the method as described in the below-mentioned Example.
- a workpiece is prepared. Although it does not specifically limit, what was cut out by methods, such as a slice, and made into the wafer form as an object to be processed as a processing target object is used.
- the constituent material of the object to be processed those exemplified as the above-mentioned semiconductor substrate material can be used without particular limitation, and a suitable example of the semiconductor substrate material is also a preferable example of the constituent material of the object to be processed.
- the shape and size of the object to be processed (the shape and size when viewed from above) are the same as those of the semiconductor substrate to be manufactured.
- the thickness of the workpiece is appropriately set so as to obtain the thickness of the semiconductor substrate to be manufactured, and is not limited to a specific range.
- the semiconductor substrate manufacturing method disclosed herein is characterized by including a back surface processing step of processing the back surface of a wafer-like workpiece.
- the back surface of the workpiece is a surface to be the back surface of the semiconductor substrate to be manufactured.
- the back surface processing step disclosed herein is not limited to a specific step, and a known surface processing technology is appropriately selected, and is performed so that a processing strain layer exists on the back surface of the manufactured semiconductor substrate. Further, when a processing strain layer exists on the front surface of the semiconductor substrate, the back surface processing is performed so that a processing strain layer having a depth larger than the depth of the processing strain layer on the front surface of the semiconductor substrate exists. The process is carried out.
- the back surface processing step is performed in consideration of the material, structure, thickness, and the like of a formation film such as an epitaxial film provided on the front surface of the manufactured semiconductor substrate.
- the depth of the processing strain layer existing on the back surface after the back surface processing step is determined based on the compressive stress that can be generated on the front surface of the manufactured semiconductor substrate.
- Such compressive stress can be determined by, for example, the material, structure, thickness, and the like of a formed film such as an epitaxial film provided on the front surface.
- the back surface processing step is not particularly limited, and may be a grinding or polishing step such as a grinding step, a lapping step, or a CMP step.
- the grinding step, the lapping step, the CMP step, etc. may be carried out by one step alone or in combination of two or more steps.
- the back surface processing step typically includes a step using abrasive grains (for example, a grinding step, a lapping step, or a CMP step).
- abrasive grains ABF used in the back surface processing step are not particularly limited.
- the abrasive grains ABF can be any of inorganic particles, organic particles, and organic-inorganic composite particles.
- Abrasive grain ABF may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, diamond particles are preferable from the viewpoint of forming a work strain layer.
- composition of the abrasive grains “substantially consisting of X” or “substantially consisting of X” means that the proportion of X in the abrasive grains (the purity of X) is weight. It is 90% or more on the basis (preferably 95% or more, more preferably 97% or more, further preferably 98% or more, for example 99% or more).
- the abrasive A BF used in the rear surface processing step it is higher hardness than the abrasive grains A FF used in the above front surface processing step It is preferable.
- substrate with which the depth of the process distortion layer of the back surface side is larger than the front surface side can be manufactured preferably.
- the difference between the abrasive grain A BF Vickers hardness H BF (Hv) and the abrasive grains A FF Vickers hardness H FF (Hv) (H BF -H FF) is not particularly limited, for example, approximately 100Hv or more (e.g., about 500Hv As described above, it is typically appropriate to set it to about 700 Hv or more.
- the difference (H BF ⁇ H FF ) is about 1000 Hv or more (eg, about 1200 Hv or more, typically about 1800 Hv or more), more preferably about 3000 Hv or more (eg, about 3500 Hv or more, typical Specifically, it is about 4000 Hv or more.
- the upper limit of the difference (H BF ⁇ H FF ) is not particularly limited.
- it is suitably about 10000 Hv or less (for example, about 9000 Hv or less), and is preferably about 5000 Hv or less from the viewpoint of the surface smoothness of the back surface.
- about 4000 Hv or less typically about 3500 Hv or less
- more preferably about 2000 Hv or less for example, about 1500 Hv or less, typically about 1000 Hv or less.
- the hardness of the abrasive grains ABF is not particularly limited. From the viewpoint of adjusting the depth of the work strain layer on the back side to a suitable range, the Vickers hardness H BF (Hv) of the abrasive grains A BF is, for example, about 1000 Hv or more (for example, about 1200 Hv or more, typically about 1500 Hv or more. ), Preferably about 2000 Hv or more (for example, about 2200 Hv or more, typically about 2400 Hv or more), more preferably about 4000 Hv or more.
- the Vickers hardness H BF (Hv) is suitably about 12000 Hv or less (for example, about 10000 Hv or less), for example, and is preferably about 5000 Hv or less (for example, about 4000 Hv or less) from the viewpoint of the surface smoothness of the back surface. , Typically about 3000 Hv or less), more preferably about 2500 Hv or less (for example, about 2000 Hv or less, typically about 1700 Hv or less).
- the Vickers hardness of the abrasive grains is a value measured based on JIS R 1610: 2003 for the material used as the abrasive grains.
- abrasives A BF used in the back surface processing step larger particle size than the abrasive grain A FF used in the front surface processing step.
- substrate with which the depth of the process distortion layer of the back surface side is larger than the front surface side can be manufactured preferably.
- abrasive A FF abrasive A BF particle size P BF ratio (P BF / P FF) of relative particle size P FF of is suitably greater than 1.
- the ratio (P BF / P FF ) is about 2 or more, about 3 or more (for example, about 4 or more), about 5 or more, or about 8 or more (for example, about 9 or more), or about 20 or more (for example, 25 or more).
- the upper limit of the ratio (P BF / P FF ) is not particularly limited, and may be about 100 or less (for example, 50 or less), about 30 or less, about 15 or less, and about It may be 10 or less (for example, approximately 5 or less).
- the particle diameter PBF of the abrasive grain ABF is not particularly limited. From the viewpoint of adjusting the depth of the working strain layer on the back side to a suitable range, the particle diameter P BF of the abrasive grains A BF is suitably about 0.05 ⁇ m or more, preferably about 0.2 ⁇ m or more, More preferably, it is about 0.3 ⁇ m or more, for example, about 0.4 ⁇ m or more. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.8 ⁇ m or more, more preferably about 2 ⁇ m or more, and further preferably about 2.5 ⁇ m or more.
- the upper limit of the particle diameter P BF of the abrasive grains A BF is not particularly limited, and is suitably about 10 ⁇ m or less, preferably about 5 ⁇ m or less.
- the particle diameter PBF of the abrasive grains ABF is about 2 ⁇ m or less, more preferably about 1.5 ⁇ m or less, and still more preferably about 1.2 ⁇ m or less.
- the particle diameter PBF of the abrasive grains ABF is about 0.7 ⁇ m or less, more preferably about 0.5 ⁇ m or less, and still more preferably about 0.3 ⁇ m or less.
- the particle size P BF abrasive A BF referred to herein, can be measured in each of the methods described below. When the abrasive grains ABF have primary and secondary particle diameters, the secondary particle diameter value is defined as the particle diameter PBF .
- the back surface processing step includes a grinding step.
- the “grinding step” refers to a step of placing fixed abrasive grains on a surface plate and pressing the fixed abrasive grains against the surface of the workpiece.
- Fixed abrasive grains are usually aggregates in which abrasive grains are hardened with a binder such as vitrified or resinoid, and are also called grinding wheels.
- Abrasive grains are usually dispersed and fixed in a binder.
- or usual thing can be used as a surface plate used at this process.
- the grinding process is carried out while supplying a working fluid comprising an aqueous solution as necessary.
- Examples of the abrasive grains ABF used in the grinding step include one or more of the above-described abrasive grains for back surface processing.
- a diamond particle is mentioned as a suitable example of the abrasive grain ABF used for a grinding process.
- the content of the abrasive A BF in fixed abrasive is not particularly limited, an appropriate range is adopted on the basis of common general knowledge. Note that grinding using a grinding wheel such as a diamond wheel may be referred to as wheel grinding.
- Particle size P BF abrasive A BF used in the grinding step is not particularly limited. From the viewpoint of adjusting the depth of the working strain layer on the back side to a suitable range, it is appropriate that the particle diameter P BF of the abrasive grains ABF used in this step is about 0.1 ⁇ m or more. In a preferred embodiment, the particle diameter P BF of the abrasive grains A BF is about 0.2 ⁇ m or more, for example, about 0.3 ⁇ m or more. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.8 ⁇ m or more, for example, about 2 ⁇ m or more, or about 2.5 ⁇ m or more.
- the upper limit of the particle diameter P BF of the abrasive grains A BF is not particularly limited, and is suitably about 10 ⁇ m or less, preferably about 5 ⁇ m or less.
- the particle diameter PBF of the abrasive grains ABF is about 2 ⁇ m or less, more preferably about 1 ⁇ m or less, and still more preferably about 0.7 ⁇ m or less.
- the particle diameter of the abrasive grains used in the grinding process is an average particle diameter based on the electrical resistance test method (JIS R6002).
- the average particle diameter can be determined using, for example, “Multisizer III” manufactured by Beckman Coulter.
- the grinding step can be the final step of the back surface processing step. In that case, there is no processing step after the grinding step in the back surface processing step.
- the back surface processing step includes a lapping step.
- the “lapping step” is performed by arranging a carrier (also referred to as a carrier plate) holding an object to be polished between opposing polishing surface plates and rotating at least one of the polishing surface plate and the carrier.
- a processing process The polishing surface plate and / or the carrier is rotated so that both of them rotate relatively.
- the lapping step is typically performed by supplying loose abrasive grains (for example, diamond particles) between the polishing surface plate and the workpiece.
- the loose abrasive grains are usually supplied to the object to be processed in the form of a liquid composition containing a solvent such as water called a polishing slurry.
- a polishing pad is not used in the lapping process.
- the polishing surface plate used in the lapping process disclosed here is usually made of metal.
- the polishing surface plate used for lapping is required to be easily processed to maintain the accuracy of the surface surface (surface facing the object to be processed). For this reason, a polishing surface plate in which at least the surface plate surface is made of a metal such as cast iron, tin, tin alloy, copper or copper alloy is preferably used.
- a plate having a groove on the surface of the platen may be used for the purpose of stably supplying the polishing composition and adjusting the processing pressure.
- the shape and depth of the groove are arbitrary, and for example, a groove in which a groove is engraved in a lattice shape or a radial shape can be used.
- the abrasive grains ABF used in the lapping step one or more kinds of the abrasive grains for backside processing exemplified above may be mentioned.
- a diamond particle is mentioned as a suitable example of the abrasive grain ABF used for this process.
- the content of the abrasive grains ABF in the wrapping composition is not particularly limited, and an appropriate range is adopted based on common technical knowledge.
- the content of abrasive grains ABF in the wrapping composition is suitably about 1% by weight or more, preferably about 5% by weight or more, and about 50% by weight or less, preferably about 30% by weight or less.
- Particle size P BF abrasive A BF used in the lapping process is not particularly limited.
- the particle diameter P BF of the abrasive grains ABF used in this step is suitably about 0.1 ⁇ m or more, preferably about It is 0.2 ⁇ m or more.
- the particle diameter PBF of the abrasive grains ABF is about 0.8 ⁇ m or more, for example, about 2 ⁇ m or more, or about 2.5 ⁇ m or more.
- the upper limit of the particle diameter P BF of the abrasive grains A BF is not particularly limited and is suitably about 10 ⁇ m or less, preferably about 5 ⁇ m or less, more preferably about 2 ⁇ m or less, and further preferably about 1.2 ⁇ m. It is as follows. In another preferred embodiment, the particle size P BF abrasive A BF is at approximately 2 ⁇ m or less, more preferably about 0.3 ⁇ m or less.
- the particle diameter of the abrasive grains used in the lapping process can be measured by the same method as that of the abrasive grains used in the grinding process. The same applies to the embodiments described later.
- the lapping step may be the final step of the back surface processing step. In that case, there is no processing step after the lapping step in the back surface processing step.
- the back surface processing step includes a CMP step.
- the “chemical mechanical polishing (CMP) process” refers to a polishing (polishing) process performed by supplying a polishing slurry between the polishing pad and a workpiece using a polishing pad. By adopting the CMP process, a high-quality back surface is easily obtained.
- the CMP step is preferably performed by supplying a polishing slurry (also referred to as a polishing liquid) composed of a polishing composition as described later to the surface of the workpiece.
- a polishing slurry also referred to as a polishing liquid
- the polishing liquid is supplied to the surface of the object to be processed and polished by a conventional method.
- an object to be processed is set in a general polishing apparatus, and the polishing liquid is supplied to the surface (surface to be polished) of the object to be processed through a polishing pad of the polishing apparatus.
- the polishing pad is pressed against the back surface of the workpiece and the two are relatively moved (for example, rotated).
- the backside polishing composition disclosed herein is not limited to a specific composition, and may be a composition that can have a working strain layer on the backside that has undergone a backside processing step that is performed using the backside polishing composition, or In the case where a working strain layer is present on the front surface, a composition that allows a working strain layer having a depth larger than the processing strain layer depth of the front surface to be present on the back surface is employed.
- a backside polishing composition contains, for example, abrasive grains ABF and a solvent such as water, and may further contain a polishing aid CBF such as an oxidizing agent.
- abrasive grains ABF for the back surface CMP process one or more of the above-described back surface processing abrasive grains types can be used.
- a preferable example of the abrasive grains ABF used in this step is alumina particles.
- Alumina particles may be used alone or in combination of two or more. From the viewpoint of workability, the alumina particles preferably contain ⁇ -alumina, and more preferably contain ⁇ -alumina as a main component (a component that is contained most in the constituent components).
- GC is used as the abrasive grains ABF .
- the abrasive grains ABF contained in the backside polishing composition those having an average secondary particle diameter larger than 0.01 ⁇ m can be preferably employed.
- the average secondary particle diameter of the abrasive grains ABF is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.2 ⁇ m or more, and particularly preferably 0.3 ⁇ m or more. is there.
- the upper limit of the average secondary particle diameter of the abrasive grains ABF is not particularly limited, and is suitably about 5 ⁇ m or less.
- an average secondary particle size preferably 5 ⁇ m or less of the abrasive A BF than 0.05 .mu.m, preferably 3 ⁇ m or less of the abrasive A BF least 0.1 [mu] m, 0.3 [mu] m or more 1 ⁇ m
- the following abrasive grains ABF are particularly preferred.
- an average secondary particle diameter may be less abrasive A BF 0.4 .mu.m or 0.8 [mu] m.
- the average secondary particle size of the abrasive grains A BF used in the CMP process are measured based on a laser diffraction scattering method.
- the measurement can be performed using a laser diffraction / scattering particle size distribution measuring apparatus (trade name “LA-950”) manufactured by Horiba.
- the content of the abrasive grains ABF in the back-side polishing composition is not particularly limited, but is typically 0.1% by weight or more. In view of shortening the processing time, it is preferably 0.5% by weight or more, more preferably 1% by weight or more, and further preferably 3% by weight or more.
- the content of abrasive grains ABF is usually 20% by weight or less, preferably 15% by weight or less, more preferably 12% by weight or less, and still more preferably.
- the technique disclosed here is preferable in an embodiment in which the content of abrasive grains ABF in the backside polishing composition is, for example, 0.1 wt% or more and 20 wt% or less (preferably 3 wt% or more and 8 wt% or less). Can be implemented.
- the backside polishing composition disclosed herein preferably contains a polishing aid (typically an oxidizing agent) CBF .
- the polishing aid CBF is a component that enhances the effect of polishing, and typically a water-soluble one is used.
- the polishing aid CBF is not particularly limited, the polishing aid CBF exhibits an action of altering the surface of the workpiece (for example, oxidative alteration) in polishing, thereby causing weakening of the surface of the workpiece. It is thought that it contributes to the polishing by the grain ABF .
- the polishing aid CBF includes peroxides such as hydrogen peroxide; nitric acid, nitrates thereof such as iron nitrate, silver nitrate, aluminum nitrate, nitrate complexes such as cerium ammonium nitrate as complexes thereof; potassium peroxomonosulfate, peroxodioxide Persulfuric acid such as sulfuric acid, persulfuric acid compounds such as ammonium persulfate and potassium persulfate; chloric acid and salts thereof, perchloric acid and chlorine compounds such as potassium perchlorate as salts thereof; bromic acid and salts thereof Bromine compounds such as potassium bromate; iodine compounds such as iodic acid, its salts ammonium iodate, periodic acid, its salts such as sodium periodate, potassium periodate; iron acids, its salts Ferric acids such as potassium ferrate; permanganic acid, its salt, permanganate such as sodium permanganate, potassium permangan
- permanganic acid or a salt thereof peroxide, vanadic acid or a salt thereof, periodic acid or a salt thereof is preferable, and sodium permanganate or potassium permanganate is particularly preferable.
- the backside polishing composition contains a composite metal oxide as the polishing aid CBF .
- the composite metal oxide include nitrate metal salts, iron acids, permanganic acids, chromic acids, vanadic acids, ruthenium acids, molybdic acids, rhenic acids, and tungstic acids.
- iron acids, permanganic acids, and chromic acids are more preferable, and permanganic acids are more preferable.
- the composite metal oxide includes a monovalent or divalent metal element (excluding transition metal elements) and a fourth periodic transition metal element in the periodic table.
- CMO is used.
- Preferred examples of the monovalent or divalent metal element (excluding transition metal elements) include Na, K, Mg, and Ca. Of these, Na and K are more preferable.
- Preferable examples of the fourth periodic transition metal element in the periodic table include Fe, Mn, Cr, V, and Ti. Among these, Fe, Mn, and Cr are more preferable, and Mn is more preferable.
- Backside polishing composition disclosed herein is, when the composite metal oxide as a grinding aid C BF (preferably the composite metal oxide CMO) containing, further comprise a grinding aid C BF except complex metal oxide Well, it does not have to be included.
- Techniques disclosed herein for the back polishing composition composite metal oxide as a grinding aid C BF (preferably a composite metal oxide CMO) other than the grinding aid (for example, hydrogen peroxide) C BF a substantially An embodiment that does not include it can also be preferably implemented.
- the concentration (content) of the polishing aid CBF in the backside polishing composition is usually suitably 0.1% by weight or more.
- the concentration is preferably 0.3% by weight or more, more preferably 0.5% by weight or more (eg, 0.8% by weight or more) from the viewpoint of achieving both a polishing rate and flatness at a high level and efficiency.
- the concentration of the polishing aid CBF is usually suitably 10% by weight or less, preferably 8% by weight or less, and preferably 6% by weight or less (for example, 5%). It is more preferable that the content be less than or equal to 3% by weight.
- the backside polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a surface protective agent, a wetting agent, a pH adjuster, and a surfactant as long as the effects of the technology disclosed herein are not impaired.
- Organic acid, organic acid salt, inorganic acid, inorganic acid salt, rust preventive, preservative, antifungal agent, etc., polishing composition (typically for polishing a semiconductor substrate, eg, silicon carbide substrate polishing)
- the content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.
- the pH of the backside polishing composition is usually about 8.0-12. When the pH of the backside polishing composition is within the above range, a practical polishing rate is easily achieved and handling is easy.
- the pH of the backside polishing composition is preferably 8.0 to 11, more preferably 8.0 to 10, particularly preferably 8.5 to 9.5 (eg, about 9.0).
- the back surface processing step is composed of a plurality of processing steps including a CMP step (for example, a plurality of processing steps including a grinding step and a lapping step)
- the CMP step can be the final step of the back surface processing step. In that case, there is no processing step after the CMP step in the back surface processing step.
- a processed strain layer exists on the back surface of the workpiece (which may be a semiconductor substrate) that has undergone the back surface processing step.
- a work strain layer When a work strain layer is present on the front surface of the workpiece, a work strain layer having a depth greater than the depth of the work strain layer on the front surface is present on the back surface.
- the workpiece that has undergone the back surface processing step may have a predetermined surface roughness Ra.
- the depth of the processing strain layer existing on the back surface that has undergone the back processing step, the difference in processing strain layer depth between the back surface and the front surface, and Ra on the back surface are the depth D of the processing strain layer on the back surface of the semiconductor substrate described above. Since values similar to BF , difference (D BF -D FF ), and Ra on the back surface can be taken, overlapping description is omitted.
- the semiconductor substrate manufacturing method disclosed herein typically includes a front surface processing step.
- the front surface of the processing object is processed.
- the front surface of the object to be processed is a surface that becomes the front surface of the manufactured semiconductor substrate.
- the front surface processing step is typically a step of making the front surface of the object to be processed a smooth surface, and more specifically, a step of finishing to a high quality surface that becomes a mirror surface.
- the front surface processing step disclosed here is not limited to a specific configuration, and a known surface processing technology is appropriately selected in consideration of the above-mentioned back surface processing step, and a processing strain layer is formed on the front surface. It is implemented so that there is no processing strain layer having a depth smaller than the processing strain layer depth of the back surface. Although it does not specifically limit as a front surface processing process, One or two or more processes among a grinding process, a lapping process, a CMP process, etc. may be employ
- the details of the grinding step and the lapping step that can be performed in the front surface processing step are as described in the back surface processing step, and so that the effects of the technique disclosed herein can be preferably obtained,
- the grinding step and the lapping step in the front surface processing step can be performed by making conditions and matters such as hardness and particle diameter different from those in the back surface processing step.
- Front surface processing step typically includes the step of using the abrasive A FF.
- the abrasive grains AFF contain silica abrasive grains (silica particles).
- the silica abrasive grains can be used by appropriately selecting from various known silica particles. Examples of such known silica particles include colloidal silica and dry silica. Of these, the use of colloidal silica is preferred. According to the silica abrasive grains containing colloidal silica, a high polishing rate and good surface accuracy can be suitably achieved.
- the shape (outer shape) of the abrasive grain A FF may be spherical or non-spherical.
- specific examples of non-spherical silica abrasive grains include peanut shapes (that is, peanut shell shapes), bowl shapes, confetti shapes, rugby ball shapes, and the like.
- the abrasive grains A FF may be in the form of primary particles or may be in the form of secondary particles in which a plurality of primary particles are associated.
- abrasive grains in the form of primary particles for example, silica abrasive grains
- abrasive grains in the form of secondary particles for example, silica abrasive grains
- at least a part of the abrasive grains A FF for example, silica abrasive grains is contained in the polishing composition in the form of secondary particles.
- the hardness of the abrasive grains A FF used in the front surface processing step is not particularly limited.
- the Vickers hardness H FF (Hv) of the abrasive grain A FF is preferably about 200 Hv or more (eg, about 400 Hv or more, typically about 600 Hv or more), for example.
- the Vickers hardness H FF (Hv) of the abrasive grain A FF is, for example, about 1000 Hv or more (for example, about 1200 Hv or more, typically about 1500 Hv or more).
- the Vickers hardness H FF (Hv) is, for example, about 2500 Hv or less (for example, about 2000 Hv or less, typically about 1700 Hv or less) from the viewpoint of setting the depth of the processed strain layer to a predetermined value or less. It is preferable. In another aspect, the Vickers hardness H FF (Hv) is preferably about 1500 Hv or less (for example, about 1000 Hv or less, typically about 800 Hv or less). By using abrasive grains whose hardness is lower than that of the front surface of the workpiece, a higher quality surface can be obtained.
- a FF for example, silica abrasive grains
- those having an average primary particle diameter (hereinafter sometimes simply referred to as “D1”) larger than 5 nm can be preferably used.
- D1 is preferably 15 nm or more, more preferably 20 nm or more, still more preferably 25 nm or more, and particularly preferably 30 nm or more.
- the upper limit of D1 is not particularly limited, but is appropriately about 120 nm or less, preferably 100 nm or less, more preferably 85 nm or less.
- D1 is 80nm or less of the abrasive A FF least 12 nm, 15 nm or more 60nm less abrasive A FF ( Typically, silica abrasive grains) are preferred.
- the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
- the average secondary particle diameter of the abrasive grains A FF (for example, silica abrasive grains) (hereinafter sometimes simply referred to as “D2”) is not particularly limited, but is preferably 20 nm or more from the viewpoint of polishing efficiency and the like. Preferably it is 50 nm or more, More preferably, it is 70 nm or more.
- the average secondary particle diameter D2 of the abrasive grains A FF is suitably 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less, More preferably, it is 130 nm or less, Especially preferably, it is 110 nm or less (for example, 100 nm or less).
- the average secondary particle size of the abrasive grains A FF for example, by Nikkiso Co. model dynamic light scattering method using "UPA-UT151", volume average particle diameter (volume It can be measured as a standard arithmetic mean diameter; Mv).
- the front surface processing step includes a CMP step.
- the CMP process is performed by supplying a polishing slurry (also referred to as a polishing liquid) composed of a polishing composition described later to the surface of the workpiece.
- a polishing slurry also referred to as a polishing liquid
- it may be a step of supplying the polishing liquid to the surface of the object to be processed and polishing by a conventional method as in the case of the CMP step in the back surface polishing composition.
- the front surface polishing composition disclosed herein is not limited to a specific composition, and has a depth that is smaller than the back surface processing strain layer depth so that there is no processing strain layer on the front surface.
- a composition that can be used as a working strain layer is employed.
- Such polishing composition for example, abrasive grains, a solvent such as water, comprise may further comprise a grinding aid C FF such oxidizing agent.
- the abrasive A FF used in the CMP process of the front side one or more backside processing abrasive species exemplified above can be mentioned.
- silica particles and alumina particles are preferable, silica particles are more preferable, and colloidal silica is more preferable.
- the average primary particle diameter and average secondary particle diameter of the abrasive grains A FF (for example, silica abrasive grains) that are preferably used are as described above, and redundant description will not be repeated.
- the content of the abrasive grains A FF in the front surface polishing composition for example, in the case of silica abrasive grains is approximately 12% by weight or more. From the viewpoint of polishing efficiency and the like, the content is preferably 15% by weight or more. In some embodiments, the content may be, for example, 20% by weight or more. Further, from the viewpoint of having both the polishing rate and surface quality at a high level, the content of the abrasive grains A FF, for example, in the case of silica abrasive grains is approximately 50% by weight or less. The content is preferably 40% by weight or less, more preferably 35% by weight or less.
- the content may be, for example, 42% by weight or less, and typically 38% by weight (eg, 35% by weight or less).
- the technique disclosed here is, for example, an embodiment in which the content of silica abrasive grains in the front surface polishing composition is 12% by weight or more and 35% by weight or less (further 15% by weight or more and 30% by weight or less). It can be preferably implemented.
- the content of the abrasive grains A FF in the front surface polishing composition for example, in the case of alumina abrasive grains is generally 0.1 wt% or more. From the viewpoint of polishing efficiency and the like, the content is preferably 0.5% by weight or more. In some embodiments, the content may be, for example, 1% by weight or more. Further, from the viewpoint of having both the polishing rate and surface quality at a high level, the content of abrasive grains A FF, for example if the alumina abrasive grains, is generally 20 wt% or less. The content is preferably 15% by weight or less, more preferably 12% by weight or less.
- the content may be, for example, 13% by weight or less, and typically 10% by weight or less (eg, 8% by weight or less).
- the content of alumina abrasive grains in the front surface polishing composition is 0.1 wt% or more and 20 wt% or less (further 3 wt% or more and 8 wt% or less). The embodiment can be preferably implemented.
- the front surface polishing composition disclosed herein preferably contains a polishing aid (for example, an oxidizing agent) CFF .
- the grinding aids C FF can be used without limitation one or more of the grinding aid C FF exemplified by backside polishing composition. From the viewpoint of achieving both a polishing rate and surface quality at a high level, hydrogen peroxide and vanadic acids are preferable, and it is particularly preferable to use hydrogen peroxide and vanadic acids (for example, sodium metavanadate) in combination.
- the ratio of the content of hydrogen peroxide and vanadic acids (for example, sodium metavanadate) used in combination is: It is not particularly limited, and is suitably 0.5 or more and 2 or less on a weight basis, preferably 0.6 or more and 1.9 or less, more preferably 0.6 or more and 1.5 or less. .
- the ratio (C2 / C1) may be, for example, 0.6 or more and 1.2 or less, and typically 0.6 or more and 0.9 or less.
- the concentration of grinding aid C FF in the front surface polishing composition (content) is usually suitable to be 0.1 wt% or more.
- the concentration in a preferred embodiment is 1% by weight or more, more preferably 1.5% by weight or more, still more preferably 2% by weight or more, Especially preferably, it is 2.5 weight% or more (for example, 2.8 weight% or more).
- the concentration of the grinding aid C FF is usually suitable to be 10 wt% or less, preferably 8 wt% or less, 6.5 wt% or less More preferably, it is more preferably 6% by weight or less, and particularly preferably 5.5% by weight or less.
- the concentration may be, for example, 4.5% by weight or less, and typically 4% by weight or less.
- the front surface polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a surface protecting agent, a wetting agent, a pH adjusting agent, as long as the effects of the technology disclosed herein are not impaired.
- Known additives that can be used for polishing compositions for example, compositions for polishing silicon carbide substrates
- surfactants organic acids, inorganic acids, rust preventives, antiseptics, fungicides, etc.
- the content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.
- the pH of the front surface polishing composition is usually about 2-12. When the pH of the front surface polishing composition is within the above range, a practical polishing rate is easily achieved.
- the pH of the front surface polishing composition is preferably 3 or more, more preferably 4 or more, and still more preferably 5.5 or more.
- the upper limit of pH is not specifically limited, Preferably it is 12 or less, More preferably, it is 10 or less, More preferably, it is 9.5 or less.
- the pH is preferably 3 to 11, more preferably 4 to 10, and still more preferably 5.5 to 9.5.
- the pH of the front surface polishing composition may be, for example, 9 or less, typically 7.5 or less.
- the CMP step can be the final step of the front surface processing step. In that case, there is no processing step after the CMP step in the front surface processing step.
- this etching process can be implemented before and behind the said CMP process.
- the front surface processing step may include a step of performing preliminary polishing (preliminary polishing step) and a step of performing final polishing (finishing polishing step).
- the preliminary polishing step here is a step of performing preliminary polishing on the workpiece.
- the preliminary polishing process is a polishing process that is arranged immediately before the finishing polishing process.
- the preliminary polishing process may be a single-stage polishing process or a multi-stage polishing process of two or more stages.
- the finish polishing step referred to here is a step of performing finish polishing on the workpiece that has been subjected to preliminary polishing, and is the last of the polishing steps performed using the polishing composition (that is, most) This refers to a polishing step disposed on the downstream side.
- the above-described front surface polishing composition is typically used in the finishing polishing step. It may be used in both the preliminary polishing process and the finishing polishing process.
- the front surface processing step disclosed herein may include any other step in addition to the preliminary polishing step and the finishing polishing step. Examples of such a process include a grinding process and a lapping process performed before the preliminary polishing process. Further, the front surface processing step disclosed herein may include an additional step (cleaning step or polishing step) before the preliminary polishing step or between the preliminary polishing step and the finishing polishing step.
- the workpiece which may be a semiconductor substrate
- the depth of the work strain layer on the front surface is smaller than the depth of the work strain layer on the back surface. This makes it possible to highly control the shape of the semiconductor substrate after manufacturing and in the semiconductor device.
- the workpiece that has undergone the front surface machining step may have a predetermined surface roughness Ra.
- the depth and Ra of the processed strain layer existing on the front surface after the front surface processing step have the same values as the depths DFF and Ra of the processed strain layer on the front surface of the semiconductor substrate. Since it is obtained, the overlapping description is omitted.
- the solvent used in the lapping composition or polishing composition (including backside polishing composition and front surface polishing composition. The same shall apply hereinafter unless otherwise specified) is used for abrasive grains and optional components. There is no particular limitation as long as it can disperse the polishing aid.
- As the solvent ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used.
- the wrapping composition and polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be mixed with water as required. Usually, 90% by volume or more of the solvent contained in the composition is preferably water, and more preferably 95% by volume (typically 99 to 100% by volume) is water.
- the lapping composition and the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type.
- the liquid A containing a part of the constituent components (typically components other than the solvent) of the polishing composition and the liquid B containing the remaining components are mixed to polish the polishing object. It may be configured to be used.
- the wrapping composition and polishing composition disclosed herein may be in a concentrated form (that is, in the form of a wrapping liquid or a concentrated liquid of polishing liquid) before being supplied to the object to be processed. Good.
- the wrapping composition and polishing composition in such a concentrated form are advantageous from the viewpoints of convenience, cost reduction, and the like during production, distribution, storage, and the like.
- the concentration rate can be, for example, about 2 to 5 times in terms of volume.
- preparation of a wrapping composition or polishing composition may include preparation of a wrapping liquid or polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment.
- concentration adjustment for example, dilution
- pH adjustment for example, dilution
- the wrapping composition may be used as it is as a wrapping liquid
- the polishing composition may be used as it is as a polishing liquid.
- the above-mentioned polishing liquid is prepared by mixing these agents, diluting one or more agents before the mixing, and after the mixing. Diluting the mixture, etc. can be included.
- a single-side grinding device or a single-side polishing device can be used.
- a workpiece is held using a holder called a carrier, and fixed abrasive grains (grinding grindstones) fixed to a surface plate are pressed against one side of the workpiece to relatively hold both of them.
- One side of the workpiece is ground by moving (for example, rotating).
- a machining fluid composed of an aqueous solution is usually supplied to the surface of the workpiece.
- the workpiece is affixed to the ceramic plate with wax, the workpiece is held using a holder called a carrier, and abrasive grains (polishing composition in the case of polishing) are supplied.
- abrasive grains polishing composition in the case of polishing
- one surface of the workpiece is polished by pressing a surface plate or a polishing pad against one surface of the workpiece and relatively moving (for example, rotating) the two.
- the processing steps disclosed herein can use a double-side grinding device or a double-side polishing device.
- a workpiece called a carrier is used to hold a workpiece, and fixed abrasive grains (grinding stones) fixed to a surface plate are pressed against the opposite surface of the workpiece to move them in a relative direction. By rotating, both sides of the workpiece are ground simultaneously.
- a machining fluid composed of an aqueous solution is usually supplied to the surface of the workpiece.
- a workpiece is held using a holder called a carrier, and polishing is performed on the opposite surface of the workpiece while supplying abrasive grains (a polishing composition in the case of polishing) from above.
- abrasive grains a polishing composition in the case of polishing
- the polishing pad used in the CMP process disclosed herein is not particularly limited.
- any of a non-woven fabric type, a suede type, a rigid foamed polyurethane type, a product containing abrasive grains, a product containing no abrasive grains, and the like may be used.
- the workpiece processed by the method disclosed herein is typically washed after polishing. This washing can be performed using an appropriate washing solution.
- the cleaning liquid to be used is not particularly limited, and a known and commonly used cleaning liquid can be appropriately selected and used.
- the technology disclosed herein can include, for example, providing the following polishing composition set. That is, according to the technique disclosed herein, a polishing composition set including the composition Q1 and the composition Q2 stored separately from each other is provided.
- the composition Q1 may be a backside polishing composition (including a concentrated liquid) used in the backside processing step disclosed herein.
- the composition Q2 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein.
- composition set The technology disclosed herein can include, for example, providing the following composition set. That is, according to the technique disclosed here, a composition set including the composition Q3 and the composition Q4 stored separately from each other is provided.
- the composition Q3 may be a wrapping composition (including a concentrated solution) used in the back surface processing step disclosed herein.
- the composition Q4 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein.
- the technology disclosed herein can include, for example, providing a semiconductor substrate manufacturing set as follows. That is, according to the technique disclosed herein, a set for manufacturing a semiconductor substrate is provided that includes abrasive grains for grinding and a composition Q5 that are stored separately from each other.
- the abrasive grains for grinding may be abrasive grains for grinding used in the back surface processing step disclosed herein.
- the composition Q5 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein.
- Polishing composition A was prepared by mixing colloidal silica, sodium metavanadate, hydrogen peroxide, and deionized water.
- the colloidal silica content was 23%, the sodium metavanadate content was 1.9%, and the hydrogen peroxide content was 1.2%.
- the pH of the polishing composition was adjusted to 6.5 using potassium hydroxide (KOH).
- KOH potassium hydroxide
- the colloidal silica used the spherical thing whose average secondary particle diameter is 97 nm.
- Abrasive composition B was prepared by mixing alumina abrasive grains ( ⁇ -alumina, average secondary particle size: 0.5 ⁇ m), potassium permanganate (KMnO 4 ) as a polishing aid, and deionized water.
- alumina abrasive grains ⁇ -alumina, average secondary particle size: 0.5 ⁇ m
- potassium permanganate KMnO 4
- the pH of the polishing composition was adjusted to 9.0 using KOH.
- Example 1 to Example 10 The processing shown in Table 1 was performed on the front and back surfaces of the workpiece.
- the processing conditions are as follows.
- polishing compositions A and B were used as slurries A and B, respectively.
- GC is a slurry containing green silicon carbide particles as abrasive grains.
- As a processing object a 3-inch SiC wafer (conductivity type: n-type, crystal type 4H 4 ° off) was used.
- Polishing machine Product name “SPM-11” manufactured by Fujikoshi Machinery Co., Ltd. Polishing pad: “SURFIN 019-3” manufactured by Fujimi Incorporated Polishing pressure: 300 g / cm 2 Surface plate rotation speed: 60 rotations / minute Head rotation speed: 40 rotations / minute (forced drive) Polishing liquid supply rate: ⁇ 20 mL / min (flowing) Polishing liquid temperature: 25 ° C Polishing time: until Ra becomes constant
- Polishing device Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN” Polishing surface plate: Copper Polishing pressure: 300 g / cm 2 Surface plate rotation speed: 70 rotations / minute Head rotation speed: 40 rotations / minute (forced drive) Abrasive grain concentration in polishing liquid: 10% Polishing liquid supply rate: 10 mL / min (flowing) Polishing liquid temperature: 25 ° C Polishing time: until Ra becomes constant
- ⁇ Surface roughness Ra> The surface roughness Ra [nm] was measured on the surface of the processed workpiece according to each example using an atomic force microscope (AFM; trade name “D3100 Nano Scope V”, manufactured by Veeco) under the condition of a measurement area of 10 ⁇ m ⁇ 10 ⁇ m. ] was measured. The results are shown in Table 1.
- ⁇ Evaluation of substrate shape The warpage of the semiconductor substrate manufactured by the processing method according to each example (unevenness with respect to the front surface) and its degree [ ⁇ m] were measured by GBIR. For the measurement, a surface shape measuring machine “SURFCOM 1500DX” manufactured by Tokyo Seimitsu Co., Ltd. was used. The warp where the front side is convex is described as “+ X ⁇ m”, and the warp where the front side is concave is described as “ ⁇ X ⁇ m”. The results are shown in Table 1.
- Example 1 in Examples 1 to 3 and Examples 5 to 8 in which there was no processed strain layer on the front surface and a processed strain layer on the back surface, the evaluation results of the semiconductor substrate shape after film formation was in an excellent or practically acceptable range. Further, in Example 4 in which the depth of the back-side processed strain layer is larger than that of the front surface even in the substrate having the processed strain layer on the front surface, the evaluation result of the shape of the semiconductor substrate after film formation was good. This effect can be obtained by appropriately setting the method and conditions for the back surface processing step. In particular, in Example 5, Example 7 and Example 8 in which abrasive grains having a relatively small particle diameter were used in the grinding step and the lapping step, the evaluation results of the semiconductor substrate shape after film formation were excellent. On the other hand, in Examples 9 and 10 where the processing strain layer does not exist on the back surface, the evaluation result of the shape of the semiconductor substrate after film formation was poor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Provided is a production method for a semiconductor substrate. The production method makes it possible to control the post-production shape of the substrate to a high degree. This production method for a semiconductor substrate includes a back surface processing step for processing a back surface of a wafer-shaped processing target. After the back surface processing step, there is a processing distortion layer on the back surface. The depth of the processing distortion layer that is on the back surface is greater than the depth of a processing distortion layer that is on a front surface of the semiconductor substrate, or there is no processing distortion layer on the front surface.
Description
本発明は、半導体基板の製造方法、およびその製造方法に好ましく用いられる研磨用組成物セットその他のセットに関する。本出願は、2018年3月30日に出願された日本国特許出願2018-68524号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a method for producing a semiconductor substrate, and a polishing composition set and other sets preferably used in the production method. This application claims priority based on Japanese Patent Application No. 2018-68524 filed on Mar. 30, 2018, the entire contents of which are incorporated herein by reference.
シリコンや窒化ガリウム、炭化ケイ素等から構成された半導体基板材料は、通常、インゴットから切り出された後、ラッピング工程やポリシング工程を経て、平滑面を有する薄層の半導体基板(半導体ウェーハ)に成形される。例えば、炭化ケイ素半導体基板の製造においては、ダイヤモンド砥粒を用いたラッピングの後に、あるいは当該ラッピングに代えて、研磨パッドを用いて当該研磨パッドと加工対象物との間に研磨スラリーを供給して行う研磨(ポリシング)が実施される。製造された半導体基板は、そのおもて面にエピタキシャル成長膜(エピタキシャル膜)等が形成された後、半導体デバイスとして利用される。この種の従来技術を開示する文献として、特許文献1~5が挙げられる。
A semiconductor substrate material composed of silicon, gallium nitride, silicon carbide, or the like is usually cut out from an ingot and then formed into a thin semiconductor substrate (semiconductor wafer) having a smooth surface through a lapping process or a polishing process. The For example, in the manufacture of a silicon carbide semiconductor substrate, a polishing slurry is supplied between the polishing pad and an object to be processed using a polishing pad after lapping using diamond abrasive grains or instead of lapping. Polishing to be performed is performed. The manufactured semiconductor substrate is used as a semiconductor device after an epitaxial growth film (epitaxial film) or the like is formed on its front surface. Patent documents 1 to 5 are cited as documents disclosing this type of prior art.
近年、炭化ケイ素等の半導体基板について、より高品質な形状制御が要求されるようになってきている。例えば、特許文献1では、加工ダメージ層が形成された炭化ケイ素単結晶基板のおもて面に対して研磨を実施して、その裏面に対してはエッチングを実施して各面の表面粗さを調節しつつ、基板の反りを抑制することが提案されている。また、特許文献2~5では、直径110mm以上の炭化ケイ素単結晶基板の表裏各面の表面粗さの平均値および標準偏差を調節することにより、良好なエピタキシャル膜が形成可能であり、かつ反りが抑制された基板を製造することが記載されている。しかし、上記先行技術文献に記載されるように基板両面の表面品質を向上させて内的要因に基づく反りを低減すると、その後、基板のおもて面にエピタキシャル膜等を形成したときに、かかる形成膜等の外的要因による基板変形応力の影響が顕在化しやすくなる。このような外的要因による変形応力が、基板製造後や半導体デバイスにおける基板形状の高レベル制御の制限因子になり得ることが明らかになった。
In recent years, higher quality shape control has been required for semiconductor substrates such as silicon carbide. For example, in Patent Document 1, polishing is performed on the front surface of a silicon carbide single crystal substrate on which a processing damage layer has been formed, and etching is performed on the back surface of the silicon carbide single crystal substrate. It has been proposed to suppress the warpage of the substrate while adjusting. In Patent Documents 2 to 5, by adjusting the average value and standard deviation of the surface roughness of the front and back surfaces of a silicon carbide single crystal substrate having a diameter of 110 mm or more, a good epitaxial film can be formed, and the warp is warped. It describes that a substrate in which the above is suppressed is manufactured. However, as described in the above prior art document, if the surface quality of both sides of the substrate is improved to reduce the warpage based on internal factors, it will take place when an epitaxial film or the like is subsequently formed on the front surface of the substrate. The influence of the substrate deformation stress due to external factors such as the formed film tends to become obvious. It has been clarified that the deformation stress due to such an external factor can be a limiting factor for high-level control of the substrate shape after manufacturing the substrate or in the semiconductor device.
本発明は、上記の事情に鑑みてなされたものであり、その目的は、製造後の基板形状を高度に制御し得る半導体基板の製造方法を提供することである。関連する他の目的は、上記製造方法に用いられる研磨用組成物セット、組成物セットおよび半導体基板製造用セットを提供することである。関連するさらに他の目的は、製造後における形状が高度に制御された半導体基板を提供することである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor substrate manufacturing method capable of highly controlling the substrate shape after manufacturing. Another related object is to provide a polishing composition set, a composition set, and a semiconductor substrate manufacturing set used in the manufacturing method. Yet another related object is to provide a semiconductor substrate whose shape after manufacture is highly controlled.
本明細書によると、ウェーハ状の加工対象物の裏面を加工する裏面加工工程を含む半導体基板の製造方法が提供される。前記裏面加工工程を経た前記裏面には加工歪層が存在している。そして、前記裏面に存在する加工歪層の深さは前記半導体基板のおもて面の加工歪層の深さよりも大きいか、あるいは前記おもて面には加工歪層が存在しない。半導体基板となる加工物は、加工歪層深さに対応して圧縮応力が生じる。この作用を定量的に利用して裏面加工歪層の深さを設定することで、製造後や半導体デバイスにおける半導体基板形状を高度に制御することができる。例えば、エピタキシャル膜等をおもて面に形成した半導体基板を、おもて面の形成膜による圧縮応力と裏面加工歪層の圧縮応力とを相殺することで、より平坦なものにすることができる。これにより、例えば、上記形成膜の転位等の欠陥密度が低減し、膜品質を向上させ得る。
According to the present specification, a semiconductor substrate manufacturing method including a back surface processing step for processing a back surface of a wafer-like workpiece is provided. A processed strain layer exists on the back surface that has undergone the back surface processing step. The depth of the working strain layer existing on the back surface is larger than the depth of the working strain layer on the front surface of the semiconductor substrate, or there is no working strain layer on the front surface. A workpiece to be a semiconductor substrate generates a compressive stress corresponding to the depth of the processing strain layer. By setting the depth of the back surface processed strain layer quantitatively using this action, the shape of the semiconductor substrate in the semiconductor device after manufacturing or in the semiconductor device can be highly controlled. For example, a semiconductor substrate on which an epitaxial film or the like is formed on the front surface can be made flatter by offsetting the compressive stress caused by the formation film on the front surface and the compressive stress of the back surface processed strain layer. it can. Thereby, for example, the defect density such as dislocation of the formed film can be reduced, and the film quality can be improved.
ここに開示される製造方法の好ましい一態様では、前記裏面加工工程は、前記裏面の算術平均表面粗さRaを10nm以下とする工程(表面粗さ低減工程)である。おもて面をより高品質な表面としたり、より高レベルの形状制御を行うためには、裏面の表面粗さが制限されていることが望ましい。そのような観点から、上記構成では、基板裏面のRaを10nm以下に制限しつつ、そのなかであえて加工歪層の深さが所定値以上となるように加工を実施する。これによって、製造後や半導体デバイスにおける半導体基板形状をより高度に制御することができ、より高品質な半導体基板が得られる。
In a preferred aspect of the manufacturing method disclosed herein, the back surface processing step is a step (surface roughness reduction step) in which the arithmetic average surface roughness Ra of the back surface is 10 nm or less. In order to make the front surface have a higher quality surface or perform a higher level of shape control, it is desirable that the surface roughness of the back surface is limited. From such a viewpoint, in the above configuration, while the Ra on the back surface of the substrate is limited to 10 nm or less, the processing is performed so that the depth of the processing strain layer is a predetermined value or more. As a result, the shape of the semiconductor substrate in the semiconductor device after manufacturing or in the semiconductor device can be controlled to a higher degree, and a higher quality semiconductor substrate can be obtained.
ここに開示される製造方法の好ましい一態様では、前記裏面に存在する加工歪層の深さは0.1μm以上である。加工歪層の深さを0.1μm以上とすることで、所定厚さのエピタキシャル膜がおもて面に形成されるような典型的な半導体デバイスにおいて、半導体基板形状の高レベル制御を好ましく実現することができる。
In a preferred embodiment of the manufacturing method disclosed herein, the depth of the processed strain layer existing on the back surface is 0.1 μm or more. By setting the depth of the processing strain layer to 0.1 μm or more, high-level control of the shape of the semiconductor substrate is preferably realized in a typical semiconductor device in which an epitaxial film with a predetermined thickness is formed on the front surface can do.
ここに開示される製造方法の好ましい一態様では、前記裏面加工工程は化学的機械研磨工程を含む。他の好ましい一態様では、前記裏面加工工程はラッピング工程を含む。さらに他の一態様では、前記裏面加工工程は研削工程を含む。裏面加工工程として、化学的機械研磨(CMP)、ラッピングおよび研削から選択されるいずれかの工程を採用することによって、ここに開示される技術による効果が好ましく発揮される。
In a preferred embodiment of the manufacturing method disclosed herein, the back surface processing step includes a chemical mechanical polishing step. In another preferred embodiment, the back surface processing step includes a lapping step. In still another aspect, the back surface processing step includes a grinding step. By adopting any one process selected from chemical mechanical polishing (CMP), lapping and grinding as the back surface processing step, the effect of the technique disclosed herein is preferably exhibited.
ここに開示される製造方法の好ましい一態様では、前記加工対象物のおもて面を加工するおもて面加工工程を含む。また、前記おもて面加工工程および前記裏面加工工程はともに砥粒を用いる工程を含む。そのなかの一態様において、前記裏面加工工程で用いられる砥粒は、前記おもて面加工工程で用いられる砥粒よりも高硬度である。また他の一態様において、前記裏面加工工程で用いられる砥粒は、前記おもて面加工工程で用いられる砥粒よりも粒子径が大きい。上述のような方法を採用することにより、裏面側の加工歪層の深さがおもて面側よりも大きい基板を好ましく製造することができる。
In a preferable aspect of the manufacturing method disclosed herein, a front surface processing step of processing the front surface of the workpiece is included. Further, both the front surface processing step and the back surface processing step include a step of using abrasive grains. In one aspect thereof, the abrasive grains used in the back surface processing step have higher hardness than the abrasive grains used in the front surface processing step. In another aspect, the abrasive grains used in the back surface processing step have a larger particle diameter than the abrasive grains used in the front surface processing step. By adopting the method as described above, it is possible to preferably manufacture a substrate in which the depth of the processed strain layer on the back surface side is larger than that on the front surface side.
ここに開示される製造方法の好ましい一態様では、前記半導体基板は、炭化ケイ素から構成された半導体基板である。ここに開示される技術による効果は、炭化ケイ素から構成された半導体基板において好ましく発揮される。
In a preferred aspect of the manufacturing method disclosed herein, the semiconductor substrate is a semiconductor substrate made of silicon carbide. The effect by the technique disclosed here is preferably exhibited in a semiconductor substrate made of silicon carbide.
また、本明細書によると、ここに開示されるいずれかの製造方法に用いられる研磨用組成物セットが提供される。この研磨用組成物セットは、前記裏面加工工程に用いられる裏面研磨用組成物としての組成物Q1と、前記おもて面加工工程に用いられるおもて面研磨用組成物としての組成物Q2とを含む。前記組成物Q1と前記組成物Q2とは互いに分けて保管されている。このような構成の研磨用組成物セットを用いて裏面加工工程およびおもて面加工工程を実施することにより、製造後における形状が高度に制御された半導体基板を好適に製造することができる。上記半導体基板はまた、高い面品質を有するものであり得る。
Also, according to the present specification, a polishing composition set used in any of the production methods disclosed herein is provided. This polishing composition set includes a composition Q1 as a back surface polishing composition used in the back surface processing step and a composition Q2 as a front surface polishing composition used in the front surface processing step. Including. The composition Q1 and the composition Q2 are stored separately from each other. By performing the back surface processing step and the front surface processing step using the polishing composition set having such a configuration, it is possible to suitably manufacture a semiconductor substrate whose shape after manufacturing is highly controlled. The semiconductor substrate may also have a high surface quality.
好ましい一態様に係る研磨用組成物セットにおいて、前記裏面研磨用組成物は砥粒ABFを含有する。また、前記おもて面研磨用組成物は砥粒AFFを含有する。前記砥粒ABFはアルミナ粒子または緑色炭化ケイ素粒子であり、前記砥粒AFFはシリカ粒子またはアルミナ粒子である。上記構成によると、ここに開示される技術による効果が好ましく実現される。
In the polishing composition set according to one preferred embodiment, the back surface polishing composition contains abrasive grains A BF. Further, the front surface polishing composition contains abrasive grains A FF. The abrasive grains ABF are alumina particles or green silicon carbide particles, and the abrasive grains AFF are silica particles or alumina particles. According to the above configuration, the effects of the technology disclosed herein are preferably realized.
好ましい一態様に係る研磨用組成物セットにおいて、前記裏面研磨用組成物は研磨助剤CBFを含有する。また、前記おもて面研磨用組成物は研磨助剤CFFを含有する。前記研磨助剤CBFは過マンガン酸またはその塩であり、前記研磨助剤CFFは過酸化水素およびバナジン酸類である。上記構成によると、研磨対象物おもて面および裏面の各面の研磨において、研磨レートと面品質とを好ましく両立することができる。
In the polishing composition set according to a preferred embodiment, the backside polishing composition contains a polishing aid CBF . The front surface polishing composition contains a polishing aid CFF . The grinding aid C BF is permanganic acid or a salt thereof, wherein grinding aid C FF is hydrogen peroxide and vanadium acids. According to the above configuration, it is possible to preferably achieve both the polishing rate and the surface quality in the polishing of the front surface and the back surface of the object to be polished.
また、本明細書によると、ここに開示されるいずれかの製造方法に用いられる組成物セットが提供される。この組成物セットは、前記裏面加工工程に用いられるラッピング用組成物としての組成物Q3と、前記おもて面加工工程に用いられるおもて面研磨用組成物としての組成物Q4とを含む。前記組成物Q3と前記組成物Q4とは互いに分けて保管されている。このような構成の組成物セットを用いて裏面加工工程およびおもて面加工工程を実施することにより、製造後における形状が高度に制御された半導体基板を高い加工能率で製造することができる。上記半導体基板はまた、高い面品質を有するものであり得る。
Moreover, according to this specification, the composition set used for one of the manufacturing methods disclosed here is provided. This composition set includes a composition Q3 as a lapping composition used in the back surface processing step and a composition Q4 as a front surface polishing composition used in the front surface processing step. . The composition Q3 and the composition Q4 are stored separately from each other. By performing the back surface processing step and the front surface processing step using the composition set having such a configuration, a semiconductor substrate whose shape after manufacturing is highly controlled can be manufactured with high processing efficiency. The semiconductor substrate may also have a high surface quality.
好ましい一態様に係る組成物セットにおいて、前記ラッピング用組成物は砥粒ABFを含有する。また、前記おもて面研磨用組成物は砥粒AFFを含有する。前記砥粒ABFはダイヤモンド粒子であり、前記砥粒AFFはシリカ粒子またはアルミナ粒子である。上記構成によると、ここに開示される技術による効果が好ましく実現される。
In the composition set according to one preferred embodiment, the lapping composition contains abrasive grains A BF. Further, the front surface polishing composition contains abrasive grains A FF. The abrasive grains ABF are diamond particles, and the abrasive grains AFF are silica particles or alumina particles. According to the above configuration, the effects of the technology disclosed herein are preferably realized.
好ましい一態様に係る組成物セットにおいて、前記おもて面研磨用組成物は研磨助剤CFFを含有する。また、前記研磨助剤CFFは過マンガン酸、過マンガン酸塩、過酸化水素およびバナジン酸類からなる群から選択される少なくとも1種である。上記構成によると、研磨対象物おもて面の研磨において、研磨レートと面品質とを好ましく両立することができる。
In the composition set according to a preferred embodiment, the front surface polishing composition contains a polishing aid CFF . Further, the grinding aid C FF is at least one selected from the group consisting of permanganic acid, permanganates, hydrogen peroxide and vanadium acids. According to the above configuration, in polishing the front surface of the object to be polished, both the polishing rate and the surface quality can be preferably achieved.
また、本明細書によると、ここに開示されるいずれかの製造方法に用いられる半導体基板製造用セットが提供される。このセットは、前記裏面加工工程に用いられる研削用砥粒と、前記おもて面加工工程に用いられるおもて面研磨用組成物としての組成物Q5とを含む。前記研削用砥粒と前記組成物Q5とは互いに分けて保管されている。このような構成のセットを用いて裏面加工工程およびおもて面加工工程を実施することにより、製造後における形状が高度に制御された半導体基板を高い加工能率で製造することができる。また、上記半導体基板おもて面は、高い面品質を有するものであり得る。
Also, according to the present specification, a set for manufacturing a semiconductor substrate used in any of the manufacturing methods disclosed herein is provided. This set includes abrasive grains for grinding used in the back surface processing step, and a composition Q5 as a front surface polishing composition used in the front surface processing step. The abrasive grains for grinding and the composition Q5 are stored separately from each other. By performing the back surface processing step and the front surface processing step using the set having such a configuration, a semiconductor substrate whose shape after manufacturing is highly controlled can be manufactured with high processing efficiency. The semiconductor substrate front surface may have a high surface quality.
好ましい一態様に係るセットにおいて、前記研削用砥粒はダイヤモンド粒子であり、前記砥粒AFFはシリカ粒子またはアルミナ粒子である。上記構成によると、ここに開示される技術による効果が好ましく実現される。
In a set according to a preferred embodiment, the abrasive grains for grinding are diamond particles, and the abrasive grains AFF are silica particles or alumina particles. According to the above configuration, the effects of the technology disclosed herein are preferably realized.
好ましい一態様に係るセットにおいて、前記おもて面研磨用組成物は研磨助剤CFFを含有する。前記研磨助剤CFFは過マンガン酸、過マンガン酸塩、過酸化水素およびバナジン酸類からなる群から選択される少なくとも1種である。上記構成によると、研磨対象物おもて面の研磨において、研磨レートと面品質とを好ましく両立することができる。
In the set according to a preferred embodiment, the front surface polishing composition contains a polishing aid CFF . The grinding aid C FF is at least one selected from the group consisting of permanganic acid, permanganates, hydrogen peroxide and vanadium acids. According to the above configuration, in polishing the front surface of the object to be polished, both the polishing rate and the surface quality can be preferably achieved.
また、本明細書によると、半導体基板が提供される。この半導体基板はおもて面と裏面とを有する。前記裏面には加工歪層が存在する。また、前記裏面に存在する加工歪層の深さは前記おもて面の加工歪層の深さよりも大きいか、あるいは前記おもて面には加工歪層が存在しない。このような構成の半導体基板は、製造後や半導体デバイスにおける形状が高度に制御されたものとなり得る。例えば、上記半導体基板のおもて面にエピタキシャル膜を形成したものは、当該形成膜後において平坦性に優れた基板となり得る。
Also according to the present specification, a semiconductor substrate is provided. This semiconductor substrate has a front surface and a back surface. A working strain layer is present on the back surface. Further, the depth of the working strain layer existing on the back surface is larger than the depth of the working strain layer on the front surface, or no working strain layer exists on the front surface. The semiconductor substrate having such a configuration can be highly controlled in shape after manufacturing or in a semiconductor device. For example, what formed the epitaxial film in the front surface of the said semiconductor substrate can become a board | substrate excellent in flatness after the said formation film.
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
≪半導体基板≫
ここに開示される半導体基板は、おもて面と裏面とを有しており、その裏面には加工歪層が存在する。また、当該裏面に存在する加工歪層の深さはおもて面の加工歪層の深さよりも大きいか、あるいは半導体基板のおもて面には加工歪層が存在しない。ここで、半導体基板のおもて面とは、通常、エピタキシャル膜、半導体素子等が形成される面であり、半導体基板の裏面とは、おもて面とは反対側に位置する面である。なお、半導体基板の形状は、特に限定されず、通常は、円盤状(上面からみて円形状)を有する。半導体基板は、上面からみたとき四角形等の多角形状を有するものであってもよい。 ≪Semiconductor substrate≫
The semiconductor substrate disclosed here has a front surface and a back surface, and a processing strain layer exists on the back surface. In addition, the depth of the processing strain layer existing on the back surface is larger than the depth of the processing strain layer on the front surface, or there is no processing strain layer on the front surface of the semiconductor substrate. Here, the front surface of the semiconductor substrate is usually a surface on which an epitaxial film, a semiconductor element or the like is formed, and the back surface of the semiconductor substrate is a surface located on the side opposite to the front surface. . Note that the shape of the semiconductor substrate is not particularly limited, and usually has a disk shape (a circular shape as viewed from above). The semiconductor substrate may have a polygonal shape such as a quadrangle when viewed from above.
ここに開示される半導体基板は、おもて面と裏面とを有しており、その裏面には加工歪層が存在する。また、当該裏面に存在する加工歪層の深さはおもて面の加工歪層の深さよりも大きいか、あるいは半導体基板のおもて面には加工歪層が存在しない。ここで、半導体基板のおもて面とは、通常、エピタキシャル膜、半導体素子等が形成される面であり、半導体基板の裏面とは、おもて面とは反対側に位置する面である。なお、半導体基板の形状は、特に限定されず、通常は、円盤状(上面からみて円形状)を有する。半導体基板は、上面からみたとき四角形等の多角形状を有するものであってもよい。 ≪Semiconductor substrate≫
The semiconductor substrate disclosed here has a front surface and a back surface, and a processing strain layer exists on the back surface. In addition, the depth of the processing strain layer existing on the back surface is larger than the depth of the processing strain layer on the front surface, or there is no processing strain layer on the front surface of the semiconductor substrate. Here, the front surface of the semiconductor substrate is usually a surface on which an epitaxial film, a semiconductor element or the like is formed, and the back surface of the semiconductor substrate is a surface located on the side opposite to the front surface. . Note that the shape of the semiconductor substrate is not particularly limited, and usually has a disk shape (a circular shape as viewed from above). The semiconductor substrate may have a polygonal shape such as a quadrangle when viewed from above.
半導体基板の構成材料としては、公知の半導体基板材料を特に制限なく用いることができる。半導体基板の構成材料は、例えば、シリコン、ゲルマニウム等の単元素半導体;テルル化カドミウム、セレン化亜鉛、硫化カドミウム、テルル化カドミウム水銀、テルル化亜鉛カドミウム等のII-VI族化合物半導体基板材料;窒化ガリウム、ヒ化ガリウム、リン化ガリウム、リン化インジウム、ヒ化アルミニウムガリウム、ヒ化ガリウムインジウム、ヒ化窒素インジウムガリウム、リン化アルミニウムガリウムインジウム等のIII-V族化合物半導体基板材料;炭化ケイ素、ケイ化ゲルマニウム等のIV-IV族化合物半導体基板材料;等であり得る。これらのうち複数の材料により構成されたものであってもよい。なかでも、半導体基板は炭化ケイ素から構成されていることが好ましい。炭化ケイ素は、電力損失が少なく耐熱性等に優れる半導体基板材料として期待されており、その基板形状を高度に制御することの実用上の利点は特に大きい。好ましい一態様に係る半導体基板は、そのおもて面が炭化ケイ素の単結晶からなる。
As a constituent material of the semiconductor substrate, a known semiconductor substrate material can be used without particular limitation. The constituent material of the semiconductor substrate is, for example, a single element semiconductor such as silicon or germanium; II-VI compound semiconductor substrate material such as cadmium telluride, zinc selenide, cadmium sulfide, cadmium mercury telluride, zinc cadmium telluride; III-V group compound semiconductor substrate materials such as gallium, gallium arsenide, gallium phosphide, indium phosphide, aluminum gallium arsenide, gallium indium arsenide, indium gallium arsenide, aluminum gallium indium phosphide; silicon carbide, silicon IV-IV compound semiconductor substrate material such as germanium hydride; Of these, a plurality of materials may be used. Especially, it is preferable that the semiconductor substrate is comprised from silicon carbide. Silicon carbide is expected as a semiconductor substrate material with low power loss and excellent heat resistance, and the practical advantage of highly controlling the substrate shape is particularly great. A semiconductor substrate according to a preferred embodiment is made of a single crystal whose front surface is silicon carbide.
一態様に係る半導体基板は、500Hv以上のビッカース硬度を有する材料から構成されている。このような高硬度の材料から構成された半導体基板の裏面に加工歪層を設けることにより、高硬度基板の形状を高度に制御することができる。半導体基板の構成材料のビッカース硬度は、好ましくは700Hv以上(例えば1000Hv以上、典型的には1500Hv以上)である。1500Hv以上のビッカース硬度を有する材料としては、ダイヤモンド、炭化ケイ素、窒化ケイ素、窒化チタン、窒化ガリウム等が挙げられる。ここに開示される基板は、機械的かつ化学的に安定な上記材料の単結晶表面を有するものであり得る。なかでも、半導体基板表面は、ダイヤモンド、炭化ケイ素および窒化ガリウムのうちのいずれかから構成されていることが好ましく、炭化ケイ素から構成されていることがより好ましい。ビッカース硬度の上限は特に限定されないが、凡そ7000Hv以下(例えば5000Hv以下、典型的には3000Hv以下)であってもよい。なお、本明細書において、ビッカース硬度は、JIS R 1610:2003に基づいて測定することができる。上記JIS規格に対応する国際規格はISO 14705:2000である。
The semiconductor substrate according to one aspect is made of a material having a Vickers hardness of 500 Hv or more. By providing a working strain layer on the back surface of a semiconductor substrate made of such a high hardness material, the shape of the high hardness substrate can be controlled to a high degree. The Vickers hardness of the constituent material of the semiconductor substrate is preferably 700 Hv or higher (for example, 1000 Hv or higher, typically 1500 Hv or higher). Examples of the material having a Vickers hardness of 1500 Hv or higher include diamond, silicon carbide, silicon nitride, titanium nitride, and gallium nitride. The substrate disclosed herein may have a single crystal surface of the above material that is mechanically and chemically stable. In particular, the surface of the semiconductor substrate is preferably composed of any one of diamond, silicon carbide, and gallium nitride, and more preferably composed of silicon carbide. The upper limit of Vickers hardness is not particularly limited, but may be about 7000 Hv or less (for example, 5000 Hv or less, typically 3000 Hv or less). In the present specification, the Vickers hardness can be measured based on JIS R 1610: 2003. The international standard corresponding to the JIS standard is ISO 14705: 2000.
ここに開示される半導体基板は、少なくとも裏面に加工歪層が存在する。本明細書において「加工歪層」とは、半導体基板表面に対する加工によって形成される加工歪(具体的には加工傷)の深さを層厚とみなして画定される層状領域のことをいい、半導体基板表面に存在する層(表面層)である。加工歪層の深さは、微分干渉顕微鏡による観察およびポリシングから測定することができる。具体的には、後述の実施例に記載の方法で測定される。
The semiconductor substrate disclosed herein has a processing strain layer at least on the back surface. In the present specification, the “work strain layer” refers to a layered region defined by regarding the depth of the work strain (specifically, the work scratch) formed by the work on the semiconductor substrate surface as the layer thickness, It is a layer (surface layer) existing on the surface of the semiconductor substrate. The depth of the working strain layer can be measured by observation with a differential interference microscope and polishing. Specifically, it is measured by the method described in Examples described later.
半導体基板の裏面に存在する加工歪層の深さは、特定の範囲に制限されず、おもて面の性状との関係で相対的に決定される。例えば、おもて面の加工歪層深さDFF[μm]と裏面の加工歪層深さDBF[μm]との差(DBF-DFF)は、加工歪層深さの違いに基づく変形応力を得る観点から凡そ0.1μm以上であることが適当である。好ましい一態様では、差(DBF-DFF)は凡そ0.2μm以上であり、より好ましくは凡そ0.3μm以上であり、例えば凡そ0.5μm以上(典型的には凡そ0.7μm以上)であってもよく、凡そ1μm以上(例えば凡そ1.3μm以上)であってもよい。上記差(DBF-DFF)は、所定厚さ(例えば凡そ5~50μm厚、典型的には凡そ10~30μm厚)のエピタキシャル膜がおもて面に形成されるような典型的な半導体デバイスにおいて好適である。他の一態様では、上記差(DBF-DFF)は、凡そ2μm以上であり、例えば凡そ3μm以上であってもよく、凡そ3.5μm以上(例えば凡そ3.8μm以上)であってもよい。このような差は、製造後におもて面が凸となる変形応力が比較的大きくなるような半導体基板に対して好ましく採用される。
The depth of the processed strain layer existing on the back surface of the semiconductor substrate is not limited to a specific range, and is relatively determined in relation to the properties of the front surface. For example, the difference (D BF −D FF ) between the processing strain layer depth D FF [μm] on the front surface and the processing strain layer depth D BF [μm] on the back surface is the difference in the processing strain layer depth. From the viewpoint of obtaining the deformation stress based on this, it is appropriate to be about 0.1 μm or more. In a preferred embodiment, the difference (D BF −D FF ) is about 0.2 μm or more, more preferably about 0.3 μm or more, for example, about 0.5 μm or more (typically about 0.7 μm or more). It may be about 1 μm or more (for example, about 1.3 μm or more). The difference (D BF −D FF ) is a typical semiconductor in which an epitaxial film having a predetermined thickness (for example, approximately 5 to 50 μm, typically approximately 10 to 30 μm) is formed on the front surface. Suitable for devices. In another aspect, the difference (D BF −D FF ) is about 2 μm or more, for example, about 3 μm or more, or about 3.5 μm or more (for example, about 3.8 μm or more). Good. Such a difference is preferably employed for a semiconductor substrate in which the deformation stress that makes the front surface convex after manufacture becomes relatively large.
また、上記差(DBF-DFF)は、例えば凡そ10μm以下であることが適当である。好ましい一態様では、差(DBF-DFF)は凡そ5μm以下であり、より好ましくは凡そ2.5μm以下(例えば凡そ2μm以下)であり、例えば凡そ1.2μm以下(典型的には凡そ1μm以下)であってもよく、凡そ0.7μm以下(例えば凡そ0.5μm以下)であってもよい。上記差(DBF-DFF)は、所定厚さ(例えば凡そ5~50μm厚、典型的には凡そ10~30μm厚)のエピタキシャル膜がおもて面に形成されるような典型的な半導体デバイスにおいて好適である。他の一態様では、上記差(DBF-DFF)は凡そ4.5μm以下であり、例えば凡そ4μm以下であってもよく、凡そ3.5μm以下であってもよい。なお、上記おもて面に加工歪層が存在しない場合、加工歪層深さDFFを0μmとして、差(DBF-DFF)は求められる。
The difference (D BF −D FF ) is suitably about 10 μm or less, for example. In a preferred embodiment, the difference (D BF −D FF ) is about 5 μm or less, more preferably about 2.5 μm or less (eg, about 2 μm or less), for example, about 1.2 μm or less (typically about 1 μm). Or about 0.7 μm or less (for example, about 0.5 μm or less). The difference (D BF −D FF ) is a typical semiconductor in which an epitaxial film having a predetermined thickness (for example, approximately 5 to 50 μm, typically approximately 10 to 30 μm) is formed on the front surface. Suitable for devices. In another aspect, the difference (D BF −D FF ) is about 4.5 μm or less, for example, about 4 μm or less, or about 3.5 μm or less. In the case where there is no working strain layer on the front surface, the difference (D BF −D FF ) can be obtained by setting the working strain layer depth D FF to 0 μm.
半導体基板裏面の加工歪層深さは、おもて面に加工歪層が存在する場合におもて面側よりも大きい他は特に制限はない。例えば、裏面の加工歪層深さDBFは、凡そ0.1μm以上であることが適当であり、好ましくは凡そ0.2μm以上、より好ましくは凡そ0.3μm以上であり、例えば凡そ0.5μm以上(典型的には凡そ0.7μm以上)であってもよく、凡そ1μm以上(例えば凡そ1.3μm以上)であってもよい。加工歪層深さDBFは、所定厚さ(例えば凡そ5~50μm厚、典型的には凡そ10~30μm厚)のエピタキシャル膜がおもて面に形成されるような典型的な半導体デバイスにおいて好適である。他の一態様では、加工歪層深さDBFは凡そ2μm以上であり、例えば凡そ3μm以上であってもよく、凡そ3.5μm以上(例えば凡そ3.8μm以上)であってもよい。上記加工歪層深さDBFは、製造後におもて面が凸となる変形応力が比較的大きくなるような半導体基板に対して好ましく採用される。
The depth of the processing strain layer on the back surface of the semiconductor substrate is not particularly limited except that the processing strain layer is present on the front surface and is larger than the front surface side. For example, the processing strain layer depth D BF on the back surface is suitably about 0.1 μm or more, preferably about 0.2 μm or more, more preferably about 0.3 μm or more, for example, about 0.5 μm. It may be above (typically about 0.7 μm or more), or about 1 μm or more (for example, about 1.3 μm or more). In a typical semiconductor device in which an epitaxial film having a predetermined thickness (for example, about 5 to 50 μm, typically about 10 to 30 μm) is formed on the front surface, the processing strain layer depth D BF is Is preferred. In another aspect, the processed strain layer depth DBF is about 2 μm or more, for example, about 3 μm or more, or about 3.5 μm or more (for example, about 3.8 μm or more). The processing strain layer depth DBF is preferably used for a semiconductor substrate in which the deformation stress that makes the front surface convex after manufacture becomes relatively large.
また、裏面の加工歪層深さDBFは、例えば凡そ10μm以下であることが適当である。好ましい一態様では、加工歪層深さDBFは凡そ5μm以下であり、より好ましくは凡そ2.5μm以下(例えば凡そ2μm以下)であり、例えば凡そ1.2μm以下(典型的には凡そ1μm以下)であってもよく、凡そ0.7μm以下(例えば凡そ0.5μm以下)であってもよい。上記範囲の加工歪層深さDBFは、所定厚さ(例えば凡そ5~50μm厚、典型的には凡そ10~30μm厚)のエピタキシャル膜がおもて面に形成されるような典型的な半導体デバイスにおいて好適である。他の一態様では、加工歪層深さDBFは凡そ4.5μm以下であり、例えば凡そ4μm以下であってもよく、凡そ3.5μm以下であってもよい。
Further, the back surface of the processing strain layer depth D BF is appropriate that example is about 10μm or less. In a preferred embodiment, the working strain layer depth DBF is about 5 μm or less, more preferably about 2.5 μm or less (for example, about 2 μm or less), for example, about 1.2 μm or less (typically about 1 μm or less). Or about 0.7 μm or less (for example, about 0.5 μm or less). Processing strain layer depth D BF of the above range, a predetermined thickness (e.g., approximately 5 ~ 50 [mu] m thick, 10 ~ 30 [mu] m thick approximately typically) epitaxial film is typically as formed on the front surface of the Suitable for semiconductor devices. In another aspect, the working strain layer depth DBF is about 4.5 μm or less, for example, about 4 μm or less, or about 3.5 μm or less.
半導体基板のおもて面に加工歪層が存在する場合、おもて面の加工歪層深さDFFは、裏面の加工歪層深さDBFよりも小さい限りにおいて特に制限はない。例えば、おもて面の加工歪層深さDFFは10μm未満であることが適当であり、好ましくは5μm未満、より好ましくは1μm未満、さらに好ましくは0.3μm未満(例えば0.1μm未満)である。おもて面の加工歪層深さDFFの下限は0μm以上(例えば0μm超)であり、凡そ0.1μm以上であってもよい。このようなおもて面は高品質な表面としやすく、また、所定厚さのエピタキシャル膜がおもて面に形成されるような典型的な半導体デバイスにおいて好適である。
When the processing strain layer exists on the front surface of the semiconductor substrate, the processing strain layer depth D FF on the front surface is not particularly limited as long as it is smaller than the processing strain layer depth D BF on the back surface. For example, processing strain layer depth D FF of the front surface is suitably less than 10 [mu] m, preferably less than 5 [mu] m, more preferably less than 1 [mu] m, more preferably less than 0.3 [mu] m (e.g., less than 0.1 [mu] m) It is. The lower limit of the working strain layer depth D FF of the front surface is more than 0 .mu.m (e.g. 0 .mu.m greater), may be about 0.1μm or more. Such a front surface is easy to obtain a high-quality surface, and is suitable for a typical semiconductor device in which an epitaxial film having a predetermined thickness is formed on the front surface.
ここに開示される半導体基板のおもて面の算術平均表面粗さRaは、要求される表面品質に応じて設定され、特定の範囲に限定されない。例えば、上記Raは凡そ10nm以下とすることが適当であり、より高品質な表面が要求される用途においては、好ましくは5nm未満、より好ましくは1nm未満、さらに好ましくは凡そ0.3nm未満、特に好ましくは0.1nm未満(例えば0.07nm未満、典型的には0.05nm程度)である。おもて面のRaの下限は例えば0.01nm以上であり得る。
The arithmetic average surface roughness Ra of the front surface of the semiconductor substrate disclosed herein is set according to the required surface quality and is not limited to a specific range. For example, the Ra is suitably about 10 nm or less, and in applications where a higher quality surface is required, it is preferably less than 5 nm, more preferably less than 1 nm, and even more preferably less than about 0.3 nm. The thickness is preferably less than 0.1 nm (for example, less than 0.07 nm, typically about 0.05 nm). The lower limit of Ra on the front surface can be, for example, 0.01 nm or more.
ここに開示される半導体基板の裏面の算術平均表面粗さRaは特に限定されず、通常、20nm以下程度とすることが適当である。好ましい一態様に係る裏面のRaは凡そ10nm以下(典型的には10nm未満)であり、より好ましくは5nm未満であり、例えば3nm未満であってもよく、2nm未満であってもよく、1nm未満(例えば0.3nm未満、典型的には0.1nm程度)であってもよい。裏面のRaの下限は、生産性等の観点から、例えば凡そ0.05nm以上であってもよく、凡そ0.5nm以上であってもよく、凡そ1nm以上であってもよい。
The arithmetic average surface roughness Ra of the back surface of the semiconductor substrate disclosed herein is not particularly limited, and is usually about 20 nm or less. Ra of the back surface according to a preferred embodiment is about 10 nm or less (typically less than 10 nm), more preferably less than 5 nm, for example, less than 3 nm, less than 2 nm, or less than 1 nm. (For example, less than 0.3 nm, typically about 0.1 nm). From the viewpoint of productivity and the like, the lower limit of Ra on the back surface may be, for example, approximately 0.05 nm or more, approximately 0.5 nm or more, or approximately 1 nm or more.
半導体基板のおもて面および裏面のRaは、市販の原子間力顕微鏡を用いて、測定領域10μm×10μmの条件で測定することができる。より具体的には、後述の実施例に記載の方法で測定することができる。
Ra of the front surface and the back surface of the semiconductor substrate can be measured using a commercially available atomic force microscope under a measurement area of 10 μm × 10 μm. More specifically, it can be measured by the method described in Examples described later.
半導体基板は、基板の長さが大きく、また基板の厚さが小さいほど、その後の半導体デバイス製造のための処理(エピタキシャル膜、半導体素子等の形成)において、反り等の変形の影響が大きくなりやすい。そのような半導体基板に対して、ここに開示される技術を適用する効果は好ましく発揮される。そのような観点から、基板厚さT[mm]に対する基板長さ(最長長さ。円盤状の場合は直径)L[mm]の比(L/T)は、凡そ50以上とすることが適当であり、好ましくは凡そ100以上、より好ましくは凡そ150以上、さらに好ましくは凡そ200以上であり、例えば凡そ250以上であってもよい。また、比(L/T)の上限は、基板強度や取扱い性等の観点から、例えば凡そ600以下とすることが適当であり、好ましくは凡そ400以下、より好ましくは凡そ300以下、例えば凡そ250以下であってもよい。
As the length of the semiconductor substrate increases and the thickness of the substrate decreases, the influence of deformation such as warpage increases in the subsequent processing for semiconductor device manufacturing (formation of epitaxial films, semiconductor elements, etc.). Cheap. The effect of applying the technology disclosed herein to such a semiconductor substrate is preferably exhibited. From such a viewpoint, it is appropriate that the ratio (L / T) of the substrate length (longest length. Diameter in the case of a disk) L [mm] to the substrate thickness T [mm] is approximately 50 or more. Preferably, it is about 100 or more, more preferably about 150 or more, still more preferably about 200 or more, for example, about 250 or more. The upper limit of the ratio (L / T) is suitably about 600 or less, for example, from the viewpoints of substrate strength, handleability, etc., preferably about 400 or less, more preferably about 300 or less, for example about 250. It may be the following.
ここに開示される半導体基板の長さ(最長長さ。円盤状の場合は直径)は特定の範囲に限定されない。ここに開示される技術による効果を好ましく得る観点から、上記基板の長さは、例えば凡そ20mm以上とすることが適当であり、好ましくは凡そ45mm以上、より好ましくは凡そ70mm以上であり、例えば凡そ100mm以上であってもよく、凡そ200mm以上であってもよく、凡そ300mm以上であってもよく、凡そ450mm以上であってもよい。上記大径の半導体基板は生産効率にも優れる。また、半導体基板の長さの上限は、例えば凡そ500mm以下とすることが適当であり、基板強度や取扱い性等の観点から、好ましくは凡そ300mm以下、より好ましくは凡そ220mm以下、さらに好ましくは凡そ120mm以下(例えば110mm未満)であり、例えば凡そ100mm以下であってもよく、凡そ80mm以下であってもよい。
The length of the semiconductor substrate disclosed herein (the longest length; the diameter in the case of a disc shape) is not limited to a specific range. From the viewpoint of preferably obtaining the effects of the technology disclosed herein, the length of the substrate is suitably about 20 mm or more, preferably about 45 mm or more, more preferably about 70 mm or more, for example, about It may be 100 mm or more, about 200 mm or more, about 300 mm or more, or about 450 mm or more. The large-diameter semiconductor substrate is also excellent in production efficiency. The upper limit of the length of the semiconductor substrate is suitably about 500 mm or less, for example, and is preferably about 300 mm or less, more preferably about 220 mm or less, and still more preferably about 200 mm or less from the viewpoint of substrate strength, handleability, and the like. It is 120 mm or less (for example, less than 110 mm), for example, it may be about 100 mm or less, and may be about 80 mm or less.
半導体基板の厚さは、サイズ(直径等)等に応じて適切に設定される。上記基板の厚さは、通常は凡そ100μm以上であり、凡そ300μm以上(例えば凡そ350μm以上)とすることが適当であり、例えば凡そ500μm以上であってもよい。また、上記厚さは、通常は凡そ1500μm以下であり、凡そ1000μm以下とすることが適当であり、好ましくは凡そ800μm以下であり、例えば凡そ500μm以下(典型的には500μm未満)であってもよく、凡そ400μm以下であってもよい。
The thickness of the semiconductor substrate is appropriately set according to the size (diameter, etc.). The thickness of the substrate is usually about 100 μm or more, suitably about 300 μm or more (for example, about 350 μm or more), for example, about 500 μm or more. Further, the thickness is usually about 1500 μm or less, suitably about 1000 μm or less, preferably about 800 μm or less, for example about 500 μm or less (typically less than 500 μm). It may be about 400 μm or less.
ここに開示される半導体基板は、加工歪層に起因する圧縮応力により、おもて面側が凹となるように面全体が弧状に反るものとなり得る。このような変形応力が内在する半導体基板のおもて面にエピタキシャル膜等の膜形成を行うことで、上記おもて面の形成膜の圧縮応力に起因する変形と、意図的に設けた裏面加工歪層の圧縮応力とが相殺し、半導体基板は、半導体デバイスにおける形状が高度に制御されたものとなり得る。例えば、エピタキシャル膜等をおもて面に形成した半導体基板をより平坦なものにすることができ、形成膜の転位等の欠陥密度が低減して膜品質が向上し得る。
The semiconductor substrate disclosed herein may be warped in an arc shape so that the front side is concave due to compressive stress caused by the processing strain layer. By forming a film such as an epitaxial film on the front surface of the semiconductor substrate in which such deformation stress is inherent, the deformation caused by the compressive stress of the film formed on the front surface and the intentionally provided back surface The compressive stress of the processing strain layer cancels out, and the semiconductor substrate can have a highly controlled shape in the semiconductor device. For example, a semiconductor substrate having an epitaxial film or the like formed on the front surface can be made flatter, and the defect density such as dislocations in the formed film can be reduced to improve the film quality.
上記おもて面が凹となる反りは、例えば凹の深さが凡そ0.5μm以上であることが適当であり、好ましくは凡そ1μm以上、より好ましくは凡そ3μm以上、さらに好ましくは凡そ5μm以上であり、例えば凡そ6μm以上であってもよく、凡そ8μm以上であってもよい。また、上記凹の深さの上限は、通常は50μm未満であり、凡そ20μm以下(例えば20μm未満)であることが適当であり、好ましくは凡そ15μm以下、より好ましくは凡そ12μm以下であり、例えば凡そ10μm以下であってもよく、凡そ8μm以下であってもよく、凡そ6μm以下であってもよい。このような反りを有する半導体基板は、所定厚さ(例えば凡そ5~50μm厚、典型的には凡そ10~30μm厚)のエピタキシャル膜がおもて面に形成されるような典型的な半導体デバイスにおいて好適である。
The warpage that makes the front surface concave is suitably, for example, that the depth of the concave is about 0.5 μm or more, preferably about 1 μm or more, more preferably about 3 μm or more, and even more preferably about 5 μm or more. For example, it may be about 6 μm or more, or about 8 μm or more. The upper limit of the depth of the recess is usually less than 50 μm, suitably about 20 μm or less (for example, less than 20 μm), preferably about 15 μm or less, more preferably about 12 μm or less, It may be about 10 μm or less, about 8 μm or less, or about 6 μm or less. A semiconductor substrate having such a warp is a typical semiconductor device in which an epitaxial film having a predetermined thickness (for example, approximately 5 to 50 μm, typically approximately 10 to 30 μm) is formed on the front surface. Is preferable.
半導体基板のおもて面の反りは、例えば、SEMI(Semiconductor equipment and materials international)規格におけるGBIR(Global backside ideal range)として評価され得る。GBIRは、ウェーハの裏面を平坦なチャック面に全面吸着させ、該裏面を基準面として、ウェーハの全面について上記基準面からの高さを測定し、最高高さから最低高さまでの距離を表したものである。GBIRは、公知の表面形状測定器を用いて測定することができる。例えば、東京精密社製の表面形状測定機「SURFCOM 1500DX」を用いることができる。具体的には、後述の実施例に記載の方法で測定することができる。
The warpage of the front surface of the semiconductor substrate can be evaluated as, for example, GBIR (Global backside ideal range) in the SEMI (Semiconductor equipment and materials international) standard. The GBIR adsorbs the entire back surface of the wafer onto a flat chuck surface, and measures the height from the reference surface with respect to the entire surface of the wafer using the back surface as a reference surface, and expresses the distance from the highest height to the lowest height. Is. GBIR can be measured using a known surface shape measuring instrument. For example, a surface shape measuring machine “SURFCOM 1500DX” manufactured by Tokyo Seimitsu Co., Ltd. can be used. Specifically, it can measure by the method as described in the below-mentioned Example.
≪半導体基板の製造方法≫
<加工対象物>
次に、ここに開示される半導体基板の製造方法について説明する。この製造方法では、まず加工対象物を用意する。特に限定するものではないが、加工対象物としては、半導体材料のインゴットをスライス等の手法により切り出し、ウェーハ状としたものが用いられる。加工対象物の構成材料としては、上述の半導体基板材料として例示したものを特に制限なく用いることができ、半導体基板材料の好適例が加工対象物の構成材料においても好適例となる。加工対象物の形状やサイズ(上面から見たときの形状やサイズ)は、製造される半導体基板と同様である。加工対象物の厚さは、製造される半導体基板の厚さが得られるよう適切に設定されるので、特定の範囲に限定されない。 ≪Semiconductor substrate manufacturing method≫
<Processing object>
Next, a method for manufacturing a semiconductor substrate disclosed herein will be described. In this manufacturing method, first, a workpiece is prepared. Although it does not specifically limit, what was cut out by methods, such as a slice, and made into the wafer form as an object to be processed as a processing target object is used. As the constituent material of the object to be processed, those exemplified as the above-mentioned semiconductor substrate material can be used without particular limitation, and a suitable example of the semiconductor substrate material is also a preferable example of the constituent material of the object to be processed. The shape and size of the object to be processed (the shape and size when viewed from above) are the same as those of the semiconductor substrate to be manufactured. The thickness of the workpiece is appropriately set so as to obtain the thickness of the semiconductor substrate to be manufactured, and is not limited to a specific range.
<加工対象物>
次に、ここに開示される半導体基板の製造方法について説明する。この製造方法では、まず加工対象物を用意する。特に限定するものではないが、加工対象物としては、半導体材料のインゴットをスライス等の手法により切り出し、ウェーハ状としたものが用いられる。加工対象物の構成材料としては、上述の半導体基板材料として例示したものを特に制限なく用いることができ、半導体基板材料の好適例が加工対象物の構成材料においても好適例となる。加工対象物の形状やサイズ(上面から見たときの形状やサイズ)は、製造される半導体基板と同様である。加工対象物の厚さは、製造される半導体基板の厚さが得られるよう適切に設定されるので、特定の範囲に限定されない。 ≪Semiconductor substrate manufacturing method≫
<Processing object>
Next, a method for manufacturing a semiconductor substrate disclosed herein will be described. In this manufacturing method, first, a workpiece is prepared. Although it does not specifically limit, what was cut out by methods, such as a slice, and made into the wafer form as an object to be processed as a processing target object is used. As the constituent material of the object to be processed, those exemplified as the above-mentioned semiconductor substrate material can be used without particular limitation, and a suitable example of the semiconductor substrate material is also a preferable example of the constituent material of the object to be processed. The shape and size of the object to be processed (the shape and size when viewed from above) are the same as those of the semiconductor substrate to be manufactured. The thickness of the workpiece is appropriately set so as to obtain the thickness of the semiconductor substrate to be manufactured, and is not limited to a specific range.
<裏面加工工程>
ここに開示される半導体基板の製造方法は、ウェーハ状の加工対象物の裏面を加工する裏面加工工程を含むことによって特徴づけられる。ここで、上記加工対象物の裏面は、製造される半導体基板の裏面となる面である。ここに開示される裏面加工工程は、特定の工程に限定されず、公知の表面加工処理技術を適宜選択し、製造される半導体基板の裏面に加工歪層が存在するように実施される。また、上記半導体基板のおもて面に加工歪層が存在する場合には、半導体基板おもて面の加工歪層の深さよりも大きい深さを有する加工歪層が存在するように裏面加工工程は実施される。具体的には、裏面加工工程は、製造された半導体基板のおもて面に設けられるエピタキシャル膜等の形成膜の材質、構造、厚さ等を考慮して実施される。また、裏面加工工程後に裏面に存在する加工歪層の深さは、製造された半導体基板のおもて面に生じ得る圧縮応力に基づいて決定されることが好ましい。そのような圧縮応力は、例えば、おもて面に設けられるエピタキシャル膜等の形成膜の材質、構造、厚さ等によって決定され得る。 <Backside processing process>
The semiconductor substrate manufacturing method disclosed herein is characterized by including a back surface processing step of processing the back surface of a wafer-like workpiece. Here, the back surface of the workpiece is a surface to be the back surface of the semiconductor substrate to be manufactured. The back surface processing step disclosed herein is not limited to a specific step, and a known surface processing technology is appropriately selected, and is performed so that a processing strain layer exists on the back surface of the manufactured semiconductor substrate. Further, when a processing strain layer exists on the front surface of the semiconductor substrate, the back surface processing is performed so that a processing strain layer having a depth larger than the depth of the processing strain layer on the front surface of the semiconductor substrate exists. The process is carried out. Specifically, the back surface processing step is performed in consideration of the material, structure, thickness, and the like of a formation film such as an epitaxial film provided on the front surface of the manufactured semiconductor substrate. Moreover, it is preferable that the depth of the processing strain layer existing on the back surface after the back surface processing step is determined based on the compressive stress that can be generated on the front surface of the manufactured semiconductor substrate. Such compressive stress can be determined by, for example, the material, structure, thickness, and the like of a formed film such as an epitaxial film provided on the front surface.
ここに開示される半導体基板の製造方法は、ウェーハ状の加工対象物の裏面を加工する裏面加工工程を含むことによって特徴づけられる。ここで、上記加工対象物の裏面は、製造される半導体基板の裏面となる面である。ここに開示される裏面加工工程は、特定の工程に限定されず、公知の表面加工処理技術を適宜選択し、製造される半導体基板の裏面に加工歪層が存在するように実施される。また、上記半導体基板のおもて面に加工歪層が存在する場合には、半導体基板おもて面の加工歪層の深さよりも大きい深さを有する加工歪層が存在するように裏面加工工程は実施される。具体的には、裏面加工工程は、製造された半導体基板のおもて面に設けられるエピタキシャル膜等の形成膜の材質、構造、厚さ等を考慮して実施される。また、裏面加工工程後に裏面に存在する加工歪層の深さは、製造された半導体基板のおもて面に生じ得る圧縮応力に基づいて決定されることが好ましい。そのような圧縮応力は、例えば、おもて面に設けられるエピタキシャル膜等の形成膜の材質、構造、厚さ等によって決定され得る。 <Backside processing process>
The semiconductor substrate manufacturing method disclosed herein is characterized by including a back surface processing step of processing the back surface of a wafer-like workpiece. Here, the back surface of the workpiece is a surface to be the back surface of the semiconductor substrate to be manufactured. The back surface processing step disclosed herein is not limited to a specific step, and a known surface processing technology is appropriately selected, and is performed so that a processing strain layer exists on the back surface of the manufactured semiconductor substrate. Further, when a processing strain layer exists on the front surface of the semiconductor substrate, the back surface processing is performed so that a processing strain layer having a depth larger than the depth of the processing strain layer on the front surface of the semiconductor substrate exists. The process is carried out. Specifically, the back surface processing step is performed in consideration of the material, structure, thickness, and the like of a formation film such as an epitaxial film provided on the front surface of the manufactured semiconductor substrate. Moreover, it is preferable that the depth of the processing strain layer existing on the back surface after the back surface processing step is determined based on the compressive stress that can be generated on the front surface of the manufactured semiconductor substrate. Such compressive stress can be determined by, for example, the material, structure, thickness, and the like of a formed film such as an epitaxial film provided on the front surface.
裏面加工工程は、特に限定されず、研削工程、ラッピング工程、CMP工程等の研削または研磨工程であり得る。研削工程、ラッピング工程、CMP工程等は1工程を単独で実施してもよく、2以上の工程を組み合わせて実施することもできる。
The back surface processing step is not particularly limited, and may be a grinding or polishing step such as a grinding step, a lapping step, or a CMP step. The grinding step, the lapping step, the CMP step, etc. may be carried out by one step alone or in combination of two or more steps.
(裏面加工用砥粒)
裏面加工工程は、典型的には砥粒を用いる工程(例えば研削工程やラッピング工程、CMP工程)を含む。裏面加工工程で用いられる砥粒ABFの材質や性状は、特に制限されない。例えば、砥粒ABFは無機粒子、有機粒子および有機無機複合粒子のいずれかであり得る。例えば、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、酸化鉄粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、緑色炭化ケイ素(GC)粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩;等のいずれかから実質的に構成される砥粒が挙げられる。砥粒ABFは1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。なかでも、加工歪層形成性の点でダイヤモンド粒子が好ましい。 (Grit for back surface processing)
The back surface processing step typically includes a step using abrasive grains (for example, a grinding step, a lapping step, or a CMP step). The material and properties of the abrasive grains ABF used in the back surface processing step are not particularly limited. For example, the abrasive grains ABF can be any of inorganic particles, organic particles, and organic-inorganic composite particles. For example, silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, iron oxide particles and other oxide particles; silicon nitride particles, nitriding Consisting essentially of any of nitride particles such as boron particles; carbide particles such as silicon carbide particles, green silicon carbide (GC) particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; Abrasive grains to be used. Abrasive grain ABF may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, diamond particles are preferable from the viewpoint of forming a work strain layer.
裏面加工工程は、典型的には砥粒を用いる工程(例えば研削工程やラッピング工程、CMP工程)を含む。裏面加工工程で用いられる砥粒ABFの材質や性状は、特に制限されない。例えば、砥粒ABFは無機粒子、有機粒子および有機無機複合粒子のいずれかであり得る。例えば、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、酸化鉄粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、緑色炭化ケイ素(GC)粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩;等のいずれかから実質的に構成される砥粒が挙げられる。砥粒ABFは1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。なかでも、加工歪層形成性の点でダイヤモンド粒子が好ましい。 (Grit for back surface processing)
The back surface processing step typically includes a step using abrasive grains (for example, a grinding step, a lapping step, or a CMP step). The material and properties of the abrasive grains ABF used in the back surface processing step are not particularly limited. For example, the abrasive grains ABF can be any of inorganic particles, organic particles, and organic-inorganic composite particles. For example, silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, iron oxide particles and other oxide particles; silicon nitride particles, nitriding Consisting essentially of any of nitride particles such as boron particles; carbide particles such as silicon carbide particles, green silicon carbide (GC) particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; Abrasive grains to be used. Abrasive grain ABF may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, diamond particles are preferable from the viewpoint of forming a work strain layer.
なお、本明細書において、砥粒の組成について「実質的にXからなる」または「実質的にXから構成される」とは、当該砥粒に占めるXの割合(Xの純度)が、重量基準で90%以上(好ましくは95%以上、より好ましくは97%以上、さらに好ましくは98%以上、例えば99%以上)であることをいう。
In the present specification, regarding the composition of the abrasive grains, “substantially consisting of X” or “substantially consisting of X” means that the proportion of X in the abrasive grains (the purity of X) is weight. It is 90% or more on the basis (preferably 95% or more, more preferably 97% or more, further preferably 98% or more, for example 99% or more).
後述するおもて面加工工程が砥粒AFFを用いる態様において、裏面加工工程で用いられる砥粒ABFは、上記おもて面加工工程で用いられる砥粒AFFよりも高硬度であることが好ましい。これにより、裏面側の加工歪層の深さがおもて面側よりも大きい基板を好ましく製造することができる。砥粒ABFのビッカース硬度HBF(Hv)と砥粒AFFのビッカース硬度HFF(Hv)との差(HBF-HFF)は、特に限定されないが、例えば凡そ100Hv以上(例えば凡そ500Hv以上、典型的には凡そ700Hv以上)とすることが適当である。他の好ましい一態様では、上記差(HBF-HFF)は凡そ1000Hv以上(例えば凡そ1200Hv以上、典型的には凡そ1800Hv以上)であり、より好ましくは凡そ3000Hv以上(例えば凡そ3500Hv以上、典型的には凡そ4000Hv以上)である。上記差(HBF-HFF)の上限は特に限定されず、例えば凡そ10000Hv以下(例えば凡そ9000Hv以下)とすることが適当であり、裏面の表面平滑性等の観点から、好ましくは凡そ5000Hv以下(例えば凡そ4000Hv以下、典型的には凡そ3500Hv以下)、より好ましくは凡そ2000Hv以下(例えば凡そ1500Hv以下、典型的には凡そ1000Hv以下)である。
In embodiments where the front surface processing step to be described later using abrasive A FF, the abrasive A BF used in the rear surface processing step, it is higher hardness than the abrasive grains A FF used in the above front surface processing step It is preferable. Thereby, the board | substrate with which the depth of the process distortion layer of the back surface side is larger than the front surface side can be manufactured preferably. The difference between the abrasive grain A BF Vickers hardness H BF (Hv) and the abrasive grains A FF Vickers hardness H FF (Hv) (H BF -H FF) is not particularly limited, for example, approximately 100Hv or more (e.g., about 500Hv As described above, it is typically appropriate to set it to about 700 Hv or more. In another preferred embodiment, the difference (H BF −H FF ) is about 1000 Hv or more (eg, about 1200 Hv or more, typically about 1800 Hv or more), more preferably about 3000 Hv or more (eg, about 3500 Hv or more, typical Specifically, it is about 4000 Hv or more. The upper limit of the difference (H BF −H FF ) is not particularly limited. For example, it is suitably about 10000 Hv or less (for example, about 9000 Hv or less), and is preferably about 5000 Hv or less from the viewpoint of the surface smoothness of the back surface. (For example, about 4000 Hv or less, typically about 3500 Hv or less), more preferably about 2000 Hv or less (for example, about 1500 Hv or less, typically about 1000 Hv or less).
砥粒ABFの硬度は特に限定されない。裏面側の加工歪層の深さを好適な範囲に調節する観点から、砥粒ABFのビッカース硬度HBF(Hv)は、例えば凡そ1000Hv以上(例えば凡そ1200Hv以上、典型的には凡そ1500Hv以上)とすることが適当であり、好ましくは凡そ2000Hv以上(例えば凡そ2200Hv以上、典型的には凡そ2400Hv以上)、より好ましくは凡そ4000Hv以上である。また、上記ビッカース硬度HBF(Hv)は、例えば凡そ12000Hv以下(例えば凡そ10000Hv以下)とすることが適当であり、裏面の表面平滑性等の観点から、好ましくは凡そ5000Hv以下(例えば凡そ4000Hv以下、典型的には凡そ3000Hv以下)、より好ましくは凡そ2500Hv以下(例えば凡そ2000Hv以下、典型的には凡そ1700Hv以下)である。
なお、砥粒のビッカース硬度は、砥粒として用いられる材料につき、上記JIS R 1610:2003に基づいて測定した値とする。 The hardness of the abrasive grains ABF is not particularly limited. From the viewpoint of adjusting the depth of the work strain layer on the back side to a suitable range, the Vickers hardness H BF (Hv) of the abrasive grains A BF is, for example, about 1000 Hv or more (for example, about 1200 Hv or more, typically about 1500 Hv or more. ), Preferably about 2000 Hv or more (for example, about 2200 Hv or more, typically about 2400 Hv or more), more preferably about 4000 Hv or more. The Vickers hardness H BF (Hv) is suitably about 12000 Hv or less (for example, about 10000 Hv or less), for example, and is preferably about 5000 Hv or less (for example, about 4000 Hv or less) from the viewpoint of the surface smoothness of the back surface. , Typically about 3000 Hv or less), more preferably about 2500 Hv or less (for example, about 2000 Hv or less, typically about 1700 Hv or less).
The Vickers hardness of the abrasive grains is a value measured based on JIS R 1610: 2003 for the material used as the abrasive grains.
なお、砥粒のビッカース硬度は、砥粒として用いられる材料につき、上記JIS R 1610:2003に基づいて測定した値とする。 The hardness of the abrasive grains ABF is not particularly limited. From the viewpoint of adjusting the depth of the work strain layer on the back side to a suitable range, the Vickers hardness H BF (Hv) of the abrasive grains A BF is, for example, about 1000 Hv or more (for example, about 1200 Hv or more, typically about 1500 Hv or more. ), Preferably about 2000 Hv or more (for example, about 2200 Hv or more, typically about 2400 Hv or more), more preferably about 4000 Hv or more. The Vickers hardness H BF (Hv) is suitably about 12000 Hv or less (for example, about 10000 Hv or less), for example, and is preferably about 5000 Hv or less (for example, about 4000 Hv or less) from the viewpoint of the surface smoothness of the back surface. , Typically about 3000 Hv or less), more preferably about 2500 Hv or less (for example, about 2000 Hv or less, typically about 1700 Hv or less).
The Vickers hardness of the abrasive grains is a value measured based on JIS R 1610: 2003 for the material used as the abrasive grains.
後述するおもて面加工工程が砥粒AFFを用いる態様において、裏面加工工程で用いられる砥粒ABFは、おもて面加工工程で用いられる砥粒AFFよりも粒子径が大きい。これにより、裏面側の加工歪層の深さがおもて面側よりも大きい基板を好ましく製造することができる。このような態様において、砥粒AFFの粒子径PFFに対する砥粒ABFの粒子径PBFの比(PBF/PFF)は1よりも大きいことが適当である。好ましい一態様では、比(PBF/PFF)は凡そ2以上であり、凡そ3以上(例えば凡そ4以上)であってもよく、凡そ5以上であってもよく、凡そ8以上(例えば凡そ9以上)であってもよく、凡そ20以上(例えば25以上)であってもよい。上記比(PBF/PFF)の上限は特に限定されず、凡そ100以下(例えば50以下)であってもよく、凡そ30以下であってもよく、凡そ15以下であってもよく、凡そ10以下(例えば凡そ5以下)であってもよい。
In embodiments where the front surface processing step to be described later using abrasive A FF, abrasives A BF used in the back surface processing step, larger particle size than the abrasive grain A FF used in the front surface processing step. Thereby, the board | substrate with which the depth of the process distortion layer of the back surface side is larger than the front surface side can be manufactured preferably. In such embodiments, abrasive A FF abrasive A BF particle size P BF ratio (P BF / P FF) of relative particle size P FF of is suitably greater than 1. In a preferred embodiment, the ratio (P BF / P FF ) is about 2 or more, about 3 or more (for example, about 4 or more), about 5 or more, or about 8 or more (for example, about 9 or more), or about 20 or more (for example, 25 or more). The upper limit of the ratio (P BF / P FF ) is not particularly limited, and may be about 100 or less (for example, 50 or less), about 30 or less, about 15 or less, and about It may be 10 or less (for example, approximately 5 or less).
砥粒ABFの粒子径PBFは特に限定されない。裏面側の加工歪層の深さを好適な範囲に調節する観点から、砥粒ABFの粒子径PBFは凡そ0.05μm以上とすることが適当であり、好ましくは凡そ0.2μm以上、より好ましくは凡そ0.3μm以上であり、例えば凡そ0.4μm以上であってもよい。他の好ましい一態様では、砥粒ABFの粒子径PBFは凡そ0.8μm以上であり、より好ましくは凡そ2μm以上、さらに好ましくは凡そ2.5μm以上である。また、砥粒ABFの粒子径PBFの上限は特に限定されず、凡そ10μm以下とすることが適当であり、好ましくは凡そ5μm以下である。他の好ましい一態様では、砥粒ABFの粒子径PBFは凡そ2μm以下であり、より好ましくは凡そ1.5μm以下、さらに好ましくは凡そ1.2μm以下である。さらに他の好ましい一態様では、砥粒ABFの粒子径PBFは凡そ0.7μm以下であり、より好ましくは凡そ0.5μm以下、さらに好ましくは凡そ0.3μm以下である。
なお、ここでいう砥粒ABFの粒子径PBFは、後述する各方法で測定することができる。砥粒ABFが一次および二次粒子径を有する場合は二次粒子径の値を粒子径PBFとする。 The particle diameter PBF of the abrasive grain ABF is not particularly limited. From the viewpoint of adjusting the depth of the working strain layer on the back side to a suitable range, the particle diameter P BF of the abrasive grains A BF is suitably about 0.05 μm or more, preferably about 0.2 μm or more, More preferably, it is about 0.3 μm or more, for example, about 0.4 μm or more. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.8 μm or more, more preferably about 2 μm or more, and further preferably about 2.5 μm or more. Further, the upper limit of the particle diameter P BF of the abrasive grains A BF is not particularly limited, and is suitably about 10 μm or less, preferably about 5 μm or less. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 2 μm or less, more preferably about 1.5 μm or less, and still more preferably about 1.2 μm or less. In still another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.7 μm or less, more preferably about 0.5 μm or less, and still more preferably about 0.3 μm or less.
The particle size P BF abrasive A BF referred to herein, can be measured in each of the methods described below. When the abrasive grains ABF have primary and secondary particle diameters, the secondary particle diameter value is defined as the particle diameter PBF .
なお、ここでいう砥粒ABFの粒子径PBFは、後述する各方法で測定することができる。砥粒ABFが一次および二次粒子径を有する場合は二次粒子径の値を粒子径PBFとする。 The particle diameter PBF of the abrasive grain ABF is not particularly limited. From the viewpoint of adjusting the depth of the working strain layer on the back side to a suitable range, the particle diameter P BF of the abrasive grains A BF is suitably about 0.05 μm or more, preferably about 0.2 μm or more, More preferably, it is about 0.3 μm or more, for example, about 0.4 μm or more. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.8 μm or more, more preferably about 2 μm or more, and further preferably about 2.5 μm or more. Further, the upper limit of the particle diameter P BF of the abrasive grains A BF is not particularly limited, and is suitably about 10 μm or less, preferably about 5 μm or less. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 2 μm or less, more preferably about 1.5 μm or less, and still more preferably about 1.2 μm or less. In still another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.7 μm or less, more preferably about 0.5 μm or less, and still more preferably about 0.3 μm or less.
The particle size P BF abrasive A BF referred to herein, can be measured in each of the methods described below. When the abrasive grains ABF have primary and secondary particle diameters, the secondary particle diameter value is defined as the particle diameter PBF .
(研削工程)
好ましい一態様に係る裏面加工工程は研削工程を含む。本明細書において「研削工程」とは、定盤に固定砥粒を配置し、該固定砥粒を加工対象物表面に押し当てて行う工程をいう。固定砥粒は、通常、砥粒粒子がビトリファイドやレジノイド等の結合材で固められた凝集体であり、研削用砥石とも称される。砥粒は通常、結合材中に分散固定されている。また、本工程で使用される定盤としては、公知ないし慣用のものを用いることができる。研削工程は、必要に応じて水溶液からなる加工液を供給しながら実施される。 (Grinding process)
The back surface processing step according to a preferred embodiment includes a grinding step. In this specification, the “grinding step” refers to a step of placing fixed abrasive grains on a surface plate and pressing the fixed abrasive grains against the surface of the workpiece. Fixed abrasive grains are usually aggregates in which abrasive grains are hardened with a binder such as vitrified or resinoid, and are also called grinding wheels. Abrasive grains are usually dispersed and fixed in a binder. Moreover, as a surface plate used at this process, a well-known thru | or usual thing can be used. The grinding process is carried out while supplying a working fluid comprising an aqueous solution as necessary.
好ましい一態様に係る裏面加工工程は研削工程を含む。本明細書において「研削工程」とは、定盤に固定砥粒を配置し、該固定砥粒を加工対象物表面に押し当てて行う工程をいう。固定砥粒は、通常、砥粒粒子がビトリファイドやレジノイド等の結合材で固められた凝集体であり、研削用砥石とも称される。砥粒は通常、結合材中に分散固定されている。また、本工程で使用される定盤としては、公知ないし慣用のものを用いることができる。研削工程は、必要に応じて水溶液からなる加工液を供給しながら実施される。 (Grinding process)
The back surface processing step according to a preferred embodiment includes a grinding step. In this specification, the “grinding step” refers to a step of placing fixed abrasive grains on a surface plate and pressing the fixed abrasive grains against the surface of the workpiece. Fixed abrasive grains are usually aggregates in which abrasive grains are hardened with a binder such as vitrified or resinoid, and are also called grinding wheels. Abrasive grains are usually dispersed and fixed in a binder. Moreover, as a surface plate used at this process, a well-known thru | or usual thing can be used. The grinding process is carried out while supplying a working fluid comprising an aqueous solution as necessary.
研削工程に用いられる砥粒ABFとしては、上記で例示した裏面加工用砥粒種の1種または2種以上が挙げられる。研削工程に用いられる砥粒ABFの好適例としてはダイヤモンド粒子が挙げられる。また、固定砥粒中の砥粒ABFの含有率は特に限定されず、技術常識に基づき適当な範囲が採用される。なお、ダイヤモンドホイール等の研削用砥石を用いる研削をホイール研削ということがある。
Examples of the abrasive grains ABF used in the grinding step include one or more of the above-described abrasive grains for back surface processing. A diamond particle is mentioned as a suitable example of the abrasive grain ABF used for a grinding process. The content of the abrasive A BF in fixed abrasive is not particularly limited, an appropriate range is adopted on the basis of common general knowledge. Note that grinding using a grinding wheel such as a diamond wheel may be referred to as wheel grinding.
研削工程で用いられる砥粒ABFの粒子径PBFは特に限定されない。裏面側の加工歪層の深さを好適な範囲に調節する観点から、この工程で用いられる砥粒ABFの粒子径PBFは凡そ0.1μm以上とすることが適当である。好ましい一態様では、砥粒ABFの粒子径PBFは凡そ0.2μm以上であり、例えば凡そ0.3μm以上であってもよい。他の好ましい一態様では、砥粒ABFの粒子径PBFは凡そ0.8μm以上であり、例えば凡そ2μm以上であってもよく、凡そ2.5μm以上であってもよい。また、砥粒ABFの粒子径PBFの上限は特に限定されず、凡そ10μm以下とすることが適当であり、好ましくは凡そ5μm以下である。他の好ましい一態様では、砥粒ABFの粒子径PBFは凡そ2μm以下であり、より好ましくは凡そ1μm以下、さらに好ましくは凡そ0.7μm以下である。
Particle size P BF abrasive A BF used in the grinding step is not particularly limited. From the viewpoint of adjusting the depth of the working strain layer on the back side to a suitable range, it is appropriate that the particle diameter P BF of the abrasive grains ABF used in this step is about 0.1 μm or more. In a preferred embodiment, the particle diameter P BF of the abrasive grains A BF is about 0.2 μm or more, for example, about 0.3 μm or more. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.8 μm or more, for example, about 2 μm or more, or about 2.5 μm or more. Further, the upper limit of the particle diameter P BF of the abrasive grains A BF is not particularly limited, and is suitably about 10 μm or less, preferably about 5 μm or less. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 2 μm or less, more preferably about 1 μm or less, and still more preferably about 0.7 μm or less.
研削工程で用いられる砥粒の粒子径は、電気抵抗試験法(JIS R6002)に基づく平均粒子径である。上記平均粒子径は、例えばベックマンコールター社製の「マルチサイザーIII」を用いて求めることができる。
The particle diameter of the abrasive grains used in the grinding process is an average particle diameter based on the electrical resistance test method (JIS R6002). The average particle diameter can be determined using, for example, “Multisizer III” manufactured by Beckman Coulter.
なお、裏面加工工程が、研削工程を含む複数の加工工程から構成される場合、研削工程は裏面加工工程の最終工程であり得る。その場合、裏面加工工程において上記研削工程よりも後に加工工程は存在しない。
In addition, when the back surface processing step is composed of a plurality of processing steps including a grinding step, the grinding step can be the final step of the back surface processing step. In that case, there is no processing step after the grinding step in the back surface processing step.
(ラッピング工程)
好ましい一態様に係る裏面加工工程はラッピング工程を含む。本明細書において「ラッピング工程」とは、対向する研磨定盤間に研磨対象物を保持したキャリア(キャリアプレートともいう。)を配し、上記研磨定盤およびキャリアの少なくとも一方を回転させて行う加工工程をいう。上記研磨定盤および/またはキャリアの回転は、両者が相対的に回転移動するように行われる。ラッピング工程は、典型的には、研磨定盤と加工対象物との間に遊離砥粒(例えばダイヤモンド粒子)を供給して行われる。遊離砥粒は、通常、研磨スラリーと称される水等の溶媒を含む液状の組成物の形態で加工対象物に供給される。ラッピング工程では研磨パッドは使用しない。 (Lapping process)
The back surface processing step according to a preferred embodiment includes a lapping step. In this specification, the “lapping step” is performed by arranging a carrier (also referred to as a carrier plate) holding an object to be polished between opposing polishing surface plates and rotating at least one of the polishing surface plate and the carrier. A processing process. The polishing surface plate and / or the carrier is rotated so that both of them rotate relatively. The lapping step is typically performed by supplying loose abrasive grains (for example, diamond particles) between the polishing surface plate and the workpiece. The loose abrasive grains are usually supplied to the object to be processed in the form of a liquid composition containing a solvent such as water called a polishing slurry. A polishing pad is not used in the lapping process.
好ましい一態様に係る裏面加工工程はラッピング工程を含む。本明細書において「ラッピング工程」とは、対向する研磨定盤間に研磨対象物を保持したキャリア(キャリアプレートともいう。)を配し、上記研磨定盤およびキャリアの少なくとも一方を回転させて行う加工工程をいう。上記研磨定盤および/またはキャリアの回転は、両者が相対的に回転移動するように行われる。ラッピング工程は、典型的には、研磨定盤と加工対象物との間に遊離砥粒(例えばダイヤモンド粒子)を供給して行われる。遊離砥粒は、通常、研磨スラリーと称される水等の溶媒を含む液状の組成物の形態で加工対象物に供給される。ラッピング工程では研磨パッドは使用しない。 (Lapping process)
The back surface processing step according to a preferred embodiment includes a lapping step. In this specification, the “lapping step” is performed by arranging a carrier (also referred to as a carrier plate) holding an object to be polished between opposing polishing surface plates and rotating at least one of the polishing surface plate and the carrier. A processing process. The polishing surface plate and / or the carrier is rotated so that both of them rotate relatively. The lapping step is typically performed by supplying loose abrasive grains (for example, diamond particles) between the polishing surface plate and the workpiece. The loose abrasive grains are usually supplied to the object to be processed in the form of a liquid composition containing a solvent such as water called a polishing slurry. A polishing pad is not used in the lapping process.
ここに開示されるラッピング工程で用いられる研磨定盤は、通常は金属製である。ラッピングに使用される研磨定盤には、定盤面(加工対象物に対向する表面)の精度維持のため、加工がされやすい性質が求められる。このため、少なくとも上記定盤面が例えば鋳鉄、錫、錫合金、銅または銅合金等の金属からなる研磨定盤が好適に使用される。研磨定盤としては、研磨用組成物の安定供給や加工圧の調整を目的に、定盤面に溝が付けられたものが用いられることがある。溝の形状や深さは任意であり、例えば格子状や放射状に溝が刻まれたものを使用し得る。
The polishing surface plate used in the lapping process disclosed here is usually made of metal. The polishing surface plate used for lapping is required to be easily processed to maintain the accuracy of the surface surface (surface facing the object to be processed). For this reason, a polishing surface plate in which at least the surface plate surface is made of a metal such as cast iron, tin, tin alloy, copper or copper alloy is preferably used. As the polishing platen, a plate having a groove on the surface of the platen may be used for the purpose of stably supplying the polishing composition and adjusting the processing pressure. The shape and depth of the groove are arbitrary, and for example, a groove in which a groove is engraved in a lattice shape or a radial shape can be used.
ラッピング工程に用いられる砥粒ABFとしては、上記で例示した裏面加工用砥粒種の1種または2種以上が挙げられる。この工程に用いられる砥粒ABFの好適例としてはダイヤモンド粒子が挙げられる。ラッピング用組成物における砥粒ABFの含有量は特に限定されず、技術常識に基づき適当な範囲が採用される。例えば、ラッピング用組成物における砥粒ABFの含有量は、凡そ1重量%以上が適当であり、好ましくは凡そ5重量%以上であり、また凡そ50重量%以下が適当であり、好ましくは凡そ30重量%以下である。
As the abrasive grains ABF used in the lapping step, one or more kinds of the abrasive grains for backside processing exemplified above may be mentioned. A diamond particle is mentioned as a suitable example of the abrasive grain ABF used for this process. The content of the abrasive grains ABF in the wrapping composition is not particularly limited, and an appropriate range is adopted based on common technical knowledge. For example, the content of abrasive grains ABF in the wrapping composition is suitably about 1% by weight or more, preferably about 5% by weight or more, and about 50% by weight or less, preferably about 30% by weight or less.
ラッピング工程で用いられる砥粒ABFの粒子径PBFは特に限定されない。裏面側の加工歪層の深さを好適な範囲に調節する観点から、この工程で用いられる砥粒ABFの粒子径PBFは凡そ0.1μm以上とすることが適当であり、好ましくは凡そ0.2μm以上である。他の好ましい一態様では、砥粒ABFの粒子径PBFは凡そ0.8μm以上であり、例えば凡そ2μm以上であってもよく、凡そ2.5μm以上であってもよい。また、砥粒ABFの粒子径PBFの上限は特に限定されず、凡そ10μm以下とすることが適当であり、好ましくは凡そ5μm以下、より好ましくは凡そ2μm以下、さらに好ましくは凡そ1.2μm以下である。他の好ましい一態様では、砥粒ABFの粒子径PBFは凡そ2μm以下であり、より好ましくは凡そ0.3μm以下である。ラッピング工程で用いられる砥粒の粒子径は、上記研削工程で用いられる砥粒の粒子径と同様の方法で測定することができる。後述の実施例についても同様である。
Particle size P BF abrasive A BF used in the lapping process is not particularly limited. From the viewpoint of adjusting the depth of the working strain layer on the back side to a suitable range, the particle diameter P BF of the abrasive grains ABF used in this step is suitably about 0.1 μm or more, preferably about It is 0.2 μm or more. In another preferred embodiment, the particle diameter PBF of the abrasive grains ABF is about 0.8 μm or more, for example, about 2 μm or more, or about 2.5 μm or more. The upper limit of the particle diameter P BF of the abrasive grains A BF is not particularly limited and is suitably about 10 μm or less, preferably about 5 μm or less, more preferably about 2 μm or less, and further preferably about 1.2 μm. It is as follows. In another preferred embodiment, the particle size P BF abrasive A BF is at approximately 2μm or less, more preferably about 0.3μm or less. The particle diameter of the abrasive grains used in the lapping process can be measured by the same method as that of the abrasive grains used in the grinding process. The same applies to the embodiments described later.
なお、裏面加工工程が、ラッピング工程を含む複数の加工工程(例えば研削工程を含む複数の加工工程)から構成される場合、ラッピング工程は裏面加工工程の最終工程であり得る。その場合、裏面加工工程において上記ラッピング工程よりも後に加工工程は存在しない。
In addition, when the back surface processing step is composed of a plurality of processing steps including a lapping step (for example, a plurality of processing steps including a grinding step), the lapping step may be the final step of the back surface processing step. In that case, there is no processing step after the lapping step in the back surface processing step.
(CMP工程)
好ましい一態様に係る裏面加工工程はCMP工程を含む。本明細書において「化学的機械研磨(CMP)工程」とは、研磨パッドを用いて当該研磨パッドと加工対象物との間に研磨スラリーを供給して行う研磨(ポリシング)工程をいう。CMP工程を採用することにより、高品質な裏面が得られやすい。 (CMP process)
The back surface processing step according to a preferred embodiment includes a CMP step. In this specification, the “chemical mechanical polishing (CMP) process” refers to a polishing (polishing) process performed by supplying a polishing slurry between the polishing pad and a workpiece using a polishing pad. By adopting the CMP process, a high-quality back surface is easily obtained.
好ましい一態様に係る裏面加工工程はCMP工程を含む。本明細書において「化学的機械研磨(CMP)工程」とは、研磨パッドを用いて当該研磨パッドと加工対象物との間に研磨スラリーを供給して行う研磨(ポリシング)工程をいう。CMP工程を採用することにより、高品質な裏面が得られやすい。 (CMP process)
The back surface processing step according to a preferred embodiment includes a CMP step. In this specification, the “chemical mechanical polishing (CMP) process” refers to a polishing (polishing) process performed by supplying a polishing slurry between the polishing pad and a workpiece using a polishing pad. By adopting the CMP process, a high-quality back surface is easily obtained.
上記CMP工程は、好ましくは、後述するような研磨用組成物から構成される研磨スラリー(研磨液ともいう。)を加工対象物表面に供給して実施される。具体的には、上記研磨液を加工対象物表面に供給し、常法により研磨する。例えば、一般的な研磨装置に加工対象物をセットし、該研磨装置の研磨パッドを通じて該加工対象物の表面(研磨対象面)に上記研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、加工対象物の裏面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。
The CMP step is preferably performed by supplying a polishing slurry (also referred to as a polishing liquid) composed of a polishing composition as described later to the surface of the workpiece. Specifically, the polishing liquid is supplied to the surface of the object to be processed and polished by a conventional method. For example, an object to be processed is set in a general polishing apparatus, and the polishing liquid is supplied to the surface (surface to be polished) of the object to be processed through a polishing pad of the polishing apparatus. Typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the back surface of the workpiece and the two are relatively moved (for example, rotated).
(裏面研磨用組成物)
ここに開示される裏面研磨用組成物は、特定の組成に限定されず、裏面研磨用組成物を用いて実施する裏面加工工程を経た裏面に加工歪層を存在させ得る組成、あるいは、おもて面に加工歪層が存在する場合には、おもて面の加工歪層深さよりも大きい深さを有する加工歪層を裏面に存在させ得る組成が採用される。そのような裏面研磨用組成物は、例えば、砥粒ABFと、水等の溶媒と、を含み、さらに酸化剤等の研磨助剤CBFを含み得る。 (Back polishing composition)
The backside polishing composition disclosed herein is not limited to a specific composition, and may be a composition that can have a working strain layer on the backside that has undergone a backside processing step that is performed using the backside polishing composition, or In the case where a working strain layer is present on the front surface, a composition that allows a working strain layer having a depth larger than the processing strain layer depth of the front surface to be present on the back surface is employed. Such a backside polishing composition contains, for example, abrasive grains ABF and a solvent such as water, and may further contain a polishing aid CBF such as an oxidizing agent.
ここに開示される裏面研磨用組成物は、特定の組成に限定されず、裏面研磨用組成物を用いて実施する裏面加工工程を経た裏面に加工歪層を存在させ得る組成、あるいは、おもて面に加工歪層が存在する場合には、おもて面の加工歪層深さよりも大きい深さを有する加工歪層を裏面に存在させ得る組成が採用される。そのような裏面研磨用組成物は、例えば、砥粒ABFと、水等の溶媒と、を含み、さらに酸化剤等の研磨助剤CBFを含み得る。 (Back polishing composition)
The backside polishing composition disclosed herein is not limited to a specific composition, and may be a composition that can have a working strain layer on the backside that has undergone a backside processing step that is performed using the backside polishing composition, or In the case where a working strain layer is present on the front surface, a composition that allows a working strain layer having a depth larger than the processing strain layer depth of the front surface to be present on the back surface is employed. Such a backside polishing composition contains, for example, abrasive grains ABF and a solvent such as water, and may further contain a polishing aid CBF such as an oxidizing agent.
裏面のCMP工程用の砥粒ABFとしては、上記で例示した裏面加工用砥粒種の1種または2種以上を用いることができる。この工程に用いられる砥粒ABFの好適例としてはアルミナ粒子が挙げられる。アルミナ粒子は1種を単独で使用してもよく、2種以上を組み合わせて用いてもよい。加工性の観点から、アルミナ粒子はα-アルミナを含むことが好ましく、α-アルミナを主成分(構成成分中、最も多く含まれる成分)として含むことがより好ましい。他の好ましい一態様では、砥粒ABFとしてGCが用いられる。
As the abrasive grains ABF for the back surface CMP process, one or more of the above-described back surface processing abrasive grains types can be used. A preferable example of the abrasive grains ABF used in this step is alumina particles. Alumina particles may be used alone or in combination of two or more. From the viewpoint of workability, the alumina particles preferably contain α-alumina, and more preferably contain α-alumina as a main component (a component that is contained most in the constituent components). In another preferred embodiment, GC is used as the abrasive grains ABF .
裏面研磨用組成物に含まれる砥粒ABFとしては、その平均二次粒子径が0.01μmよりも大きいものを好ましく採用することができる。研磨効率等の観点から、砥粒ABFの平均二次粒子径は、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上、特に好ましくは0.3μm以上である。上記平均二次粒子径を有する砥粒ABFを用いることによって、裏面の加工歪層深さを好適な範囲に調節しやすい。砥粒ABFの平均二次粒子径の上限は特に限定されず、概ね5μm以下にすることが適当である。例えば、研磨効率および表面品質の観点から、平均二次粒子径が0.05μm以上5μm以下の砥粒ABFが好ましく、0.1μm以上3μm以下の砥粒ABFが好ましく、0.3μm以上1μm以下の砥粒ABFが特に好ましい。例えば、平均二次粒子径が0.4μm以上0.8μm以下の砥粒ABFであってもよい。
As the abrasive grains ABF contained in the backside polishing composition, those having an average secondary particle diameter larger than 0.01 μm can be preferably employed. From the viewpoint of polishing efficiency and the like, the average secondary particle diameter of the abrasive grains ABF is preferably 0.05 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, and particularly preferably 0.3 μm or more. is there. By using the abrasive grains ABF having the average secondary particle diameter, it is easy to adjust the processing strain layer depth on the back surface within a suitable range. The upper limit of the average secondary particle diameter of the abrasive grains ABF is not particularly limited, and is suitably about 5 μm or less. For example, the polishing efficiency and in terms of surface quality, an average secondary particle size preferably 5μm or less of the abrasive A BF than 0.05 .mu.m, preferably 3μm or less of the abrasive A BF least 0.1 [mu] m, 0.3 [mu] m or more 1μm The following abrasive grains ABF are particularly preferred. For example, an average secondary particle diameter may be less abrasive A BF 0.4 .mu.m or 0.8 [mu] m.
なお、CMP工程に用いられる砥粒ABFの平均二次粒子径は、特記しない限り、レーザー回析散乱法に基づき測定される。測定は、堀場製作所製のレーザー回析/散乱式粒度分布測定装置(商品名「LA‐950」)を用いて行うことができる。
The average secondary particle size of the abrasive grains A BF used in the CMP process, unless otherwise stated, are measured based on a laser diffraction scattering method. The measurement can be performed using a laser diffraction / scattering particle size distribution measuring apparatus (trade name “LA-950”) manufactured by Horiba.
裏面研磨用組成物における砥粒ABFの含有量(複数種類の砥粒を含む場合には、それらの合計含有量)は、特に制限はないが、典型的には0.1重量%以上であり、加工時間短縮の観点から、0.5重量%以上であることが好ましく、1重量%以上であることがより好ましく、3重量%以上であることがさらに好ましい。所定量以上の砥粒ABFを含むことによって、裏面の加工歪層深さを好適な範囲に調節しやすい。研磨の安定性およびコスト低減等の観点から、通常、砥粒ABFの含有量は、20重量%以下が適当であり、好ましくは15重量%以下、より好ましくは12重量%以下、さらに好ましくは10重量%以下である。ここに開示される技術は、例えば裏面研磨用組成物における砥粒ABFの含有量が0.1重量%以上20重量%以下(好ましくは3重量%以上8重量%以下)である態様で好ましく実施され得る。
The content of the abrasive grains ABF in the back-side polishing composition (when multiple types of abrasive grains are included, the total content thereof) is not particularly limited, but is typically 0.1% by weight or more. In view of shortening the processing time, it is preferably 0.5% by weight or more, more preferably 1% by weight or more, and further preferably 3% by weight or more. By including a predetermined amount or more of abrasive grains ABF , it is easy to adjust the depth of the processed strain layer on the back surface within a suitable range. From the viewpoint of polishing stability and cost reduction, the content of abrasive grains ABF is usually 20% by weight or less, preferably 15% by weight or less, more preferably 12% by weight or less, and still more preferably. 10% by weight or less. The technique disclosed here is preferable in an embodiment in which the content of abrasive grains ABF in the backside polishing composition is, for example, 0.1 wt% or more and 20 wt% or less (preferably 3 wt% or more and 8 wt% or less). Can be implemented.
ここに開示される裏面研磨用組成物は研磨助剤(典型的には酸化剤)CBFを含むことが好ましい。研磨助剤CBFは、ポリシングによる効果を増進する成分であり、典型的には水溶性のものが用いられる。研磨助剤CBFは、特に限定的に解釈されるものではないが、ポリシングにおいて加工対象物表面を変質(例えば酸化変質)する作用を示し、加工対象物表面の脆弱化をもたらすことで、砥粒ABFによる研磨に寄与していると考えられる。
The backside polishing composition disclosed herein preferably contains a polishing aid (typically an oxidizing agent) CBF . The polishing aid CBF is a component that enhances the effect of polishing, and typically a water-soluble one is used. Although the polishing aid CBF is not particularly limited, the polishing aid CBF exhibits an action of altering the surface of the workpiece (for example, oxidative alteration) in polishing, thereby causing weakening of the surface of the workpiece. It is thought that it contributes to the polishing by the grain ABF .
研磨助剤CBFとしては、過酸化水素等の過酸化物;硝酸、その塩である硝酸鉄、硝酸銀、硝酸アルミニウム、その錯体である硝酸セリウムアンモニウム等の硝酸化合物;ペルオキソ一硫酸カリウム、ペルオキソ二硫酸等の過硫酸、その塩である過硫酸アンモニウム、過硫酸カリウム等の過硫酸化合物;塩素酸やその塩、過塩素酸、その塩である過塩素酸カリウム等の塩素化合物;臭素酸、その塩である臭素酸カリウム等の臭素化合物;ヨウ素酸、その塩であるヨウ素酸アンモニウム、過ヨウ素酸、その塩である過ヨウ素酸ナトリウム、過ヨウ素酸カリウム等のヨウ素化合物;鉄酸、その塩である鉄酸カリウム等の鉄酸類;過マンガン酸、その塩である過マンガン酸ナトリウム、過マンガン酸カリウム等の過マンガン酸類;クロム酸、その塩であるクロム酸カリウム、ニクロム酸カリウム等のクロム酸類;バナジン酸、その塩であるバナジン酸アンモニウム、バナジン酸ナトリウム、メタバナジン酸ナトリウム、バナジン酸カリウム等のバナジン酸類;過ルテニウム酸またはその塩等のルテニウム酸類;モリブデン酸、その塩であるモリブデン酸アンモニウム、モリブデン酸二ナトリウム等のモリブデン酸類;過レニウムまたはその塩等のレニウム酸類;タングステン酸、その塩であるタングステン酸二ナトリウム等のタングステン酸類;が挙げられる。これらは1種を単独で用いてもよく2種以上を適宜組み合わせて用いてもよい。なかでも、研磨効率等の観点から、過マンガン酸またはその塩、過酸化物、バナジン酸またはその塩、過ヨウ素酸またはその塩が好ましく、過マンガン酸ナトリウム、過マンガン酸カリウムが特に好ましい。
The polishing aid CBF includes peroxides such as hydrogen peroxide; nitric acid, nitrates thereof such as iron nitrate, silver nitrate, aluminum nitrate, nitrate complexes such as cerium ammonium nitrate as complexes thereof; potassium peroxomonosulfate, peroxodioxide Persulfuric acid such as sulfuric acid, persulfuric acid compounds such as ammonium persulfate and potassium persulfate; chloric acid and salts thereof, perchloric acid and chlorine compounds such as potassium perchlorate as salts thereof; bromic acid and salts thereof Bromine compounds such as potassium bromate; iodine compounds such as iodic acid, its salts ammonium iodate, periodic acid, its salts such as sodium periodate, potassium periodate; iron acids, its salts Ferric acids such as potassium ferrate; permanganic acid, its salt, permanganate such as sodium permanganate, potassium permanganate; chromic acid, its salt Chromic acids such as potassium chromate and potassium dichromate; vanadic acid and its salts vanadate such as ammonium vanadate, sodium vanadate, sodium metavanadate and potassium vanadate; ruthenium such as perruthenic acid and its salts Molybdic acids such as molybdic acid and its salts ammonium molybdate and disodium molybdate; rhenic acids such as perrhenium and its salts; tungstic acids such as tungstic acid and its salt such as disodium tungstate; It is done. These may be used alone or in combination of two or more. Among these, from the viewpoint of polishing efficiency and the like, permanganic acid or a salt thereof, peroxide, vanadic acid or a salt thereof, periodic acid or a salt thereof is preferable, and sodium permanganate or potassium permanganate is particularly preferable.
好ましい一態様では、裏面研磨用組成物は、研磨助剤CBFとして複合金属酸化物を含む。上記複合金属酸化物としては、硝酸金属塩、鉄酸類、過マンガン酸類、クロム酸類、バナジン酸類、ルテニウム酸類、モリブデン酸類、レニウム酸類、タングステン酸類が挙げられる。なかでも、鉄酸類、過マンガン酸類、クロム酸類がより好ましく、過マンガン酸類がさらに好ましい。
In a preferred embodiment, the backside polishing composition contains a composite metal oxide as the polishing aid CBF . Examples of the composite metal oxide include nitrate metal salts, iron acids, permanganic acids, chromic acids, vanadic acids, ruthenium acids, molybdic acids, rhenic acids, and tungstic acids. Among these, iron acids, permanganic acids, and chromic acids are more preferable, and permanganic acids are more preferable.
さらに好ましい一態様では、上記複合金属酸化物として、1価または2価の金属元素(ただし、遷移金属元素を除く。)と、周期表の第4周期遷移金属元素と、を有する複合金属酸化物CMOが用いられる。上記1価または2価の金属元素(ただし、遷移金属元素を除く。)の好適例としては、Na、K、Mg、Caが挙げられる。なかでも、Na、Kがより好ましい。周期表の第4周期遷移金属元素の好適例としては、Fe、Mn、Cr、V、Tiが挙げられる。なかでも、Fe、Mn、Crがより好ましく、Mnがさらに好ましい。
In a more preferable embodiment, the composite metal oxide includes a monovalent or divalent metal element (excluding transition metal elements) and a fourth periodic transition metal element in the periodic table. CMO is used. Preferred examples of the monovalent or divalent metal element (excluding transition metal elements) include Na, K, Mg, and Ca. Of these, Na and K are more preferable. Preferable examples of the fourth periodic transition metal element in the periodic table include Fe, Mn, Cr, V, and Ti. Among these, Fe, Mn, and Cr are more preferable, and Mn is more preferable.
ここに開示される裏面研磨用組成物が、研磨助剤CBFとして複合金属酸化物(好ましくは複合金属酸化物CMO)を含む場合、複合金属酸化物以外の研磨助剤CBFをさらに含んでもよく、含まなくてもよい。ここに開示される技術は、裏面研磨用組成物が研磨助剤CBFとして複合金属酸化物(好ましくは複合金属酸化物CMO)以外の研磨助剤(例えば過酸化水素)CBFを実質的に含まない態様でも好ましく実施され得る。
Backside polishing composition disclosed herein is, when the composite metal oxide as a grinding aid C BF (preferably the composite metal oxide CMO) containing, further comprise a grinding aid C BF except complex metal oxide Well, it does not have to be included. Techniques disclosed herein for the back polishing composition composite metal oxide as a grinding aid C BF (preferably a composite metal oxide CMO) other than the grinding aid (for example, hydrogen peroxide) C BF a substantially An embodiment that does not include it can also be preferably implemented.
裏面研磨用組成物における研磨助剤CBFの濃度(含有量)は、通常は0.1重量%以上とすることが適当である。研磨レートと平坦性とを高度にかつ効率的に両立する観点から、上記濃度は0.3重量%以上が好ましく、0.5重量%以上(例えば0.8重量%以上)がより好ましい。また、平滑性向上の観点から、上記研磨助剤CBFの濃度は、通常は10重量%以下とすることが適当であり、8重量%以下とすることが好ましく、6重量%以下(例えば5重量%以下、あるいは3重量%以下)とすることがより好ましい。
The concentration (content) of the polishing aid CBF in the backside polishing composition is usually suitably 0.1% by weight or more. The concentration is preferably 0.3% by weight or more, more preferably 0.5% by weight or more (eg, 0.8% by weight or more) from the viewpoint of achieving both a polishing rate and flatness at a high level and efficiency. From the viewpoint of improving smoothness, the concentration of the polishing aid CBF is usually suitably 10% by weight or less, preferably 8% by weight or less, and preferably 6% by weight or less (for example, 5%). It is more preferable that the content be less than or equal to 3% by weight.
ここに開示される裏面研磨用組成物は、ここに開示される技術による効果を損なわない範囲で、キレート剤、増粘剤、分散剤、表面保護剤、濡れ剤、pH調整剤、界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、防錆剤、防腐剤、防カビ剤等の、研磨用組成物(典型的には半導体基板研磨用組成物、例えば炭化ケイ素基板ポリシング用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。
The backside polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a surface protective agent, a wetting agent, a pH adjuster, and a surfactant as long as the effects of the technology disclosed herein are not impaired. , Organic acid, organic acid salt, inorganic acid, inorganic acid salt, rust preventive, preservative, antifungal agent, etc., polishing composition (typically for polishing a semiconductor substrate, eg, silicon carbide substrate polishing) You may further contain the well-known additive which can be used for a composition) as needed. The content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.
裏面研磨用組成物のpHは、通常は8.0~12程度とすることが適当である。裏面研磨用組成物のpHが上記範囲内であると、実用的な研磨レートが達成されやすく、取扱いも容易である。裏面研磨用組成物のpHは、好ましくは8.0~11、より好ましくは8.0~10、特に好ましくは8.5~9.5(例えば9.0程度)である。
The pH of the backside polishing composition is usually about 8.0-12. When the pH of the backside polishing composition is within the above range, a practical polishing rate is easily achieved and handling is easy. The pH of the backside polishing composition is preferably 8.0 to 11, more preferably 8.0 to 10, particularly preferably 8.5 to 9.5 (eg, about 9.0).
なお、裏面加工工程が、CMP工程を含む複数の加工工程(例えば研削工程やラッピング工程を含む複数の加工工程)から構成される場合、CMP工程は裏面加工工程の最終工程であり得る。その場合、裏面加工工程において上記CMP工程よりも後に加工工程は存在しない。
In addition, when the back surface processing step is composed of a plurality of processing steps including a CMP step (for example, a plurality of processing steps including a grinding step and a lapping step), the CMP step can be the final step of the back surface processing step. In that case, there is no processing step after the CMP step in the back surface processing step.
上記裏面加工工程を経た加工物(半導体基板であり得る。)の裏面には加工歪層が存在している。また、上記加工物のおもて面に加工歪層が存在する場合には、当該おもて面の加工歪層の深さよりも大きい深さを有する加工歪層が上記裏面に存在する。これによって、製造後や半導体デバイスにおける半導体基板形状を高度に制御することができる。また、裏面加工工程を経た加工物は、所定の表面粗さRaを有し得る。裏面加工工程を経た裏面に存在する加工歪層の深さ、当該裏面とおもて面との加工歪層深さの差、裏面のRaは、上述の半導体基板裏面の加工歪層の深さDBF、差(DBF-DFF)、裏面のRaと同様の値をとり得るので、重複する説明は省略する。
A processed strain layer exists on the back surface of the workpiece (which may be a semiconductor substrate) that has undergone the back surface processing step. When a work strain layer is present on the front surface of the workpiece, a work strain layer having a depth greater than the depth of the work strain layer on the front surface is present on the back surface. This makes it possible to highly control the shape of the semiconductor substrate after manufacturing and in the semiconductor device. In addition, the workpiece that has undergone the back surface processing step may have a predetermined surface roughness Ra. The depth of the processing strain layer existing on the back surface that has undergone the back processing step, the difference in processing strain layer depth between the back surface and the front surface, and Ra on the back surface are the depth D of the processing strain layer on the back surface of the semiconductor substrate described above. Since values similar to BF , difference (D BF -D FF ), and Ra on the back surface can be taken, overlapping description is omitted.
<おもて面加工工程>
ここに開示される半導体基板の製造方法は、典型的には、おもて面加工工程を含む。上記おもて面加工工程では、上記加工対象物のおもて面を加工する。ここで、加工対象物のおもて面は、製造される半導体基板のおもて面となる面である。おもて面加工工程は、典型的には、加工対象物のおもて面を平滑面とする工程であり、より具体的には、鏡面となるような高品質表面に仕上げる工程である。 <Front surface machining process>
The semiconductor substrate manufacturing method disclosed herein typically includes a front surface processing step. In the front surface processing step, the front surface of the processing object is processed. Here, the front surface of the object to be processed is a surface that becomes the front surface of the manufactured semiconductor substrate. The front surface processing step is typically a step of making the front surface of the object to be processed a smooth surface, and more specifically, a step of finishing to a high quality surface that becomes a mirror surface.
ここに開示される半導体基板の製造方法は、典型的には、おもて面加工工程を含む。上記おもて面加工工程では、上記加工対象物のおもて面を加工する。ここで、加工対象物のおもて面は、製造される半導体基板のおもて面となる面である。おもて面加工工程は、典型的には、加工対象物のおもて面を平滑面とする工程であり、より具体的には、鏡面となるような高品質表面に仕上げる工程である。 <Front surface machining process>
The semiconductor substrate manufacturing method disclosed herein typically includes a front surface processing step. In the front surface processing step, the front surface of the processing object is processed. Here, the front surface of the object to be processed is a surface that becomes the front surface of the manufactured semiconductor substrate. The front surface processing step is typically a step of making the front surface of the object to be processed a smooth surface, and more specifically, a step of finishing to a high quality surface that becomes a mirror surface.
ここに開示されるおもて面加工工程は、特定の構成に限定されず、公知の表面加工処理技術を、上述の裏面加工工程を考慮して適宜選択し、おもて面に加工歪層が存在しないように、あるいは裏面の加工歪層深さよりも小さい深さを有する加工歪層を有するように実施される。おもて面加工工程としては、特に限定するものではないが、研削工程、ラッピング工程、CMP工程等のうち1または2以上の工程が採用され得る。おもて面加工工程において実施され得る研削工程およびラッピング工程の詳細は裏面加工工程にて説明したとおりであり、ここに開示される技術の効果が好ましく得られるよう、砥粒種、砥粒の硬度や粒子径等の条件や事項を裏面加工工程における条件等と異ならせて、おもて面加工工程における研削工程およびラッピング工程は実施され得る。
The front surface processing step disclosed here is not limited to a specific configuration, and a known surface processing technology is appropriately selected in consideration of the above-mentioned back surface processing step, and a processing strain layer is formed on the front surface. It is implemented so that there is no processing strain layer having a depth smaller than the processing strain layer depth of the back surface. Although it does not specifically limit as a front surface processing process, One or two or more processes among a grinding process, a lapping process, a CMP process, etc. may be employ | adopted. The details of the grinding step and the lapping step that can be performed in the front surface processing step are as described in the back surface processing step, and so that the effects of the technique disclosed herein can be preferably obtained, The grinding step and the lapping step in the front surface processing step can be performed by making conditions and matters such as hardness and particle diameter different from those in the back surface processing step.
(おもて面加工用砥粒)
おもて面加工工程は、通常、砥粒AFFを用いる工程を含む。砥粒AFFとしては、上記で例示した裏面加工用砥粒種の1種または2種以上が挙げられる。なかでも、シリカ粒子、アルミナ粒子が好ましい。 (Front surface processing abrasive)
Front surface processing step typically includes the step of using the abrasive A FF. The abrasive A FF, 1 or more kinds of backside processing abrasive species exemplified above can be mentioned. Of these, silica particles and alumina particles are preferable.
おもて面加工工程は、通常、砥粒AFFを用いる工程を含む。砥粒AFFとしては、上記で例示した裏面加工用砥粒種の1種または2種以上が挙げられる。なかでも、シリカ粒子、アルミナ粒子が好ましい。 (Front surface processing abrasive)
Front surface processing step typically includes the step of using the abrasive A FF. The abrasive A FF, 1 or more kinds of backside processing abrasive species exemplified above can be mentioned. Of these, silica particles and alumina particles are preferable.
好ましい一態様では、砥粒AFFはシリカ砥粒(シリカ粒子)を含有する。シリカ砥粒は、公知の各種シリカ粒子のなかから適宜選択して使用することができる。そのような公知のシリカ粒子としては、コロイダルシリカ、乾式法シリカ等が挙げられる。なかでも、コロイダルシリカの使用が好ましい。コロイダルシリカを含むシリカ砥粒によると、高い研磨レートと良好な面精度とが好適に達成され得る。
In a preferred embodiment, the abrasive grains AFF contain silica abrasive grains (silica particles). The silica abrasive grains can be used by appropriately selecting from various known silica particles. Examples of such known silica particles include colloidal silica and dry silica. Of these, the use of colloidal silica is preferred. According to the silica abrasive grains containing colloidal silica, a high polishing rate and good surface accuracy can be suitably achieved.
砥粒AFF(例えばシリカ砥粒)の形状(外形)は、球形であってもよく、非球形であってもよい。例えば、非球形をなすシリカ砥粒の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。ここに開示される技術において、砥粒AFF(例えばシリカ砥粒)は、一次粒子の形態であってもよく、複数の一次粒子が会合した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒(例えばシリカ砥粒)と二次粒子の形態の砥粒(例えばシリカ砥粒)とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒AFF(例えばシリカ砥粒)が二次粒子の形態で研磨用組成物中に含まれている。
The shape (outer shape) of the abrasive grain A FF (eg, silica abrasive grain) may be spherical or non-spherical. For example, specific examples of non-spherical silica abrasive grains include peanut shapes (that is, peanut shell shapes), bowl shapes, confetti shapes, rugby ball shapes, and the like. In the technique disclosed herein, the abrasive grains A FF (for example, silica abrasive grains) may be in the form of primary particles or may be in the form of secondary particles in which a plurality of primary particles are associated. Further, abrasive grains in the form of primary particles (for example, silica abrasive grains) and abrasive grains in the form of secondary particles (for example, silica abrasive grains) may be mixed. In a preferred embodiment, at least a part of the abrasive grains A FF (for example, silica abrasive grains) is contained in the polishing composition in the form of secondary particles.
おもて面加工工程で用いられる砥粒AFFの硬度は特に限定されない。砥粒AFFのビッカース硬度HFF(Hv)は、例えば凡そ200Hv以上(例えば凡そ400Hv以上、典型的には凡そ600Hv以上)とすることが好ましい。他の一態様では、砥粒AFFのビッカース硬度HFF(Hv)は、例えば凡そ1000Hv以上(例えば凡そ1200Hv以上、典型的には凡そ1500Hv以上)である。また一態様において、上記ビッカース硬度HFF(Hv)は、加工歪層の深さを所定値以下とする観点から、例えば凡そ2500Hv以下(例えば凡そ2000Hv以下、典型的には凡そ1700Hv以下)であることが好ましい。他の一態様では、上記ビッカース硬度HFF(Hv)は、例えば凡そ1500Hv以下(例えば凡そ1000Hv以下、典型的には凡そ800Hv以下)とすることが好ましい。加工対象物のおもて面よりも硬度の低い砥粒を用いることによって、より高品質な表面を得ることができる。
The hardness of the abrasive grains A FF used in the front surface processing step is not particularly limited. The Vickers hardness H FF (Hv) of the abrasive grain A FF is preferably about 200 Hv or more (eg, about 400 Hv or more, typically about 600 Hv or more), for example. In another embodiment, the Vickers hardness H FF (Hv) of the abrasive grain A FF is, for example, about 1000 Hv or more (for example, about 1200 Hv or more, typically about 1500 Hv or more). In one embodiment, the Vickers hardness H FF (Hv) is, for example, about 2500 Hv or less (for example, about 2000 Hv or less, typically about 1700 Hv or less) from the viewpoint of setting the depth of the processed strain layer to a predetermined value or less. It is preferable. In another aspect, the Vickers hardness H FF (Hv) is preferably about 1500 Hv or less (for example, about 1000 Hv or less, typically about 800 Hv or less). By using abrasive grains whose hardness is lower than that of the front surface of the workpiece, a higher quality surface can be obtained.
砥粒AFF(例えばシリカ砥粒)としては、その平均一次粒子径(以下、単に「D1」と表記することがある。)が5nmよりも大きいものを好ましく採用することができる。研磨効率等の観点から、D1は、好ましくは15nm以上、より好ましくは20nm以上、さらに好ましくは25nm以上、特に好ましくは30nm以上である。D1の上限は特に限定されないが、概ね120nm以下にすることが適当であり、好ましくは100nm以下、より好ましくは85nm以下である。例えば、研磨効率および面品質をより高いレベルで両立させる観点から、D1が12nm以上80nm以下の砥粒AFF(典型的にはシリカ砥粒)が好ましく、15nm以上60nm以下の砥粒AFF(典型的にはシリカ砥粒)が好ましい。
As the abrasive grains A FF (for example, silica abrasive grains), those having an average primary particle diameter (hereinafter sometimes simply referred to as “D1”) larger than 5 nm can be preferably used. From the viewpoint of polishing efficiency and the like, D1 is preferably 15 nm or more, more preferably 20 nm or more, still more preferably 25 nm or more, and particularly preferably 30 nm or more. The upper limit of D1 is not particularly limited, but is appropriately about 120 nm or less, preferably 100 nm or less, more preferably 85 nm or less. For example, from the viewpoint of achieving both the polishing efficiency and surface quality at a higher level, preferably (silica abrasive grains typically) D1 is 80nm or less of the abrasive A FF least 12 nm, 15 nm or more 60nm less abrasive A FF ( Typically, silica abrasive grains) are preferred.
なお、ここに開示される技術において、砥粒AFFの平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm3)×BET値(m2/g))の式により算出される粒子径をいう。例えば、シリカ砥粒の場合、平均一次粒子径(nm)=2727/BET値(m2/g)により平均一次粒子径を算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
In the technology disclosed herein, the average primary particle diameter of the abrasive grains AFF is the average primary particle diameter (nm) = 6000 / (true density (BET value) from the specific surface area (BET value) measured by the BET method. g / cm 3 ) × BET value (m 2 / g)) refers to the particle diameter calculated by the equation. For example, in the case of silica abrasive grains, the average primary particle diameter can be calculated from the average primary particle diameter (nm) = 2727 / BET value (m 2 / g). The specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
砥粒AFF(例えばシリカ砥粒)の平均二次粒子径(以下、単に「D2」と表記することがある。)は特に限定されないが、研磨効率等の観点から、好ましくは20nm以上、より好ましくは50nm以上、さらに好ましくは70nm以上である。また、より高品位の表面を得るという観点から、砥粒AFF(例えばシリカ砥粒)の平均二次粒子径D2は、500nm以下が適当であり、好ましくは300nm以下、より好ましくは200nm以下、さらに好ましくは130nm以下、特に好ましくは110nm以下(例えば100nm以下)である。
The average secondary particle diameter of the abrasive grains A FF (for example, silica abrasive grains) (hereinafter sometimes simply referred to as “D2”) is not particularly limited, but is preferably 20 nm or more from the viewpoint of polishing efficiency and the like. Preferably it is 50 nm or more, More preferably, it is 70 nm or more. Further, from the viewpoint of obtaining a higher quality surface, the average secondary particle diameter D2 of the abrasive grains A FF (eg, silica abrasive grains) is suitably 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less, More preferably, it is 130 nm or less, Especially preferably, it is 110 nm or less (for example, 100 nm or less).
なお、ここに開示される技術において、砥粒AFFの平均二次粒子径は、例えば、日機装社製の型式「UPA-UT151」を用いた動的光散乱法により、体積平均粒子径(体積基準の算術平均径;Mv)として測定することができる。
Incidentally, in the art disclosed herein, the average secondary particle size of the abrasive grains A FF, for example, by Nikkiso Co. model dynamic light scattering method using "UPA-UT151", volume average particle diameter (volume It can be measured as a standard arithmetic mean diameter; Mv).
好ましい一態様では、おもて面加工工程はCMP工程を含む。CMP工程を採用することにより、ここに開示される半導体基板が得られやすく、また高品質な表面が得られやすい。好ましい一態様に係るCMP工程は、後述する研磨用組成物から構成された研磨スラリー(研磨液ともいう。)を加工対象物表面に供給して実施される。具体的には、上記研磨液を加工対象物表面に供給し、裏面研磨用組成物におけるCMP工程の場合と同様に、常法により研磨する工程であり得る。
In a preferred embodiment, the front surface processing step includes a CMP step. By employing the CMP process, the semiconductor substrate disclosed herein can be easily obtained, and a high-quality surface can be easily obtained. The CMP process according to a preferred embodiment is performed by supplying a polishing slurry (also referred to as a polishing liquid) composed of a polishing composition described later to the surface of the workpiece. Specifically, it may be a step of supplying the polishing liquid to the surface of the object to be processed and polishing by a conventional method as in the case of the CMP step in the back surface polishing composition.
(おもて面研磨用組成物)
ここに開示されるおもて面研磨用組成物は、特定の組成に限定されず、おもて面に加工歪層が存在しないように、あるいは裏面の加工歪層深さよりも小さい深さを有する加工歪層とし得る組成が採用される。そのような研磨用組成物は、例えば、砥粒と、水等の溶媒と、を含み、さらに酸化剤等の研磨助剤CFFを含み得る。 (Front surface polishing composition)
The front surface polishing composition disclosed herein is not limited to a specific composition, and has a depth that is smaller than the back surface processing strain layer depth so that there is no processing strain layer on the front surface. A composition that can be used as a working strain layer is employed. Such polishing composition, for example, abrasive grains, a solvent such as water, comprise may further comprise a grinding aid C FF such oxidizing agent.
ここに開示されるおもて面研磨用組成物は、特定の組成に限定されず、おもて面に加工歪層が存在しないように、あるいは裏面の加工歪層深さよりも小さい深さを有する加工歪層とし得る組成が採用される。そのような研磨用組成物は、例えば、砥粒と、水等の溶媒と、を含み、さらに酸化剤等の研磨助剤CFFを含み得る。 (Front surface polishing composition)
The front surface polishing composition disclosed herein is not limited to a specific composition, and has a depth that is smaller than the back surface processing strain layer depth so that there is no processing strain layer on the front surface. A composition that can be used as a working strain layer is employed. Such polishing composition, for example, abrasive grains, a solvent such as water, comprise may further comprise a grinding aid C FF such oxidizing agent.
おもて面のCMP工程に用いられる砥粒AFFとしては、上記で例示した裏面加工用砥粒種の1種または2種以上が挙げられる。なかでも、シリカ粒子、アルミナ粒子が好ましく、シリカ粒子がより好ましく、コロイダルシリカがさらに好ましい。好ましく使用される砥粒AFF(例えばシリカ砥粒)の平均一次粒子径および平均二次粒子径は上述のとおりであり、重複する説明は繰り返さない。
The abrasive A FF used in the CMP process of the front side, one or more backside processing abrasive species exemplified above can be mentioned. Of these, silica particles and alumina particles are preferable, silica particles are more preferable, and colloidal silica is more preferable. The average primary particle diameter and average secondary particle diameter of the abrasive grains A FF (for example, silica abrasive grains) that are preferably used are as described above, and redundant description will not be repeated.
おもて面研磨用組成物における砥粒AFFの含有量は、例えばシリカ砥粒の場合、概ね12重量%以上である。研磨効率等の観点から、上記含有量は、好ましくは15重量%以上である。いくつかの態様において、上記含有量は、例えば20重量%以上であってもよい。また、研磨レートと面品質とを高いレベルで両立する等の観点から、砥粒AFFの含有量は、例えばシリカ砥粒の場合、概ね50重量%以下である。上記含有量は、好ましくは40重量%以下、より好ましくは35重量%以下である。いくつかの態様において、上記含有量は、例えば42重量%以下であってもよく、典型的には38重量%以下(例えば35重量%以下)であってもよい。ここに開示される技術は、例えば、おもて面研磨用組成物におけるシリカ砥粒の含有量が12重量%以上35重量%以下(さらには15重量%以上30重量%以下)である態様で好ましく実施され得る。
The content of the abrasive grains A FF in the front surface polishing composition, for example, in the case of silica abrasive grains is approximately 12% by weight or more. From the viewpoint of polishing efficiency and the like, the content is preferably 15% by weight or more. In some embodiments, the content may be, for example, 20% by weight or more. Further, from the viewpoint of having both the polishing rate and surface quality at a high level, the content of the abrasive grains A FF, for example, in the case of silica abrasive grains is approximately 50% by weight or less. The content is preferably 40% by weight or less, more preferably 35% by weight or less. In some embodiments, the content may be, for example, 42% by weight or less, and typically 38% by weight (eg, 35% by weight or less). The technique disclosed here is, for example, an embodiment in which the content of silica abrasive grains in the front surface polishing composition is 12% by weight or more and 35% by weight or less (further 15% by weight or more and 30% by weight or less). It can be preferably implemented.
おもて面研磨用組成物における砥粒AFFの含有量は、例えばアルミナ砥粒の場合、概ね0.1重量%以上である。研磨効率等の観点から、上記含有量は、好ましくは0.5重量%以上である。いくつかの態様において、上記含有量は、例えば1重量%以上であってもよい。また、研磨レートと面品質とを高いレベルで両立する等の観点から、砥粒AFFの含有量は、例えばアルミナ砥粒の場合、概ね20重量%以下である。上記含有量は、好ましくは15重量%以下、より好ましくは12重量%以下である。いくつかの態様において、上記含有量は、例えば13重量%以下であってもよく、典型的には10重量%以下(例えば8重量%以下)であってもよい。ここに開示される技術は、例えば、おもて面研磨用組成物におけるアルミナ砥粒の含有量が0.1重量%以上20重量%以下(さらには3重量%以上8重量%以下)である態様で好ましく実施され得る。
The content of the abrasive grains A FF in the front surface polishing composition, for example, in the case of alumina abrasive grains is generally 0.1 wt% or more. From the viewpoint of polishing efficiency and the like, the content is preferably 0.5% by weight or more. In some embodiments, the content may be, for example, 1% by weight or more. Further, from the viewpoint of having both the polishing rate and surface quality at a high level, the content of abrasive grains A FF, for example if the alumina abrasive grains, is generally 20 wt% or less. The content is preferably 15% by weight or less, more preferably 12% by weight or less. In some embodiments, the content may be, for example, 13% by weight or less, and typically 10% by weight or less (eg, 8% by weight or less). In the technique disclosed herein, for example, the content of alumina abrasive grains in the front surface polishing composition is 0.1 wt% or more and 20 wt% or less (further 3 wt% or more and 8 wt% or less). The embodiment can be preferably implemented.
ここに開示されるおもて面研磨用組成物は研磨助剤(例えば酸化剤)CFFを含むことが好ましい。研磨助剤CFFとしては、裏面研磨用組成物にて例示した研磨助剤CFFの1種または2種以上を特に制限なく用いることができる。研磨レートと面品質とを高レベルで両立する観点から、過酸化水素、バナジン酸類が好ましく、過酸化水素とバナジン酸類(例えばメタバナジン酸ナトリウム)とを併用することが特に好ましい。
The front surface polishing composition disclosed herein preferably contains a polishing aid (for example, an oxidizing agent) CFF . The grinding aids C FF, can be used without limitation one or more of the grinding aid C FF exemplified by backside polishing composition. From the viewpoint of achieving both a polishing rate and surface quality at a high level, hydrogen peroxide and vanadic acids are preferable, and it is particularly preferable to use hydrogen peroxide and vanadic acids (for example, sodium metavanadate) in combination.
特に好ましい一態様において併用される過酸化水素とバナジン酸類(例えばメタバナジン酸ナトリウム)の含有量の比、すなわちバナジン酸類の含有量C1に対する過酸化水素の含有量C2の比(C2/C1)は、特に限定されず、重量基準で0.5以上2以下であることが適当であり、0.6以上1.9以下であることが好ましく、0.6以上1.5以下であることがより好ましい。上記化合物を特定の含有量比となるように組み合わせて用いることにより、研磨レートと面品質との両立がより高いレベルで実現され得る。いくつかの態様において、上記比(C2/C1)は、例えば0.6以上1.2以下であってもよく、典型的には0.6以上0.9以下であってもよい。
In a particularly preferred embodiment, the ratio of the content of hydrogen peroxide and vanadic acids (for example, sodium metavanadate) used in combination, that is, the ratio of the content C2 of hydrogen peroxide to the content C1 of vanadic acids (C2 / C1) is: It is not particularly limited, and is suitably 0.5 or more and 2 or less on a weight basis, preferably 0.6 or more and 1.9 or less, more preferably 0.6 or more and 1.5 or less. . By using the above compounds in combination so as to have a specific content ratio, both the polishing rate and the surface quality can be realized at a higher level. In some embodiments, the ratio (C2 / C1) may be, for example, 0.6 or more and 1.2 or less, and typically 0.6 or more and 0.9 or less.
おもて面研磨用組成物における研磨助剤CFFの濃度(含有量)は、通常は0.1重量%以上とすることが適当である。研磨レートと面品質とを高度にかつ効率的に両立する観点から、好ましい一態様における上記濃度は1重量%以上であり、より好ましくは1.5重量%以上、さらに好ましくは2重量%以上、特に好ましくは2.5重量%以上(例えば2.8重量%以上)である。また、平滑性向上の観点から、上記研磨助剤CFFの濃度は、通常は10重量%以下とすることが適当であり、8重量%以下とすることが好ましく、6.5重量%以下であることがより好ましく、6重量%以下であることがさらに好ましく、5.5重量%以下であることが特に好ましい。いくつかの態様において、上記濃度は、例えば4.5重量%以下であってもよく、典型的には4重量%以下であってもよい。
The concentration of grinding aid C FF in the front surface polishing composition (content) is usually suitable to be 0.1 wt% or more. From the viewpoint of achieving both high and efficient polishing rate and surface quality, the concentration in a preferred embodiment is 1% by weight or more, more preferably 1.5% by weight or more, still more preferably 2% by weight or more, Especially preferably, it is 2.5 weight% or more (for example, 2.8 weight% or more). Further, from the viewpoint of improving smoothness, the concentration of the grinding aid C FF is usually suitable to be 10 wt% or less, preferably 8 wt% or less, 6.5 wt% or less More preferably, it is more preferably 6% by weight or less, and particularly preferably 5.5% by weight or less. In some embodiments, the concentration may be, for example, 4.5% by weight or less, and typically 4% by weight or less.
ここに開示されるおもて面研磨用組成物は、ここに開示される技術の効果を損なわない範囲で、キレート剤、増粘剤、分散剤、表面保護剤、濡れ剤、pH調整剤、界面活性剤、有機酸、無機酸、防錆剤、防腐剤、防カビ剤等の、研磨用組成物(例えば炭化ケイ素基板ポリシング用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。
The front surface polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a surface protecting agent, a wetting agent, a pH adjusting agent, as long as the effects of the technology disclosed herein are not impaired. Known additives that can be used for polishing compositions (for example, compositions for polishing silicon carbide substrates) such as surfactants, organic acids, inorganic acids, rust preventives, antiseptics, fungicides, etc., if necessary It may be further contained. The content of the additive may be set as appropriate according to the purpose of the addition, and does not characterize the present invention, so a detailed description is omitted.
おもて面研磨用組成物のpHは、通常は2~12程度とすることが適当である。おもて面研磨用組成物のpHが上記範囲内であると、実用的な研磨レートが達成されやすい。おもて面研磨用組成物のpHは、好ましくは3以上、より好ましくは4以上、さらに好ましくは5.5以上である。pHの上限は特に限定されないが、好ましくは12以下、より好ましくは10以下、さらに好ましくは9.5以下である。上記pHは、好ましくは3~11、より好ましくは4~10、さらに好ましくは5.5~9.5である。おもて面研磨用組成物のpHは、例えば9以下、典型的には7.5以下であってもよい。
The pH of the front surface polishing composition is usually about 2-12. When the pH of the front surface polishing composition is within the above range, a practical polishing rate is easily achieved. The pH of the front surface polishing composition is preferably 3 or more, more preferably 4 or more, and still more preferably 5.5 or more. Although the upper limit of pH is not specifically limited, Preferably it is 12 or less, More preferably, it is 10 or less, More preferably, it is 9.5 or less. The pH is preferably 3 to 11, more preferably 4 to 10, and still more preferably 5.5 to 9.5. The pH of the front surface polishing composition may be, for example, 9 or less, typically 7.5 or less.
なお、おもて面加工工程が、CMP工程を含む複数の加工工程から構成される場合、CMP工程はおもて面加工工程の最終工程であり得る。その場合、おもて面加工工程において上記CMP工程よりも後に加工工程は存在しない。また、おもて面加工工程において、砥粒を用いないエッチング工程を実施する場合には、かかるエッチング工程は、上記CMP工程の前後で実施され得る。
In addition, when the front surface processing step is composed of a plurality of processing steps including the CMP step, the CMP step can be the final step of the front surface processing step. In that case, there is no processing step after the CMP step in the front surface processing step. Moreover, when performing the etching process which does not use an abrasive grain in a front surface process process, this etching process can be implemented before and behind the said CMP process.
一態様において、おもて面加工工程は、予備ポリシングを行う工程(予備ポリシング工程)と、仕上げポリシングを行う工程(仕上げポリシング工程)と、を含み得る。ここでいう予備ポリシング工程とは、加工対象物に対して、予備ポリシングを行う工程である。典型的な一態様では、予備ポリシング工程は、仕上げポリシング工程の直前に配置されるポリシング工程である。予備ポリシング工程は、1段のポリシング工程であってもよく、2段以上の複数段のポリシング工程であってもよい。また、ここでいう仕上げポリシング工程は、予備ポリシングが行われた加工対象物に対して仕上げポリシングを行う工程であって、ポリシング用組成物を用いて行われるポリシング工程のうち最後に(すなわち、最も下流側に)配置される研磨工程のことをいう。このように予備ポリシング工程と仕上げポリシング工程とを含む方法において、上述のおもて面研磨用組成物は、典型的には仕上げポリシング工程で用いられる。予備ポリシング工程および仕上げポリシング工程の両方で用いられてもよい。
In one aspect, the front surface processing step may include a step of performing preliminary polishing (preliminary polishing step) and a step of performing final polishing (finishing polishing step). The preliminary polishing step here is a step of performing preliminary polishing on the workpiece. In a typical embodiment, the preliminary polishing process is a polishing process that is arranged immediately before the finishing polishing process. The preliminary polishing process may be a single-stage polishing process or a multi-stage polishing process of two or more stages. In addition, the finish polishing step referred to here is a step of performing finish polishing on the workpiece that has been subjected to preliminary polishing, and is the last of the polishing steps performed using the polishing composition (that is, most) This refers to a polishing step disposed on the downstream side. Thus, in the method including the preliminary polishing step and the finishing polishing step, the above-described front surface polishing composition is typically used in the finishing polishing step. It may be used in both the preliminary polishing process and the finishing polishing process.
さらに、ここに開示されるおもて面加工工程は、上記予備ポリシング工程および仕上げポリシング工程に加えて任意の他の工程を含み得る。そのような工程としては、予備ポリシング工程の前に行われる研削工程、ラッピング工程が挙げられる。また、ここに開示されるおもて面加工工程は、予備ポリシング工程の前や、予備ポリシング工程と仕上げポリシング工程との間に追加の工程(洗浄工程やポリシング工程)を含んでもよい。
Further, the front surface processing step disclosed herein may include any other step in addition to the preliminary polishing step and the finishing polishing step. Examples of such a process include a grinding process and a lapping process performed before the preliminary polishing process. Further, the front surface processing step disclosed herein may include an additional step (cleaning step or polishing step) before the preliminary polishing step or between the preliminary polishing step and the finishing polishing step.
上記おもて面加工工程を経た加工物(半導体基板であり得る。)のおもて面には加工歪層が存在しない。あるいは、上記加工物のおもて面に加工歪層が存在する場合には、当該おもて面の加工歪層の深さは、裏面に存在する加工歪層の深さよりも小さい。これによって、製造後や半導体デバイスにおける半導体基板形状を高度に制御することができる。また、おもて面加工工程を経た加工物は、所定の表面粗さRaを有し得る。おもて面加工工程を経たおもて面に存在する加工歪層の深さおよびRaは、上述の半導体基板おもて面の加工歪層の深さDFFおよびRaと同様の値をとり得るので、重複する説明は省略する。
There is no processing strain layer on the front surface of the workpiece (which may be a semiconductor substrate) that has undergone the front surface processing step. Alternatively, when a work strain layer exists on the front surface of the workpiece, the depth of the work strain layer on the front surface is smaller than the depth of the work strain layer on the back surface. This makes it possible to highly control the shape of the semiconductor substrate after manufacturing and in the semiconductor device. In addition, the workpiece that has undergone the front surface machining step may have a predetermined surface roughness Ra. The depth and Ra of the processed strain layer existing on the front surface after the front surface processing step have the same values as the depths DFF and Ra of the processed strain layer on the front surface of the semiconductor substrate. Since it is obtained, the overlapping description is omitted.
なお、ラッピング用組成物や研磨用組成物(裏面研磨用組成物およびおもて面研磨用組成物を包含する。特に断りがないかぎり以下同じ。)に用いられる溶媒は、砥粒や任意成分である研磨助剤を分散させることができるものであればよく、特に制限されない。溶媒としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。ここに開示されるラッピング用組成物や研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、上記組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
The solvent used in the lapping composition or polishing composition (including backside polishing composition and front surface polishing composition. The same shall apply hereinafter unless otherwise specified) is used for abrasive grains and optional components. There is no particular limitation as long as it can disperse the polishing aid. As the solvent, ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used. The wrapping composition and polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be mixed with water as required. Usually, 90% by volume or more of the solvent contained in the composition is preferably water, and more preferably 95% by volume (typically 99 to 100% by volume) is water.
また、ここに開示されるラッピング用組成物や研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分(典型的には、溶媒以外の成分)のうち一部の成分を含むA液と、残りの成分を含むB液とが混合されて研磨対象物の研磨に用いられるように構成されていてもよい。また、ここに開示されるラッピング用組成物や研磨用組成物は、加工対象物に供給される前には濃縮された形態(すなわち、ラッピング液や研磨液の濃縮液の形態)であってもよい。このように濃縮された形態のラッピング用組成物や研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍~5倍程度とすることができる。
なお、ラッピング用組成物や研磨用組成物の調製には、濃度調整(例えば希釈)、pH調整等の操作を加えてラッピング液や研磨液を調製することが含まれ得る。あるいは、上記ラッピング用組成物をそのままラッピング液として使用してもよく、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を調製することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。 Moreover, the lapping composition and the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type. For example, the liquid A containing a part of the constituent components (typically components other than the solvent) of the polishing composition and the liquid B containing the remaining components are mixed to polish the polishing object. It may be configured to be used. Further, the wrapping composition and polishing composition disclosed herein may be in a concentrated form (that is, in the form of a wrapping liquid or a concentrated liquid of polishing liquid) before being supplied to the object to be processed. Good. The wrapping composition and polishing composition in such a concentrated form are advantageous from the viewpoints of convenience, cost reduction, and the like during production, distribution, storage, and the like. The concentration rate can be, for example, about 2 to 5 times in terms of volume.
In addition, preparation of a wrapping composition or polishing composition may include preparation of a wrapping liquid or polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment. Alternatively, the wrapping composition may be used as it is as a wrapping liquid, or the polishing composition may be used as it is as a polishing liquid. In the case of a multi-drug type polishing composition, the above-mentioned polishing liquid is prepared by mixing these agents, diluting one or more agents before the mixing, and after the mixing. Diluting the mixture, etc. can be included.
なお、ラッピング用組成物や研磨用組成物の調製には、濃度調整(例えば希釈)、pH調整等の操作を加えてラッピング液や研磨液を調製することが含まれ得る。あるいは、上記ラッピング用組成物をそのままラッピング液として使用してもよく、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を調製することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。 Moreover, the lapping composition and the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type. For example, the liquid A containing a part of the constituent components (typically components other than the solvent) of the polishing composition and the liquid B containing the remaining components are mixed to polish the polishing object. It may be configured to be used. Further, the wrapping composition and polishing composition disclosed herein may be in a concentrated form (that is, in the form of a wrapping liquid or a concentrated liquid of polishing liquid) before being supplied to the object to be processed. Good. The wrapping composition and polishing composition in such a concentrated form are advantageous from the viewpoints of convenience, cost reduction, and the like during production, distribution, storage, and the like. The concentration rate can be, for example, about 2 to 5 times in terms of volume.
In addition, preparation of a wrapping composition or polishing composition may include preparation of a wrapping liquid or polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment. Alternatively, the wrapping composition may be used as it is as a wrapping liquid, or the polishing composition may be used as it is as a polishing liquid. In the case of a multi-drug type polishing composition, the above-mentioned polishing liquid is prepared by mixing these agents, diluting one or more agents before the mixing, and after the mixing. Diluting the mixture, etc. can be included.
また、ここに開示される加工工程では、片面研削装置や片面研磨装置が用いられ得る。片面研削装置では、例えばキャリアと呼ばれる保持具を用いて加工対象物を保持し、当該加工対象物の片面に、定盤に固定した固定砥粒(研削用砥石)を押しつけて両者を相対的に移動(例えば回転移動)させることにより加工対象物の片面を研削する。研削中においては、通常、加工対象物表面に水溶液からなる加工液が供給される。また、片面研磨装置では、セラミックプレートにワックスで加工対象物を貼りつけたり、キャリアと呼ばれる保持具を用いて加工対象物を保持し、砥粒(ポリシングの場合にはポリシング用組成物)を供給しながら加工対象物の片面に、定盤または研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させることにより加工対象物の片面を研磨する。
Also, in the processing steps disclosed herein, a single-side grinding device or a single-side polishing device can be used. In a single-side grinding apparatus, for example, a workpiece is held using a holder called a carrier, and fixed abrasive grains (grinding grindstones) fixed to a surface plate are pressed against one side of the workpiece to relatively hold both of them. One side of the workpiece is ground by moving (for example, rotating). During grinding, a machining fluid composed of an aqueous solution is usually supplied to the surface of the workpiece. Also, in a single-side polishing machine, the workpiece is affixed to the ceramic plate with wax, the workpiece is held using a holder called a carrier, and abrasive grains (polishing composition in the case of polishing) are supplied. On the other hand, one surface of the workpiece is polished by pressing a surface plate or a polishing pad against one surface of the workpiece and relatively moving (for example, rotating) the two.
また、ここに開示される加工工程は、両面研削装置や両面研磨装置を用いることもできる。両面研削装置では、キャリアと呼ばれる保持具を用いて加工対象物を保持し、当該加工対象物の対向面に、定盤に固定した固定砥粒(研削用砥石)を押しつけてそれらを相対方向に回転させることにより加工対象物の両面を同時に研削する。研削中においては、通常、加工対象物表面に水溶液からなる加工液が供給される。また、両面研磨装置では、キャリアと呼ばれる保持具を用いて加工対象物を保持し、上方より砥粒(ポリシングの場合にはポリシング用組成物)を供給しながら、加工対象物の対向面に研磨パッドを押しつけ、それらを相対方向に回転させることにより加工対象物の両面を同時に研磨する。
Also, the processing steps disclosed herein can use a double-side grinding device or a double-side polishing device. In a double-sided grinding machine, a workpiece called a carrier is used to hold a workpiece, and fixed abrasive grains (grinding stones) fixed to a surface plate are pressed against the opposite surface of the workpiece to move them in a relative direction. By rotating, both sides of the workpiece are ground simultaneously. During grinding, a machining fluid composed of an aqueous solution is usually supplied to the surface of the workpiece. Also, in a double-side polishing apparatus, a workpiece is held using a holder called a carrier, and polishing is performed on the opposite surface of the workpiece while supplying abrasive grains (a polishing composition in the case of polishing) from above. By pressing the pad and rotating them in the relative direction, both surfaces of the workpiece are polished simultaneously.
ここに開示されるCMP工程で使用される研磨パッドは、特に限定されない。例えば、不織布タイプ、スウェードタイプ、硬質発泡ポリウレタンタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。
The polishing pad used in the CMP process disclosed herein is not particularly limited. For example, any of a non-woven fabric type, a suede type, a rigid foamed polyurethane type, a product containing abrasive grains, a product containing no abrasive grains, and the like may be used.
ここに開示される方法により加工された加工物は、典型的にはポリシング後に洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、公知、慣用のものを適宜選択して用いることができる。
The workpiece processed by the method disclosed herein is typically washed after polishing. This washing can be performed using an appropriate washing solution. The cleaning liquid to be used is not particularly limited, and a known and commonly used cleaning liquid can be appropriately selected and used.
<研磨用組成物セット>
ここに開示される技術には、例えば、以下のような研磨用組成物セットの提供が含まれ得る。すなわち、ここに開示される技術によると、互いに分けて保管される組成物Q1および組成物Q2を含む研磨用組成物セットが提供される。上記組成物Q1は、ここに開示される裏面加工工程に用いられる裏面研磨用組成物(濃縮液を包含する。)であり得る。上記組成物Q2は、ここに開示されるおもて面加工工程に用いられるおもて面研磨用組成物(濃縮液を包含する。)であり得る。このような構成の研磨用組成物セットを用いて裏面加工工程およびおもて面加工工程を含む多段加工プロセスを実施すると、製造後における形状が高度に制御された半導体基板が好適に製造され得る。また、得られる半導体基板は、高い面品質を有するものであり得る。 <Polishing composition set>
The technology disclosed herein can include, for example, providing the following polishing composition set. That is, according to the technique disclosed herein, a polishing composition set including the composition Q1 and the composition Q2 stored separately from each other is provided. The composition Q1 may be a backside polishing composition (including a concentrated liquid) used in the backside processing step disclosed herein. The composition Q2 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein. When a multistage processing process including a back surface processing step and a front surface processing step is performed using the polishing composition set having such a configuration, a semiconductor substrate whose shape after manufacturing is highly controlled can be preferably manufactured. . Moreover, the obtained semiconductor substrate can have a high surface quality.
ここに開示される技術には、例えば、以下のような研磨用組成物セットの提供が含まれ得る。すなわち、ここに開示される技術によると、互いに分けて保管される組成物Q1および組成物Q2を含む研磨用組成物セットが提供される。上記組成物Q1は、ここに開示される裏面加工工程に用いられる裏面研磨用組成物(濃縮液を包含する。)であり得る。上記組成物Q2は、ここに開示されるおもて面加工工程に用いられるおもて面研磨用組成物(濃縮液を包含する。)であり得る。このような構成の研磨用組成物セットを用いて裏面加工工程およびおもて面加工工程を含む多段加工プロセスを実施すると、製造後における形状が高度に制御された半導体基板が好適に製造され得る。また、得られる半導体基板は、高い面品質を有するものであり得る。 <Polishing composition set>
The technology disclosed herein can include, for example, providing the following polishing composition set. That is, according to the technique disclosed herein, a polishing composition set including the composition Q1 and the composition Q2 stored separately from each other is provided. The composition Q1 may be a backside polishing composition (including a concentrated liquid) used in the backside processing step disclosed herein. The composition Q2 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein. When a multistage processing process including a back surface processing step and a front surface processing step is performed using the polishing composition set having such a configuration, a semiconductor substrate whose shape after manufacturing is highly controlled can be preferably manufactured. . Moreover, the obtained semiconductor substrate can have a high surface quality.
<組成物セット>
ここに開示される技術には、例えば、以下のような組成物セットの提供が含まれ得る。すなわち、ここに開示される技術によると、互いに分けて保管される組成物Q3および組成物Q4を含む組成物セットが提供される。上記組成物Q3は、ここに開示される裏面加工工程に用いられるラッピング用組成物(濃縮液を包含する。)であり得る。上記組成物Q4は、ここに開示されるおもて面加工工程に用いられるおもて面研磨用組成物(濃縮液を包含する。)であり得る。このような構成の組成物セットを用いて裏面加工工程およびおもて面加工工程を含む多段加工プロセスを実施すると、製造後における形状が高度に制御された半導体基板が高い加工能率で製造され得る。また、得られる半導体基板は、高い面品質を有するものであり得る。 <Composition set>
The technology disclosed herein can include, for example, providing the following composition set. That is, according to the technique disclosed here, a composition set including the composition Q3 and the composition Q4 stored separately from each other is provided. The composition Q3 may be a wrapping composition (including a concentrated solution) used in the back surface processing step disclosed herein. The composition Q4 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein. When a multistage processing process including a back surface processing step and a front surface processing step is performed using the composition set having such a configuration, a semiconductor substrate whose shape after manufacturing is highly controlled can be manufactured with high processing efficiency. . Moreover, the obtained semiconductor substrate can have a high surface quality.
ここに開示される技術には、例えば、以下のような組成物セットの提供が含まれ得る。すなわち、ここに開示される技術によると、互いに分けて保管される組成物Q3および組成物Q4を含む組成物セットが提供される。上記組成物Q3は、ここに開示される裏面加工工程に用いられるラッピング用組成物(濃縮液を包含する。)であり得る。上記組成物Q4は、ここに開示されるおもて面加工工程に用いられるおもて面研磨用組成物(濃縮液を包含する。)であり得る。このような構成の組成物セットを用いて裏面加工工程およびおもて面加工工程を含む多段加工プロセスを実施すると、製造後における形状が高度に制御された半導体基板が高い加工能率で製造され得る。また、得られる半導体基板は、高い面品質を有するものであり得る。 <Composition set>
The technology disclosed herein can include, for example, providing the following composition set. That is, according to the technique disclosed here, a composition set including the composition Q3 and the composition Q4 stored separately from each other is provided. The composition Q3 may be a wrapping composition (including a concentrated solution) used in the back surface processing step disclosed herein. The composition Q4 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein. When a multistage processing process including a back surface processing step and a front surface processing step is performed using the composition set having such a configuration, a semiconductor substrate whose shape after manufacturing is highly controlled can be manufactured with high processing efficiency. . Moreover, the obtained semiconductor substrate can have a high surface quality.
<半導体基板製造用セット>
ここに開示される技術には、例えば、以下のような半導体基板製造用セットの提供が含まれ得る。すなわち、ここに開示される技術によると、互いに分けて保管される研削用砥粒および組成物Q5を含む半導体基板製造用セットが提供される。上記研削用砥粒は、ここに開示される裏面加工工程に用いられる研削用砥粒であり得る。上記組成物Q5は、ここに開示されるおもて面加工工程に用いられるおもて面研磨用組成物(濃縮液を包含する。)であり得る。このような構成のセットを用いて裏面加工工程およびおもて面加工工程を含む多段加工プロセスを実施すると、製造後における形状が高度に制御された半導体基板が高い加工能率で製造され得る。また、得られる半導体基板は、高い面品質を有するものであり得る。 <Semiconductor substrate manufacturing set>
The technology disclosed herein can include, for example, providing a semiconductor substrate manufacturing set as follows. That is, according to the technique disclosed herein, a set for manufacturing a semiconductor substrate is provided that includes abrasive grains for grinding and a composition Q5 that are stored separately from each other. The abrasive grains for grinding may be abrasive grains for grinding used in the back surface processing step disclosed herein. The composition Q5 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein. When a multistage processing process including a back surface processing step and a front surface processing step is performed using such a set of configurations, a semiconductor substrate whose shape after manufacturing is highly controlled can be manufactured with high processing efficiency. Moreover, the obtained semiconductor substrate can have a high surface quality.
ここに開示される技術には、例えば、以下のような半導体基板製造用セットの提供が含まれ得る。すなわち、ここに開示される技術によると、互いに分けて保管される研削用砥粒および組成物Q5を含む半導体基板製造用セットが提供される。上記研削用砥粒は、ここに開示される裏面加工工程に用いられる研削用砥粒であり得る。上記組成物Q5は、ここに開示されるおもて面加工工程に用いられるおもて面研磨用組成物(濃縮液を包含する。)であり得る。このような構成のセットを用いて裏面加工工程およびおもて面加工工程を含む多段加工プロセスを実施すると、製造後における形状が高度に制御された半導体基板が高い加工能率で製造され得る。また、得られる半導体基板は、高い面品質を有するものであり得る。 <Semiconductor substrate manufacturing set>
The technology disclosed herein can include, for example, providing a semiconductor substrate manufacturing set as follows. That is, according to the technique disclosed herein, a set for manufacturing a semiconductor substrate is provided that includes abrasive grains for grinding and a composition Q5 that are stored separately from each other. The abrasive grains for grinding may be abrasive grains for grinding used in the back surface processing step disclosed herein. The composition Q5 may be a front surface polishing composition (including a concentrated liquid) used in the front surface processing step disclosed herein. When a multistage processing process including a back surface processing step and a front surface processing step is performed using such a set of configurations, a semiconductor substrate whose shape after manufacturing is highly controlled can be manufactured with high processing efficiency. Moreover, the obtained semiconductor substrate can have a high surface quality.
以下、本発明に関するいくつかの実施例を説明するが、本発明を実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。
Hereinafter, some examples related to the present invention will be described, but the present invention is not intended to be limited to the examples shown in the examples. In the following description, “%” is based on weight unless otherwise specified.
<研磨用組成物の調製>
(調製例1)
コロイダルシリカとメタバナジン酸ナトリウムと過酸化水素と脱イオン水とを混合して研磨用組成物Aを調製した。コロイダルシリカの含有量は23%、メタバナジン酸ナトリウムの含有量は1.9%、過酸化水素の含有量は1.2%とした。研磨用組成物のpHは、水酸化カリウム(KOH)を用いて6.5に調整した。なお、コロイダルシリカは、平均二次粒子径が97nmの球状のものを使用した。 <Preparation of polishing composition>
(Preparation Example 1)
Polishing composition A was prepared by mixing colloidal silica, sodium metavanadate, hydrogen peroxide, and deionized water. The colloidal silica content was 23%, the sodium metavanadate content was 1.9%, and the hydrogen peroxide content was 1.2%. The pH of the polishing composition was adjusted to 6.5 using potassium hydroxide (KOH). In addition, the colloidal silica used the spherical thing whose average secondary particle diameter is 97 nm.
(調製例1)
コロイダルシリカとメタバナジン酸ナトリウムと過酸化水素と脱イオン水とを混合して研磨用組成物Aを調製した。コロイダルシリカの含有量は23%、メタバナジン酸ナトリウムの含有量は1.9%、過酸化水素の含有量は1.2%とした。研磨用組成物のpHは、水酸化カリウム(KOH)を用いて6.5に調整した。なお、コロイダルシリカは、平均二次粒子径が97nmの球状のものを使用した。 <Preparation of polishing composition>
(Preparation Example 1)
Polishing composition A was prepared by mixing colloidal silica, sodium metavanadate, hydrogen peroxide, and deionized water. The colloidal silica content was 23%, the sodium metavanadate content was 1.9%, and the hydrogen peroxide content was 1.2%. The pH of the polishing composition was adjusted to 6.5 using potassium hydroxide (KOH). In addition, the colloidal silica used the spherical thing whose average secondary particle diameter is 97 nm.
(調製例2)
アルミナ砥粒(α-アルミナ、平均二次粒子径:0.5μm)と研磨助剤としての過マンガン酸カリウム(KMnO4)と脱イオン水とを混合して研磨用組成物Bを調製した。アルミナ砥粒の含有量は6%、KMnO4の含有量は1.2%とした。研磨用組成物のpHは、KOHを用いて9.0に調整した。 (Preparation Example 2)
Abrasive composition B was prepared by mixing alumina abrasive grains (α-alumina, average secondary particle size: 0.5 μm), potassium permanganate (KMnO 4 ) as a polishing aid, and deionized water. The content of alumina abrasive grains was 6%, and the content of KMnO 4 was 1.2%. The pH of the polishing composition was adjusted to 9.0 using KOH.
アルミナ砥粒(α-アルミナ、平均二次粒子径:0.5μm)と研磨助剤としての過マンガン酸カリウム(KMnO4)と脱イオン水とを混合して研磨用組成物Bを調製した。アルミナ砥粒の含有量は6%、KMnO4の含有量は1.2%とした。研磨用組成物のpHは、KOHを用いて9.0に調整した。 (Preparation Example 2)
Abrasive composition B was prepared by mixing alumina abrasive grains (α-alumina, average secondary particle size: 0.5 μm), potassium permanganate (KMnO 4 ) as a polishing aid, and deionized water. The content of alumina abrasive grains was 6%, and the content of KMnO 4 was 1.2%. The pH of the polishing composition was adjusted to 9.0 using KOH.
<例1~例10>
表1に示す内容で加工対象物のおもて面および裏面に対して加工を実施した。加工条件は下記のとおりである。CMP工程では、研磨用組成物A、BをそれぞれスラリーA,Bとして用いた。GCは緑色炭化ケイ素粒子を砥粒として含むスラリーである。加工対象物としては、3インチのSiCウェーハ(伝導型:n型、結晶型4H 4°off)を使用した。 <Example 1 to Example 10>
The processing shown in Table 1 was performed on the front and back surfaces of the workpiece. The processing conditions are as follows. In the CMP process, polishing compositions A and B were used as slurries A and B, respectively. GC is a slurry containing green silicon carbide particles as abrasive grains. As a processing object, a 3-inch SiC wafer (conductivity type: n-type, crystal type 4H 4 ° off) was used.
表1に示す内容で加工対象物のおもて面および裏面に対して加工を実施した。加工条件は下記のとおりである。CMP工程では、研磨用組成物A、BをそれぞれスラリーA,Bとして用いた。GCは緑色炭化ケイ素粒子を砥粒として含むスラリーである。加工対象物としては、3インチのSiCウェーハ(伝導型:n型、結晶型4H 4°off)を使用した。 <Example 1 to Example 10>
The processing shown in Table 1 was performed on the front and back surfaces of the workpiece. The processing conditions are as follows. In the CMP process, polishing compositions A and B were used as slurries A and B, respectively. GC is a slurry containing green silicon carbide particles as abrasive grains. As a processing object, a 3-inch SiC wafer (conductivity type: n-type, crystal type 4H 4 ° off) was used.
[CMP条件]
研磨装置:不二越機械工業社製の製品名「SPM-11」
研磨パッド:フジミインコーポレーテッド社製の「SURFIN 019‐3」
研磨圧力:300g/cm2
定盤回転数:60回転/分
ヘッド回転数:40回転/分(強制駆動)
研磨液の供給レート:≧20mL/分(掛け流し)
研磨液の温度:25℃
研磨時間:Raが一定になるまで [CMP conditions]
Polishing machine: Product name “SPM-11” manufactured by Fujikoshi Machinery Co., Ltd.
Polishing pad: “SURFIN 019-3” manufactured by Fujimi Incorporated
Polishing pressure: 300 g / cm 2
Surface plate rotation speed: 60 rotations / minute Head rotation speed: 40 rotations / minute (forced drive)
Polishing liquid supply rate: ≧ 20 mL / min (flowing)
Polishing liquid temperature: 25 ° C
Polishing time: until Ra becomes constant
研磨装置:不二越機械工業社製の製品名「SPM-11」
研磨パッド:フジミインコーポレーテッド社製の「SURFIN 019‐3」
研磨圧力:300g/cm2
定盤回転数:60回転/分
ヘッド回転数:40回転/分(強制駆動)
研磨液の供給レート:≧20mL/分(掛け流し)
研磨液の温度:25℃
研磨時間:Raが一定になるまで [CMP conditions]
Polishing machine: Product name “SPM-11” manufactured by Fujikoshi Machinery Co., Ltd.
Polishing pad: “SURFIN 019-3” manufactured by Fujimi Incorporated
Polishing pressure: 300 g / cm 2
Surface plate rotation speed: 60 rotations / minute Head rotation speed: 40 rotations / minute (forced drive)
Polishing liquid supply rate: ≧ 20 mL / min (flowing)
Polishing liquid temperature: 25 ° C
Polishing time: until Ra becomes constant
[ラッピング条件]
研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
研磨定盤:銅製
研磨圧力:300g/cm2
定盤回転数:70回転/分
ヘッド回転数:40回転/分(強制駆動)
研磨液中の砥粒濃度:10%
研磨液の供給レート:10mL/分(掛け流し)
研磨液の温度:25℃
研磨時間:Raが一定になるまで [Wrapping conditions]
Polishing device: Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing surface plate: Copper Polishing pressure: 300 g / cm 2
Surface plate rotation speed: 70 rotations / minute Head rotation speed: 40 rotations / minute (forced drive)
Abrasive grain concentration in polishing liquid: 10%
Polishing liquid supply rate: 10 mL / min (flowing)
Polishing liquid temperature: 25 ° C
Polishing time: until Ra becomes constant
研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
研磨定盤:銅製
研磨圧力:300g/cm2
定盤回転数:70回転/分
ヘッド回転数:40回転/分(強制駆動)
研磨液中の砥粒濃度:10%
研磨液の供給レート:10mL/分(掛け流し)
研磨液の温度:25℃
研磨時間:Raが一定になるまで [Wrapping conditions]
Polishing device: Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing surface plate: Copper Polishing pressure: 300 g / cm 2
Surface plate rotation speed: 70 rotations / minute Head rotation speed: 40 rotations / minute (forced drive)
Abrasive grain concentration in polishing liquid: 10%
Polishing liquid supply rate: 10 mL / min (flowing)
Polishing liquid temperature: 25 ° C
Polishing time: until Ra becomes constant
[研削条件]
研削装置:秀和工業社製の製品名「MHG-2000」
研削用砥石:ダイヤモンドホイール(結合材:ビドリファイド)
砥石回転数:2000回転/分
ワーク回転数:200回転/分
研削時間:Raが一定になるまで [Grinding conditions]
Grinding equipment: Product name “MHG-2000” manufactured by Shuwa Kogyo
Grinding wheel: Diamond wheel (Binder: Vibrido)
Grinding wheel rotation speed: 2000 rotations / minute Workpiece rotation speed: 200 rotations / minute Grinding time: Until Ra becomes constant
研削装置:秀和工業社製の製品名「MHG-2000」
研削用砥石:ダイヤモンドホイール(結合材:ビドリファイド)
砥石回転数:2000回転/分
ワーク回転数:200回転/分
研削時間:Raが一定になるまで [Grinding conditions]
Grinding equipment: Product name “MHG-2000” manufactured by Shuwa Kogyo
Grinding wheel: Diamond wheel (Binder: Vibrido)
Grinding wheel rotation speed: 2000 rotations / minute Workpiece rotation speed: 200 rotations / minute Grinding time: Until Ra becomes constant
<加工歪層深さの測定>
加工物のおもて面および裏面における加工歪層の深さは、微分干渉顕微鏡(ニコン社製の商品名「OPTIPHOTO300」)による観察(観察倍率:10~200倍)およびポリシングから測定した。具体的には、微分干渉顕微鏡によって加工傷を特定し、当該特定された加工傷をポリシングによって除去し、その除去までに要する研磨取り代に相当する深さを加工歪層の深さ[μm]とした。ポリシング条件および研磨取り代の算出方法を以下に示す。
[ポリシング条件]
研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
研磨パッド:ニッタ・ハース社製「SUBA800」
研磨圧力:300g/cm2
定盤回転数:80回転/分
研磨時間:加工傷が消えるまで
ヘッド回転数:40回転/分
研磨液の供給レート:20mL/分(掛け流し)
研磨液の温度:25℃
研磨液:コロイダルシリカ+バナジン酸塩+過酸化水素(pH8)
[研磨取り代]
研磨取り代[cm]=研磨前後のSiCウェーハの重量の差[g]/SiCの密度[g/cm3](=3.21g/cm3)/研磨対象面積[cm2](=19.62cm2)
測定結果を表1に示す。 <Measurement of processing strain layer depth>
The depth of the processed strain layer on the front and back surfaces of the workpiece was measured by observation (observation magnification: 10 to 200 times) and polishing with a differential interference microscope (trade name “OPTIPHOTO300” manufactured by Nikon Corporation). Specifically, a processing flaw is specified by a differential interference microscope, the specified processing flaw is removed by polishing, and the depth corresponding to the polishing allowance required for the removal is the depth of the processing strain layer [μm]. It was. A method for calculating polishing conditions and polishing allowance is shown below.
[Policing condition]
Polishing device: Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: “SUBA800” manufactured by Nitta Haas
Polishing pressure: 300 g / cm 2
Surface plate rotation speed: 80 rotations / minute Polishing time: Until the processing scratch disappears Head rotation speed: 40 rotations / minute Polishing liquid supply rate: 20 mL / minute (flowing)
Polishing liquid temperature: 25 ° C
Polishing liquid: colloidal silica + vanadate + hydrogen peroxide (pH 8)
[Polishing allowance]
Polishing allowance [cm] = SiC wafer weight difference before and after polishing [g] / SiC density [g / cm 3 ] (= 3.21 g / cm 3 ) / Polishing target area [cm 2 ] (= 19. 62cm 2 )
The measurement results are shown in Table 1.
加工物のおもて面および裏面における加工歪層の深さは、微分干渉顕微鏡(ニコン社製の商品名「OPTIPHOTO300」)による観察(観察倍率:10~200倍)およびポリシングから測定した。具体的には、微分干渉顕微鏡によって加工傷を特定し、当該特定された加工傷をポリシングによって除去し、その除去までに要する研磨取り代に相当する深さを加工歪層の深さ[μm]とした。ポリシング条件および研磨取り代の算出方法を以下に示す。
[ポリシング条件]
研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
研磨パッド:ニッタ・ハース社製「SUBA800」
研磨圧力:300g/cm2
定盤回転数:80回転/分
研磨時間:加工傷が消えるまで
ヘッド回転数:40回転/分
研磨液の供給レート:20mL/分(掛け流し)
研磨液の温度:25℃
研磨液:コロイダルシリカ+バナジン酸塩+過酸化水素(pH8)
[研磨取り代]
研磨取り代[cm]=研磨前後のSiCウェーハの重量の差[g]/SiCの密度[g/cm3](=3.21g/cm3)/研磨対象面積[cm2](=19.62cm2)
測定結果を表1に示す。 <Measurement of processing strain layer depth>
The depth of the processed strain layer on the front and back surfaces of the workpiece was measured by observation (observation magnification: 10 to 200 times) and polishing with a differential interference microscope (trade name “OPTIPHOTO300” manufactured by Nikon Corporation). Specifically, a processing flaw is specified by a differential interference microscope, the specified processing flaw is removed by polishing, and the depth corresponding to the polishing allowance required for the removal is the depth of the processing strain layer [μm]. It was. A method for calculating polishing conditions and polishing allowance is shown below.
[Policing condition]
Polishing device: Single-side polishing device manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: “SUBA800” manufactured by Nitta Haas
Polishing pressure: 300 g / cm 2
Surface plate rotation speed: 80 rotations / minute Polishing time: Until the processing scratch disappears Head rotation speed: 40 rotations / minute Polishing liquid supply rate: 20 mL / minute (flowing)
Polishing liquid temperature: 25 ° C
Polishing liquid: colloidal silica + vanadate + hydrogen peroxide (pH 8)
[Polishing allowance]
Polishing allowance [cm] = SiC wafer weight difference before and after polishing [g] / SiC density [g / cm 3 ] (= 3.21 g / cm 3 ) / Polishing target area [cm 2 ] (= 19. 62cm 2 )
The measurement results are shown in Table 1.
<表面粗さRa>
各例に係る加工後の加工物表面につき、原子間力顕微鏡(AFM;商品名「D3100 Nano Scope V」、Veeco社製)を用いて、測定領域10μm×10μmの条件で表面粗さRa[nm]を測定した。結果を表1に示す。 <Surface roughness Ra>
The surface roughness Ra [nm] was measured on the surface of the processed workpiece according to each example using an atomic force microscope (AFM; trade name “D3100 Nano Scope V”, manufactured by Veeco) under the condition of a measurement area of 10 μm × 10 μm. ] Was measured. The results are shown in Table 1.
各例に係る加工後の加工物表面につき、原子間力顕微鏡(AFM;商品名「D3100 Nano Scope V」、Veeco社製)を用いて、測定領域10μm×10μmの条件で表面粗さRa[nm]を測定した。結果を表1に示す。 <Surface roughness Ra>
The surface roughness Ra [nm] was measured on the surface of the processed workpiece according to each example using an atomic force microscope (AFM; trade name “D3100 Nano Scope V”, manufactured by Veeco) under the condition of a measurement area of 10 μm × 10 μm. ] Was measured. The results are shown in Table 1.
<基板形状の評価>
各例に係る加工方法で製造した半導体基板の反り方(おもて面を基準としたときの凹凸)およびその程度[μm]をGBIRにて測定した。測定は、東京精密社製の表面形状測定機「SURFCOM 1500DX」を用いた。おもて面側が凸となる反りについては「+Xμm」と記載し、おもて面側が凹となる反りについては「-Xμm」と記載した。結果を表1に示す。 <Evaluation of substrate shape>
The warpage of the semiconductor substrate manufactured by the processing method according to each example (unevenness with respect to the front surface) and its degree [μm] were measured by GBIR. For the measurement, a surface shape measuring machine “SURFCOM 1500DX” manufactured by Tokyo Seimitsu Co., Ltd. was used. The warp where the front side is convex is described as “+ X μm”, and the warp where the front side is concave is described as “−X μm”. The results are shown in Table 1.
各例に係る加工方法で製造した半導体基板の反り方(おもて面を基準としたときの凹凸)およびその程度[μm]をGBIRにて測定した。測定は、東京精密社製の表面形状測定機「SURFCOM 1500DX」を用いた。おもて面側が凸となる反りについては「+Xμm」と記載し、おもて面側が凹となる反りについては「-Xμm」と記載した。結果を表1に示す。 <Evaluation of substrate shape>
The warpage of the semiconductor substrate manufactured by the processing method according to each example (unevenness with respect to the front surface) and its degree [μm] were measured by GBIR. For the measurement, a surface shape measuring machine “SURFCOM 1500DX” manufactured by Tokyo Seimitsu Co., Ltd. was used. The warp where the front side is convex is described as “+ X μm”, and the warp where the front side is concave is described as “−X μm”. The results are shown in Table 1.
<膜形成後基板形状の評価>
各例に係る加工方法で製造した半導体基板のおもて面にエピタキシャル膜を形成し、エピタキシャル膜形成後の半導体基板の形状をGBIRにて測定した。エピタキシャル膜として厚さ30μmのn-型SiC層を形成した。得られたGBIRの測定結果に基づき下記の基準で評価した。結果を表1に示す。
[評価基準]
◎:GBIR3μm以下
○:GBIR3μm超10μm以下
△:GBIR10μm超14μm以下
×:GBIR14μm超 <Evaluation of substrate shape after film formation>
An epitaxial film was formed on the front surface of the semiconductor substrate manufactured by the processing method according to each example, and the shape of the semiconductor substrate after the epitaxial film was formed was measured by GBIR. An n − -type SiC layer having a thickness of 30 μm was formed as an epitaxial film. Based on the obtained GBIR measurement results, the following criteria were used for evaluation. The results are shown in Table 1.
[Evaluation criteria]
◎: GBIR 3 μm or less ○: GBIR more than 3 μm and 10 μm or less Δ: GBIR more than 10 μm and 14 μm or less ×: GBIR more than 14 μm
各例に係る加工方法で製造した半導体基板のおもて面にエピタキシャル膜を形成し、エピタキシャル膜形成後の半導体基板の形状をGBIRにて測定した。エピタキシャル膜として厚さ30μmのn-型SiC層を形成した。得られたGBIRの測定結果に基づき下記の基準で評価した。結果を表1に示す。
[評価基準]
◎:GBIR3μm以下
○:GBIR3μm超10μm以下
△:GBIR10μm超14μm以下
×:GBIR14μm超 <Evaluation of substrate shape after film formation>
An epitaxial film was formed on the front surface of the semiconductor substrate manufactured by the processing method according to each example, and the shape of the semiconductor substrate after the epitaxial film was formed was measured by GBIR. An n − -type SiC layer having a thickness of 30 μm was formed as an epitaxial film. Based on the obtained GBIR measurement results, the following criteria were used for evaluation. The results are shown in Table 1.
[Evaluation criteria]
◎: GBIR 3 μm or less ○: GBIR more than 3 μm and 10 μm or less Δ: GBIR more than 10 μm and 14 μm or less ×: GBIR more than 14 μm
表1に示されるように、おもて面に加工歪層が存在せず、裏面に加工歪層が存在した例1~3,例5~8では、膜形成後の半導体基板形状の評価結果が優良または実用上許容し得る範囲であった。また、おもて面に加工歪層が存在する基板においても、裏面の加工歪層の深さがおもて面のものよりも大きかった例4では、膜形成後の半導体基板形状の評価結果が良好であった。この効果は、裏面加工工程の方法および条件を適切に設定することにより得られる。特に、研削工程およびラッピング工程において、相対的に小さい粒子径の砥粒を用いた例5、例7および例8では、膜形成後の半導体基板形状の評価結果が優れていた。一方、裏面に加工歪層が存在しない例9,10では、膜形成後の半導体基板形状の評価結果が不良であった。
As shown in Table 1, in Examples 1 to 3 and Examples 5 to 8 in which there was no processed strain layer on the front surface and a processed strain layer on the back surface, the evaluation results of the semiconductor substrate shape after film formation Was in an excellent or practically acceptable range. Further, in Example 4 in which the depth of the back-side processed strain layer is larger than that of the front surface even in the substrate having the processed strain layer on the front surface, the evaluation result of the shape of the semiconductor substrate after film formation Was good. This effect can be obtained by appropriately setting the method and conditions for the back surface processing step. In particular, in Example 5, Example 7 and Example 8 in which abrasive grains having a relatively small particle diameter were used in the grinding step and the lapping step, the evaluation results of the semiconductor substrate shape after film formation were excellent. On the other hand, in Examples 9 and 10 where the processing strain layer does not exist on the back surface, the evaluation result of the shape of the semiconductor substrate after film formation was poor.
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
Claims (19)
- ウェーハ状の加工対象物の裏面を加工する裏面加工工程を含む半導体基板の製造方法であって、
前記裏面加工工程を経た前記裏面には加工歪層が存在しており、
前記裏面に存在する加工歪層の深さは前記半導体基板のおもて面の加工歪層の深さよりも大きいか、あるいは前記おもて面には加工歪層が存在しない、半導体基板の製造方法。 A method for manufacturing a semiconductor substrate including a back surface processing step for processing a back surface of a wafer-like workpiece,
There is a processing strain layer on the back surface that has undergone the back surface processing step,
Manufacturing of a semiconductor substrate, wherein the depth of the processing strain layer existing on the back surface is greater than the depth of the processing strain layer on the front surface of the semiconductor substrate, or there is no processing strain layer on the front surface Method. - 前記裏面加工工程は、前記裏面の算術平均表面粗さRaを10nm以下とする工程である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the back surface processing step is a step of setting the arithmetic average surface roughness Ra of the back surface to 10 nm or less.
- 前記裏面に存在する加工歪層の深さは0.1μm以上である、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the depth of the processing strain layer existing on the back surface is 0.1 µm or more.
- 前記裏面加工工程は化学的機械研磨工程を含む、請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the back surface processing step includes a chemical mechanical polishing step.
- 前記裏面加工工程はラッピング工程を含む、請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the back surface processing step includes a lapping step.
- 前記裏面加工工程は研削工程を含む、請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the back surface processing step includes a grinding step.
- 前記加工対象物のおもて面を加工するおもて面加工工程を含み、
前記おもて面加工工程および前記裏面加工工程はともに砥粒を用いる工程を含み、
前記裏面加工工程で用いられる砥粒は、前記おもて面加工工程で用いられる砥粒よりも高硬度である、請求項1~6のいずれか一項に記載の製造方法。 Including a front surface processing step of processing the front surface of the object to be processed;
Both the front surface processing step and the back surface processing step include a step of using abrasive grains,
The manufacturing method according to any one of claims 1 to 6, wherein the abrasive grains used in the back surface processing step have higher hardness than the abrasive grains used in the front surface processing step. - 前記加工対象物のおもて面を加工するおもて面加工工程を含み、
前記おもて面加工工程および前記裏面加工工程はともに砥粒を用いる工程を含み、
前記裏面加工工程で用いられる砥粒は、前記おもて面加工工程で用いられる砥粒よりも粒子径が大きい、請求項1~7のいずれか一項に記載の製造方法。 Including a front surface processing step of processing the front surface of the object to be processed;
Both the front surface processing step and the back surface processing step include a step of using abrasive grains,
The manufacturing method according to any one of claims 1 to 7, wherein the abrasive grains used in the back surface processing step have a larger particle diameter than the abrasive grains used in the front surface processing step. - 前記半導体基板は、炭化ケイ素から構成された半導体基板である、請求項1~8のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, wherein the semiconductor substrate is a semiconductor substrate made of silicon carbide.
- 請求項7~9のいずれか一項に記載の製造方法に用いられる研磨用組成物セットであって、
前記裏面加工工程に用いられる裏面研磨用組成物としての組成物Q1と、
前記おもて面加工工程に用いられるおもて面研磨用組成物としての組成物Q2と
を含み、
前記組成物Q1と前記組成物Q2とは互いに分けて保管されている、研磨用組成物セット。 A polishing composition set used in the production method according to any one of claims 7 to 9,
A composition Q1 as a back surface polishing composition used in the back surface processing step;
A composition Q2 as a front surface polishing composition used in the front surface processing step,
The polishing composition set in which the composition Q1 and the composition Q2 are stored separately from each other. - 前記裏面研磨用組成物は砥粒ABFを含有し、
前記おもて面研磨用組成物は砥粒AFFを含有し、
前記砥粒ABFはアルミナ粒子または緑色炭化ケイ素粒子であり、前記砥粒AFFはシリカ粒子またはアルミナ粒子である、請求項10に記載の研磨用組成物セット。 The back polishing composition contains abrasive grains A BF,
The front surface polishing composition contains abrasive grains A FF,
The polishing composition set according to claim 10, wherein the abrasive grains ABF are alumina particles or green silicon carbide particles, and the abrasive grains AFF are silica particles or alumina particles. - 前記裏面研磨用組成物は研磨助剤CBFを含有し、
前記おもて面研磨用組成物は研磨助剤CFFを含有し、
前記研磨助剤CBFは過マンガン酸またはその塩であり、前記研磨助剤CFFは過酸化水素およびバナジン酸類である、請求項11に記載の研磨用組成物セット。 The backside polishing composition contains a polishing aid CBF ,
The front surface polishing composition contains a polishing aid CFF ,
The grinding aid C BF is permanganic acid or a salt thereof, wherein grinding aid C FF is hydrogen peroxide and vanadium acids, polishing composition set according to claim 11. - 請求項7~9のいずれか一項に記載の製造方法に用いられる組成物セットであって、
前記裏面加工工程に用いられるラッピング用組成物としての組成物Q3と、
前記おもて面加工工程に用いられるおもて面研磨用組成物としての組成物Q4と
を含み、
前記組成物Q3と前記組成物Q4とは互いに分けて保管されている、組成物セット。 A composition set for use in the production method according to any one of claims 7 to 9,
A composition Q3 as a wrapping composition used in the back surface processing step;
Including a composition Q4 as a front surface polishing composition used in the front surface processing step,
The composition set in which the composition Q3 and the composition Q4 are stored separately from each other. - 前記ラッピング用組成物は砥粒ABFを含有し、
前記おもて面研磨用組成物は砥粒AFFを含有し、
前記砥粒ABFはダイヤモンド粒子であり、前記砥粒AFFはシリカ粒子またはアルミナ粒子である、請求項13に記載の組成物セット。 The lapping composition contains abrasive grains A BF,
The front surface polishing composition contains abrasive grains A FF,
The composition set according to claim 13, wherein the abrasive grains ABF are diamond particles, and the abrasive grains AFF are silica particles or alumina particles. - 前記おもて面研磨用組成物は研磨助剤CFFを含有し、
前記研磨助剤CFFは過マンガン酸、過マンガン酸塩、過酸化水素およびバナジン酸類からなる群から選択される少なくとも1種である、請求項14に記載の組成物セット。 The front surface polishing composition contains a polishing aid CFF ,
The grinding aid C FF is permanganate, permanganate is at least one selected from the group consisting of hydrogen peroxide and vanadium acids composition set forth in claim 14. - 請求項7~9のいずれか一項に記載の製造方法に用いられる半導体基板製造用セットであって、
前記裏面加工工程に用いられる研削用砥粒と、
前記おもて面加工工程に用いられるおもて面研磨用組成物としての組成物Q5と
を含み、
前記研削用砥粒と前記組成物Q5とは互いに分けて保管されている、半導体基板製造用セット。 A semiconductor substrate manufacturing set used in the manufacturing method according to any one of claims 7 to 9,
Abrasive particles for grinding used in the back surface processing step;
A composition Q5 as a front surface polishing composition used in the front surface processing step,
The set for manufacturing a semiconductor substrate, wherein the abrasive grains for grinding and the composition Q5 are stored separately from each other. - 前記研削用砥粒はダイヤモンド粒子であり、前記砥粒AFFはシリカ粒子またはアルミナ粒子である、請求項16に記載の半導体基板製造用セット。 The set for manufacturing a semiconductor substrate according to claim 16, wherein the abrasive grains for grinding are diamond particles, and the abrasive grains AFF are silica particles or alumina particles.
- 前記おもて面研磨用組成物は研磨助剤CFFを含有し、
前記研磨助剤CFFは過マンガン酸、過マンガン酸塩、過酸化水素およびバナジン酸類からなる群から選択される少なくとも1種である、請求項17に記載の半導体基板製造用セット。 The front surface polishing composition contains a polishing aid CFF ,
The grinding aid C FF is permanganate, permanganate is at least one selected from the group consisting of hydrogen peroxide and vanadium acids, Set for manufacturing a semiconductor substrate according to claim 17. - おもて面と裏面とを有する半導体基板であって、
前記裏面には加工歪層が存在しており、
前記裏面に存在する加工歪層の深さは前記おもて面の加工歪層の深さよりも大きいか、あるいは前記おもて面には加工歪層が存在しない、半導体基板。 A semiconductor substrate having a front surface and a back surface,
There is a processing strain layer on the back surface,
The depth of the processing strain layer existing on the back surface is greater than the depth of the processing strain layer on the front surface, or the semiconductor substrate has no processing strain layer on the front surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020510031A JP7421470B2 (en) | 2018-03-30 | 2019-03-25 | Semiconductor substrate manufacturing method and polishing composition set, etc. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018068524 | 2018-03-30 | ||
JP2018-068524 | 2018-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019188901A1 true WO2019188901A1 (en) | 2019-10-03 |
Family
ID=68061860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012358 WO2019188901A1 (en) | 2018-03-30 | 2019-03-25 | Production method for semiconductor substrate, and set such as polishing composition set |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7421470B2 (en) |
TW (1) | TW202004884A (en) |
WO (1) | WO2019188901A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022168859A1 (en) * | 2021-02-04 | 2022-08-11 | 株式会社フジミインコーポレーテッド | Polishing method and polishing composition |
US12139643B2 (en) | 2021-02-04 | 2024-11-12 | Fujimi Incorporated | Polishing composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54134563A (en) * | 1978-04-11 | 1979-10-19 | Cho Lsi Gijutsu Kenkyu Kumiai | Method of fabricating semiconductor device |
JPH08321445A (en) * | 1995-05-25 | 1996-12-03 | Sumitomo Electric Ind Ltd | Microdevice substrate and manufacture thereof |
JP2005136167A (en) * | 2003-10-30 | 2005-05-26 | Sumitomo Electric Ind Ltd | Nitride semiconductor substrate and manufacturing method thereof |
WO2012049792A1 (en) * | 2010-10-15 | 2012-04-19 | 三菱電機株式会社 | Method for producing silicon carbide semiconductor device |
WO2013021902A1 (en) * | 2011-08-05 | 2013-02-14 | 住友電気工業株式会社 | Substrate, semiconductor device, method for producing substrate, and method for manufacturing semiconductor device |
JP2013201397A (en) * | 2012-03-26 | 2013-10-03 | Fujitsu Ltd | Semiconductor device manufacturing method, semiconductor device and substrate for semiconductor crystal growth |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101842300B1 (en) * | 2010-06-23 | 2018-03-26 | 닛산 가가쿠 고교 가부시키 가이샤 | Composition for polishing silicon carbide substrate and method for polishing silicon carbide substrate |
KR20140076566A (en) * | 2011-10-07 | 2014-06-20 | 아사히 가라스 가부시키가이샤 | Single-crystal silicon-carbide substrate and polishing solution |
JP2015229750A (en) * | 2014-06-06 | 2015-12-21 | コニカミノルタ株式会社 | Cmp polishing liquid |
JP6788988B2 (en) * | 2016-03-31 | 2020-11-25 | 株式会社フジミインコーポレーテッド | Polishing composition |
-
2019
- 2019-03-25 JP JP2020510031A patent/JP7421470B2/en active Active
- 2019-03-25 WO PCT/JP2019/012358 patent/WO2019188901A1/en active Application Filing
- 2019-03-27 TW TW108110668A patent/TW202004884A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54134563A (en) * | 1978-04-11 | 1979-10-19 | Cho Lsi Gijutsu Kenkyu Kumiai | Method of fabricating semiconductor device |
JPH08321445A (en) * | 1995-05-25 | 1996-12-03 | Sumitomo Electric Ind Ltd | Microdevice substrate and manufacture thereof |
JP2005136167A (en) * | 2003-10-30 | 2005-05-26 | Sumitomo Electric Ind Ltd | Nitride semiconductor substrate and manufacturing method thereof |
WO2012049792A1 (en) * | 2010-10-15 | 2012-04-19 | 三菱電機株式会社 | Method for producing silicon carbide semiconductor device |
WO2013021902A1 (en) * | 2011-08-05 | 2013-02-14 | 住友電気工業株式会社 | Substrate, semiconductor device, method for producing substrate, and method for manufacturing semiconductor device |
JP2013201397A (en) * | 2012-03-26 | 2013-10-03 | Fujitsu Ltd | Semiconductor device manufacturing method, semiconductor device and substrate for semiconductor crystal growth |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022168859A1 (en) * | 2021-02-04 | 2022-08-11 | 株式会社フジミインコーポレーテッド | Polishing method and polishing composition |
US12110422B2 (en) | 2021-02-04 | 2024-10-08 | Fujimi Incorporated | Polishing method and polishing composition |
US12139643B2 (en) | 2021-02-04 | 2024-11-12 | Fujimi Incorporated | Polishing composition |
Also Published As
Publication number | Publication date |
---|---|
TW202004884A (en) | 2020-01-16 |
JPWO2019188901A1 (en) | 2021-04-22 |
JP7421470B2 (en) | 2024-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI829662B (en) | Grinding composition and grinding method | |
US10759981B2 (en) | Polishing method and polishing composition | |
US11261346B2 (en) | Polishing composition | |
CN110431210B (en) | Polishing composition | |
TW201739893A (en) | Polishing composition | |
JP7421470B2 (en) | Semiconductor substrate manufacturing method and polishing composition set, etc. | |
TW201942320A (en) | Polishing composition | |
WO2016072371A1 (en) | Polishing composition | |
TW202330822A (en) | Polishing composition | |
WO2021241505A1 (en) | Polishing method and polishing composition set | |
TW202402982A (en) | Polishing composition | |
JP2021082642A (en) | Polishing method and polishing set for composite element-containing single crystal substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776616 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510031 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19776616 Country of ref document: EP Kind code of ref document: A1 |