[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019188638A1 - Control device, control method, computer program, and storage medium - Google Patents

Control device, control method, computer program, and storage medium Download PDF

Info

Publication number
WO2019188638A1
WO2019188638A1 PCT/JP2019/011641 JP2019011641W WO2019188638A1 WO 2019188638 A1 WO2019188638 A1 WO 2019188638A1 JP 2019011641 W JP2019011641 W JP 2019011641W WO 2019188638 A1 WO2019188638 A1 WO 2019188638A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gain
period
control
control device
Prior art date
Application number
PCT/JP2019/011641
Other languages
French (fr)
Japanese (ja)
Inventor
庄悟 宮鍋
古川 淳一
内野 裕行
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019188638A1 publication Critical patent/WO2019188638A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/489Gain of receiver varied automatically during pulse-recurrence period

Definitions

  • the present invention relates to a control device, a control method, a computer program, and a storage medium.
  • receiving stray light in the device may adversely affect the reception of the reflected wave.
  • Patent Document 1 describes that the detection signal is generated by turning on the gate signal of the detection unit in accordance with the output timing of the laser, and the detection signal is not generated by turning off the gate signal in a time zone between a plurality of output pulses. Has been.
  • Patent Document 1 cannot avoid the effect of stray light detected at a timing close to the laser output. Further, the time zone between the plurality of laser pulses cannot be sufficiently detected.
  • An example of a problem to be solved by the present invention is to accurately detect a reflected wave after output of an electromagnetic wave.
  • the control unit has a second period in which a second gain lower than the first gain of the amplification unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit.
  • the invention according to claim 11 Including a control step of controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit, In the control step, in a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit, a second period in which the second gain is lower than the first gain of the amplification unit after the first period has elapsed.
  • the invention according to claim 12 A computer program for realizing a control device, Computer
  • the electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
  • the control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. It is a computer program for controlling the gain so that
  • a computer-readable recording medium recording a computer program for realizing a control device
  • the computer program includes a computer
  • the electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object
  • the control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit.
  • the recording medium controls the gain so that the recording medium can be used.
  • FIG. 3 is a block diagram illustrating a functional configuration of a control device according to the first embodiment. 3 is a flowchart illustrating the contents of setting processing according to the first embodiment.
  • 1 is a diagram illustrating a hardware configuration of a measurement apparatus according to Example 1.
  • FIG. It is a figure which illustrates the hardware constitutions of a control apparatus.
  • FIG. 10 is a flowchart illustrating the contents of a setting process according to the second embodiment.
  • 12 is a timing chart illustrating the relationship between the irradiation timing of the irradiation unit and the output of the amplification unit according to the second embodiment.
  • FIG. 6 is a diagram illustrating a circuit configuration of an amplifying unit according to a third embodiment. 6 is a timing chart illustrating the relationship between the switching timing of SW1 to SW3, the irradiation timing of the irradiation unit, and the gain of the amplification unit. It is a figure for demonstrating operation
  • each component of the control device 10 and the measurement device 20 is not a hardware unit configuration but a functional unit block.
  • Each component of the control device 10 and the measuring device 20 includes hardware and software centered on an arbitrary computer CPU, memory, a program loaded in the memory, a storage medium such as a hard disk for storing the program, and a network connection interface. Realized by any combination of wear. There are various modifications of the implementation method and apparatus.
  • FIG. 1 is a block diagram illustrating a functional configuration of the control device 10 according to the embodiment.
  • the control device 10 includes a control unit 100.
  • the control unit 100 controls the gain of the amplification unit 240.
  • the amplifying unit 240 amplifies the output signal of the receiving unit 220.
  • the receiving unit 220 can receive a reflected wave in which the electromagnetic wave irradiated by the irradiation unit 200 is reflected by the object.
  • control unit 100 has a second period in which the second gain is lower than the first gain of the amplification unit 240 after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit 200.
  • the gain is controlled so that This will be described in detail below.
  • the input signal is amplified according to the gain and output.
  • the gain is too large with respect to the input signal, the output signal is saturated.
  • the influence continues for a while even after the input signal is lowered, and the output of the amplifying unit 240 does not decrease immediately. As a result, the reflected wave cannot be detected until the influence of saturation disappears.
  • the control unit 100 is lower than the first gain of the amplification unit 240 after the first period has elapsed within a predetermined first period after the irradiation unit 200 has irradiated the electromagnetic wave.
  • the gain is controlled so that a second period corresponding to the second gain is obtained. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
  • the amplification factor of the amplification unit 240 in the second period may be zero. However, by making the amplification factor of the amplification unit 240 in the second period exceed 0, for example, the output signal of the amplification unit 240 can be used. For example, this signal can be used as the starting point of measurement as the output timing of the electromagnetic wave pulse.
  • FIG. 2 is a timing chart illustrating the relationship between the irradiation timing of the irradiation unit 200, the gain of the amplification unit 240, and the output of the amplification unit 240 according to this embodiment.
  • the control device 10 is the control device 10 of the measurement device 20 including the irradiation unit 200 and the reception unit 220. And the measurement using the output signal of the receiving part 220 is not performed in 1st period T1.
  • the measuring device 20 includes an amplification unit 240.
  • the amplification unit 240 is, for example, a current / voltage conversion circuit or an amplification circuit.
  • the control device 10 may be a part of the measuring device 20 or may be provided separately from the measuring device 20. In the example of FIG. 1, the control device 10 is a part of the measurement device 20.
  • the measuring device 20 is, for example, a rider (LIDAR: Laser Detection and Ranging, Laser Illuminated Detection and Ranging or LiDAR: Light Detection and Ranging).
  • LIDAR Laser Detection and Ranging
  • LiDAR Light Detection and Ranging
  • the distance from the measurement device 20 to the object is calculated using the difference between the output timing of the electromagnetic wave pulse from the irradiation unit 200 and the reception timing of the reflected wave at the reception unit 220.
  • the electromagnetic wave is, for example, light such as ultraviolet light, visible light, or near infrared light.
  • the irradiation part 200 outputs a pulse wave, for example.
  • the first period T1 is a period during which no measurement is performed in the measurement apparatus 20.
  • the period in which the measurement is not performed is a period in which a measured value such as a distance is not calculated using the output of the receiving unit 220, for example.
  • the measurement device 20 is a rider and intends to measure an object that is separated from the measurement device 20 to some extent, the measurement value based on the output of the reception unit 220 obtained during and immediately after the output of the electromagnetic wave from the irradiation unit 200 is obtained. There is no need to calculate.
  • the receiving unit 220 receives the electromagnetic wave reflected in the measuring device 20 in the second period T2.
  • a peak 90 indicates a peak obtained by detecting an electromagnetic wave reflected in the measuring apparatus 20
  • a peak 91 indicates a peak obtained by detecting an electromagnetic wave reflected by an object outside the measuring apparatus 20.
  • the electromagnetic wave reflected in the measuring device 20 is so-called stray light.
  • the electromagnetic wave reflected in the measuring apparatus 20 and received by the receiving unit 220 has a higher intensity than the reflected wave reflected by an object outside the measuring apparatus 20. Therefore, if the detection signal of the electromagnetic wave reflected in the measuring device 20 is amplified with the same gain as the detection signal of the reflected wave from the object, the amplification unit 240 is likely to be saturated.
  • the second gain G2 that is the gain of the amplification unit 240 in the second period T2 is smaller than the first gain G1 that is the gain of the amplification unit 240 after the first period has elapsed. Then, by receiving the electromagnetic wave reflected in the measuring device 20 within the second period T2 where the gain is low, saturation of the amplification unit 240 is avoided as in the peak 90, and measurement after the first period T1 is necessary.
  • the reflected wave can be detected with high accuracy like the peak 91 in a short time zone.
  • the second period T2 may be a part of the first period T1, or may coincide with the first period T1.
  • a time zone in which there is a high possibility of receiving the electromagnetic wave reflected in the measuring device 20 can be specified by a prior test or the like, and can be determined in advance as the second period T2.
  • the length of 1st period T1 is not specifically limited, For example, it is 0 nanosecond excess 6 nanosecond or less.
  • the length of the second period T2 is not particularly limited, but is, for example, more than 0 nanoseconds and 5 nanoseconds or less. For example, the range within 1 m from the measuring device 20 may not be measured.
  • FIG. 3 is a flowchart illustrating a control method according to this embodiment.
  • the method includes a control step S100.
  • control step S100 the gain of the amplifying unit 240 is controlled.
  • the amplifying unit 240 amplifies the output signal of the receiving unit 220.
  • the receiving unit 220 can receive a reflected wave in which the electromagnetic wave irradiated by the irradiation unit 200 is reflected by the object.
  • the second gain G2 lower than the first gain G1 of the amplifying unit 240 after the first period T1 has elapsed within the predetermined first period T1 after the electromagnetic wave is irradiated by the irradiation unit 200.
  • the gain is controlled so that the second period T2 is satisfied.
  • control method according to the present embodiment is realized using the control device 10 as described above.
  • the control unit 100 uses the first gain G1 of the amplifying unit 240 after the elapse of the first period T1 within the predetermined first period T1 after the electromagnetic wave is irradiated by the irradiation unit 200.
  • the gain is controlled so that the second period T2 in which the second gain G2 is lower can be obtained. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
  • FIG. 4 is a block diagram illustrating the functional configuration of the control device 10 according to the first embodiment.
  • the control device 10 according to the present example has the configuration of the control device 10 according to the embodiment.
  • the control device 10 further includes a switching unit 120.
  • the switching unit 120 switches the operation of the control device 10 between the first state and the second state.
  • measurement is performed using the output signal of the receiving unit 220.
  • processing for determining the operation of the control unit 100 in the first state (hereinafter also referred to as “setting processing”) is performed.
  • the second gain G2 is determined so that the output of the amplifier 240 is not saturated in the second period T2. Details of the setting process will be described later.
  • the switching unit 120 sets the operation of the control device 10 to the second state when the control device 10 is activated.
  • the switching unit 120 may switch the control device 10 to the second state when the measurement result of the temperature measuring unit 210 that measures the temperature of the irradiation unit 200 satisfies a predetermined condition.
  • the measuring device 20 further includes a temperature measuring unit 210.
  • the output intensity of the electromagnetic wave with respect to the driving power of the irradiation unit 200 changes.
  • the switching unit 120 switches the operation of the control device 10 to the second state based on the temperature of the irradiation unit 200, so that the setting process is performed, the saturation of the amplification unit 240 is avoided, and the highly accurate detection of the reflected wave is maintained. Is done.
  • FIG. 5 is a flowchart illustrating the contents of the setting process according to this embodiment.
  • the setting process is started when the control unit 100 receives information indicating switching from the switching unit 120 to the second state, and is executed by the control unit 100 controlling the irradiation unit 200 and the amplification unit 240.
  • the gain of the amplification unit 240 is set to a maximum value.
  • step S220 an electromagnetic wave is irradiated from the irradiation unit 200.
  • irradiation is performed with the irradiation intensity used for the measurement in the first state immediately after. Irradiation is preferably performed in a state where there is no object in the vicinity of the measuring device 20.
  • the electromagnetic wave is irradiated in step S220, the electromagnetic wave reflected in the measuring device 20 is received by the receiving unit 220.
  • step S240 it is determined whether or not the output of the amplifying unit 240 is saturated based on the output signal of the receiving unit 220 that has received the electromagnetic wave irradiated in step S220. Whether or not the output of the amplifying unit 240 is saturated can be determined by whether or not a saturated value is included in the output signal of the amplifying unit 240.
  • the saturation value is the maximum value that can be output by the amplification unit 240.
  • what is necessary is just to perform the determination whether the output of the amplification part 240 is saturated, for example in the 1st period T1.
  • the control unit 100 determines that the output of the amplification unit 240 is saturated when the output signal of the amplification unit 240 includes a saturation value. On the other hand, the control unit 100 determines that the output of the amplification unit 240 is not saturated when the output value of the amplification unit 240 does not include a saturation value. When it is determined in step S240 that the output of the amplification unit 240 is saturated (Y in step S240), the control unit 100 then decreases the gain of the amplification unit 240 by a predetermined width in step S280. Next, step S220 is performed again.
  • step S240 If it is determined in step S240 that the output of the amplifying unit 240 is not saturated (N in step S240), then in step S260, the gain of the amplifying unit 240 at that time is determined as the second gain.
  • the switching unit 120 switches the operation of the control device 10 to the first state.
  • the gain of the amplifying unit 240 is controlled using the determined second gain.
  • FIG. 6 is a diagram illustrating a hardware configuration of the measuring apparatus 20 according to the first embodiment.
  • the electrical connection relationship is indicated by a solid line
  • the connection by electromagnetic waves is indicated by a broken line.
  • the control device 10 is realized by the integrated circuit 40, and the measuring device 20 includes a receiving element 300, an IV amplifier 310, an AD conversion circuit 320, a driving circuit 330, a temperature measuring element 350, and an irradiation element 340.
  • the control device 10 is a part of the measurement device 20, but the control device 10 may be provided separately from the measurement device 20.
  • the irradiation element 340 functions as the irradiation unit 200.
  • the irradiation element 340 is, for example, a laser diode, and outputs a laser pulse with drive power and timing according to a drive signal from the drive circuit 330.
  • the drive circuit 330 is a circuit that drives the irradiation element 340.
  • Information indicating timing and driving power for driving the irradiation element 340 is input from the integrated circuit 40 to the driving circuit 330.
  • a driving signal for the irradiation element 340 is output from the driving circuit 330 and input to the irradiation element 340.
  • the receiving element 300 functions as the receiving unit 220.
  • the receiving element 300 is, for example, an avalanche photodiode (APD).
  • the receiving element 300 is arranged so as to receive the electromagnetic wave output from the irradiation element 340 and reflected by the object.
  • the receiving element 300 outputs a current signal indicating the reception intensity at the receiving element 300.
  • the IV amplifier 310 converts the current signal into a voltage signal.
  • the IV amplifier 310 functions as the amplification unit 240.
  • the gain in the conversion of the IV amplifier 310 is controlled by a gain control signal input from the integrated circuit 40.
  • the AD conversion circuit 320 converts the input analog signal into a digital signal and outputs it.
  • the output signal of the AD conversion circuit 320 is input to the integrated circuit 40 and processed.
  • the temperature measuring element 350 is a sensor element such as a temperature sensor.
  • the temperature measuring element 350 functions as the temperature measuring unit 210.
  • An output signal indicating the temperature measured by the temperature measuring element 350 is input to the integrated circuit 40.
  • FIG. 7 is a diagram illustrating a hardware configuration of the control device 10.
  • the control device 10 is mounted using an integrated circuit 40.
  • the integrated circuit 40 is, for example, a SoC (System On Chip).
  • the integrated circuit 40 includes a bus 402, a processor 404, a memory 406, a storage device 408, an input / output interface 410, and a network interface 412.
  • the bus 402 is a data transmission path through which the processor 404, the memory 406, the storage device 408, the input / output interface 410, and the network interface 412 transmit / receive data to / from each other.
  • the method of connecting the processors 404 and the like is not limited to bus connection.
  • the processor 404 is an arithmetic processing unit realized using a microprocessor or the like.
  • the memory 406 is a memory realized using a RAM (Random Access Memory) or the like.
  • the storage device 408 is a storage device realized by using a ROM (Read Only Memory), a flash memory, or the like.
  • the input / output interface 410 is an interface for connecting the integrated circuit 40 to a peripheral device.
  • an IV amplifier 310, an AD conversion circuit 320, a drive circuit 330, and a temperature measuring element 350 are connected to the input / output interface 410.
  • the network interface 412 is an interface for connecting the integrated circuit 40 to a communication network.
  • This communication network is, for example, a CAN (Controller Area Network) communication network.
  • a method of connecting the network interface 412 to the communication network may be a wireless connection or a wired connection.
  • the storage device 408 stores program modules for realizing the functions of the control unit 100 and the switching unit 120, respectively.
  • the processor 404 reads out the program module to the memory 406 and executes it, thereby realizing the functions of the control unit 100 and the switching unit 120.
  • the hardware configuration of the integrated circuit 40 is not limited to the configuration shown in the figure.
  • the program module may be stored in the memory 406.
  • the integrated circuit 40 may not include the storage device 408.
  • the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave.
  • the gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
  • FIG. 8 is a flowchart illustrating the contents of the setting process according to the second embodiment.
  • the control device 10 according to the present embodiment is the same as the control device 10 according to the first embodiment except for the content of the setting process.
  • the control unit 10 according to the present embodiment when the output of the amplification unit 240 due to reception of the electromagnetic wave reflected in the measurement device 20 does not saturate outside the first period T1, the control unit 100 In the state, the second period T2 is not provided. This will be described in detail below.
  • FIG. 9 is a timing chart illustrating the relationship between the irradiation timing of the irradiation unit 200 and the output of the amplification unit 240 according to the second embodiment.
  • the peak 90 in which the electromagnetic wave reflected in the measuring device 20 is detected is saturated within the first period T1.
  • the peak 90 is not saturated outside the first period T1. Therefore, the peak 91 in which the electromagnetic wave reflected by the object outside the measuring apparatus 20 is detected is detected well.
  • the control unit 100 does not need to provide the second period T2 having a low gain.
  • step S230 the control unit 100 determines whether or not the output of the amplification unit 240 is saturated outside the first period T1. Whether or not the output of the amplifying unit 240 is saturated can be determined by whether or not a saturated value is included in the output signal of the amplifying unit 240 as in step S240 of the first embodiment.
  • Step S230 When it is determined that the output of the amplifier 240 is not saturated outside the first period T1 (N in Step S230), the control unit 100 then determines in Step S290 that the second period T2 is not provided in the first state. To do.
  • step S280 when it is determined that the output of the amplification unit 240 is saturated outside the first period T1 (Y in step S230), the control unit 100 performs the process of step S280. Steps S280, S220, S240, and S260 are performed in the same manner as in the first embodiment.
  • the switching unit 120 determines that the second period T2 is not provided (step S290) or the second gain is determined (step S260), that is, the setting process is completed in the second state. Then, the operation of the control device 10 is switched to the first state.
  • the gain of the amplification unit 240 in the first period T1 is maintained at the first gain G1, for example.
  • the second gain is determined in step S260, the gain of the amplification unit 240 in the second period T2 is controlled using the determined second gain in the subsequent first state.
  • the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave.
  • the gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
  • the control unit 100 in the second state, when the output of the amplifying unit 240 due to reception of the electromagnetic wave reflected in the measuring device 20 does not saturate outside the first period T1, the control unit 100 In the state, the second period T2 is not provided. Therefore, the processing load on the control unit 100 can be reduced when the second period T2 is not provided.
  • FIG. 10 is a diagram illustrating a circuit configuration of the amplifying unit 240 according to the third embodiment.
  • FIG. 11 is a timing chart illustrating the relationship between the switching timing of SW1 to SW3, the irradiation timing of the irradiation unit 200, and the gain of the amplification unit 240.
  • the control device 10 has at least one of the first embodiment and the second embodiment except that the control unit 100 controls the first gain G1 to be higher as time passes after the electromagnetic wave is irradiated.
  • the control device 10 is the same as the above. This will be described in detail below.
  • the receiving unit 220 is the receiving element 300 and the amplifying unit 240 is the IV amplifier 310.
  • a current is output from one terminal of the receiving element 300 and input to one input terminal n1 of the OPA (op-amp).
  • n1 is, for example, a negative input terminal.
  • a voltage is applied to the other terminal of the receiving element 300.
  • One end of resistors R1, R2, and R3 that determine the gain is further connected to the input terminal n1 of the OPA.
  • the other input terminal n2 of the OPA is grounded.
  • n2 is, for example, a positive input terminal.
  • SW1, SW2, and SW3 are switches that respectively switch the presence / absence of connection between the other ends of the resistors R1, R2, and R3 and the output terminal n3 of the OPA.
  • resistors R1, R2, and R3 are connected in parallel to each other.
  • resistance R1, R2, and R3 are not specifically limited, For example, it has a small resistance value in this order.
  • the resistance value of R2 is 5 to 20 times the resistance value of R1
  • the resistance value of R3 is 5 to 20 times the resistance value of R2.
  • On / off of SW1, SW2, and SW3 is controlled by an output signal from the integrated circuit 40.
  • the gain of the amplifying unit 240 can be controlled by controlling on / off of SW1, SW2, and SW3, respectively.
  • SW1, SW2, and SW3 are turned on during the first period T1, and are sequentially switched to the off state when they are outside the first period T1.
  • the first gain G1 outside the first period T1 increases as the distance from the irradiation timing of the irradiation unit 200 increases.
  • the first period T1 and the second period T2 coincide.
  • the first gain G1 outside the first period T1 is higher than the second gain G2.
  • the intensity of the reflected wave is higher as the distance to the object is shorter.
  • the reflected wave received at a timing closer to the irradiation timing of the irradiation unit 200 often has a higher reception intensity. Therefore, by controlling the first gain G1 so as to increase with time after irradiation with the electromagnetic wave, the reflected wave can be detected with high accuracy while avoiding saturation of the amplifier 240.
  • the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave.
  • the gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
  • control unit 100 controls the first gain G1 to increase as time passes after the electromagnetic wave is irradiated. Therefore, it is possible to accurately detect reflected waves from objects at various distances.
  • FIG. 12 is a diagram for explaining the operation of the irradiation unit 200 according to the fourth embodiment.
  • the control device 10 according to the present embodiment is the same as the control device 10 according to at least one of the first to third embodiments except for the points described below.
  • electromagnetic waves are emitted in order from the irradiation unit 200 in a plurality of different directions.
  • the control unit 100 controls the gain of the amplification unit 240 using the second gain G2 determined for each of the plurality of directions. This will be described in detail below.
  • the measuring device 20 includes a movable reflecting portion 260.
  • the electromagnetic wave output from the irradiation unit 200 is reflected by the movable reflection unit 260 and then emitted to the outside of the measurement apparatus 20.
  • the angle of the reflecting surface of the movable reflector 260 is controlled by a control signal from the controller 100. By changing the angle of the reflecting surface of the movable reflecting portion 260, the irradiation direction of the electromagnetic wave is changed.
  • the irradiation direction of the electromagnetic wave is changed so as to generate a plurality of frames 60, for example. Specifically, the irradiation direction of the electromagnetic wave is changed so that the spot draws a plurality of lines extending in the first direction (X direction in the figure). Further, the irradiation direction of the electromagnetic wave is moved so that the spot moves in the second direction (Y direction in the figure) for each line. Therefore, the electromagnetic wave spot draws a plurality of lines arranged in parallel in the second direction.
  • a frame 60 which is data indicating the state around the measurement apparatus is generated.
  • the irradiation direction reaches the last position 602 of the frame, it returns to the head position 601 of the frame again.
  • the measurement device measures changes in the surroundings by repeatedly generating the frame 60.
  • the second gain G2 is determined for each irradiation direction.
  • whether or not the second period T2 is provided may be determined for each irradiation direction.
  • the electromagnetic wave is irradiated in the direction based on the control signal of the control unit 100. Then, the processing is performed in the same manner as in the first or second embodiment.
  • the process from step S200 is started again in a different irradiation direction.
  • the setting process is performed for each of the plurality of irradiation directions.
  • the gain of the amplification unit 240 when irradiated in each irradiation direction is controlled under the conditions determined in the setting process.
  • the reflection of electromagnetic waves in the measuring apparatus 20 can change conditions and paths according to the state of the movable reflector 260. Therefore, by determining the second gain G2 for each irradiation direction, it is possible to accurately detect a reflected wave from an object to be measured outside the measuring apparatus 20 in any irradiation direction.
  • electromagnetic waves are emitted from the irradiation unit 200 in a plurality of directions so that the electromagnetic wave spots draw a plurality of lines.
  • the control unit 100 uses the second gain G2 determined for each of the plurality of lines. It may be used to control the gain of the amplifying unit 240.
  • the setting process is performed as described above in the present embodiment for any irradiation direction included in each line. And the conditions determined about the irradiation direction are applicable with respect to all the irradiation directions which comprise the line.
  • the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave.
  • the gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
  • control unit 100 controls the gain of the amplification unit 240 using the second gain G2 determined for each of a plurality of directions.
  • control unit 100 controls the gain of the amplification unit 240 using the second gain G2 determined for each of the plurality of lines. Therefore, even when electromagnetic waves are output in a plurality of irradiation directions, a reflected wave from the object can be detected with high accuracy.
  • a control unit for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit;
  • the control unit has a second period in which a second gain lower than the first gain of the amplification unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit.
  • a control device for controlling the gain so that 1-2. 1-1.
  • control device described in The said control apparatus is a control apparatus of the measuring apparatus provided with the said irradiation part and the said receiving part, The control device in which measurement using the output signal of the receiving unit is not performed within the first period. 1-3. 1-2.
  • the receiving device is a control device that receives the electromagnetic wave reflected in the measuring device in the second period. 1-4. 1-2. Or 1-3.
  • the operation of the control device is switched between a first state in which measurement is performed using the output signal of the reception unit and a second state in which processing for determining the operation of the control unit in the first state is performed.
  • a control device further comprising a switching unit. 1-5. 1-4.
  • the second gain is determined so that the output of the amplifying unit is not saturated in the second period. 1-6. 1-4. Or 1-5.
  • the control unit sets the second period in the first state.
  • the said switching part is a control apparatus which switches the said control apparatus to a said 2nd state, when the measurement result of the temperature measuring part which measures the temperature of the said irradiation part satisfy
  • the electromagnetic waves are emitted in order in a plurality of different directions, The control unit controls the gain using the second gain determined for each of the plurality of directions. 1-9. 1-1. To 1-7.
  • the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines, The control unit controls the gain by using the second gain determined for each of the plurality of lines. 1-10. 1-1. To 1-9.
  • control device In the control device according to any one of The said control part is a control apparatus which controls the said 1st gain so that it may become so high that time passes after the said electromagnetic waves are irradiated.
  • a control method for controlling the gain so that 2-2. 2-1.
  • the control method described in The control method is a control method of a measurement apparatus including the irradiation unit and the reception unit, A control method in which measurement using an output signal of the receiving unit is not performed within the first period. 2-3. 2-2.
  • a control method in which measurement using an output signal of the receiving unit is not performed within the first period. 2-3. 2-2.
  • the control method described in which the receiving unit receives the electromagnetic wave reflected in the measuring device in the second period. 2-4. 2-2. Or 2-3.
  • the processing of the control method is divided into a first state in which measurement is performed using the output signal of the receiving unit and a second state in which processing for determining the control content of the control step in the first state is performed.
  • a control method further comprising a switching step for switching. 2-5. 2-4.
  • the second gain is determined so that the output of the amplifying unit is not saturated in the second period. 2-6. 2-4. Or 2-5.
  • the control step sets the second period in the first state. Control method not provided. 2-7. 2-4. To 2-6.
  • a control method for switching the process of the control method to the second state when a measurement result of a temperature measuring unit that measures the temperature of the irradiation unit satisfies a predetermined condition. 2-8. 2-1. To 2-7.
  • the electromagnetic waves are emitted in order in a plurality of different directions
  • the gain is controlled using the second gain determined for each of the plurality of directions. 2-9. 2-1. To 2-7.
  • the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines
  • the gain is controlled using the second gain determined for each of the plurality of lines. 2-10. 2-1. To 2-9.
  • the first gain is controlled so as to increase as time passes after the electromagnetic wave is irradiated. 3-1.
  • a computer program for realizing a control device Computer
  • the electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
  • the control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit.
  • a computer program for controlling the gain so that 3-2. 3-1.
  • the said control apparatus is a control apparatus of the measuring apparatus provided with the said irradiation part and the said receiving part, A computer program in which measurement using an output signal of the receiving unit is not performed within the first period. 3-3. 3-2.
  • the receiving unit is a computer program that receives the electromagnetic wave reflected in the measuring device in the second period. 3-4. 3-2. Or 3-3.
  • a second state in which a process for determining the operation of the control device in the first state in which the measurement is performed using the output signal of the receiver and the operation of the control means in the first state is performed; A computer program that further functions as a switching means for switching between and. 3-5. 3-4.
  • the control means sets the second period in the first state.
  • the switching unit is a computer program that switches the control device to the second state when a measurement result of a temperature measuring unit that measures the temperature of the irradiation unit satisfies a predetermined condition. 3-8. 3-1. To 3-7.
  • the control means is a computer program for controlling the gain using the second gain determined for each of the plurality of directions. 3-9. 3-1. To 3-7.
  • the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines
  • the control means is a computer program for controlling the gain using the second gain determined for each of the plurality of lines. 3-10. 3-1. To 3-9.
  • the control means is a computer program for controlling the first gain to increase as time passes after the electromagnetic wave is irradiated.
  • a computer-readable recording medium recording a computer program for realizing a control device
  • the computer program includes a computer
  • the electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object
  • the control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit.
  • a recording medium that controls the gain so that 4-2. 4-1.
  • the said control apparatus is a control apparatus of the measuring apparatus provided with the said irradiation part and the said receiving part, A recording medium in which measurement using the output signal of the receiving unit is not performed within the first period. 4-3. 4-2.
  • the receiving unit is a recording medium that receives the electromagnetic wave reflected in the measuring device in the second period. 4-4. 4-2. Or 4-3.
  • the computer program stores the computer, The operation of the control device is switched between a first state in which measurement is performed using the output signal of the receiving unit and a second state in which processing for determining the operation of the control means in the first state is performed.
  • the recording medium described in In the second state the recording medium in which the second gain is determined so that the output of the amplifying unit is not saturated in the second period. 4-6. 4-4. Or 4-5.
  • the control means sets the second period in the first state. Recording media not provided. 4-7. 4-4. To 4-6.
  • the switching unit is a recording medium that switches the control device to the second state when a measurement result of a temperature measuring unit that measures the temperature of the irradiation unit satisfies a predetermined condition. 4-8. 4-1. To 4-7.
  • the control means is a recording medium that controls the gain using the second gain determined for each of the plurality of directions. 4-9. 4-1. To 4-7.
  • the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines
  • the control means is a recording medium for controlling the gain using the second gain determined for each of the plurality of lines. 4-10. 4-1. To 4-9.
  • the control means is a recording medium that controls the first gain so as to increase as time passes after the electromagnetic wave is irradiated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This control device (10) comprises a control unit (100). The control unit (100) controls the gain of an amplification unit (240). The amplification unit (240) amplifies the output signal of a reception unit (220). The reception unit (220) is capable of receiving reflected waves resulting from the reflection by an object of electromagnetic waves irradiated from an irradiation unit (200). Further, the control unit (100) controls the gain of the amplification unit (240) such that, within a prescribed first period from the irradiation of the electromagnetic waves by the irradiation unit (200), there is a second period in which the gain becomes a second gain lower than a first gain that is the gain after the first period has elapsed.

Description

制御装置、制御方法、コンピュータプログラム、および記憶媒体Control device, control method, computer program, and storage medium
 本発明は、制御装置、制御方法、コンピュータプログラム、および記憶媒体に関する。 The present invention relates to a control device, a control method, a computer program, and a storage medium.
 電磁波を照射し、その反射波を受信する装置において、装置内での迷光を受信してしまうことが、反射波の受信に悪影響を及ぼすことがある。 In a device that irradiates electromagnetic waves and receives the reflected wave, receiving stray light in the device may adversely affect the reception of the reflected wave.
 特許文献1には、レーザの出力タイミングにあわせて検出部のゲート信号をオンとして検出信号を生成し、複数の出力パルス間の時間帯で、ゲート信号をオフとして検出信号を生成しないことが記載されている。 Patent Document 1 describes that the detection signal is generated by turning on the gate signal of the detection unit in accordance with the output timing of the laser, and the detection signal is not generated by turning off the gate signal in a time zone between a plurality of output pulses. Has been.
特開2014-89162号公報JP 2014-89162 A
 しかし、特許文献1の方法では、レーザ出力に近いタイミングで検出される迷光の影響を避けられなかった。また、複数のレーザパルスの間の時間帯の検出を充分に行えなかった。 However, the method of Patent Document 1 cannot avoid the effect of stray light detected at a timing close to the laser output. Further, the time zone between the plurality of laser pulses cannot be sufficiently detected.
 本発明が解決しようとする課題としては、電磁波の出力後の反射波の検出を精度良くおこなうことが一例として挙げられる。 An example of a problem to be solved by the present invention is to accurately detect a reflected wave after output of an electromagnetic wave.
 請求項1に記載の発明は、
 照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御部を備え、
 前記制御部は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、制御装置である。
The invention described in claim 1
A control unit for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit;
The control unit has a second period in which a second gain lower than the first gain of the amplification unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. A control device for controlling the gain so that
 請求項11に記載の発明は、
 照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御ステップを含み、
 前記制御ステップでは、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、制御方法である。
The invention according to claim 11
Including a control step of controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit,
In the control step, in a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit, a second period in which the second gain is lower than the first gain of the amplification unit after the first period has elapsed. This is a control method for controlling the gain so that
 請求項12に記載の発明は、
 制御装置を実現するためのコンピュータプログラムであって、
 コンピュータを、
  照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御手段として機能させ、
 前記制御手段は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、コンピュータプログラムである。
The invention according to claim 12
A computer program for realizing a control device,
Computer
The electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
The control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. It is a computer program for controlling the gain so that
 請求項13に記載の発明は、
 制御装置を実現するためのコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
 前記コンピュータプログラムは、コンピュータを、
  照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御手段として機能させ、
 前記制御手段は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、記録媒体である。
The invention according to claim 13
A computer-readable recording medium recording a computer program for realizing a control device,
The computer program includes a computer,
The electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
The control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. The recording medium controls the gain so that the recording medium can be used.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る制御装置の機能構成を例示するブロック図である。It is a block diagram which illustrates the functional composition of the control device concerning an embodiment. 実施形態に係る照射部の照射タイミング、増幅部の利得、および増幅部の出力の関係を例示するタイミングチャートである。It is a timing chart which illustrates the irradiation timing of the irradiation part which concerns on embodiment, the gain of an amplification part, and the relationship of the output of an amplification part. 実施形態に係る制御方法を例示するフローチャートである。It is a flowchart which illustrates the control method which concerns on embodiment. 実施例1に係る制御装置の機能構成を例示するブロック図である。FIG. 3 is a block diagram illustrating a functional configuration of a control device according to the first embodiment. 実施例1に係る設定処理の内容を例示するフローチャートである。3 is a flowchart illustrating the contents of setting processing according to the first embodiment. 実施例1に係る測定装置のハードウエア構成を例示する図である。1 is a diagram illustrating a hardware configuration of a measurement apparatus according to Example 1. FIG. 制御装置のハードウエア構成を例示する図である。It is a figure which illustrates the hardware constitutions of a control apparatus. 実施例2に係る設定処理の内容を例示するフローチャートである。10 is a flowchart illustrating the contents of a setting process according to the second embodiment. 実施例2に係る照射部の照射タイミングと増幅部の出力の関係を例示するタイミングチャートである。12 is a timing chart illustrating the relationship between the irradiation timing of the irradiation unit and the output of the amplification unit according to the second embodiment. 実施例3に係る増幅部の回路構成を例示する図である。FIG. 6 is a diagram illustrating a circuit configuration of an amplifying unit according to a third embodiment. SW1~3の切り替えタイミング、照射部の照射タイミング、および増幅部の利得の関係を例示するタイミングチャートである。6 is a timing chart illustrating the relationship between the switching timing of SW1 to SW3, the irradiation timing of the irradiation unit, and the gain of the amplification unit. 実施例4に係る照射部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the irradiation part which concerns on Example 4. FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 以下に示す説明において、特に説明する場合を除き、制御装置10および測定装置20の各構成要素は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。制御装置10および測定装置20の各構成要素は、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。 In the following description, unless otherwise specified, each component of the control device 10 and the measurement device 20 is not a hardware unit configuration but a functional unit block. Each component of the control device 10 and the measuring device 20 includes hardware and software centered on an arbitrary computer CPU, memory, a program loaded in the memory, a storage medium such as a hard disk for storing the program, and a network connection interface. Realized by any combination of wear. There are various modifications of the implementation method and apparatus.
 図1は、実施形態に係る制御装置10の機能構成を例示するブロック図である。本図において、電気的な接続関係が実線で、電磁波による繋がりが破線で示されている。制御装置10は、制御部100を備える。制御部100は、増幅部240の利得を制御する。増幅部240は、受信部220の出力信号を増幅する。受信部220は、照射部200によって照射された電磁波が対象物によって反射された反射波を受信可能である。そして、制御部100は、照射部200によって電磁波が照射されてから所定の第1期間内においては、第1期間経過後の増幅部240の第1利得よりも低い第2利得となる第2期間ができるように、利得を制御する。以下に詳しく説明する。 FIG. 1 is a block diagram illustrating a functional configuration of the control device 10 according to the embodiment. In this figure, the electrical connection relationship is indicated by a solid line, and the connection by electromagnetic waves is indicated by a broken line. The control device 10 includes a control unit 100. The control unit 100 controls the gain of the amplification unit 240. The amplifying unit 240 amplifies the output signal of the receiving unit 220. The receiving unit 220 can receive a reflected wave in which the electromagnetic wave irradiated by the irradiation unit 200 is reflected by the object. Then, the control unit 100 has a second period in which the second gain is lower than the first gain of the amplification unit 240 after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit 200. The gain is controlled so that This will be described in detail below.
 信号を増幅する増幅部240では、入力信号が利得に応じて増幅されて出力される。ここで、増幅部240の出力の大きさには限界値があり、入力信号に対して利得が大きすぎる場合、出力信号が飽和してしまう。そして、一度増幅部240の出力が飽和すると、入力信号が下がった後にもその影響がしばらく続くこととなり、増幅部240の出力はすぐには下がらない。ひいては、飽和の影響が消えるまでは反射波の検出が行えなくなる。 In the amplification unit 240 that amplifies the signal, the input signal is amplified according to the gain and output. Here, there is a limit value in the magnitude of the output of the amplifying unit 240, and if the gain is too large with respect to the input signal, the output signal is saturated. Once the output of the amplifying unit 240 is saturated, the influence continues for a while even after the input signal is lowered, and the output of the amplifying unit 240 does not decrease immediately. As a result, the reflected wave cannot be detected until the influence of saturation disappears.
 本実施形態に係る制御装置10では、制御部100は、照射部200によって電磁波が照射されてから所定の第1期間内においては、第1期間経過後の増幅部240の第1利得よりも低い第2利得となる第2期間ができるように、利得を制御する。したがって、電磁波が照射された直後の迷光の影響を避け、その後に受信される反射波の検出を精度良く行える。なお、第2期間における増幅部240の増幅率は0であってもよい。ただし、第2期間における増幅部240の増幅率を0超過とすることにより、たとえば増幅部240の出力信号を利用することができる。たとえば、電磁波パルスの出力タイミングとして、この信号を計測の起点とすることができる。 In the control device 10 according to the present embodiment, the control unit 100 is lower than the first gain of the amplification unit 240 after the first period has elapsed within a predetermined first period after the irradiation unit 200 has irradiated the electromagnetic wave. The gain is controlled so that a second period corresponding to the second gain is obtained. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter. Note that the amplification factor of the amplification unit 240 in the second period may be zero. However, by making the amplification factor of the amplification unit 240 in the second period exceed 0, for example, the output signal of the amplification unit 240 can be used. For example, this signal can be used as the starting point of measurement as the output timing of the electromagnetic wave pulse.
 図2は、本実施形態に係る照射部200の照射タイミング、増幅部240の利得、および増幅部240の出力の関係を例示するタイミングチャートである。 FIG. 2 is a timing chart illustrating the relationship between the irradiation timing of the irradiation unit 200, the gain of the amplification unit 240, and the output of the amplification unit 240 according to this embodiment.
 制御装置10は、照射部200および受信部220を備える測定装置20の制御装置10である。そして、第1期間T1内では、受信部220の出力信号を用いた測定が行われない。また、測定装置20は増幅部240を備える。増幅部240は、たとえば電流電圧変換回路、または増幅回路である。制御装置10は測定装置20の一部であっても良いし、測定装置20とは別途設けられていても良い。図1の例において、制御装置10は測定装置20の一部である。 The control device 10 is the control device 10 of the measurement device 20 including the irradiation unit 200 and the reception unit 220. And the measurement using the output signal of the receiving part 220 is not performed in 1st period T1. In addition, the measuring device 20 includes an amplification unit 240. The amplification unit 240 is, for example, a current / voltage conversion circuit or an amplification circuit. The control device 10 may be a part of the measuring device 20 or may be provided separately from the measuring device 20. In the example of FIG. 1, the control device 10 is a part of the measurement device 20.
 測定装置20はたとえばライダー(LIDAR:Laser Imaging Detection and Ranging, Laser Illuminated Detection and Ranging またはLiDAR:Light Detection and Ranging)である。測定装置20がライダーである場合、照射部200からの電磁波パルスの出力タイミングと、受信部220での反射波の受信タイミングとの差を用いて、測定装置20から対象物までの距離が算出される。電磁波はたとえば紫外線、可視光線、近赤外線等の光である。また、照射部200はたとえばパルス波を出力する。 The measuring device 20 is, for example, a rider (LIDAR: Laser Detection and Ranging, Laser Illuminated Detection and Ranging or LiDAR: Light Detection and Ranging). When the measurement device 20 is a rider, the distance from the measurement device 20 to the object is calculated using the difference between the output timing of the electromagnetic wave pulse from the irradiation unit 200 and the reception timing of the reflected wave at the reception unit 220. The The electromagnetic wave is, for example, light such as ultraviolet light, visible light, or near infrared light. Moreover, the irradiation part 200 outputs a pulse wave, for example.
 第1期間T1は、測定装置20において測定が行われない期間である。測定が行われない期間とはたとえば、受信部220の出力を用いて距離等の測定値が算出されない期間である。たとえば測定装置20がライダーであり、測定装置20からある程度離れた対象物を測定しようとする場合、照射部200からの電磁波の出力中および出力直後に得られた受信部220の出力による測定値の算出は行う必要が無い。 The first period T1 is a period during which no measurement is performed in the measurement apparatus 20. The period in which the measurement is not performed is a period in which a measured value such as a distance is not calculated using the output of the receiving unit 220, for example. For example, when the measurement device 20 is a rider and intends to measure an object that is separated from the measurement device 20 to some extent, the measurement value based on the output of the reception unit 220 obtained during and immediately after the output of the electromagnetic wave from the irradiation unit 200 is obtained. There is no need to calculate.
 受信部220は、第2期間T2において、測定装置20内で反射された電磁波を受信する。図2において、ピーク90は測定装置20内で反射された電磁波を検出したピークを示し、ピーク91は測定装置20外の対象物で反射された電磁波を検出したピークを示している。 The receiving unit 220 receives the electromagnetic wave reflected in the measuring device 20 in the second period T2. In FIG. 2, a peak 90 indicates a peak obtained by detecting an electromagnetic wave reflected in the measuring apparatus 20, and a peak 91 indicates a peak obtained by detecting an electromagnetic wave reflected by an object outside the measuring apparatus 20.
 電磁波が光である場合、測定装置20内で反射された電磁波は、いわゆる迷光である。対象物からの反射波の検出信号を高精度で処理するためには、増幅部240の利得は大きくすることが好ましい。一方、測定装置20内で反射されて受信部220で受信される電磁波は、測定装置20の外部にある対象物で反射された反射波に比べて高強度となる。したがって、測定装置20内で反射された電磁波の検出信号を、対象物からの反射波の検出信号と同じ利得で増幅すると増幅部240が飽和する可能性が高い。 When the electromagnetic wave is light, the electromagnetic wave reflected in the measuring device 20 is so-called stray light. In order to process the detection signal of the reflected wave from the object with high accuracy, it is preferable to increase the gain of the amplifying unit 240. On the other hand, the electromagnetic wave reflected in the measuring apparatus 20 and received by the receiving unit 220 has a higher intensity than the reflected wave reflected by an object outside the measuring apparatus 20. Therefore, if the detection signal of the electromagnetic wave reflected in the measuring device 20 is amplified with the same gain as the detection signal of the reflected wave from the object, the amplification unit 240 is likely to be saturated.
 本実施形態に係る制御装置10では、第2期間T2における増幅部240の利得である第2利得G2が、第1期間経過後の増幅部240の利得である第1利得G1よりも小さい。そして、利得が低い第2期間T2内に、測定装置20内で反射された電磁波を受信することにより、ピーク90のように増幅部240の飽和が避けられ、第1期間T1後の測定が必要な時間帯で、ピーク91のように精度良く反射波の検出が行える。 In the control device 10 according to the present embodiment, the second gain G2 that is the gain of the amplification unit 240 in the second period T2 is smaller than the first gain G1 that is the gain of the amplification unit 240 after the first period has elapsed. Then, by receiving the electromagnetic wave reflected in the measuring device 20 within the second period T2 where the gain is low, saturation of the amplification unit 240 is avoided as in the peak 90, and measurement after the first period T1 is necessary. The reflected wave can be detected with high accuracy like the peak 91 in a short time zone.
 第2期間T2は、第1期間T1の一部であっても良いし、第1期間T1と一致していても良い。測定装置20内で反射された電磁波を受信する可能性が高い時間帯を、事前の試験等で特定し、第2期間T2として予め定めておくことができる。第1期間T1の長さは特に限定されないが、たとえば0ナノ秒超過6ナノ秒以下である。また、第2期間T2の長さは特に限定されないが、たとえば0ナノ秒超過5ナノ秒以下である。たとえば、測定装置20から1m以内の範囲を計測しないこととしてもよい。 The second period T2 may be a part of the first period T1, or may coincide with the first period T1. A time zone in which there is a high possibility of receiving the electromagnetic wave reflected in the measuring device 20 can be specified by a prior test or the like, and can be determined in advance as the second period T2. Although the length of 1st period T1 is not specifically limited, For example, it is 0 nanosecond excess 6 nanosecond or less. Further, the length of the second period T2 is not particularly limited, but is, for example, more than 0 nanoseconds and 5 nanoseconds or less. For example, the range within 1 m from the measuring device 20 may not be measured.
 図3は、本実施形態に係る制御方法を例示するフローチャートである。本方法は、制御ステップS100を含む。制御ステップS100では、増幅部240の利得が制御される。増幅部240は、受信部220の出力信号を増幅する。受信部220は、照射部200によって照射された電磁波が対象物によって反射された反射波を受信可能である。そして、制御ステップS100では、照射部200によって電磁波が照射されてから所定の第1期間T1内においては、第1期間T1経過後の増幅部240の第1利得G1よりも低い第2利得G2となる第2期間T2ができるように、利得が制御される。 FIG. 3 is a flowchart illustrating a control method according to this embodiment. The method includes a control step S100. In control step S100, the gain of the amplifying unit 240 is controlled. The amplifying unit 240 amplifies the output signal of the receiving unit 220. The receiving unit 220 can receive a reflected wave in which the electromagnetic wave irradiated by the irradiation unit 200 is reflected by the object. In the control step S100, the second gain G2 lower than the first gain G1 of the amplifying unit 240 after the first period T1 has elapsed within the predetermined first period T1 after the electromagnetic wave is irradiated by the irradiation unit 200. The gain is controlled so that the second period T2 is satisfied.
 本実施形態に係る制御方法は、上述したような制御装置10を用いて実現される。 The control method according to the present embodiment is realized using the control device 10 as described above.
 以上、本実施形態によれば、制御部100は、照射部200によって電磁波が照射されてから所定の第1期間T1内においては、第1期間T1経過後の増幅部240の第1利得G1よりも低い第2利得G2となる第2期間T2ができるように、利得を制御する。したがって、電磁波が照射された直後の迷光の影響を避け、その後に受信される反射波の検出を精度良く行える。 As described above, according to the present embodiment, the control unit 100 uses the first gain G1 of the amplifying unit 240 after the elapse of the first period T1 within the predetermined first period T1 after the electromagnetic wave is irradiated by the irradiation unit 200. The gain is controlled so that the second period T2 in which the second gain G2 is lower can be obtained. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
(実施例1)
 図4は、実施例1に係る制御装置10の機能構成を例示するブロック図である。本実施例に係る制御装置10は、実施形態に係る制御装置10の構成を有する。
Example 1
FIG. 4 is a block diagram illustrating the functional configuration of the control device 10 according to the first embodiment. The control device 10 according to the present example has the configuration of the control device 10 according to the embodiment.
 本実施例に係る制御装置10は、切り替え部120をさらに備える。切り替え部120は、制御装置10の動作を、第1状態と第2状態に切り替える。第1状態では、受信部220の出力信号を用いて測定が行われる。第2状態では、第1状態における制御部100の動作を決定するための処理(以下、「設定処理」とも呼ぶ。)が行われる。 The control device 10 according to the present embodiment further includes a switching unit 120. The switching unit 120 switches the operation of the control device 10 between the first state and the second state. In the first state, measurement is performed using the output signal of the receiving unit 220. In the second state, processing for determining the operation of the control unit 100 in the first state (hereinafter also referred to as “setting processing”) is performed.
 第2状態では、第2期間T2において増幅部240の出力が飽和しないように第2利得G2が定められる。設定処理の内容については詳しく後述する。 In the second state, the second gain G2 is determined so that the output of the amplifier 240 is not saturated in the second period T2. Details of the setting process will be described later.
 切り替え部120はたとえば、制御装置10が起動されたときに制御装置10の動作を第2状態とする。 For example, the switching unit 120 sets the operation of the control device 10 to the second state when the control device 10 is activated.
 また、切り替え部120は、照射部200の温度を測定する測温部210の測定結果が予め定められた条件を満たしたとき、制御装置10を第2状態に切り替えてもよい。図4の例において測定装置20は測温部210をさらに備える。照射部200の温度が変化すると照射部200の駆動電力に対する電磁波の出力強度が変化する。切り替え部120が照射部200の温度に基づいて制御装置10の動作を第2状態に切り替えることで設定処理が行われ、増幅部240の飽和が避けられて、反射波の高精度な検出が維持される。 Further, the switching unit 120 may switch the control device 10 to the second state when the measurement result of the temperature measuring unit 210 that measures the temperature of the irradiation unit 200 satisfies a predetermined condition. In the example of FIG. 4, the measuring device 20 further includes a temperature measuring unit 210. When the temperature of the irradiation unit 200 changes, the output intensity of the electromagnetic wave with respect to the driving power of the irradiation unit 200 changes. The switching unit 120 switches the operation of the control device 10 to the second state based on the temperature of the irradiation unit 200, so that the setting process is performed, the saturation of the amplification unit 240 is avoided, and the highly accurate detection of the reflected wave is maintained. Is done.
 図5は、本実施例に係る設定処理の内容を例示するフローチャートである。切り替え部120が制御装置10の動作を第2状態とすると、以下の設定処理が開始される。設定処理は制御部100が切り替え部120から第2状態への切り替えを示す情報を受信すると開始され、制御部100が照射部200および増幅部240を制御することで実行される。設定処理ではまず、ステップS200において、増幅部240の利得が最大の値に設定される。 FIG. 5 is a flowchart illustrating the contents of the setting process according to this embodiment. When the switching unit 120 sets the operation of the control device 10 to the second state, the following setting process is started. The setting process is started when the control unit 100 receives information indicating switching from the switching unit 120 to the second state, and is executed by the control unit 100 controlling the irradiation unit 200 and the amplification unit 240. In the setting process, first, in step S200, the gain of the amplification unit 240 is set to a maximum value.
 次いで、ステップS220において、照射部200から電磁波が照射される。このとき、直後の第1状態での測定に用いる照射強度で照射する。また、照射は、測定装置20の近傍に対象物がない状態で行うことが好ましい。ステップS220で電磁波が照射されると、測定装置20内部で反射された電磁波が受信部220で受信されることとなる。 Next, in step S220, an electromagnetic wave is irradiated from the irradiation unit 200. At this time, irradiation is performed with the irradiation intensity used for the measurement in the first state immediately after. Irradiation is preferably performed in a state where there is no object in the vicinity of the measuring device 20. When the electromagnetic wave is irradiated in step S220, the electromagnetic wave reflected in the measuring device 20 is received by the receiving unit 220.
 次いで、ステップS240では、ステップS220で照射された電磁波を受信した受信部220の出力信号により、増幅部240の出力が飽和するか否かを、判定する。増幅部240の出力が飽和するか否かは、増幅部240の出力信号に飽和値が含まれるか否かで判定できる。飽和値とは、増幅部240が出力できる最大値である。なお、増幅部240の出力が飽和するか否かの判定は、たとえば第1期間T1内を対象に行えば良い。 Next, in step S240, it is determined whether or not the output of the amplifying unit 240 is saturated based on the output signal of the receiving unit 220 that has received the electromagnetic wave irradiated in step S220. Whether or not the output of the amplifying unit 240 is saturated can be determined by whether or not a saturated value is included in the output signal of the amplifying unit 240. The saturation value is the maximum value that can be output by the amplification unit 240. In addition, what is necessary is just to perform the determination whether the output of the amplification part 240 is saturated, for example in the 1st period T1.
 制御部100は、増幅部240の出力信号に飽和値が含まれる場合、増幅部240の出力が飽和すると判定する。一方、制御部100は、増幅部240の出力信号に飽和値が含まれない場合、増幅部240の出力が飽和しないと判定する。ステップS240で増幅部240の出力が飽和すると判定された場合(ステップS240のY)、制御部100は、次いでステップS280において増幅部240の利得を予め定められた幅だけ下げる。次いで、再度ステップS220が行われる。 The control unit 100 determines that the output of the amplification unit 240 is saturated when the output signal of the amplification unit 240 includes a saturation value. On the other hand, the control unit 100 determines that the output of the amplification unit 240 is not saturated when the output value of the amplification unit 240 does not include a saturation value. When it is determined in step S240 that the output of the amplification unit 240 is saturated (Y in step S240), the control unit 100 then decreases the gain of the amplification unit 240 by a predetermined width in step S280. Next, step S220 is performed again.
 ステップS240で増幅部240の出力が飽和しないと判定された場合(ステップS240のN)、次いでステップS260において、その時点の増幅部240の利得が第2利得として決定される。 If it is determined in step S240 that the output of the amplifying unit 240 is not saturated (N in step S240), then in step S260, the gain of the amplifying unit 240 at that time is determined as the second gain.
 切り替え部120は、以上のように第2利得が決定すると、すなわち、第2状態で設定処理が完了すると、制御装置10の動作を第1状態に切り替える。そして、第1状態では、決定された第2利得を用いて増幅部240の利得が制御される。 When the second gain is determined as described above, that is, when the setting process is completed in the second state, the switching unit 120 switches the operation of the control device 10 to the first state. In the first state, the gain of the amplifying unit 240 is controlled using the determined second gain.
 図6は、実施例1に係る測定装置20のハードウエア構成を例示する図である。本図において、電気的な接続関係が実線で、電磁波による繋がりが破線で示されている。本図の例において制御装置10は集積回路40で実現され、測定装置20は受信素子300、IVアンプ310、AD変換回路320、駆動回路330、測温素子350、および照射素子340を備える。本図の例において、制御装置10は測定装置20の一部であるが、制御装置10は測定装置20とは別途設けられていても良い。 FIG. 6 is a diagram illustrating a hardware configuration of the measuring apparatus 20 according to the first embodiment. In this figure, the electrical connection relationship is indicated by a solid line, and the connection by electromagnetic waves is indicated by a broken line. In the example of this figure, the control device 10 is realized by the integrated circuit 40, and the measuring device 20 includes a receiving element 300, an IV amplifier 310, an AD conversion circuit 320, a driving circuit 330, a temperature measuring element 350, and an irradiation element 340. In the example of this figure, the control device 10 is a part of the measurement device 20, but the control device 10 may be provided separately from the measurement device 20.
 照射素子340は、照射部200として機能する。照射素子340は、たとえばレーザーダイオードであり、駆動回路330からの駆動信号に応じた駆動電力およびタイミングでレーザパルスを出力する。 The irradiation element 340 functions as the irradiation unit 200. The irradiation element 340 is, for example, a laser diode, and outputs a laser pulse with drive power and timing according to a drive signal from the drive circuit 330.
 駆動回路330は、照射素子340を駆動する回路である。駆動回路330には集積回路40から、照射素子340を駆動させるタイミングおよび駆動電力を示す情報が入力される。そして駆動回路330からは照射素子340の駆動信号が出力され、照射素子340に入力される。 The drive circuit 330 is a circuit that drives the irradiation element 340. Information indicating timing and driving power for driving the irradiation element 340 is input from the integrated circuit 40 to the driving circuit 330. A driving signal for the irradiation element 340 is output from the driving circuit 330 and input to the irradiation element 340.
 受信素子300は、受信部220として機能する。受信素子300はたとえばアバランシェフォトダイオード(Avalanche photodiode:APD)である。受信素子300は照射素子340から出力され、対象物で反射された電磁波を受信できるように配置されている。受信素子300からは受信素子300での受信強度を示す電流信号が出力される。 The receiving element 300 functions as the receiving unit 220. The receiving element 300 is, for example, an avalanche photodiode (APD). The receiving element 300 is arranged so as to receive the electromagnetic wave output from the irradiation element 340 and reflected by the object. The receiving element 300 outputs a current signal indicating the reception intensity at the receiving element 300.
 IVアンプ310は、電流信号を電圧信号に変換する。IVアンプ310は増幅部240として機能する。IVアンプ310の変換における利得は集積回路40から入力される利得制御信号により制御される。 The IV amplifier 310 converts the current signal into a voltage signal. The IV amplifier 310 functions as the amplification unit 240. The gain in the conversion of the IV amplifier 310 is controlled by a gain control signal input from the integrated circuit 40.
 AD変換回路320は、入力されたアナログ信号をデジタル信号に変換して出力する。AD変換回路320の出力信号は集積回路40に入力されて処理される。 The AD conversion circuit 320 converts the input analog signal into a digital signal and outputs it. The output signal of the AD conversion circuit 320 is input to the integrated circuit 40 and processed.
 測温素子350は、温度センサ等のセンサ素子である。測温素子350は測温部210として機能する。測温素子350で測定された温度を示す出力信号は、集積回路40に入力される。 The temperature measuring element 350 is a sensor element such as a temperature sensor. The temperature measuring element 350 functions as the temperature measuring unit 210. An output signal indicating the temperature measured by the temperature measuring element 350 is input to the integrated circuit 40.
 図7は、制御装置10のハードウエア構成を例示する図である。本図において制御装置10は、集積回路40を用いて実装されている。集積回路40は、例えば SoC(System On Chip)である。 FIG. 7 is a diagram illustrating a hardware configuration of the control device 10. In this figure, the control device 10 is mounted using an integrated circuit 40. The integrated circuit 40 is, for example, a SoC (System On Chip).
 集積回路40は、バス402、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410、及びネットワークインタフェース412を有する。バス402は、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410、及びネットワークインタフェース412が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ404などを互いに接続する方法は、バス接続に限定されない。プロセッサ404は、マイクロプロセッサなどを用いて実現される演算処理装置である。メモリ406は、RAM(Random Access Memory)などを用いて実現されるメモリである。ストレージデバイス408は、ROM(Read Only Memory)やフラッシュメモリなどを用いて実現されるストレージデバイスである。 The integrated circuit 40 includes a bus 402, a processor 404, a memory 406, a storage device 408, an input / output interface 410, and a network interface 412. The bus 402 is a data transmission path through which the processor 404, the memory 406, the storage device 408, the input / output interface 410, and the network interface 412 transmit / receive data to / from each other. However, the method of connecting the processors 404 and the like is not limited to bus connection. The processor 404 is an arithmetic processing unit realized using a microprocessor or the like. The memory 406 is a memory realized using a RAM (Random Access Memory) or the like. The storage device 408 is a storage device realized by using a ROM (Read Only Memory), a flash memory, or the like.
 入出力インタフェース410は、集積回路40を周辺デバイスと接続するためのインタフェースである。本図において、入出力インタフェース410にはIVアンプ310、AD変換回路320、駆動回路330、および測温素子350が接続されている。 The input / output interface 410 is an interface for connecting the integrated circuit 40 to a peripheral device. In this figure, an IV amplifier 310, an AD conversion circuit 320, a drive circuit 330, and a temperature measuring element 350 are connected to the input / output interface 410.
 ネットワークインタフェース412は、集積回路40を通信網に接続するためのインタフェースである。この通信網は、例えば CAN(Controller Area Network)通信網である。なお、ネットワークインタフェース412が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。 The network interface 412 is an interface for connecting the integrated circuit 40 to a communication network. This communication network is, for example, a CAN (Controller Area Network) communication network. Note that a method of connecting the network interface 412 to the communication network may be a wireless connection or a wired connection.
 ストレージデバイス408は、制御部100および切り替え部120の機能を実現するためのプログラムモジュールをそれぞれ記憶している。プロセッサ404は、このプログラムモジュールをメモリ406に読み出して実行することで、制御部100および切り替え部120の機能を実現する。 The storage device 408 stores program modules for realizing the functions of the control unit 100 and the switching unit 120, respectively. The processor 404 reads out the program module to the memory 406 and executes it, thereby realizing the functions of the control unit 100 and the switching unit 120.
 集積回路40のハードウエア構成は本図に示した構成に限定されない。例えば、プログラムモジュールはメモリ406に格納されてもよい。この場合、集積回路40は、ストレージデバイス408を備えていなくてもよい。 The hardware configuration of the integrated circuit 40 is not limited to the configuration shown in the figure. For example, the program module may be stored in the memory 406. In this case, the integrated circuit 40 may not include the storage device 408.
 以上、本実施例によれば、実施形態と同様、制御部100は、照射部200によって電磁波が照射されてから所定の第1期間T1内においては、第1期間T1経過後の増幅部240の第1利得G1よりも低い第2利得G2となる第2期間T2ができるように、利得を制御する。したがって、電磁波が照射された直後の迷光の影響を避け、その後に受信される反射波の検出を精度良く行える。 As described above, according to the present example, similarly to the embodiment, the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave. The gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
(実施例2)
 図8は、実施例2に係る設定処理の内容を例示するフローチャートである。本実施例に係る制御装置10は、設定処理の内容を除いて、実施例1に係る制御装置10と同様である。本実施例に係る制御装置10は、第2状態において、測定装置20内で反射された電磁波の受信による増幅部240の出力が、第1期間T1外で飽和しない場合、制御部100は第1状態で第2期間T2を設けない。以下に詳しく説明する。
(Example 2)
FIG. 8 is a flowchart illustrating the contents of the setting process according to the second embodiment. The control device 10 according to the present embodiment is the same as the control device 10 according to the first embodiment except for the content of the setting process. In the second state, the control unit 10 according to the present embodiment, when the output of the amplification unit 240 due to reception of the electromagnetic wave reflected in the measurement device 20 does not saturate outside the first period T1, the control unit 100 In the state, the second period T2 is not provided. This will be described in detail below.
 図9は、実施例2に係る照射部200の照射タイミングと増幅部240の出力の関係を例示するタイミングチャートである。本実施例において、第1期間T1内では測定装置20内で反射された電磁波を検出したピーク90は飽和している。しかし、第1期間T1外ではピーク90は飽和していない。したがって、測定装置20外の対象物で反射された電磁波を検出したピーク91は良好に検出される。このように、測定装置20内で反射された電磁波の受信による増幅部240の出力が、第1期間T1外で飽和しない場合、制御部100は利得が低い第2期間T2を設ける必要は無い。 FIG. 9 is a timing chart illustrating the relationship between the irradiation timing of the irradiation unit 200 and the output of the amplification unit 240 according to the second embodiment. In the present embodiment, the peak 90 in which the electromagnetic wave reflected in the measuring device 20 is detected is saturated within the first period T1. However, the peak 90 is not saturated outside the first period T1. Therefore, the peak 91 in which the electromagnetic wave reflected by the object outside the measuring apparatus 20 is detected is detected well. As described above, when the output of the amplification unit 240 due to reception of the electromagnetic wave reflected in the measurement apparatus 20 does not saturate outside the first period T1, the control unit 100 does not need to provide the second period T2 having a low gain.
 図8を参照して、本実施例に係る設定処理の内容を説明する。本実施例に係る制御装置10では、実施例1と同様に設定処理が開始され、ステップS200およびステップS210が実行される。次いで、ステップS230において、制御部100は、第1期間T1外で増幅部240の出力が飽和するか否か判定する。増幅部240の出力が飽和するか否かは、実施例1のステップS240と同様、増幅部240の出力信号に飽和値が含まれるか否かで判定できる。 Referring to FIG. 8, the contents of the setting process according to the present embodiment will be described. In the control device 10 according to the present embodiment, the setting process is started in the same manner as in the first embodiment, and steps S200 and S210 are executed. Next, in step S230, the control unit 100 determines whether or not the output of the amplification unit 240 is saturated outside the first period T1. Whether or not the output of the amplifying unit 240 is saturated can be determined by whether or not a saturated value is included in the output signal of the amplifying unit 240 as in step S240 of the first embodiment.
 制御部100は、第1期間T1外で増幅部240の出力が飽和しないと判定した場合(ステップS230のN)、次いで、ステップS290において、第1状態では第2期間T2を設けないことを決定する。 When it is determined that the output of the amplifier 240 is not saturated outside the first period T1 (N in Step S230), the control unit 100 then determines in Step S290 that the second period T2 is not provided in the first state. To do.
 一方、制御部100は、第1期間T1外で増幅部240の出力が飽和すると判定した場合(ステップS230のY)、次いでステップS280の処理を行う。ステップS280、ステップS220、ステップS240、およびステップS260の処理は、実施例1と同様に行われる。 On the other hand, when it is determined that the output of the amplification unit 240 is saturated outside the first period T1 (Y in step S230), the control unit 100 performs the process of step S280. Steps S280, S220, S240, and S260 are performed in the same manner as in the first embodiment.
 切り替え部120は、以上のように第2期間T2を設けないことが決定される(ステップS290)、または第2利得が決定される(ステップS260)と、すなわち、第2状態で設定処理が完了すると、制御装置10の動作を第1状態に切り替える。ステップS290で、第1状態で第2期間T2を設けないことが決定された場合、続く第1状態では、第1期間T1内の増幅部240の利得はたとえば第1利得G1で維持される。一方、ステップS260において第2利得が決定されると、続く第1状態では、決定された第2利得を用いて第2期間T2における増幅部240の利得が制御される。 As described above, the switching unit 120 determines that the second period T2 is not provided (step S290) or the second gain is determined (step S260), that is, the setting process is completed in the second state. Then, the operation of the control device 10 is switched to the first state. When it is determined in step S290 that the second period T2 is not provided in the first state, in the subsequent first state, the gain of the amplification unit 240 in the first period T1 is maintained at the first gain G1, for example. On the other hand, when the second gain is determined in step S260, the gain of the amplification unit 240 in the second period T2 is controlled using the determined second gain in the subsequent first state.
 以上、本実施例によれば、実施形態と同様、制御部100は、照射部200によって電磁波が照射されてから所定の第1期間T1内においては、第1期間T1経過後の増幅部240の第1利得G1よりも低い第2利得G2となる第2期間T2ができるように、利得を制御する。したがって、電磁波が照射された直後の迷光の影響を避け、その後に受信される反射波の検出を精度良く行える。 As described above, according to the present example, similarly to the embodiment, the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave. The gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
 くわえて、本実施例によれば、第2状態において、測定装置20内で反射された電磁波の受信による増幅部240の出力が、第1期間T1外で飽和しない場合、制御部100は第1状態で第2期間T2を設けない。したがって、第2期間T2を設けない場合に制御部100の処理負荷を軽減することができる。 In addition, according to the present embodiment, in the second state, when the output of the amplifying unit 240 due to reception of the electromagnetic wave reflected in the measuring device 20 does not saturate outside the first period T1, the control unit 100 In the state, the second period T2 is not provided. Therefore, the processing load on the control unit 100 can be reduced when the second period T2 is not provided.
(実施例3)
 図10は、実施例3に係る増幅部240の回路構成を例示する図である。図11は、SW1~3の切り替えタイミング、照射部200の照射タイミング、および増幅部240の利得の関係を例示するタイミングチャートである。
Example 3
FIG. 10 is a diagram illustrating a circuit configuration of the amplifying unit 240 according to the third embodiment. FIG. 11 is a timing chart illustrating the relationship between the switching timing of SW1 to SW3, the irradiation timing of the irradiation unit 200, and the gain of the amplification unit 240.
 本実施例に係る制御装置10は、制御部100が、第1利得G1を、電磁波が照射されてから時間が経つほど高くするよう制御する点を除いて実施例1および実施例2の少なくともいずれかに係る制御装置10と同じである。以下に詳しく説明する。 The control device 10 according to the present embodiment has at least one of the first embodiment and the second embodiment except that the control unit 100 controls the first gain G1 to be higher as time passes after the electromagnetic wave is irradiated. The control device 10 is the same as the above. This will be described in detail below.
 図10の例において、受信部220は受信素子300であり、増幅部240はIVアンプ310である。受信素子300に電磁波が入射すると、受信素子300の一方の端子から電流が出力され、OPA(オペアンプ)の一方の入力端子n1に入力される。n1はたとえば負の入力端子である。受信素子300の他方の端子には電圧が印加されている。OPAの入力端子n1には、利得を決定する抵抗R1、R2およびR3の一端がさらに接続されている。OPAの他方の入力端子n2は接地されている。n2はたとえば正の入力端子である。SW1、SW2、およびSW3は、抵抗R1、R2およびR3の他端とOPAの出力端子n3との接続の有無をそれぞれ切り替えるスイッチである。SW1、SW2、およびSW3が全てONとなった場合、抵抗R1、R2およびR3は互いに並列接続される。抵抗R1、R2、およびR3は特に限定されないが、たとえばこの順に小さい抵抗値を有する。また、たとえば、R2の抵抗値はR1の抵抗値の5倍以上20倍以下であり、R3の抵抗値はR2の抵抗値の5倍以上20倍以下である。SW1、SW2、およびSW3のオンおよびオフは、集積回路40からの出力信号で制御される。SW1、SW2、およびSW3のオンおよびオフをそれぞれ制御することで増幅部240の利得を制御できる。 10, the receiving unit 220 is the receiving element 300 and the amplifying unit 240 is the IV amplifier 310. When electromagnetic waves are incident on the receiving element 300, a current is output from one terminal of the receiving element 300 and input to one input terminal n1 of the OPA (op-amp). n1 is, for example, a negative input terminal. A voltage is applied to the other terminal of the receiving element 300. One end of resistors R1, R2, and R3 that determine the gain is further connected to the input terminal n1 of the OPA. The other input terminal n2 of the OPA is grounded. n2 is, for example, a positive input terminal. SW1, SW2, and SW3 are switches that respectively switch the presence / absence of connection between the other ends of the resistors R1, R2, and R3 and the output terminal n3 of the OPA. When SW1, SW2, and SW3 are all turned on, resistors R1, R2, and R3 are connected in parallel to each other. Although resistance R1, R2, and R3 are not specifically limited, For example, it has a small resistance value in this order. For example, the resistance value of R2 is 5 to 20 times the resistance value of R1, and the resistance value of R3 is 5 to 20 times the resistance value of R2. On / off of SW1, SW2, and SW3 is controlled by an output signal from the integrated circuit 40. The gain of the amplifying unit 240 can be controlled by controlling on / off of SW1, SW2, and SW3, respectively.
 図11の例において、SW1、SW2、およびSW3は第1期間T1の間オン状態とされ、第1期間T1外になると順にオフ状態に切り替えられる。その結果、第1期間T1外の第1利得G1は、照射部200の照射タイミングから離れるほど高くなる。なお、本図の例において、第1期間T1と第2期間T2とは一致している。第1期間T1外の第1利得G1は、いずれも第2利得G2よりも高い。測定装置20においては、測定装置20の外部の対象物について、対象物の反射率が同じであれば、対象物までの距離が近いほど反射波の強度が高い。すなわち、照射部200の照射タイミングに近いタイミングで受信する反射波ほど、受信強度が高いことが多い。したがって、第1利得G1を、電磁波が照射されてから時間が経つほど高くするよう制御することにより、増幅部240の飽和を避けつつ、精度良く反射波の検出を行える。 In the example of FIG. 11, SW1, SW2, and SW3 are turned on during the first period T1, and are sequentially switched to the off state when they are outside the first period T1. As a result, the first gain G1 outside the first period T1 increases as the distance from the irradiation timing of the irradiation unit 200 increases. In the example of this figure, the first period T1 and the second period T2 coincide. The first gain G1 outside the first period T1 is higher than the second gain G2. In the measuring apparatus 20, if the reflectance of the object is the same for the object outside the measuring apparatus 20, the intensity of the reflected wave is higher as the distance to the object is shorter. In other words, the reflected wave received at a timing closer to the irradiation timing of the irradiation unit 200 often has a higher reception intensity. Therefore, by controlling the first gain G1 so as to increase with time after irradiation with the electromagnetic wave, the reflected wave can be detected with high accuracy while avoiding saturation of the amplifier 240.
 以上、本実施例によれば、実施形態と同様、制御部100は、照射部200によって電磁波が照射されてから所定の第1期間T1内においては、第1期間T1経過後の増幅部240の第1利得G1よりも低い第2利得G2となる第2期間T2ができるように、利得を制御する。したがって、電磁波が照射された直後の迷光の影響を避け、その後に受信される反射波の検出を精度良く行える。 As described above, according to the present example, similarly to the embodiment, the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave. The gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
 くわえて、本実施例によれば制御部100が、第1利得G1を、電磁波が照射されてから時間が経つほど高くするよう制御する。したがって、様々な距離の対象物からの反射波を精度良く検出できる。 In addition, according to the present embodiment, the control unit 100 controls the first gain G1 to increase as time passes after the electromagnetic wave is irradiated. Therefore, it is possible to accurately detect reflected waves from objects at various distances.
(実施例4)
 図12は、実施例4に係る照射部200の動作を説明するための図である。本実施例に係る制御装置10は、以下に説明する点を除いて実施例1から実施例3の少なくともいずれかに係る制御装置10と同じである。
Example 4
FIG. 12 is a diagram for explaining the operation of the irradiation unit 200 according to the fourth embodiment. The control device 10 according to the present embodiment is the same as the control device 10 according to at least one of the first to third embodiments except for the points described below.
 本実施例において、照射部200からは、互いに異なる複数の方向に順に電磁波が出射される。そして、制御部100は、複数の方向のそれぞれに対して定められた第2利得G2を用いて増幅部240の利得を制御する。以下に詳しく説明する。 In this embodiment, electromagnetic waves are emitted in order from the irradiation unit 200 in a plurality of different directions. Then, the control unit 100 controls the gain of the amplification unit 240 using the second gain G2 determined for each of the plurality of directions. This will be described in detail below.
 本実施例において、測定装置20は可動反射部260を備える。照射部200から出力された電磁波は可動反射部260で反射された後に測定装置20の外部に出射される。可動反射部260の反射面の角度は制御部100からの制御信号により制御される。可動反射部260の反射面の角度が変わることで、電磁波の照射方向が変更される。 In the present embodiment, the measuring device 20 includes a movable reflecting portion 260. The electromagnetic wave output from the irradiation unit 200 is reflected by the movable reflection unit 260 and then emitted to the outside of the measurement apparatus 20. The angle of the reflecting surface of the movable reflector 260 is controlled by a control signal from the controller 100. By changing the angle of the reflecting surface of the movable reflecting portion 260, the irradiation direction of the electromagnetic wave is changed.
 電磁波はたとえば複数のフレーム60を生成するように照射方向が変更される。具体的には、電磁波は、スポットが第1の方向(本図中、X方向)に延びる複数のラインを描くように照射方向が変更される。また、電磁波は、スポットがライン毎に第2の方向(本図中、Y方向)に移動するように、照射方向が移動される。したがって、電磁波のスポットは、第2の方向に平行に並んだ複数のラインを描く。 The irradiation direction of the electromagnetic wave is changed so as to generate a plurality of frames 60, for example. Specifically, the irradiation direction of the electromagnetic wave is changed so that the spot draws a plurality of lines extending in the first direction (X direction in the figure). Further, the irradiation direction of the electromagnetic wave is moved so that the spot moves in the second direction (Y direction in the figure) for each line. Therefore, the electromagnetic wave spot draws a plurality of lines arranged in parallel in the second direction.
 このように電磁波の照射方向の変更を繰り返し、各照射方向で測定を行うことで、測定装置の周囲の様子を示すデータであるフレーム60が生成される。照射方向は、フレームの最後の位置602まで来ると、再度フレームの先頭位置601に戻る。測定装置は、フレーム60を繰り返し生成することで周囲の様子の変化を測定する。 As described above, by repeating the change of the irradiation direction of the electromagnetic wave and performing the measurement in each irradiation direction, a frame 60 which is data indicating the state around the measurement apparatus is generated. When the irradiation direction reaches the last position 602 of the frame, it returns to the head position 601 of the frame again. The measurement device measures changes in the surroundings by repeatedly generating the frame 60.
 本実施例において、設定処理では、各照射方向に対して第2利得G2が決定される。また、設定処理では、照射方向毎に、実施例2で説明した様に、第2期間T2を設けるか否かを決定してもよい。具体的には設定処理のステップS210およびステップS220において、制御部100の制御信号に基づく方向に電磁波が照射される。そして、実施例1または実施例2と同様に処理が行われる。ステップS260またはステップS290の処理が終了すると、次いで、異なる照射方向で再度ステップS200からの処理が開始される。こうして、複数の照射方向のそれぞれについて設定処理が行われる。 In the present embodiment, in the setting process, the second gain G2 is determined for each irradiation direction. In the setting process, as described in the second embodiment, whether or not the second period T2 is provided may be determined for each irradiation direction. Specifically, in step S210 and step S220 of the setting process, the electromagnetic wave is irradiated in the direction based on the control signal of the control unit 100. Then, the processing is performed in the same manner as in the first or second embodiment. When the process of step S260 or step S290 is completed, the process from step S200 is started again in a different irradiation direction. Thus, the setting process is performed for each of the plurality of irradiation directions.
 第1状態では、設定処理で決定された条件で、各照射方向に照射される際の増幅部240の利得が制御される。 In the first state, the gain of the amplification unit 240 when irradiated in each irradiation direction is controlled under the conditions determined in the setting process.
 測定装置20内での電磁波の反射は、可動反射部260の状態に応じて条件や経路が変わりうる。したがって、照射方向毎に第2利得G2を定めることで、いずれの照射方向でも精度良く、測定装置20の外部の、測定の対象となる対象物からの反射波を検出できる。 The reflection of electromagnetic waves in the measuring apparatus 20 can change conditions and paths according to the state of the movable reflector 260. Therefore, by determining the second gain G2 for each irradiation direction, it is possible to accurately detect a reflected wave from an object to be measured outside the measuring apparatus 20 in any irradiation direction.
 上記した通り、照射部200からは、電磁波のスポットが複数のラインを描くように複数の方向に電磁波が出射される。制御部100は、複数の方向のそれぞれに対して定められた第2利得G2を用いて増幅部240の利得を制御する代わりに、複数のラインのそれぞれに対して定められた第2利得G2を用いて増幅部240の利得を制御してもよい。この場合、各ラインに含まれるいずれかの照射方向について、本実施例で上記した通り設定処理を行う。そして、その照射方向について決定された条件を、そのラインを構成する全ての照射方向に対して適用することができる。 As described above, electromagnetic waves are emitted from the irradiation unit 200 in a plurality of directions so that the electromagnetic wave spots draw a plurality of lines. Instead of controlling the gain of the amplifier 240 using the second gain G2 determined for each of the plurality of directions, the control unit 100 uses the second gain G2 determined for each of the plurality of lines. It may be used to control the gain of the amplifying unit 240. In this case, the setting process is performed as described above in the present embodiment for any irradiation direction included in each line. And the conditions determined about the irradiation direction are applicable with respect to all the irradiation directions which comprise the line.
 以上、本実施例によれば、実施形態と同様、制御部100は、照射部200によって電磁波が照射されてから所定の第1期間T1内においては、第1期間T1経過後の増幅部240の第1利得G1よりも低い第2利得G2となる第2期間T2ができるように、利得を制御する。したがって、電磁波が照射された直後の迷光の影響を避け、その後に受信される反射波の検出を精度良く行える。 As described above, according to the present example, similarly to the embodiment, the control unit 100 performs the amplification unit 240 after the first period T1 has elapsed within a predetermined first period T1 after the irradiation unit 200 has irradiated the electromagnetic wave. The gain is controlled so that a second period T2 in which the second gain G2 is lower than the first gain G1 is formed. Therefore, it is possible to avoid the influence of stray light immediately after the electromagnetic wave is irradiated, and to accurately detect the reflected wave received thereafter.
 くわえて、本実施例によれば、制御部100は、複数の方向のそれぞれに対して定められた第2利得G2を用いて増幅部240の利得を制御する。または制御部100は、複数のラインのそれぞれに対して定められた第2利得G2を用いて増幅部240の利得を制御する。したがって、複数の照射方向に電磁波が出力される場合でも精度良く対象物からの反射波を検出できる。 In addition, according to the present embodiment, the control unit 100 controls the gain of the amplification unit 240 using the second gain G2 determined for each of a plurality of directions. Alternatively, the control unit 100 controls the gain of the amplification unit 240 using the second gain G2 determined for each of the plurality of lines. Therefore, even when electromagnetic waves are output in a plurality of irradiation directions, a reflected wave from the object can be detected with high accuracy.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、上述の説明で用いたシーケンス図やフローチャートでは、複数の工程(処理)が順番に記載されているが、各実施例で実行される工程の実行順序は、その記載の順番に制限されない。各実施例では、図示される工程の順番を内容的に支障のない範囲で変更することができる。また、上述の各実施形態および各実施例は、内容が相反しない範囲で組み合わせることができる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable. For example, in the sequence diagrams and flowcharts used in the above description, a plurality of steps (processes) are described in order, but the execution order of the steps executed in each embodiment is not limited to the description order. In each embodiment, the order of the illustrated steps can be changed within a range that does not hinder the contents. Moreover, each above-mentioned embodiment and each Example can be combined in the range in which the content does not conflict.
 以下、参考形態の例を付記する。
1-1. 照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御部を備え、
 前記制御部は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、制御装置。
1-2. 1-1.に記載の制御装置において、
 当該制御装置は、前記照射部および前記受信部を備える測定装置の制御装置であり、
 前記第1期間内では、前記受信部の出力信号を用いた測定が行われない制御装置。
1-3. 1-2.に記載の制御装置において、
 前記受信部は、前記第2期間において、前記測定装置内で反射された前記電磁波を受信する制御装置。
1-4. 1-2.または1-3.に記載の制御装置において、
 当該制御装置の動作を、前記受信部の出力信号を用いて測定が行われる第1状態と、前記第1状態における前記制御部の動作を決定するための処理が行われる第2状態とに切り替える切り替え部をさらに備える制御装置。
1-5. 1-4.に記載の制御装置において、
 前記第2状態では、前記第2期間において前記増幅部の出力が飽和しないように前記第2利得が定められる制御装置。
1-6. 1-4.または1-5.に記載の制御装置において、
 前記第2状態において、前記測定装置内で反射された前記電磁波の受信による前記増幅部の出力が、前記第1期間外で飽和しない場合、前記制御部は前記第1状態で前記第2期間を設けない制御装置。
1-7. 1-4.から1-6.のいずれか一つに記載の制御装置において、
 前記切り替え部は、前記照射部の温度を測定する測温部の測定結果が予め定められた条件を満たしたとき、当該制御装置を前記第2状態に切り替える制御装置。
1-8. 1-1.から1-7.のいずれか一つに記載の制御装置において、
 前記照射部からは、互いに異なる複数の方向に順に前記電磁波が出射され、
 前記制御部は、前記複数の方向のそれぞれに対して定められた前記第2利得を用いて前記利得を制御する制御装置。
1-9. 1-1.から1-7.のいずれか一つに記載の制御装置において、
 前記照射部からは、前記電磁波のスポットが複数のラインを描くように複数の方向に前記電磁波が出射され、
 前記制御部は、前記複数のラインのそれぞれに対して定められた前記第2利得を用いて前記利得を制御する制御装置。
1-10. 1-1.から1-9.のいずれか一つに記載の制御装置において、
 前記制御部は、前記第1利得を、前記電磁波が照射されてから時間が経つほど高くするよう制御する制御装置。
2-1. 照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御ステップを含み、
 前記制御ステップでは、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、制御方法。
2-2. 2-1.に記載の制御方法において、
 当該制御方法は、前記照射部および前記受信部を備える測定装置の制御方法であり、
 前記第1期間内では、前記受信部の出力信号を用いた測定が行われない制御方法。
2-3. 2-2.に記載の制御方法において、
 前記受信部は、前記第2期間において、前記測定装置内で反射された前記電磁波を受信する制御方法。
2-4. 2-2.または2-3.に記載の制御方法において、
 当該制御方法の処理を、前記受信部の出力信号を用いて測定が行われる第1状態と、前記第1状態における前記制御ステップの制御内容を決定するための処理が行われる第2状態とに切り替える切り替えステップをさらに含む制御方法。
2-5. 2-4.に記載の制御方法において、
 前記第2状態では、前記第2期間において前記増幅部の出力が飽和しないように前記第2利得が定められる制御方法。
2-6. 2-4.または2-5.に記載の制御方法において、
 前記第2状態において、前記測定装置内で反射された前記電磁波の受信による前記増幅部の出力が、前記第1期間外で飽和しない場合、前記制御ステップでは前記第1状態で前記第2期間を設けない制御方法。
2-7. 2-4.から2-6.のいずれか一つに記載の制御方法において、
 前記切り替えステップでは、前記照射部の温度を測定する測温部の測定結果が予め定められた条件を満たしたとき、当該制御方法の処理を前記第2状態に切り替える制御方法。
2-8. 2-1.から2-7.のいずれか一つに記載の制御方法において、
 前記照射部からは、互いに異なる複数の方向に順に前記電磁波が出射され、
 前記制御ステップでは、前記複数の方向のそれぞれに対して定められた前記第2利得を用いて前記利得を制御する制御方法。
2-9. 2-1.から2-7.のいずれか一つに記載の制御方法において、
 前記照射部からは、前記電磁波のスポットが複数のラインを描くように複数の方向に前記電磁波が出射され、
 前記制御ステップでは、前記複数のラインのそれぞれに対して定められた前記第2利得を用いて前記利得を制御する制御方法。
2-10. 2-1.から2-9.のいずれか一つに記載の制御方法において、
 前記制御ステップでは、前記第1利得を、前記電磁波が照射されてから時間が経つほど高くするよう制御する制御方法。
3-1. 制御装置を実現するためのコンピュータプログラムであって、
 コンピュータを、
  照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御手段として機能させ、
 前記制御手段は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、コンピュータプログラム。
3-2. 3-1.に記載のコンピュータプログラムにおいて、
 当該制御装置は、前記照射部および前記受信部を備える測定装置の制御装置であり、
 前記第1期間内では、前記受信部の出力信号を用いた測定が行われないコンピュータプログラム。
3-3. 3-2.に記載のコンピュータプログラムにおいて、
 前記受信部は、前記第2期間において、前記測定装置内で反射された前記電磁波を受信するコンピュータプログラム。
3-4. 3-2.または3-3.に記載のコンピュータプログラムにおいて、
 前記コンピュータを
  当該制御装置の動作を、前記受信部の出力信号を用いて測定が行われる第1状態と、前記第1状態における前記制御手段の動作を決定するための処理が行われる第2状態とに切り替える切り替え手段としてさらに機能させるコンピュータプログラム。
3-5. 3-4.に記載のコンピュータプログラムにおいて、
 前記第2状態では、前記第2期間において前記増幅部の出力が飽和しないように前記第2利得が定められるコンピュータプログラム。
3-6. 3-4.または3-5.に記載のコンピュータプログラムにおいて、
 前記第2状態において、前記測定装置内で反射された前記電磁波の受信による前記増幅部の出力が、前記第1期間外で飽和しない場合、前記制御手段は前記第1状態で前記第2期間を設けないコンピュータプログラム。
3-7. 3-4.から3-6.のいずれか一つに記載のコンピュータプログラムにおいて、
 前記切り替え手段は、前記照射部の温度を測定する測温部の測定結果が予め定められた条件を満たしたとき、当該制御装置を前記第2状態に切り替えるコンピュータプログラム。
3-8. 3-1.から3-7.のいずれか一つに記載のコンピュータプログラムにおいて、
 前記照射部からは、互いに異なる複数の方向に順に前記電磁波が出射され、
 前記制御手段は、前記複数の方向のそれぞれに対して定められた前記第2利得を用いて前記利得を制御するコンピュータプログラム。
3-9. 3-1.から3-7.のいずれか一つに記載のコンピュータプログラムにおいて、
 前記照射部からは、前記電磁波のスポットが複数のラインを描くように複数の方向に前記電磁波が出射され、
 前記制御手段は、前記複数のラインのそれぞれに対して定められた前記第2利得を用いて前記利得を制御するコンピュータプログラム。
3-10. 3-1.から3-9.のいずれか一つに記載のコンピュータプログラムにおいて、
 前記制御手段は、前記第1利得を、前記電磁波が照射されてから時間が経つほど高くするよう制御するコンピュータプログラム。
4-1. 制御装置を実現するためのコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
 前記コンピュータプログラムは、コンピュータを、
  照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御手段として機能させ、
 前記制御手段は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、記録媒体。
4-2. 4-1.に記載の記録媒体において、
 当該制御装置は、前記照射部および前記受信部を備える測定装置の制御装置であり、
 前記第1期間内では、前記受信部の出力信号を用いた測定が行われない記録媒体。
4-3. 4-2.に記載の記録媒体において、
 前記受信部は、前記第2期間において、前記測定装置内で反射された前記電磁波を受信する記録媒体。
4-4. 4-2.または4-3.に記載の記録媒体において、
 前記コンピュータプログラムは、前記コンピュータを、
  当該制御装置の動作を、前記受信部の出力信号を用いて測定が行われる第1状態と、前記第1状態における前記制御手段の動作を決定するための処理が行われる第2状態とに切り替える切り替え手段としてさらに機能させる記録媒体。
4-5. 4-4.に記載の記録媒体において、
 前記第2状態では、前記第2期間において前記増幅部の出力が飽和しないように前記第2利得が定められる記録媒体。
4-6. 4-4.または4-5.に記載の記録媒体において、
 前記第2状態において、前記測定装置内で反射された前記電磁波の受信による前記増幅部の出力が、前記第1期間外で飽和しない場合、前記制御手段は前記第1状態で前記第2期間を設けない記録媒体。
4-7. 4-4.から4-6.のいずれか一つに記載の記録媒体において、
 前記切り替え手段は、前記照射部の温度を測定する測温部の測定結果が予め定められた条件を満たしたとき、当該制御装置を前記第2状態に切り替える記録媒体。
4-8. 4-1.から4-7.のいずれか一つに記載の記録媒体において、
 前記照射部からは、互いに異なる複数の方向に順に前記電磁波が出射され、
 前記制御手段は、前記複数の方向のそれぞれに対して定められた前記第2利得を用いて前記利得を制御する記録媒体。
4-9. 4-1.から4-7.のいずれか一つに記載の記録媒体において、
 前記照射部からは、前記電磁波のスポットが複数のラインを描くように複数の方向に前記電磁波が出射され、
 前記制御手段は、前記複数のラインのそれぞれに対して定められた前記第2利得を用いて前記利得を制御する記録媒体。
4-10. 4-1.から4-9.のいずれか一つに記載の記録媒体において、
 前記制御手段は、前記第1利得を、前記電磁波が照射されてから時間が経つほど高くするよう制御する記録媒体。
Hereinafter, examples of the reference form will be added.
1-1. A control unit for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit;
The control unit has a second period in which a second gain lower than the first gain of the amplification unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. A control device for controlling the gain so that
1-2. 1-1. In the control device described in
The said control apparatus is a control apparatus of the measuring apparatus provided with the said irradiation part and the said receiving part,
The control device in which measurement using the output signal of the receiving unit is not performed within the first period.
1-3. 1-2. In the control device described in
The receiving device is a control device that receives the electromagnetic wave reflected in the measuring device in the second period.
1-4. 1-2. Or 1-3. In the control device described in
The operation of the control device is switched between a first state in which measurement is performed using the output signal of the reception unit and a second state in which processing for determining the operation of the control unit in the first state is performed. A control device further comprising a switching unit.
1-5. 1-4. In the control device described in
In the second state, the second gain is determined so that the output of the amplifying unit is not saturated in the second period.
1-6. 1-4. Or 1-5. In the control device described in
In the second state, when the output of the amplification unit due to reception of the electromagnetic wave reflected in the measurement apparatus does not saturate outside the first period, the control unit sets the second period in the first state. Control device not provided.
1-7. 1-4. To 1-6. In the control device according to any one of
The said switching part is a control apparatus which switches the said control apparatus to a said 2nd state, when the measurement result of the temperature measuring part which measures the temperature of the said irradiation part satisfy | fills the predetermined conditions.
1-8. 1-1. To 1-7. In the control device according to any one of
From the irradiation unit, the electromagnetic waves are emitted in order in a plurality of different directions,
The control unit controls the gain using the second gain determined for each of the plurality of directions.
1-9. 1-1. To 1-7. In the control device according to any one of
From the irradiation unit, the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines,
The control unit controls the gain by using the second gain determined for each of the plurality of lines.
1-10. 1-1. To 1-9. In the control device according to any one of
The said control part is a control apparatus which controls the said 1st gain so that it may become so high that time passes after the said electromagnetic waves are irradiated.
2-1. Including a control step of controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit,
In the control step, within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit, a second period in which the second gain is lower than the first gain of the amplification unit after the first period has elapsed. A control method for controlling the gain so that
2-2. 2-1. In the control method described in
The control method is a control method of a measurement apparatus including the irradiation unit and the reception unit,
A control method in which measurement using an output signal of the receiving unit is not performed within the first period.
2-3. 2-2. In the control method described in
The control method in which the receiving unit receives the electromagnetic wave reflected in the measuring device in the second period.
2-4. 2-2. Or 2-3. In the control method described in
The processing of the control method is divided into a first state in which measurement is performed using the output signal of the receiving unit and a second state in which processing for determining the control content of the control step in the first state is performed. A control method further comprising a switching step for switching.
2-5. 2-4. In the control method described in
In the second state, the second gain is determined so that the output of the amplifying unit is not saturated in the second period.
2-6. 2-4. Or 2-5. In the control method described in
In the second state, when the output of the amplifying unit due to reception of the electromagnetic wave reflected in the measuring device does not saturate outside the first period, the control step sets the second period in the first state. Control method not provided.
2-7. 2-4. To 2-6. In the control method according to any one of
In the switching step, a control method for switching the process of the control method to the second state when a measurement result of a temperature measuring unit that measures the temperature of the irradiation unit satisfies a predetermined condition.
2-8. 2-1. To 2-7. In the control method according to any one of
From the irradiation unit, the electromagnetic waves are emitted in order in a plurality of different directions,
In the control step, the gain is controlled using the second gain determined for each of the plurality of directions.
2-9. 2-1. To 2-7. In the control method according to any one of
From the irradiation unit, the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines,
In the control step, the gain is controlled using the second gain determined for each of the plurality of lines.
2-10. 2-1. To 2-9. In the control method according to any one of
In the control step, the first gain is controlled so as to increase as time passes after the electromagnetic wave is irradiated.
3-1. A computer program for realizing a control device,
Computer
The electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
The control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. A computer program for controlling the gain so that
3-2. 3-1. In the computer program described in
The said control apparatus is a control apparatus of the measuring apparatus provided with the said irradiation part and the said receiving part,
A computer program in which measurement using an output signal of the receiving unit is not performed within the first period.
3-3. 3-2. In the computer program described in
The receiving unit is a computer program that receives the electromagnetic wave reflected in the measuring device in the second period.
3-4. 3-2. Or 3-3. In the computer program described in
A second state in which a process for determining the operation of the control device in the first state in which the measurement is performed using the output signal of the receiver and the operation of the control means in the first state is performed; A computer program that further functions as a switching means for switching between and.
3-5. 3-4. In the computer program described in
In the second state, the computer program in which the second gain is determined so that the output of the amplifying unit is not saturated in the second period.
3-6. 3-4. Or 3-5. In the computer program described in
In the second state, when the output of the amplifying unit due to reception of the electromagnetic wave reflected in the measuring device does not saturate outside the first period, the control means sets the second period in the first state. Computer program not provided.
3-7. 3-4. To 3-6. In the computer program according to any one of
The switching unit is a computer program that switches the control device to the second state when a measurement result of a temperature measuring unit that measures the temperature of the irradiation unit satisfies a predetermined condition.
3-8. 3-1. To 3-7. In the computer program according to any one of
From the irradiation unit, the electromagnetic waves are emitted in order in a plurality of different directions,
The control means is a computer program for controlling the gain using the second gain determined for each of the plurality of directions.
3-9. 3-1. To 3-7. In the computer program according to any one of
From the irradiation unit, the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines,
The control means is a computer program for controlling the gain using the second gain determined for each of the plurality of lines.
3-10. 3-1. To 3-9. In the computer program according to any one of
The control means is a computer program for controlling the first gain to increase as time passes after the electromagnetic wave is irradiated.
4-1. A computer-readable recording medium recording a computer program for realizing a control device,
The computer program includes a computer,
The electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
The control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. A recording medium that controls the gain so that
4-2. 4-1. In the recording medium described in
The said control apparatus is a control apparatus of the measuring apparatus provided with the said irradiation part and the said receiving part,
A recording medium in which measurement using the output signal of the receiving unit is not performed within the first period.
4-3. 4-2. In the recording medium described in
The receiving unit is a recording medium that receives the electromagnetic wave reflected in the measuring device in the second period.
4-4. 4-2. Or 4-3. In the recording medium described in
The computer program stores the computer,
The operation of the control device is switched between a first state in which measurement is performed using the output signal of the receiving unit and a second state in which processing for determining the operation of the control means in the first state is performed. A recording medium that further functions as switching means.
4-5. 4-4. In the recording medium described in
In the second state, the recording medium in which the second gain is determined so that the output of the amplifying unit is not saturated in the second period.
4-6. 4-4. Or 4-5. In the recording medium described in
In the second state, when the output of the amplifying unit due to reception of the electromagnetic wave reflected in the measuring device does not saturate outside the first period, the control means sets the second period in the first state. Recording media not provided.
4-7. 4-4. To 4-6. In the recording medium according to any one of
The switching unit is a recording medium that switches the control device to the second state when a measurement result of a temperature measuring unit that measures the temperature of the irradiation unit satisfies a predetermined condition.
4-8. 4-1. To 4-7. In the recording medium according to any one of
From the irradiation unit, the electromagnetic waves are emitted in order in a plurality of different directions,
The control means is a recording medium that controls the gain using the second gain determined for each of the plurality of directions.
4-9. 4-1. To 4-7. In the recording medium according to any one of
From the irradiation unit, the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines,
The control means is a recording medium for controlling the gain using the second gain determined for each of the plurality of lines.
4-10. 4-1. To 4-9. In the recording medium according to any one of
The control means is a recording medium that controls the first gain so as to increase as time passes after the electromagnetic wave is irradiated.
 この出願は、2018年3月26日に出願された日本出願特願2018-057506号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-057506 filed on Mar. 26, 2018, the entire disclosure of which is incorporated herein.

Claims (13)

  1.  照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御部を備え、
     前記制御部は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、制御装置。
    A control unit for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit;
    The control unit has a second period in which a second gain lower than the first gain of the amplification unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. A control device for controlling the gain so that
  2.  請求項1に記載の制御装置において、
     当該制御装置は、前記照射部および前記受信部を備える測定装置の制御装置であり、
     前記第1期間内では、前記受信部の出力信号を用いた測定が行われない制御装置。
    The control device according to claim 1,
    The said control apparatus is a control apparatus of the measuring apparatus provided with the said irradiation part and the said receiving part,
    The control device in which measurement using the output signal of the receiving unit is not performed within the first period.
  3.  請求項2に記載の制御装置において、
     前記受信部は、前記第2期間において、前記測定装置内で反射された前記電磁波を受信する制御装置。
    The control device according to claim 2,
    The receiving device is a control device that receives the electromagnetic wave reflected in the measuring device in the second period.
  4.  請求項2または3に記載の制御装置において、
     当該制御装置の動作を、前記受信部の出力信号を用いて測定が行われる第1状態と、前記第1状態における前記制御部の動作を決定するための処理が行われる第2状態とに切り替える切り替え部をさらに備える制御装置。
    The control device according to claim 2 or 3,
    The operation of the control device is switched between a first state in which measurement is performed using the output signal of the reception unit and a second state in which processing for determining the operation of the control unit in the first state is performed. A control device further comprising a switching unit.
  5.  請求項4に記載の制御装置において、
     前記第2状態では、前記第2期間において前記増幅部の出力が飽和しないように前記第2利得が定められる制御装置。
    The control device according to claim 4,
    In the second state, the second gain is determined so that the output of the amplifying unit is not saturated in the second period.
  6.  請求項4または5に記載の制御装置において、
     前記第2状態において、前記測定装置内で反射された前記電磁波の受信による前記増幅部の出力が、前記第1期間外で飽和しない場合、前記制御部は前記第1状態で前記第2期間を設けない制御装置。
    The control device according to claim 4 or 5,
    In the second state, when the output of the amplification unit due to reception of the electromagnetic wave reflected in the measurement apparatus does not saturate outside the first period, the control unit sets the second period in the first state. Control device not provided.
  7.  請求項4~6のいずれか一項に記載の制御装置において、
     前記切り替え部は、前記照射部の温度を測定する測温部の測定結果が予め定められた条件を満たしたとき、当該制御装置を前記第2状態に切り替える制御装置。
    The control device according to any one of claims 4 to 6,
    The said switching part is a control apparatus which switches the said control apparatus to a said 2nd state, when the measurement result of the temperature measuring part which measures the temperature of the said irradiation part satisfy | fills the predetermined conditions.
  8.  請求項1~7のいずれか一項に記載の制御装置において、
     前記照射部からは、互いに異なる複数の方向に順に前記電磁波が出射され、
     前記制御部は、前記複数の方向のそれぞれに対して定められた前記第2利得を用いて前記利得を制御する制御装置。
    The control device according to any one of claims 1 to 7,
    From the irradiation unit, the electromagnetic waves are emitted in order in a plurality of different directions,
    The control unit controls the gain using the second gain determined for each of the plurality of directions.
  9.  請求項1~7のいずれか一項に記載の制御装置において、
     前記照射部からは、前記電磁波のスポットが複数のラインを描くように複数の方向に前記電磁波が出射され、
     前記制御部は、前記複数のラインのそれぞれに対して定められた前記第2利得を用いて前記利得を制御する制御装置。
    The control device according to any one of claims 1 to 7,
    From the irradiation unit, the electromagnetic wave is emitted in a plurality of directions such that the spot of the electromagnetic wave draws a plurality of lines,
    The control unit controls the gain by using the second gain determined for each of the plurality of lines.
  10.  請求項1~9のいずれか一項に記載の制御装置において、
     前記制御部は、前記第1利得を、前記電磁波が照射されてから時間が経つほど高くするよう制御する制御装置。
    The control device according to any one of claims 1 to 9,
    The said control part is a control apparatus which controls the said 1st gain so that it may become so high that time passes after the said electromagnetic waves are irradiated.
  11.  照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御ステップを含み、
     前記制御ステップでは、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、制御方法。
    Including a control step of controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object by the electromagnetic wave irradiated by the irradiation unit,
    In the control step, in a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit, a second period in which the second gain is lower than the first gain of the amplification unit after the first period has elapsed. A control method for controlling the gain so that
  12.  制御装置を実現するためのコンピュータプログラムであって、
     コンピュータを、
      照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御手段として機能させ、
     前記制御手段は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、コンピュータプログラム。
    A computer program for realizing a control device,
    Computer
    The electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
    The control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. A computer program for controlling the gain so that
  13.  制御装置を実現するためのコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     前記コンピュータプログラムは、コンピュータを、
      照射部によって照射された電磁波が対象物によって反射された反射波を受信可能な受信部の出力信号を増幅する増幅部の利得を制御する制御手段として機能させ、
     前記制御手段は、前記照射部によって前記電磁波が照射されてから所定の第1期間内においては、前記第1期間経過後の前記増幅部の第1利得よりも低い第2利得となる第2期間ができるように、前記利得を制御する、記録媒体。
    A computer-readable recording medium recording a computer program for realizing a control device,
    The computer program includes a computer,
    The electromagnetic wave irradiated by the irradiation unit functions as a control means for controlling the gain of the amplification unit that amplifies the output signal of the reception unit capable of receiving the reflected wave reflected by the object,
    The control means has a second period in which a second gain lower than the first gain of the amplifying unit after the first period has elapsed within a predetermined first period after the electromagnetic wave is irradiated by the irradiation unit. A recording medium that controls the gain so that
PCT/JP2019/011641 2018-03-26 2019-03-20 Control device, control method, computer program, and storage medium WO2019188638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057506 2018-03-26
JP2018-057506 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188638A1 true WO2019188638A1 (en) 2019-10-03

Family

ID=68058313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011641 WO2019188638A1 (en) 2018-03-26 2019-03-20 Control device, control method, computer program, and storage medium

Country Status (1)

Country Link
WO (1) WO2019188638A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114027U (en) * 1990-03-07 1991-11-22
JPH0523176U (en) * 1991-09-05 1993-03-26 三菱電機株式会社 Laser range finder
US6310682B1 (en) * 1999-07-06 2001-10-30 Quarton, Inc. System and method for laser range finder
US20040056199A1 (en) * 2002-09-25 2004-03-25 O'connor Christopher J. Infrared obstacle detection in the presence of sunlight
JP2014020963A (en) * 2012-07-19 2014-02-03 Fujitsu Ltd Distance measurement apparatus, emission timing controller and program
JP2014062767A (en) * 2012-09-20 2014-04-10 Omron Automotive Electronics Co Ltd Light receiving circuit, and laser radar
JP2017032547A (en) * 2015-07-31 2017-02-09 オプテックス株式会社 Laser distance meter false detection suppression circuit
JP2018013370A (en) * 2016-07-20 2018-01-25 株式会社デンソーウェーブ Laser radar device
WO2018043541A1 (en) * 2016-08-31 2018-03-08 パイオニア株式会社 Measuring device, control device, control method, and program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114027U (en) * 1990-03-07 1991-11-22
JPH0523176U (en) * 1991-09-05 1993-03-26 三菱電機株式会社 Laser range finder
US6310682B1 (en) * 1999-07-06 2001-10-30 Quarton, Inc. System and method for laser range finder
US20040056199A1 (en) * 2002-09-25 2004-03-25 O'connor Christopher J. Infrared obstacle detection in the presence of sunlight
JP2014020963A (en) * 2012-07-19 2014-02-03 Fujitsu Ltd Distance measurement apparatus, emission timing controller and program
JP2014062767A (en) * 2012-09-20 2014-04-10 Omron Automotive Electronics Co Ltd Light receiving circuit, and laser radar
JP2017032547A (en) * 2015-07-31 2017-02-09 オプテックス株式会社 Laser distance meter false detection suppression circuit
JP2018013370A (en) * 2016-07-20 2018-01-25 株式会社デンソーウェーブ Laser radar device
WO2018043541A1 (en) * 2016-08-31 2018-03-08 パイオニア株式会社 Measuring device, control device, control method, and program

Similar Documents

Publication Publication Date Title
JP5688900B2 (en) Method and apparatus for determining the distance to a reflective object
US9709678B2 (en) Laser radar device, object detecting method
JPH07146368A (en) Radar equipment
JP6633197B2 (en) Photodetector and electronic equipment
JP4901128B2 (en) Distance measuring device and distance measuring method
JP5626114B2 (en) In-vehicle laser radar system
WO2020145035A1 (en) Distance measurement device and distance measurement method
WO2015098469A1 (en) Distance measuring apparatus, electronic apparatus, distance measuring method, and distance measuring program
JP2011511261A5 (en)
US10317530B2 (en) Laser range finding apparatus
JP2013033024A (en) Distance and speed measuring device
WO2012042934A1 (en) Displacement sensor
JPH09318749A (en) Distance measuring device
JPH1048338A (en) Distance measuring apparatus
US20190353788A1 (en) Distance measuring device and method
WO2019188638A1 (en) Control device, control method, computer program, and storage medium
JP2010286235A (en) Photoelectric sensor
JP6355014B2 (en) Optical position detection system, control device, position detection device, control program, and ranging system
JP2015152485A (en) Distance measuring apparatus
JP2000346941A (en) Distance measuring device
CN112105944A (en) Optical ranging system with multimode operation using short and long pulses
JP2016170053A (en) Laser radar device
JP6210906B2 (en) Laser radar equipment
JPH11325823A (en) Distance measuring apparatus, object detecting apparatus using the same, and light receiving signal processing circuit
JP6464307B2 (en) Distance measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP