[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019188416A1 - 表示装置及び表示装置の製造方法、並びに、電子機器 - Google Patents

表示装置及び表示装置の製造方法、並びに、電子機器 Download PDF

Info

Publication number
WO2019188416A1
WO2019188416A1 PCT/JP2019/010849 JP2019010849W WO2019188416A1 WO 2019188416 A1 WO2019188416 A1 WO 2019188416A1 JP 2019010849 W JP2019010849 W JP 2019010849W WO 2019188416 A1 WO2019188416 A1 WO 2019188416A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode electrode
electrode
display device
insulating layer
pixel
Prior art date
Application number
PCT/JP2019/010849
Other languages
English (en)
French (fr)
Inventor
中村 耕一
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/975,014 priority Critical patent/US11424427B2/en
Priority to DE112019001693.8T priority patent/DE112019001693T5/de
Priority to JP2020510654A priority patent/JP7212036B2/ja
Priority to CN201980021598.3A priority patent/CN111903192B/zh
Publication of WO2019188416A1 publication Critical patent/WO2019188416A1/ja
Priority to JP2023003414A priority patent/JP7390502B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present disclosure relates to a display device, a method for manufacturing the display device, and an electronic apparatus.
  • flat panel display devices are the mainstream.
  • a display device that uses a so-called current-driven electro-optical element whose light emission luminance changes according to a current value flowing through the device as a light-emitting portion (light-emitting element) of a pixel.
  • a current-driven electro-optical element an organic EL element using a phenomenon in which light is emitted when an electric field is applied to an organic thin film using electroluminescence (EL) of an organic material is known.
  • an organic EL display device using an organic EL element as a light emitting portion of a pixel a base structure such as a transistor element, a capacitor element, and a wiring in a pixel region is flattened, and a dimensional variation due to a focus shift of a resist pattern at the time of wiring or contact formation The structure is suppressed.
  • a structure flattened to the anode electrode of the organic EL element the amount of light taken in at the end of the pixel region is weak for the optical axis design of the lens used in combination with the organic EL display device. , Viewing angle characteristics deteriorate.
  • Patent Document 1 discloses a technique for tilting the electrode surface of the anode electrode with respect to the substrate surface by devising the wiring structure under the anode electrode of the organic EL element.
  • the surface of the planarization layer is inclined by forming a specific structure or the like for each pixel, By forming the anode electrode on the inclined surface, the electrode surface is inclined with respect to the substrate surface.
  • a specific structure or the like is formed for each pixel, and the surface of the planarization layer is inclined to set the inclination angle of the anode electrode. Therefore, it is difficult to freely set an arbitrary inclination angle for each pixel with respect to the inclination angle of the anode electrode with respect to the substrate surface.
  • An object of the present disclosure is to provide a display device, a manufacturing method of the display device, and an electronic apparatus capable of freely setting an arbitrary inclination angle for each pixel with respect to the inclination angle of the anode electrode with respect to the substrate surface. To do.
  • a display device of the present disclosure is provided.
  • an anode electrode of the light emitting unit is provided with a region including pixels inclined with respect to the substrate surface, The electrode surface of the anode electrode has an inclination angle corresponding to the surface shape of the base insulating layer.
  • a manufacturing method of the display device of the present disclosure for achieving the above-described object is as follows.
  • a display device having a pixel region in which a pixel including a light emitting unit is arranged on a substrate,
  • an anode electrode of the light emitting unit is provided with a region including pixels inclined with respect to the substrate surface, The electrode surface of the anode electrode is formed at an inclination angle corresponding to the surface shape of the base insulating layer.
  • an electronic apparatus for achieving the above object includes the display device having the above structure.
  • FIG. 1 is a system configuration diagram illustrating an outline of a configuration of an active matrix organic EL display device which is an example of the display device of the present disclosure.
  • FIG. 2 is a circuit diagram showing an example of a circuit configuration of a pixel (pixel circuit) in the active matrix organic EL display device.
  • FIG. 3 is a cross-sectional view showing a basic pixel structure.
  • FIG. 4 is a diagram for explaining the reason why the viewing angle characteristic of the peripheral portion of the pixel region is worse than that of the central portion.
  • FIG. 5 is a cross-sectional view illustrating a cross-sectional structure of a main part of the display panel according to the first embodiment.
  • FIG. 6A is a plan view showing angle setting of the staircase shape according to the first specific example, and FIG.
  • FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A.
  • FIG. 7A is a plan view showing angle setting of the staircase shape according to the second specific example, and FIG. 7B is a cross-sectional view taken along line BB in FIG. 7A.
  • FIG. 8A is a plan view showing angle setting of the staircase shape according to the third specific example, and FIG. 8B is a cross-sectional view taken along the line CC of FIG. 8A.
  • FIG. 9A is a plan view showing the angle setting of the staircase shape according to the fourth specific example, and FIG. 9B is a cross-sectional view taken along the line DD in FIG. 9A.
  • FIG. 10 is a cross-sectional view illustrating an anode electrode structure according to a first specific example of the second embodiment.
  • FIG. 11 is a cross-sectional view illustrating an anode electrode structure according to a second specific example of the second embodiment.
  • FIG. 12 is a cross-sectional view illustrating an anode electrode structure according to a third specific example of the second embodiment.
  • FIG. 13 is a cross-sectional view illustrating an anode electrode structure according to a first specific example of the third embodiment.
  • FIG. 14 is a cross-sectional view illustrating an anode electrode structure according to a second specific example of the third embodiment.
  • FIG. 15 is a cross-sectional view illustrating an anode electrode structure according to a third specific example of the third embodiment.
  • FIG. 16 is a cross-sectional view illustrating an anode electrode structure according to a fourth specific example of Example 3.
  • FIG. 17 is a cross-sectional view illustrating the anode electrode structure according to the fourth embodiment.
  • FIG. 18 is a cross-sectional view illustrating the anode electrode structure according to the fifth embodiment.
  • 19A and 19B are diagrams illustrating a procedure for forming a step on the anode formation surface for each color pixel in the anode electrode structure according to the fifth embodiment.
  • 20A and 20B are diagrams illustrating another processing example 1 and processing example 2 of the staircase shape of the base insulating layer according to the sixth embodiment.
  • FIG. 21A is an electrode plan view for designing an inclination angle according to the first specific example of Example 7, and FIG.
  • FIG. 21B is an electrode cross-sectional view taken along line EE of FIG. 21A.
  • FIG. 22A is an electrode plan view for designing an inclination angle according to the second specific example of Example 7, and FIG. 22B is an electrode cross-sectional view along the line FF in FIG. 22A.
  • FIG. 23A is an electrode plan view for designing an inclination angle according to the third specific example of Example 7, and FIG. 23B is an electrode cross-sectional view taken along the line GG of FIG. 23A.
  • 24A is a plan view of an electrode for designing an inclination angle according to a fourth specific example of Example 7, and FIG. 24B is a cross-sectional view of the electrode along the line HH in FIG. 24A.
  • FIG. 25 is a process diagram (part 1) illustrating a formation process of a base insulating layer and an anode electrode according to Example 8.
  • FIG. 26 is a process diagram (part 2) illustrating the formation process of the base insulating layer and the anode electrode according to the eighth embodiment.
  • FIG. 27 is a process diagram (part 3) illustrating the formation process of the base insulating layer and the anode electrode according to the eighth embodiment.
  • FIG. 28 is a diagram for explaining that a high viewing angle characteristic can be secured by the anode electrode structure according to the present embodiment.
  • 29A is a front view of a lens interchangeable single-lens reflex digital still camera according to a specific example 1 of the electronic apparatus of the present disclosure
  • FIG. 29B is a rear view thereof.
  • FIG. 30 is an external view illustrating an example of a head mounted display according to a specific example 2 of the electronic apparatus of the present disclosure.
  • Example 2 (Modification of Example 1: Example in which the inclination angle of the anode electrode is asymmetric) 3-3.
  • Example 3 (Modification of Example 1: Example in which the electrode surface of the anode electrode is stepped) 3-4.
  • Example 4 (Modification of Example 1: Example in which anode electrode has reflector effect) 3-5.
  • Example 5 (Modification of Example 1: Example corresponding to cavity structure) 3-6.
  • Example 6 (Modification of Example 1: Other example of processing of staircase shape of base insulating layer) 3-7.
  • Example 7 (Modified example of Example 1: Design example of the inclination angle of the anode electrode) 3-8.
  • Example 8 (Example of manufacturing method of organic EL display device) 4).
  • Modification 5 5.
  • Example 2 (example of head mounted display) 6). Configurations that can be taken by the present disclosure
  • the surface shape of the base insulating layer can be a staircase shape.
  • the anode electrode can be formed on the stepped shape of the base insulating layer.
  • the inclination angle of the electrode surface of the anode electrode can be determined by the depth, the number of steps, and the step width of the staircase shape of the base insulating layer.
  • the stepped shape of the base insulating layer can be embedded and smoothed with a metal material. Then, the anode electrode can be formed on a smoothed base insulating layer.
  • the inclination angle of the electrode surface of the anode electrode is set to the first direction and the first direction with respect to the electrode center in plan view. It can be set as the structure symmetrical in 2 directions.
  • the inclination angle of the electrode surface of the anode electrode is asymmetric in the first direction with respect to the electrode center in plan view.
  • a configuration in which one asymmetric electrode surface side is a non-light emitting portion side can be adopted.
  • the anode electrode can be configured to have a structure capable of selecting the presence or absence of the reflection effect depending on the presence or absence of the metal material on the electrode surface on the non-light emitting portion side.
  • the anode electrode is formed directly on the step shape of the base insulating layer, and the electrode surface has the step shape. Or it can be set as the structure which has an electrode surface shape which has a reflector effect.
  • one pixel as a unit for forming a color image includes a plurality of subpixels, and the cathode of the light emitting unit
  • a step may be provided for each subpixel of a plurality of colors on the anode electrode forming surface of the base insulating layer. it can.
  • the sub-pixels of a plurality of colors are composed of sub-pixels of three primary colors of red, green, and blue, and the formation surface of the anode electrode of the other sub-pixel is determined based on the formation surface of the anode electrode of the red sub-pixel. It can be set as the structure to do.
  • each step of the step shape of the base insulating layer is processed to have a tapered side surface.
  • a light emission part it can be set as the structure which consists of an organic EL element.
  • the display device of the present disclosure is an active matrix display device that controls an electric current flowing through an electro-optical element by an active element provided in the same pixel circuit as the electro-optical element, for example, an insulated gate field effect transistor.
  • an insulated gate field effect transistor include a MOS (Metal Oxide Semiconductor) transistor and a TFT (Thin Film Transistor).
  • an active matrix organic EL that uses, for example, an organic EL element, which is a current-driven electro-optical element whose emission luminance changes according to the current value flowing through the device, as a light emitting portion (light emitting element) of a pixel circuit.
  • an organic EL element which is a current-driven electro-optical element whose emission luminance changes according to the current value flowing through the device, as a light emitting portion (light emitting element) of a pixel circuit.
  • a display device will be described as an example.
  • the “pixel circuit” may be simply referred to as “pixel”.
  • FIG. 1 is a system configuration diagram illustrating an outline of a configuration of an active matrix organic EL display device which is an example of the display device of the present disclosure.
  • the organic EL display device 10 is arranged around a pixel array unit 30 in which a plurality of pixels 20 including organic EL elements are two-dimensionally arranged in a matrix, and around the pixel array unit 30.
  • Peripheral circuit peripheral drive unit
  • the region of the pixel array unit 30 may be described as a pixel region.
  • the peripheral circuit of the pixel region is composed of, for example, a writing scanning unit 40, a driving scanning unit 50, a signal output unit 60, and the like mounted on the same display panel 70 as the pixel array unit 30, and each pixel of the pixel array unit 30 20 is driven. It is also possible to adopt a configuration in which some or all of the writing scanning unit 40, the driving scanning unit 50, and the signal output unit 60 are provided outside the display panel 70.
  • an insulating transparent substrate such as a glass substrate can be used, or a semiconductor substrate such as a silicon substrate can be used.
  • An organic EL display device using a semiconductor substrate such as a silicon substrate as a substrate of the display panel 70 is called a so-called micro display (small display), and an electronic viewfinder of a digital still camera, a display unit of a head mounted display, or the like. It is suitable for use as.
  • the organic EL display device 10 can be configured for monochrome (black and white) display or can be configured for color display.
  • one pixel (unit pixel / pixel) serving as a unit for forming a color image is composed of a plurality of sub-pixels (sub-pixels).
  • each of the sub-pixels corresponds to the pixel 20 in FIG.
  • one pixel includes, for example, a sub-pixel that emits red (Red) light, a sub-pixel that emits green (G) light, and blue (Blue).
  • one pixel is not limited to a combination of RGB three primary color subpixels, and one pixel may be configured by adding one or more color subpixels to the three primary color subpixels. Is possible. More specifically, for example, one pixel is formed by adding a sub-pixel that emits white (W) light to improve luminance, or at least emits complementary color light to expand the color reproduction range. It is also possible to configure one pixel by adding one subpixel.
  • W white
  • the pixel array section 30 includes scanning lines 31 (31 1 to 31 m ) and driving lines 32 (32) along the first direction (row direction / horizontal direction) with respect to the arrangement of the pixels 20 in m rows and n columns. 1 to 32 m ) are wired for each pixel row. Furthermore, signal lines 33 (33 1 to 33 n ) are wired for each pixel column along the second direction (column direction / vertical direction) with respect to the array of pixels 20 in m rows and n columns.
  • the scanning lines 31 1 to 31 m are connected to the output ends of the corresponding rows of the writing scanning unit 40, respectively.
  • the drive lines 32 1 to 32 m are connected to the output ends of the corresponding rows of the drive scanning unit 50, respectively.
  • the signal lines 33 1 to 33 n are connected to the output ends of the corresponding columns of the signal output unit 60, respectively.
  • the write scanning unit 40 is configured by a shift register circuit or the like.
  • the writing scanning unit 40 writes the writing scanning signal WS (WS 1 to WS m ) to the scanning lines 31 (31 1 to 31 m ) when writing the signal voltage of the video signal to each pixel 20 of the pixel array unit 30. Is sequentially supplied, so that each pixel 20 of the pixel array unit 30 is sequentially scanned row by row, so-called line sequential scanning is performed.
  • the drive scanning unit 50 is configured by a shift register circuit or the like, similarly to the writing scanning unit 40.
  • the drive scanning unit 50 supplies the light emission control signals DS (DS 1 to DS m ) to the drive lines 32 (32 1 to 32 m ) in synchronization with the line sequential scanning performed by the writing scanning unit 40. 20 light emission / non-light emission (quenching) is controlled.
  • the signal output unit 60 includes a signal voltage V sig and a reference voltage V ofs of a video signal corresponding to luminance information supplied from a signal supply source (not shown) (hereinafter may be simply referred to as “signal voltage”). And are selectively output.
  • the reference voltage V ofs is a voltage corresponding to a reference voltage of the signal voltage V sig of the video signal (for example, a voltage corresponding to the black level of the video signal) or a voltage in the vicinity thereof.
  • the reference voltage V ofs is used as an initialization voltage when performing the correction operation.
  • the signal voltage V sig / reference voltage V ofs alternatively output from the signal output unit 60 is written and scanned with respect to each pixel 20 of the pixel array unit 30 via the signal line 33 (33 1 to 33 n ). Writing is performed in units of pixel rows selected by line sequential scanning by the unit 40. In other words, the signal output unit 60 adopts a line sequential writing driving form in which the signal voltage V sig is written in units of pixel rows.
  • FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of a pixel (pixel circuit) in the active matrix organic EL display device 10.
  • the light emitting portion of the pixel 20 is composed of an organic EL element 21.
  • the organic EL element 21 is an example of a current-driven electro-optical element whose emission luminance changes according to the value of current flowing through the device.
  • the pixel 20 includes an organic EL element 21 and a drive circuit (pixel drive circuit) that drives the organic EL element 21 by passing a current through the organic EL element 21.
  • the organic EL element 21 has a cathode electrode connected to a common power supply line 34 that is wired in common to all the pixels 20.
  • C el is an equivalent capacitance of the organic EL element 21.
  • the drive circuit for driving the organic EL element 21 has a configuration including a drive transistor 22, a sampling transistor 23, a light emission control transistor 24, a storage capacitor 25, and an auxiliary capacitor 26.
  • the organic EL element 21 and its drive circuit are formed on a semiconductor such as silicon, not on an insulator such as glass, and a configuration using a P-channel transistor as the drive transistor 22. Is adopted.
  • the sampling transistor 23 and the light emission control transistor 24 are also configured to use P-channel type transistors, like the drive transistor 22. Therefore, the drive transistor 22, the sampling transistor 23, and the light emission control transistor 24 have four terminals of source / gate / drain / back gate instead of three terminals of source / gate / drain. A power supply voltage V dd is applied to the back gate.
  • sampling transistor 23 and the light emission control transistor 24 are switching transistors that function as switching elements, they are not limited to P-channel transistors. Therefore, the sampling transistor 23 and the light emission control transistor 24 may be an N-channel transistor or a configuration in which a P-channel type and an N-channel type are mixed.
  • the sampling transistor 23 writes the signal voltage V sig of the video signal supplied from the signal output unit 60 through the signal line 33 to the storage capacitor 25.
  • the light emission control transistor 24 is connected between the node of the power supply voltage Vdd and the source electrode of the drive transistor 22 and controls light emission / non-light emission of the organic EL element 21 under the drive by the light emission control signal DS.
  • the storage capacitor 25 is connected between the gate electrode and the source electrode of the drive transistor 22.
  • the holding capacitor 25 holds the signal voltage V sig of the video signal written by sampling by the sampling transistor 23.
  • the driving transistor 22 drives the organic EL element 21 by causing a driving current corresponding to the holding voltage of the holding capacitor 25 to flow through the organic EL element 21.
  • the auxiliary capacitor 26 is connected between the source electrode of the driving transistor 22 and a node of a fixed potential, for example, a node of the power supply voltage Vdd .
  • the auxiliary capacitor 26 suppresses the fluctuation of the source potential of the drive transistor 22 when the signal voltage V sig of the video signal is written, and the gate-source voltage V gs of the drive transistor 22 is reduced .
  • the threshold voltage V th is obtained.
  • any color light of R (red), G (green), and B (blue) is emitted by a combination of a white organic EL element that emits white light and a color filter.
  • This is a top emission type (so-called top emission type) display panel that is emitted from the panel upper surface (surface opposite to the substrate 101) side.
  • the area on the substrate 101 that constitutes the display panel 70 includes an effective pixel area (display area) in which a plurality of pixels 20 are arranged in a matrix, and a periphery located on the periphery (outer edge side / outer periphery side) of the effective pixel area. It consists of areas.
  • a pixel drive circuit including a drive transistor 22, a sampling transistor 23, a light emission control transistor 24, a storage capacitor 25, and an auxiliary capacitor 26 is provided in the effective pixel region.
  • a peripheral circuit including a writing scanning unit 40, a driving scanning unit 50, a signal output unit 60, and the like is provided in the peripheral region.
  • a circuit layer 102 including these circuits is formed on the substrate 101.
  • the display panel 70 is formed on the circuit layer 102 by, for example, an inorganic insulating layer 103, a base insulating layer 104, an anode electrode 105, an organic insulating layer 106, an organic EL layer 107, a cathode electrode 108, an organic protective layer 109, a filler layer ( Adhesive layer) 110 and black matrix layer 111 have a laminated structure in which they are laminated in this order. In the same layer as the black matrix layer 111, a color filter 112 is provided for each pixel. In addition, a sealing substrate 113 is attached to the stacked structure, and the stacked structure is sealed by the sealing substrate 113.
  • the anode electrode 105, the organic EL layer 107, and the cathode electrode 108 have a laminated structure that constitutes the white organic EL element described above.
  • the anode electrode 105 is provided for each color pixel 20 in the effective pixel region.
  • the cathode electrode 108 is made of a transparent electrode, and is provided as an electrode common to each pixel 20 in the effective pixel region.
  • the organic EL layer 107 has a stacked structure in which a hole injection layer 1071, a hole transport layer 1072, a light emitting layer 1073, an electron transport layer 1074, and an electron injection layer 1075 are stacked in this order from the anode electrode 105 side. Yes. Among these layers, layers other than the light emitting layer 1073 may be provided as necessary.
  • the hole injection layer 1071 is provided to increase hole injection efficiency and prevent leakage.
  • the hole transport layer 1072 is for increasing the efficiency of hole transport to the light emitting layer 1073.
  • the light-emitting layer 1073 generates light when an electric field is applied to recombine electrons and holes.
  • the electron transport layer 1074 is for increasing the efficiency of transporting electrons to the light emitting layer 1073.
  • the electron injection layer 1075 is for increasing electron injection efficiency.
  • the base insulating layer 104 is provided so as to cover the circuit portion (pixel driving circuit or peripheral circuit) formed on the substrate 101, and the organic EL display is provided on the base insulating layer 104.
  • the element 21 is formed.
  • An anode electrode 105 is provided as a lower electrode below the organic EL element 21 in units of pixels, and a cathode electrode 108 is provided as an upper electrode common to all pixels on the organic EL element 21 so that the anode electrode 105 is flat.
  • a pixel structure is realized.
  • the organic EL display device 10 is used in combination with a lens (lens group) 80 as shown in FIG. .
  • the organic EL display device 10 serves as a divergent light source for the lens 80.
  • the amount of light at the peripheral edge (end) of the pixel region of the organic EL display device 10 obliquely incident light is taken into the lens 80 as a main light component due to the optical axis design of the lens 80.
  • the organic EL display device 10 having the above-described normal pixel structure that is, the pixel structure flattened to the anode electrode 105 of the organic EL element 21
  • light emitted obliquely from the organic EL element 21 becomes weak.
  • the viewing angle characteristic at the peripheral part of the pixel region is worse (decreased) than the viewing angle characteristic at the central part of the pixel region.
  • the electrode surface of the anode electrode 105 of the organic EL element 21 is the substrate surface (surface of the substrate 101) in the pixel region (region of the pixel array unit 30). A region including the pixel 20 having a pixel structure inclined with respect to the region is provided. Then, when the electrode surface of the anode electrode 105 is inclined with respect to the substrate surface, the anode electrode 105 is formed on the surface shape of the base insulating layer 104, and the electrode of the anode electrode 105 is inclined at an inclination angle corresponding to the surface shape. Form a surface.
  • the surface shape of the base insulating layer 104 can be easily formed into an arbitrary shape at the stage of forming the base insulating layer 104. Then, by forming the anode electrode 105 on the surface shape of the base insulating layer 104, the inclination angle of the electrode surface of the anode electrode 105 is set to an angle corresponding to the surface shape of the base insulating layer 104. Accordingly, the inclination angle of the anode electrode 105 with respect to the substrate surface can be freely set at an arbitrary inclination angle according to the surface shape of the base insulating layer 104 for each pixel, so that high viewing angle characteristics can be ensured. it can.
  • a micro display used in combination with the lens 80 can be designed in accordance with the light capturing optical axis of the lens 80, so that high viewing angle characteristics can be secured.
  • Example 1 is an example in which the surface shape of the base insulating layer 104 is a staircase shape.
  • FIG. 5 shows a cross-sectional view of the main part of the display panel 70 according to the first embodiment.
  • the pixel region (effective pixel region) is divided into three regions, that is, a region A in the central portion, a region B adjacent to the region A, and a region C on the peripheral edge side is illustrated.
  • the base insulating layer 104 is formed so that the surface shape is flat.
  • the electrode surface of the anode electrode 105 formed on the flat base insulating layer 104 is a flat surface parallel to the substrate surface.
  • the base insulating layer 104 is formed so that the surface shape thereof is a staircase shape.
  • the electrode surface of the anode electrode 105 formed on the step-shaped base insulating layer 104 is an inclined surface inclined with respect to the substrate surface.
  • the corners of the stepped shape of the base insulating layer 104 are smoothed by embedding a metal material, for example, tungsten (W) in the process of forming the contact portions 114. Therefore, by forming the anode electrode 105 on the stepped shape of the base insulating layer 104 whose corners are smoothed, the electrode surface of the anode electrode 105 has a smooth inclined surface.
  • a metal material for example, tungsten (W)
  • the inclination angle and step width of the staircase shape are changed between the region B and the region C, whereby the inclination angle of the anode electrode 105 in the region B and the anode in the region C are changed.
  • the inclination angle of the electrode 105 is made different.
  • the step-shaped inclination angle in the region B is set to 20 degrees and the step width is set to 0.275 ⁇ m
  • the step-shaped inclination angle in the region C is set to 30 degrees
  • the step width is set to 0.173 ⁇ m.
  • said numerical value is an example, Comprising: It is not limited to these numerical values.
  • the inclination angle of the anode electrode 105 in the region C becomes larger than the inclination angle of the anode electrode 105 in the region B by setting the inclination angle and step width of the step shape of the base insulating layer 104. That is, in the entire pixel region, the electrode surface of the anode electrode 105 is a flat surface having no inclination in the central region A, whereas the electrode surface of the anode electrode 105 is inclined toward the peripheral portion of the pixel region. In this example, the angle increases in units of regions.
  • an arbitrary angle can be set by changing the depth (height) d of the staircase, the number of steps, the step width w, and the like.
  • a specific example of setting the inclination angle of the staircase shape is given below.
  • the anode electrode 105 is rectangular and the staircase shape of the base insulating layer 104, that is, the inclination angle of the anode electrode 105 is symmetric in the vertical and horizontal directions with respect to the electrode center in plan view is illustrated.
  • the left-right direction refers to the first direction (row direction)
  • the up-down direction refers to the second direction (column direction).
  • FIG. 6A is a plan view showing the step-shaped angle setting according to the first specific example
  • FIG. 6B is a cross-sectional view taken along the line AA in FIG. 6A.
  • the depth d of the stairs is set to 0.05 ⁇ m
  • the number of steps is set to 2
  • the step width w is set to 0.572 ⁇ m.
  • the inclination angle of the staircase shape of the base insulating layer 104 can be set to an angle of about 5 degrees.
  • FIG. 7A is a plan view showing the step-shaped angle setting according to the second specific example
  • FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A.
  • the second specific example is an example in which the depth d of the stairs is set to 0.05 ⁇ m, the number of steps is set to 3, and the step width w is set to 0.284 ⁇ m.
  • the inclination angle of the staircase shape of the base insulating layer 104 can be set to an angle of about 10 degrees.
  • FIG. 8A is a plan view showing angle setting of a staircase shape according to a third specific example
  • FIG. 8B is a cross-sectional view taken along the line CC in FIG. 8A.
  • the third specific example is an example in which the depth d of the stairs is set to 0.10 ⁇ m, the number of steps is set to 3, and the step width w is set to 0.275 ⁇ m.
  • the inclination angle of the staircase shape of the base insulating layer 104 can be set to an angle of about 20 degrees.
  • FIG. 9A is a plan view showing the step-shaped angle setting according to the fourth example
  • FIG. 9B is a cross-sectional view taken along line DD in FIG. 9A.
  • the depth d of the stairs is set to 0.10 ⁇ m
  • the number of steps is set to 3
  • the step width w is set to 0.173 ⁇ m.
  • the inclination angle of the staircase shape of the base insulating layer 104 can be set to an angle of about 30 degrees.
  • each staircase in the staircase shape of the base insulating layer 104, the side surface of each staircase has a structure perpendicular to the substrate surface (the surface of the substrate 101).
  • vertical includes not only strictly vertical but also substantially vertical, and the presence of various variations in design or manufacturing is allowed.
  • each numerical value about the depth d of the staircase, the number of steps, the step width w, and the inclination angle in each specific example is an example, and is not limited to these numerical values.
  • the electrode surface of the anode electrode 105 in the entire pixel region is a flat surface without an inclination in the central region A, whereas the anode electrode 105 moves toward the peripheral portion of the pixel region.
  • the inclination angle of the electrode surface is increased (in this example, it is increased in units of regions).
  • the base insulating layer 104 of the anode electrode 105 is processed under the setting of the design value in which the tilt angle, the step width, or the step position and the number of steps are different for each arbitrary region of the pixel region.
  • the base insulating layer 104 having a stepped surface shape can be easily formed on a pixel basis.
  • the anode electrode 105 having an inclination angle corresponding to the surface shape of the base insulating layer can be formed on the base insulating layer 104 in units of pixels. Since the formation of the surface shape of the base insulating layer 104 in units of pixels is easy, the anode electrode 105 can be freely designed with different inclination angles in units of pixels.
  • the second embodiment is a modification of the first embodiment, and is an example in which the inclination angle of the anode electrode 105 is asymmetric in the left-right direction (first direction / row direction) with respect to the electrode center in plan view.
  • the step depth d, the number of steps, and the step width w in the step shape of the base insulating layer 104 are related to the electrode center in plan view. This can be realized by changing the vertical and horizontal directions. Below, the specific example of Example 2 is demonstrated.
  • FIG. 10 is a cross-sectional view of the structure of the anode electrode 105 according to the first specific example of the second embodiment (hereinafter may be abbreviated as “anode electrode structure”).
  • anode electrode structure the structure of the anode electrode 105 according to the first specific example of the second embodiment (hereinafter may be abbreviated as “anode electrode structure”).
  • the case where the inclination angle of the anode electrode 105 is asymmetric in the left-right direction (first direction / row direction) with respect to the electrode center in plan view is illustrated.
  • the inclination angle of the anode electrode 105 is related to the electrode center in plan view.
  • Asymmetrical structure is realized in the left-right direction. Specifically, by setting the step width w 1 of the stairs on the right side of the figure to be wider (w 1 > w 2 ) than the step width w 2 of the stairs on the left side of the figure, the electrode part on the right side of the anode electrode 105 Has a gentler structure than the left electrode portion.
  • the right side of the figure of the anode electrode 105 is the light emitting part side of the organic EL layer 107, and the left side of the figure is the non-light emitting part side of the organic EL layer 107.
  • a metal material for example, tungsten (W) is embedded in the stepped portion of the base insulating layer 104 and the contact portion 114.
  • a metal film 115 is formed on the back surface of the anode electrode 105.
  • the metal film 115 is provided on both the right side (light emitting part side) of the anode electrode 105 and the left side (non-light emitting part side) of the figure. Due to the presence of the metal film 115, it is possible to obtain a light collecting effect due to light reflection at the metal film 115 on the non-light emitting portion side of the organic EL layer 107. Further, the light condensing effect can be adjusted by the metal material of the metal film 115.
  • metal film 115 aluminum (Al), aluminum alloy (AlCu, AlNi), tungsten (W), ITO (IndiumInTin Oxide), titanium (Ti), titanium oxide film (TiO), etc. are selectively laminated. Can be formed.
  • FIG. 11 shows a cross-sectional view of an anode electrode structure according to a second specific example of Example 2.
  • the inclination angle of the anode electrode 105 is asymmetrical in the lateral direction with respect to the electrode center in plan view. It has become.
  • the metal film 115 is formed on both the light emitting portion side and the non-light emitting portion side of the organic EL layer 107, whereas according to the second specific example.
  • the anode electrode structure is a pixel structure in which the anode electrode 105 does not exist on the non-light emitting portion side of the organic EL layer 107, and therefore the metal film 115 does not exist.
  • the effect of light reflection at the interface of the tungsten portion where the staircase shape of the base insulating layer 104 is embedded on the non-light emitting portion side of the organic EL layer 107 is obtained.
  • the light collection effect due to light reflection is lower than in the case of the first specific example in which the film 115 is formed.
  • Example 3 A cross-sectional view of the anode electrode structure according to the third example of Example 2 is shown in FIG.
  • the inclination angle of the anode electrode 105 is asymmetrical in the left-right direction with respect to the electrode center in plan view. It has become.
  • the anode electrode structure according to the third specific example does not have the anode electrode 105 on the non-light-emitting portion side of the organic EL layer 107.
  • the pixel structure does not exist.
  • Example 3 is a modification of Example 1, and is an example in which the shape of the electrode surface of the anode electrode 105 is a stepped shape. That is, in Example 3, the stepped portion of the base insulating layer 104 is not embedded with a metal material (for example, tungsten), and smoothing by the embedded is not used, and the shape of the electrode surface of the anode electrode 105 is The insulating layer 104 has a staircase shape.
  • the pixel structure in which the electrode surface of the anode electrode 105 has a staircase shape has an advantage that the optical scattering effect can be increased.
  • the pixel structure in which the electrode surface of the anode electrode 105 has a staircase shape can be applied to a pixel structure in which the inclination angle of the anode electrode 105 is symmetric with respect to the electrode center in plan view, and can also be applied to an asymmetric pixel structure.
  • Example 3 the specific example of Example 3 is demonstrated.
  • FIG. 13 is a cross-sectional view of an anode electrode structure according to a first specific example of Example 3.
  • the anode electrode structure according to the first specific example is a pixel structure in which the inclination angle of the anode electrode 105 is asymmetric with respect to the electrode center in plan view.
  • the staircase-shaped step portion of the base insulating layer 104 is not filled with a metal material, and the pixel structure has a metal film 115 formed on both the light-emitting portion side and the non-light-emitting portion side of the anode electrode 105. Yes.
  • the anode electrode structure according to the first specific example is a pixel structure in which a part of the base insulating layer 104 is interposed between the anode electrode 105 and the organic EL layer 107 on the non-light emitting portion side.
  • the presence of the metal film 115 makes it possible to obtain a light collection effect due to light reflection on the metal film 115 on the non-light emitting portion side. Further, the light condensing effect can be adjusted by the metal material of the metal film 115.
  • FIG. 14 is a cross-sectional view of an anode electrode structure according to a second specific example of Example 3.
  • the anode electrode structure according to the second specific example has a pixel structure in which the anode electrode 105 does not exist on the non-light emitting portion side, and thus the metal film 115 does not exist.
  • the anode electrode structure according to the second specific example has a pixel structure that can intentionally generate scattered light.
  • the anode electrode structure according to the third example of Example 3 is a pixel structure in which the inclination angle of the anode electrode 105 is asymmetric with respect to the electrode center in plan view.
  • the staircase-shaped step portion of the base insulating layer 104 is not filled with a metal material, and the pixel structure has a metal film 115 formed on both the light-emitting portion side and the non-light-emitting portion side of the anode electrode 105. Yes.
  • the anode electrode structure according to the third specific example is different from the first specific example in that a part of the base insulating layer 104 is not interposed between the anode electrode 105 and the organic EL layer 107 on the non-light emitting portion side. This is different from the anode electrode structure.
  • scattered light can be intentionally generated, and a light collecting effect by light reflection at the metal film 115 can be obtained.
  • FIG. 16 is a cross-sectional view of an anode electrode structure according to a fourth specific example of Example 3.
  • the anode electrode structure according to the fourth specific example is a pixel structure in which the inclination angle of the anode electrode 105 is symmetric with respect to the electrode center in plan view.
  • the anode electrode structure according to the fourth specific example is basically the same pixel structure as the anode electrode structure according to the third specific example. Therefore, according to the anode electrode structure according to the fourth specific example, the scattering effect and the light collecting effect can be intentionally obtained as in the anode electrode structure according to the third specific example.
  • Example 4 is a modification of Example 1, and is an example in which the electrode surface of the anode electrode 105 has a reflector effect.
  • a sectional view of the anode electrode structure according to Example 4 is shown in FIG.
  • the anode electrode structure according to Example 4 is a structure in which the electrode surface of the anode electrode 105 has a reflector effect, for example, a pixel structure having a so-called bowl shape in which a cross section is curved in all directions with respect to the electrode center in plan view. It has become.
  • the electrode surface shape having the reflector effect can be formed by adjusting the depth (height), the number of steps, the step width, and the like of the staircase shape of the base insulating layer 104.
  • the electrode surface of the anode electrode 105 has a reflector effect, so that the light condensing effect can be enhanced.
  • the fifth embodiment is a modification of the first embodiment and corresponds to a cavity (resonator) structure that utilizes the resonance effect of light between the cathode electrode and the anode electrode.
  • a sectional view of the anode electrode structure according to Example 5 is shown in FIG.
  • a cavity structure may be adopted in order to improve color purity and increase contrast.
  • the wavelengths of light of three colors, for example, R (red), G (green), and B (blue) are different from each other, and therefore the optical path length between the cathode electrode and the anode electrode is changed to the EL spectrum peak wavelength of each color.
  • the film thickness of the organic EL layer 107 is changed so that the strongest light is extracted from each color.
  • the anode electrode structure according to Example 5 is formed by forming the electrode surface of the anode electrode 105 at an inclination angle corresponding to the staircase shape of the base insulating layer 104, in addition to the base insulating layer.
  • 104 has a structure in which a step is provided for each color pixel (sub-pixel) on the surface on which the anode electrode 105 is formed (hereinafter referred to as “anode formation surface”).
  • anode formation surface of the G pixel is set to the depth d 1 with reference to the anode formation surface of the R pixel having the longest wavelength.
  • the cathode electrode-anode electrode is provided for the purpose of improving the color purity and increasing the contrast.
  • Step 1 First, as shown in FIG. 19A, an opening 117G corresponding to the G pixel is patterned on the resist 116, and the anode formation surface of the G pixel is formed by a depth d 1 with reference to the anode formation surface of the R pixel by dry etching. Sharpen.
  • the cutting depth d 1 can be adjusted by the dry etching amount.
  • the anode formation surface of the G pixel can be formed before or after the staircase shape processing of the base insulating layer 104.
  • an opening 117B corresponding to the B pixel is patterned in the resist 116, and the anode formation surface of the B pixel by the depth d 2 with reference to the anode formation surface of the R pixel by dry etching. Sharpen.
  • the cutting depth d 2 can be adjusted by the dry etching amount.
  • the anode formation surface of the B pixel can be formed before or after the staircase shape processing of the base insulating layer 104.
  • a region where the staircase shape is not formed in the base insulating layer 104 (that is, the region A in FIG. 5) can be formed simultaneously in Step 1 and Step 2.
  • the amount of digging in the region A is the same as the region where the step shape is formed in the base insulating layer 104 (that is, the region B and the region C in FIG. 5), that is, the depth d 1 and the depth d 2 .
  • the amount of digging of the region A can be adjusted by performing the processing of the region A in a separate process from Step 1 and Step 2.
  • Example 6 is a modification of Example 1, and is another example of processing of the staircase shape of the base insulating layer 104 of the anode electrode 105.
  • any of the first specific example shown in FIG. 6 to the fourth specific example shown in FIG. This is an example of processing formed vertically.
  • another processing method is adopted for the staircase shape of the base insulating layer 104.
  • other processing examples 1 and 2 of the staircase shape of the base insulating layer 104 according to the fifth embodiment will be described.
  • FIG. 20A shows another processing example 1 of the staircase shape of the base insulating layer 104 according to the fifth embodiment.
  • the other processing example 1 is a processing example in which the side surface (processing surface) of each staircase is tapered by a known dry etching technique when processing the base insulating layer 104 having a stepped surface shape.
  • the stepped shape of the base insulating layer 104 can have an inclined surface immediately after processing, in other words, an inclined surface according to the taper angle of the side surface. be able to.
  • the surface shape of the base insulating layer 104 can be a staircase shape having an inclined surface in advance.
  • FIG. 20B shows another processing example 2 of the staircase shape of the base insulating layer 104 according to the fifth embodiment.
  • the side surface of the staircase is processed perpendicularly to the substrate surface, and the processed shape having the formed corners, It is a processing example which adds the process which sharpens corners, such as a reverse sputtering process.
  • the surface shape (step shape) of the base insulating layer 104 can be made to be a shape that improves the film property of the anode electrode 105.
  • the seventh embodiment is a modification of the first embodiment and is a design example for the inclination angle of the anode electrode 105.
  • the inclination angle of the anode electrode 105 can be arbitrarily set for each pixel (each subpixel). A specific example of the design of the inclination angle of the anode electrode 105 will be described below.
  • FIG. 21A shows an electrode plan view regarding the design of the inclination angle according to the first specific example
  • FIG. 21B shows an electrode cross-sectional view along the line EE of FIG. 21A.
  • the design of the tilt angle according to the first specific example corresponds to the staircase shape (see FIG. 5) of the base insulating layer 104 shown in the first embodiment. That is, in the region A in the center of the pixel region, the electrode surface of the anode electrode 105 is a surface parallel to the substrate surface, that is, a surface without inclination.
  • the electrode surface of the anode electrode 105 is an inclined surface that faces outward in the left-right direction (first direction / row direction) of the pixel region, and in the region B, for example, 10 to 20 degrees.
  • the inclined surface is approximately 20 to 30 degrees.
  • the number of rows and columns of pixels that define each of the regions A, B, and C can be arbitrarily set.
  • the design of the inclination angle of the anode electrode 105 according to the second to fourth specific examples described below is designed in accordance with the optical axis design of the lens.
  • the lens here refers to a lens (lens group) 80 shown in FIG. 4 used in combination with a micro display.
  • FIG. 22A shows an electrode plan view for designing an inclination angle according to a second specific example
  • FIG. 22B shows an electrode cross-sectional view along the line FF in FIG. 22A.
  • the design of the tilt angle according to the second specific example is a design in which the electrode surface of the anode electrode 105 faces outward and is tilted in multiple stages in units of regions.
  • FIG. 23A shows an electrode plan view for designing an inclination angle according to the third specific example
  • FIG. 23B shows an electrode cross-sectional view along the line GG in FIG. 23A.
  • the angle of the inclined surface that faces inward in the left-right direction of the pixel region as it goes toward the peripheral edge without being inclined at the central portion of the pixel region is the optical axis design of the lens. It is designed to increase in steps (for example, in units of regions) step by step. That is, the design of the tilt angle according to the third specific example is a design of a configuration in which the electrode surface of the anode electrode 105 is inward and is tilted in multiple stages in units of regions.
  • FIG. 24A shows an electrode plan view for designing an inclination angle according to a fourth specific example
  • FIG. 24B shows an electrode cross-sectional view along the line HH in FIG. 24A.
  • the electrode surface of the anode electrode 105 on one side in the left-right direction of the pixel region has no inclination
  • the electrode surface of the anode electrode 105 on the other side has a maximum inclination angle.
  • the angle of the inclined surface facing the outside increases continuously (for example, in units of pixel columns or in units of a plurality of pixel columns) in accordance with the optical axis design of the lens. Designed to be
  • the design of the inclination angle according to the fourth specific example is a design in which the electrode surface of the anode electrode 105 faces outward and is finely and continuously inclined in one direction in the horizontal direction of the pixel region.
  • the direction of the electrode surface of the anode electrode 105 is outward, but it may be inward.
  • Example 8 is an example of a method for manufacturing the organic EL display device 10 according to the present embodiment.
  • the manufacturing method according to the present embodiment in manufacturing the organic EL display device 10 having the pixel region (pixel array unit 30) in which the pixel 20 including the organic EL element 21 is arranged on the substrate 101, A region in which the anode electrode 105 of the organic EL element 21 includes pixels inclined with respect to the substrate surface is provided. Then, the electrode surface of the anode electrode 105 is formed at an inclination angle corresponding to the surface shape of the base insulating layer 104.
  • a manufacturing process of a main part of the organic EL display device 10 according to the present embodiment in particular, a process of forming the base insulating layer 104 and the anode electrode 105 will be described with reference to the process diagrams of FIGS. 25, 26, and 27. explain.
  • a process after the circuit element of the pixel 20 is formed, the base insulating layer 104 is stacked thereon, and the upper surface of the base insulating layer 104 is planarized will be described.
  • the case where the base insulating layer 104 has three steps as shown in FIG. 5 will be described as an example.
  • An opening corresponding to the first step of the staircase shape is formed on the flattened base insulating layer 104 using a lithography mask 118 having a design value of the staircase layout position and staircase width designed in advance in and out of the pixel region.
  • a first processing step is formed by a dry etching step (step 1).
  • a second step is formed in the dry etching process through the opening pattern 118B designed corresponding to the second step of the staircase shape (step 2).
  • a third step is formed by a dry etching process through the opening pattern 118C designed corresponding to the third step of the staircase shape (step 3).
  • the steps are processed in the order of the first step ⁇ the second step ⁇ the third step.
  • the step is not limited to this order, and the third step ⁇ the second step ⁇ the first step. You may make it process a level
  • the depth (height) of each staircase can be adjusted by the amount to be cut in the dry etching process.
  • a metal material for example, tungsten (W) is embedded to form the contact portion 114 (process 4).
  • tungsten (W) is embedded to form the contact portion 114 (process 4).
  • CMP Chemical Mechanical Polishing
  • the staircase shape of the base insulating layer 104 is smoothed, and then, for example, finishing by CMP (Chemical Mechanical Polishing) is performed.
  • the anode electrode 105 is formed on the smoothed stepped shape of the base insulating layer 104, and the organic EL layer 107 is formed thereon (step 5).
  • an insulating film 119 is formed as a whole, and then an opening 119A is formed on the anode electrode 105 with respect to the insulating film 119 (step 6).
  • the surface shape shown in FIG. 5 is a step-shaped base insulating layer 104, and an inclination angle corresponding to the surface shape of the base insulating layer 104 is obtained.
  • An anode electrode structure having the anode electrode 105 can be manufactured.
  • the inclination angle of the anode electrode 105 with respect to the substrate surface can be freely set at any inclination angle according to the surface shape of the base insulating layer 104 for each pixel, so that high viewing angle characteristics can be ensured.
  • a micro display used in combination with the lens 80 can be designed in accordance with the light capturing optical axis of the lens 80, so that a high viewing angle characteristic is ensured. can do.
  • the display device of the present disclosure described above is a display unit (display device) of an electronic device in any field that displays a video signal input to the electronic device or a video signal generated in the electronic device as an image or a video.
  • the electronic device include a television set, a notebook personal computer, a digital still camera, a mobile terminal device such as a mobile phone, a head mounted display, and the like. However, it is not restricted to these.
  • the following effects can be obtained by using the display device of the present disclosure as the display unit in electronic devices of various fields. That is, according to the display device of the present disclosure, high viewing angle characteristics can be ensured. Therefore, by using the display device of the present disclosure, high viewing angle characteristics can be secured for the display unit of the electronic device.
  • the display device of the present disclosure is a micro display used in combination with a lens, it is possible to perform a design in accordance with the light capturing optical axis of the lens, so that high viewing angle characteristics can be secured.
  • the display device of the present disclosure also includes a module-shaped one with a sealed configuration.
  • a display module formed by attaching a facing portion such as transparent glass to the pixel array portion is applicable.
  • the display module may be provided with a circuit unit for inputting / outputting signals from the outside to the pixel array unit, a flexible printed circuit (FPC), and the like.
  • FPC flexible printed circuit
  • a digital still camera and a head mounted display will be exemplified as specific examples of the electronic apparatus using the display device of the present disclosure.
  • the specific example illustrated here is only an example, and is not limited thereto.
  • FIG. 29 is an external view of an interchangeable-lens single-lens reflex digital still camera according to Specific Example 1 of the electronic apparatus of the present disclosure.
  • FIG. 29A is a front view thereof
  • FIG. 29B is a rear view thereof.
  • the interchangeable-lens single-lens reflex digital still camera includes, for example, an interchangeable photographing lens unit (interchangeable lens) 212 on the front right side of the camera body (camera body) 211, and the front left side.
  • the camera has a grip part 213 for the photographer to hold.
  • a monitor 214 is provided in the approximate center of the back of the camera body 211.
  • An electronic viewfinder (eyepiece window) 215 is provided on the monitor 214. The photographer can look into the electronic viewfinder 215 and visually determine the subject's optical image guided from the photographing lens unit 212 to determine the composition.
  • the display device of the present disclosure can be used as the electronic viewfinder 215. That is, the interchangeable lens single-lens reflex digital still camera according to the first specific example is manufactured by using the display device of the present disclosure as the electronic viewfinder 215.
  • FIG. 30 is an external view illustrating an example of a head mounted display according to a specific example 2 of the electronic apparatus of the present disclosure.
  • the head mounted display 300 has a transmissive head mounted display configuration including a main body portion 301, an arm portion 302, and a lens barrel 303.
  • the main body 301 is connected to the arm 302 and the glasses 310. Specifically, the end of the main body 301 in the long side direction is attached to the arm 302. Further, one side of the side surface of the main body 301 is connected to the glasses 310 via a connection member (not shown).
  • the main body 301 may be directly attached to the head of a human body.
  • the main body unit 301 includes a control board and a display unit for controlling the operation of the head mounted display 300.
  • the arm portion 302 supports the lens barrel 303 with respect to the main body portion 301 by connecting the main body portion 301 and the lens barrel 303. Specifically, the arm portion 302 is coupled to the end portion of the main body portion 301 and the end portion of the lens barrel 303, thereby fixing the lens barrel 303 to the main body portion 301.
  • the arm unit 302 includes a signal line for communicating data related to an image provided from the main body unit 301 to the lens barrel 303.
  • the lens barrel 303 projects image light provided from the main body 301 via the arm unit 302 through the lens 311 of the glasses 310 toward the eyes of the user wearing the head mounted display 300.
  • the display device of the present disclosure can be used as a display unit built in the main body unit 301. That is, the head mounted display 300 according to the second specific example is manufactured by using the display device of the present disclosure as the display unit.
  • this indication can also take the following structures.
  • Display device [A-1] having a pixel region in which a pixel including a light emitting portion is arranged on a substrate; In the pixel region, an anode electrode of the light emitting unit is provided with a region including pixels inclined with respect to the substrate surface, The electrode surface of the anode electrode has an inclination angle corresponding to the surface shape of the base insulating layer.
  • Display device. [A-2] The surface shape of the base insulating layer is a staircase shape, The anode electrode is formed on the staircase shape of the base insulating layer, The display device according to [A-1].
  • the inclination angle of the electrode surface of the anode electrode is determined by the depth, the number of steps, and the step width of the staircase shape of the base insulating layer.
  • [A-4] The staircase shape of the base insulating layer is smoothed by being embedded with a metal material,
  • the anode electrode is formed on the smoothed base insulating layer,
  • [A-5] The inclination angle of the electrode surface of the anode electrode is symmetric in the first direction and the second direction with respect to the electrode center in plan view.
  • the inclination angle of the electrode surface of the anode electrode is asymmetric in the first direction with respect to the electrode center in plan view, and the one asymmetric electrode surface side is the non-light emitting portion side.
  • the anode electrode has a structure capable of selecting the presence or absence of a reflection effect depending on the presence or absence of a metal material on the electrode surface on the non-light emitting portion side.
  • [A-8] The anode electrode is formed directly on the staircase shape of the base insulating layer, and the electrode surface has a staircase shape.
  • the anode electrode has an electrode surface shape having a reflector effect
  • [A-10] When one pixel as a unit for forming a color image is composed of sub-pixels of a plurality of colors and has a cavity structure that uses the resonance effect of light between the cathode electrode and the anode electrode of the light emitting unit, On the formation surface of the anode electrode of the base insulating layer, a step is provided for each subpixel of a plurality of colors.
  • the sub-pixels of a plurality of colors are composed of sub-pixels of three primary colors of red, green and blue,
  • the formation surface of the anode electrode of the other subpixel is determined based on the formation surface of the anode electrode of the red subpixel.
  • [A-12] Each step of the staircase shape of the base insulating layer has been processed to have a tapered side surface.
  • [A-13] Each step of the staircase shape of the base insulating layer has been subjected to a process of cutting corners.
  • the light emitting section is composed of an organic EL element.
  • the inclination angle of the electrode surface of the anode electrode is determined by the depth, the number of steps, and the step width of the step shape of the base insulating layer.
  • [B-4] The stepped shape of the base insulating layer is embedded and smoothed with a metal material, The anode electrode is formed on the smoothed base insulating layer, The method for manufacturing a display device according to [B-2] above.
  • [B-5] The inclination angle of the electrode surface of the anode electrode is symmetric in the first direction and the second direction with respect to the electrode center in plan view. The method for manufacturing a display device according to the above [B-4].
  • the inclination angle of the electrode surface of the anode electrode is asymmetric in the first direction with respect to the electrode center in plan view, and one asymmetric electrode surface side is the non-light emitting portion side.
  • the anode electrode has a structure capable of selecting the presence or absence of a reflection effect depending on the presence or absence of a metal material on the electrode surface on the non-light emitting portion side.
  • the anode electrode is formed directly on the staircase shape of the base insulating layer, and the electrode surface has a staircase shape.
  • the anode electrode has an electrode surface shape having a reflector effect
  • [B-10] When one pixel as a unit for forming a color image is composed of sub-pixels of a plurality of colors, and has a cavity structure that uses the resonance effect of light between the cathode electrode and the anode electrode of the light emitting unit, On the formation surface of the anode electrode of the base insulating layer, a step is provided for each subpixel of a plurality of colors. The method for manufacturing a display device according to [B-1].
  • the sub-pixels of a plurality of colors are composed of sub-pixels of three primary colors of red, green, and blue,
  • the formation surface of the anode electrode of the other subpixel is determined based on the formation surface of the anode electrode of the red subpixel.
  • [B-12] Each step of the staircase shape of the base insulating layer is processed to have a tapered side surface.
  • [B-13] Each step of the staircase shape of the base insulating layer has been subjected to a process of cutting corners.
  • the light emitting portion is composed of an organic EL element.
  • [C-3] The inclination angle of the electrode surface of the anode electrode is determined by the depth, the number of steps, and the step width of the step shape of the base insulating layer.
  • [C-4] The staircase shape of the base insulating layer is smoothed by being embedded with a metal material, The anode electrode is formed on the smoothed base insulating layer, The electronic device according to [C-2] above.
  • [C-5] The inclination angle of the electrode surface of the anode electrode is symmetric in the first direction and the second direction with respect to the electrode center in plan view.
  • the inclination angle of the electrode surface of the anode electrode is asymmetric in the first direction with respect to the electrode center in plan view, and the one asymmetric electrode surface side is the non-light emitting portion side.
  • the anode electrode has a structure capable of selecting the presence or absence of a reflection effect depending on the presence or absence of a metal material on the electrode surface on the non-light emitting portion side.
  • [C-8] The anode electrode is formed directly on the staircase shape of the base insulating layer, and the electrode surface has a staircase shape.
  • the anode electrode has an electrode surface shape having a reflector effect
  • [C-10] When one pixel as a unit for forming a color image is composed of sub-pixels of a plurality of colors, and has a cavity structure that uses the resonance effect of light between the cathode electrode and the anode electrode of the light emitting unit, On the formation surface of the anode electrode of the base insulating layer, a step is provided for each subpixel of a plurality of colors.
  • the sub-pixels of a plurality of colors are composed of sub-pixels of three primary colors of red, green and blue,
  • the formation surface of the anode electrode of the other subpixel is determined based on the formation surface of the anode electrode of the red subpixel.
  • [C-12] Each side of the staircase shape of the base insulating layer is processed to have a tapered side surface.
  • [C-13] Each step of the staircase shape of the base insulating layer has been subjected to a process of cutting corners.
  • the light emitting section is composed of an organic EL element.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本開示の表示装置は、発光部を含む画素が基板上に配置されて成る画素領域を有し、画素領域内には、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域が設けられている。そして、アノード電極の電極面は、下地絶縁層の表面形状に応じた傾斜角度を有する。本開示の電子機器は、上記の構成の表示装置を有する。

Description

表示装置及び表示装置の製造方法、並びに、電子機器
 本開示は、表示装置及び表示装置の製造方法、並びに、電子機器に関する。
 近年の表示装置は、平面型(フラットパネル型)の表示装置が主流である。平面型の表示装置の一つとして、デバイスに流れる電流値に応じて発光輝度が変化する、所謂、電流駆動型の電気光学素子を、画素の発光部(発光素子)として用いた表示装置がある。電流駆動型の電気光学素子としては、有機材料のエレクトロルミネッセンス(EL:Electro Luminescence)を利用し、有機薄膜に電界をかけると発光する現象を用いた有機EL素子が知られている。
 画素の発光部として有機EL素子を用いた有機EL表示装置は、画素領域のトランジスタ素子、容量素子及び配線などの下地構造が平坦化され、配線やコンタクト形成時のレジストパターンのフォーカスズレによる寸法変動を抑制した構造となっている。但し、有機EL素子のアノード電極まで平坦化された構造の場合、有機EL表示装置と組み合わされて用いられるレンズの光軸設計に対しては、画素領域の端部での光取込み量が弱いため、視野角特性が低下する。
 この視野角特性を改善するための一例として、有機EL素子のアノード電極を基板面に対して傾斜させる技術が、例えば特許文献1(米国特許出願公開第2016/0226013号明細書)に開示されている。特許文献1には、有機EL素子のアノード電極の下層の配線構造を工夫することにより、アノード電極の電極面を基板面に対して傾斜させる技術が開示されている。
米国特許出願公開第2016/0226013号明細書
 上記の特許文献1に記載の従来技術では、有機EL素子のアノード電極の下層の平坦化層において、画素の各々について、特定の構造物などを形成することによって平坦化層の表面を傾斜させ、その傾斜面上にアノード電極を形成することによって電極面を基板面に対して傾斜させている。このように、従来技術では、画素毎に、特定の構造物などを形成して平坦化層の表面を傾斜させてアノード電極の傾斜角度を設定するようにしている。従って、アノード電極の基板面に対する傾斜角度について、画素毎に任意の傾斜角度を自由に設定することが難しい。
 本開示は、アノード電極の基板面に対する傾斜角度について、画素毎に任意の傾斜角度を自由に設定することが可能な表示装置及び表示装置の製造方法、並びに、電子機器を提供することを目的とする。
 上記の目的を達成するための本開示の表示装置は、
 発光部を含む画素が基板上に配置されて成る画素領域を有し、
 画素領域内には、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域が設けられており、
 アノード電極の電極面は、下地絶縁層の表面形状に応じた傾斜角度を有する。
 また、上記の目的を達成するための本開示の表示装置の製造方法は、
 発光部を含む画素が基板上に配置されて成る画素領域を有する表示装置の製造に当たって、
 画素領域内に、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域を設け、
 下地絶縁層の表面形状に応じた傾斜角度にてアノード電極の電極面を形成する。
 また、上記の目的を達成するための本開示の電子機器は、上記の構成の表示装置を有する。
図1は、本開示の表示装置の一例であるアクティブマトリクス型有機EL表示装置の構成の概略を示すシステム構成図である。 図2は、アクティブマトリクス型有機EL表示装置における画素(画素回路)の回路構成の一例を示す回路図である。 図3は、基本的な画素構造を示す断面図である。 図4は、画素領域の周縁部の視野角特性が中央部よりも悪くなる理由について説明する図である。 図5は、実施例1に係る表示パネルの要部の断面構造を示す断面図である。 図6Aは、第1具体例に係る階段形状の角度設定を示す平面図であり、図6Bは、図6AのA-A線に沿った矢視断面図である。 図7Aは、第2具体例に係る階段形状の角度設定を示す平面図であり、図7Bは、図7AのB-B線に沿った矢視断面図である。 図8Aは、第3具体例に係る階段形状の角度設定を示す平面図であり、図8Bは、図8AのC-C線に沿った矢視断面図である。 図9Aは、第4具体例に係る階段形状の角度設定を示す平面図であり、図9Bは、図9AのD-D線に沿った矢視断面図である。 図10は、実施例2の第1具体例に係るアノード電極構造を示す断面図である。 図11は、実施例2の第2具体例に係るアノード電極構造を示す断面図である。 図12は、実施例2の第3具体例に係るアノード電極構造を示す断面図である。 図13は、実施例3の第1具体例に係るアノード電極構造を示す断面図である。 図14は、実施例3の第2具体例に係るアノード電極構造を示す断面図である。 図15は、実施例3の第3具体例に係るアノード電極構造を示す断面図である。 図16は、実施例3の第4具体例に係るアノード電極構造を示す断面図である。 図17は、実施例4に係るアノード電極構造を示す断面図である。 図18は、実施例5に係るアノード電極構造を示す断面図である。 図19A及び図19Bは、実施例5に係るアノード電極構造において、各色の画素毎にアノード形成面に段差を形成する手順を説明する図である。 図20A及び図20Bは、実施例6に係る下地絶縁層の階段形状の他の加工例1及び加工例2について説明する図である。 図21Aは、実施例7の第1具体例に係る傾斜角度の設計についての電極平面図であり、図21Bは、図21AのE-E線に沿った電極断面図である。 図22Aは、実施例7の第2具体例に係る傾斜角度の設計についての電極平面図であり、図22Bは、図22AのF-F線に沿った電極断面図である。 図23Aは、実施例7の第3具体例に係る傾斜角度の設計についての電極平面図であり、図23Bは、図23AのG-G線に沿った電極断面図である。 図24Aは、実施例7の第4具体例に係る傾斜角度の設計についての電極平面図であり、図24Bは、図24AのH-H線に沿った電極断面図である。 図25は、実施例8に係る下地絶縁層及びアノード電極の形成工程を示す工程図(その1)である。 図26は、実施例8に係る下地絶縁層及びアノード電極の形成工程を示す工程図(その2)である。 図27は、実施例8に係る下地絶縁層及びアノード電極の形成工程を示す工程図(その3)である。 図28は、本実施形態に係るアノード電極構造によって高い視野角特性を確保できることについて説明する図である。 図29Aは、本開示の電子機器の具体例1に係るレンズ交換式一眼レフレックスタイプのデジタルスチルカメラの正面図であり、図29Bは、その背面図である。 図30は、本開示の電子機器の具体例2に係るヘッドマウントディスプレイの一例を示す外観図である。
 以下、本開示の技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示の技術は実施形態に限定されるものではなく、実施形態における種々の数値や材料などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の表示装置及びその製造方法、並びに、電子機器、全般に関する説明
2.本開示の表示装置
 2-1.システム構成
 2-2.画素回路
 2-3.基本的な画素構造
 2-4.視野角特性について
3.実施形態の説明
 3-1.実施例1(下地絶縁層の表面形状が階段形状の場合の例)
 3-2.実施例2(実施例1の変形例:アノード電極の傾斜角度が非対称な例)
 3-3.実施例3(実施例1の変形例:アノード電極の電極面が階段形状の場合の例)
 3-4.実施例4(実施例1の変形例:アノード電極がリフレクタ効果を有する例)
 3-5.実施例5(実施例1の変形例:キャビティー構造に対応する例)
 3-6.実施例6(実施例1の変形例:下地絶縁層の階段形状の加工の他の例)
 3-7.実施例7(実施例1の変形例:アノード電極の傾斜角度についての設計例)
 3-8.実施例8(有機EL表示装置の製造方法の例)
4.変形例
5.本開示の電子機器
 5-1.具体例1(デジタルスチルカメラの例)
 5-2.具体例2(ヘッドマウントディスプレイの例)
6.本開示がとることができる構成
<本開示の表示装置及びその製造方法、並びに、電子機器、全般に関する説明>
 本開示の表示装置及びその製造方法、並びに、電子機器にあっては、下地絶縁層の表面形状について、階段形状とすることができる。そして、アノード電極について、下地絶縁層の階段形状の上に形成される構成とすることができる。アノード電極の電極面の傾斜角度については、下地絶縁層の階段形状の階段の深さ、段数、及び、ステップ幅によって決まる構成とすることができる。
 上述した好ましい構成を含む本開示の表示装置及びその製造方法、並びに、電子機器にあっては、下地絶縁層の階段形状について、メタル材料で埋め込まれて平滑化された構成とすることができる。そして、アノード電極について、下地絶縁層の平滑化された上に形成される構成とすることができる。
 また、上述した好ましい構成を含む本開示の表示装置及びその製造方法、並びに、電子機器にあっては、アノード電極の電極面の傾斜角度について、平面視での電極中心に関して第1の方向及び第2の方向で対称である構成とすることができる。
 あるいは、上述した好ましい構成を含む本開示の表示装置及びその製造方法、並びに、電子機器にあっては、アノード電極の電極面の傾斜角度について、平面視での電極中心に関して第1の方向で非対称であり、非対称の一方の電極面側が非発光部側となっている構成とすることができる。このとき、アノード電極について、非発光部側の電極面のメタル材料の有無による反射効果の有無の選択が可能な構造を有する構成とすることができる。
 また、上述した好ましい構成を含む本開示の表示装置及びその製造方法、並びに、電子機器にあっては、アノード電極について、下地絶縁層の階段形状の上に直接形成され、電極面が階段形状を有する、あるいは、リフレクタ効果を有する電極面形状を有する構成とすることができる。
 また、上述した好ましい構成を含む本開示の表示装置及びその製造方法、並びに、電子機器にあっては、カラー画像を形成する単位となる1画素が複数色の副画素から成り、発光部のカソード電極-アノード電極間での光の共振効果を利用するキャビティー構造を有する場合、下地絶縁層のアノード電極の形成面に、複数色の副画素毎に段差が設けられている構成とすることができる。このとき、複数色の副画素が、赤色、緑色及び青色の3原色の副画素から成り、赤色の副画素のアノード電極の形成面を基準に、他の副画素のアノード電極の形成面を決定する構成とすることができる。
 また、上述した好ましい構成を含む本開示の表示装置及びその製造方法、並びに、電子機器にあっては、下地絶縁層の階段形状の各階段に対して、側面をテーパー形状とする加工が施されている、あるいは、角部を削る処理が施されている構成とすることができる。また、発光部について、有機EL素子から成る構成とすることができる。
<本開示の表示装置>
 本開示の表示装置は、電気光学素子に流れる電流を、当該電気光学素子と同じ画素回路内に設けた能動素子、例えば絶縁ゲート型電界効果トランジスタによって制御するアクティブマトリクス型表示装置である。絶縁ゲート型電界効果トランジスタとしては、典型的には、MOS(Metal Oxide Semiconductor)トランジスタやTFT(Thin Film Transistor;薄膜トランジスタ)を例示することができる。
 ここでは、一例として、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子である例えば有機EL素子を、画素回路の発光部(発光素子)として用いるアクティブマトリクス型有機EL表示装置を例に挙げて説明するものとする。以下では、「画素回路」を単に「画素」と記述する場合がある。
[システム構成]
 図1は、本開示の表示装置の一例であるアクティブマトリクス型有機EL表示装置の構成の概略を示すシステム構成図である。図1に示すように、有機EL表示装置10は、有機EL素子を含む複数の画素20が行列状に2次元配置されて成る画素アレイ部30、及び、当該画素アレイ部30の周辺に配置される周辺回路(周辺駆動部)を有する構成となっている。以下、画素アレイ部30の領域を、画素領域と記述する場合がある。
 画素領域の周辺回路は、例えば、画素アレイ部30と同じ表示パネル70上に搭載された書込み走査部40、駆動走査部50、及び、信号出力部60等から成り、画素アレイ部30の各画素20を駆動する。尚、書込み走査部40、駆動走査部50、及び、信号出力部60のいくつか、あるいは全部を表示パネル70外に設ける構成を採ることも可能である。
 表示パネル70の基板としては、ガラス基板等の絶縁性透明基板を用いることもできるし、シリコン基板等の半導体基板を用いることもできる。表示パネル70の基板として、シリコン基板等の半導体基板を用いた有機EL表示装置は、所謂、マイクロディスプレイ(小型ディスプレイ)と呼称され、デジタルスチルカメラの電子ビューファインダや、ヘッドマウントディスプレイの表示部等として用いて好適なものである。
 有機EL表示装置10については、モノクロ(白黒)表示対応の構成とすることもできるし、カラー表示対応の構成とすることもできる。有機EL表示装置10がカラー表示対応の場合は、カラー画像を形成する単位となる1つの画素(単位画素/ピクセル)は複数の副画素(サブピクセル)から構成される。このとき、副画素の各々が図1の画素20に相当することになる。より具体的には、カラー表示対応の表示装置では、1つの画素は、例えば、赤色(Red;R)光を発光する副画素、緑色(Green;G)光を発光する副画素、青色(Blue;B)光を発光する副画素の3つの副画素から構成される。
 但し、1つの画素としては、RGBの3原色の副画素の組み合わせに限られるものではなく、3原色の副画素に更に1色あるいは複数色の副画素を加えて1つの画素を構成することも可能である。より具体的には、例えば、輝度向上のために白色(White;W)光を発光する副画素を加えて1つの画素を構成したり、色再現範囲を拡大するために補色光を発光する少なくとも1つの副画素を加えて1つの画素を構成したりすることも可能である。
 画素アレイ部30には、m行n列の画素20の配列に対して、第1の方向(行方向/水平方向)に沿って走査線31(311~31m)と駆動線32(321~32m)とが画素行毎に配線されている。更に、m行n列の画素20の配列に対して、第2の方向(列方向/垂直方向)に沿って信号線33(331~33n)が画素列毎に配線されている。
 走査線311~31mは、書込み走査部40の対応する行の出力端にそれぞれ接続されている。駆動線321~32mは、駆動走査部50の対応する行の出力端にそれぞれ接続されている。信号線331~33nは、信号出力部60の対応する列の出力端にそれぞれ接続されている。
 書込み走査部40は、シフトレジスタ回路等によって構成されている。この書込み走査部40は、画素アレイ部30の各画素20への映像信号の信号電圧の書込みに際して、走査線31(311~31m)に対して書込み走査信号WS(WS1~WSm)を順次供給することによって画素アレイ部30の各画素20を行単位で順番に走査する、所謂、線順次走査を行う。
 駆動走査部50は、書込み走査部40と同様に、シフトレジスタ回路等によって構成されている。この駆動走査部50は、書込み走査部40による線順次走査に同期して、駆動線32(321~32m)に対して発光制御信号DS(DS1~DSm)を供給することによって画素20の発光/非発光(消光)の制御を行う。
 信号出力部60は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧(以下、単に「信号電圧」と記述する場合もある)Vsigと基準電圧Vofsとを選択的に出力する。ここで、基準電圧Vofsは、映像信号の信号電圧Vsigの基準となる電圧(例えば、映像信号の黒レベルに相当する電圧)に相当する電圧、あるいは、その近傍の電圧である。基準電圧Vofsは、補正動作を行う際に、初期化電圧として用いられる。
 信号出力部60から択一的に出力される信号電圧Vsig/基準電圧Vofsは、信号線33(331~33n)を介して画素アレイ部30の各画素20に対して、書込み走査部40による線順次走査によって選択された画素行の単位で書き込まれる。すなわち、信号出力部60は、信号電圧Vsigを画素行(ライン)単位で書き込む線順次書込みの駆動形態を採っている。
[画素回路]
 図2は、アクティブマトリクス型有機EL表示装置10における画素(画素回路)の回路構成の一例を示す回路図である。画素20の発光部は、有機EL素子21から成る。有機EL素子21は、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子の一例である。
 図2に示すように、画素20は、有機EL素子21と、有機EL素子21に電流を流すことによって当該有機EL素子21を駆動する駆動回路(画素駆動回路)とによって構成されている。有機EL素子21は、全ての画素20に対して共通に配線された共通電源線34にカソード電極が接続されている。図中、Celは、有機EL素子21の等価容量である。
 有機EL素子21を駆動する駆動回路は、駆動トランジスタ22、サンプリングトランジスタ23、発光制御トランジスタ24、保持容量25、及び、補助容量26を有する構成となっている。ここでは、有機EL素子21及びその駆動回路を、ガラスのような絶縁体上ではなく、シリコンのような半導体上に形成することを想定し、駆動トランジスタ22として、Pチャネル型のトランジスタを用いる構成を採っている。
 また、本例では、サンプリングトランジスタ23及び発光制御トランジスタ24についても、駆動トランジスタ22と同様に、Pチャネル型のトランジスタを用いる構成を採っている。従って、駆動トランジスタ22、サンプリングトランジスタ23、及び、発光制御トランジスタ24は、ソース/ゲート/ドレインの3端子ではなく、ソース/ゲート/ドレイン/バックゲートの4端子となっている。バックゲートには電源電圧Vddが印加される。
 但し、サンプリングトランジスタ23及び発光制御トランジスタ24については、スイッチ素子として機能するスイッチングトランジスタであることから、Pチャネル型のトランジスタに限られるものではない。従って、サンプリングトランジスタ23及び発光制御トランジスタ24は、Nチャネル型のトランジスタでも、Pチャネル型とNチャネル型が混在した構成のものでもよい。
 上記の構成の画素20において、サンプリングトランジスタ23は、信号出力部60から信号線33を通して供給される映像信号の信号電圧Vsigをサンプリングすることによって保持容量25に書き込む。発光制御トランジスタ24は、電源電圧Vddのノードと駆動トランジスタ22のソース電極との間に接続され、発光制御信号DSによる駆動の下に、有機EL素子21の発光/非発光を制御する。
 保持容量25は、駆動トランジスタ22のゲート電極とソース電極との間に接続されている。この保持容量25は、サンプリングトランジスタ23によるサンプリングによって書き込まれた映像信号の信号電圧Vsigを保持する。駆動トランジスタ22は、保持容量25の保持電圧に応じた駆動電流を有機EL素子21に流すことによって有機EL素子21を駆動する。
 補助容量26は、駆動トランジスタ22のソース電極と、固定電位のノード、例えば、電源電圧Vddのノードとの間に接続されている。この補助容量26は、映像信号の信号電圧Vsigを書き込んだときに駆動トランジスタ22のソース電位が変動するのを抑制するとともに、駆動トランジスタ22のゲート-ソース間電圧Vgsを、駆動トランジスタ22の閾値電圧Vthにする作用を為す。
[基本的な画素構造]
 ここで、画素20の基本的な画素構造について、図3の断面図を用いて説明する。ここで例示する画素構造を含む表示パネル70は、例えば、白色光を発光する白色有機EL素子とカラーフィルタとの組み合わせによって、R(赤色)G(緑色)B(青色)のいずれかの色光がパネル上面(基板101と反対側の面)側から出射される、上面発光型(所謂、トップエミッション型)の表示パネルである。
 表示パネル70を構成する基板101上の領域は、複数の画素20がマトリクス状に配置されて成る有効画素領域(表示領域)と、有効画素領域の周辺(外縁側/外周側)に位置する周辺領域とから成る。有効画素領域内には、駆動トランジスタ22、サンプリングトランジスタ23、発光制御トランジスタ24、保持容量25、及び、補助容量26から成る画素駆動回路が設けられる。周辺領域内には、書込み走査部40、駆動走査部50、及び、信号出力部60等から成る周辺回路が設けられる。そして、これらの回路を含む回路層102が基板101上に形成されている。
 表示パネル70は、回路層102上に、例えば、無機絶縁層103、下地絶縁層104、アノード電極105、有機絶縁層106、有機EL層107、カソード電極108、有機保護層109、充填剤層(接着層)110、及び、ブラックマトリクス層111がこの順に積層された積層構造を有している。尚、ブラックマトリクス層111と同じ層には、カラーフィルタ112が画素単位で設けられている。また、この積層構造上には封止用基板113が貼り合わされており、当該封止用基板113によって積層構造が封止されるようになっている。
 上記の画素構造において、アノード電極105、有機EL層107及びカソード電極108は、前述した白色有機EL素子を構成する積層構造となっている。アノード電極105は、有効画素領域内においては各色の画素20毎に設けられている。カソード電極108は、透明電極から成り、有効画素領域内において各画素20に共通の電極として設けられている。
 有機EL層107は、アノード電極105の側から順に、正孔注入層1071、正孔輸送層1072、発光層1073、電子輸送層1074、及び、電子注入層1075を積層した積層構造を有している。これらの層のうち、発光層1073以外の層については必要に応じて設ければよい。
 正孔注入層1071は、正孔注入効率を高めるとともに、リークを防止するために設けられる。正孔輸送層1072は、発光層1073への正孔輸送効率を高めるためのものである。発光層1073は、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。電子輸送層1074は、発光層1073への電子輸送効率を高めるためのものである。電子注入層1075は、電子注入効率を高めるためのものである。
 上述したように、有機EL表示装置10は、基板101上に形成された回路部(画素駆動回路や周辺回路)を覆う状態で下地絶縁層104が設けられ、この下地絶縁層104上に有機EL素子21が形成された構成となっている。そして、有機EL素子21の下に、下部電極としてアノード電極105が画素単位で設けられ、有機EL素子21の上に、上部電極としてカソード電極108が全画素共通に設けられ、アノード電極105まで平坦化された画素構造となっている。
[視野角特性について]
 ところで、例えば、表示パネル70の基板101としてシリコン基板等の半導体基板を用いるマイクロディスプレイの場合、図4に示すように、有機EL表示装置10は、レンズ(レンズ群)80との組み合わせで用いられる。この場合、有機EL表示装置10は、レンズ80に対して発散光源となる。そして、有機EL表示装置10の画素領域の周縁部(端部)の光量については、レンズ80の光軸設計によって、斜めに入射する光が主な光成分としてレンズ80に取り込まれる。このとき、上述した通常の画素構造、即ち、有機EL素子21のアノード電極105まで平坦化された画素構造の有機EL表示装置10では、有機EL素子21から斜めに発光する光が弱くなるため、画素領域の周縁部の視野角特性が画素領域の中央部の視野角特性よりも悪くなる(低下する)。
<実施形態の説明>
 そこで、本実施形態では、視野角特性の改善を目的として、画素領域(画素アレイ部30の領域)内に、有機EL素子21のアノード電極105の電極面が、基板面(基板101の表面)に対して傾斜した画素構造を有する画素20を含む領域を設ける。そして、アノード電極105の電極面を基板面に対して傾斜させるに当たって、アノード電極105を、下地絶縁層104の表面形状上に形成し、当該表面形状に応じた傾斜角度にてアノード電極105の電極面を形成する。
 ここで、下地絶縁層104の表面形状については、下地絶縁層104を形成する段階で、容易に、任意の形状に形成することができる。そして、下地絶縁層104の表面形状上にアノード電極105を形成することで、アノード電極105の電極面の傾斜角度は、下地絶縁層104の表面形状に応じた角度に設定される。これにより、アノード電極105の基板面に対する傾斜角度について、画素毎に、下地絶縁層104の表面形状に応じて、任意の傾斜角度にて自由に設定できるため、高い視野角特性を確保することができる。特に、レンズ80との組み合わせで用いられるマイクロディスプレイにあっては、レンズ80の光取込み光軸に合わせた設計を行うことが可能となるため、高い視野角特性を確保することができる。
 以下に、下地絶縁層104の表面形状に応じた傾斜角度を有するアノード電極105を形成する具体的な実施例について説明する。
[実施例1]
 実施例1は、下地絶縁層104の表面形状が階段形状の場合の例である。実施例1に係る表示パネル70の要部の断面図を図5に示す。ここでは、便宜上、画素領域(有効画素領域)が、中央部分の領域A、領域Aに隣接する領域B、及び、周縁部側の領域Cの3つの領域に区分した場合を例示している。
 画素領域の中央部分の領域Aでは、下地絶縁層104は、その表面形状が平坦形状となるように形成されている。これにより、領域Aにおいて、平坦形状の下地絶縁層104上に形成されるアノード電極105の電極面は、基板面に対して平行な平坦面となっている。領域B及び領域Cでは、下地絶縁層104は、その表面形状が階段形状になるように形成されている。これにより、領域B及び領域Cにおいて、階段形状の下地絶縁層104上に形成されるアノード電極105の電極面は、基板面に対して傾斜した傾斜面となっている。
 下地絶縁層104の階段形状の角部については、コンタクト部114を形成する過程でメタル材料、例えばタングステン(W)を埋め込むことによって平滑化される。従って、角部が平滑化された下地絶縁層104の階段形状の上にアノード電極105を形成することで、アノード電極105の電極面が平滑な傾斜面を持つことになる。
 ここで、下地絶縁層104の階段形状について、領域Bと領域Cとの間で、階段形状の傾斜角度及びステップ幅を変えることで、領域Bにおけるアノード電極105の傾斜角度と、領域Cにおけるアノード電極105の傾斜角度とを異ならせている。具体的には、領域Bにおける階段形状の傾斜角度を20度、ステップ幅を0.275μmに設定し、領域Cにおける階段形状の傾斜角度を30度、ステップ幅を0.173μmに設定している。尚、上記の数値は一例であって、これらの数値に限定されるものでない。
 上記の例では、下地絶縁層104の階段形状の傾斜角度及びステップ幅を設定することで、領域Bにおけるアノード電極105の傾斜角度よりも、領域Cにおけるアノード電極105の傾斜角度が大きくなる。すなわち、画素領域全体において、アノード電極105の電極面について、中央部の領域Aでは傾斜のない平坦面であるのに対して、画素領域の周縁部に向かうに従って、アノード電極105の電極面の傾斜角度が、本例では領域単位で大きくなる。
 下地絶縁層104の階段形状の傾斜角度については、階段の深さ(高さ)d、段数、及び、ステップ幅wなどを変えることで、任意の角度を設定することができる。以下に、階段形状の傾斜角度の設定の具体例を挙げる。ここでは、アノード電極105が矩形であって、下地絶縁層104の階段形状、即ちアノード電極105の傾斜角度が、平面視での電極中心に関して上下左右の各方向で対称な場合を例示する。ここで、図1の画素配列との関係において、左右方向とは第1の方向(行方向)を言い、上下方向とは第2の方向(列方向)を言う。
・第1具体例
 図6Aは、第1具体例に係る階段形状の角度設定を示す平面図であり、図6Bは、図6AのA-A線に沿った矢視断面図である。第1具体例は、階段の深さdを0.05μm、段数を2段、ステップ幅wを0.572μmに設定した例である。この設定例では、下地絶縁層104の階段形状の傾斜角度を5度程度の角度に設定することができる。
・第2具体例
 図7Aは、第2具体例に係る階段形状の角度設定を示す平面図であり、図7Bは、図7AのB-B線に沿った矢視断面図である。第2具体例は、階段の深さdを0.05μm、段数を3段、ステップ幅wを0.284μmに設定した例である。この設定例では、下地絶縁層104の階段形状の傾斜角度を10度程度の角度に設定することができる。
・第3具体例
 図8Aは、第3具体例に係る階段形状の角度設定を示す平面図であり、図8Bは、図8AのC-C線に沿った矢視断面図である。第3具体例は、階段の深さdを0.10μm、段数を3段、ステップ幅wを0.275μmに設定した例である。この設定例では、下地絶縁層104の階段形状の傾斜角度を20度程度の角度に設定することができる。
・第4具体例
 図9Aは、第4具体例に係る階段形状の角度設定を示す平面図であり、図9Bは、図9AのD-D線に沿った矢視断面図である。第4具体例は、階段の深さdを0.10μm、段数を3段、ステップ幅wを0.173μmに設定した例である。この設定例では、下地絶縁層104の階段形状の傾斜角度を30度程度の角度に設定することができる。
 上述した第1具体例乃至第4具体例のいずれの場合にも、下地絶縁層104の階段形状において、各階段の側面は、基板面(基板101の表面)に対して垂直な構造となっている。ここで、「垂直」とは、厳密に垂直の場合の他、実質的に垂直の場合をも含み、設計上あるいは製造上生ずる種々のばらつきの存在は許容される。また、各具体例における階段の深さd、段数、ステップ幅w、及び、傾斜角度についての各数値は一例であって、これらの数値に限定されるものでない。
 実施例1によれば、画素領域全体において、アノード電極105の電極面について、中央部の領域Aでは傾斜のない平坦面であるのに対して、画素領域の周縁部に向かうに従って、アノード電極105の電極面の傾斜角度が大きくなる(本例では、領域単位で大きくなる)設定となっている。
 上述したように、画素領域の任意の領域毎に、傾斜角度やステップ幅、あるいは、階段の位置や段数が異なる設計値の設定の下に、アノード電極105の下地絶縁層104の加工を行うことで、容易に、表面形状が階段形状の下地絶縁層104を画素単位で成膜できる。これにより、下地絶縁層104の上には、当該下地絶縁層の表面形状に応じた傾斜角度を有するアノード電極105を画素単位で形成することができる。そして、下地絶縁層104の表面形状の画素単位での形成が容易であることから、アノード電極105について、画素単位で異なる傾斜角度の設計を自由に行うことができる。
[実施例2]
 実施例2は、実施例1の変形例であり、アノード電極105の傾斜角度が、平面視での電極中心に関して左右方向(第1の方向/行方向))で非対称な例である。アノード電極105の傾斜角度が、平面視での電極中心に関して非対称な構造は、下地絶縁層104の階段形状における階段の深さd、段数、及び、ステップ幅wを、平面視での電極中心に関して上下左右方向で変えることによって実現できる。以下に、実施例2の具体例について説明する。
・第1具体例
 実施例2の第1具体例に係るアノード電極105の構造(以下、「アノード電極構造」と略記する場合がある)の断面図を図10に示す。ここでは、アノード電極105の傾斜角度が、平面視での電極中心に関して左右方向(第1の方向/行方向)で非対称な構造の場合を例示している。
 第1具体例では、下地絶縁層104の階段形状における階段のステップ幅wを、平面視での電極中心に関して左右方向で変えることで、アノード電極105の傾斜角度が、平面視での電極中心に関して左右方向で非対称な構造を実現している。具体的には、図の右側の階段のステップ幅w1を、図の左側の階段のステップ幅w2よりも広く(w1>w2)設定することで、アノード電極105の右側の電極部分の傾斜角度が、左側の電極部分よりもなだらかな構造となっている。この有機EL素子21の構造において、アノード電極105の図の右側を有機EL層107の発光部側とし、図の左側を有機EL層107の非発光部側とする。後述する具体例においても同様である。
 第1具体例に係るアノード電極構造において、下地絶縁層104の階段部分及びコンタクト部114には、メタル材料、例えばタングステン(W)が埋め込まれている。また、アノード電極105の裏面にはメタル膜115が形成されている。このメタル膜115は、アノード電極105の図の右側(発光部側)、及び、図の左側(非発光部側)の双方に設けられている。メタル膜115の存在により、有機EL層107の非発光部側のメタル膜115での光反射による集光効果を得ることができる。また、メタル膜115のメタル材料によって集光効果の調整が可能となる。メタル膜115については、アルミニウム(Al)、アルミ系合金(AlCu,AlNi)、タングステン(W)、ITO(Indium Tin Oxide)、チタン(Ti)、チタン酸化膜(TiO)等を選択的に積層することによって形成することができる。
・第2具体例
 実施例2の第2具体例に係るアノード電極構造の断面図を図11に示す。第2具体例に係るアノード電極構造の場合も、第1具体例に係るアノード電極構造の場合と同様に、アノード電極105の傾斜角度が、平面視での電極中心に関して左右方向で非対称な構造となっている。
 但し、第1具体例に係るアノード電極構造では、有機EL層107の発光部側、及び、非発光部側の双方に、メタル膜115が形成されているのに対し、第2具体例に係るアノード電極構造は、有機EL層107の非発光部側には、アノード電極105が存在せず、従って、メタル膜115も存在しない画素構造となっている。
 第2具体例に係るアノード電極構造では、有機EL層107の非発光部側において、下地絶縁層104の階段形状の階段を埋め込んだタングステン部分の界面での光反射の効果が得られるものの、メタル膜115が形成されている第1具体例の場合よりも、光反射による集光効果は低くなる。
・第3具体例
 実施例2の第3具体例に係るアノード電極構造の断面図を図12に示す。第3具体例に係るアノード電極構造の場合も、第1具体例に係るアノード電極構造の場合と同様に、アノード電極105の傾斜角度が、平面視での電極中心に関して左右方向で非対称な構造となっている。
 第3具体例に係るアノード電極構造は、第2具体例に係るアノード電極構造と同様に、有機EL層107の非発光部側には、アノード電極105が存在せず、従って、メタル膜115も存在しない画素構造となっている。しかも、下地絶縁層104の階段部分が存在せず、タングステンも埋め込まれていない。従って、第3具体例に係るアノード電極構造の場合、第2具体例の場合よりも、光反射による集光効果は低くなる。
[実施例3]
 実施例3は、実施例1の変形例であり、アノード電極105の電極面の形状が階段形状の場合の例である。すなわち、実施例3では、下地絶縁層104の階段形状の階段部分をメタル材料(例えば、タングステン)によって埋め込まず、その埋め込みによる平滑化を利用せず、アノード電極105の電極面の形状を、下地絶縁層104の階段形状としている。アノード電極105の電極面が階段形状の画素構造は、光学的散乱効果を大きくできる利点がある。
 アノード電極105の電極面が階段形状の画素構造は、アノード電極105の傾斜角度が、平面視での電極中心に関して対称な画素構造にも適用できるし、非対称な画素構造にも適用できる。以下に、実施例3の具体例について説明する。
・第1具体例
 実施例3の第1具体例に係るアノード電極構造の断面図を図13に示す。第1具体例に係るアノード電極構造は、アノード電極105の傾斜角度が、平面視での電極中心に関して非対称な画素構造である。そして、下地絶縁層104の階段形状の階段部分のメタル材料による埋め込みがなく、アノード電極105の発光部側、及び、非発光部側の双方に、メタル膜115が形成された画素構造となっている。
 また、第1具体例に係るアノード電極構造は、非発光部側において、アノード電極105と有機EL層107との間に、下地絶縁層104の一部が介在する画素構造となっている。この第1具体例に係るアノード電極構造によれば、メタル膜115の存在により、非発光部側のメタル膜115での光反射による集光効果を得ることができる。また、メタル膜115のメタル材料によって集光効果の調整が可能となる。
・第2具体例
 実施例3の第2具体例に係るアノード電極構造の断面図を図14に示す。第2具体例に係るアノード電極構造は、非発光部側には、アノード電極105が存在せず、従って、メタル膜115も存在しない画素構造となっている。この第2具体例に係るアノード電極構造は、意図的に散乱光を発生させることができる画素構造となっている。
・第3具体例
 実施例3の第3具体例に係るアノード電極構造の断面図を図15に示す。第3具体例に係るアノード電極構造は、第1具体例に係るアノード電極構造と同様に、アノード電極105の傾斜角度が、平面視での電極中心に関して非対称な画素構造である。そして、下地絶縁層104の階段形状の階段部分のメタル材料による埋め込みがなく、アノード電極105の発光部側、及び、非発光部側の双方に、メタル膜115が形成された画素構造となっている。
 但し、第3具体例に係るアノード電極構造は、非発光部側において、アノード電極105と有機EL層107との間に、下地絶縁層104の一部が介在しない点で、第1具体例に係るアノード電極構造と相違している。この第3具体例に係るアノード電極構造によれば、意図的に散乱光を発生させることができるとともに、メタル膜115での光反射による集光効果を得ることができる。
・第4具体例
 実施例3の第4具体例に係るアノード電極構造の断面図を図16に示す。第4具体例に係るアノード電極構造は、アノード電極105の傾斜角度が、平面視での電極中心に関して対称な画素構造である。そして、第4具体例に係るアノード電極構造は、基本的に、第3具体例に係るアノード電極構造と同様の画素構造となっている。従って、第4具体例に係るアノード電極構造によれば、第3具体例に係るアノード電極構造と同様に、意図的に散乱効果及び集光効果を得ることができる。
[実施例4]
 実施例4は、実施例1の変形例であり、アノード電極105の電極面がリフレクタ効果を有する例である。実施例4に係るアノード電極構造の断面図を図17に示す。
 実施例4に係るアノード電極構造は、アノード電極105の電極面がリフレクタ効果を有する構造、例えば、平面視での電極中心に関して全方向で断面が湾曲した、所謂お椀形の形状を有する画素構造となっている。リフレクタ効果を有する電極面形状については、下地絶縁層104の階段形状の階段の深さ(高さ)、段数、及び、ステップ幅などを調整することによって形成することができる。
 実施例4に係るアノード電極構造によれば、アノード電極105の電極面がリフレクタ効果を有することで、集光効果を高めることができる。
[実施例5]
 実施例5は、実施例1の変形例であり、カソード電極-アノード電極間での光の共振効果を利用するキャビティー(共振器)構造に対応する例である。実施例5に係るアノード電極構造の断面図を図18に示す。
 カラー画像を形成する単位となる1画素が複数色の副画素から成るカラー表示対応の有機EL表示装置10では、色純度向上及び高コントラスト化を図るためにキャビティー構造が採られる場合がある。キャビティー構造では、複数色、例えばR(赤色)G(緑色)B(青色)の3原色の光の波長がそれぞれ異なることから、各色のELスペクトルピーク波長にカソード電極-アノード電極間の光路長を合致させ、各色から最も強い光を取り出すように有機EL層107の膜厚を変えるようにしている。
 キャビティー構造に対応するために、実施例5に係るアノード電極構造は、下地絶縁層104の階段形状に応じた傾斜角度にてアノード電極105の電極面を形成することに加えて、下地絶縁層104のアノード電極105を形成する面(以下、「アノード形成面」と記述する)に、各色の画素(サブピクセル)毎に段差を設けた構造となっている。具体的には、RGBの各波長の関係はR>G>Bの関係にあることから、最も波長の長いR画素のアノード形成面を基準として、G画素のアノード形成面を深さd1だけ深く形成し、B画素のアノード形成面を深さd2だけ深く形成することで、各色の画素毎にアノード形成面に段差を形成している。
 このように、各色の画素毎にアノード形成面に段差を形成した、実施例5に係るアノード電極構造によれば、色純度向上及び高コントラスト化を目的とした、カソード電極-アノード電極間での光の共振効果を利用するキャビティー構造にも対応することができる。アノード形成面に対する各色の画素毎の段差の形成は、次の2ステップで実現できる。
・ステップ1
 先ず、図19Aに示すように、レジスト116にG画素に対応した開口部117Gをパターニングし、ドライエッチングによって、R画素のアノード形成面を基準として、深さd1だけG画素のアノード形成面を削る。削る深さd1については、ドライエッチング量によって調整することができる。G画素のアノード形成面については、下地絶縁層104の階段形状の加工の前でも後でも形成可能である。
・ステップ2
 次に、図19Bに示すように、レジスト116にB画素に対応した開口部117Bをパターニングし、ドライエッチングによって、R画素のアノード形成面を基準として、深さd2だけB画素のアノード形成面を削る。削る深さd2については、ドライエッチング量によって調整することができる。B画素のアノード形成面については、下地絶縁層104の階段形状の加工の前でも後でも形成可能である。
 下地絶縁層104に階段形状を形成しない領域(即ち、図5の領域A)については、ステップ1及びステップ2で同時に形成することができる。この場合の領域Aの掘り込み量は、下地絶縁層104に階段形状を形成する領域(即ち、図5の領域B及び領域C)と同じ量、即ち、深さd1及び深さd2となる。また、ステップ1及びステップ2と別工程にて領域Aの加工を行うようにすることで、領域Aの掘り込み量を調整することができる。
[実施例6]
 実施例6は、実施例1の変形例であり、アノード電極105の下地絶縁層104の階段形状の加工の他の例である。
 実施例1では、下地絶縁層104の階段形状を示す図6の第1具体例乃至図9の第4具体例のいずれの場合にも、階段形状の各階段の側面を、基板面に対して垂直に形成した加工例となっている。これに対し、実施例6では、下地絶縁層104の階段形状について他の加工手法を採っている。以下に、実施例5に係る下地絶縁層104の階段形状の他の加工例1及び加工例2について説明する。
・他の加工例1
 実施例5に係る下地絶縁層104の階段形状の他の加工例1を図20Aに示す。他の加工例1では、表面形状が階段形状の下地絶縁層104を加工する際に、周知のドライエッチングの技術によって、各階段の側面(加工面)をテーパー形状とした加工例である。この他の加工例1によれば、下地絶縁層104の階段形状に対して、加工直後に、傾斜した面を持たせることができる、換言すれば、側面のテーパー角に応じた傾斜面とすることができる。これによって、下地絶縁層104の表面形状を、予め傾斜面を有する階段形状とすることができる。
・他の加工例2
 実施例5に係る下地絶縁層104の階段形状の他の加工例2を図20Bに示す。他の加工例2では、表面形状が階段形状の下地絶縁層104を加工する際に、階段の側面を基板面に対して垂直に加工し、形成された角部を有する加工形状に対して、逆スパッタリング処理などの角部を削る処理を加える加工例である。この他の加工例2によれば、下地絶縁層104の表面形状(階段形状)について、アノード電極105の被膜性を向上させる形状とすることができる。
[実施例7]
 実施例7は、実施例1の変形例であり、アノード電極105の傾斜角度についての設計例である。アノード電極105の傾斜角度については、画素毎(サブピクセル毎)に任意に設定することができる。以下に、アノード電極105の傾斜角度の設計の具体例について説明する。
・第1具体例
 第1具体例に係る傾斜角度の設計についての電極平面図を図21Aに示し、図21AのE-E線に沿った電極断面図を図21Bに示す。第1具体例に係る傾斜角度の設計は、実施例1に示した下地絶縁層104の階段形状(図5参照)に対応している。すなわち、画素領域の中央部分の領域Aでは、アノード電極105の電極面は、基板面に対して平行な面、即ち傾斜なしの面となっている。
 また、領域B及び領域Cでは、アノード電極105の電極面は、画素領域の左右方向(第1の方向/行方向)において外側を向く傾斜面であって、領域Bでは、例えば10~20度程度の傾斜面、領域Cでは、例えば20~30度程度の傾斜面となっている。領域A、領域B及び領域Cの各領域を画定する画素の行数や列数については任意に設定することができる。
 領域A、領域B及び領域Cの各領域の設定については、同心円状であることが好ましいが、同心円状であることに限定されるものではない。後述する具体例においても同様である。
 以下に説明する第2具体例乃至第4具体例に係るアノード電極105の傾斜角度の設計については、レンズの光軸設計に合わせた設計となる。ここで言うレンズとは、マイクロディスプレイとの組み合わせで用いられる、図4に示すレンズ(レンズ群)80のことである。
・第2具体例
 第2具体例に係る傾斜角度の設計についての電極平面図を図22Aに示し、図22AのF-F線に沿った電極断面図を図22Bに示す。第2具体例では、アノード電極105の電極面について、画素領域の中央部分では傾斜なしで、周縁部に向かうに従って、画素領域の左右方向において外側を向く傾斜面の角度が、レンズの光軸設計に合わせて細かく領域単位で段階的に大きくなる設計となっている。すなわち、第2具体例に係る傾斜角度の設計は、アノード電極105の電極面が外向きで、領域単位で多段傾斜した構成の設計となっている。
・第3具体例
 第3具体例に係る傾斜角度の設計についての電極平面図を図23Aに示し、図23AのG-G線に沿った電極断面図を図23Bに示す。第3具体例では、アノード電極105の電極面について、画素領域の中央部分では傾斜なしで、周縁部に向かうに従って、画素領域の左右方向において内側を向く傾斜面の角度が、レンズの光軸設計に合わせて細かく(例えば、領域単位で)段階的に大きくなる設計となっている。すなわち、第3具体例に係る傾斜角度の設計は、アノード電極105の電極面が内向きで、領域単位で多段傾斜した構成の設計となっている。
・第4具体例
 第4具体例に係る傾斜角度の設計についての電極平面図を図24Aに示し、図24AのH-H線に沿った電極断面図を図24Bに示す。第4具体例では、画素領域の左右方向の一方側のアノード電極105の電極面を傾斜なしとし、他方側のアノード電極105の電極面を最大傾斜角度とする。そして、画素領域の一方側から他方側に向かうに従って、外側を向く傾斜面の角度が、レンズの光軸設計に合わせて細かく(例えば、画素列単位又は複数の画素列単位で)連続的に大きくなる設計となっている。
 すなわち、第4具体例に係る傾斜角度の設計は、アノード電極105の電極面が外向きで、画素領域の左右方向において一方向に細かく連続的に傾斜した構成の設計となっている。尚、第4具体例に係る傾斜角度の設計では、アノード電極105の電極面の向きを外向きとしているが、内向きであってもよい。
[実施例8]
 実施例8は、本実施形態に係る有機EL表示装置10の製造方法の例である。本実施形態に係る製造方法では、有機EL素子21を含む画素20が基板101上に配置されて成る画素領域(画素アレイ部30)を有する有機EL表示装置10の製造に当たって、画素領域内に、有機EL素子21のアノード電極105が、基板面に対して傾斜した画素を含む領域を設ける。そして、下地絶縁層104の表面形状に応じた傾斜角度にてアノード電極105の電極面を形成する。
 以下に、本実施形態に係る有機EL表示装置10の要部の製造工程、特に、下地絶縁層104及びアノード電極105を形成する工程について、図25、図26及び図27の工程図を用いて説明する。以下では、画素20の回路素子が形成され、その上に下地絶縁層104が積層され、当該下地絶縁層104の上面が平坦化された以降の工程について説明する。また、ここでは、下地絶縁層104の階段形状として、図5に示す3段の場合を例に挙げて説明する。
 平坦化された下地絶縁層104に、画素領域の内外で予め設計された上下左右の階段のレイアウト位置及び階段幅の設計値のリソグラフィー用マスク118を用い、階段形状の1段目に対応した開口パターン118Aを通して、1段目の加工段差をドライエッチング工程にて形成する(工程1)。次いで、1段目の加工段差に対して、階段形状の2段目に対応して設計された開口パターン118Bを通して、2段目の加工段差をドライエッチング工程にて形成する(工程2)。更に、2段目の加工段差に対して、階段形状の3段目に対応して設計された開口パターン118Cを通して、3段目の加工段差をドライエッチング工程にて形成する(工程3)。
 上記の例では、階段形状について、1段目→2段目→3段目の順に段差を加工するとしたが、この順番に限られるものではなく、3段目→2段目→1段目の順に段差を加工するようにしてもよい。また、各階段の深さ(高さ)については、ドライエッチング工程で削る量によって調整することができる。尚、階段形状の段数が4段以上の場合には、上述した加工段差の形成工程を、階段の設計値に応じて繰り返すことになる。
 階段形状を形成した後、種々の工程を経て、メタル材料、例えばタングステン(W)を埋め込んでコンタクト部114を形成する(工程4)。タングステン(W)を埋め込むことによって下地絶縁層104の階段形状が平滑化され、次いで、例えばCMP(Chemical Mechanical Polishing:化学的機械研磨)による仕上げが行われる。その後、下地絶縁層104の平滑化された階段形状の上にアノード電極105が形成され、その上に有機EL層107が形成される(工程5)。そして、全体的に絶縁膜119が形成され、次いで、当該絶縁膜119に対してアノード電極105の上に開口部119Aが形成される(工程6)。
 以上説明した工程1乃至工程6を含む各処理工程を経ることにより、例えば図5に示す表面形状が階段形状の下地絶縁層104、及び、当該下地絶縁層104の表面形状に応じた傾斜角度のアノード電極105を有するアノード電極構造を作製することができる。そして、アノード電極105の基板面に対する傾斜角度について、画素毎に、下地絶縁層104の表面形状に応じて、任意の傾斜角度にて自由に設定できるため、高い視野角特性を確保することができる。特に、図28に示すように、レンズ80との組み合わせで用いられるマイクロディスプレイにあっては、レンズ80の光取込み光軸に合わせた設計を行うことが可能となるため、高い視野角特性を確保することができる。
<本開示の電子機器>
 以上説明した本開示の表示装置は、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示する、あらゆる分野の電子機器の表示部(表示装置)として用いることができる。電子機器としては、テレビジョンセット、ノート型パーソナルコンピュータ、デジタルスチルカメラ、携帯電話機等の携帯端末装置、ヘッドマウントディスプレイ等を例示することができる。但し、これらに限られるものではない。
 このように、あらゆる分野の電子機器において、その表示部として本開示の表示装置を用いることにより、以下のような効果を得ることができる。すなわち、本開示の表示装置によれば、高い視野角特性を確保することができる。従って、本開示の表示装置を用いることにより、電子機器の表示部について、高い視野角特性を確保できる。特に、本開示の表示装置が、レンズとの組み合わせで用いられるマイクロディスプレイの場合には、レンズの光取込み光軸に合わせた設計を行うことが可能となるため、高い視野角特性を確保できる。
 本開示の表示装置は、封止された構成のモジュール形状のものをも含む。一例として、画素アレイ部に透明なガラス等の対向部が貼り付けられて形成された表示モジュールが該当する。尚、表示モジュールには、外部から画素アレイ部への信号等を入出力するための回路部やフレキシブルプリントサーキット(FPC)などが設けられていてもよい。以下に、本開示の表示装置を用いる電子機器の具体例として、デジタルスチルカメラ及びヘッドマウントディスプレイを例示する。但し、ここで例示する具体例は一例に過ぎず、これらに限られるものではない。
(具体例1)
 図29は、本開示の電子機器の具体例1に係るレンズ交換式一眼レフレックスタイプのデジタルスチルカメラの外観図であり、図29Aにその正面図を示し、図29Bにその背面図を示す。
 本具体例1に係るレンズ交換式一眼レフレックスタイプのデジタルスチルカメラは、例えば、カメラ本体部(カメラボディ)211の正面右側に交換式の撮影レンズユニット(交換レンズ)212を有し、正面左側に撮影者が把持するためのグリップ部213を有している。
 そして、カメラ本体部211の背面略中央にはモニタ214が設けられている。モニタ214の上部には、電子ビューファインダ(接眼窓)215が設けられている。撮影者は、電子ビューファインダ215を覗くことによって、撮影レンズユニット212から導かれた被写体の光像を視認して構図決定を行うことが可能である。
 上記の構成のレンズ交換式一眼レフレックスタイプのデジタルスチルカメラにおいて、その電子ビューファインダ215として本開示の表示装置を用いることができる。すなわち、本具体例1に係るレンズ交換式一眼レフレックスタイプのデジタルスチルカメラは、その電子ビューファインダ215として本開示の表示装置を用いることによって作製される。
[具体例2]
 図30は、本開示の電子機器の具体例2に係るヘッドマウントディスプレイの一例を示す外観図である。
 本具体例2に係るヘッドマウントディスプレイ300は、本体部301、アーム部302及び鏡筒303を有する透過式ヘッドマウントディスプレイ構成となっている。本体部301は、アーム部302及び眼鏡310と接続されている。具体的には、本体部301の長辺方向の端部はアーム部302に取り付けられている。また、本体部301の側面の一方側は、接続部材(図示せず)を介して眼鏡310に連結されている。尚、本体部301は、直接的に人体の頭部に装着されてもよい。
 本体部301は、ヘッドマウントディスプレイ300の動作を制御するための制御基板や表示部を内蔵している。アーム部302は、本体部301と鏡筒303とを連結させることで、本体部301に対して鏡筒303を支える。具体的には、アーム部302は、本体部301の端部及び鏡筒303の端部と結合されることで、本体部301に対して鏡筒303を固定する。また、アーム部302は、本体部301から鏡筒303に提供される画像に係るデータを通信するための信号線を内蔵している。
 鏡筒303は、本体部301からアーム部302を経由して提供される画像光を、眼鏡310のレンズ311を透して、ヘッドマウントディスプレイ300を装着するユーザの目に向かって投射する。
 上記の構成のヘッドマウントディスプレイ300において、本体部301に内蔵される表示部として、本開示の表示装置を用いることができる。すなわち、本具体例2に係るヘッドマウントディスプレイ300は、その表示部として、本開示の表示装置を用いることによって作製される。
<本開示がとることができる構成>
 尚、本開示は、以下のような構成をとることもできる。
≪A.表示装置≫
[A-1]発光部を含む画素が基板上に配置されて成る画素領域を有し、
 画素領域内には、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域が設けられており、
 アノード電極の電極面は、下地絶縁層の表面形状に応じた傾斜角度を有する、
 表示装置。
[A-2]下地絶縁層の表面形状が階段形状であり、
 アノード電極は、下地絶縁層の階段形状の上に形成されている、
 上記[A-1]に記載の表示装置。
[A-3]アノード電極の電極面の傾斜角度は、下地絶縁層の階段形状の階段の深さ、段数、及び、ステップ幅によって決まる、
 上記[A-2]に記載の表示装置。
[A-4]下地絶縁層の階段形状は、メタル材料で埋め込まれて平滑化されており、
 アノード電極は、下地絶縁層の平滑化された上に形成されている、
 上記[A-2]に記載の表示装置。
[A-5]アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向及び第2の方向で対称である、
 上記[A-4]に記載の表示装置。
[A-6]アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向で非対称であり、非対称の一方の電極面側が非発光部側となっている、
 上記[A-4]に記載の表示装置。
[A-7]アノード電極は、非発光部側の電極面のメタル材料の有無による反射効果の有無の選択が可能な構造を有する、
 上記[A-6]に記載の表示装置。
[A-8]アノード電極は、下地絶縁層の階段形状の上に直接形成され、電極面が階段形状を有する、
 上記[A-2]に記載の表示装置。
[A-9]アノード電極は、リフレクタ効果を有する電極面形状を有する、
 上記[A-2]に記載の表示装置。
[A-10]カラー画像を形成する単位となる1画素が複数色の副画素から成り、発光部のカソード電極-アノード電極間での光の共振効果を利用するキャビティー構造を有する場合、
 下地絶縁層のアノード電極の形成面に、複数色の副画素毎に段差が設けられている、
 上記[A-1]に記載の表示装置。
[A-11]複数色の副画素は、赤色、緑色及び青色の3原色の副画素から成り、
 赤色の副画素のアノード電極の形成面を基準に、他の副画素のアノード電極の形成面を決定する、
 上記[A-10]に記載の表示装置。
[A-12]下地絶縁層の階段形状の各階段に対して、側面をテーパー形状とする加工が施されている、
 上記[A-2]に記載の表示装置。
[A-13]下地絶縁層の階段形状の各階段に対して、角部を削る処理が施されている、
 上記[A-2]に記載の表示装置。
[A-14]発光部は、有機EL素子から成る、
 上記[A-1]乃至上記[A-13]のいずれかに記載の表示装置。
≪B.表示装置の製造方法≫
[B-1]発光部を含む画素が基板上に配置されて成る画素領域を有する表示装置の製造に当たって、
 画素領域内に、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域を設け、
 下地絶縁層の表面形状に応じた傾斜角度にてアノード電極の電極面を形成する、
 表示装置の製造方法。
[B-2]下地絶縁層の表面形状が階段形状であり、
 アノード電極は、下地絶縁層の階段形状の上に形成されている、
 上記[B-1]に記載の表示装置の製造方法。
[B-3]アノード電極の電極面の傾斜角度は、下地絶縁層の階段形状の階段の深さ、段数、及び、ステップ幅によって決まる、
 上記[B-2]に記載の表示装置の製造方法。
[B-4]下地絶縁層の階段形状は、メタル材料で埋め込まれて平滑化されており、
 アノード電極は、下地絶縁層の平滑化された上に形成されている、
 上記[B-2]に記載の表示装置の製造方法。
[B-5]アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向及び第2の方向で対称である、
 上記[B-4]に記載の表示装置の製造方法。
[B-6]アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向で非対称であり、非対称の一方の電極面側が非発光部側となっている、
 上記[B-4]に記載の表示装置の製造方法。
[B-7]アノード電極は、非発光部側の電極面のメタル材料の有無による反射効果の有無の選択が可能な構造を有する、
 上記[B-6]に記載の表示装置の製造方法。
[B-8]アノード電極は、下地絶縁層の階段形状の上に直接形成され、電極面が階段形状を有する、
 上記[B-2]に記載の表示装置の製造方法。
[B-9]アノード電極は、リフレクタ効果を有する電極面形状を有する、
 上記[B-2]に記載の表示装置の製造方法。
[B-10]カラー画像を形成する単位となる1画素が複数色の副画素から成り、発光部のカソード電極-アノード電極間での光の共振効果を利用するキャビティー構造を有する場合、
 下地絶縁層のアノード電極の形成面に、複数色の副画素毎に段差が設けられている、
 上記[B-1]に記載の表示装置の製造方法。
[B-11]複数色の副画素は、赤色、緑色及び青色の3原色の副画素から成り、
 赤色の副画素のアノード電極の形成面を基準に、他の副画素のアノード電極の形成面を決定する、
 上記[B-10]に記載の表示装置の製造方法。
[B-12]下地絶縁層の階段形状の各階段に対して、側面をテーパー形状とする加工が施されている、
 上記[B-2]に記載の表示装置の製造方法。
[B-13]下地絶縁層の階段形状の各階段に対して、角部を削る処理が施されている、
 上記[B-2]に記載の表示装置の製造方法。
[B-14]発光部は、有機EL素子から成る、
 上記[B-1]乃至上記[B-13]のいずれかに記載の表示装置の製造方法。
≪C.電子機器≫
[C-1]発光部を含む画素が基板上に配置されて成る画素領域を有し、
 画素領域内には、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域が設けられており、
 アノード電極の電極面は、下地絶縁層の表面形状に応じた傾斜角度を有する、
 表示装置を有する電子機器。
[C-2]下地絶縁層の表面形状が階段形状であり、
 アノード電極は、下地絶縁層の階段形状の上に形成されている、
 上記[C-1]に記載の電子機器。
[C-3]アノード電極の電極面の傾斜角度は、下地絶縁層の階段形状の階段の深さ、段数、及び、ステップ幅によって決まる、
 上記[C-2]に記載の電子機器。
[C-4]下地絶縁層の階段形状は、メタル材料で埋め込まれて平滑化されており、
 アノード電極は、下地絶縁層の平滑化された上に形成されている、
 上記[C-2]に記載の電子機器。
[C-5]アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向及び第2の方向で対称である、
 上記[C-4]に記載の電子機器。
[C-6]アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向で非対称であり、非対称の一方の電極面側が非発光部側となっている、
 上記[C-4]に記載の電子機器。
[C-7]アノード電極は、非発光部側の電極面のメタル材料の有無による反射効果の有無の選択が可能な構造を有する、
 上記[C-6]に記載の電子機器。
[C-8]アノード電極は、下地絶縁層の階段形状の上に直接形成され、電極面が階段形状を有する、
 上記[C-2]に記載の電子機器。
[C-9]アノード電極は、リフレクタ効果を有する電極面形状を有する、
 上記[C-2]に記載の電子機器。
[C-10]カラー画像を形成する単位となる1画素が複数色の副画素から成り、発光部のカソード電極-アノード電極間での光の共振効果を利用するキャビティー構造を有する場合、
 下地絶縁層のアノード電極の形成面に、複数色の副画素毎に段差が設けられている、
 上記[C-1]に記載の電子機器。
[C-11]複数色の副画素は、赤色、緑色及び青色の3原色の副画素から成り、
 赤色の副画素のアノード電極の形成面を基準に、他の副画素のアノード電極の形成面を決定する、
 上記[C-10]に記載の電子機器。
[C-12]下地絶縁層の階段形状の各階段に対して、側面をテーパー形状とする加工が施されている、
 上記[C-2]に記載の電子機器。
[C-13]下地絶縁層の階段形状の各階段に対して、角部を削る処理が施されている、
 上記[C-2]に記載の電子機器。
[C-14]発光部は、有機EL素子から成る、
 上記[C-1]乃至上記[C-13]のいずれかに記載の電子機器。
 10・・・有機EL表示装置、20・・・画素(画素回路)、21・・・有機EL素子、22・・・駆動トランジスタ、23・・・サンプリングトランジスタ、24・・・発光制御トランジスタ、25・・・保持容量、26・・・補助容量、30・・・画素アレイ部、40・・・書込み走査部、50・・・駆動走査部、60・・・信号出力部、70・・・表示パネル、80・・・レンズ(レンズ群)、101・・・基板、102・・・回路層、103・・・無機絶縁層、104・・・下地絶縁層、105・・・アノード電極、106・・・有機絶縁層、107・・・有機EL層、108・・・カソード電極

Claims (16)

  1.  発光部を含む画素が基板上に配置されて成る画素領域を有し、
     画素領域内には、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域が設けられており、
     アノード電極の電極面は、下地絶縁層の表面形状に応じた傾斜角度を有する、
     表示装置。
  2.  下地絶縁層の表面形状が階段形状であり、
     アノード電極は、下地絶縁層の階段形状の上に形成されている、
     請求項1に記載の表示装置。
  3.  アノード電極の電極面の傾斜角度は、下地絶縁層の階段形状の階段の深さ、段数、及び、ステップ幅によって決まる、
     請求項2に記載の表示装置。
  4.  下地絶縁層の階段形状は、メタル材料で埋め込まれて平滑化されており、
     アノード電極は、下地絶縁層の平滑化された上に形成されている、
     請求項2に記載の表示装置。
  5.  アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向及び第2の方向で対称である、
     請求項4に記載の表示装置。
  6.  アノード電極の電極面の傾斜角度は、平面視での電極中心に関して第1の方向で非対称であり、非対称の一方の電極面側が非発光部側となっている、
     請求項4に記載の表示装置。
  7.  アノード電極は、非発光部側の電極面のメタル材料の有無による反射効果の有無の選択が可能な構造を有する、
     請求項6に記載の表示装置。
  8.  アノード電極は、下地絶縁層の階段形状の上に直接形成され、電極面が階段形状を有する、
     請求項2に記載の表示装置。
  9.  アノード電極は、リフレクタ効果を有する電極面形状を有する、
     請求項2に記載の表示装置。
  10.  カラー画像を形成する単位となる1画素が複数色の副画素から成り、発光部のカソード電極-アノード電極間での光の共振効果を利用するキャビティー構造を有する場合、
     下地絶縁層のアノード電極の形成面に、複数色の副画素毎に段差が設けられている、
     請求項1に記載の表示装置。
  11.  複数色の副画素は、赤色、緑色及び青色の3原色の副画素から成り、
     赤色の副画素のアノード電極の形成面を基準に、他の副画素のアノード電極の形成面を決定する、
     請求項10に記載の表示装置。
  12.  下地絶縁層の階段形状の各階段に対して、側面をテーパー形状とする加工が施されている、
     請求項2に記載の表示装置。
  13.  下地絶縁層の階段形状の各階段に対して、角部を削る処理が施されている、
     請求項2に記載の表示装置。
  14.  発光部は、有機EL素子から成る、
     請求項1に記載の表示装置。
  15.  発光部を含む画素が基板上に配置されて成る画素領域を有する表示装置の製造に当たって、
     画素領域内に、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域を設け、
     下地絶縁層の表面形状に応じた傾斜角度にてアノード電極の電極面を形成する、
     表示装置の製造方法。
  16.  発光部を含む画素が基板上に配置されて成る画素領域を有し、
     画素領域内には、発光部のアノード電極が、基板面に対して傾斜した画素を含む領域が設けられており、
     アノード電極の電極面は、下地絶縁層の表面形状に応じた傾斜角度を有する、
     表示装置を有する電子機器。
PCT/JP2019/010849 2018-03-30 2019-03-15 表示装置及び表示装置の製造方法、並びに、電子機器 WO2019188416A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/975,014 US11424427B2 (en) 2018-03-30 2019-03-15 Display device and manufacturing method of display device, and electronic device
DE112019001693.8T DE112019001693T5 (de) 2018-03-30 2019-03-15 Displayeinrichtung, verfahren zum herstellen einer displayeinrichtung und elektronikvorrichtung
JP2020510654A JP7212036B2 (ja) 2018-03-30 2019-03-15 表示装置及び表示装置の製造方法、並びに、電子機器
CN201980021598.3A CN111903192B (zh) 2018-03-30 2019-03-15 显示装置、显示装置的制造方法以及电子设备
JP2023003414A JP7390502B2 (ja) 2018-03-30 2023-01-12 表示装置及び電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018066954 2018-03-30
JP2018-066954 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019188416A1 true WO2019188416A1 (ja) 2019-10-03

Family

ID=68058821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010849 WO2019188416A1 (ja) 2018-03-30 2019-03-15 表示装置及び表示装置の製造方法、並びに、電子機器

Country Status (5)

Country Link
US (1) US11424427B2 (ja)
JP (2) JP7212036B2 (ja)
CN (1) CN111903192B (ja)
DE (1) DE112019001693T5 (ja)
WO (1) WO2019188416A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149424A1 (ja) * 2020-01-24 2021-07-29 ソニーセミコンダクタソリューションズ株式会社 光学補償素子および光学補償素子の製造方法、並びに、液晶表示装置および電子機器
WO2023181142A1 (ja) * 2022-03-23 2023-09-28 シャープディスプレイテクノロジー株式会社 発光素子及び表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024077313A (ja) * 2022-11-28 2024-06-07 キヤノン株式会社 有機デバイスおよびそれを用いた表示装置
JP2024140971A (ja) 2023-03-28 2024-10-10 ローム株式会社 半導体集積回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331665A (ja) * 2004-05-19 2005-12-02 Seiko Epson Corp 電気光学装置及びその製造方法、並びに電子機器
JP2007141862A (ja) * 2007-01-26 2007-06-07 Seiko Epson Corp 発光装置および電子機器
JP2015138612A (ja) * 2014-01-21 2015-07-30 株式会社ジャパンディスプレイ 有機エレクトロルミネセンス表示装置
WO2016084727A1 (ja) * 2014-11-27 2016-06-02 シャープ株式会社 発光素子、表示パネル、表示装置、電子機器、発光素子の製造方法
JP2017062902A (ja) * 2015-09-24 2017-03-30 シャープ株式会社 有機エレクトロルミネッセンス装置

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702516B2 (ja) * 2003-05-07 2011-06-15 エルジー エレクトロニクス インコーポレイティド 有機el素子及びその製造方法
JP3915810B2 (ja) * 2004-02-26 2007-05-16 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置、その製造方法、及び電子機器
US7554260B2 (en) * 2004-07-09 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device provided with a conductive film connection between a wiring component and a metal electrode film
JP4645587B2 (ja) * 2006-02-03 2011-03-09 ソニー株式会社 表示素子および表示装置
KR100959107B1 (ko) * 2008-08-28 2010-05-25 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR100952831B1 (ko) * 2009-01-12 2010-04-15 삼성모바일디스플레이주식회사 유기전계발광 표시 장치
JP2011009017A (ja) * 2009-06-24 2011-01-13 Panasonic Corp 有機elディスプレイパネル
KR20110132816A (ko) * 2010-06-03 2011-12-09 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조방법
JP2012003925A (ja) * 2010-06-16 2012-01-05 Sony Corp 表示装置
CN102960065B (zh) * 2010-08-25 2016-03-16 株式会社日本有机雷特显示器 有机发光元件及其制造方法以及有机显示面板和有机显示装置
WO2013124916A1 (ja) * 2012-02-21 2013-08-29 パナソニック株式会社 有機発光デバイスとその製造方法
WO2013187074A1 (ja) * 2012-06-15 2013-12-19 パナソニック株式会社 発光素子の製造方法、発光素子および表示パネル
JP2014022091A (ja) * 2012-07-13 2014-02-03 Seiko Epson Corp 有機el装置、有機el装置の製造方法、及び電子機器
KR101988217B1 (ko) * 2013-01-04 2019-06-12 엘지디스플레이 주식회사 유기 발광 다이오드 마이크로-캐비티 구조 및 그 제조 방법
US9224980B2 (en) * 2013-03-28 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
TWI612689B (zh) * 2013-04-15 2018-01-21 半導體能源研究所股份有限公司 發光裝置
KR102078356B1 (ko) * 2013-05-16 2020-04-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102067376B1 (ko) * 2013-05-21 2020-01-17 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
KR102114398B1 (ko) * 2013-07-01 2020-05-25 삼성디스플레이 주식회사 유기 발광 표시 장치
JP2015050011A (ja) * 2013-08-30 2015-03-16 株式会社ジャパンディスプレイ エレクトロルミネセンス装置およびその製造方法
JP6151136B2 (ja) * 2013-09-05 2017-06-21 株式会社ジャパンディスプレイ 有機エレクトロルミネセンス表示装置
JP6284346B2 (ja) * 2013-11-25 2018-02-28 株式会社ジャパンディスプレイ 有機el表示装置
JP6160499B2 (ja) * 2014-02-06 2017-07-12 ソニー株式会社 表示装置および表示装置の製造方法、並びに電子機器
KR20150096547A (ko) * 2014-02-14 2015-08-25 삼성디스플레이 주식회사 유기 발광 표시 패널 및 이의 제조 방법
CN103943787B (zh) * 2014-03-28 2016-08-24 京东方科技集团股份有限公司 一种oled显示器及其制备方法
CN104103673B (zh) * 2014-07-09 2017-06-20 京东方科技集团股份有限公司 一种oled显示器及其制备方法
KR102341032B1 (ko) * 2014-09-19 2021-12-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
US10651253B2 (en) * 2014-10-16 2020-05-12 Sharp Kabushiki Kaisha Light emitting element, display panel, display device, electronic device and method for producing light emitting element
CN104362257B (zh) * 2014-10-22 2017-10-17 京东方科技集团股份有限公司 一种顶发射oled器件及其制作方法、显示设备
KR20160066650A (ko) * 2014-12-02 2016-06-13 삼성디스플레이 주식회사 표시 장치의 제조 방법 및 표시 장치
CN104465708B (zh) * 2014-12-24 2017-10-17 京东方科技集团股份有限公司 一种阵列基板及其制作方法和显示装置
US20160226013A1 (en) * 2015-01-29 2016-08-04 Apple Inc. Organic Light-Emitting Diode Displays with Tilted and Curved Pixels
CN104716164A (zh) * 2015-03-27 2015-06-17 京东方科技集团股份有限公司 阵列基板及其制作方法、有机发光显示装置
CN104952884B (zh) * 2015-05-13 2019-11-26 深圳市华星光电技术有限公司 Amoled背板结构及其制作方法
US10411223B2 (en) * 2015-09-08 2019-09-10 Sharp Kabushiki Kaisha Organic electroluminescence device and illumination device
KR20170052455A (ko) * 2015-10-30 2017-05-12 엘지디스플레이 주식회사 유기발광 표시장치
WO2017086306A1 (ja) * 2015-11-16 2017-05-26 シャープ株式会社 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置
CN105226080B (zh) * 2015-11-18 2018-09-25 上海天马有机发光显示技术有限公司 一种显示装置及其制造方法
KR101739771B1 (ko) * 2015-11-30 2017-05-26 엘지디스플레이 주식회사 유기발광 표시장치 및 그 제조방법
KR102464901B1 (ko) * 2016-03-29 2022-11-09 삼성디스플레이 주식회사 플렉서블 표시 장치
CN105810719B (zh) * 2016-05-27 2019-08-06 京东方科技集团股份有限公司 一种像素单元及其制备方法、阵列基板和显示装置
KR102603595B1 (ko) * 2016-08-31 2023-11-20 엘지디스플레이 주식회사 마이크로 캐비티 구조를 갖는 디스플레이 장치 및 그의 제조 방법
KR102387859B1 (ko) * 2016-09-30 2022-04-15 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102631905B1 (ko) * 2017-01-05 2024-02-01 삼성디스플레이 주식회사 표시 장치
KR20180087908A (ko) * 2017-01-25 2018-08-03 삼성디스플레이 주식회사 표시 장치
CN106941113B (zh) * 2017-05-15 2020-04-21 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置
CN109427859B (zh) * 2017-08-31 2023-10-27 乐金显示有限公司 有机发光显示装置
KR102383928B1 (ko) * 2017-08-31 2022-04-06 엘지디스플레이 주식회사 전계발광 표시장치
US10903282B2 (en) * 2017-09-29 2021-01-26 Lg Display Co., Ltd. Organic light emitting display device
WO2019078318A1 (ja) * 2017-10-20 2019-04-25 パイオニア株式会社 発光装置及び発光モジュール
KR102539570B1 (ko) * 2017-12-08 2023-06-01 엘지디스플레이 주식회사 유기발광표시장치
KR102095910B1 (ko) * 2017-12-13 2020-04-01 엘지디스플레이 주식회사 곡면형 표시장치와 그의 제조방법
KR102504436B1 (ko) * 2017-12-18 2023-03-02 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102476117B1 (ko) * 2017-12-22 2022-12-08 엘지디스플레이 주식회사 유기발광 표시장치
KR102456120B1 (ko) * 2018-07-31 2022-10-17 엘지디스플레이 주식회사 표시장치
KR20200096367A (ko) * 2019-02-01 2020-08-12 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331665A (ja) * 2004-05-19 2005-12-02 Seiko Epson Corp 電気光学装置及びその製造方法、並びに電子機器
JP2007141862A (ja) * 2007-01-26 2007-06-07 Seiko Epson Corp 発光装置および電子機器
JP2015138612A (ja) * 2014-01-21 2015-07-30 株式会社ジャパンディスプレイ 有機エレクトロルミネセンス表示装置
WO2016084727A1 (ja) * 2014-11-27 2016-06-02 シャープ株式会社 発光素子、表示パネル、表示装置、電子機器、発光素子の製造方法
JP2017062902A (ja) * 2015-09-24 2017-03-30 シャープ株式会社 有機エレクトロルミネッセンス装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149424A1 (ja) * 2020-01-24 2021-07-29 ソニーセミコンダクタソリューションズ株式会社 光学補償素子および光学補償素子の製造方法、並びに、液晶表示装置および電子機器
WO2023181142A1 (ja) * 2022-03-23 2023-09-28 シャープディスプレイテクノロジー株式会社 発光素子及び表示装置

Also Published As

Publication number Publication date
DE112019001693T5 (de) 2020-12-10
JP2023052370A (ja) 2023-04-11
JPWO2019188416A1 (ja) 2021-05-13
JP7390502B2 (ja) 2023-12-01
US20200395570A1 (en) 2020-12-17
CN111903192B (zh) 2024-09-27
JP7212036B2 (ja) 2023-01-24
US11424427B2 (en) 2022-08-23
CN111903192A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
KR101913455B1 (ko) 표시 장치 및 전자 기기
JP7390502B2 (ja) 表示装置及び電子機器
US11889722B2 (en) Display device and electronic apparatus with contact electrode
WO2016158074A1 (ja) 表示装置、表示装置の製造方法、及び、電子機器
US11903285B2 (en) Display device and electronic device with peripheral connection to cathode electrode
US8736526B2 (en) Display unit with organic light emitting devices
WO2016136042A1 (ja) 表示装置、表示装置の製造方法、及び、電子機器
CN112056006B (zh) 显示设备及其制造方法以及电子设备
JP7050772B2 (ja) 表示装置及び電子機器
US20230247864A1 (en) Display device and electronic device
WO2019203027A1 (ja) 表示装置及び電子機器
US20230110063A1 (en) Display device, method of manufacturing display device, and electronic device
WO2021241148A1 (ja) 表示装置及び電子機器
WO2020071026A1 (ja) 表示装置及び電子機器
KR20190062853A (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510654

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774198

Country of ref document: EP

Kind code of ref document: A1