[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019187422A1 - 測距ユニット及び光照射装置 - Google Patents

測距ユニット及び光照射装置 Download PDF

Info

Publication number
WO2019187422A1
WO2019187422A1 PCT/JP2018/047348 JP2018047348W WO2019187422A1 WO 2019187422 A1 WO2019187422 A1 WO 2019187422A1 JP 2018047348 W JP2018047348 W JP 2018047348W WO 2019187422 A1 WO2019187422 A1 WO 2019187422A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflected light
reflected
optical path
distance measuring
Prior art date
Application number
PCT/JP2018/047348
Other languages
English (en)
French (fr)
Inventor
惇治 奥間
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to DE112018007421.8T priority Critical patent/DE112018007421T5/de
Priority to KR1020207024077A priority patent/KR102730924B1/ko
Priority to CN201880092060.7A priority patent/CN111936817B/zh
Priority to US17/040,800 priority patent/US11428520B2/en
Publication of WO2019187422A1 publication Critical patent/WO2019187422A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Definitions

  • the present disclosure relates to a ranging unit and a light irradiation device.
  • an astigmatism method As a distance measuring unit for measuring the height of the surface of an object, one using an astigmatism method is known (for example, see Patent Document 1).
  • the astigmatism method laser light emitted from a light source is collected by an objective lens and applied to the surface of an object. Then, the reflected light of the laser light reflected on the surface of the object travels on the optical axis of the objective lens, is given astigmatism, and is detected by, for example, a four-division photodiode.
  • the laser beam reflected by the back main surface of the wafer is reflected by the reflected light of the laser light reflected by the front main surface of the wafer.
  • the height of the front main surface of the wafer may not be accurately measured.
  • the present disclosure is intended to provide a distance measuring unit and a light irradiation device that can accurately measure the height of a surface to be measured of an object.
  • a distance measuring unit transmits a distance measuring light source that outputs a distance measuring light that is a laser beam, a distance measuring light, and a reflected light of the distance measuring light reflected by a measurement target surface of the object.
  • An objective lens that allows the reflected light to pass therethrough, an imaging lens that forms an image at a focusing position of the distance measuring light or reflected light by the objective lens at an imaging position, and an optical path adjustment unit that adjusts the optical path of the reflected light
  • the objective lens is configured to transmit the distance measuring light to the object side in a state where the optical path of the distance measuring light is away from the central axis of the objective lens, and the optical path adjustment unit
  • the optical path of the reflected light is adjusted so that the imaging position of the reflected light that is imaged in at least one direction perpendicular to the incident direction of the reflected light incident on the light detection unit approaches a predetermined plane that intersects the incident direction.
  • the light receiving surface of the light detection unit is positioned along a predetermined surface.
  • the objective lens transmits the distance measuring light to the object side while the optical path of the distance measuring light is away from the central axis of the objective lens. For this reason, the position at which the reflected light reflected by the measurement surface of the object is incident on the light receiving surface of the light detection unit changes according to the height of the measurement surface of the object. Therefore, the height of the measurement target surface of the object can be measured based on the incident position of the reflected light on the light receiving surface of the light detection unit. At this time, even if a part of the distance measuring light is reflected on the other surface of the object, the reflected light reflected on the other surface of the object is reflected from the reflected light reflected on the surface to be measured of the object.
  • the imaging position of the reflected light that is imaged in at least one direction perpendicular to the incident direction of the reflected light that is incident on the light detection unit approaches a predetermined plane that intersects the incident direction.
  • the optical path adjustment unit adjusts the optical path of the reflected light, and the light receiving surface of the light detection unit is positioned along the predetermined surface. Thereby, the height of the surface to be measured of the object can be measured in a uniform state. If the optical path adjustment unit is not provided, the position where the reflected light passes through each of the objective lens and the imaging lens changes according to the height of the surface to be measured.
  • the image forming position greatly changes in accordance with the height of the surface to be measured of the object, and as a result, the height may not be accurately measured depending on the height of the surface to be measured of the object.
  • the height of the surface to be measured of the object can be accurately measured.
  • the optical path adjustment unit may adjust the optical path of the reflected light between the imaging lens and the light detection unit. According to this, each structure can be arranged efficiently.
  • the optical path adjustment unit may be a reflective grating having a plurality of grooves extending along a direction parallel to the light receiving surface and perpendicular to one direction. According to this, the imaging position of the reflected light imaged in at least one direction perpendicular to the incident direction of the reflected light incident on the light detection unit can be easily and surely brought close to the predetermined plane intersecting the incident direction. .
  • the light detection unit may include a plurality of light detection channels arranged along a direction parallel to one direction. According to this, since the reflected light is imaged in at least one direction perpendicular to the incident direction, the height of the measured surface of the object is accurately determined based on the position of the light detection channel where the reflected light is incident. Can measure well.
  • the objective lens and the imaging lens may be configured such that the direction of the optical path of the reflected light emitted from the imaging lens is constant. According to this, the relationship between the height of the surface to be measured of the object and the position of the light detection channel where the reflected light enters can be made linear.
  • the image of the reflected light on the light receiving surface may have a long shape whose longitudinal direction is a direction perpendicular to one direction. According to this, since the deviation of the light receiving surface of the light detection unit in the longitudinal direction of the image of the reflected light can be allowed, the height of the surface to be measured of the target can be accurately adjusted while relaxing the accuracy of the arrangement of each component. Can measure well.
  • a light irradiation apparatus includes a support unit that supports an object, an irradiation light source that outputs irradiation light, a ranging light source that outputs ranging light that is laser light, and irradiation light and ranging light.
  • An optical element that transmits one of the light and reflects the other of the irradiation light and the distance measuring light, and an object that transmits the reflected light of the irradiation light, the distance measuring light, and the distance measuring light reflected by the measurement surface of the object.
  • a lens an imaging lens that transmits reflected light and forms an image at a focusing position of ranging light or reflected light by the objective lens at an imaging position, an optical path adjustment unit that adjusts an optical path of the reflected light, and reflection
  • An objective lens comprising: a light detection unit that detects light; a drive unit that moves the objective lens along its central axis; and a control unit that drives the drive unit based on an electrical signal output from the light detection unit. Covers the distance measuring light with the optical path of the distance measuring light away from the central axis of the objective lens.
  • the optical path adjustment unit causes the imaging position of the reflected light that is imaged in at least one direction perpendicular to the incident direction of the reflected light incident on the light detection unit to approach a predetermined plane that intersects the incident direction. Further, the optical path of the reflected light is adjusted, and the light receiving surface of the light detection unit is positioned along a predetermined surface.
  • This light irradiation device can accurately measure the height of the surface to be measured of the object as described above.
  • the focal point of the irradiation light can be adjusted to a desired position on the object.
  • the focusing point of the distance measuring light by the objective lens is not limited to the state where it is located on the surface to be measured of the object. The focusing point can be aligned.
  • a distance measuring unit and a light irradiation device that can accurately measure the height of the surface to be measured of an object.
  • FIG. 1 is a configuration diagram of a laser processing apparatus which is a light irradiation apparatus according to an embodiment.
  • FIG. 2 is a configuration diagram of a distance measuring unit provided in the laser processing apparatus shown in FIG.
  • FIG. 3 is a configuration diagram of a part of the ranging unit shown in FIG.
  • FIG. 4 is a configuration diagram of a distance measuring unit of a comparative example.
  • FIG. 5 is a configuration diagram of a part of the distance measuring unit of the comparative example.
  • FIG. 6 is a diagram for explaining the optical path of distance measuring light in the distance measuring unit shown in FIG.
  • FIG. 7 is a diagram for explaining an optical path of distance measuring light in a distance measuring unit according to a modification.
  • FIG. 8 is a diagram for explaining an optical path of distance measuring light in a distance measuring unit according to a modification.
  • FIG. 9 is a diagram for explaining the optical path of distance measuring light in the distance measuring unit of the modification.
  • the laser processing apparatus 200 irradiates a laser beam (irradiation light) IL along the planned cutting line 5 with the focusing point P inside the processing target (target) 1.
  • the light irradiation device forms the modified region 7 on the workpiece 1 along the planned cutting line 5.
  • the workpiece 1 is, for example, a semiconductor wafer in which a plurality of functional elements are formed in a matrix.
  • the planned cutting line 5 is set in a lattice shape so as to pass between adjacent functional elements.
  • the modified region 7 is a region where physical properties such as density, refractive index, and mechanical strength are different from the surroundings.
  • the crack extends from the modified region 7 in the thickness direction of the processed workpiece 1, and processing along the planned cutting line 5 is performed.
  • the object 1 can be cut.
  • the laser beam IL passes through the surface (surface to be measured) 3 of the workpiece 1 and is particularly absorbed near the focal point P. Irradiation with the laser beam IL may be performed under the following conditions.
  • the laser processing apparatus 200 includes a stage (supporting unit) 201, a laser light source (irradiation light source) 202, a reflective spatial light modulator 203, a 4f optical system 204, and an objective lens 205.
  • a stage supporting unit
  • a laser light source irradiation light source
  • a reflective spatial light modulator 203
  • a 4f optical system 204 a 4f optical system
  • an objective lens 205 an objective lens 205.
  • one horizontal direction is referred to as the X-axis direction
  • one horizontal direction perpendicular to the X-axis direction is referred to as the Y-axis direction
  • the vertical direction is referred to as the Z-axis direction.
  • the stage 201 supports the workpiece 1.
  • the stage 201 is movable in each of the X axis direction, the Y axis direction, and the Z axis direction while holding the workpiece 1.
  • the laser light source 202 outputs laser light IL.
  • the laser light source 202 is attached to the top plate of the housing 206.
  • the laser light source 202 is, for example, a fiber laser.
  • the laser light source 202 emits the laser light IL to one side along the X-axis direction.
  • the reflective spatial light modulator 203 modulates the laser light IL output from the laser light source 202.
  • the reflective spatial light modulator 203 is provided in the housing 206.
  • the reflective spatial light modulator 203 is, for example, LCOS (Liquid Crystal on Silicon) -SLM (Spatial Light Modulator).
  • the reflective spatial light modulator 203 reflects the laser beam IL incident along the X-axis direction obliquely upward.
  • the 4f optical system 204 suppresses changes in the wavefront shape of the laser light IL modulated by the reflective spatial light modulator 203 due to spatial propagation.
  • the 4f optical system 204 is provided in the housing 206.
  • the 4f optical system 204 includes a first lens 204a and a second lens 204b.
  • the optical path length between the reflective spatial light modulator 203 and the first lens 204a is the focal length of the first lens 204a
  • the optical path length between the objective lens 205 and the second lens 204b is the first.
  • the focal length of the second lens 204b, the optical path length between the first lens 204a and the second lens 204b is the sum of the focal length of the first lens 204a and the focal length of the second lens 204b, and the first lens 204a.
  • the second lens 204b is a double-sided telecentric optical system.
  • the objective lens 205 condenses the laser light IL modulated by the reflective spatial light modulator 203.
  • the objective lens 205 is composed of a plurality of lenses.
  • the objective lens 205 is attached to the bottom plate of the housing 206 via a drive unit 207 including a piezoelectric element.
  • the drive unit 207 moves the objective lens 205 along its central axis (here, the Z-axis direction). Note that the objective lens 205 may be configured by a single lens.
  • the laser light IL output from the laser light source 202 is reflected downward along the Z-axis direction by the mirror 208 and enters the housing 206.
  • the laser light IL that has entered the housing 206 is adjusted in intensity by the attenuator 209 and reflected by the mirror 211 to the other side along the X-axis direction.
  • the laser beam IL reflected by the mirror 211 has its beam diameter enlarged by the beam expander 212, modulated by the reflective spatial light modulator 203, and reflected.
  • the laser beam IL modulated and reflected by the reflective spatial light modulator 203 is reflected upward along the Z-axis direction by the mirror 213, and the polarization direction is adjusted by the ⁇ / 2 wavelength plate 214.
  • the laser beam IL whose polarization direction has been adjusted is reflected by the mirror 215 to one side along the X-axis direction, passes through the first lens 204a of the 4f optical system 204, and passes along the Z-axis direction by the mirror 216. Reflected downward.
  • the laser beam IL reflected by the mirror 216 passes through the second lens 204b of the 4f optical system 204 and enters the objective lens 205.
  • the visible light source 221, the light detection unit 222, the mirror 223, the dichroic mirror 224, the dichroic mirror 225, and the objective lens 205 constitute an observation unit 220 for observing the surface 3 of the workpiece 1. Yes.
  • the visible light source 221, the light detection unit 222, the mirror 223, the dichroic mirror 224, and the dichroic mirror 225 are provided in the housing 206.
  • the visible light VL1 output from the visible light source 221 is sequentially reflected by the mirror 223, the dichroic mirror 224, and the dichroic mirror 225, and enters the objective lens 205.
  • Visible light VL1 incident on the objective lens 205 is collected by the objective lens 205 and irradiated onto the surface 3 of the workpiece 1.
  • the reflected light VL2 of the visible light VL1 reflected by the surface 3 of the workpiece 1 is transmitted through the objective lens 205 and reflected by the dichroic mirror 225.
  • the reflected light VL ⁇ b> 2 reflected by the dichroic mirror 225 passes through the dichroic mirror 224, enters the light detection unit 222, and is detected by the light detection unit 222.
  • the dichroic mirror 225 is disposed between the second lens 204b of the 4f optical system 204 and the objective lens 205, and transmits the laser light IL.
  • a distance measuring unit 100 is configured (details will be described later).
  • the distance measuring unit 100 measures the height of the surface 3 of the workpiece 1 supported by the stage 201.
  • the height of the surface 3 of the workpiece 1 is the position of the surface 3 of the workpiece 1 in a direction parallel to the central axis of the objective lens 205 (here, the Z-axis direction). This corresponds to the distance from the surface 3 of the object 1.
  • the laser processing apparatus 200 includes a control unit 230.
  • the control unit 230 includes, for example, a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the control unit 230 executes various controls by executing a predetermined program in the computer.
  • the control unit 230 controls the laser light source 202 so that the pulse width of the laser light IL output from the laser light source 202 becomes a predetermined value. Further, when the control unit 230 forms the modified region 7, the condensing point P of the laser beam IL is located at a predetermined distance from the surface 3 of the workpiece 1 and the condensing point P of the laser beam IL is set. The stage 201 is controlled so as to move relatively along the scheduled cutting line 5. Further, the control unit 230 controls the reflective spatial light modulator 203 so that the wavefront shape of the laser light IL becomes a predetermined shape.
  • control unit 230 forms the modified region 7 based on the height of the surface 3 of the workpiece 1 measured by the distance measuring unit 100 (that is, a light detection unit 107 described later (FIG. 2).
  • the driving unit 207 is controlled so that the condensing point P of the laser beam IL is located at a predetermined distance from the surface 3 of the workpiece 1 based on the electric signal output from the reference). Move along its central axis. Thereby, even if the height of the surface 3 of the workpiece 1 changes along the planned cutting line 5, the modified region 7 can be formed on the inner side by a predetermined distance from the surface 3 of the workpiece 1.
  • the ranging unit 100 includes a ranging light source 101, a collimating lens 102, a half mirror 103, a dichroic mirror (optical element) 104, an imaging lens 105, a reflective grating (optical path adjusting unit) 106, The light detection unit 107 and the objective lens 205 are configured.
  • the distance measuring light source 101, the collimating lens 102, the half mirror 103, the dichroic mirror 104, the imaging lens 105, the reflective grating 106, and the light detection unit 107 are provided in a housing 206.
  • the ranging light source 101 outputs a ranging light RL1 that is a laser beam.
  • the ranging light source 101 is a laser diode, for example.
  • ranging light source 101 emits ranging light RL1 downward along the Z-axis direction.
  • the collimating lens 102 collimates the distance measuring light RL1 output from the distance measuring light source 101.
  • the half mirror 103 reflects the distance measuring light RL1 collimated by the collimating lens 102 to the dichroic mirror 104 side.
  • the half mirror 103 transmits reflected light RL2 described later from the dichroic mirror 104 side to the imaging lens 105 side.
  • the half mirror 103 reflects the distance measuring light RL1 incident from above along the Z-axis direction to one side along the X-axis direction, and reflects the reflected light RL2 from one side along the X-axis direction. Permeate to the other side.
  • the dichroic mirror 104 reflects the distance measuring light RL1 reflected by the half mirror 103 toward the objective lens 205.
  • the dichroic mirror 104 reflects the reflected light RL2 incident from the objective lens 205 side to the half mirror 103 side.
  • the dichroic mirror 104 reflects the distance measuring light RL1 incident from the other side along the X-axis direction to the lower side along the Z-axis direction, and the reflected light incident from the lower side along the Z-axis direction.
  • RL2 is reflected to the other side along the X-axis direction.
  • the dichroic mirror 104 is disposed between the dichroic mirror 225 of the observation unit 220 and the objective lens 205 (see FIG. 1), and transmits the laser light IL, the visible light VL1, and the reflected light VL2.
  • the objective lens 205 transmits the distance measuring light RL1 reflected by the dichroic mirror 104 to the workpiece 1 side while condensing it.
  • the objective lens 205 transmits the reflected light RL2 of the distance measuring light RL1 reflected by the surface 3 of the workpiece 1 to the dichroic mirror 104 side.
  • the objective lens 205 transmits the distance measuring light RL1 from the upper side to the lower side along the Z-axis direction, and transmits the reflected light RL2 from the lower side to the upper side along the Z-axis direction.
  • the imaging lens 105 transmits the reflected light RL2 reflected by the dichroic mirror 104 and transmitted through the half mirror 103 to the reflective grating 106 side.
  • the imaging lens 105 transmits the reflected light RL2 from one side to the other side along the X-axis direction.
  • the imaging lens 105 forms an image at the focusing position of the distance measuring light RL1 or the reflected light RL2 by the objective lens 205 at the imaging position.
  • the condensing position reflects the ranging light RL1. Appears at the boundary with the light RL2.
  • the condensing position is Appears in the reflected light RL2.
  • the imaging lens 105 may be constituted by a single lens or a plurality of lenses.
  • the reflective grating 106 reflects the reflected light RL2 that has passed through the imaging lens 105 to the light detection unit 107 side.
  • the reflective grating 106 is, for example, a blazed grating.
  • the reflective grating 106 reflects the reflected light RL2 incident from one side along the X-axis direction to the upper side along the Z-axis direction.
  • the reflective grating 106 adjusts the optical path of the reflected light RL2 between the imaging lens 105 and the light detection unit 107 (details will be described later).
  • the light detection unit 107 detects the reflected light RL2 reflected by the reflective grating 106.
  • the light detection unit 107 is, for example, a one-dimensional photodiode array having a plurality of light detection channels arranged along the X-axis direction.
  • the light receiving surface 107 a of the light detection unit 107 faces the reflective grating 106 and is located on the predetermined surface S.
  • the light receiving surface 107a faces downward and is located on a predetermined surface S perpendicular to the Z-axis direction.
  • the light detection unit 107 may be a two-dimensional photodiode array or the like as long as it has a plurality of light detection channels arranged along the X-axis direction.
  • the objective lens 205 transmits the distance measuring light RL1 to the workpiece 1 side in a state where the optical path A2 of the distance measuring light RL1 is away from the central axis A1 of the objective lens 205.
  • the optical path A2 of the distance measuring light RL1 incident on the objective lens 205 is parallel to the central axis A1 of the objective lens 205.
  • the optical path A2 of the distance measuring light RL1 emitted from the objective lens 205 is inclined so that the focal point P1 of the distance measuring light RL1 condensed by the objective lens 205 is located on the central axis A1 of the objective lens 205.
  • the optical path A2 of the distance measuring light RL1 incident on the objective lens 205 is separated from the central axis A1 of the objective lens 205 to one side in the X-axis direction.
  • the optical path of the reflected light RL ⁇ b> 2 that passes through the objective lens 205 changes according to the height of the surface 3 of the processing target 1, and as a result, the processing target 1.
  • the incident position of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 changes. Therefore, based on the incident position of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 (that is, based on the position of the light detection channel on which the reflected light RL2 is incident), the height of the surface 3 of the workpiece 1 is set. It can be measured.
  • the optical path of the reflected light RL2 L has a symmetrical relationship with the optical path of the distance measuring light RL1 with respect to the central axis A1 of the objective lens 205.
  • the optical path of the reflected light RL2 M one in the X-axis direction than reflected light RL2 L It is reflected on the side.
  • the optical path of the reflected light RL2 H is in the X-axis direction than reflected light RL2 M Reflected on one side.
  • the convergence and divergence states of the reflected light RL2 also change according to the height of the surface 3 of the workpiece 1, the imaging of the reflected light RL2 by the imaging lens 105 is performed.
  • the position also changes according to the height of the surface 3 of the workpiece 1. Therefore, as shown in FIG. 4, if the reflection type grating 106 that adjusts the optical path of the reflected light RL2 is not provided in the distance measuring unit 100, the spot size of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 is Depending on the height of the surface 3 of the workpiece 1, the measurement accuracy of the height of the surface 3 of the workpiece 1 may be deteriorated. Further, as shown in FIG.
  • the reflected light RL2 with respect to the light receiving surface 107a
  • the incident angle increases, a part of the reflected light RL2 is reflected on the light receiving surface 107a, or the spot size of the reflected light RL2 on the light receiving surface 107a increases, and as a result, the height of the surface 3 of the workpiece 1 increases.
  • the measurement accuracy may be degraded.
  • the focal length of the objective lens 205 is f1
  • the focal length of the imaging lens 105 is f2
  • the focal length f1 of the objective lens 205 when the focal length f1 of the objective lens 205 is reduced, the difference ⁇ X in the imaging position of the reflected light RL2 is increased, and the spot size of the reflected light RL2 on the light receiving surface 107a is increased.
  • the numerical aperture of the objective lens 205 increases and the focal length f1 of the objective lens 205 decreases. It is particularly important to take measures to prevent the measurement accuracy of the height of the surface 3 of the workpiece 1 from deteriorating.
  • a reflection type grating 106 for adjusting the optical path of the reflected light RL2 is provided in the distance measuring unit 100.
  • the reflective grating 106 adjusts the optical path of the reflected light RL2 by causing the reflected light RL2 to generate an optical path length corresponding to the incident position of the reflected light RL2 on the reflective grating 106.
  • the optical path of the reflected light RL2 that has passed through the imaging lens 105 (the optical path of the principal ray of the reflected light RL2) is a predetermined plane (here, perpendicular to the Y-axis direction) according to the height of the surface 3 of the workpiece 1. Change along a flat plane). Therefore, the reflective grating 106 is arranged so that the plurality of grooves extend along a direction perpendicular to the predetermined plane (here, the Y-axis direction). Further, the reflective grating 106 is arranged so that the reflected light RL2 having a long optical path length from the imaging lens 105 to the imaging position is reflected by the reflective grating 106 at a position away from the imaging lens 105. Yes.
  • the reflected light RL2 having a longer optical path length from the imaging lens 105 to the imaging position has a longer optical path length of the reflected light RL2 from the imaging lens 105 to the light receiving surface 107a of the light detection unit 107.
  • the optical path length of the reflected light RL2 H reaching the light receiving surface 107a of the optical detector 107 from the imaging lens 105 is longer than the optical path length of the reflected light RL2 M extending from the imaging lens 105 on the light receiving surface 107a of the optical detector 107.
  • the imaging position of the reflected light RL2 imaged in the Y-axis direction is such that the light receiving surface 107a of the light detection unit 107 is positioned more than the imaging position of the reflected light RL2 imaged in the X-axis direction.
  • the reflective grating 106 reflects the reflected light RL2 so that the imaging position of the reflected light RL2 imaged in the X-axis direction approaches the predetermined surface S where the light receiving surface 107a of the light detection unit 107 is located. Adjust the optical path.
  • the reflective grating 106 forms an image in at least one direction (here, the X-axis direction) perpendicular to the incident direction (here, the Z-axis direction) of the reflected light RL2 incident on the light detection unit 107.
  • the optical path of the reflected light RL2 is adjusted so that the imaging position of the reflected light RL2 approaches the predetermined surface S perpendicular to the incident direction.
  • the reflective grating 106 extends in a direction (here, the Y-axis direction) parallel to the light receiving surface 107a of the light detection unit 107 and perpendicular to the above-described one direction (here, the X-axis direction). It has a groove.
  • the light detection unit 107 includes a plurality of light detection channels arranged along a direction parallel to the above-described one direction (here, the X-axis direction).
  • the incident direction of the reflected light RL2 incident on the light detection unit 107 means the incident direction of the reference reflected light RL2 (for example, the reflected light RL2 L ).
  • the imaging position of the reflected light RL2 approaches the predetermined surface S perpendicular to the incident direction of the reflected light RL2 incident on the light detection unit 107 means that the reflective grating 106 is provided in the distance measuring unit 100. This means that the image forming position of the reflected light RL2 approaches the predetermined surface S as compared with the case where it is not.
  • the difference in the imaging position of the reflected light RL2 in the incident direction of the reflected light RL2 incident on the light detection unit 107 is less than ⁇ X (preferably less than 10% of ⁇ X) in the region including the predetermined surface S. It means to become.
  • the objective lens 205 and the imaging lens 105 are configured so that the direction of the optical path of the reflected light RL2 emitted from the imaging lens 105 (the optical path of the principal ray of the reflected light RL2) is constant.
  • the optical path length between the objective lens 205 and the imaging lens 105 is the sum of the focal length f1 of the objective lens 205 and the focal length f2 of the imaging lens 105. It has become. That is, the focal position of the objective lens 205 on the imaging lens 105 side and the focal position of the imaging lens 105 on the objective lens 205 side coincide.
  • the ranging light source 101, the collimating lens 102, the half mirror 103, the dichroic mirror 104, and the like are not shown, and the configuration of the ranging unit 100 is simplified.
  • the optical path length between the objective lens 205 and the imaging lens 105 is such that the focal length f1 of the objective lens 205 and the focal length f2 of the imaging lens 105 are the same. If it is larger (or smaller) than the sum, the direction of the optical path of the reflected light RL2 emitted from the imaging lens 105 changes according to the height of the surface 3 of the workpiece 1 and, as a result, as shown in FIG. As shown in (b), the height of the surface 3 of the workpiece 1 and the position of the light detection channel where the reflected light RL2 enters in the light detection unit 107 have a non-linear relationship.
  • control unit 230 holds in advance the relationship between the surface 3 of the workpiece 1 and the position of the light detection channel, and the control unit 230 refers to the relationship so that the processing target The height of the surface 3 of the object 1 can be measured with sufficient accuracy.
  • the ranging light source 101, the collimating lens 102, the half mirror 103, the dichroic mirror 104, and the like are not shown, and the configuration of the ranging unit 100 is simplified.
  • the image of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 forms one of the reflected light RL2 so as to approach the predetermined surface S described above. It has a long shape (here, an elliptical shape) whose longitudinal direction is a direction (here, the Y-axis direction) perpendicular to (direction). Thereby, the shift of the light receiving surface 107a of the light detection unit 107 in the longitudinal direction of the image of the reflected light RL2 is allowed, and the accuracy of the arrangement of each component is relaxed.
  • the image of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 has a long shape whose longitudinal direction is a direction perpendicular to the one direction described above, as described above, by the imaging lens 105. This is because astigmatism occurs in the reflected light RL2 that is imaged and reflected by the reflective grating 106.
  • the optical path length between the imaging lens 105 and the reflective grating 106 is increased, and the distance between the reflective grating 106 and the light detection unit 107 is increased.
  • the optical path length is shortened, as shown in FIG. 8B, the image of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 becomes a dot shape.
  • the height of the surface 3 of the workpiece 1 can be measured with sufficient accuracy.
  • the light detection unit 107 by adjusting at least one of the optical path length between the imaging lens 105 and the reflection type grating 106 and the optical path length between the reflection type grating 106 and the light detection unit 107, the light detection unit The shape of the image of the reflected light RL2 on the light receiving surface 107a 107 can be adjusted.
  • the ranging light source 101, the collimating lens 102, the half mirror 103, the dichroic mirror 104, and the like are not shown, and the configuration of the ranging unit 100 is simplified.
  • the reflected light RL2 is detected as follows. As shown in FIG. 2, the distance measuring light RL ⁇ b> 1 output from the distance measuring light source 101 is collimated by the collimating lens 102. The collimated distance measuring light RL1 is sequentially reflected by the half mirror 103 and the dichroic mirror 104 and enters the objective lens 205. The distance measuring light RL1 incident on the objective lens 205 is condensed by the objective lens 205 and irradiated on the surface 3 of the workpiece 1. The reflected light RL2 of the distance measuring light RL1 reflected by the surface 3 of the workpiece 1 passes through the objective lens 205 and is reflected by the dichroic mirror 104.
  • the reflected light RL2 reflected by the dichroic mirror 104 passes through the half mirror 103, forms an image by the imaging lens 105, and is reflected by the reflective grating 106.
  • the reflected light RL ⁇ b> 2 reflected by the reflective grating 106 enters the light detection unit 107 and is detected by the light detection unit 107.
  • the objective lens 205 transmits the distance measuring light RL1 to the workpiece 1 side while the optical path A2 of the distance measuring light RL1 is away from the central axis A1 of the objective lens 205. Therefore, the position where the reflected light RL ⁇ b> 2 reflected by the surface 3 of the workpiece 1 is incident on the light receiving surface 107 a of the light detection unit 107 changes according to the height of the surface 3 of the workpiece 1. Therefore, the height of the surface 3 of the workpiece 1 can be measured based on the incident position of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107.
  • the imaging position of the reflected light RL2 formed in one direction (here, the X-axis direction) perpendicular to the incident direction of the reflected light RL2 incident on the light detection unit 107 is the incident light.
  • the reflective grating 106 adjusts the optical path of the reflected light RL2 so as to approach the predetermined surface S perpendicular to the direction, and the light receiving surface 107a of the light detection unit 107 is positioned on the predetermined surface S. Thereby, the height of the surface 3 of the workpiece 1 can be measured in a uniform state. If the reflective grating 106 is not provided, the position at which the reflected light RL2 passes through each of the objective lens 205 and the imaging lens 105 changes according to the height of the surface 3 of the workpiece 1. The imaging position of the reflected light RL2 by the image lens 105 varies greatly depending on the height of the surface 3 of the workpiece 1. As a result, depending on the height of the surface 3 of the workpiece 1, the height can be accurately set. Measurement may not be possible. As described above, according to the distance measuring unit 100, the height of the surface 3 of the workpiece 1 can be accurately measured.
  • the reflection type grating 106 adjusts the optical path of the reflected light RL2 between the imaging lens 105 and the light detection unit 107. Thereby, each structure can be arrange
  • the reflective grating 106 is parallel to the light receiving surface 107a of the light detection unit 107 and perpendicular to one direction (one direction in which the reflected light RL2 is imaged so as to approach the predetermined surface S). It has a plurality of grooves extending along. Thereby, the imaging position of the reflected light RL2 formed in at least one direction perpendicular to the incident direction of the reflected light RL2 incident on the light detection unit 107 can be easily and reliably set on the predetermined surface S perpendicular to the incident direction. Get closer.
  • the light detection unit 107 includes a plurality of light detection channels arranged along a direction parallel to one direction (one direction in which the reflected light RL2 is imaged so as to approach the predetermined surface S). Have. Thereby, since the reflected light RL2 is imaged in one direction perpendicular to the incident direction, the height of the surface 3 of the workpiece 1 is accurately determined based on the position of the light detection channel on which the reflected light RL2 is incident. Can measure well.
  • the objective lens 205 and the imaging lens 105 are configured so that the direction of the optical path of the reflected light RL2 emitted from the imaging lens 105 is constant. Thereby, the linearity is given to the relationship between the height of the surface 3 of the workpiece 1 and the position of the light detection channel where the reflected light RL2 is incident on the light detection unit 107.
  • the image of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 is long in a direction perpendicular to one direction (one direction in which the reflected light RL2 is imaged so as to approach the predetermined surface S). It has a long shape as a direction.
  • the laser processing apparatus 200 can accurately measure the height of the surface 3 of the workpiece 1.
  • the condensing point P of the laser beam IL is set to a desired position on the workpiece 1.
  • the focusing point P1 of the distance measuring light RL1 by the objective lens 205 is not limited to the state where the focusing point P1 is positioned on the surface 3 of the processing object 1, and the height of the surface 3 of the processing object 1 is measured.
  • the focusing point P of the laser beam IL with respect to the workpiece 1 can be aligned.
  • the dichroic mirror 104 transmits the laser light IL and reflects the distance measuring light RL1 (including the reflected light RL2).
  • the laser light IL and the distance measuring light are used instead of the dichroic mirror 104.
  • An optical element that transmits one of RL1 and reflects the other of laser light IL and distance measuring light RL1 may be used.
  • the reflection type grating 106 disposed between the imaging lens 105 and the light detection unit 107 is used as the optical path adjustment unit that adjusts the optical path of the reflected light RL2.
  • Other configurations may be used as long as the optical path of the reflected light RL2 can be adjusted so that the imaging position approaches the predetermined surface S. Examples of such a configuration include a spatial light modulator, a digital mirror device, a transmission type grating, and a prism.
  • the image of the reflected light RL2 on the light receiving surface 107a of the light detection unit 107 has a long shape whose longitudinal direction is a direction perpendicular to one direction (one direction in which the reflected light RL2 is imaged so as to approach the predetermined surface S).
  • a cylindrical lens may be provided.
  • the relay lens 108 is disposed on the optical path between the objective lens 205 and the imaging lens 105, so that the objective lens 205 and the imaging lens 105 are separated from the imaging lens 105.
  • the direction of the optical path of the reflected light RL2 to be emitted (the optical path of the principal ray of the reflected light RL2) may be constant.
  • the imaging lens is constituted by the relay lens 108 and the imaging lens 105.
  • the relay lens 108 may be configured by a single lens or may be configured by a plurality of lenses.
  • the ranging light source 101, the collimating lens 102, the half mirror 103, the dichroic mirror 104, and the like are not shown, and the configuration of the ranging unit 100 is simplified.
  • the distance that the optical path A2 of the distance measuring light RL1 is separated from the central axis A1 of the objective lens 205 may be adjustable. As an example, by adjusting the position of the half mirror 103 shown in FIG. 2, the distance at which the optical path A2 of the distance measuring light RL1 is away from the central axis A1 of the objective lens 205 can be adjusted. By adjusting the distance, the measurement range of the height of the surface 3 of the workpiece 1 and the detection sensitivity in the light detection unit 107 can be adjusted.
  • the light irradiation device and the object are the laser processing device 200 and the processing object 1, respectively, and the irradiation light source that outputs the irradiation light is the laser light source 202 that outputs the laser light IL.
  • a light irradiation apparatus is a laser processing apparatus, it is not limited to what performs internal processing, You may implement surface processing etc.
  • the light irradiation device and the object may be an observation device (such as a microscope) and an observation object, respectively. In that case, the irradiation light source that outputs the irradiation light may be an observation light source that outputs the observation light.
  • the light receiving surface 107a of the light detection unit 107 is positioned on the predetermined surface S.
  • the light receiving surface 107a of the light detection unit 107 may be positioned along the predetermined surface S. .
  • the angle is less than 5 °, the height of the surface 3 of the workpiece 1 is measured with sufficient accuracy. it can.
  • the measurement object is not limited to the surface on the incident side of the distance measuring light, and various surfaces of the object can be measured surfaces. This is because the reflected light reflected by each surface is spatially separated from each other.
  • predetermined surface S was a surface perpendicular
  • predetermined surface S is 30 degrees or less with respect to the said incident direction, for example. Any plane that intersects the incident direction, such as tilting at an angle, may be used.
  • DESCRIPTION OF SYMBOLS 1 Processing target object (object), 3 ... Surface (surface to be measured), 100 ... Distance measuring unit, 101 ... Distance measuring light source, 104 ... Dichroic mirror (optical element), 105 ... Imaging lens, 106 ... Reflective type Grating (optical path adjusting unit), 107: light detecting unit, 107a: light receiving surface, 200: laser processing device (light irradiation device), 201: stage (supporting unit), 202: laser light source (irradiation light source), 205: objective lens 207, driving unit, 230, control unit, IL, laser light (irradiation light), RL1, ranging light, RL2, reflected light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Laser Beam Processing (AREA)

Abstract

測距ユニットは、レーザ光である測距光を出力する測距光源と、測距光、及び、対象物の被測定面で反射された測距光の反射光を透過させる対物レンズと、反射光を透過させ、対物レンズによる測距光又は反射光の集光位置における像を結像位置に結像する結像レンズと、反射光の光路を調整する光路調整部と、反射光を検出する光検出部と、を備える。対物レンズは、測距光の光路が対物レンズの中心軸から離れた状態で、測距光を対象物側に透過させる。光路調整部は、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置が、入射方向と交差する所定面に近付くように、反射光の光路を調整する。光検出部の受光面は、所定面に沿うように位置している。

Description

測距ユニット及び光照射装置
 本開示は、測距ユニット及び光照射装置に関する。
 対象物の表面の高さを測定するための測距ユニットとして、非点収差法を用いたものが知られている(例えば、特許文献1参照)。非点収差法においては、光源から出射されたレーザ光が、対物レンズによって集光されて、対象物の表面に照射される。そして、対象物の表面で反射されたレーザ光の反射光が、対物レンズの光軸上を進行し、非点収差を与えられて、例えば4分割フォトダイオードによって検出される。
特許第5743123号公報
 上述した非点収差法では、例えば、ウェハの表側主面の高さを測定する場合に、ウェハの表側主面で反射されたレーザ光の反射光に、ウェハの裏側主面で反射されたレーザ光の反射光が重畳され、その結果、ウェハの表側主面の高さを精度良く測定できないおそれがある。
 本開示は、対象物の被測定面の高さを精度良く測定できる測距ユニット及び光照射装置を提供することを目的とする。
 本開示の一側面の測距ユニットは、レーザ光である測距光を出力する測距光源と、測距光、及び、対象物の被測定面で反射された測距光の反射光を透過させる対物レンズと、反射光を透過させ、対物レンズによる測距光又は反射光の集光位置における像を結像位置に結像する結像レンズと、反射光の光路を調整する光路調整部と、反射光を検出する光検出部と、を備え、対物レンズは、測距光の光路が対物レンズの中心軸から離れた状態で、測距光を対象物側に透過させ、光路調整部は、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置が、入射方向と交差する所定面に近付くように、反射光の光路を調整し、光検出部の受光面は、所定面に沿うように位置している。
 この測距ユニットでは、測距光の光路が対物レンズの中心軸から離れた状態で、対物レンズが測距光を対象物側に透過させる。そのため、対象物の被測定面で反射された反射光が光検出部の受光面に入射する位置が、対象物の被測定面の高さに応じて変化する。したがって、光検出部の受光面における反射光の入射位置に基づいて、対象物の被測定面の高さを測定できる。このとき、対象物の他の面で測距光の一部が反射されたとしても、対象物の他の面で反射された反射光が、対象物の被測定面で反射された反射光から空間的に分離されるため、検出すべき反射光に不要な反射光が重畳するのを抑制できる。また、この測距ユニットでは、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置が、入射方向と交差する所定面に近付くように、光路調整部が反射光の光路を調整し、当該所定面に沿うように光検出部の受光面が位置している。これにより、対象物の被測定面の高さを均一な状態で測定できる。仮に、光路調整部が設けられていないと、反射光が対物レンズ及び結像レンズのそれぞれを透過する位置が対象物の被測定面の高さに応じて変化するため、結像レンズによる反射光の結像位置が対象物の被測定面の高さに応じて大きく変化し、その結果、対象物の被測定面の高さによっては当該高さを精度良く測定できないおそれがある。以上により、この測距ユニットによれば、対象物の被測定面の高さを精度良く測定できる。
 本開示の一側面の測距ユニットでは、光路調整部は、結像レンズと光検出部との間において反射光の光路を調整してもよい。これによれば、各構成を効率良く配置できる。
 本開示の一側面の測距ユニットでは、光路調整部は、受光面に平行且つ一方向に垂直な方向に沿って延在する複数の溝を有する反射型グレーティングであってもよい。これによれば、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置を、当該入射方向と交差する所定面に容易且つ確実に近付けられる。
 本開示の一側面の測距ユニットでは、光検出部は、一方向に平行な方向に沿って配列された複数の光検出チャネルを有してもよい。これによれば、反射光がその入射方向に垂直な少なくとも一方向において結像されているため、反射光が入射した光検出チャネルの位置に基づいて、対象物の被測定面の高さを精度良く測定できる。
 本開示の一側面の測距ユニットでは、対物レンズ及び結像レンズは、結像レンズから出射される反射光の光路の方向が一定となるように構成されていてもよい。これによれば、対象物の被測定面の高さと反射光が入射する光検出チャネルの位置との関係に線形性を持たせられる。
 本開示の一側面の測距ユニットでは、受光面における反射光の像は、一方向に垂直な方向を長手方向とする長尺状を呈していてもよい。これによれば、反射光の像の長手方向への光検出部の受光面のずれを許容できるため、各構成の配置の精度を緩和しつつも、対象物の被測定面の高さを精度良く測定できる。
 本開示の一側面の光照射装置は、対象物を支持する支持部と、照射光を出力する照射光源と、レーザ光である測距光を出力する測距光源と、照射光及び測距光の一方を透過させ、照射光及び測距光の他方を反射する光学素子と、照射光、測距光、及び、対象物の被測定面で反射された測距光の反射光を透過させる対物レンズと、反射光を透過させ、対物レンズによる測距光又は反射光の集光位置における像を結像位置に結像する結像レンズと、反射光の光路を調整する光路調整部と、反射光を検出する光検出部と、対物レンズをその中心軸に沿って移動させる駆動部と、光検出部から出力される電気信号に基づいて駆動部を駆動させる制御部と、を備え、対物レンズは、測距光の光路が対物レンズの中心軸から離れた状態で、測距光を対象物側に透過させ、光路調整部は、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置が、入射方向と交差する所定面に近付くように、反射光の光路を調整し、光検出部の受光面は、所定面に沿うように位置している。
 この光照射装置では、上述したように、対象物の被測定面の高さを精度良く測定できる。加えて、対象物の被測定面の高さに応じて対物レンズをその中心軸に沿って移動させることで、照射光の集光点を対象物における所望の位置に合わせられる。しかも、対物レンズによる測距光の集光点が対象物の被測定面上に位置している状態に限定されずに、対象物の被測定面の高さの測定、及び対象物に対する照射光の集光点の位置合せを実施できる。
 本開示によれば、対象物の被測定面の高さを精度良く測定できる測距ユニット及び光照射装置を提供することが可能となる。
図1は、一実施形態の光照射装置であるレーザ加工装置の構成図である。 図2は、図1に示されるレーザ加工装置に設けられた測距ユニットの構成図である。 図3は、図2に示される測距ユニットの一部分の構成図である。 図4は、比較例の測距ユニットの構成図である。 図5は、比較例の測距ユニットの一部分の構成図である。 図6は、図2に示される測距ユニットにおける測距光の光路を説明するための図である。 図7は、変形例の測距ユニットにおける測距光の光路を説明するための図である。 図8は、変形例の測距ユニットにおける測距光の光路を説明するための図である。 図9は、変形例の測距ユニットにおける測距光の光路を説明するための図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
 図1に示されるように、レーザ加工装置200は、加工対象物(対象物)1の内部に集光点Pを合わせて切断予定ライン5に沿ってレーザ光(照射光)ILを照射することで、切断予定ライン5に沿って加工対象物1に改質領域7を形成する光照射装置である。加工対象物1は、例えば、複数の機能素子がマトリックス状に形成された半導体ウェハである。その場合、切断予定ライン5は、隣り合う機能素子間を通るように格子状に設定される。改質領域7は、密度、屈折率、機械的強度等の物理的特性が周囲とは異なる領域である。
 切断予定ライン5に沿って加工対象物1に改質領域7を形成することで、改質領域7から加工対象物1の厚さ方向に亀裂を伸展させて、切断予定ライン5に沿って加工対象物1を切断できる。なお、加工対象物1の内部に改質領域7を形成するためには、レーザ光ILが加工対象物1の表面(被測定面)3を透過して集光点Pの近傍で特に吸収される条件でレーザ光ILを照射すればよい。
 レーザ加工装置200は、ステージ(支持部)201と、レーザ光源(照射光源)202と、反射型空間光変調器203と、4f光学系204と、対物レンズ205と、を備えている。以下の説明では、水平方向の一方向をX軸方向といい、X軸方向に垂直な水平方向の一方向をY軸方向といい、鉛直方向をZ軸方向という。
 ステージ201は、加工対象物1を支持する。ステージ201は、加工対象物1を保持した状態で、X軸方向、Y軸方向及びZ軸方向のそれぞれの方向に移動可能である。レーザ光源202は、レーザ光ILを出力する。レーザ光源202は、筐体206の天板に取り付けられている。レーザ光源202は、例えば、ファイバレーザである。ここでは、レーザ光源202は、X軸方向に沿って一方の側にレーザ光ILを出射する。
 反射型空間光変調器203は、レーザ光源202から出力されたレーザ光ILを変調する。反射型空間光変調器203は、筐体206内に設けられている。反射型空間光変調器203は、例えば、LCOS(Liquid Crystal on Silicon)-SLM(Spatial Light Modulator)である。ここでは、反射型空間光変調器203は、X軸方向に沿って入射するレーザ光ILを斜め上側に反射する。
 4f光学系204は、反射型空間光変調器203によって変調されたレーザ光ILの波面形状が空間伝播によって変化するのを抑制する。4f光学系204は、筐体206内に設けられている。
 4f光学系204は、第1レンズ204a及び第2レンズ204bを有している。4f光学系204では、反射型空間光変調器203と第1レンズ204aとの間の光路長が第1レンズ204aの焦点距離となり、対物レンズ205と第2レンズ204bとの間の光路長が第2レンズ204bの焦点距離となり、第1レンズ204aと第2レンズ204bとの間の光路長が第1レンズ204aの焦点距離と第2レンズ204bの焦点距離との和となり、更に、第1レンズ204a及び第2レンズ204bが両側テレセントリック光学系となっている。
 対物レンズ205は、反射型空間光変調器203によって変調されたレーザ光ILを集光する。対物レンズ205は、複数のレンズによって構成されている。対物レンズ205は、圧電素子等を含む駆動部207を介して、筐体206の底板に取り付けられている。駆動部207は、対物レンズ205をその中心軸(ここでは、Z軸方向)に沿って移動させる。なお、対物レンズ205は、1つのレンズによって構成されていてもよい。
 レーザ加工装置200では、レーザ光源202から出力されたレーザ光ILは、ミラー208によってZ軸方向に沿って下側に反射され、筐体206内に進入する。筐体206内に進入したレーザ光ILは、アッテネータ209によって強度が調整され、ミラー211によってX軸方向に沿って他方の側に反射される。ミラー211によって反射されたレーザ光ILは、ビームエキスパンダ212によってビーム径が拡大され、反射型空間光変調器203によって変調されると共に反射される。
 反射型空間光変調器203によって変調されると共に反射されたレーザ光ILは、ミラー213によってZ軸方向に沿って上側に反射され、λ/2波長板214によって偏光方向が調整される。偏光方向が調整されたレーザ光ILは、ミラー215によってX軸方向に沿って一方の側に反射されて、4f光学系204の第1レンズ204aを透過し、ミラー216によってZ軸方向に沿って下側に反射される。ミラー216によって反射されたレーザ光ILは、4f光学系204の第2レンズ204bを透過し、対物レンズ205に入射する。
 レーザ加工装置200では、可視光源221、光検出部222、ミラー223、ダイクロイックミラー224、ダイクロイックミラー225及び対物レンズ205によって、加工対象物1の表面3を観察するための観察ユニット220が構成されている。可視光源221、光検出部222、ミラー223、ダイクロイックミラー224及びダイクロイックミラー225は、筐体206内に設けられている。
 可視光源221から出力された可視光VL1は、ミラー223、ダイクロイックミラー224及びダイクロイックミラー225によって順次に反射され、対物レンズ205に入射する。対物レンズ205に入射した可視光VL1は、対物レンズ205によって集光され、加工対象物1の表面3に照射される。加工対象物1の表面3で反射された可視光VL1の反射光VL2は、対物レンズ205を透過し、ダイクロイックミラー225によって反射される。ダイクロイックミラー225によって反射された反射光VL2は、ダイクロイックミラー224を透過し、光検出部222に入射して光検出部222によって検出される。なお、ダイクロイックミラー225は、4f光学系204の第2レンズ204bと対物レンズ205との間に配置されており、レーザ光ILを透過させる。
 レーザ加工装置200では、測距ユニット100が構成されている(詳細については後述する)。測距ユニット100は、ステージ201に支持された加工対象物1の表面3の高さを測定する。加工対象物1の表面3の高さとは、対物レンズ205の中心軸に平行な方向(ここでは、Z軸方向)における加工対象物1の表面3の位置であり、例えば、対物レンズ205と加工対象物1の表面3との距離に対応する。
 レーザ加工装置200は、制御部230を備えている。制御部230は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を含むコンピュータによって構成されている。制御部230は、コンピュータにおいて所定のプログラムを実行することにより、種々の制御を実行する。
 一例として、制御部230は、レーザ光源202から出力されるレーザ光ILのパルス幅等が所定値となるようにレーザ光源202を制御する。また、制御部230は、改質領域7を形成する際に、レーザ光ILの集光点Pが加工対象物1の表面3から所定距離だけ内側に位置し且つレーザ光ILの集光点Pが切断予定ライン5に沿って相対的に移動するようにステージ201を制御する。また、制御部230は、レーザ光ILの波面形状が所定形状となるように反射型空間光変調器203を制御する。
 更に、制御部230は、改質領域7を形成する際に、測距ユニット100によって測定された加工対象物1の表面3の高さに基づいて(すなわち、後述する光検出部107(図2参照)から出力される電気信号に基づいて)、レーザ光ILの集光点Pが加工対象物1の表面3から所定距離だけ内側に位置するように駆動部207を制御し、対物レンズ205をその中心軸に沿って移動させる。これにより、切断予定ライン5に沿って加工対象物1の表面3の高さが変化したとしても、加工対象物1の表面3から所定距離だけ内側に改質領域7を形成できる。
[測距ユニットの構成]
 図2に示されるように、測距ユニット100は、測距光源101、コリメートレンズ102、ハーフミラー103、ダイクロイックミラー(光学素子)104、結像レンズ105、反射型グレーティング(光路調整部)106、光検出部107及び対物レンズ205によって、構成されている。測距光源101、コリメートレンズ102、ハーフミラー103、ダイクロイックミラー104、結像レンズ105、反射型グレーティング106及び光検出部107は、筐体206内に設けられている。
 測距光源101は、レーザ光である測距光RL1を出力する。測距光源101は、例えば、レーザダイオードである。ここでは、測距光源101は、Z軸方向に沿って下側に測距光RL1を出射する。コリメートレンズ102は、測距光源101から出力された測距光RL1をコリメートする。
 ハーフミラー103は、コリメートレンズ102によってコリメートされた測距光RL1をダイクロイックミラー104側に反射する。また、ハーフミラー103は、後述する反射光RL2をダイクロイックミラー104側から結像レンズ105側に透過させる。ここでは、ハーフミラー103は、Z軸方向に沿って上側から入射した測距光RL1をX軸方向に沿って一方の側に反射し、反射光RL2をX軸方向に沿って一方の側から他方の側に透過させる。
 ダイクロイックミラー104は、ハーフミラー103によって反射された測距光RL1を対物レンズ205側に反射する。また、ダイクロイックミラー104は、対物レンズ205側から入射した反射光RL2をハーフミラー103側に反射する。ここでは、ダイクロイックミラー104は、X軸方向に沿って他方の側から入射した測距光RL1をZ軸方向に沿って下側に反射し、Z軸方向に沿って下側から入射した反射光RL2をX軸方向に沿って他方の側に反射する。なお、ダイクロイックミラー104は、観察ユニット220のダイクロイックミラー225と対物レンズ205との間に配置されており(図1参照)、レーザ光IL、並びに、可視光VL1及びその反射光VL2を透過させる。
 対物レンズ205は、ダイクロイックミラー104によって反射された測距光RL1を集光しつつ加工対象物1側に透過させる。また、対物レンズ205は、加工対象物1の表面3で反射された測距光RL1の反射光RL2をダイクロイックミラー104側に透過させる。ここでは、対物レンズ205は、測距光RL1をZ軸方向に沿って上側から下側に透過させ、反射光RL2をZ軸方向に沿って下側から上側に透過させる。
 結像レンズ105は、ダイクロイックミラー104によって反射されてハーフミラー103を透過した反射光RL2を反射型グレーティング106側に透過させる。ここでは、結像レンズ105は、反射光RL2をX軸方向に沿って一方の側から他方の側に透過させる。結像レンズ105は、対物レンズ205による測距光RL1又は反射光RL2の集光位置における像を結像位置に結像する。測距光RL1が対物レンズ205によって空気中に集光される場合の集光点に対して対物レンズ205とは反対側に加工対象物1の表面3が位置している場合には、当該集光位置が測距光RL1に現れる。測距光RL1が対物レンズ205によって空気中に集光される場合の集光点上に加工対象物1の表面3が位置している場合には、当該集光位置が測距光RL1と反射光RL2との境界部に現れる。測距光RL1が対物レンズ205によって空気中に集光される場合の集光点に対して対物レンズ205側に加工対象物1の表面3が位置している場合には、当該集光位置が反射光RL2に現れる。なお、結像レンズ105は、1つのレンズによって構成されていてもよいし、複数のレンズによって構成されていてもよい。
 反射型グレーティング106は、結像レンズ105を透過した反射光RL2を光検出部107側に反射する。反射型グレーティング106は、例えば、ブレーズドグレーティングである。ここでは、反射型グレーティング106は、X軸方向に沿って一方の側から入射した反射光RL2をZ軸方向に沿って上側に反射する。反射型グレーティング106は、結像レンズ105と光検出部107との間において反射光RL2の光路を調整する(詳細については後述する)。
 光検出部107は、反射型グレーティング106によって反射された反射光RL2を検出する。光検出部107は、例えば、X軸方向に沿って配列された複数の光検出チャネルを有する1次元のフォトダイオードアレイである。光検出部107の受光面107aは、反射型グレーティング106側に向いており、所定面S上に位置している。ここでは、受光面107aは、下側に向いており、Z軸方向に垂直な所定面S上に位置している。なお、光検出部107は、X軸方向に沿って配列された複数の光検出チャネルを有するものであれば、2次元のフォトダイオードアレイ等であってもよい。
 図3に示されるように、対物レンズ205は、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れた状態で、測距光RL1を加工対象物1側に透過させる。対物レンズ205に入射する測距光RL1の光路A2は、対物レンズ205の中心軸A1に平行である。対物レンズ205から出射した測距光RL1の光路A2は、対物レンズ205によって集光された測距光RL1の集光点P1が対物レンズ205の中心軸A1上に位置するように傾斜している。ここでは、対物レンズ205に入射する測距光RL1の光路A2は、対物レンズ205の中心軸A1からX軸方向における一方の側に離れている。
 これにより、図2及び図3に示されるように、加工対象物1の表面3の高さに応じて、対物レンズ205を透過する反射光RL2の光路が変化し、その結果、加工対象物1の表面3の高さに応じて、光検出部107の受光面107aにおける反射光RL2の入射位置が変化する。したがって、光検出部107の受光面107aにおける反射光RL2の入射位置に基づいて(すなわち、反射光RL2が入射した光検出チャネルの位置に基づいて)、加工対象物1の表面3の高さを測定できる。
 例えば、加工対象物1の表面3が測距光RL1の集光点P1(測距光RL1が対物レンズ205によって空気中に集光される場合の集光点)と一致している状態では、反射光RL2の光路は、対物レンズ205の中心軸A1に関して測距光RL1の光路と対称の関係を有するものとなる。加工対象物1の表面3が測距光RL1の集光点P1よりも対物レンズ205側に位置している状態では、反射光RL2の光路は、反射光RL2よりもX軸方向における一方の側で反射されたものとなる。加工対象物1の表面3が測距光RL1の集光点P1よりも更に対物レンズ205側に位置している状態では、反射光RL2の光路は、反射光RL2よりもX軸方向における一方の側で反射されたものとなる。
 ここで、図3に示されるように、反射光RL2の収束及び発散状態も、加工対象物1の表面3の高さに応じて変化することから、結像レンズ105による反射光RL2の結像位置も、加工対象物1の表面3の高さに応じて変化する。そのため、図4に示されるように、反射光RL2の光路を調整する反射型グレーティング106が測距ユニット100に設けられていないと、光検出部107の受光面107aにおける反射光RL2のスポットサイズが、加工対象物1の表面3の高さに応じて大きく変化し、その結果、加工対象物1の表面3の高さの測定精度が劣化するおそれがある。また、図5に示されるように、光検出部107の受光面107aが、結像レンズ105による反射光RL2の結像位置に合うように傾斜させられても、受光面107aに対する反射光RL2の入射角が大きくなって、受光面107aで反射光RL2の一部が反射されたり、受光面107aにおける反射光RL2のスポットサイズが大きくなったりし、その結果、加工対象物1の表面3の高さの測定精度が劣化するおそれがある。
 例えば、対物レンズ205の焦点距離をf1とし、結像レンズ105の焦点距離をf2とし、対物レンズ205の中心軸A1に平行な方向における加工対象物1の表面3の高さの差をΔZとし、結像レンズ105の中心軸に平行な方向における反射光RL2の結像位置の差をΔXとすると、反射型グレーティング106が測距ユニット100に設けられていない場合には、ΔX/ΔZ=4(f2/f1)の関係が成立する。つまり、対物レンズ205の焦点距離f1が小さくなると、反射光RL2の結像位置の差ΔXが大きくなり、受光面107aにおける反射光RL2のスポットサイズが大きくなる。上述したレーザ加工装置200のように、加工対象物1の内部に改質領域7を形成する場合には、対物レンズ205の開口数が大きくなり、対物レンズ205の焦点距離f1が小さくなるから、加工対象物1の表面3の高さの測定精度が劣化するのを抑制するための対策を実施することが特に重要である。
 その対策として、図2に示されるように、反射光RL2の光路を調整する反射型グレーティング106が測距ユニット100に設けられている。反射型グレーティング106は、反射型グレーティング106への反射光RL2の入射位置に応じた光路長を反射光RL2に発生させることで、反射光RL2の光路を調整する。
 また、結像レンズ105を透過した反射光RL2の光路(反射光RL2の主光線の光路)は、加工対象物1の表面3の高さに応じて所定平面(ここでは、Y軸方向に垂直な平面)に沿って変化する。そこで、反射型グレーティング106は、複数の溝が当該所定平面に垂直な方向(ここでは、Y軸方向)に沿って延在するように、配置されている。更に、反射型グレーティング106は、結像レンズ105から結像位置までの光路長が長い反射光RL2ほど、結像レンズ105から離れた位置で反射型グレーティング106によって反射されるように、配置されている。
 これにより、結像レンズ105から結像位置までの光路長が長い反射光RL2ほど、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長が長くなる。例えば、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長は、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長よりも長い。結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長は、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長よりも長い。
 ただし、結像レンズ105によって結像されて反射型グレーティング106によって反射された反射光RL2には、非点収差が生じる。具体的には、Y軸方向において結像される反射光RL2の結像位置は、X軸方向において結像される反射光RL2の結像位置よりも、光検出部107の受光面107aが位置する所定面Sから離れる。測距ユニット100では、X軸方向において結像される反射光RL2の結像位置が、光検出部107の受光面107aが位置する所定面Sに近付くように、反射型グレーティング106が反射光RL2の光路を調整する。
 このように、反射型グレーティング106は、光検出部107に入射する反射光RL2の入射方向(ここでは、Z軸方向)に垂直な少なくとも一方向(ここでは、X軸方向)において結像される反射光RL2の結像位置が、当該入射方向に垂直な所定面Sに近付くように、反射光RL2の光路を調整する。なお、反射型グレーティング106は、光検出部107の受光面107aに平行且つ上述した一方向(ここでは、X軸方向)に垂直な方向(ここでは、Y軸方向)に沿って延在する複数の溝を有している。また、光検出部107は、上述した一方向(ここでは、X軸方向)に平行な方向に沿って配列された複数の光検出チャネルを有している。
 ここで、「光検出部107に入射する反射光RL2の入射方向」とは、基準となる反射光RL2(例えば、反射光RL2)の入射方向を意味する。また、「反射光RL2の結像位置が、光検出部107に入射する反射光RL2の入射方向に垂直な所定面Sに近付くように」とは、反射型グレーティング106が測距ユニット100に設けられていない場合に比べて、反射光RL2の結像位置が所定面Sに近付くことを意味する。つまり、光検出部107に入射する反射光RL2の入射方向における反射光RL2の結像位置の差が、所定面Sを含む領域で、上述したΔX未満(好ましくは、ΔXの10%未満)となることを意味する。
 また、対物レンズ205及び結像レンズ105は、結像レンズ105から出射される反射光RL2の光路(反射光RL2の主光線の光路)の方向が一定となるように構成されている。ここでは、図6の(a)に示されるように、対物レンズ205と結像レンズ105との間の光路長が、対物レンズ205の焦点距離f1と結像レンズ105の焦点距離f2との和となっている。つまり、対物レンズ205の結像レンズ105側の焦点位置と結像レンズ105の対物レンズ205側の焦点位置とが一致している。これにより、加工対象物1の表面3の高さが変化しても、結像レンズ105から出射される反射光RL2の光路の方向が一定となり、その結果、図6の(b)に示されるように、加工対象物1の表面3の高さと、光検出部107において反射光RL2が入射する光検出チャネルの位置とが、線形な関係となる。なお、図6の(a)では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
 これに対し、図7の(a)に示されるように、対物レンズ205と結像レンズ105との間の光路長が、対物レンズ205の焦点距離f1と結像レンズ105の焦点距離f2との和よりも大きいと(又は小さいと)、加工対象物1の表面3の高さに応じて、結像レンズ105から出射される反射光RL2の光路の方向が変化し、その結果、図7の(b)に示されるように、加工対象物1の表面3の高さと、光検出部107において反射光RL2が入射する光検出チャネルの位置とが、非線形な関係となる。ただし、この場合にも、例えば、制御部230が加工対象物1の表面3と光検出チャンネルの位置との関係を予め保持しておき、制御部230が当該関係を参照することで、加工対象物1の表面3の高さを十分に精度良く測定できる。なお、図7の(a)では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
 また、図6の(b)に示されるように、光検出部107の受光面107aにおける反射光RL2の像は、上述した一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向(ここでは、Y軸方向)を長手方向とする長尺状(ここでは、楕円形状)を呈している。これにより、反射光RL2の像の長手方向への光検出部107の受光面107aのずれが許容され、各構成の配置の精度が緩和される。なお、光検出部107の受光面107aにおける反射光RL2の像が、上述した一方向に垂直な方向を長手方向とする長尺状を呈するのは、上述したように、結像レンズ105によって結像されて反射型グレーティング106によって反射された反射光RL2に非点収差が生じるからである。
 これに対し、例えば、図8の(a)に示されるように、結像レンズ105と反射型グレーティング106との間の光路長を長くし、反射型グレーティング106と光検出部107との間の光路長を短くすると、図8の(b)に示されるように、光検出部107の受光面107aにおける反射光RL2の像は、ドット状になる。ただし、この場合にも、加工対象物1の表面3の高さを十分に精度良く測定できる。このように、結像レンズ105と反射型グレーティング106との間の光路長、及び、反射型グレーティング106と光検出部107との間の光路長の少なくとも1つを調整することで、光検出部107の受光面107aにおける反射光RL2の像の形状を調整できる。なお、図8の(a)では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
 以上のように構成された測距ユニット100では、次のように、反射光RL2が検出される。図2に示されるように、測距光源101から出力された測距光RL1は、コリメートレンズ102によってコリメートされる。コリメートされた測距光RL1は、ハーフミラー103及びダイクロイックミラー104によって順次に反射され、対物レンズ205に入射する。対物レンズ205に入射した測距光RL1は、対物レンズ205によって集光され、加工対象物1の表面3に照射される。加工対象物1の表面3で反射された測距光RL1の反射光RL2は、対物レンズ205を透過し、ダイクロイックミラー104によって反射される。ダイクロイックミラー104によって反射された反射光RL2は、ハーフミラー103を透過し、結像レンズ105によって結像されると共に、反射型グレーティング106によって反射される。反射型グレーティング106によって反射された反射光RL2は、光検出部107に入射して光検出部107によって検出される。
[作用及び効果]
 測距ユニット100では、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れた状態で、対物レンズ205が測距光RL1を加工対象物1側に透過させる。そのため、加工対象物1の表面3で反射された反射光RL2が光検出部107の受光面107aに入射する位置が、加工対象物1の表面3の高さに応じて変化する。したがって、光検出部107の受光面107aにおける反射光RL2の入射位置に基づいて、加工対象物1の表面3の高さを測定できる。このとき、加工対象物1の他の面(加工対象物1における光出射側の表面等)で測距光RL1の一部が反射されたとしても、加工対象物1の他の面で反射された反射光が、加工対象物1の表面3で反射された反射光RL2から空間的に分離されるため、検出すべき反射光RL2に不要な反射光が重畳するのを抑制できる。また、測距ユニット100では、光検出部107に入射する反射光RL2の入射方向に垂直な一方向(ここでは、X軸方向)において結像される反射光RL2の結像位置が、当該入射方向に垂直な所定面Sに近付くように、反射型グレーティング106が反射光RL2の光路を調整し、当該所定面S上に光検出部107の受光面107aが位置している。これにより、加工対象物1の表面3の高さを均一な状態で測定できる。仮に、反射型グレーティング106が設けられていないと、反射光RL2が対物レンズ205及び結像レンズ105のそれぞれを透過する位置が加工対象物1の表面3の高さに応じて変化するため、結像レンズ105による反射光RL2の結像位置が加工対象物1の表面3の高さに応じて大きく変化し、その結果、加工対象物1の表面3の高さによっては当該高さを精度良く測定できないおそれがある。以上により、測距ユニット100によれば、加工対象物1の表面3の高さを精度良く測定できる。
 また、測距ユニット100では、反射型グレーティング106が、結像レンズ105と光検出部107との間において反射光RL2の光路を調整する。これにより、各構成を効率良く配置できる。
 また、測距ユニット100では、反射型グレーティング106が、光検出部107の受光面107aに平行且つ一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向に沿って延在する複数の溝を有している。これにより、光検出部107に入射する反射光RL2の入射方向に垂直な少なくとも一方向において結像される反射光RL2の結像位置を、当該入射方向に垂直な所定面Sに容易且つ確実に近付けられる。
 また、測距ユニット100では、光検出部107が、一方向(所定面Sに近付くように反射光RL2を結像する一方向)に平行な方向に沿って配列された複数の光検出チャネルを有している。これにより、反射光RL2がその入射方向に垂直な一方向において結像されているため、反射光RL2が入射した光検出チャネルの位置に基づいて、加工対象物1の表面3の高さを精度良く測定できる。
 また、測距ユニット100では、対物レンズ205及び結像レンズ105が、結像レンズ105から出射される反射光RL2の光路の方向が一定となるように構成されている。これにより、加工対象物1の表面3の高さと、光検出部107において反射光RL2が入射する光検出チャネルの位置との関係に線形性を持たせられる。
 また、測距ユニット100では、光検出部107の受光面107aにおける反射光RL2の像が、一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向を長手方向とする長尺状を呈していている。これにより、反射光RL2の像の長手方向への光検出部107の受光面107aのずれを許容できるため、各構成の配置の精度を緩和しつつも、加工対象物1の表面3の高さを精度良く測定できる。
 また、レーザ加工装置200では、上述したように、加工対象物1の表面3の高さを精度良く測定できる。加えて、加工対象物1の表面3の高さに応じて対物レンズ205をその中心軸A1に沿って移動させることで、レーザ光ILの集光点Pを加工対象物1における所望の位置に合わせられる。しかも、対物レンズ205による測距光RL1の集光点P1が加工対象物1の表面3上に位置している状態に限定されずに、加工対象物1の表面3の高さの測定、及び加工対象物1に対するレーザ光ILの集光点Pの位置合せを実施できる。
[変形例]
 本開示は、上述した実施形態に限定されない。例えば、上記実施形態では、ダイクロイックミラー104が、レーザ光ILを透過させ且つ測距光RL1(その反射光RL2を含む)を反射したが、ダイクロイックミラー104に代えて、レーザ光IL及び測距光RL1の一方を透過させ且つレーザ光IL及び測距光RL1の他方を反射する光学素子が用いられてもよい。
 また、上記実施形態では、反射光RL2の光路を調整する光路調整部として、結像レンズ105と光検出部107との間に配置された反射型グレーティング106が用いられたが、反射光RL2の結像位置が所定面Sに近付くように反射光RL2の光路を調整できるものであれば、他の構成であってもよい。そのような構成の例としては、空間光変調器、デジタルミラーデバイス、透過型グレーティング、プリズム等がある。光検出部107の受光面107aにおける反射光RL2の像が、一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向を長手方向とする長尺状を呈するように、シリンドリカルレンズが設けられてもよい。
 また、図9に示されるように、対物レンズ205と結像レンズ105との間の光路上にリレーレンズ108が配置されることで、対物レンズ205及び結像レンズ105が、結像レンズ105から出射される反射光RL2の光路(反射光RL2の主光線の光路)の方向が一定となるように構成されていてもよい。この場合、リレーレンズ108及び結像レンズ105によって結像レンズが構成されていると捉えることもできる。リレーレンズ108は、1つのレンズによって構成されていてもよいし、複数のレンズによって構成されていてもよい。なお、図9では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
 また、測距光RL1が対物レンズ205を透過する際に、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れる距離は、調整可能であってもよい。一例として、図2に示されるハーフミラー103の位置を調整することで、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れる距離を調整できる。当該距離を調整することで、加工対象物1の表面3の高さの測定レンジ、及び、光検出部107における検出感度を調整できる。
 また、上記実施形態では、光照射装置及び対象物が、それぞれ、レーザ加工装置200及び加工対象物1であり、照射光を出力する照射光源が、レーザ光ILを出力するレーザ光源202であった。ただし、光照射装置がレーザ加工装置である場合、内部加工を実施するものに限定されず、表面加工等を実施するものであってもよい。また、光照射装置及び対象物は、それぞれ、観察装置(顕微鏡等)及び観察対象物であってもよい。その場合、照射光を出力する照射光源は、観察光を出力する観察光源であってもよい。
 また、上記実施形態では、光検出部107の受光面107aが所定面S上に位置していたが、光検出部107の受光面107aは、所定面Sに沿うように位置していればよい。例えば、光検出部107の受光面107aと所定面Sとが角度を成していても、当該角度が5°未満であれば、加工対象物1の表面3の高さを十分に精度良く測定できる。
 また、上記実施形態では、加工対象物1の表面3の高さを測定したが、加工対象物1の裏面等の高さを測定することも可能である。つまり、本発明によれば、対象物における測距光の入射側の表面に限定されず、対象物の様々な面を被測定面とすることが可能である。各面で反射された反射光が互いに空間的に分離されるためである。
 また、上記実施形態では、所定面Sが、光検出部107に入射する反射光RL2の入射方向に垂直な面であったが、所定面Sは、当該入射方向に対して例えば30°以下の角度で傾斜する等、当該入射方向と交差する面であればよい。
 1…加工対象物(対象物)、3…表面(被測定面)、100…測距ユニット、101…測距光源、104…ダイクロイックミラー(光学素子)、105…結像レンズ、106…反射型グレーティング(光路調整部)、107…光検出部、107a…受光面、200…レーザ加工装置(光照射装置)、201…ステージ(支持部)、202…レーザ光源(照射光源)、205…対物レンズ、207…駆動部、230…制御部、IL…レーザ光(照射光)、RL1…測距光、RL2…反射光。

Claims (7)

  1.  レーザ光である測距光を出力する測距光源と、
     前記測距光、及び、対象物の被測定面で反射された前記測距光の反射光を透過させる対物レンズと、
     前記反射光を透過させ、前記対物レンズによる前記測距光又は前記反射光の集光位置における像を結像位置に結像する結像レンズと、
     前記反射光の光路を調整する光路調整部と、
     前記反射光を検出する光検出部と、を備え、
     前記対物レンズは、前記測距光の光路が前記対物レンズの中心軸から離れた状態で、前記測距光を前記対象物側に透過させ、
     前記光路調整部は、前記光検出部に入射する前記反射光の入射方向に垂直な少なくとも一方向において結像される前記反射光の前記結像位置が、前記入射方向と交差する所定面に近付くように、前記反射光の前記光路を調整し、
     前記光検出部の受光面は、前記所定面に沿うように位置している、測距ユニット。
  2.  前記光路調整部は、前記結像レンズと前記光検出部との間において前記反射光の前記光路を調整する、請求項1に記載の測距ユニット。
  3.  前記光路調整部は、前記受光面に平行且つ前記一方向に垂直な方向に沿って延在する複数の溝を有する反射型グレーティングである、請求項2に記載の測距ユニット。
  4.  前記光検出部は、前記一方向に平行な方向に沿って配列された複数の光検出チャネルを有する、請求項3に記載の測距ユニット。
  5.  前記対物レンズ及び前記結像レンズは、前記結像レンズから出射される前記反射光の光路の方向が一定となるように構成されている、請求項3又は4に記載の測距ユニット。
  6.  前記受光面における前記反射光の像は、前記一方向に垂直な方向を長手方向とする長尺状を呈している、請求項3~5のいずれか一項に記載の測距ユニット。
  7.  対象物を支持する支持部と、
     照射光を出力する照射光源と、
     レーザ光である測距光を出力する測距光源と、
     前記照射光及び前記測距光の一方を透過させ、前記照射光及び前記測距光の他方を反射する光学素子と、
     前記照射光、前記測距光、及び、前記対象物の被測定面で反射された前記測距光の反射光を透過させる対物レンズと、
     前記反射光を透過させ、前記対物レンズによる前記測距光又は前記反射光の集光位置における像を結像位置に結像する結像レンズと、
     前記反射光の光路を調整する光路調整部と、
     前記反射光を検出する光検出部と、
     前記対物レンズをその中心軸に沿って移動させる駆動部と、
     前記光検出部から出力される電気信号に基づいて前記駆動部を駆動させる制御部と、を備え、
     前記対物レンズは、前記測距光の光路が前記対物レンズの前記中心軸から離れた状態で、前記測距光を前記対象物側に透過させ、
     前記光路調整部は、前記光検出部に入射する前記反射光の入射方向に垂直な少なくとも一方向において結像される前記反射光の前記結像位置が、前記入射方向と交差する所定面に近付くように、前記反射光の前記光路を調整し、
     前記光検出部の受光面は、前記所定面に沿うように位置している、光照射装置。
PCT/JP2018/047348 2018-03-30 2018-12-21 測距ユニット及び光照射装置 WO2019187422A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018007421.8T DE112018007421T5 (de) 2018-03-30 2018-12-21 Entfernungsmesseinheit und lichtbestrahlungsvorrichtung
KR1020207024077A KR102730924B1 (ko) 2018-03-30 2018-12-21 측거 유닛 및 광 조사 장치
CN201880092060.7A CN111936817B (zh) 2018-03-30 2018-12-21 测距单元及光照射装置
US17/040,800 US11428520B2 (en) 2018-03-30 2018-12-21 Distance measurement unit and light irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018067405A JP7034803B2 (ja) 2018-03-30 2018-03-30 測距ユニット及び光照射装置
JP2018-067405 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187422A1 true WO2019187422A1 (ja) 2019-10-03

Family

ID=68061182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047348 WO2019187422A1 (ja) 2018-03-30 2018-12-21 測距ユニット及び光照射装置

Country Status (6)

Country Link
US (1) US11428520B2 (ja)
JP (1) JP7034803B2 (ja)
CN (1) CN111936817B (ja)
DE (1) DE112018007421T5 (ja)
TW (1) TW201942543A (ja)
WO (1) WO2019187422A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098398A1 (en) * 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine
JP7034621B2 (ja) * 2017-07-25 2022-03-14 浜松ホトニクス株式会社 レーザ加工装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188931A (ja) * 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> ウエハの高さ測定器
JPH04221705A (ja) * 1990-12-25 1992-08-12 Fujitsu Ltd 外観検査装置
JPH06288835A (ja) * 1993-03-30 1994-10-18 Shimadzu Corp エリプソメータ
JP2005045164A (ja) * 2003-07-25 2005-02-17 Toshiba Corp 自動焦点合わせ装置
CN1844847A (zh) * 2006-05-18 2006-10-11 清华大学 测量硬盘磁头飞行高度的系统及共光路双频激光干涉测量方法
WO2007018118A1 (ja) * 2005-08-05 2007-02-15 Mitaka Kohki Co., Ltd. レンズにおける表裏面の光軸偏芯量の測定方法
JP2010223822A (ja) * 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd 分光エリプソメータおよび偏光解析方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544208A (en) 1977-06-13 1979-01-12 Daido Steel Co Ltd Swelling preventing method of fired composite papts
US5737084A (en) * 1995-09-29 1998-04-07 Takaoka Electric Mtg. Co., Ltd. Three-dimensional shape measuring apparatus
JP2004188422A (ja) 2002-12-06 2004-07-08 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
JP4221705B2 (ja) 2003-03-27 2009-02-12 日本コントロール工業株式会社 電磁ポンプ、電磁ポンプの製造方法及び電磁ポンプの製造に用いられる装置
US7021794B2 (en) * 2003-06-05 2006-04-04 Seiko Epson Corporation Lighting unit and projector including the same
JP4947774B2 (ja) * 2006-08-18 2012-06-06 富士フイルム株式会社 光波干渉測定装置および光波干渉測定方法
JP2008170366A (ja) 2007-01-15 2008-07-24 Disco Abrasive Syst Ltd チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
JP5634138B2 (ja) * 2010-06-17 2014-12-03 Dmg森精機株式会社 変位検出装置
JP2012078152A (ja) * 2010-09-30 2012-04-19 Omron Corp 投光ビームの調整方法
JP6148075B2 (ja) * 2013-05-31 2017-06-14 株式会社ディスコ レーザー加工装置
JP6288835B2 (ja) 2013-07-18 2018-03-07 株式会社藤商事 遊技機
CN103471725B (zh) * 2013-09-27 2015-10-28 东南大学 基于调制光源及正负衍射级分开探测结构的波前检测装置
JP5743123B1 (ja) 2014-03-14 2015-07-01 株式会社東京精密 レーザーダイシング装置及びダイシング方法
JP2016017755A (ja) * 2014-07-04 2016-02-01 アズビル株式会社 距離測定装置および方法
AU2015101099A6 (en) * 2015-08-10 2016-03-10 Wisetech Global Limited Volumetric estimation methods, devices, & systems
JP6695699B2 (ja) * 2016-01-28 2020-05-20 浜松ホトニクス株式会社 レーザ加工装置
JP6743788B2 (ja) * 2017-09-14 2020-08-19 横河電機株式会社 変位センサ
WO2020100344A1 (ja) * 2018-11-14 2020-05-22 株式会社村田製作所 測定装置及び測定装置を用いた投光システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188931A (ja) * 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> ウエハの高さ測定器
JPH04221705A (ja) * 1990-12-25 1992-08-12 Fujitsu Ltd 外観検査装置
JPH06288835A (ja) * 1993-03-30 1994-10-18 Shimadzu Corp エリプソメータ
JP2005045164A (ja) * 2003-07-25 2005-02-17 Toshiba Corp 自動焦点合わせ装置
WO2007018118A1 (ja) * 2005-08-05 2007-02-15 Mitaka Kohki Co., Ltd. レンズにおける表裏面の光軸偏芯量の測定方法
CN1844847A (zh) * 2006-05-18 2006-10-11 清华大学 测量硬盘磁头飞行高度的系统及共光路双频激光干涉测量方法
JP2010223822A (ja) * 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd 分光エリプソメータおよび偏光解析方法

Also Published As

Publication number Publication date
JP2019178923A (ja) 2019-10-17
KR20200135944A (ko) 2020-12-04
US20210010803A1 (en) 2021-01-14
JP7034803B2 (ja) 2022-03-14
CN111936817B (zh) 2023-07-18
TW201942543A (zh) 2019-11-01
US11428520B2 (en) 2022-08-30
CN111936817A (zh) 2020-11-13
DE112018007421T5 (de) 2020-12-31

Similar Documents

Publication Publication Date Title
JP6462140B2 (ja) 溶接シームの深さをリアルタイムで測定するための装置
US8237922B2 (en) Laser beam analysis apparatus
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
US8415613B2 (en) Method and apparatus for characterizing a sample with two or more optical traps
TWI571180B (zh) 用於監視雷射束的裝置及方法
JP2016524539A (ja) 高エネルギービームの焦点位置を決定する装置および方法
CN114008438B (zh) 用于表征粒子的传感器组件
US20140152796A1 (en) Auto focus control apparatus, semiconductor inspecting apparatus and microscope
JP2009210421A (ja) テラヘルツ分光装置
US20070103687A1 (en) Measuring apparatus
WO2019187422A1 (ja) 測距ユニット及び光照射装置
KR101279578B1 (ko) 레이저 가공용 오토포커싱 장치 및 이를 이용한 오토포커싱 방법
JP2021515704A (ja) レーザ加工システムの焦点位置を特定する装置、それを備えたレーザ加工システム、および、レーザ加工システムの焦点位置の特定方法
WO2021180013A1 (zh) 一种光学设备及实现自动聚焦的方法
CN202216766U (zh) 准直光束的检测装置
US9945656B2 (en) Multi-function spectroscopic device
US7385693B2 (en) Microscope apparatus
KR102730924B1 (ko) 측거 유닛 및 광 조사 장치
KR101240146B1 (ko) 갈바노 미러를 이용한 파장 스캐닝 방식의 공초점 분광 현미경
US10247660B2 (en) Laser displacement meter and laser ultrasonic inspection apparatus using the same
US8108942B2 (en) Probe microscope
US20240060880A1 (en) Spectroscopic measurement device
US10569357B1 (en) Scanner drift compensation for laser material processing
JPH0231103A (ja) パターン立体形状検知装置
JP2012237676A (ja) 受光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912783

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912783

Country of ref document: EP

Kind code of ref document: A1