[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019181322A1 - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
WO2019181322A1
WO2019181322A1 PCT/JP2019/005949 JP2019005949W WO2019181322A1 WO 2019181322 A1 WO2019181322 A1 WO 2019181322A1 JP 2019005949 W JP2019005949 W JP 2019005949W WO 2019181322 A1 WO2019181322 A1 WO 2019181322A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
current command
value
axis current
axis
Prior art date
Application number
PCT/JP2019/005949
Other languages
French (fr)
Japanese (ja)
Inventor
健二 福田
洋旭 宇津木
Original Assignee
澤藤電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澤藤電機株式会社 filed Critical 澤藤電機株式会社
Publication of WO2019181322A1 publication Critical patent/WO2019181322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a motor control device and a motor control method capable of stably performing flux-weakening control in PM motor control.
  • Electric motors are used as a power source for many home appliances and mechanical equipment.
  • a PM (Permanent Magnet) motor that provides a permanent magnet on the rotor side, an armature winding on the stator side, and rotates the rotor by controlling the magnetic field of the armature winding.
  • PM Permanent Magnet
  • As a control method of this PM motor in the operation region of medium / low speed rotation, operation control is performed by sine wave control (PWM control) using a sine wave pattern with high motor efficiency, and the operation region of high speed rotation / high torque. Then, it is common to perform operation control by rectangular wave control using a rectangular wave pattern with a high output voltage and high output.
  • Patent Document 1 discloses a technique for performing a torque control by calculating a torque of a motor by calculation and performing a weak flux control by manipulating a voltage phase at this time. Yes.
  • a low-pass filter is used to generate a correction value for reducing the deviation between the torque command value and the torque estimation value. Thereby, a rapid change in the correction value can be suppressed.
  • a low-pass filter when used, there may be a delay in response, and further improvement is desired.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a motor control device and a motor control method capable of stably weakening magnetic flux control even when a sudden change occurs in a power supply voltage or a rotation speed. .
  • the sine wave control unit 40 includes: A torque calculator 404 for calculating a torque value T of the PM motor 10; A current command value setting unit 402 for setting a current command value Ia * based on an external torque command value T * and the torque value T; A current command value generation unit 406 that generates a d-axis current command value Id ** and a q-axis current command value Iq ** based on the current command value Ia * ; A voltage command value generation unit 416 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the d-axis current command value Id ** and the q-axis current command value Iq ** .
  • the current command value generation unit 406 A sin unit 464A that generates a d-axis current command value Id * that is a source of the d-axis current command value Id ** ; A cos unit 464B that generates a q-axis current command value Iq * that is a source of the q-axis current command value Iq ** ; A phase angle setting unit 462 that sets a current phase angle ⁇ i (base) that outputs a maximum torque at the current command value Ia * and outputs the current phase angle to the sin unit 464A and the cos unit 464B; A voltage difference calculation unit that calculates a voltage difference ⁇ V based on a motor voltage value Va of the PM motor 10 and a target voltage value Va (ref) that is the maximum voltage value at which the PM motor 10 can stably operate.
  • An additional d-axis current value generation unit 466 that calculates an additional d-axis current command value ⁇ Id that increases the d-axis current command value Id * in the negative direction based on the voltage difference ⁇ V;
  • a motor control device 100 comprising: a q-axis current command value correction unit 468 that decreases the absolute value of the q-axis current command value Iq * based on the voltage difference ⁇ V.
  • the motor control device 100 By adding the predetermined offset value a to the voltage difference ⁇ V and outputting the sum to the q-axis current command value correction unit 468, the motor control device 100 according to (1) above is provided. To solve.
  • the q-axis current command value correction unit 468a sets the additional current phase angle ⁇ i based on the voltage difference ⁇ V, and the cos unit 464B adds the current phase angle ⁇ i (base) and the additional current phase angle ⁇ i.
  • the above problem is solved by providing the motor control device 100 according to (1) or (2), wherein the q-axis current command value Iq * is generated based on the corrected phase angle ⁇ i.
  • the q-axis current command value correction unit 468a sets the additional current phase angle ⁇ i based on the voltage difference ⁇ V, and the sin unit 464A and the cos unit 464B determine the current phase angle ⁇ i (base) and the additional current phase angle.
  • the motor control device 100 according to (1) or (2) above, wherein the d-axis current command value Id * and the q-axis current command value Iq * are generated based on the corrected phase angle ⁇ i added to ⁇ i.
  • the voltage difference calculation unit 408c includes a target voltage value calculation unit 484 that calculates the target voltage value Va (ref), and a motor voltage value calculation unit 482b that calculates the motor voltage value Va,
  • the voltage difference ⁇ V is calculated based on the target voltage value Va (ref) calculated by the target voltage value calculation unit 484 and the motor voltage value Va calculated by the motor voltage value calculation unit 482b (1) )
  • the voltage difference calculation unit 408a determines the voltage difference based on the preset target voltage value Va (ref) and the d-axis voltage command value Vd and q-axis voltage command value Vq generated by the voltage command value generation unit 416.
  • the above problem is solved by providing the motor control device 100 according to any one of (1) to (4), wherein ⁇ V is calculated.
  • the sine wave control unit 40 further includes a polar coordinate conversion unit 418 that generates the motor voltage value Va based on the d-axis voltage command value Vd and the q-axis voltage command value Vq,
  • the voltage difference calculation unit 408b calculates the voltage difference ⁇ V based on the preset target voltage value Va (ref) and the motor voltage value Va generated by the polar coordinate conversion unit 418 (1) ) To (4) to provide the motor control device 100 according to any one of the above-described problems.
  • the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases.
  • the decrease rate is delayed from the increase rate of the q-axis current command value Iq ** , whereby the above problem is solved.
  • the q-axis current command value correcting portion 468b is set based additional q-axis current command value ⁇ Iq to reduce the absolute value of q-axis current command value Iq * to the voltage difference [Delta] V, q-axis current command value Iq *.
  • the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases.
  • a motor control method for a motor control device including at least a sine wave control unit 40 for controlling the PM motor 10 with a sine wave PWM includes: A torque calculating step for calculating a torque value T of the PM motor 10; A current command value setting step for setting a current command value Ia * based on an external torque command value T * and the torque value T; A dq current command value generation step for generating a d-axis current command value Id ** and a q-axis current command value Iq ** based on the current command value Ia * ; A voltage command value generation step for generating a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the d-axis current command value Id ** and the q-axis current command value Iq ** .
  • the q-axis current command value correction step sets the additional current phase angle ⁇ i based on the voltage difference ⁇ V, and the q-axis current command value generation step includes the current phase angle ⁇ i (base) and the additional current phase angle ⁇ i.
  • the motor control method described in (11) or (12) above is generated by generating the q-axis current command value Iq * based on the corrected phase angle ⁇ i obtained by combining To do.
  • the q-axis current command value correction step sets the additional current phase angle ⁇ i based on the voltage difference ⁇ V, and the d-axis current command value generation step and the q-axis current command value generation step include the current phase angle ⁇ i (base).
  • the above-mentioned problem is solved by providing the motor control method described in 1.
  • the voltage difference calculation step includes a target voltage value calculation step for calculating the target voltage value Va (ref), and a motor voltage value calculation step for calculating the motor voltage value Va,
  • the voltage difference ⁇ V is calculated based on the target voltage value Va (ref) calculated in the target voltage value calculating step and the motor voltage value Va calculated in the motor voltage value calculating step.
  • the problem is solved by providing the motor control method according to any one of (14).
  • the voltage difference calculation step calculates the voltage difference ⁇ V based on the preset target voltage value Va (ref) , the d-axis voltage command value Vd generated in the voltage command value generation step, and the q-axis voltage command value Vq.
  • the problem is solved by providing the motor control method according to any one of (11) to (14), wherein the motor control method is calculated.
  • the sine wave control unit 40 further includes a polar coordinate conversion unit 418 that generates the motor voltage value Va based on the d-axis voltage command value Vd and the q-axis voltage command value Vq,
  • the voltage difference calculating step calculates the voltage difference ⁇ V based on the preset target voltage value Va (ref) and the motor voltage value Va generated by the polar coordinate converter 418 (11)
  • the problem is solved by providing the motor control method according to any one of (14) to (14).
  • the d-axis low-pass filter 490A and the q-axis low-pass filter 490B to which the d-axis current command value Id ** and the q-axis current command value Iq ** generated in the dq current command value generation step are respectively input Have The d-axis low pass filter 490A and the q-axis low pass filter 490B, as well as rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, the absolute value of the q-axis current command value Iq ** is increased When the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases.
  • a d-axis low-pass filter 490A and a q-axis low-pass filter 490B to which the d-axis current command value Id ** and the q-axis current command value Iq ** generated in the dq current command value generation step are respectively input Have The d-axis low pass filter 490A and the q-axis low pass filter 490B, as well as rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, the absolute value of the q-axis current command value Iq ** is increased When the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases.
  • the problem is solved by providing the motor control method according to the above (19), characterized in that the decreasing speed is delayed from the increasing speed of the q-axis current command value Iq ** .
  • the motor control device and motor control method according to the present invention outputs an additional d-axis current value ⁇ Id corresponding to the voltage difference ⁇ V to output the d-axis current.
  • the command value Id * is increased in the negative direction, and the motor voltage value Va is decreased.
  • the PM motor 10 can be operated at a motor voltage value Va that can be stably controlled and has a maximum torque.
  • the motor control device and the motor control method according to the present invention include a q-axis current command value correction unit that decreases the absolute value of the q-axis current command value Iq ** .
  • the motor voltage value Va can be further reduced.
  • a margin for controlling the motor current can be further ensured, and stable flux-weakening control can be performed continuously against a sudden drop in the power supply voltage Vdc and fluctuations in the electrical angular velocity ⁇ .
  • FIG. 1 is an overall block diagram of a motor control device according to the present invention. It is a block diagram of the characteristic part of the motor control apparatus which concerns on this invention. It is a figure which shows the other example of the voltage difference calculation part of the motor control apparatus which concerns on this invention. It is a figure which shows the other example of the voltage difference calculation part of the motor control apparatus which concerns on this invention. It is a figure which shows the other example of the voltage difference calculation part of the motor control apparatus which concerns on this invention. It is a figure which shows the other example of the electric current command value production
  • FIG. 1 is an overall block diagram of a motor control apparatus 100 according to the present invention.
  • a motor control device 100 according to the present invention controls the operation of a PM motor (permanent magnet motor) 10 and includes at least a sine wave control unit 40 that controls the PM motor 10 with sine wave PWM.
  • PM motor permanent magnet motor
  • the motor control device 100 to which the present invention is applied includes an inverter 20 that causes the three-phase AC drive currents Iu, Iv, and Iw to flow down to the PM motor 10 as other basic configurations, and the drive currents Iu, Iv, ( Drive current detectors 12u, 12v for acquiring the value of Iw), angle detector 14 for acquiring the electrical angle ⁇ of the PM motor 10, and drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u, 12v. ) To a d-axis feedback current value Id and a q-axis feedback current value Iq, and a rectangular shape based on a torque command value T * instructed from the outside (such as a high-order control unit of the system).
  • the well-known rectangular wave control unit 50 that generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the wave control mode, and the sine wave control unit 40 and the rectangular wave control unit 5 control the PM motor 10.
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the switching unit 24 and the sine wave control unit 40 or the rectangular wave control unit 50 are converted into the U-phase, V-phase, and W-phase three-phase voltage commands.
  • Dq / 3-phase converter 32 that converts the values Vu, Vv, and Vw, and three-phase voltage command values Vu, Vv, and Vw and a triangular wave having a predetermined period to compare the drive signals Su, Sv, And a drive signal generation unit 36 that generates Sw.
  • the dq / 3-phase conversion unit 32 and the drive signal generation unit 36 constitute a control signal generation unit 30.
  • the inverter 20 constituting the motor control device 100 performs a switching operation by Hi-Low drive signals Su, Sv, Sw output from the drive signal generation unit 36, and generates DC power from a known DC power supply unit 18 such as a battery. It is converted into a three-phase AC voltage based on the drive signals Su, Sv, Sw and output. As a result, the three-phase drive currents Iu, Iv, and Iw flow down through the armature winding of the PM motor 10 with a phase shifted by 1/3 period (2 / 3 ⁇ (rad)).
  • the PM motor 10 is provided with a permanent magnet on the rotor side as described above, and a three-phase armature winding on the stator side, and the drive current Iu, By causing Iv and Iw to flow down respectively, the magnetic poles and magnetic flux of each armature winding are continuously changed to rotate the rotor.
  • the PM motor 10 is preferably an IPM (Interior Permanent Magnet) motor in which a permanent magnet is embedded in a rotor.
  • the PM motor 10 is preferably provided with a known cooling mechanism 101.
  • the cooling mechanism 101 is provided around the PM motor 10, for example, a water jacket 102 that cools the PM motor 10 by flowing down the cooling water, and a pump unit 104 that circulates the cooling water flowing down to the water jacket 102.
  • a heat exchanging means 106 such as a radiator for cooling the cooling water by a predetermined heat exchange, and a known temperature obtaining means 108 for obtaining the water temperature of the cooling water.
  • the cooling water of the cooling mechanism 101 is preferably used for cooling the PM motor 10 and cooling the power elements (switching elements) in the inverter 20.
  • the temperature acquisition means 108 acquires the temperature (estimated temperature) of the permanent magnet of the PM motor 10 indirectly by the coolant temperature Temp, and preferably acquires the water temperature after cooling the inverter 20.
  • the temperature acquisition unit 108 can be installed in the vicinity of the inverter 20, and the signal wiring of the temperature acquisition unit 108 can be shortened. As a result, the signal wiring can be easily routed and the reliability against disconnection can be improved. Further, by acquiring the estimated temperature of the permanent magnet from the coolant temperature Temp after cooling the inverter 20, the influence of the temperature change of the armature winding of the PM motor 10 whose temperature increases or decreases in the short term can be reduced. .
  • the water temperature Temp acquired by the temperature acquisition means 108 is input to the induced voltage constant correction unit 110, and the induced voltage constant correction unit 110 indirectly acquires the estimated temperature of the permanent magnet of the PM motor 10 from the input water temperature Temp.
  • the induced voltage constant ⁇ a of the PM motor 10 is corrected by the estimated temperature of the permanent magnet and output.
  • the induced voltage constant correcting unit 110 preferably outputs induced voltage constants ⁇ a (T) and ⁇ a (Va) having different estimated temperatures for torque calculation and voltage calculation.
  • the drive current detection units 12u and 12v can use known current sensors that can acquire the drive currents Iu, Iv, and Iw that flow down by the switching operation of the inverter 20 in a non-contact manner.
  • two drive currents Iu and Iv out of the drive currents Iu, Iv and Iw are acquired and converted into d-axis and q-axis feedback current values Id and Iq.
  • the angle detection unit 14 a known angle sensor capable of acquiring the rotor angle can be used.
  • the electrical angle ⁇ and the drive currents Iu and Iv are preferably acquired at both the apex and trough timings of the triangular wave and used in each part of the motor control device 100 every half cycle of the triangular wave.
  • the electrical angle ⁇ acquired by the angle detection unit 14 is also output to the angular velocity calculation unit 16, and the angular velocity calculation unit 16 calculates the electrical angular velocity ⁇ (rad / s) from the input electrical angle ⁇ , and the motor control device 100. Output to each part of.
  • the three-phase / dq conversion unit 22 is configured such that the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u, 12v based on the electrical angle ⁇ (rad) of the PM motor 10 acquired by the angle detection unit 14.
  • the three-phase two-phase conversion and the rotational coordinate conversion are performed on the value of the drive current Iu, Iv, (Iw) to the d-axis current value (magnetic flux current value) Id and the q-axis current value (torque current value) Iq. Convert.
  • These are output to the switching unit 24 as a d-axis feedback current value Id and a q-axis feedback current value Iq.
  • the switching unit 24 is a switching circuit that switches the generation method of the d-axis voltage command value Vd and the q-axis voltage command value Vq in accordance with the operation status (torque, rotation speed) of the PM motor 10.
  • the PM motor 10 When operating at a low speed, the PM motor 10 is operated in the sine wave control mode by the sine wave control unit 40.
  • the control of the PM motor 10 is switched to the rectangular wave control unit 50 and is operated in the rectangular wave control mode.
  • the rectangular wave control unit 50 calculates the torque T of the PM motor 10 from the d-axis feedback current value Id and the q-axis feedback current value Iq, and uses this torque T and a torque command value T * instructed from the outside. Based on this, the d-axis voltage command value Vd and the q-axis voltage command value Vq are generated by a well-known method and output to the control signal generation unit 30 via the switching unit 24. At this time, the voltage command value
  • the sine wave control unit 40 includes a current command value setting unit 402, a torque calculation unit 404, a current command value generation unit 406, a voltage difference calculation unit 408, and a voltage command value generation unit 416 as basic configurations.
  • the sine wave control unit 40 includes a polar coordinate conversion unit 418 and a synchronization control unit 419.
  • the voltage command value generation unit 416 constituting the sine wave control unit 40 includes a d-axis current command value Id ** and a q-axis current command value Iq ** input from the current command value generation unit 406 and a three-phase / dq conversion unit 22. Based on the d-axis feedback current value Id and the q-axis feedback current value Iq input from, the well-known arithmetic processing is performed to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq, which are controlled via the switching unit 24. It outputs to the signal generation part 30 (voltage command value generation step).
  • the polar coordinate conversion unit 418 generates d-axis and q-axis voltage command values Vd and Vq generated by the voltage command value generation unit 416 (the values generated by the output values of the well-known current integration control and the non-interference control and the values based on the current proportional control). Polar coordinate conversion is performed on the pre-added one to obtain the voltage phase ⁇ v and the voltage command value
  • the control signal generation unit 30 includes the linear correction unit 38
  • is output to the linear correction unit 38, and the d-axis and q-axis voltage command values Vd and Vq and the voltage command value
  • the synchronization control unit 419 generates triangular wave carrier setting information Sc from the voltage phase ⁇ v, the electrical angular velocity ⁇ , and the electrical angle ⁇ obtained by the polar coordinate conversion unit 418, and outputs them to the triangular wave generation unit 34 of the drive signal generation unit 36. To do.
  • the carrier setting information Sc is used to maintain the frequency of the triangular wave generated by the triangular wave generating unit 34 in an appropriate state.
  • the dq / 3-phase converter 32 constituting the control signal generator 30 includes the d-axis and q-axis voltage command values Vd and Vq, the electrical angle ⁇ from the angle detector 14, and the angular velocity calculator 16.
  • An electrical angular velocity ⁇ is input, and based on the electrical angle ⁇ and the electrical angular velocity ⁇ , a predicted electrical angle ⁇ ′ at a new timing at which the inverter 20 performs a switching operation is calculated, and a d-axis is calculated based on the predicted electrical angle ⁇ ′.
  • Q-axis voltage command values Vd, Vq are converted into three-phase voltage command values Vu, Vv, Vw and output to the drive signal generator 36.
  • the drive signal generation unit 36 has a triangular wave generation unit 34.
  • the above-described carrier setting information Sc is input to the triangular wave generation unit 34, and a triangular wave having a period based on the carrier setting information Sc is generated.
  • the drive signal generator 36 compares the triangular wave with the three-phase voltage command values Vu, Vv, and Vw, respectively. As a result, Hi-Low drive signals Su, Sv, Sw are generated.
  • the inverter 20 is turned on and off by the drive signals Su, Sv, Sw output from the drive signal generator 36, and the DC power from the DC power supply unit 18 is based on the drive signals Su, Sv, Sw. Convert to AC voltage and output.
  • AC drive currents Iu, Iv, and Iw having phases shifted by 1/3 period (2 / 3 ⁇ (rad)) flow down to the armature winding of the PM motor 10, respectively.
  • the PM motor 10 rotates with a torque corresponding to the torque command value T * .
  • the d-axis and q-axis current command values Id ** and Iq ** generated by the current command value generation unit 406 are input to the torque calculation unit 404.
  • the torque calculation unit 404 vector-synthesizes the input d-axis and q-axis current command values Id ** and Iq ** , and the absolute value of the current command absolute value
  • the current command phase angle ⁇ i ′ is calculated.
  • a value of (Ld ⁇ Lq) corresponding to the calculated current command absolute value Ia ** and the current command phase angle ⁇ i ′ is acquired.
  • (Ld ⁇ Lq) is the difference between the d-axis inductance Ld and the q-axis inductance Lq of the PM motor 10.
  • the torque calculation unit 404 refers to a preset torque correction map 444 and acquires a torque correction value AT corresponding to the calculated current command absolute value Ia ** and the current command phase angle ⁇ i ′. Further, the induced voltage constant ⁇ a (T) from the induced voltage constant correction unit 110 is input to the torque calculation unit 404.
  • the torque calculation unit 404 these d-axis, q-axis current command value Id **, Iq **, the induced voltage constant ⁇ a (T), Ld-Lq , the torque of the PM motor 10 and a torque correction value A T T Is calculated based on the following equation (A), for example.
  • T P (A T ⁇ a (T) Iq ** + (Ld ⁇ Lq) Id ** Iq ** ) [N ⁇ m] ⁇ (A)
  • P is the number of pole pairs of the permanent magnet of the PM motor.
  • the torque calculation unit 404 calculates the torque T based on the d-axis and q-axis current command values Id ** and Iq ** generated by the current command value generation unit 406. Therefore, the additional d-axis current value generation unit 466 Even when the q-axis current command value correction unit 468 increases or decreases the d-axis and q-axis current command values Id * and Iq * , the torque of the PM motor 10 can be matched with the torque command value T * .
  • the current command value setting unit 402 includes a torque limiter unit 420, a current command value calculation unit 424, a current limiter unit 422, a torque limit map 420a, and a current limit map 422a.
  • the torque command value T * from the outside is First, an input is made to the torque limiter unit 420.
  • the torque limit map 420a and the current limit map 422a are supplied with the power supply voltage Vdc of the DC power supply 18 and the electrical angular velocity ⁇ of the PM motor 10, and the torque limit map 420a is operated at the input power supply voltage Vdc and electrical angular velocity ⁇ .
  • An upper limit torque limit value that can be stably controlled is selected from a preset data map, and is output to the torque limiter unit 420.
  • the torque limiter unit 420 limits the torque command value T * to this torque limit value.
  • the torque command value T * is subtracted from the torque T input from the torque calculation unit 404, and the difference ⁇ T is input to the current command value calculation unit 424.
  • the current limit map 422a selects an upper limit current limit value that can be stably controlled during operation at the input power supply voltage Vdc and electrical angular velocity ⁇ from a preset data map, and the current command value calculation unit 424 and current Output to the limiter unit 422.
  • the current command value calculation unit 424 performs well-known integral control, proportional control, etc. on the input difference ⁇ T to generate a current command value Ia * .
  • the integration control is limited by the above-described current limit value.
  • the calculated current command value Ia * is output to the current limiter unit 422.
  • the current command value Ia * is limited to this current limit value. It outputs to the production
  • the voltage difference calculation unit 408a according to the first embodiment will be described with reference to FIG.
  • the voltage difference calculation unit 408a of the first embodiment shown in FIG. 2 has a target voltage value setting unit 480.
  • the target voltage value setting unit 480 has a target voltage value Va (ref) acquired in advance by actual measurement or the like. Is set for each voltage utilization rate K.
  • the target voltage value Va (ref) is the maximum voltage value that can be stably operated when the PM motor 10 is operated at the voltage utilization factor K.
  • the voltage difference calculation unit 408a has a motor voltage value calculation unit 482a of the first form, and the motor voltage value calculation unit 482a of the first form has a d generated by the voltage command value generation unit 416.
  • the shaft voltage command value Vd and the q-axis voltage command value Vq are input.
  • the target voltage value setting unit 480 selects a target voltage value Va (ref) corresponding to the voltage utilization rate K.
  • the voltage utilization rate K may be set by selecting a voltage utilization rate K corresponding to the power supply voltage Vdc of the DC power supply unit 18 from the voltage utilization rate data map 484b described later.
  • the voltage difference calculation unit 408a subtracts the target voltage value Va (ref) selected by the target voltage value setting unit 480 from the motor voltage value Va calculated by the motor voltage value calculation unit 482a. A difference ⁇ V is generated and output to the current command value generation unit 406.
  • the voltage difference calculation unit 408 directly acquires the voltage command value
  • the voltage difference ⁇ V may be generated.
  • the voltage difference calculation unit may obtain the target voltage value Va (ref) and the motor voltage value Va by calculation as shown in the voltage difference calculation unit 408c of the third embodiment in FIG.
  • the voltage difference calculation unit 408c of the third embodiment includes a target voltage value calculation unit 484 that calculates the target voltage value Va (ref) and a motor voltage value calculation unit of the second embodiment that calculates the motor voltage value Va. 482b.
  • the target voltage value calculation unit 484 receives the power supply voltage Vdc and the d-axis and q-axis current command values Id ** and Iq ** . Then, the current command absolute value Ia ** is calculated based on the following formula.
  • the voltage drop value V (drop) is a value of the voltage drop related to the switching element of the inverter 20 that changes according to the flowing current, and the voltage drop data map 484a is created based on the characteristic data sheet of the switching element.
  • the motor voltage value calculation unit 482b of the second embodiment includes a calculation unit 489 that calculates the motor voltage value Va, an inductance map 488 in which the d-axis inductance Ld and the q-axis inductance Lq are recorded, and a q-axis inductance correction coefficient.
  • Q-axis inductance correction coefficient map 486 in which is recorded.
  • calculated by the polar coordinate converter 418, and the winding temperature of the PM motor 10 are displayed.
  • the winding temperature Tc is input, and the water temperature Temp, the voltage command value
  • the winding temperature Tc can be obtained by providing a temperature sensor such as a thermistor in the armature winding of the PM motor 10, for example.
  • the d-axis and q-axis current command values Id ** and Iq ** are input to the calculation unit 489, and the calculation unit 489 is based on the input d-axis and q-axis current command values Id ** and Iq ** .
  • the current command absolute value Ia ** and the current command phase angle ⁇ i ′ are calculated.
  • the calculated current command absolute value Ia ** the values of the d-axis inductance Ld and the q-axis inductance Lq corresponding to the current command phase angle ⁇ i ′ are acquired.
  • the calculation unit 489 refers to the voltage correction map, obtains a voltage correction value corresponding to the current command absolute value Ia ** and the current command phase angle ⁇ i ′, and corrects the motor voltage value Va. Also good.
  • the induced voltage constant ⁇ a (Va) corresponding to the estimated temperature of the magnet of the PM motor 10 and the electrical angular velocity ⁇ of the PM motor 10 are input to the computing unit 489 from the induced voltage constant correcting unit 110, and the computing unit 489.
  • the armature winding resistance Ra may be corrected for temperature based on the winding temperature Tc.
  • the voltage difference calculation part 408c of the 3rd form is Va ( calculated by the target voltage value calculation part 484) from the motor voltage value Va calculated by this calculating part 489 (2nd motor voltage value calculation part 482b).
  • the voltage difference ⁇ V is calculated by subtracting ref) (the voltage difference calculation step).
  • a d-axis low-pass filter 490A and a q-axis low-pass filter 490B are provided on the output side of the current command value generation unit 406 as shown in FIG. It is preferable that the d-axis and q-axis current command values Id ** and Iq ** are output to the voltage command value generation unit 416 via the low-pass filters 490A and 490B.
  • the time constant of the q-axis low pass filter 490B by optimizing the time constant of the q-axis low pass filter 490B, quickly so that does not cause the q-axis current command value Iq ** is a large delay in the absolute value of the q-axis current command value Iq ** is reduced
  • the increase speed is preferably delayed within a range in which the response of the torque T required for the system can be satisfied.
  • the time constant of the d-axis low-pass filter 490A when the absolute value of the d-axis current command value Id ** increases, the d-axis current command value Id ** can be quickly generated so as not to cause a large delay.
  • the absolute value of the d-axis current command value Id ** decreases
  • the configuration of the current command value generation unit 406 (406a to 406c) and the dq current command value generation step will be described.
  • the power supply voltage Vdc of the DC power supply unit 18 rapidly decreases during the control by the sine wave control unit 40 or the rotational speed (electrical angular velocity ⁇ ) of the PM motor 10 rapidly increases, the motor voltage value Va is There is a possibility that the target voltage value Va (ref) will be exceeded and voltage shortage will occur and stable control cannot be performed.
  • the current command value generation unit 406 constituting the present invention increases the d-axis current command value Id ** in the negative direction when the motor voltage value Va exceeds the target voltage value Va (ref) , thereby reducing the q-axis voltage.
  • the command value Vq is decreased, and the absolute value of the q-axis current command value Iq ** is decreased to decrease the d-axis voltage command value Vd, thereby reducing the motor voltage value Va and the target voltage value Va (ref).
  • the purpose is to keep it at a minimum.
  • the current command value generation unit 406 constituting the present invention includes a phase angle setting unit 462 having a current-phase angle map, a sin unit 464A, a cos unit 464B, a current limiter unit 472, and an induced voltage d.
  • An axis current value generation unit 470, an additional d axis current value generation unit 466, a q axis current command value correction unit 468 (468a, 468b), and an offset unit 469 are provided.
  • the voltage difference ⁇ V input from the voltage difference calculation unit 408 is branched into two, and one is input to the additional d-axis current value generation unit 466.
  • a predetermined offset value a fixed value
  • it is input to the q-axis current command value correcting unit 468.
  • the phase angle setting unit 462 of the current command value generation unit 406 refers to the current-phase angle map based on the current command value Ia * input from the current command value setting unit 402, and corresponds to this current command value Ia *.
  • Current phase angle ⁇ i (base) to be acquired is acquired (phase angle setting step).
  • the current phase angle .theta.i (base) is a current phase angle output a maximum torque at a current command value Ia *, is set in advance for each current command value Ia *.
  • the current phase angle ⁇ i (base) is input to the sin unit 464A, and the cos unit 464B has the current phase angle ⁇ i (base) .
  • a corrected phase angle ⁇ i to which an additional phase angle ⁇ i described later is added is input.
  • the input current command value Ia * is branched into two and one is input to the sin portion 464A and the other is input to the cos portion 464B.
  • the sin unit 464A calculates the d-axis current command value Id * based on the following equation (d-axis current command value generation step).
  • Id * Ia * ⁇ sin ( ⁇ i (base) )
  • the cos unit 464B calculates the q-axis current command value Iq * based on the following formula (q-axis current command value generation step).
  • Iq * Ia * .cos ( ⁇ i)
  • the current phase angle ⁇ i (base) and the correction phase angle ⁇ i are angles formed with the q axis, and are limited to 0 ° to the upper limit phase angle (about 90 ° to 85 °) by a phase angle limiter described later.
  • the d-axis current command value Id * is always a negative value, and the q-axis current command value Iq * is controlled to have the same sign as the current command value Ia * .
  • the induced voltage d-axis current value generation unit 470 of the current command value generation unit 406 receives the power supply voltage Vdc of the DC power supply unit 18 and the electrical angular velocity ⁇ of the PM motor 10.
  • the induced voltage d-axis current value generation unit 470 has a data map (not shown) of the induced voltage d-axis current value ⁇ Id ′ for the flux weakening control set for each of the power supply voltage Vdc and the electrical angular velocity ⁇ .
  • the induced voltage d-axis current value generation unit 470 selects the induced voltage d-axis current value ⁇ Id ′ corresponding to the input power supply voltage Vdc and the electrical angular velocity ⁇ from this data map, and selects the d-axis current command value Id *. Add to.
  • the induced voltage d-axis current value ⁇ Id ′ takes a negative value. Therefore, by adding the induced voltage d-axis current value ⁇ Id ′, the d-axis current command value Id * increases in the negative direction, and its absolute value increases.
  • the induced voltage d-axis current value generation unit 470 sets the induced voltage d-axis current value ⁇ Id ′ by reading the data map as described above.
  • the responsiveness is faster than the additional d-axis current value ⁇ Id that requires integral control, and the induced voltage d-axis current value ⁇ Id ′ is output in response to a sudden drop in the power supply voltage Vdc or a change in the electrical angular velocity ⁇ . Can do. Thereby, the excess state of the motor voltage value Va can be reduced to some extent.
  • the voltage difference ⁇ V is input from the voltage difference calculation unit 408 to the additional d-axis current value generation unit 466 constituting the current command value generation unit 406.
  • the voltage difference ⁇ V is a positive value, that is, when the motor voltage value Va exceeds the target voltage value Va (ref)
  • the input voltage difference ⁇ V is added by performing well-known integral control, proportional control, etc.
  • a d-axis current value ⁇ Id is generated.
  • the integration control and the generated additional d-axis current value ⁇ Id are limited by a predetermined current limit value described later.
  • the generated additional d-axis current value ⁇ Id is added to the d-axis current command value Id * output from the sin unit 464A.
  • the additional d-axis current value ⁇ Id also takes a negative value. Therefore, by adding the additional d-axis current value ⁇ Id, the d-axis current command value Id * increases in the negative direction, and its absolute value increases. Further, when the voltage difference ⁇ V becomes negative while the additional d-axis current value ⁇ Id is being output, the additional d-axis current value generation unit 466 generates the additional d-axis current value ⁇ Id only by integral control. As a result, the additional d-axis current value ⁇ Id reflects the value of the negative voltage difference ⁇ V, and its absolute value gradually decreases and finally becomes “0”.
  • the d-axis current command value Id * ′ obtained by adding the additional d-axis current value ⁇ Id and the induced voltage d-axis current value ⁇ Id ′ is output to the current limiter 472, and the d-axis current command value Id * ′ is the current. If it is below the current limit value of limiter unit 472, d-axis current command value Id * ′ is output to voltage command value generation unit 416 as d-axis current command value Id ** as it is. If the current limit value is exceeded, it is limited to the current limit value and output to the voltage command value generation unit 416.
  • the limit value of the current limiter 472 may be set individually for each of the d-axis current command value Id * ′ and the q-axis current command value Iq * described later, or may be set separately for the d-axis and q-axis current command value Id * ′.
  • Iq * may be set with the size of the combined vector while maintaining the angle of the combined vector. Moreover, you may carry out by both.
  • the relationship between the motor voltage value Va and the current command value generation unit 406 follows the configuration of the current command value generation unit 406c of the third embodiment, using the following formulas (1), (2), and (3). explain.
  • the motor voltage value Va is obtained by the following equation (1)
  • Va (Vd 2 + Vq 2 ) 1/2
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq are obtained by the following equations (2) and (3) (description of coefficients, correction values, etc. is omitted).
  • Vd RaId **- ⁇ LqIq ** (2)
  • Vq RaIq ** + ⁇ a + ⁇ LdId ** (3)
  • the induced voltage d-axis current value generation unit 470 first induces corresponding to the power supply voltage Vdc and the electrical angular velocity ⁇ .
  • the voltage d-axis current value ⁇ Id ′ is added to the d-axis current command value Id * .
  • the d-axis current command value Id ** increases in the negative direction
  • ⁇ LdId ** in the equation (3) also increases in the negative direction.
  • the q-axis voltage command value Vq decreases and the motor voltage value Va decreases.
  • the motor voltage value Va exceeds the target voltage value Va (ref) , the voltage difference ⁇ V becomes positive and the additional d-axis current value generation unit 466 operates to output the additional d-axis current value ⁇ Id. It is added to the shaft current command value Id * .
  • the d-axis current command value Id ** further increases in the negative direction, and as a result, the ⁇ LdId ** in the equation (3) further increases in the negative direction and the q-axis voltage command value Vq decreases. Thereby, the motor voltage value Va decreases.
  • the PM motor 10 can be operated with a motor voltage value Va (target voltage value Va (ref) ) that can be stably controlled and has a maximum torque.
  • the term RaId ** in the equation (2) also fluctuates due to the change in the d-axis current command value Id ** , but since this term does not involve the electrical angular velocity ⁇ , the fluctuation amount is small compared to the other terms. The influence on the motor voltage value Va is small.
  • the additional d-axis current value ⁇ Id is added by the current limiter in the additional d-axis current value generation unit 466 so that the above (RaIq ** + ⁇ a) and ( ⁇ Ld (Id * + ⁇ Id ′ + ⁇ Id)) are balanced. It is preferable to limit the current value ⁇ Id so that it does not flow down.
  • the current limiter in the additional d-axis current value generation unit 466 has an additional d-axis current value such that (Id * + ⁇ Id ′ + ⁇ Id) is a current value that outputs the maximum torque for each power supply voltage Vdc and electrical angular velocity ⁇ .
  • the current value of ⁇ Id may be limited.
  • a voltage difference ⁇ V (hereinafter referred to as a deviation) obtained by subtracting the offset value a by the offset unit 469 is input to the q-axis current command value correction unit 468a of the first embodiment.
  • the additional d-axis current value generation unit 466 and the q-axis current command value correction unit 468 (468a, 468b) operate simultaneously to correct the d-axis current command value Id * and the q-axis current command value Iq *. If the control is started at the same time, the motor voltage value Va may decrease excessively or move up and down oscillatingly, and the control may become unstable.
  • the value of the voltage difference ⁇ V that starts the operation by adding the offset value a to the input of the q-axis current command value correction unit 468 is different, and the additional d-axis current value The generation unit 466 and the q-axis current command value correction unit 468 are controlled so as not to start operation simultaneously.
  • the additional d-axis current value generation unit 466 performs the reduction operation of the motor voltage value Va first, and the q-axis current command value correction unit 468 further increases the motor voltage value Va from the target voltage value Va (ref). The operation starts when it rises by an offset amount.
  • the q-axis current command value correction unit 468a of the first embodiment is well-known for the input deviation.
  • An additional phase angle ⁇ i is generated by performing integral control, proportional control, and the like. In this case, the integration control and the generated additional phase angle ⁇ i are limited by a predetermined phase angle limiter.
  • the phase angle limit value in the phase angle limiter is preferably a value that varies depending on the current phase angle ⁇ i (base) output from the phase angle setting unit 462 as shown in the following equation.
  • Phase angle limit value upper limit phase angle ⁇ current phase angle ⁇ i (base)
  • the correction phase angle ⁇ i obtained by adding the additional phase angle ⁇ i to the current phase angle ⁇ i (base) is always equal to or less than the upper limit phase angle (90 °) by setting the upper limit phase angle to about 90 ° to 85 °. be able to. Further, by setting the upper limit phase angle to be smaller than 90 °, the correction phase angle ⁇ i can be set to 90 ° or less even when an error occurs in the electrical angle ⁇ .
  • the additional phase angle ⁇ i generated by the q-axis current command value correction unit 468a of the first embodiment is added to the current phase angle ⁇ i (base) output from the phase angle setting unit 462, and the correction phase angle ⁇ i And input to the cos part 464B.
  • the cos unit 464B calculates the q-axis current command value Iq * based on the corrected phase angle ⁇ i and outputs it to the current limiter unit 472. If less current limiter section 472 in the q-axis current command value Iq * is a current limit value, and outputs the voltage command value generating unit 416 a q-axis current command value Iq * as the q-axis current command value Iq ** intact. Also, if the q-axis current command value Iq * exceeds the current limit value, it is limited to the current limit value and output to the voltage command value generation unit 416.
  • the q-axis current command value correction unit 468a when the deviation becomes negative while the positive additional phase angle ⁇ i is output as described above, the q-axis current command value correction unit 468a generates the additional phase angle ⁇ i only by integral control. As a result, the additional phase angle ⁇ i is gradually reduced to reflect the value of the negative deviation, and finally becomes “0”. By not performing proportional control, a sudden fluctuation component is not added to the additional phase angle ⁇ i, and it is possible to prevent the motor voltage value Va from exceeding again due to a sudden decrease in deviation. In addition, the q-axis current command value correction unit 468a does not operate in a state where the additional phase angle ⁇ i is “0”.
  • the q-axis current command value correction unit 468a does not operate even if a negative deviation is input in a state where the additional phase angle ⁇ i is not output.
  • the current command value generating portion 406b of the second embodiment is to input current phase angle .theta.i from the phase angle setting section 462 (base) is to cos unit 464B, as with sin portion 464A current phase angle .theta.i (base)
  • the q-axis current command value Iq * is calculated based on
  • the q-axis current command value correction unit 468b performs well-known integral control, proportional control, limiter limitation, etc., similar to the additional d-axis current value generation unit 466, according to the deviation.
  • An additional q-axis current value ⁇ Iq is generated.
  • the additional q-axis current value ⁇ Iq is subtracted from the q-axis current command value Iq * .
  • the q-axis current command value Iq ** decreases
  • the d-axis voltage command value Vd decreases.
  • the motor voltage value Va is reduced (the q-axis current command value correction step).
  • the q-axis current command value correction unit 468 (468a, 468b) has the q-axis current command value Iq. Since * is reduced, the motor voltage value Va can be further reduced. As a result, the state in which the motor voltage value Va exceeds the target voltage value Va (ref) can be quickly eliminated, and the motor voltage value Va is continuously stable even against a sudden drop in the power supply voltage Vdc and fluctuations in the electrical angular velocity ⁇ . Magnetic flux weakening control can be performed.
  • the integral control of the q-axis current command value correction unit 468 is such that the integral gain in the direction in which the integral value increases (when the deviation is a positive value) is set large, and the integral value decreases (the deviation is negative). It is preferable to set the integral gain in the case of a value small. According to this configuration, when the motor voltage value Va exceeds (Va (ref) + a) and it is assumed that the motor voltage is insufficient, the integrated value (additional phase angle ⁇ i or additional q-axis current value ⁇ Iq ) Can be increased quickly. As a result, the motor voltage value Va can be quickly reduced, and the shortage of the motor voltage can be eliminated in advance or quickly.
  • the integral value (additional phase angle ⁇ i or additional q-axis current value ⁇ Iq) is gradually decreased with a small integral gain to prevent the motor voltage value Va from rapidly increasing, and the target voltage value Va (ref ) Can be prevented again.
  • the additional phase angle ⁇ i ′ that quickly increases the integral value. Since the additional phase angle ⁇ i and the additional q-axis current value ⁇ Iq obtained by adding the additional q-axis current value ⁇ Iq ′ can be output, the motor voltage value Va can be quickly and urgently reduced.
  • the current command value generation units 406 and 406a may be the current command value generation unit 406c of the third embodiment shown in FIG.
  • the correction phase angle ⁇ i is input to both the sin unit 464A and the cos unit 464B. Therefore, the sine unit 464A of the current command value generation unit 406a of the second embodiment calculates the d-axis current command value Id * based on the corrected phase angle ⁇ i.
  • the d-axis current command value Id * based on the correction phase angle ⁇ i has a larger absolute value than the d-axis current command value Id * based on the current phase angle ⁇ i (base) .
  • the torque calculation unit 404 calculates the torque T based on the decreased q-axis current command value Iq ** , and the current command value setting unit 402 determines the value of the current command value Ia * according to the value of the torque T. Is increased, the operation for compensating for the decrease in the torque T is performed.
  • the motor control device 100 and the motor control method according to the present invention when the motor voltage value Va exceeds the target voltage value Va (ref) , the additional d-axis current value ⁇ Id corresponding to the voltage difference ⁇ V. To increase the d-axis current command value Id * in the negative direction and reduce the motor voltage value Va. As a result, the PM motor 10 can be operated with a motor voltage value Va (target voltage value Va (ref) ) that can be stably controlled and has a maximum torque.
  • the motor control device 100 and the motor control method according to the present invention include a q-axis current command value correction unit 468 that decreases the absolute value of the q-axis current command value Iq ** .
  • the motor voltage value Va can be further reduced.
  • the state in which the motor voltage value Va exceeds the target voltage value Va (ref) can be quickly eliminated, and the motor voltage value Va is continuously stable even against a sudden drop in the power supply voltage Vdc and fluctuations in the electrical angular velocity ⁇ . Magnetic flux weakening control can be performed.
  • the motor control device 100 and the motor control method shown in this example are only examples, and the configuration, operation, configuration of each step, and the like of each unit can be changed and implemented without departing from the gist of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

[Problem] To provide a motor control device and a motor control method with which it is possible to stably control weak magnetic flux even when a sudden change occurs in power supply voltage or speed. [Solution] In this motor control device 100 and motor control method, when a motor voltage value Va exceeds a desired voltage value Va(ref), a supplemental d-axis current value ΔId that corresponds to a voltage difference ΔV is outputted and a d-axis current command value Id* is made to increase in the negative direction to reduce the motor voltage value Va. Additionally, in this motor control device 100 and motor control method, further to the above configuration, a q-axis current command value correction unit 468 reduces the absolute value of a q-axis current command value Iq**. This makes it possible to further reduce the motor voltage value Va. Moreover, this makes it possible to quickly eliminate a state in which the motor voltage value Va exceeds the desired voltage value Va(ref), and to control weak magnetic flux in a continuous and stable manner even with respect to a sudden reduction in a power supply voltage Vdc and/or a sudden change in electric angular velocity ω.

Description

モータ制御装置及びモータ制御方法Motor control device and motor control method
 本発明は、PMモータの制御において、特に弱め磁束制御を安定的に行う事が可能なモータ制御装置及びモータ制御方法に関するものである。 The present invention relates to a motor control device and a motor control method capable of stably performing flux-weakening control in PM motor control.
 多くの家電や機械設備の動力源として電動モータが使用されている。このうち、回転子側に永久磁石を設け、固定子側に電機子巻線を設け、この電機子巻線の磁界を制御することで回転子を回転させるPM(Permanent Magnet)モータ(永久磁石モータ)は、界磁損失が存在しないため低損失、高効率であり、近年の省エネルギー化の流れから大型の機械機器にも多く採用されている。そして、このPMモータの制御方法としては、中・低速回転の動作領域ではモータ効率の高い正弦波パターンを用いた正弦波制御(PWM制御)によって動作制御を行い、高速回転・高トルクの動作領域では出力電圧が高く高出力が可能な矩形波パターンを用いた矩形波制御にて動作制御を行うことが一般的である。 Electric motors are used as a power source for many home appliances and mechanical equipment. Among these, a PM (Permanent Magnet) motor (permanent magnet motor) that provides a permanent magnet on the rotor side, an armature winding on the stator side, and rotates the rotor by controlling the magnetic field of the armature winding. ) Is low loss and high efficiency because there is no field loss, and is often used in large-scale machinery due to the recent trend of energy saving. As a control method of this PM motor, in the operation region of medium / low speed rotation, operation control is performed by sine wave control (PWM control) using a sine wave pattern with high motor efficiency, and the operation region of high speed rotation / high torque. Then, it is common to perform operation control by rectangular wave control using a rectangular wave pattern with a high output voltage and high output.
 しかしながら、永久磁石は磁束が一定のため回転数が上昇するにつれ逆起電力が増大し、ある回転数に達するとこの逆起電力がモータの印加電圧と等しくなり、これ以上電流を流せなくなる。このため、この現象が生じる正弦波制御の高速回転領域では電機子巻線に電流を流下して永久磁石とは逆向きの磁束を発生させ、上記逆起電力を低減する弱め磁束制御を行うのが一般的である。このような弱め磁束制御の例として下記[特許文献1]では、モータのトルクを演算によって求めてトルク制御を行い、このときの電圧位相を操作することで弱め磁束制御を行う技術が開示されている。 However, since the permanent magnet has a constant magnetic flux, the counter electromotive force increases as the rotational speed increases. When the permanent magnet reaches a certain rotational speed, the counter electromotive force becomes equal to the applied voltage of the motor and no more current can flow. For this reason, in the high-speed rotation region of the sine wave control in which this phenomenon occurs, current is passed through the armature winding to generate a magnetic flux in the direction opposite to that of the permanent magnet, and the weakening magnetic flux control is performed to reduce the counter electromotive force. Is common. As an example of such a weak flux control, the following [Patent Document 1] discloses a technique for performing a torque control by calculating a torque of a motor by calculation and performing a weak flux control by manipulating a voltage phase at this time. Yes.
特開平11-299297号公報Japanese Patent Laid-Open No. 11-299297
 この[特許文献1]に記載の発明では、トルク指令値とトルク推定値との偏差を低減するための補正値の生成にローパスフィルタを用いている。これにより、補正値の急激な変化を抑制することができる。しかしながら、ローパスフィルタを用いた場合、応答性に遅れが生じる場合があり、更なる改善が望まれる。 In the invention described in [Patent Document 1], a low-pass filter is used to generate a correction value for reducing the deviation between the torque command value and the torque estimation value. Thereby, a rapid change in the correction value can be suppressed. However, when a low-pass filter is used, there may be a delay in response, and further improvement is desired.
 本発明は上記事情に鑑みてなされたものであり、電源電圧や回転速度に急激な変動が生じた場合でも安定的に弱め磁束制御が可能なモータ制御装置及びモータ制御方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a motor control device and a motor control method capable of stably weakening magnetic flux control even when a sudden change occurs in a power supply voltage or a rotation speed. .
(1)PMモータ10を正弦波PWMで制御する正弦波制御部40を少なくとも備えたモータ制御装置において、
前記正弦波制御部40は、
前記PMモータ10のトルク値Tを算出するトルク計算部404と、
外部からのトルク指令値Tと前記トルク値Tとに基づいて電流指令値Iaを設定する電流指令値設定部402と、
前記電流指令値Iaに基づいてd軸電流指令値Id**、q軸電流指令値Iq**を生成する電流指令値生成部406と、
前記d軸電流指令値Id**、q軸電流指令値Iq**に基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧指令値生成部416と、を有し、
前記電流指令値生成部406は、
前記d軸電流指令値Id**の元となるd軸電流指令値Idを生成するsin部464Aと、
前記q軸電流指令値Iq**の元となるq軸電流指令値Iqを生成するcos部464Bと、
前記電流指令値Iaにて最大のトルクを出力する電流位相角θi(base)を設定し前記sin部464A及びcos部464Bに出力する位相角設定部462と、
前記PMモータ10のモータ電圧値Vaと、前記PMモータ10が安定的に動作可能な最大の電圧値である目標電圧値Va(ref)と、に基づいて電圧差分ΔVを算出する電圧差分計算部408と、
前記d軸電流指令値Idを負の方向に増加させる追加d軸電流指令値ΔIdを前記電圧差分ΔVに基づいて算出する追加d軸電流値生成部466と、
前記電圧差分ΔVに基づいて前記q軸電流指令値Iqの絶対値を減少させるq軸電流指令値補正部468と、を有することを特徴とするモータ制御装置100を提供することにより、上記課題を解決する。
(2)所定のオフセット値aを電圧差分ΔVに合算してq軸電流指令値補正部468に出力することを特徴とする上記(1)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(3)q軸電流指令値補正部468aが、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、cos部464Bは電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてq軸電流指令値Iqを生成することを特徴とする上記(1)または(2)に記載のモータ制御装置100を提供することにより、上記課題を解決する。
(4)q軸電流指令値補正部468aが、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、sin部464A及びcos部464Bは電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてd軸電流指令値Id、q軸電流指令値Iqを生成することを特徴とする上記(1)または(2)に記載のモータ制御装置100を提供することにより、上記課題を解決する。
(5)電圧差分計算部408cが、目標電圧値Va(ref)を算出する目標電圧値算出部484と、モータ電圧値Vaを算出するモータ電圧値算出部482bと、を備え、
前記目標電圧値算出部484が算出した目標電圧値Va(ref)と、前記モータ電圧値算出部482bが算出したモータ電圧値Vaに基づいて電圧差分ΔVを算出することを特徴とする上記(1)乃至(4)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(6)電圧差分計算部408aが、予め設定された目標電圧値Va(ref)と、電圧指令値生成部416が生成したd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて電圧差分ΔVを算出することを特徴とする上記(1)乃至(4)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(7)正弦波制御部40が、d軸電圧指令値Vd、q軸電圧指令値Vqに基づいてモータ電圧値Vaを生成する極座標変換部418をさらに有し、
電圧差分計算部408bが、予め設定された目標電圧値Va(ref)と、前記極座標変換部418が生成したモータ電圧値Vaとに基づいて電圧差分ΔVを算出することを特徴とする上記(1)乃至(4)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(8)電流指令値生成部406からのd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタ490Aと、q軸ローパスフィルタ490Bと、をさらに有し、
前記d軸ローパスフィルタ490A及びq軸ローパスフィルタ490Bは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする上記(1)乃至(7)のいずれかに記載のモータ制御装置100を提供することにより、上記課題を解決する。
(9)q軸電流指令値補正部468bが、q軸電流指令値Iqの絶対値を減少させる追加q軸電流指令値ΔIqを電圧差分ΔVに基づいて設定し、q軸電流指令値Iqに加算することを特徴とする上記(1)または(2)に記載のモータ制御装置100を提供することにより、上記課題を解決する。
(10)電流指令値生成部406からのd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタ490Aと、q軸ローパスフィルタ490Bと、をさらに有し、
前記d軸ローパスフィルタ490A及びq軸ローパスフィルタ490Bは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする上記(9)記載のモータ制御装置100を提供することにより、上記課題を解決する。
(11)PMモータ10を正弦波PWMで制御する正弦波制御部40を少なくとも備えたモータ制御装置のモータ制御方法であって、
前記正弦波制御部40は、
前記PMモータ10のトルク値Tを算出するトルク計算ステップと、
外部からのトルク指令値Tと前記トルク値Tとに基づいて電流指令値Iaを設定する電流指令値設定ステップと、
前記電流指令値Iaに基づいてd軸電流指令値Id**、q軸電流指令値Iq**を生成するdq電流指令値生成ステップと、
前記d軸電流指令値Id**、q軸電流指令値Iq**に基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧指令値生成ステップと、を少なくとも実行し、
前記dq電流指令値生成ステップは、
前記d軸電流指令値Id**の元となるd軸電流指令値Idを生成するd軸電流指令値生成ステップと、
前記q軸電流指令値Iq**の元となるq軸電流指令値Iqを生成するq軸電流指令値生成ステップと、
前記d軸電流指令値生成ステップとq軸電流指令値生成ステップとで用いられ、前記電流指令値Iaにて最大のトルクを出力する電流位相角θi(base)を設定する位相角設定ステップと、
前記PMモータ10のモータ電圧値Vaと、前記PMモータ10が安定的に動作可能な最大の電圧値である目標電圧値Va(ref)と、に基づいて電圧差分ΔVを算出する電圧差分計算ステップと、
前記d軸電流指令値Idを負の方向に増加させる追加d軸電流指令値ΔIdを前記電圧差分ΔVに基づいて算出する追加d軸電流値生成ステップと、
前記電圧差分ΔVに基づいて前記q軸電流指令値Iqの絶対値を減少させるq軸電流指令値補正ステップと、を有することを特徴とするモータ制御方法を提供することにより、上記課題を解決する。
(12)所定のオフセット値aを電圧差分ΔVに合算してq軸電流指令値補正ステップを行うことを特徴とする上記(11)記載のモータ制御方法を提供することにより、上記課題を解決する。
(13)q軸電流指令値補正ステップが、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、q軸電流指令値生成ステップは電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてq軸電流指令値Iqを生成することを特徴とする上記(11)または(12)に記載のモータ制御方法を提供することにより、上記課題を解決する。
(14)q軸電流指令値補正ステップが、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、d軸電流指令値生成ステップ、q軸電流指令値生成ステップは電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてd軸電流指令値Id、q軸電流指令値Iqを生成することを特徴とする上記(11)または(12)に記載のモータ制御方法を提供することにより、上記課題を解決する。
(15)電圧差分計算ステップが、目標電圧値Va(ref)を算出する目標電圧値算出ステップと、モータ電圧値Vaを算出するモータ電圧値算出ステップと、を備え、
前記目標電圧値算出ステップで算出した目標電圧値Va(ref)と、前記モータ電圧値算出ステップで算出したモータ電圧値Vaに基づいて電圧差分ΔVを算出することを特徴とする上記(11)乃至(14)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(16)電圧差分計算ステップが、予め設定された目標電圧値Va(ref)と、電圧指令値生成ステップで生成したd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて電圧差分ΔVを算出することを特徴とする上記(11)乃至(14)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(17)正弦波制御部40が、d軸電圧指令値Vd、q軸電圧指令値Vqに基づいてモータ電圧値Vaを生成する極座標変換部418をさらに有し、
電圧差分計算ステップが、予め設定された目標電圧値Va(ref)と、前記極座標変換部418が生成したモータ電圧値Vaとに基づいて電圧差分ΔVを算出することを特徴とする上記(11)乃至(14)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(18)dq電流指令値生成ステップで生成されたd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタ490Aと、q軸ローパスフィルタ490Bと、をさらに有し、
前記d軸ローパスフィルタ490A及びq軸ローパスフィルタ490Bは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする上記(11)乃至(17)のいずれかに記載のモータ制御方法を提供することにより、上記課題を解決する。
(19)q軸電流指令値補正ステップが、q軸電流指令値Iqの絶対値を減少させる追加q軸電流指令値ΔIqを電圧差分ΔVに基づいて設定し、q軸電流指令値Iqに加算することを特徴とする上記(11)または(12)に記載のモータ制御方法を提供することにより、上記課題を解決する。
(20)dq電流指令値生成ステップで生成されたd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタ490Aと、q軸ローパスフィルタ490Bと、をさらに有し、
前記d軸ローパスフィルタ490A及びq軸ローパスフィルタ490Bは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする上記(19)記載のモータ制御方法を提供することにより、上記課題を解決する。
(1) In a motor control device including at least a sine wave control unit 40 for controlling the PM motor 10 with a sine wave PWM,
The sine wave control unit 40 includes:
A torque calculator 404 for calculating a torque value T of the PM motor 10;
A current command value setting unit 402 for setting a current command value Ia * based on an external torque command value T * and the torque value T;
A current command value generation unit 406 that generates a d-axis current command value Id ** and a q-axis current command value Iq ** based on the current command value Ia * ;
A voltage command value generation unit 416 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the d-axis current command value Id ** and the q-axis current command value Iq ** .
The current command value generation unit 406
A sin unit 464A that generates a d-axis current command value Id * that is a source of the d-axis current command value Id ** ;
A cos unit 464B that generates a q-axis current command value Iq * that is a source of the q-axis current command value Iq ** ;
A phase angle setting unit 462 that sets a current phase angle θi (base) that outputs a maximum torque at the current command value Ia * and outputs the current phase angle to the sin unit 464A and the cos unit 464B;
A voltage difference calculation unit that calculates a voltage difference ΔV based on a motor voltage value Va of the PM motor 10 and a target voltage value Va (ref) that is the maximum voltage value at which the PM motor 10 can stably operate. 408,
An additional d-axis current value generation unit 466 that calculates an additional d-axis current command value ΔId that increases the d-axis current command value Id * in the negative direction based on the voltage difference ΔV;
By providing a motor control device 100, comprising: a q-axis current command value correction unit 468 that decreases the absolute value of the q-axis current command value Iq * based on the voltage difference ΔV. To solve.
(2) By adding the predetermined offset value a to the voltage difference ΔV and outputting the sum to the q-axis current command value correction unit 468, the motor control device 100 according to (1) above is provided. To solve.
(3) The q-axis current command value correction unit 468a sets the additional current phase angle Δθi based on the voltage difference ΔV, and the cos unit 464B adds the current phase angle θi (base) and the additional current phase angle Δθi. The above problem is solved by providing the motor control device 100 according to (1) or (2), wherein the q-axis current command value Iq * is generated based on the corrected phase angle θi.
(4) The q-axis current command value correction unit 468a sets the additional current phase angle Δθi based on the voltage difference ΔV, and the sin unit 464A and the cos unit 464B determine the current phase angle θi (base) and the additional current phase angle. The motor control device 100 according to (1) or (2) above, wherein the d-axis current command value Id * and the q-axis current command value Iq * are generated based on the corrected phase angle θi added to Δθi. By providing the above, the above-described problems are solved.
(5) The voltage difference calculation unit 408c includes a target voltage value calculation unit 484 that calculates the target voltage value Va (ref), and a motor voltage value calculation unit 482b that calculates the motor voltage value Va,
The voltage difference ΔV is calculated based on the target voltage value Va (ref) calculated by the target voltage value calculation unit 484 and the motor voltage value Va calculated by the motor voltage value calculation unit 482b (1) ) To (4) to provide the motor control device 100 according to any one of the above-described problems.
(6) The voltage difference calculation unit 408a determines the voltage difference based on the preset target voltage value Va (ref) and the d-axis voltage command value Vd and q-axis voltage command value Vq generated by the voltage command value generation unit 416. The above problem is solved by providing the motor control device 100 according to any one of (1) to (4), wherein ΔV is calculated.
(7) The sine wave control unit 40 further includes a polar coordinate conversion unit 418 that generates the motor voltage value Va based on the d-axis voltage command value Vd and the q-axis voltage command value Vq,
The voltage difference calculation unit 408b calculates the voltage difference ΔV based on the preset target voltage value Va (ref) and the motor voltage value Va generated by the polar coordinate conversion unit 418 (1) ) To (4) to provide the motor control device 100 according to any one of the above-described problems.
(8) A d-axis low-pass filter 490A to which the d-axis current command value Id ** and the q-axis current command value Iq ** from the current command value generation unit 406 are input respectively, and a q-axis low-pass filter 490B. ,
The d-axis low pass filter 490A and the q-axis low pass filter 490B, as well as rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, the absolute value of the q-axis current command value Iq ** is increased When the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases. By providing the motor control device 100 according to any one of the above (1) to (7), the decrease rate is delayed from the increase rate of the q-axis current command value Iq ** , whereby the above problem is solved. Resolve.
(9) the q-axis current command value correcting portion 468b is set based additional q-axis current command value ΔIq to reduce the absolute value of q-axis current command value Iq * to the voltage difference [Delta] V, q-axis current command value Iq * By adding the motor control device 100 according to the above (1) or (2), the above-mentioned problem is solved.
(10) A d-axis low-pass filter 490A to which the d-axis current command value Id ** and the q-axis current command value Iq ** from the current command value generation unit 406 are input respectively, and a q-axis low-pass filter 490B. ,
The d-axis low pass filter 490A and the q-axis low pass filter 490B, as well as rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, the absolute value of the q-axis current command value Iq ** is increased When the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases. The above problem is solved by providing the motor control device 100 according to the above (9), characterized in that the decreasing speed is delayed from the increasing speed of the q-axis current command value Iq ** .
(11) A motor control method for a motor control device including at least a sine wave control unit 40 for controlling the PM motor 10 with a sine wave PWM,
The sine wave control unit 40 includes:
A torque calculating step for calculating a torque value T of the PM motor 10;
A current command value setting step for setting a current command value Ia * based on an external torque command value T * and the torque value T;
A dq current command value generation step for generating a d-axis current command value Id ** and a q-axis current command value Iq ** based on the current command value Ia * ;
A voltage command value generation step for generating a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the d-axis current command value Id ** and the q-axis current command value Iq ** ,
The dq current command value generation step includes:
A d-axis current command value generation step for generating a d-axis current command value Id * that is a source of the d-axis current command value Id ** ;
A q-axis current command value generating step for generating a q-axis current command value Iq * that is a source of the q-axis current command value Iq ** ;
A phase angle setting step for setting a current phase angle θi (base) that is used in the d-axis current command value generation step and the q-axis current command value generation step and outputs a maximum torque at the current command value Ia * ; ,
Voltage difference calculation step of calculating a voltage difference ΔV based on the motor voltage value Va of the PM motor 10 and the target voltage value Va (ref) which is the maximum voltage value at which the PM motor 10 can stably operate. When,
An additional d-axis current value generation step of calculating an additional d-axis current command value ΔId that increases the d-axis current command value Id * in the negative direction based on the voltage difference ΔV;
A q-axis current command value correcting step for reducing an absolute value of the q-axis current command value Iq * based on the voltage difference ΔV. To do.
(12) The above-mentioned problem is solved by providing the motor control method according to (11) above, wherein a q-axis current command value correction step is performed by adding a predetermined offset value a to the voltage difference ΔV. .
(13) The q-axis current command value correction step sets the additional current phase angle Δθi based on the voltage difference ΔV, and the q-axis current command value generation step includes the current phase angle θi (base) and the additional current phase angle Δθi. The motor control method described in (11) or (12) above is generated by generating the q-axis current command value Iq * based on the corrected phase angle θi obtained by combining To do.
(14) The q-axis current command value correction step sets the additional current phase angle Δθi based on the voltage difference ΔV, and the d-axis current command value generation step and the q-axis current command value generation step include the current phase angle θi (base). ) And the additional current phase angle Δθi are added together to generate the d-axis current command value Id * and the q-axis current command value Iq * (11) or (12) The above-mentioned problem is solved by providing the motor control method described in 1.
(15) The voltage difference calculation step includes a target voltage value calculation step for calculating the target voltage value Va (ref), and a motor voltage value calculation step for calculating the motor voltage value Va,
The voltage difference ΔV is calculated based on the target voltage value Va (ref) calculated in the target voltage value calculating step and the motor voltage value Va calculated in the motor voltage value calculating step. The problem is solved by providing the motor control method according to any one of (14).
(16) The voltage difference calculation step calculates the voltage difference ΔV based on the preset target voltage value Va (ref) , the d-axis voltage command value Vd generated in the voltage command value generation step, and the q-axis voltage command value Vq. The problem is solved by providing the motor control method according to any one of (11) to (14), wherein the motor control method is calculated.
(17) The sine wave control unit 40 further includes a polar coordinate conversion unit 418 that generates the motor voltage value Va based on the d-axis voltage command value Vd and the q-axis voltage command value Vq,
The voltage difference calculating step calculates the voltage difference ΔV based on the preset target voltage value Va (ref) and the motor voltage value Va generated by the polar coordinate converter 418 (11) The problem is solved by providing the motor control method according to any one of (14) to (14).
(18) The d-axis low-pass filter 490A and the q-axis low-pass filter 490B to which the d-axis current command value Id ** and the q-axis current command value Iq ** generated in the dq current command value generation step are respectively input Have
The d-axis low pass filter 490A and the q-axis low pass filter 490B, as well as rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, the absolute value of the q-axis current command value Iq ** is increased When the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases. The motor control method according to any one of the above (11) to (17), wherein the decrease speed is delayed from the increase speed of the q-axis current command value Iq ** , thereby solving the above problem. To do.
(19) the q-axis current command value correcting step, and set based on additional q-axis current command value ΔIq reduce the q-axis current command value Iq * of the absolute value of the voltage difference [Delta] V, the q-axis current command value Iq * By adding the motor control method according to the above (11) or (12), the above-mentioned problem is solved.
(20) A d-axis low-pass filter 490A and a q-axis low-pass filter 490B to which the d-axis current command value Id ** and the q-axis current command value Iq ** generated in the dq current command value generation step are respectively input Have
The d-axis low pass filter 490A and the q-axis low pass filter 490B, as well as rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, the absolute value of the q-axis current command value Iq ** is increased When the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases. The problem is solved by providing the motor control method according to the above (19), characterized in that the decreasing speed is delayed from the increasing speed of the q-axis current command value Iq ** .
 本発明に係るモータ制御装置及びモータ制御方法は、モータ電圧値Vaが目標電圧値Va(ref)を超えた場合に、その電圧差分ΔVに応じた追加d軸電流値ΔIdを出力しd軸電流指令値Idを負の方向に増加させ、モータ電圧値Vaを低減する。これにより、PMモータ10を安定制御が可能でかつ最大トルクとなるモータ電圧値Vaで動作させることができる。また、本発明に係るモータ制御装置及びモータ制御方法は、上記の構成に加え、q軸電流指令値Iq**の絶対値を減少させるq軸電流指令値補正部を有している。これにより、モータ電圧値Vaをさらに低減することができる。これにより、モータ電流を制御するためのマージンをさらに確保することができ、急激な電源電圧Vdcの低下や電気角速度ωの変動に対しても継続して安定した弱め磁束制御を行うことができる。 When the motor voltage value Va exceeds the target voltage value Va (ref) , the motor control device and motor control method according to the present invention outputs an additional d-axis current value ΔId corresponding to the voltage difference ΔV to output the d-axis current. The command value Id * is increased in the negative direction, and the motor voltage value Va is decreased. As a result, the PM motor 10 can be operated at a motor voltage value Va that can be stably controlled and has a maximum torque. In addition to the above-described configuration, the motor control device and the motor control method according to the present invention include a q-axis current command value correction unit that decreases the absolute value of the q-axis current command value Iq ** . Thereby, the motor voltage value Va can be further reduced. As a result, a margin for controlling the motor current can be further ensured, and stable flux-weakening control can be performed continuously against a sudden drop in the power supply voltage Vdc and fluctuations in the electrical angular velocity ω.
本発明に係るモータ制御装置の全体的なブロック図である。1 is an overall block diagram of a motor control device according to the present invention. 本発明に係るモータ制御装置の特徴部分のブロック図である。It is a block diagram of the characteristic part of the motor control apparatus which concerns on this invention. 本発明に係るモータ制御装置の電圧差分計算部の他の例を示す図である。It is a figure which shows the other example of the voltage difference calculation part of the motor control apparatus which concerns on this invention. 本発明に係るモータ制御装置の電圧差分計算部の他の例を示す図である。It is a figure which shows the other example of the voltage difference calculation part of the motor control apparatus which concerns on this invention. 本発明に係るモータ制御装置の電流指令値生成部の他の例を示す図である。It is a figure which shows the other example of the electric current command value production | generation part of the motor control apparatus which concerns on this invention. 本発明に係るモータ制御装置の電流指令値生成部の他の例を示す図である。It is a figure which shows the other example of the electric current command value production | generation part of the motor control apparatus which concerns on this invention.
 本発明に係るモータ制御装置100及びモータ制御方法の実施の形態について図面に基づいて説明する。ここで、図1は本発明に係るモータ制御装置100の全体的なブロック図である。本発明に係るモータ制御装置100は、PMモータ(永久磁石モータ)10の動作を制御するものであり、PMモータ10を正弦波PWMで制御する正弦波制御部40を少なくとも備えている。また、本発明を適用するモータ制御装置100は、その他の基本的な構成としてPMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、この駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、PMモータ10の電気角θを取得する角度検出部14と、駆動電流検出部12u、12vが取得した駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、外部(システムの上位の制御部等)から指示されるトルク指令値Tに基づいて矩形波制御モードにおけるd軸電圧指令値Vd、q軸電圧指令値Vqを生成する周知の矩形波制御部50と、PMモータ10の制御を正弦波制御部40と矩形波制御部50とで切り替える切替部24と、正弦波制御部40もしくは矩形波制御部50から出力されたd軸電圧指令値Vd、q軸電圧指令値VqをU相、V相、W相の三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、三相電圧指令値Vu、Vv、Vwと所定の周期の三角波とを比較してインバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有している。尚、dq/3相変換部32と駆動信号生成部36とが制御信号生成部30を構成する。 Embodiments of a motor control device 100 and a motor control method according to the present invention will be described with reference to the drawings. Here, FIG. 1 is an overall block diagram of a motor control apparatus 100 according to the present invention. A motor control device 100 according to the present invention controls the operation of a PM motor (permanent magnet motor) 10 and includes at least a sine wave control unit 40 that controls the PM motor 10 with sine wave PWM. The motor control device 100 to which the present invention is applied includes an inverter 20 that causes the three-phase AC drive currents Iu, Iv, and Iw to flow down to the PM motor 10 as other basic configurations, and the drive currents Iu, Iv, ( Drive current detectors 12u, 12v for acquiring the value of Iw), angle detector 14 for acquiring the electrical angle θ of the PM motor 10, and drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u, 12v. ) To a d-axis feedback current value Id and a q-axis feedback current value Iq, and a rectangular shape based on a torque command value T * instructed from the outside (such as a high-order control unit of the system). The well-known rectangular wave control unit 50 that generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the wave control mode, and the sine wave control unit 40 and the rectangular wave control unit 5 control the PM motor 10. The d-axis voltage command value Vd and the q-axis voltage command value Vq output from the switching unit 24 and the sine wave control unit 40 or the rectangular wave control unit 50 are converted into the U-phase, V-phase, and W-phase three-phase voltage commands. Dq / 3-phase converter 32 that converts the values Vu, Vv, and Vw, and three-phase voltage command values Vu, Vv, and Vw and a triangular wave having a predetermined period to compare the drive signals Su, Sv, And a drive signal generation unit 36 that generates Sw. The dq / 3-phase conversion unit 32 and the drive signal generation unit 36 constitute a control signal generation unit 30.
 モータ制御装置100を構成するインバータ20は駆動信号生成部36から出力されるHi-Lowの駆動信号Su、Sv、Swによってスイッチング動作して、バッテリ等の周知の直流電源部18からの直流電力を駆動信号Su、Sv、Swに基づく3相の交流電圧に変換して出力する。これにより、PMモータ10の電機子巻線には位相が1/3周期(2/3π(rad))づつずれた3相の駆動電流Iu、Iv、Iwがそれぞれ流下する。 The inverter 20 constituting the motor control device 100 performs a switching operation by Hi-Low drive signals Su, Sv, Sw output from the drive signal generation unit 36, and generates DC power from a known DC power supply unit 18 such as a battery. It is converted into a three-phase AC voltage based on the drive signals Su, Sv, Sw and output. As a result, the three-phase drive currents Iu, Iv, and Iw flow down through the armature winding of the PM motor 10 with a phase shifted by 1/3 period (2 / 3π (rad)).
 また、PMモータ10は、前述のように回転子側に永久磁石を設けるとともに、固定子側に3相の電機子巻線を設け、この3相の電機子巻線に前述の駆動電流Iu、Iv、Iwをそれぞれ流下させることで各電機子巻線の磁極及び磁束を連続的に変化させ、回転子を回転させるものである。尚、PMモータ10としては永久磁石を回転子に埋め込んだIPM(Interior Permanent Magnet)モータを用いることが好ましい。 The PM motor 10 is provided with a permanent magnet on the rotor side as described above, and a three-phase armature winding on the stator side, and the drive current Iu, By causing Iv and Iw to flow down respectively, the magnetic poles and magnetic flux of each armature winding are continuously changed to rotate the rotor. The PM motor 10 is preferably an IPM (Interior Permanent Magnet) motor in which a permanent magnet is embedded in a rotor.
 また、PMモータ10には周知の冷却機構101を設けることが好ましい。ここで、冷却機構101は、例えばPMモータ10の周囲に設けられ冷却水を流下することでPMモータ10を冷却するウォータージャケット102と、このウォータージャケット102に流下する冷却水を循環させるポンプ手段104と、冷却水を所定の熱交換によって冷却するラジエータ等の熱交換手段106と、冷却水の水温を取得する周知の温度取得手段108と、を有している。尚、冷却機構101の冷却水はPMモータ10を冷却するとともに、インバータ20内のパワー素子(スイッチング素子)等の冷却に用いることが好ましい。また、温度取得手段108は冷却水の水温Tempにより、間接的にPMモータ10の永久磁石の温度(推定温度)を取得するものであり、インバータ20を冷却した後の水温を取得することが好ましい。この構成によれば、温度取得手段108をインバータ20の近傍に設置することが可能となり、温度取得手段108の信号配線を短くすることができる。これにより、信号配線の取り回しが容易となる他、断線に対する信頼性を向上することができる。また、インバータ20冷却後の冷却水の水温Tempから永久磁石の推定温度を取得することにより、短期的に温度が増減するPMモータ10の電機子巻線の温度変化の影響を低減することができる。また、温度取得手段108で取得された水温Tempは誘起電圧定数補正部110に入力し、誘起電圧定数補正部110は入力した水温TempからPMモータ10の永久磁石の推定温度を間接的に取得し、この永久磁石の推定温度によってPMモータ10の誘起電圧定数φaを補正し出力する。このとき、誘起電圧定数補正部110は、トルク計算用と電圧計算用とで推定温度の異なる誘起電圧定数φa(T)、φa(Va)を出力することが好ましい。 The PM motor 10 is preferably provided with a known cooling mechanism 101. Here, the cooling mechanism 101 is provided around the PM motor 10, for example, a water jacket 102 that cools the PM motor 10 by flowing down the cooling water, and a pump unit 104 that circulates the cooling water flowing down to the water jacket 102. And a heat exchanging means 106 such as a radiator for cooling the cooling water by a predetermined heat exchange, and a known temperature obtaining means 108 for obtaining the water temperature of the cooling water. The cooling water of the cooling mechanism 101 is preferably used for cooling the PM motor 10 and cooling the power elements (switching elements) in the inverter 20. Moreover, the temperature acquisition means 108 acquires the temperature (estimated temperature) of the permanent magnet of the PM motor 10 indirectly by the coolant temperature Temp, and preferably acquires the water temperature after cooling the inverter 20. . According to this configuration, the temperature acquisition unit 108 can be installed in the vicinity of the inverter 20, and the signal wiring of the temperature acquisition unit 108 can be shortened. As a result, the signal wiring can be easily routed and the reliability against disconnection can be improved. Further, by acquiring the estimated temperature of the permanent magnet from the coolant temperature Temp after cooling the inverter 20, the influence of the temperature change of the armature winding of the PM motor 10 whose temperature increases or decreases in the short term can be reduced. . Further, the water temperature Temp acquired by the temperature acquisition means 108 is input to the induced voltage constant correction unit 110, and the induced voltage constant correction unit 110 indirectly acquires the estimated temperature of the permanent magnet of the PM motor 10 from the input water temperature Temp. The induced voltage constant φa of the PM motor 10 is corrected by the estimated temperature of the permanent magnet and output. At this time, the induced voltage constant correcting unit 110 preferably outputs induced voltage constants φa (T) and φa (Va) having different estimated temperatures for torque calculation and voltage calculation.
 また、駆動電流検出部12u、12vはインバータ20のスイッチング動作により流下する駆動電流Iu、Iv、Iwを非接触で取得可能な周知の電流センサを用いることができる。尚、本例では駆動電流Iu、Iv、Iwのうちの2つの駆動電流Iu、Ivを取得し、d軸、q軸フィードバック電流値Id、Iqに変換する例を示している。 Also, the drive current detection units 12u and 12v can use known current sensors that can acquire the drive currents Iu, Iv, and Iw that flow down by the switching operation of the inverter 20 in a non-contact manner. In this example, two drive currents Iu and Iv out of the drive currents Iu, Iv and Iw are acquired and converted into d-axis and q-axis feedback current values Id and Iq.
 また、角度検出部14としては、回転子の角度を取得可能な周知の角度センサを用いることができる。中でもレゾルバ回転角センサを用いて、PMモータ10の電気角θを取得することが特に好ましい。尚、上記の電気角θと駆動電流Iu、Ivの取得は、三角波の頂点と谷の両方のタイミングで行い、三角波の半周期毎にモータ制御装置100の各部にて使用することが好ましい。そして、角度検出部14が取得した電気角θは角速度演算部16にも出力され、この角速度演算部16は入力した電気角θから電気角速度ω(rad/s)を算出し、モータ制御装置100の各部に出力する。 Further, as the angle detection unit 14, a known angle sensor capable of acquiring the rotor angle can be used. In particular, it is particularly preferable to acquire the electrical angle θ of the PM motor 10 using a resolver rotation angle sensor. The electrical angle θ and the drive currents Iu and Iv are preferably acquired at both the apex and trough timings of the triangular wave and used in each part of the motor control device 100 every half cycle of the triangular wave. The electrical angle θ acquired by the angle detection unit 14 is also output to the angular velocity calculation unit 16, and the angular velocity calculation unit 16 calculates the electrical angular velocity ω (rad / s) from the input electrical angle θ, and the motor control device 100. Output to each part of.
 また、3相/dq変換部22は、角度検出部14が取得したPMモータ10の電気角θ(rad)に基づいて駆動電流検出部12u、12vが取得した駆動電流Iu、Iv、(Iw)の値に対する3相2相変換及び回転座標変換を行い、駆動電流Iu、Iv、(Iw)をd軸電流値(磁束分電流値)Idとq軸電流値(トルク分電流値)Iqとに変換する。そして、これらをd軸フィードバック電流値Id、q軸フィードバック電流値Iqとして切替部24に出力する。 In addition, the three-phase / dq conversion unit 22 is configured such that the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u, 12v based on the electrical angle θ (rad) of the PM motor 10 acquired by the angle detection unit 14. The three-phase two-phase conversion and the rotational coordinate conversion are performed on the value of the drive current Iu, Iv, (Iw) to the d-axis current value (magnetic flux current value) Id and the q-axis current value (torque current value) Iq. Convert. These are output to the switching unit 24 as a d-axis feedback current value Id and a q-axis feedback current value Iq.
 切替部24はPMモータ10の運転状況(トルク、回転数)に応じてd軸電圧指令値Vd、q軸電圧指令値Vqの生成方法を切り替える切り替え回路であり、PMモータ10が所定の中・低速回転で動作する場合には正弦波制御部40による正弦波制御モードによってPMモータ10を動作させる。また、PMモータ10が所定の高回転速度、高トルクで動作する場合にはPMモータ10の制御を矩形波制御部50に切り替えて矩形波制御モードによって動作させる。 The switching unit 24 is a switching circuit that switches the generation method of the d-axis voltage command value Vd and the q-axis voltage command value Vq in accordance with the operation status (torque, rotation speed) of the PM motor 10. When operating at a low speed, the PM motor 10 is operated in the sine wave control mode by the sine wave control unit 40. When the PM motor 10 operates at a predetermined high rotation speed and high torque, the control of the PM motor 10 is switched to the rectangular wave control unit 50 and is operated in the rectangular wave control mode.
 また、矩形波制御部50は、d軸フィードバック電流値Id、q軸フィードバック電流値IqからPMモータ10のトルクTを算出して、このトルクTと外部から指示されるトルク指令値Tとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを周知の手法によって生成し、切替部24を介して制御信号生成部30に出力する。この際、矩形波制御モードにおける電圧指令値|Va|及び後述するキャリア設定情報Scを制御信号生成部30に出力するようにしても良い。 Further, the rectangular wave control unit 50 calculates the torque T of the PM motor 10 from the d-axis feedback current value Id and the q-axis feedback current value Iq, and uses this torque T and a torque command value T * instructed from the outside. Based on this, the d-axis voltage command value Vd and the q-axis voltage command value Vq are generated by a well-known method and output to the control signal generation unit 30 via the switching unit 24. At this time, the voltage command value | Va | in the rectangular wave control mode and carrier setting information Sc described later may be output to the control signal generation unit 30.
 次に、正弦波制御部40は、電流指令値設定部402と、トルク計算部404と、電流指令値生成部406と、電圧差分計算部408と、電圧指令値生成部416と、を基本構成として有している。また、正弦波制御部40は、極座標変換部418と、同期制御部419と、を有している。 Next, the sine wave control unit 40 includes a current command value setting unit 402, a torque calculation unit 404, a current command value generation unit 406, a voltage difference calculation unit 408, and a voltage command value generation unit 416 as basic configurations. Have as. The sine wave control unit 40 includes a polar coordinate conversion unit 418 and a synchronization control unit 419.
 正弦波制御部40を構成する電圧指令値生成部416は、電流指令値生成部406から入力するd軸電流指令値Id**、q軸電流指令値Iq**と3相/dq変換部22から入力するd軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて、周知の演算処理を行いd軸電圧指令値Vd、q軸電圧指令値Vqを生成し切替部24を介して制御信号生成部30に出力する(電圧指令値生成ステップ)。 The voltage command value generation unit 416 constituting the sine wave control unit 40 includes a d-axis current command value Id ** and a q-axis current command value Iq ** input from the current command value generation unit 406 and a three-phase / dq conversion unit 22. Based on the d-axis feedback current value Id and the q-axis feedback current value Iq input from, the well-known arithmetic processing is performed to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq, which are controlled via the switching unit 24. It outputs to the signal generation part 30 (voltage command value generation step).
 また、極座標変換部418は電圧指令値生成部416で生成されるd軸、q軸電圧指令値Vd、Vq(周知の電流積分制御と非干渉制御の出力値により生成され電流比例制御による値が加算される前のものが好ましい)に対し極座標変換を施して、電圧位相θvと電圧指令値|Va|とを取得する。そして、極座標変換部418は電圧位相θvを同期制御部419に出力する。また、制御信号生成部30が線形補正部38を有する場合には、電圧指令値|Va|を線形補正部38に出力し、d軸、q軸電圧指令値Vd、Vq及び電圧指令値|Va|と、インバータ出力電圧の基本波成分との非線形性を補正するようにしても良い。 Further, the polar coordinate conversion unit 418 generates d-axis and q-axis voltage command values Vd and Vq generated by the voltage command value generation unit 416 (the values generated by the output values of the well-known current integration control and the non-interference control and the values based on the current proportional control). Polar coordinate conversion is performed on the pre-added one to obtain the voltage phase θv and the voltage command value | Va |. Then, the polar coordinate conversion unit 418 outputs the voltage phase θv to the synchronization control unit 419. When the control signal generation unit 30 includes the linear correction unit 38, the voltage command value | Va | is output to the linear correction unit 38, and the d-axis and q-axis voltage command values Vd and Vq and the voltage command value | Va are output. You may make it correct | amend nonlinearity with | and the fundamental wave component of an inverter output voltage.
 また、同期制御部419は、極座標変換部418で得られた電圧位相θvと電気角速度ωと電気角θとから三角波のキャリア設定情報Scを生成し駆動信号生成部36の三角波生成部34に出力する。尚、キャリア設定情報Scは三角波生成部34で生成される三角波の周波数を適切な状態に維持するために用いられる。 Further, the synchronization control unit 419 generates triangular wave carrier setting information Sc from the voltage phase θv, the electrical angular velocity ω, and the electrical angle θ obtained by the polar coordinate conversion unit 418, and outputs them to the triangular wave generation unit 34 of the drive signal generation unit 36. To do. The carrier setting information Sc is used to maintain the frequency of the triangular wave generated by the triangular wave generating unit 34 in an appropriate state.
 そして、制御信号生成部30を構成するdq/3相変換部32には上記のd軸、q軸電圧指令値Vd、Vqと、角度検出部14からの電気角θと角速度演算部16からの電気角速度ωが入力し、この電気角θと電気角速度ωとに基づいてインバータ20がスイッチング動作を行う新たなタイミングの予測電気角θ’を算出し、この予測電気角θ’に基づいてd軸、q軸電圧指令値Vd、Vqを三相電圧指令値Vu、Vv、Vwに変換し、駆動信号生成部36に出力する。 The dq / 3-phase converter 32 constituting the control signal generator 30 includes the d-axis and q-axis voltage command values Vd and Vq, the electrical angle θ from the angle detector 14, and the angular velocity calculator 16. An electrical angular velocity ω is input, and based on the electrical angle θ and the electrical angular velocity ω, a predicted electrical angle θ ′ at a new timing at which the inverter 20 performs a switching operation is calculated, and a d-axis is calculated based on the predicted electrical angle θ ′. , Q-axis voltage command values Vd, Vq are converted into three-phase voltage command values Vu, Vv, Vw and output to the drive signal generator 36.
 また、駆動信号生成部36は三角波生成部34を有しており、この三角波生成部34には前述のキャリア設定情報Scが入力して、このキャリア設定情報Scに基づいた周期の三角波を生成する。そして、駆動信号生成部36はこの三角波と三相電圧指令値Vu、Vv、Vwとをそれぞれ三角波比較する。これにより、Hi-Lowの駆動信号Su、Sv、Swが生成される。 Further, the drive signal generation unit 36 has a triangular wave generation unit 34. The above-described carrier setting information Sc is input to the triangular wave generation unit 34, and a triangular wave having a period based on the carrier setting information Sc is generated. . Then, the drive signal generator 36 compares the triangular wave with the three-phase voltage command values Vu, Vv, and Vw, respectively. As a result, Hi-Low drive signals Su, Sv, Sw are generated.
 そして、インバータ20は駆動信号生成部36から出力される駆動信号Su、Sv、Swにより内部のスイッチング素子がオン・オフし、直流電源部18からの直流電力を駆動信号Su、Sv、Swに基づく交流電圧に変換して出力する。これにより、PMモータ10の電機子巻線には位相が1/3周期(2/3π(rad))づつずれた交流の駆動電流Iu、Iv、Iwがそれぞれ流下する。これにより、PMモータ10がトルク指令値Tに応じたトルクで回転動作する。 The inverter 20 is turned on and off by the drive signals Su, Sv, Sw output from the drive signal generator 36, and the DC power from the DC power supply unit 18 is based on the drive signals Su, Sv, Sw. Convert to AC voltage and output. As a result, AC drive currents Iu, Iv, and Iw having phases shifted by 1/3 period (2 / 3π (rad)) flow down to the armature winding of the PM motor 10, respectively. As a result, the PM motor 10 rotates with a torque corresponding to the torque command value T * .
 次に、正弦波制御部40を構成する電流指令値設定部402、トルク計算部404、電流指令値生成部406(406a~406c)、電圧差分計算部408(408a~408c)の構成を図2~図6に示す部分拡大図を用いて説明する。ここで、図2~図6は図1中のブロックAの部分拡大図である。 Next, the configuration of the current command value setting unit 402, the torque calculation unit 404, the current command value generation unit 406 (406a to 406c), and the voltage difference calculation unit 408 (408a to 408c) constituting the sine wave control unit 40 is shown in FIG. Description will be made with reference to a partially enlarged view shown in FIG. 2 to 6 are partially enlarged views of the block A in FIG.
 先ず、トルク計算部404には電流指令値生成部406で生成されたd軸、q軸電流指令値Id**、Iq**が入力する。そして、トルク計算部404は入力したd軸、q軸電流指令値Id**、Iq**をベクトル合成し、その絶対値である電流指令絶対値|Ia**|と、その位相角である電流指令位相角θi’とを算出する。そして、予め設定されているインダクタンスマップ442を参照し、算出された電流指令絶対値Ia**と電流指令位相角θi’とに対応する(Ld-Lq)の値を取得する。尚、(Ld-Lq)はPMモータ10のd軸インダクタンスLdとq軸インダクタンスLqとの差分である。また、トルク計算部404は予め設定されているトルク補正マップ444を参照し、算出された電流指令絶対値Ia**と電流指令位相角θi’とに対応するトルク補正値Aを取得する。さらに、トルク計算部404には誘起電圧定数補正部110からの誘起電圧定数φa(T)が入力する。そして、トルク計算部404は、これらd軸、q軸電流指令値Id**、Iq**、誘起電圧定数φa(T)、Ld-Lq、トルク補正値AとからPMモータ10のトルクTを例えば下記(A)式に基づいて算出する。
T=P(Aφa(T)Iq**+(Ld-Lq)Id**Iq**)[N・m]・・(A)
尚、PはPMモータの永久磁石の極対数である。そして、トルク計算部404は算出したトルクTを電流指令値設定部402に出力する(トルク計算ステップ)。
First, the d-axis and q-axis current command values Id ** and Iq ** generated by the current command value generation unit 406 are input to the torque calculation unit 404. Then, the torque calculation unit 404 vector-synthesizes the input d-axis and q-axis current command values Id ** and Iq ** , and the absolute value of the current command absolute value | Ia ** | and the phase angle thereof. The current command phase angle θi ′ is calculated. Then, by referring to a preset inductance map 442, a value of (Ld−Lq) corresponding to the calculated current command absolute value Ia ** and the current command phase angle θi ′ is acquired. Note that (Ld−Lq) is the difference between the d-axis inductance Ld and the q-axis inductance Lq of the PM motor 10. Further, the torque calculation unit 404 refers to a preset torque correction map 444 and acquires a torque correction value AT corresponding to the calculated current command absolute value Ia ** and the current command phase angle θi ′. Further, the induced voltage constant φa (T) from the induced voltage constant correction unit 110 is input to the torque calculation unit 404. The torque calculation unit 404, these d-axis, q-axis current command value Id **, Iq **, the induced voltage constant φa (T), Ld-Lq , the torque of the PM motor 10 and a torque correction value A T T Is calculated based on the following equation (A), for example.
T = P (A T φa (T) Iq ** + (Ld−Lq) Id ** Iq ** ) [N · m] · (A)
P is the number of pole pairs of the permanent magnet of the PM motor. Then, the torque calculation unit 404 outputs the calculated torque T to the current command value setting unit 402 (torque calculation step).
 尚、トルク計算部404は電流指令値生成部406で生成されたd軸、q軸電流指令値Id**、Iq**に基づいてトルクTを算出するため、追加d軸電流値生成部466、q軸電流指令値補正部468がd軸、q軸電流指令値Id、Iqを増減した場合でも、PMモータ10のトルクをトルク指令値Tに一致させることができる。 The torque calculation unit 404 calculates the torque T based on the d-axis and q-axis current command values Id ** and Iq ** generated by the current command value generation unit 406. Therefore, the additional d-axis current value generation unit 466 Even when the q-axis current command value correction unit 468 increases or decreases the d-axis and q-axis current command values Id * and Iq * , the torque of the PM motor 10 can be matched with the torque command value T * .
 また、電流指令値設定部402はトルクリミッタ部420、電流指令値演算部424、電流リミッタ部422、トルクリミットマップ420a、電流リミットマップ422aを有しており、外部からのトルク指令値Tは先ずトルクリミッタ部420に入力する。また、トルクリミットマップ420a、電流リミットマップ422aには直流電源部18の電源電圧Vdc及びPMモータ10の電気角速度ωが入力し、トルクリミットマップ420aは入力した電源電圧Vdc、電気角速度ωにおける動作時に安定的に制御が可能な上限のトルクリミット値を予め設定されたデータマップから選択し、トルクリミッタ部420に出力する。そして、トルクリミッタ部420は入力したトルク指令値Tがトルクリミット値を超えている場合、トルク指令値Tをこのトルクリミット値に制限する。そして、このトルク指令値Tはトルク計算部404から入力したトルクTが減算され、その差分ΔTが電流指令値演算部424に入力する。 The current command value setting unit 402 includes a torque limiter unit 420, a current command value calculation unit 424, a current limiter unit 422, a torque limit map 420a, and a current limit map 422a. The torque command value T * from the outside is First, an input is made to the torque limiter unit 420. The torque limit map 420a and the current limit map 422a are supplied with the power supply voltage Vdc of the DC power supply 18 and the electrical angular velocity ω of the PM motor 10, and the torque limit map 420a is operated at the input power supply voltage Vdc and electrical angular velocity ω. An upper limit torque limit value that can be stably controlled is selected from a preset data map, and is output to the torque limiter unit 420. When the input torque command value T * exceeds the torque limit value, the torque limiter unit 420 limits the torque command value T * to this torque limit value. The torque command value T * is subtracted from the torque T input from the torque calculation unit 404, and the difference ΔT is input to the current command value calculation unit 424.
 また、電流リミットマップ422aは入力した電源電圧Vdc、電気角速度ωにおける動作時に安定的に制御が可能な上限の電流リミット値を予め設定されたデータマップから選択し、電流指令値演算部424及び電流リミッタ部422に出力する。 The current limit map 422a selects an upper limit current limit value that can be stably controlled during operation at the input power supply voltage Vdc and electrical angular velocity ω from a preset data map, and the current command value calculation unit 424 and current Output to the limiter unit 422.
 そして、電流指令値演算部424は入力した差分ΔTに対して周知の積分制御、比例制御等を行い電流指令値Iaを生成する。尚、この際の積分制御には前述の電流リミット値による制限が行われる。算出された電流指令値Iaは電流リミッタ部422に出力され、電流リミッタ部422は入力した電流指令値Iaが電流リミット値を超えている場合、この電流リミット値に制限して電流指令値生成部406に出力する(電流指令値設定ステップ)。 Then, the current command value calculation unit 424 performs well-known integral control, proportional control, etc. on the input difference ΔT to generate a current command value Ia * . In this case, the integration control is limited by the above-described current limit value. The calculated current command value Ia * is output to the current limiter unit 422. When the input current command value Ia * exceeds the current limit value, the current command value Ia * is limited to this current limit value. It outputs to the production | generation part 406 (current command value setting step).
 次に、本発明の特徴的な構成である電流指令値生成部406及び電圧差分計算部408の構成を説明する。先ず、図2を用いて第1の形態の電圧差分計算部408aを説明する。図2に示す第1の形態の電圧差分計算部408aは目標電圧値設定部480を有しており、この目標電圧値設定部480には予め実測等で取得された目標電圧値Va(ref)が電圧利用率K毎に設定されている。尚、目標電圧値Va(ref)とは電圧利用率KでPMモータ10を動作させる際に安定的に動作可能な最大の電圧値である。 Next, configurations of the current command value generation unit 406 and the voltage difference calculation unit 408, which are characteristic configurations of the present invention, will be described. First, the voltage difference calculation unit 408a according to the first embodiment will be described with reference to FIG. The voltage difference calculation unit 408a of the first embodiment shown in FIG. 2 has a target voltage value setting unit 480. The target voltage value setting unit 480 has a target voltage value Va (ref) acquired in advance by actual measurement or the like. Is set for each voltage utilization rate K. The target voltage value Va (ref) is the maximum voltage value that can be stably operated when the PM motor 10 is operated at the voltage utilization factor K.
 また、電圧差分計算部408aは第1の形態のモータ電圧値算出部482aを有しており、この第1の形態のモータ電圧値算出部482aには電圧指令値生成部416で生成されたd軸電圧指令値Vd、q軸電圧指令値Vqが入力する。そして、モータ電圧値算出部482aは下記式に基づいてモータ電圧値Vaを算出する。
Va=(Vd+Vq1/2
また、目標電圧値設定部480は電圧利用率Kと対応する目標電圧値Va(ref)を選択する。尚、電圧利用率Kは後述の電圧利用率データマップ484b等から直流電源部18の電源電圧Vdcと対応した電圧利用率Kを選択して設定しても良い。
Further, the voltage difference calculation unit 408a has a motor voltage value calculation unit 482a of the first form, and the motor voltage value calculation unit 482a of the first form has a d generated by the voltage command value generation unit 416. The shaft voltage command value Vd and the q-axis voltage command value Vq are input. Then, the motor voltage value calculation unit 482a calculates the motor voltage value Va based on the following formula.
Va = (Vd 2 + Vq 2 ) 1/2
Further, the target voltage value setting unit 480 selects a target voltage value Va (ref) corresponding to the voltage utilization rate K. The voltage utilization rate K may be set by selecting a voltage utilization rate K corresponding to the power supply voltage Vdc of the DC power supply unit 18 from the voltage utilization rate data map 484b described later.
 そして、第1の形態の電圧差分計算部408aは、モータ電圧値算出部482aが算出したモータ電圧値Vaから目標電圧値設定部480が選択した目標電圧値Va(ref)を減算することで電圧差分ΔVを生成し、電流指令値生成部406に出力する。 The voltage difference calculation unit 408a according to the first embodiment subtracts the target voltage value Va (ref) selected by the target voltage value setting unit 480 from the motor voltage value Va calculated by the motor voltage value calculation unit 482a. A difference ΔV is generated and output to the current command value generation unit 406.
 尚、電圧差分計算部408は図3の第2の形態の電圧差分計算部408bに示すように極座標変換部418等で算出された電圧指令値|Va|を直接取得してモータ電圧値Vaとし、電圧差分ΔVを生成するようにしても良い。 The voltage difference calculation unit 408 directly acquires the voltage command value | Va | calculated by the polar coordinate conversion unit 418 or the like as shown in the voltage difference calculation unit 408b of the second embodiment in FIG. The voltage difference ΔV may be generated.
 また、電圧差分計算部は図4の第3の形態の電圧差分計算部408cに示すように目標電圧値Va(ref)とモータ電圧値Vaとを計算で求めるようにしても良い。ここで、第3の形態の電圧差分計算部408cは、目標電圧値Va(ref)を算出する目標電圧値算出部484と、モータ電圧値Vaを算出する第2の形態のモータ電圧値算出部482bとを有している。そして、目標電圧値算出部484には電源電圧Vdcとd軸、q軸電流指令値Id**、Iq**が入力する。そして、下記式に基づいて電流指令絶対値Ia**を算出する。
Ia**=(Id**2+Iq**21/2
そして、算出した電流指令絶対値Ia**と対応する電圧降下値V(drop)を電圧降下データマップ484aより取得する。尚、電圧降下値V(drop)は流下電流に応じて変化するインバータ20のスイッチング素子に関する電圧降下の値であり、電圧降下データマップ484aはスイッチング素子の特性データシート等に基づいて作成される。
Further, the voltage difference calculation unit may obtain the target voltage value Va (ref) and the motor voltage value Va by calculation as shown in the voltage difference calculation unit 408c of the third embodiment in FIG. Here, the voltage difference calculation unit 408c of the third embodiment includes a target voltage value calculation unit 484 that calculates the target voltage value Va (ref) and a motor voltage value calculation unit of the second embodiment that calculates the motor voltage value Va. 482b. The target voltage value calculation unit 484 receives the power supply voltage Vdc and the d-axis and q-axis current command values Id ** and Iq ** . Then, the current command absolute value Ia ** is calculated based on the following formula.
Ia ** = (Id ** 2 + Iq ** 2 ) 1/2
Then, the voltage drop value V (drop) corresponding to the calculated current command absolute value Ia ** is acquired from the voltage drop data map 484a. The voltage drop value V (drop) is a value of the voltage drop related to the switching element of the inverter 20 that changes according to the flowing current, and the voltage drop data map 484a is created based on the characteristic data sheet of the switching element.
 また、目標電圧値算出部484は入力した電源電圧Vdcに対応した電圧利用率Kを電圧利用率データマップ484bから取得して、下記式に基づいて目標電圧値Va(ref)を算出する(目標電圧値算出ステップ)。
Va(ref)=K・(Vdc-V(drop)
Further, the target voltage value calculation unit 484 acquires the voltage usage rate K corresponding to the input power supply voltage Vdc from the voltage usage rate data map 484b, and calculates the target voltage value Va (ref) based on the following equation (target ). Voltage value calculation step).
Va (ref) = K · (Vdc−V (drop) )
 また、第2の形態のモータ電圧値算出部482bは、モータ電圧値Vaを算出する演算部489と、d軸インダクタンスLd、q軸インダクタンスLqが記録されたインダクタンスマップ488と、q軸インダクタンス補正係数が記録されたq軸インダクタンス補正係数マップ486と、を有している。そして、q軸インダクタンス補正係数マップ486には、温度取得手段108で取得された冷却水の水温Tempと、極座標変換部418で算出された電圧指令値|Va|と、PMモータ10の巻線温度Tcと、が入力し、これら水温Temp、電圧指令値|Va|、巻線温度Tcと対応するq軸インダクタンス補正係数CLqを予め設定されているデータマップから選択し演算部489に出力する。尚、巻線温度Tcは例えばPMモータ10の電機子巻線にサーミスタ等の温度センサを設けることで取得することができる。 The motor voltage value calculation unit 482b of the second embodiment includes a calculation unit 489 that calculates the motor voltage value Va, an inductance map 488 in which the d-axis inductance Ld and the q-axis inductance Lq are recorded, and a q-axis inductance correction coefficient. Q-axis inductance correction coefficient map 486 in which is recorded. In the q-axis inductance correction coefficient map 486, the coolant temperature Temp acquired by the temperature acquisition unit 108, the voltage command value | Va | calculated by the polar coordinate converter 418, and the winding temperature of the PM motor 10 are displayed. Tc is input, and the water temperature Temp, the voltage command value | Va |, the winding temperature Tc, and the q-axis inductance correction coefficient C Lq corresponding to the coil temperature Tc are selected from a preset data map and output to the calculation unit 489. The winding temperature Tc can be obtained by providing a temperature sensor such as a thermistor in the armature winding of the PM motor 10, for example.
 また、演算部489には、d軸、q軸電流指令値Id**、Iq**が入力し、演算部489は入力したd軸、q軸電流指令値Id**、Iq**に基づいて電流指令絶対値Ia**と電流指令位相角θi’とを算出する。そして、インダクタンスマップ488を参照し、算出された電流指令絶対値Ia**、電流指令位相角θi’と対応するd軸インダクタンスLd、q軸インダクタンスLqの値を取得する。またこのとき、演算部489は電圧補正マップを参照し、電流指令絶対値Ia**、電流指令位相角θi’と対応する電圧補正値を取得し、モータ電圧値Vaの補正を行うようにしても良い。 Further, the d-axis and q-axis current command values Id ** and Iq ** are input to the calculation unit 489, and the calculation unit 489 is based on the input d-axis and q-axis current command values Id ** and Iq ** . The current command absolute value Ia ** and the current command phase angle θi ′ are calculated. Then, referring to the inductance map 488, the calculated current command absolute value Ia ** , the values of the d-axis inductance Ld and the q-axis inductance Lq corresponding to the current command phase angle θi ′ are acquired. At this time, the calculation unit 489 refers to the voltage correction map, obtains a voltage correction value corresponding to the current command absolute value Ia ** and the current command phase angle θi ′, and corrects the motor voltage value Va. Also good.
 また、演算部489には、誘起電圧定数補正部110からPMモータ10の磁石の推定温度と対応した誘起電圧定数φa(Va)と、PMモータ10の電気角速度ωとが入力し、演算部489はこれらの数値と予め設定されているPMモータ10の電機子巻線抵抗Raとから下記式に基づいてモータ電圧値Vaを算出する(モータ電圧値算出ステップ)。尚、電機子巻線抵抗Raは巻線温度Tcに基づいて温度補正を行うようにしても良い。
Vd’=RaId**-ω(CLqLq)Iq**
Vq’=RaIq**+ωφa(Va)+ωLdId**
Va={(Vd’)+(Vq’)1/2
In addition, the induced voltage constant φa (Va) corresponding to the estimated temperature of the magnet of the PM motor 10 and the electrical angular velocity ω of the PM motor 10 are input to the computing unit 489 from the induced voltage constant correcting unit 110, and the computing unit 489. Calculates a motor voltage value Va from these numerical values and a preset armature winding resistance Ra of the PM motor 10 based on the following equation (motor voltage value calculating step). The armature winding resistance Ra may be corrected for temperature based on the winding temperature Tc.
Vd ′ = RaId ** − ω (C Lq Lq) Iq **
Vq ′ = RaIq ** + ωφa (Va) + ωLdId **
Va = {(Vd ′) 2 + (Vq ′) 2 } 1/2
 そして、第3の形態の電圧差分計算部408cは、この演算部489(第2のモータ電圧値算出部482b)によって算出されたモータ電圧値Vaから目標電圧値算出部484で算出されたVa(ref)を減算することで電圧差分ΔVを算出する(以上、電圧差分計算ステップ)。 And the voltage difference calculation part 408c of the 3rd form is Va ( calculated by the target voltage value calculation part 484) from the motor voltage value Va calculated by this calculating part 489 (2nd motor voltage value calculation part 482b). The voltage difference ΔV is calculated by subtracting ref) (the voltage difference calculation step).
 尚、第3の形態の電圧差分計算部408cでは電圧差分ΔVの応答が速いため、図4に示すように電流指令値生成部406の出力側にd軸ローパスフィルタ490A及びq軸ローパスフィルタ490Bを設け、d軸、q軸電流指令値Id**、Iq**をこのローパスフィルタ490A、490Bを介して電圧指令値生成部416に出力することが好ましい。この際、q軸ローパスフィルタ490Bの時定数を最適化して、q軸電流指令値Iq**の絶対値が減少する際にはそのq軸電流指令値Iq**を大きな遅延が生じないよう迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を、システムに要求されるトルクTの応答性が満足できる範囲内で遅らせて出力することが好ましい。また、d軸ローパスフィルタ490Aの時定数を最適化して、d軸電流指令値Id**の絶対値が増加する際にはそのd軸電流指令値Id**を大きな遅延が生じないよう迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせて出力することが好ましい。即ち、d軸ローパスフィルタ490Aのd軸電流指令値Id**の増加時の時定数をτd(up)、減少時の時定数をτd(down)とし、q軸ローパスフィルタ490Bのq軸電流指令値Iq**の増加時の時定数をτq(up)、減少時の時定数をτq(down)としたときに、
τd(up)<τq(up)<τd(down)
τq(down)<τq(up)
とすることが好ましい。尚、これらのことは後述の電流指令値生成部406b、406cにおいても同様である。
Since the voltage difference calculation unit 408c of the third embodiment has a fast response of the voltage difference ΔV, a d-axis low-pass filter 490A and a q-axis low-pass filter 490B are provided on the output side of the current command value generation unit 406 as shown in FIG. It is preferable that the d-axis and q-axis current command values Id ** and Iq ** are output to the voltage command value generation unit 416 via the low- pass filters 490A and 490B. At this time, by optimizing the time constant of the q-axis low pass filter 490B, quickly so that does not cause the q-axis current command value Iq ** is a large delay in the absolute value of the q-axis current command value Iq ** is reduced When the absolute value of the q-axis current command value Iq ** increases, the increase speed is preferably delayed within a range in which the response of the torque T required for the system can be satisfied. . Further, by optimizing the time constant of the d-axis low-pass filter 490A, when the absolute value of the d-axis current command value Id ** increases, the d-axis current command value Id ** can be quickly generated so as not to cause a large delay. In addition to the transmission, when the absolute value of the d-axis current command value Id ** decreases, it is preferable to output the decrease rate slower than the increase rate of the q-axis current command value Iq ** . That is, the time constant when the d-axis current command value Id ** of the d-axis low-pass filter 490A is increased is τd (up), the time constant when it is decreased is τd (down), and the q-axis current command of the q-axis low-pass filter 490B is When the time constant at the time of increase of the value Iq ** is τq (up) and the time constant at the time of decrease is τq (down),
τd (up) <τq (up) <τd (down)
τq (down) <τq (up)
It is preferable that The same applies to current command value generation units 406b and 406c described later.
 尚、後述するようにd軸電流指令値Id**の絶対値が増加し、q軸電流指令値Iq**が減少する場合とは、モータ電圧値Vaが目標電圧値Va(ref)を超えた場合であり、制御が不安定となる可能性がある。よって、このような場合には、d軸、q軸電流指令値Id**、Iq**の変化を迅速に電圧指令値生成部416へ出力し、モータ電圧値Vaの低減措置を迅速に行う。これにより、モータ電圧値Vaが過大な状態を速やかに解消することができる。また反対に、d軸電流指令値Id**の絶対値が減少し、q軸電流指令値Iq**が増加する場合とは、モータ電圧値Vaが目標電圧値Va(ref)に満たない場合であり、この場合にはPMモータ10は安定的に制御されている。よって、この場合にはモータ電圧値Vaが再度目標電圧値Va(ref)を超えないようd軸、q軸電流指令値Id**、Iq**の変化をゆっくりと行い、モータ電圧値Vaを緩やかに増加させる。 As will be described later, when the absolute value of the d-axis current command value Id ** increases and the q-axis current command value Iq ** decreases, the motor voltage value Va exceeds the target voltage value Va (ref) . The control may become unstable. Therefore, in such a case, changes in the d-axis and q-axis current command values Id ** and Iq ** are quickly output to the voltage command value generation unit 416, and measures for reducing the motor voltage value Va are quickly performed. . Thereby, the state where the motor voltage value Va is excessive can be quickly resolved. Conversely, when the absolute value of the d-axis current command value Id ** decreases and the q-axis current command value Iq ** increases, the motor voltage value Va is less than the target voltage value Va (ref). In this case, the PM motor 10 is stably controlled. Therefore, in this case, the d-axis and q-axis current command values Id ** and Iq ** are slowly changed so that the motor voltage value Va does not exceed the target voltage value Va (ref) again. Increase gently.
 次に、電流指令値生成部406(406a~406c)の構成及びdq電流指令値生成ステップに関して説明する。尚、正弦波制御部40による制御時に直流電源部18の電源電圧Vdcが急激に低下したり、PMモータ10の回転速度(電気角速度ω)が急激に上昇したりした場合、モータ電圧値Vaが目標電圧値Va(ref)を超過して電圧不足が発生し安定的な制御が行えなくなる可能性が有る。本発明を構成する電流指令値生成部406は、モータ電圧値Vaが目標電圧値Va(ref)を超えた場合に、d軸電流指令値Id**を負の方向に増加させてq軸電圧指令値Vqを減少させるとともに、q軸電流指令値Iq**の絶対値を減少させてd軸電圧指令値Vdを減少させ、これによりモータ電圧値Vaを低減して目標電圧値Va(ref)に抑えることを目的とするものである。 Next, the configuration of the current command value generation unit 406 (406a to 406c) and the dq current command value generation step will be described. In addition, when the power supply voltage Vdc of the DC power supply unit 18 rapidly decreases during the control by the sine wave control unit 40 or the rotational speed (electrical angular velocity ω) of the PM motor 10 rapidly increases, the motor voltage value Va is There is a possibility that the target voltage value Va (ref) will be exceeded and voltage shortage will occur and stable control cannot be performed. The current command value generation unit 406 constituting the present invention increases the d-axis current command value Id ** in the negative direction when the motor voltage value Va exceeds the target voltage value Va (ref) , thereby reducing the q-axis voltage. The command value Vq is decreased, and the absolute value of the q-axis current command value Iq ** is decreased to decrease the d-axis voltage command value Vd, thereby reducing the motor voltage value Va and the target voltage value Va (ref). The purpose is to keep it at a minimum.
 先ず、本発明を構成する電流指令値生成部406は、電流-位相角マップを備えた位相角設定部462と、sin部464Aと、cos部464Bと、電流リミッタ部472と、誘起電圧用d軸電流値生成部470と、追加d軸電流値生成部466と、q軸電流指令値補正部468(468a、468b)と、オフセット部469と、を有している。そして、電圧差分計算部408から入力した電圧差分ΔVは2分岐され、一方は追加d軸電流値生成部466に入力する。また、他方にはオフセット部469から所定のオフセット値a(固定値)が減算された後、q軸電流指令値補正部468に入力する。 First, the current command value generation unit 406 constituting the present invention includes a phase angle setting unit 462 having a current-phase angle map, a sin unit 464A, a cos unit 464B, a current limiter unit 472, and an induced voltage d. An axis current value generation unit 470, an additional d axis current value generation unit 466, a q axis current command value correction unit 468 (468a, 468b), and an offset unit 469 are provided. The voltage difference ΔV input from the voltage difference calculation unit 408 is branched into two, and one is input to the additional d-axis current value generation unit 466. On the other hand, after a predetermined offset value a (fixed value) is subtracted from the offset unit 469, it is input to the q-axis current command value correcting unit 468.
 そして、電流指令値生成部406の位相角設定部462は、電流指令値設定部402から入力した電流指令値Iaに基づいて電流-位相角マップを参照し、この電流指令値Iaと対応する電流位相角θi(base)を取得する(位相角設定ステップ)。尚、この電流位相角θi(base)は電流指令値Iaにて最大のトルクを出力する電流位相角であり、電流指令値Iaごとに予め設定されている。そして、図2~図4に示す第1の形態の電流指令値生成部406aでは、電流位相角θi(base)はsin部464Aに入力し、cos部464Bには電流位相角θi(base)に後述の追加位相角Δθiが加算された補正位相角θiが入力する。 Then, the phase angle setting unit 462 of the current command value generation unit 406 refers to the current-phase angle map based on the current command value Ia * input from the current command value setting unit 402, and corresponds to this current command value Ia *. Current phase angle θi (base) to be acquired is acquired (phase angle setting step). Incidentally, the current phase angle .theta.i (base) is a current phase angle output a maximum torque at a current command value Ia *, is set in advance for each current command value Ia *. In the current command value generation unit 406a of the first embodiment shown in FIGS. 2 to 4, the current phase angle θi (base) is input to the sin unit 464A, and the cos unit 464B has the current phase angle θi (base) . A corrected phase angle θi to which an additional phase angle Δθi described later is added is input.
 また、入力した電流指令値Iaは2分岐して一方はsin部464Aに、他方はcos部464Bに入力する。そして、第1の形態の電流指令値生成部406aではsin部464Aは下記式に基づいてd軸電流指令値Idを算出する(d軸電流指令値生成ステップ)。
Id=Ia・sin(θi(base)
また、cos部464Bは下記式に基づいてq軸電流指令値Iqを算出する(q軸電流指令値生成ステップ)。
Iq=Ia・cos(θi)
尚、電流位相角θi(base)、補正位相角θiはq軸とのなす角であり、後述の位相角リミッタにより0°~上限位相角(90°~85°程度)に制限される。また、d軸電流指令値Idは常に負の値をとり、またq軸電流指令値Iqは電流指令値Iaと同符号の値をとるよう制御される。
Also, the input current command value Ia * is branched into two and one is input to the sin portion 464A and the other is input to the cos portion 464B. In the current command value generation unit 406a of the first embodiment, the sin unit 464A calculates the d-axis current command value Id * based on the following equation (d-axis current command value generation step).
Id * = Ia * · sin (θi (base) )
The cos unit 464B calculates the q-axis current command value Iq * based on the following formula (q-axis current command value generation step).
Iq * = Ia * .cos (θi)
The current phase angle θi (base) and the correction phase angle θi are angles formed with the q axis, and are limited to 0 ° to the upper limit phase angle (about 90 ° to 85 °) by a phase angle limiter described later. Also, the d-axis current command value Id * is always a negative value, and the q-axis current command value Iq * is controlled to have the same sign as the current command value Ia * .
 また、電流指令値生成部406の誘起電圧用d軸電流値生成部470には直流電源部18の電源電圧Vdc及びPMモータ10の電気角速度ωが入力する。尚、誘起電圧用d軸電流値生成部470は電源電圧Vdc及び電気角速度ω毎に設定された弱め磁束制御用の誘起電圧用d軸電流値ΔId’のデータマップ(図示せず)を有しており、誘起電圧用d軸電流値生成部470は入力した電源電圧Vdc、電気角速度ωに応じた誘起電圧用d軸電流値ΔId’をこのデータマップから選択してd軸電流指令値Idに加算する。尚、誘起電圧用d軸電流値ΔId’は負の値をとる。よって、誘起電圧用d軸電流値ΔId’の加算によりd軸電流指令値Idは負の方向に増加し、その絶対値は増大する。尚、誘起電圧用d軸電流値生成部470は前述のようにデータマップの読み出しにより誘起電圧用d軸電流値ΔId’を設定する。よって、積分制御が必要な追加d軸電流値ΔIdよりも応答性が速く、急激な電源電圧Vdcの低下や電気角速度ωの変動に即応して誘起電圧用d軸電流値ΔId’を出力することができる。これにより、モータ電圧値Vaの超過状態をある程度低減することができる。 The induced voltage d-axis current value generation unit 470 of the current command value generation unit 406 receives the power supply voltage Vdc of the DC power supply unit 18 and the electrical angular velocity ω of the PM motor 10. The induced voltage d-axis current value generation unit 470 has a data map (not shown) of the induced voltage d-axis current value ΔId ′ for the flux weakening control set for each of the power supply voltage Vdc and the electrical angular velocity ω. The induced voltage d-axis current value generation unit 470 selects the induced voltage d-axis current value ΔId ′ corresponding to the input power supply voltage Vdc and the electrical angular velocity ω from this data map, and selects the d-axis current command value Id *. Add to. The induced voltage d-axis current value ΔId ′ takes a negative value. Therefore, by adding the induced voltage d-axis current value ΔId ′, the d-axis current command value Id * increases in the negative direction, and its absolute value increases. The induced voltage d-axis current value generation unit 470 sets the induced voltage d-axis current value ΔId ′ by reading the data map as described above. Therefore, the responsiveness is faster than the additional d-axis current value ΔId that requires integral control, and the induced voltage d-axis current value ΔId ′ is output in response to a sudden drop in the power supply voltage Vdc or a change in the electrical angular velocity ω. Can do. Thereby, the excess state of the motor voltage value Va can be reduced to some extent.
 また、電流指令値生成部406を構成する追加d軸電流値生成部466には、電圧差分計算部408から電圧差分ΔVが入力する。そして、この電圧差分ΔVが正の値の場合、即ちモータ電圧値Vaが目標電圧値Va(ref)を超えている場合、入力した電圧差分ΔVに対し周知の積分制御、比例制御等を行い追加d軸電流値ΔIdを生成する。尚、この際の積分制御及び生成された追加d軸電流値ΔIdに対しては後述する所定の電流リミット値による制限が行われる。そして、生成された追加d軸電流値ΔIdはsin部464Aから出力したd軸電流指令値Idに加算される。尚、この追加d軸電流値ΔIdも負の値をとる。よって、追加d軸電流値ΔIdの加算によりd軸電流指令値Idは負の方向に増加し、その絶対値は増大する。また、追加d軸電流値ΔIdが出力されている状態で電圧差分ΔVが負となった場合、追加d軸電流値生成部466は積分制御のみで追加d軸電流値ΔIdを生成する。これにより、追加d軸電流値ΔIdは負の電圧差分ΔVの値が反映されてその絶対値は徐々に減少し、最終的に“0”となる。尚、比例制御を行わないことで追加d軸電流値ΔIdには急激な変動成分が加算されず、追加d軸電流値ΔIdの急激な減少によるモータ電圧値Vaの再超過を防止することができる。また、追加d軸電流値ΔIdが出力されていない状態で負の電圧差分ΔVが入力した場合、追加d軸電流値生成部466は動作せず、追加d軸電流値ΔIdは生成されない(追加d軸電流値生成ステップ)。 Further, the voltage difference ΔV is input from the voltage difference calculation unit 408 to the additional d-axis current value generation unit 466 constituting the current command value generation unit 406. When the voltage difference ΔV is a positive value, that is, when the motor voltage value Va exceeds the target voltage value Va (ref) , the input voltage difference ΔV is added by performing well-known integral control, proportional control, etc. A d-axis current value ΔId is generated. In this case, the integration control and the generated additional d-axis current value ΔId are limited by a predetermined current limit value described later. Then, the generated additional d-axis current value ΔId is added to the d-axis current command value Id * output from the sin unit 464A. The additional d-axis current value ΔId also takes a negative value. Therefore, by adding the additional d-axis current value ΔId, the d-axis current command value Id * increases in the negative direction, and its absolute value increases. Further, when the voltage difference ΔV becomes negative while the additional d-axis current value ΔId is being output, the additional d-axis current value generation unit 466 generates the additional d-axis current value ΔId only by integral control. As a result, the additional d-axis current value ΔId reflects the value of the negative voltage difference ΔV, and its absolute value gradually decreases and finally becomes “0”. By not performing proportional control, a sudden fluctuation component is not added to the additional d-axis current value ΔId, and the motor voltage value Va can be prevented from exceeding again due to a sudden decrease in the additional d-axis current value ΔId. . Further, when the negative voltage difference ΔV is input in a state where the additional d-axis current value ΔId is not output, the additional d-axis current value generation unit 466 does not operate and the additional d-axis current value ΔId is not generated (additional d Axis current value generation step).
 そして、追加d軸電流値ΔIdと誘起電圧用d軸電流値ΔId’とが加算されたd軸電流指令値Id’は電流リミッタ部472に出力され、d軸電流指令値Id’が電流リミッタ部472の電流リミット値以下であれば、d軸電流指令値Id’はそのままd軸電流指令値Id**として電圧指令値生成部416へと出力される。また、電流リミット値を超えていれば電流リミット値に制限され電圧指令値生成部416へ出力される。尚、電流リミッタ部472のリミット値はd軸電流指令値Id’及び後述のq軸電流指令値Iqごとに個別に設定しても良いし、d軸、q軸電流指令値Id’、Iqの合成ベクトルの角度を維持したまま、その合成ベクトルの大きさで設定しても良い。また、その双方で行っても良い。 Then, the d-axis current command value Id * ′ obtained by adding the additional d-axis current value ΔId and the induced voltage d-axis current value ΔId ′ is output to the current limiter 472, and the d-axis current command value Id * ′ is the current. If it is below the current limit value of limiter unit 472, d-axis current command value Id * ′ is output to voltage command value generation unit 416 as d-axis current command value Id ** as it is. If the current limit value is exceeded, it is limited to the current limit value and output to the voltage command value generation unit 416. The limit value of the current limiter 472 may be set individually for each of the d-axis current command value Id * ′ and the q-axis current command value Iq * described later, or may be set separately for the d-axis and q-axis current command value Id * ′. , Iq * may be set with the size of the combined vector while maintaining the angle of the combined vector. Moreover, you may carry out by both.
 ここで、モータ電圧値Vaと電流指令値生成部406の関係を第3の形態の電流指令値生成部406cの構成に沿って、下記(1)、(2)、(3)式を用いて説明する。先ず、モータ電圧値Vaは下記(1)式で求められ、
Va=(Vd+Vq1/2 ・・・(1)
d軸電圧指令値Vd、q軸電圧指令値Vqは下記(2)(3)式で求められる(係数、補正値等の記載は省略する)。
Vd=RaId**-ωLqIq** ・・・(2)
Vq=RaIq**+ωφa+ωLdId** ・・・(3)
そして、電源電圧Vdcが減少したり電気角速度ωが上昇するなどして弱め磁束制御領域となった場合、先ず誘起電圧用d軸電流値生成部470が電源電圧Vdc、電気角速度ωと対応した誘起電圧用d軸電流値ΔId’をd軸電流指令値Idに加算する。これにより、d軸電流指令値Id**は負の方向に増加し、上記(3)式のωLdId**も負の方向に増大する。これにより、q軸電圧指令値Vqは減少し、モータ電圧値Vaは減少する。
Here, the relationship between the motor voltage value Va and the current command value generation unit 406 follows the configuration of the current command value generation unit 406c of the third embodiment, using the following formulas (1), (2), and (3). explain. First, the motor voltage value Va is obtained by the following equation (1),
Va = (Vd 2 + Vq 2 ) 1/2 (1)
The d-axis voltage command value Vd and the q-axis voltage command value Vq are obtained by the following equations (2) and (3) (description of coefficients, correction values, etc. is omitted).
Vd = RaId **- ωLqIq ** (2)
Vq = RaIq ** + ωφa + ωLdId ** (3)
When the power supply voltage Vdc decreases or the electrical angular velocity ω increases to enter the field-weakening magnetic flux control region, first, the induced voltage d-axis current value generation unit 470 first induces corresponding to the power supply voltage Vdc and the electrical angular velocity ω. The voltage d-axis current value ΔId ′ is added to the d-axis current command value Id * . As a result, the d-axis current command value Id ** increases in the negative direction, and ωLdId ** in the equation (3) also increases in the negative direction. As a result, the q-axis voltage command value Vq decreases and the motor voltage value Va decreases.
 またこのとき、モータ電圧値Vaが目標電圧値Va(ref)を超えている場合、電圧差分ΔVが正となり追加d軸電流値生成部466が動作して追加d軸電流値ΔIdが出力されd軸電流指令値Idに加算される。これによりd軸電流指令値Id**は負の方向にさらに増加し、その結果、上記(3)式のωLdId**も負の方向にさらに増大してq軸電圧指令値Vqは減少する。これにより、モータ電圧値Vaが減少する。そして、モータ電圧値Vaが目標電圧値Va(ref)と等しくなると電圧差分ΔVは“0”となり追加d軸電流値生成部466の動作は停止する。これにより、PMモータ10を安定制御が可能でかつ最大トルクとなるモータ電圧値Va(目標電圧値Va(ref))で動作させることができる。尚、d軸電流指令値Id**の変化により(2)式のRaId**の項も変動するが、この項は電気角速度ωが関与しないのでその変動量は他の項に比べて小さく、モータ電圧値Vaへの影響は小さい。 At this time, if the motor voltage value Va exceeds the target voltage value Va (ref) , the voltage difference ΔV becomes positive and the additional d-axis current value generation unit 466 operates to output the additional d-axis current value ΔId. It is added to the shaft current command value Id * . As a result, the d-axis current command value Id ** further increases in the negative direction, and as a result, the ωLdId ** in the equation (3) further increases in the negative direction and the q-axis voltage command value Vq decreases. Thereby, the motor voltage value Va decreases. When the motor voltage value Va becomes equal to the target voltage value Va (ref) , the voltage difference ΔV becomes “0” and the operation of the additional d-axis current value generation unit 466 stops. As a result, the PM motor 10 can be operated with a motor voltage value Va (target voltage value Va (ref) ) that can be stably controlled and has a maximum torque. The term RaId ** in the equation (2) also fluctuates due to the change in the d-axis current command value Id ** , but since this term does not involve the electrical angular velocity ω, the fluctuation amount is small compared to the other terms. The influence on the motor voltage value Va is small.
 ここで、例えばq軸電流指令値Iq**及び電気角速度ωが正の場合には、上記(3)式の(RaIq**+ωφa)は正の値をとり、(ωLdId**)は負の値をとる。そして、追加d軸電流値ΔIdが負の方向に増大し、上記(3)式の(RaIq**+ωφa)と(ωLdId**)とが釣り合った場合、d軸電流指令値Id**では、これ以上モータ電圧値Vaを減少することができない。従って、追加d軸電流値生成部466と並行して、以下に示すq軸電流指令値補正部468a、468bによるq軸電流指令値Iq**の減少措置が講じられる。 Here, for example, when the q-axis current command value Iq ** and the electrical angular velocity ω are positive, (RaIq ** + ωφa) in the above equation (3) takes a positive value and (ωLdId ** ) is negative. Takes a value. When the additional d-axis current value ΔId increases in the negative direction and (RaIq ** + ωφa) and (ωLdId ** ) in the above equation (3) are balanced, the d-axis current command value Id ** The motor voltage value Va cannot be reduced any more. Accordingly, in parallel with the additional d-axis current value generation unit 466, the following q-axis current command value correction units 468a and 468b reduce the q-axis current command value Iq ** .
 尚、前述のように、(RaIq**+ωφa)と(ωLdId**)とが釣り合うと、これ以上モータ電圧値Vaを減少することができない。よって、追加d軸電流値ΔIdは追加d軸電流値生成部466内の電流リミッタにより、上記の(RaIq**+ωφa)と(ωLd(Id+ΔId’+ΔId))とが釣り合う以上の追加d軸電流値ΔIdが流下しないよう制限することが好ましい。また、追加d軸電流値生成部466内の電流リミッタは、(Id+ΔId’+ΔId)が電源電圧Vdcと電気角速度ωごとに最大のトルクを出力する電流値となるように追加d軸電流値ΔIdの電流値を制限するようにしても良い。 As described above, when (RaIq ** + ωφa) and (ωLdId ** ) are balanced, the motor voltage value Va cannot be reduced any more. Therefore, the additional d-axis current value ΔId is added by the current limiter in the additional d-axis current value generation unit 466 so that the above (RaIq ** + ωφa) and (ωLd (Id * + ΔId ′ + ΔId)) are balanced. It is preferable to limit the current value ΔId so that it does not flow down. Further, the current limiter in the additional d-axis current value generation unit 466 has an additional d-axis current value such that (Id * + ΔId ′ + ΔId) is a current value that outputs the maximum torque for each power supply voltage Vdc and electrical angular velocity ω. The current value of ΔId may be limited.
 次に、第1の形態のq軸電流指令値補正部468aを説明する。先ず、第1の形態のq軸電流指令値補正部468aには、オフセット部469によってオフセット値aが減算された電圧差分ΔV(以後、これを偏差と記述する。)が入力する。ここで、追加d軸電流値生成部466とq軸電流指令値補正部468(468a、468b)とが同時に動作してd軸電流指令値Idとq軸電流指令値Iqとに対する補正動作が同時に開始するとモータ電圧値Vaが過剰に低下したり振動的に上下動するなど、制御が不安定となる可能性が有る。このため、本発明に係るモータ制御装置100では、q軸電流指令値補正部468の入力にオフセット値aを付加して動作を開始する電圧差分ΔVの値を異なるものとし、追加d軸電流値生成部466とq軸電流指令値補正部468とが同時に動作を開始しないよう制御する。これにより、モータ電圧値Vaの低減動作は追加d軸電流値生成部466が先に主体的に行い、q軸電流指令値補正部468はモータ電圧値Vaが目標電圧値Va(ref)からさらにオフセット分、上昇したときに動作を開始する。 Next, the q-axis current command value correction unit 468a according to the first embodiment will be described. First, a voltage difference ΔV (hereinafter referred to as a deviation) obtained by subtracting the offset value a by the offset unit 469 is input to the q-axis current command value correction unit 468a of the first embodiment. Here, the additional d-axis current value generation unit 466 and the q-axis current command value correction unit 468 (468a, 468b) operate simultaneously to correct the d-axis current command value Id * and the q-axis current command value Iq *. If the control is started at the same time, the motor voltage value Va may decrease excessively or move up and down oscillatingly, and the control may become unstable. For this reason, in the motor control device 100 according to the present invention, the value of the voltage difference ΔV that starts the operation by adding the offset value a to the input of the q-axis current command value correction unit 468 is different, and the additional d-axis current value The generation unit 466 and the q-axis current command value correction unit 468 are controlled so as not to start operation simultaneously. Thus, the additional d-axis current value generation unit 466 performs the reduction operation of the motor voltage value Va first, and the q-axis current command value correction unit 468 further increases the motor voltage value Va from the target voltage value Va (ref). The operation starts when it rises by an offset amount.
 そして、第1の形態のq軸電流指令値補正部468aは偏差が正の値の場合、即ちモータ電圧値Vaが(Va(ref)+a)を超えている場合、入力した偏差に対し周知の積分制御、比例制御等を行って追加位相角Δθiを生成する。尚、この際の積分制御及び生成された追加位相角Δθiに対しては所定の位相角リミッタによる制限が行われる。この位相角リミッタにおける位相角リミット値は、下記式で示すように位相角設定部462で出力される電流位相角θi(base)によって変化する値とすることが好ましい。
位相角リミット値=上限位相角-電流位相角θi(base)
そして、上記の上限位相角を90°~85°程度とすることで、電流位相角θi(base)に追加位相角Δθiを加算した補正位相角θiを常に上限位相角(90°)以下とすることができる。また、上限位相角を90°よりも小さく設定することで、電気角θに誤差が生じた場合でも、補正位相角θiを90°以下とすることができる。
When the deviation is a positive value, that is, when the motor voltage value Va exceeds (Va (ref) + a), the q-axis current command value correction unit 468a of the first embodiment is well-known for the input deviation. An additional phase angle Δθi is generated by performing integral control, proportional control, and the like. In this case, the integration control and the generated additional phase angle Δθi are limited by a predetermined phase angle limiter. The phase angle limit value in the phase angle limiter is preferably a value that varies depending on the current phase angle θi (base) output from the phase angle setting unit 462 as shown in the following equation.
Phase angle limit value = upper limit phase angle−current phase angle θi (base)
The correction phase angle θi obtained by adding the additional phase angle Δθi to the current phase angle θi (base) is always equal to or less than the upper limit phase angle (90 °) by setting the upper limit phase angle to about 90 ° to 85 °. be able to. Further, by setting the upper limit phase angle to be smaller than 90 °, the correction phase angle θi can be set to 90 ° or less even when an error occurs in the electrical angle θ.
 このようにして第1の形態のq軸電流指令値補正部468aで生成された追加位相角Δθiは位相角設定部462から出力された電流位相角θi(base)に加算され補正位相角θiとなってcos部464Bに入力する。そして、cos部464Bは補正位相角θiに基づいてq軸電流指令値Iqを算出し、電流リミッタ部472に出力する。電流リミッタ部472ではq軸電流指令値Iqがの電流リミット値以下であれば、q軸電流指令値Iqをそのままq軸電流指令値Iq**として電圧指令値生成部416へ出力する。また、q軸電流指令値Iqが電流リミット値を超えていれば電流リミット値に制限して電圧指令値生成部416へ出力する。 Thus, the additional phase angle Δθi generated by the q-axis current command value correction unit 468a of the first embodiment is added to the current phase angle θi (base) output from the phase angle setting unit 462, and the correction phase angle θi And input to the cos part 464B. Then, the cos unit 464B calculates the q-axis current command value Iq * based on the corrected phase angle θi and outputs it to the current limiter unit 472. If less current limiter section 472 in the q-axis current command value Iq * is a current limit value, and outputs the voltage command value generating unit 416 a q-axis current command value Iq * as the q-axis current command value Iq ** intact. Also, if the q-axis current command value Iq * exceeds the current limit value, it is limited to the current limit value and output to the voltage command value generation unit 416.
 ここで、追加位相角Δθiは正であり、補正位相角θiは位相角リミッタにより90°以下に制限されるから、よって補正位相角θiは 90°>θi>θi(base)となる。従って、cos部464Bが出力する Iq=Ia・cos(θi) は
Iq=Ia・cos(θi(base)) よりも小さくなる。
これにより、q軸電流指令値Iq(Iq**)は減少し、上記(2)式の(ωLqIq**)の項の絶対値が小さくなる。これにより、d軸電圧指令値Vdが減少し、モータ電圧値Vaを低減することができる。
Here, since the additional phase angle Δθi is positive and the correction phase angle θi is limited to 90 ° or less by the phase angle limiter, the correction phase angle θi is 90 °>θi> θi (base) . Therefore, Iq * = Ia * · cos (θi) output from the cos unit 464B is smaller than Iq * = Ia * · cos (θi (base) ).
As a result, the q-axis current command value Iq * (Iq ** ) decreases, and the absolute value of the term (ωLqIq ** ) in the above equation (2) decreases. As a result, the d-axis voltage command value Vd decreases, and the motor voltage value Va can be reduced.
 また、上記のように正の追加位相角Δθiが出力されている状態で偏差が負となった場合、q軸電流指令値補正部468aは積分制御のみで追加位相角Δθiを生成する。これにより、追加位相角Δθiは負の偏差の値が反映されて徐々に低下し、最終的に“0”となる。尚、比例制御を行わないことで追加位相角Δθiには急激な変動成分が加算されず、偏差の急激な減少によるモータ電圧値Vaの再超過を防止することができる。また、追加位相角Δθiが“0”となった状態ではq軸電流指令値補正部468aは動作しない。従って、追加位相角Δθiが出力されていない状態で負の偏差が入力してもq軸電流指令値補正部468aは動作しない。これは、後述の第2の形態のq軸電流指令値補正部468bにおいても同様である。 Further, when the deviation becomes negative while the positive additional phase angle Δθi is output as described above, the q-axis current command value correction unit 468a generates the additional phase angle Δθi only by integral control. As a result, the additional phase angle Δθi is gradually reduced to reflect the value of the negative deviation, and finally becomes “0”. By not performing proportional control, a sudden fluctuation component is not added to the additional phase angle Δθi, and it is possible to prevent the motor voltage value Va from exceeding again due to a sudden decrease in deviation. In addition, the q-axis current command value correction unit 468a does not operate in a state where the additional phase angle Δθi is “0”. Therefore, the q-axis current command value correction unit 468a does not operate even if a negative deviation is input in a state where the additional phase angle Δθi is not output. The same applies to the q-axis current command value correction unit 468b of the second embodiment described later.
 次に、第2の形態のq軸電流指令値補正部468bを用いた電流指令値生成部406bの構成に関して図5を用いて説明する。先ず、第2の形態の電流指令値生成部406bは、cos部464Bに位相角設定部462からの電流位相角θi(base)が入力し、sin部464Aと同様に電流位相角θi(base)に基づいてq軸電流指令値Iqが算出される。 Next, the configuration of the current command value generation unit 406b using the q-axis current command value correction unit 468b of the second embodiment will be described with reference to FIG. First, the current command value generating portion 406b of the second embodiment is to input current phase angle .theta.i from the phase angle setting section 462 (base) is to cos unit 464B, as with sin portion 464A current phase angle .theta.i (base) The q-axis current command value Iq * is calculated based on
 また、第2の形態のq軸電流指令値補正部468bでは、入力した偏差に対し追加d軸電流値生成部466と同様の周知の積分制御、比例制御、リミッタ制限等を行い偏差に準じた追加q軸電流値ΔIqを生成する。そして、この追加q軸電流値ΔIqをq軸電流指令値Iqから減算する。これによりq軸電流指令値Iq**は減少し、d軸電圧指令値Vdが減少する。これにより、モータ電圧値Vaが低減する(以上、q軸電流指令値補正ステップ)。 The q-axis current command value correction unit 468b according to the second embodiment performs well-known integral control, proportional control, limiter limitation, etc., similar to the additional d-axis current value generation unit 466, according to the deviation. An additional q-axis current value ΔIq is generated. Then, the additional q-axis current value ΔIq is subtracted from the q-axis current command value Iq * . As a result, the q-axis current command value Iq ** decreases, and the d-axis voltage command value Vd decreases. Thereby, the motor voltage value Va is reduced (the q-axis current command value correction step).
 このように、本発明に係るモータ制御装置100では、追加d軸電流値ΔIdによるモータ電圧値Vaの低減に加え、q軸電流指令値補正部468(468a、468b)がq軸電流指令値Iqを減少させるため、更なるモータ電圧値Vaの低減が可能となる。これにより、モータ電圧値Vaが目標電圧値Va(ref)を超過した状態を速やかに解消することができ、急激な電源電圧Vdcの低下や電気角速度ωの変動に対しても継続して安定した弱め磁束制御を行うことができる。 As described above, in the motor control device 100 according to the present invention, in addition to the reduction of the motor voltage value Va by the additional d-axis current value ΔId, the q-axis current command value correction unit 468 (468a, 468b) has the q-axis current command value Iq. Since * is reduced, the motor voltage value Va can be further reduced. As a result, the state in which the motor voltage value Va exceeds the target voltage value Va (ref) can be quickly eliminated, and the motor voltage value Va is continuously stable even against a sudden drop in the power supply voltage Vdc and fluctuations in the electrical angular velocity ω. Magnetic flux weakening control can be performed.
 尚、q軸電流指令値補正部468の積分制御は、積分値が増大する方向(偏差が正の値の場合)での積分ゲインを大きく設定し、積分値が減少する方向(偏差が負の値の場合)での積分ゲインを小さく設定することが好ましい。この構成によれば、モータ電圧値Vaが(Va(ref)+a)を超えてモータ電圧の不足が想定される際に、大きな積分ゲインによって積分値(追加位相角Δθiもしくは追加q軸電流値ΔIq)を迅速に増大させることができる。これにより、モータ電圧値Vaを速やかに低減しモータ電圧の不足を事前もしくは迅速に解消することができる。また、積分値が減少する方向では小さな積分ゲインで積分値(追加位相角Δθiもしくは追加q軸電流値ΔIq)を緩やかに減少させ、モータ電圧値Vaの急上昇を防止して目標電圧値Va(ref)を再度超過することを防ぐことができる。 Note that the integral control of the q-axis current command value correction unit 468 is such that the integral gain in the direction in which the integral value increases (when the deviation is a positive value) is set large, and the integral value decreases (the deviation is negative). It is preferable to set the integral gain in the case of a value small. According to this configuration, when the motor voltage value Va exceeds (Va (ref) + a) and it is assumed that the motor voltage is insufficient, the integrated value (additional phase angle Δθi or additional q-axis current value ΔIq ) Can be increased quickly. As a result, the motor voltage value Va can be quickly reduced, and the shortage of the motor voltage can be eliminated in advance or quickly. Further, in the direction in which the integral value decreases, the integral value (additional phase angle Δθi or additional q-axis current value ΔIq) is gradually decreased with a small integral gain to prevent the motor voltage value Va from rapidly increasing, and the target voltage value Va (ref ) Can be prevented again.
 さらに、q軸電流指令値補正部468では偏差の値が予め設定した所定の閾値を上回った場合、通常の積分制御における積分値に予め設定された割増位相角Δθi’もしくは割増q軸電流値ΔIq’を加算して追加位相角Δθi、追加q軸電流値ΔIqを生成してもよい。この構成によれば、モータ電圧値Vaが(Va(ref)+a)を著しく超過して閾値を超えるような大きな電圧差分ΔVが入力した場合に、積分値を速やかに上昇させる割増位相角Δθi’、割増q軸電流値ΔIq’を加算した追加位相角Δθi、追加q軸電流値ΔIqを出力することができるため、モータ電圧値Vaを迅速かつ緊急措置的に低減することが可能となる。 Further, in the q-axis current command value correction unit 468, when the deviation value exceeds a predetermined threshold value set in advance, an additional phase angle Δθi ′ or an additional q-axis current value ΔIq set in advance to an integral value in normal integration control. 'May be added to generate an additional phase angle Δθi and an additional q-axis current value ΔIq. According to this configuration, when a large voltage difference ΔV is input such that the motor voltage value Va significantly exceeds (Va (ref) + a) and exceeds the threshold value, the additional phase angle Δθi ′ that quickly increases the integral value. Since the additional phase angle Δθi and the additional q-axis current value ΔIq obtained by adding the additional q-axis current value ΔIq ′ can be output, the motor voltage value Va can be quickly and urgently reduced.
 また、電流指令値生成部406、406aは図6に示す第3の形態の電流指令値生成部406cとしても良い。この図6に示す第3の形態の電流指令値生成部406cは、sin部464A、cos部464Bの双方に補正位相角θiが入力する。よって、第2の形態の電流指令値生成部406aのsin部464Aは補正位相角θiに基づいてd軸電流指令値Idを算出する。尚、補正位相角θiに基づくd軸電流指令値Idは、電流位相角θi(base)に基づくd軸電流指令値Idよりも絶対値が大きくなる。 Further, the current command value generation units 406 and 406a may be the current command value generation unit 406c of the third embodiment shown in FIG. In the current command value generation unit 406c of the third embodiment shown in FIG. 6, the correction phase angle θi is input to both the sin unit 464A and the cos unit 464B. Therefore, the sine unit 464A of the current command value generation unit 406a of the second embodiment calculates the d-axis current command value Id * based on the corrected phase angle θi. The d-axis current command value Id * based on the correction phase angle θi has a larger absolute value than the d-axis current command value Id * based on the current phase angle θi (base) .
 ここで、q軸電流指令値Iq**が減少すると、上記(A)式に示すトルクTが減少する。しかしながら、第3の形態の電流指令値生成部406bでは、補正位相角θiに基づいてd軸電流指令値Idを算出するから、d軸電流指令値Id(Id**)の絶対値は増加し、前述の(RaIq**+ωφa)と(ωLdId**)とが釣り合う状態に達していなければ、q軸電流指令値Iq**の減少によるトルクTの減少を抑制することができる。また、減少したq軸電流指令値Iq**の値に基づいてトルク計算部404がトルクTを算出し、このトルクTの値に応じて電流指令値設定部402が電流指令値Iaの値を増加させることで、トルクTの減少分を補償する動作が行われる。 Here, when the q-axis current command value Iq ** decreases, the torque T shown in the above equation (A) decreases. However, since the current command value generation unit 406b of the third embodiment calculates the d-axis current command value Id * based on the corrected phase angle θi, the absolute value of the d-axis current command value Id * (Id ** ) is If the above-mentioned (RaIq ** + ωφa) and (ωLdId ** ) do not reach a balanced state, a decrease in torque T due to a decrease in q-axis current command value Iq ** can be suppressed. The torque calculation unit 404 calculates the torque T based on the decreased q-axis current command value Iq ** , and the current command value setting unit 402 determines the value of the current command value Ia * according to the value of the torque T. Is increased, the operation for compensating for the decrease in the torque T is performed.
 以上のように、本発明に係るモータ制御装置100及びモータ制御方法は、モータ電圧値Vaが目標電圧値Va(ref)を超えた場合に、その電圧差分ΔVに応じた追加d軸電流値ΔIdを出力しd軸電流指令値Idを負の方向に増加させ、モータ電圧値Vaを低減する。これにより、PMモータ10を安定制御が可能でかつ最大トルクとなるモータ電圧値Va(目標電圧値Va(ref))で動作させることができる。また、本発明に係るモータ制御装置100及びモータ制御方法は、上記の構成に加え、q軸電流指令値Iq**の絶対値を減少させるq軸電流指令値補正部468を有している。これにより、モータ電圧値Vaをさらに低減することができる。これにより、モータ電圧値Vaが目標電圧値Va(ref)を超過した状態を速やかに解消することができ、急激な電源電圧Vdcの低下や電気角速度ωの変動に対しても継続して安定した弱め磁束制御を行うことができる。 As described above, in the motor control device 100 and the motor control method according to the present invention, when the motor voltage value Va exceeds the target voltage value Va (ref) , the additional d-axis current value ΔId corresponding to the voltage difference ΔV. To increase the d-axis current command value Id * in the negative direction and reduce the motor voltage value Va. As a result, the PM motor 10 can be operated with a motor voltage value Va (target voltage value Va (ref) ) that can be stably controlled and has a maximum torque. In addition to the above configuration, the motor control device 100 and the motor control method according to the present invention include a q-axis current command value correction unit 468 that decreases the absolute value of the q-axis current command value Iq ** . Thereby, the motor voltage value Va can be further reduced. As a result, the state in which the motor voltage value Va exceeds the target voltage value Va (ref) can be quickly eliminated, and the motor voltage value Va is continuously stable even against a sudden drop in the power supply voltage Vdc and fluctuations in the electrical angular velocity ω. Magnetic flux weakening control can be performed.
 また、温度取得手段108によりPMモータ10の永久磁石の温度を推定する構成では、磁石の推定温度によるモータパラメータの変動を補正することができるため、誤差の少ないより精度の高い動作制御を行うことができる。 In addition, in the configuration in which the temperature of the permanent magnet of the PM motor 10 is estimated by the temperature acquisition means 108, fluctuations in motor parameters due to the estimated temperature of the magnet can be corrected, so that more accurate operation control with less error is performed. Can do.
 尚、本例で示したモータ制御装置100及びモータ制御方法は一例であり各部の構成、動作、各ステップの構成等は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。 The motor control device 100 and the motor control method shown in this example are only examples, and the configuration, operation, configuration of each step, and the like of each unit can be changed and implemented without departing from the gist of the present invention. .
      10  PMモータ
      40  正弦波制御部
      418 極座標変換部
      402 電流指令値設定部
      404 トルク計算部
      406 電流指令値生成部
      408、408a~408c 電圧差分計算部
      416 電圧指令値生成部
      462 位相角設定部
      464A sin部
      464B cos部
      466 追加d軸電流値生成部
      468、468a、468b q軸電流指令値補正部
      482b モータ電圧値算出部
      484 目標電圧値算出部
      490A d軸ローパスフィルタ
      490B q軸ローパスフィルタ
      100 モータ制御装置
      T   トルク値
      T  トルク指令値
      Ia 電流指令値
      Id、Id** d軸電流指令値
      Iq、Iq** q軸電流指令値
      ΔId 追加d軸電流指令値
      ΔIq 追加q軸電流指令値
      Va  モータ電圧値
      Va(ref) 目標電圧値
      ΔV  電圧差分
      Vd  d軸電圧指令値
      Vq  q軸電圧指令値
      θi(base) 電流位相角
      θi  補正位相角
      Δθi 追加電流位相角
      a   オフセット値
DESCRIPTION OF SYMBOLS 10 PM motor 40 Sine wave control part 418 Polar coordinate conversion part 402 Current command value setting part 404 Torque calculation part 406 Current command value generation part 408, 408a-408c Voltage difference calculation part 416 Voltage command value generation part 462 Phase angle setting part 464A sin Unit 464B cos unit 466 additional d-axis current value generation unit 468, 468a, 468b q-axis current command value correction unit 482b motor voltage value calculation unit 484 target voltage value calculation unit 490A d-axis low-pass filter 490B q-axis low-pass filter 100 motor control device T torque value T * torque command value Ia * current command value Id *, Id ** d-axis current command value Iq *, Iq ** q-axis current command value ΔId additional d-axis current command value ΔI Add q-axis current command value Va motor voltage Va (ref) the target voltage value ΔV voltage difference Vd d-axis voltage command value Vq q-axis voltage command value .theta.i (base) current phase angle .theta.i correction phase angle Δθi additional current phase angle a offset value

Claims (20)

  1. PMモータを正弦波PWMで制御する正弦波制御部を少なくとも備えたモータ制御装置において、
    前記正弦波制御部は、
    前記PMモータのトルク値Tを算出するトルク計算部と、
    外部からのトルク指令値Tと前記トルク値Tとに基づいて電流指令値Iaを設定する電流指令値設定部と、
    前記電流指令値Iaに基づいてd軸電流指令値Id**、q軸電流指令値Iq**を生成する電流指令値生成部と、
    前記d軸電流指令値Id**、q軸電流指令値Iq**に基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧指令値生成部と、を有し、
    前記電流指令値生成部は、
    前記d軸電流指令値Id**の元となるd軸電流指令値Idを生成するsin部と、
    前記q軸電流指令値Iq**の元となるq軸電流指令値Iqを生成するcos部と、
    前記電流指令値Iaにて最大のトルクを出力する電流位相角θi(base)を設定し前記sin部及びcos部に出力する位相角設定部と、
    前記PMモータのモータ電圧値Vaと、前記PMモータが安定的に動作可能な最大の電圧値である目標電圧値Va(ref)と、に基づいて電圧差分ΔVを算出する電圧差分計算部と、
    前記d軸電流指令値Idを負の方向に増加させる追加d軸電流指令値ΔIdを前記電圧差分ΔVに基づいて算出する追加d軸電流値生成部と、
    前記電圧差分ΔVに基づいて前記q軸電流指令値Iqの絶対値を減少させるq軸電流指令値補正部と、を有することを特徴とするモータ制御装置。
    In a motor control device including at least a sine wave control unit that controls a PM motor with sine wave PWM,
    The sine wave control unit is
    A torque calculator for calculating a torque value T of the PM motor;
    A current command value setting unit for setting a current command value Ia * based on an external torque command value T * and the torque value T;
    A current command value generation unit that generates a d-axis current command value Id ** and a q-axis current command value Iq ** based on the current command value Ia * ;
    A voltage command value generator that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the d-axis current command value Id ** and the q-axis current command value Iq ** .
    The current command value generator is
    A sin unit that generates a d-axis current command value Id * that is a source of the d-axis current command value Id ** ;
    And cos unit which generates the a q-axis current command value Iq ** original q-axis current command value Iq *,
    A phase angle setting unit that sets a current phase angle θi (base) that outputs a maximum torque at the current command value Ia * and outputs the current phase angle to the sin unit and the cos unit;
    A voltage difference calculation unit that calculates a voltage difference ΔV based on a motor voltage value Va of the PM motor and a target voltage value Va (ref) that is a maximum voltage value at which the PM motor can stably operate;
    An additional d-axis current value generation unit that calculates an additional d-axis current command value ΔId that increases the d-axis current command value Id * in the negative direction based on the voltage difference ΔV;
    A motor control device, comprising: a q-axis current command value correction unit that decreases an absolute value of the q-axis current command value Iq * based on the voltage difference ΔV.
  2. 所定のオフセット値を電圧差分ΔVに合算してq軸電流指令値補正部に出力することを特徴とする請求項1記載のモータ制御装置。 2. The motor control device according to claim 1, wherein the predetermined offset value is added to the voltage difference [Delta] V and output to the q-axis current command value correction unit.
  3. q軸電流指令値補正部が、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、cos部は電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてq軸電流指令値Iqを生成することを特徴とする請求項1または請求項2に記載のモータ制御装置。 The q-axis current command value correction unit sets the additional current phase angle Δθi based on the voltage difference ΔV, and the cos unit corrects the correction phase angle θi obtained by adding the current phase angle θi (base) and the additional current phase angle Δθi. The motor control device according to claim 1, wherein a q-axis current command value Iq * is generated based on
  4. q軸電流指令値補正部が、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、sin部及びcos部は電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてd軸電流指令値Id、q軸電流指令値Iqを生成することを特徴とする請求項1または請求項2に記載のモータ制御装置。 The q-axis current command value correction unit sets the additional current phase angle Δθi based on the voltage difference ΔV, and the sine unit and the cos unit correct the current phase angle θi (base) and the additional current phase angle Δθi. 3. The motor control device according to claim 1, wherein a d-axis current command value Id * and a q-axis current command value Iq * are generated based on the phase angle θi.
  5. 電圧差分計算部が、目標電圧値Va(ref)を算出する目標電圧値算出部と、モータ電圧値Vaを算出するモータ電圧値算出部と、を備え、
    前記目標電圧値算出部が算出した目標電圧値Va(ref)と、前記モータ電圧値算出部が算出したモータ電圧値Vaに基づいて電圧差分ΔVを算出することを特徴とする請求項1乃至請求項4のいずれかに記載のモータ制御装置。
    The voltage difference calculation unit includes a target voltage value calculation unit that calculates the target voltage value Va (ref), and a motor voltage value calculation unit that calculates the motor voltage value Va,
    The voltage difference ΔV is calculated based on the target voltage value Va (ref) calculated by the target voltage value calculation unit and the motor voltage value Va calculated by the motor voltage value calculation unit. Item 5. The motor control device according to any one of Items 4 to 6.
  6. 電圧差分計算部が、予め設定された目標電圧値Va(ref)と、電圧指令値生成部が生成したd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて電圧差分ΔVを算出することを特徴とする請求項1乃至請求項4のいずれかに記載のモータ制御装置。 The voltage difference calculation unit calculates the voltage difference ΔV based on the preset target voltage value Va (ref) , the d-axis voltage command value Vd generated by the voltage command value generation unit, and the q-axis voltage command value Vq. The motor control device according to claim 1, wherein the motor control device is a motor control device.
  7. 正弦波制御部が、d軸電圧指令値Vd、q軸電圧指令値Vqに基づいてモータ電圧値Vaを生成する極座標変換部をさらに有し、
    電圧差分計算部が、予め設定された目標電圧値Va(ref)と、前記極座標変換部が生成したモータ電圧値Vaとに基づいて電圧差分ΔVを算出することを特徴とする請求項1乃至請求項4のいずれかに記載のモータ制御装置。
    The sine wave control unit further includes a polar coordinate conversion unit that generates a motor voltage value Va based on the d-axis voltage command value Vd and the q-axis voltage command value Vq,
    The voltage difference calculation unit calculates a voltage difference ΔV based on a preset target voltage value Va (ref) and a motor voltage value Va generated by the polar coordinate conversion unit. Item 5. The motor control device according to any one of Items 4 to 6.
  8. 電流指令値生成部からのd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタと、q軸ローパスフィルタと、をさらに有し、
    前記d軸ローパスフィルタ及びq軸ローパスフィルタは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする請求項1乃至請求項7のいずれかに記載のモータ制御装置。
    A d-axis low-pass filter to which a d-axis current command value Id ** and a q-axis current command value Iq ** from the current command value generation unit are respectively input; and a q-axis low-pass filter;
    The d-axis low pass filter and the q-axis low pass filter, with rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, when the absolute value of the q-axis current command value Iq ** is increased , The speed of increase is delayed, and when the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases, its decrease The motor control device according to any one of claims 1 to 7, wherein the speed is delayed from an increasing speed of the q-axis current command value Iq ** .
  9. q軸電流指令値補正部が、q軸電流指令値Iqの絶対値を減少させる追加q軸電流指令値ΔIqを電圧差分ΔVに基づいて設定し、q軸電流指令値Iqに加算することを特徴とする請求項1または請求項2に記載のモータ制御装置。 the q-axis current command value correcting unit, set on the basis of the additional q-axis current command value ΔIq to reduce the absolute value of q-axis current command value Iq * to the voltage difference [Delta] V, is added to the q-axis current command value Iq * The motor control device according to claim 1, wherein the motor control device is a motor control device.
  10. 電流指令値生成部からのd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタと、q軸ローパスフィルタと、をさらに有し、
    前記d軸ローパスフィルタ及びq軸ローパスフィルタは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする請求項9記載のモータ制御装置。
    A d-axis low-pass filter to which a d-axis current command value Id ** and a q-axis current command value Iq ** from the current command value generation unit are respectively input; and a q-axis low-pass filter;
    The d-axis low pass filter and the q-axis low pass filter, with rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, when the absolute value of the q-axis current command value Iq ** is increased , The speed of increase is delayed, and when the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases, its decrease 10. The motor control device according to claim 9, wherein the speed is delayed from the increasing speed of the q-axis current command value Iq ** .
  11. PMモータを正弦波PWMで制御する正弦波制御部を少なくとも備えたモータ制御装置のモータ制御方法であって、
    前記正弦波制御部は、
    前記PMモータのトルク値Tを算出するトルク計算ステップと、
    外部からのトルク指令値Tと前記トルク値Tとに基づいて電流指令値Iaを設定する電流指令値設定ステップと、
    前記電流指令値Iaに基づいてd軸電流指令値Id**、q軸電流指令値Iq**を生成するdq電流指令値生成ステップと、
    前記d軸電流指令値Id**、q軸電流指令値Iq**に基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電圧指令値生成ステップと、を少なくとも実行し、
    前記dq電流指令値生成ステップは、
    前記d軸電流指令値Id**の元となるd軸電流指令値Idを生成するd軸電流指令値生成ステップと、
    前記q軸電流指令値Iq**の元となるq軸電流指令値Iqを生成するq軸電流指令値生成ステップと、
    前記d軸電流指令値生成ステップとq軸電流指令値生成ステップとで用いられ、前記電流指令値Iaにて最大のトルクを出力する電流位相角θi(base)を設定する位相角設定ステップと、
    前記PMモータのモータ電圧値Vaと、前記PMモータが安定的に動作可能な最大の電圧値である目標電圧値Va(ref)と、に基づいて電圧差分ΔVを算出する電圧差分計算ステップと、
    前記d軸電流指令値Idを負の方向に増加させる追加d軸電流指令値ΔIdを前記電圧差分ΔVに基づいて算出する追加d軸電流値生成ステップと、
    前記電圧差分ΔVに基づいて前記q軸電流指令値Iqの絶対値を減少させるq軸電流指令値補正ステップと、を有することを特徴とするモータ制御方法。
    A motor control method of a motor control device including at least a sine wave control unit for controlling a PM motor with a sine wave PWM,
    The sine wave control unit is
    A torque calculating step for calculating a torque value T of the PM motor;
    A current command value setting step for setting a current command value Ia * based on an external torque command value T * and the torque value T;
    A dq current command value generation step for generating a d-axis current command value Id ** and a q-axis current command value Iq ** based on the current command value Ia * ;
    A voltage command value generation step for generating a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the d-axis current command value Id ** and the q-axis current command value Iq ** ,
    The dq current command value generation step includes:
    A d-axis current command value generation step for generating a d-axis current command value Id * that is a source of the d-axis current command value Id ** ;
    A q-axis current command value generating step for generating a q-axis current command value Iq * that is a source of the q-axis current command value Iq ** ;
    A phase angle setting step for setting a current phase angle θi (base) that is used in the d-axis current command value generation step and the q-axis current command value generation step and outputs a maximum torque at the current command value Ia * ; ,
    A voltage difference calculation step of calculating a voltage difference ΔV based on a motor voltage value Va of the PM motor and a target voltage value Va (ref) that is a maximum voltage value at which the PM motor can stably operate;
    An additional d-axis current value generation step of calculating an additional d-axis current command value ΔId that increases the d-axis current command value Id * in the negative direction based on the voltage difference ΔV;
    And a q-axis current command value correcting step for reducing an absolute value of the q-axis current command value Iq * based on the voltage difference ΔV.
  12. 所定のオフセット値を電圧差分ΔVに合算してq軸電流指令値補正ステップを行うことを特徴とする請求項11記載のモータ制御方法。 The motor control method according to claim 11, wherein the q-axis current command value correction step is performed by adding the predetermined offset value to the voltage difference ΔV.
  13. q軸電流指令値補正ステップが、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、q軸電流指令値生成ステップは電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてq軸電流指令値Iqを生成することを特徴とする請求項11または請求項12に記載のモータ制御方法。 The q-axis current command value correction step sets the additional current phase angle Δθi based on the voltage difference ΔV, and the q-axis current command value generation step adds the current phase angle θi (base) and the additional current phase angle Δθi. The motor control method according to claim 11 or 12, wherein a q-axis current command value Iq * is generated based on the corrected phase angle θi.
  14. q軸電流指令値補正ステップが、電圧差分ΔVに基づいて追加電流位相角Δθiを設定するとともに、d軸電流指令値生成ステップ、q軸電流指令値生成ステップは電流位相角θi(base)と前記追加電流位相角Δθiとが合算した補正位相角θiに基づいてd軸電流指令値Id、q軸電流指令値Iqを生成することを特徴とする請求項11または請求項12に記載のモータ制御方法。 The q-axis current command value correction step sets the additional current phase angle Δθi based on the voltage difference ΔV, and the d-axis current command value generation step and the q-axis current command value generation step include the current phase angle θi (base) and the aforementioned The motor according to claim 11 or 12, wherein the d-axis current command value Id * and the q-axis current command value Iq * are generated based on the corrected phase angle θi obtained by adding the additional current phase angle Δθi. Control method.
  15. 電圧差分計算ステップが、目標電圧値Va(ref)を算出する目標電圧値算出ステップと、モータ電圧値Vaを算出するモータ電圧値算出ステップと、を備え、
    前記目標電圧値算出ステップで算出した目標電圧値Va(ref)と、前記モータ電圧値算出ステップで算出したモータ電圧値Vaに基づいて電圧差分ΔVを算出することを特徴とする請求項11乃至請求項14のいずれかに記載のモータ制御方法。
    The voltage difference calculation step includes a target voltage value calculation step for calculating the target voltage value Va (ref), and a motor voltage value calculation step for calculating the motor voltage value Va,
    12. The voltage difference ΔV is calculated based on the target voltage value Va (ref) calculated in the target voltage value calculation step and the motor voltage value Va calculated in the motor voltage value calculation step. Item 15. The motor control method according to any one of Items 14.
  16. 電圧差分計算ステップが、予め設定された目標電圧値Va(ref)と、電圧指令値生成ステップで生成したd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて電圧差分ΔVを算出することを特徴とする請求項11乃至請求項14のいずれかに記載のモータ制御方法。 The voltage difference calculation step calculates a voltage difference ΔV based on the preset target voltage value Va (ref) , the d-axis voltage command value Vd generated in the voltage command value generation step, and the q-axis voltage command value Vq. The motor control method according to claim 11, wherein:
  17. 正弦波制御部が、d軸電圧指令値Vd、q軸電圧指令値Vqに基づいてモータ電圧値Vaを生成する極座標変換部をさらに有し、
    電圧差分計算ステップが、予め設定された目標電圧値Va(ref)と、前記極座標変換部が生成したモータ電圧値Vaとに基づいて電圧差分ΔVを算出することを特徴とする請求項11乃至請求項14のいずれかに記載のモータ制御方法。
    The sine wave control unit further includes a polar coordinate conversion unit that generates a motor voltage value Va based on the d-axis voltage command value Vd and the q-axis voltage command value Vq,
    12. The voltage difference calculation step calculates a voltage difference ΔV based on a preset target voltage value Va (ref) and a motor voltage value Va generated by the polar coordinate conversion unit. Item 15. The motor control method according to any one of Items 14.
  18. dq電流指令値生成ステップで生成されたd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタと、q軸ローパスフィルタと、をさらに有し、
    前記d軸ローパスフィルタ及びq軸ローパスフィルタは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする請求項11乃至請求項17のいずれかに記載のモータ制御方法。
    a d-axis low-pass filter to which the d-axis current command value Id ** and the q-axis current command value Iq ** generated in the dq current command value generation step are respectively input; and a q-axis low-pass filter;
    The d-axis low pass filter and the q-axis low pass filter, with rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, when the absolute value of the q-axis current command value Iq ** is increased , The speed of increase is delayed, and when the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases, its decrease 18. The motor control method according to claim 11, wherein the speed is delayed from an increasing speed of the q-axis current command value Iq ** .
  19. q軸電流指令値補正ステップが、q軸電流指令値Iqの絶対値を減少させる追加q軸電流指令値ΔIqを電圧差分ΔVに基づいて設定し、q軸電流指令値Iqに加算することを特徴とする請求項11または請求項12に記載のモータ制御方法。 the q-axis current command value correcting step, and set based on additional q-axis current command value ΔIq to reduce the absolute value of q-axis current command value Iq * to the voltage difference [Delta] V, is added to the q-axis current command value Iq * The motor control method according to claim 11 or 12, wherein:
  20. dq電流指令値生成ステップで生成されたd軸電流指令値Id**、q軸電流指令値Iq**がそれぞれ入力するd軸ローパスフィルタと、q軸ローパスフィルタと、をさらに有し、
    前記d軸ローパスフィルタ及びq軸ローパスフィルタは、q軸電流指令値Iq**の絶対値が減少する際には迅速に伝達するとともに、q軸電流指令値Iq**の絶対値が増加する際にはその増加速度を遅らせ、d軸電流指令値Id**の絶対値が増加する際には迅速に伝達するとともに、d軸電流指令値Id**の絶対値が減少する際にはその減少速度をq軸電流指令値Iq**の増加速度よりも遅らせることを特徴とする請求項19記載のモータ制御方法。
    a d-axis low-pass filter to which the d-axis current command value Id ** and the q-axis current command value Iq ** generated in the dq current command value generation step are respectively input; and a q-axis low-pass filter;
    The d-axis low pass filter and the q-axis low pass filter, with rapidly transmitted when the absolute value of the q-axis current command value Iq ** is decreased, when the absolute value of the q-axis current command value Iq ** is increased , The speed of increase is delayed, and when the absolute value of the d-axis current command value Id ** increases, it is transmitted quickly, and when the absolute value of the d-axis current command value Id ** decreases, its decrease 20. The motor control method according to claim 19, wherein the speed is delayed from the increasing speed of the q-axis current command value Iq ** .
PCT/JP2019/005949 2018-03-23 2019-02-19 Motor control device and motor control method WO2019181322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018055514A JP7033973B2 (en) 2018-03-23 2018-03-23 Motor control device and motor control method
JP2018-055514 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181322A1 true WO2019181322A1 (en) 2019-09-26

Family

ID=67986984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005949 WO2019181322A1 (en) 2018-03-23 2019-02-19 Motor control device and motor control method

Country Status (2)

Country Link
JP (1) JP7033973B2 (en)
WO (1) WO2019181322A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021998A1 (en) * 2011-08-08 2013-02-14 アイシン・エィ・ダブリュ株式会社 Control device
JP2015091166A (en) * 2013-11-05 2015-05-11 株式会社デンソー Control device for ac motor
JP2017005895A (en) * 2015-06-11 2017-01-05 株式会社デンソー Control apparatus of rotary machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021998A1 (en) * 2011-08-08 2013-02-14 アイシン・エィ・ダブリュ株式会社 Control device
JP2015091166A (en) * 2013-11-05 2015-05-11 株式会社デンソー Control device for ac motor
JP2017005895A (en) * 2015-06-11 2017-01-05 株式会社デンソー Control apparatus of rotary machine

Also Published As

Publication number Publication date
JP7033973B2 (en) 2022-03-11
JP2019170052A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US8829830B2 (en) Synchronous machine control apparatus
JP5550672B2 (en) Motor control device
JP2007159368A (en) Control unit of motor drive system
JP6497106B2 (en) Multi-winding rotating machine control device
JP4641179B2 (en) Synchronous motor control method and control apparatus
JP7126910B2 (en) MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD
US20140225540A1 (en) Control apparatus for ac motor
JP5351002B2 (en) Motor control device
JP6124808B2 (en) Control device and control method for synchronous motor
JP4577949B2 (en) Motor control device
JP2010200430A (en) Drive controller for motors
KR101514391B1 (en) Vector controller and motor controller using the same, air-conditioner
JP2015116021A (en) Control device for permanent magnet synchronous motor
JP2010268579A (en) Permanent magnet synchronous electric motor system and magnetic field control method therefor
JP2007228744A (en) Motor drive controlling device and motor drive controlling method
JP6216215B2 (en) Control device for synchronous motor
JP4781933B2 (en) Electric motor control device
JP5163053B2 (en) Electric motor control device
JP5595436B2 (en) Motor control device
JP4652176B2 (en) Control device for permanent magnet type rotating electrical machine
WO2019181322A1 (en) Motor control device and motor control method
JP2010268599A (en) Control device for permanent magnet motor
JP2015073396A (en) Control apparatus and control method for electric motor
JP3933348B2 (en) Control device for embedded magnet type synchronous motor
JP2007135345A (en) Magnet motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770350

Country of ref document: EP

Kind code of ref document: A1