[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019181142A1 - 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ - Google Patents

熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ Download PDF

Info

Publication number
WO2019181142A1
WO2019181142A1 PCT/JP2018/048440 JP2018048440W WO2019181142A1 WO 2019181142 A1 WO2019181142 A1 WO 2019181142A1 JP 2018048440 W JP2018048440 W JP 2018048440W WO 2019181142 A1 WO2019181142 A1 WO 2019181142A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
additive element
base material
band
Prior art date
Application number
PCT/JP2018/048440
Other languages
English (en)
French (fr)
Inventor
真寛 足立
光太郎 廣瀬
木山 誠
松浦 尚
喜之 山本
恒博 竹内
俊佑 西野
Original Assignee
住友電気工業株式会社
学校法人トヨタ学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/032583 external-priority patent/WO2019180999A1/ja
Application filed by 住友電気工業株式会社, 学校法人トヨタ学園 filed Critical 住友電気工業株式会社
Priority to JP2020507364A priority Critical patent/JP7144506B2/ja
Priority to US16/981,586 priority patent/US11737364B2/en
Publication of WO2019181142A1 publication Critical patent/WO2019181142A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/04Binary compounds including binary selenium-tellurium compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • thermoelectric conversion material a thermoelectric conversion element, a thermoelectric conversion module, and an optical sensor.
  • thermoelectric conversion material As a thermoelectric conversion material, a technique has been reported in which a laminate obtained after laminating Si, Ge, and Au is heat-treated to form Au nanoparticles in SiGe (silicon germanium) (for example, Non-Patent Document 1). ). A technique using Si / GeB as a thermoelectric conversion material has been reported (for example, Non-Patent Document 2).
  • Patent Document 1 discloses a thermoelectric conversion material including nanoparticles containing a base material element and a different element different from the base material element in a base material made of a semiconductor material composed of the base material element.
  • the thermoelectric conversion material according to the present disclosure includes a base material that is a semiconductor composed of a base material element, and an element different from the base material element, and has an empty orbit in a d or f orbit located inside the outermost shell.
  • a first additive element that forms a first additional level in the forbidden band of the base material, and an element different from both the base material element and the first additive element, and the second additive element in the forbidden band of the base material.
  • a second additive element that forms an additional level. The difference between the number of electrons in the outermost shell of the second additive element and the number of electrons in the outermost shell of at least one of the matrix elements is 1.
  • FIG. 1 is a graph showing the relationship between the value of ZT and the content ratio of Au.
  • FIG. 2 is a schematic diagram showing the energy state of the thermoelectric conversion material when it contains the first additive element.
  • FIG. 3 is a schematic diagram showing an energy state of the thermoelectric conversion material according to Embodiment 1.
  • FIG. 4 is a diagram showing energy levels formed by each element as the first additive element substituted with Si and Ge when the base material is SiGe.
  • FIG. 5 is a schematic view showing the state of the structure of the thermoelectric conversion material in the second embodiment.
  • FIG. 6 is a graph showing the relationship between the temperature of the thermoelectric conversion material and ZT in the second embodiment.
  • FIG. 7 is an X-ray diffraction pattern of the thermoelectric conversion material in the second embodiment.
  • FIG. 8 is a graph showing the density of states when the content ratio of Re added as the first additive element to MnSi is changed.
  • FIG. 9 is a graph showing the density of states when the content ratio of Re added as the first additive element to MnSi is changed.
  • FIG. 10 is a diagram illustrating an example of a band structure in the case where the first added level of Sc as the first additive element exists in the SnSe-based material.
  • FIG. 11 is a diagram illustrating an example of a band structure in the case where the first added level of Ti and Zr as the first additive element exists in the SnSe-based material.
  • FIG. 12 is a diagram illustrating an example of a band structure in the case where the first additional level of Sc, Ti, and V as the first additive element exists in the Cu 2 Se-based material.
  • FIG. 13 is a diagram illustrating an example of a band structure in the case where the first added level of Co and Ni as the first additive element exists in the SnSe-based material.
  • FIG. 14 is a schematic diagram showing a structure of a ⁇ -type thermoelectric conversion element (power generation element) that is a thermoelectric conversion element in the sixth embodiment.
  • FIG. 15 is a diagram illustrating an example of the structure of the power generation module.
  • FIG. 16 is a diagram illustrating an example of the structure of an infrared sensor.
  • thermoelectric conversion since heat is directly converted into electricity, no extra waste is discharged during the conversion. Since thermoelectric conversion does not require a driving unit such as a motor, it has a feature such as easy maintenance of the apparatus.
  • thermoelectric conversion efficiency ⁇ of temperature difference (thermal energy) using a material (thermoelectric conversion material) for performing thermoelectric conversion is given by the following formula (1).
  • ⁇ T / T h ⁇ ( M-1) / (M + T c / T h) ⁇ (1)
  • the conversion efficiency
  • [Delta] T is the difference between T h and T c
  • T h is the temperature of the high temperature side
  • T c is the cold side temperature
  • M is (1 + ZT) 1/2
  • ZT ⁇ 2 ST / ⁇
  • is the Seebeck coefficient
  • S is the conductivity
  • is the thermal conductivity.
  • Conversion efficiency is a monotonically increasing function of ZT. Increasing ZT is important in the development of thermoelectric conversion materials.
  • thermoelectric conversion material having higher conversion efficiency than the thermoelectric conversion materials disclosed in Non-Patent Document 1, Non-Patent Document 2 and Patent Document 1 is required. If ZT can be increased, the efficiency of thermoelectric conversion can be improved.
  • thermoelectric conversion material a thermoelectric conversion element, a thermoelectric conversion module, and an optical sensor that have improved thermoelectric conversion efficiency.
  • thermoelectric conversion material According to the thermoelectric conversion material, the efficiency of thermoelectric conversion can be improved.
  • thermoelectric conversion material is a base material which is a semiconductor composed of a base material element and an element different from the base material element, and has an empty orbit in a d orbit or f orbit located inside the outermost shell.
  • the first additive element that forms the first additional level in the forbidden band of the material, and an element different from both the base material element and the first additive element, and the second additional element in the forbidden band of the base material
  • a second additive element that forms a level.
  • the difference between the number of electrons in the outermost shell of the second additive element and the number of electrons in the outermost shell of at least one of the matrix elements is 1.
  • the thermoelectric conversion material includes a base material that is a semiconductor composed of a base element. Since a semiconductor has a larger band gap than a conductive material, the Seebeck coefficient can be increased. As a result, the dimensionless figure of merit ZT can be increased by adopting the base material.
  • the thermoelectric conversion material can form the first additional level in the forbidden band of the base material as a new level by including the first additive element. Since the first additive element has an empty orbit in the d orbit or f orbit located inside the outermost shell, the energy width of the first additional level can be reduced. Therefore, the conductivity can be increased despite the high Seebeck coefficient.
  • the thermoelectric conversion material is an element different from both the base material element and the first additive element, and includes a second additive element that forms a second additional level in the forbidden band of the base material.
  • the difference between the number of electrons in the outermost shell of the second additive element and the number of electrons in the outermost shell of the base material element is 1. Therefore, the Fermi level can be controlled by forming an acceptor level or a donor level due to the second additional level formed by the second additive element. As a result, ZT can be increased more reliably and the efficiency of thermoelectric conversion can be improved.
  • the structure of the thermoelectric conversion material may include a crystal phase made of a base material element having a particle size of 50 nm or less. Since the crystal phase has a higher conductivity than the amorphous phase, ZT increases. On the other hand, when the grain size of the crystal phase becomes too large, the thermal conductivity tends to increase. An increase in thermal conductivity can be suppressed by setting the grain size of the crystal phase composed of the base material element to 50 nm or less. Therefore, according to such a thermoelectric conversion material, an increase in thermal conductivity can be suppressed while improving electrical conductivity. Therefore, the efficiency of thermoelectric conversion can be further improved by increasing ZT.
  • the particle size may be 25 nm or less. In this case, an increase in thermal conductivity can be further suppressed. Further, by setting the particle size to 20 nm, it is possible to further suppress an increase in thermal conductivity.
  • thermoelectric conversion material In the X-ray diffraction pattern of the thermoelectric conversion material, at least one of the first additive element and the second additive element with respect to the intensity of the peak having the maximum intensity among the peaks showing the crystal phase composed of the matrix element
  • the ratio of the intensity of the peak having the maximum intensity among the peaks showing the crystal phase including one may be 2.0% or less.
  • the carrier concentration when a large amount of the crystal phase containing at least one of the first additive element and the second additive element is precipitated, the carrier concentration is reduced compared to the case where the crystal phase is small, and the Fermi level is reduced. The position of the position is shifted or the density of the first additional level is lowered.
  • thermoelectric conversion material since the precipitation amount of the first additive element as a crystal phase and the precipitation amount of the second additive element as a crystal phase is small, the formation of the first additional level by the first additive element The effect and the effect of forming the second additional level by the second additive element can be obtained more reliably. Therefore, the efficiency of thermoelectric conversion can be further improved.
  • the above-mentioned strength ratio is preferably 1.0% or less, more preferably 0.5% or less, and further preferably 0.0%.
  • thermoelectric conversion material the content ratio of the crystal phase containing at least one of the first additive element and the second additive element with respect to the entire structure of the thermoelectric conversion material is 6.0% by volume or less. Also good. Since such a thermoelectric conversion material has a small amount of precipitation as a crystal phase of the first additive element and a crystal phase of the second additive element, formation of the first additional level by the first additive element And the effect of forming the second additional level by the second additive element can be obtained more reliably. Therefore, the efficiency of thermoelectric conversion can be further improved.
  • the structure of the thermoelectric conversion material may include an amorphous phase mainly composed of a base material element.
  • the crystal phase composed of the matrix element may exist in the amorphous phase.
  • the thermoelectric conversion material containing an amorphous phase can reduce thermal conductivity. Therefore, ZT can be increased.
  • the electrical conductivity of the thermoelectric conversion material can be improved by the presence of a crystal phase composed of a matrix element in the amorphous phase. Therefore, ZT can be increased. Therefore, the efficiency of thermoelectric conversion can be further improved.
  • the first additive element may be a transition metal. By doing so, it becomes easy to form the first additional level having a small energy width. Therefore, the conductivity can be increased. As a result, ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the second additional level includes an energy band closer to the first additional level of the valence band or the conduction band adjacent to the forbidden band of the base material and the first additional level. May exist between the two.
  • the Fermi level of the base material can be brought closer to the energy band closer to the first additional level of the valence band or the conduction band.
  • ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the state density of the first additional level may have a ratio of 0.1 or more with respect to the maximum value of the state density of the valence band adjacent to the forbidden band of the base material.
  • the state density of the first additional level can be made relatively large compared to the state density of the valence band. Therefore, the conductivity can be increased. As a result, ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the content ratio of the first additive element may be not less than 0.1 at% and not more than 5 at%. By doing so, it becomes easy to form the first additional level having a small energy width. Therefore, the conductivity can be increased. As a result, ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the base material may be a SiGe-based material.
  • the ratio of the energy difference between the first additional level closest to the valence band of the base material and the valence band of the base material with respect to the band gap of the base material may be 20% or more.
  • the ratio of the energy difference between the first additional level closest to the conduction band of the base material and the conduction band of the base material with respect to the band gap of the base material may be 20% or more.
  • the SiGe-based material means a material in which at least part of Si and Ge in SiGe and SiGe is replaced with another element such as C, Sn, and the like.
  • the first additional level closest to the valence band among the plurality of first additional levels and the valence band of the base material The energy difference ratio is 20% or more, and the energy difference ratio between the first additional level closest to the conduction band among the plurality of first addition levels and the conduction band of the base material May be 20% or more.
  • the first additive element may be Au, Fe, Cu, Ni, Mn, Cr, V, Ti, Ag, Pd, Pt, or Ir. These elements are preferably used when the first additional level is formed in the forbidden band when the base material is a SiGe-based material.
  • the first additive element may be Au or Cu.
  • the second additive element may be B.
  • a first additional level that becomes a new level in the forbidden band can be formed using Au or Cu as the first additive element.
  • the Fermi level can be controlled by using B as the second additive element and forming an acceptor level by the second additional level formed by the second additive element.
  • ZT can be increased more reliably and the efficiency of thermoelectric conversion can be improved.
  • the first additive element may be Fe.
  • the second additive element may be P.
  • the Fermi level can be controlled by using P as the second additive element and forming a donor level by the second additional level formed by the second additive element.
  • ZT can be increased more reliably and the efficiency of thermoelectric conversion can be improved.
  • the base material may be a MnSi-based material.
  • the first additive element may be Re or W.
  • the second additive element may be Cr or Fe.
  • electroconductivity can be raised more reliably.
  • ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the MnSi-based material means a material in which at least one part of Mn and Si in MnSi and MnSi is replaced with another element, for example, Al or W.
  • the base material may be a SnSe-based material.
  • the first additive element may be Sc, Ti, or Zr.
  • the second additive element may be F, Cl, Br, I, N, P, As, Sb, Bi, B, Al, Ga, or In.
  • electroconductivity can be raised more reliably.
  • ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the SnSe-based material means a material in which at least part of Sn and Se in SnSe and SnSe is replaced with another element, for example, S or Te.
  • the base material may be a Cu 2 Se material.
  • the first additive element may be V, Sc, Ti, Co, or Ni.
  • the second additive element may be F, Cl, Br, I, N, P, As, Sb, Bi, Mg, Zn, or Cd.
  • thermoelectric conversion element of the present application includes a thermoelectric conversion material portion, a first electrode disposed in contact with the thermoelectric conversion material portion, a second electrode disposed in contact with the thermoelectric conversion material portion and spaced apart from the first electrode, .
  • the thermoelectric conversion material portion is made of the thermoelectric conversion material of the present application in which the component composition is adjusted so that the conductivity type is p-type or n-type.
  • thermoelectric conversion element of the present application is made of a thermoelectric conversion material having an excellent thermoelectric conversion characteristic in which the component composition is adjusted so that the thermoelectric conversion material portion is p-type or n-type. Therefore, according to the thermoelectric conversion element of this application, the thermoelectric conversion element excellent in conversion efficiency can be provided.
  • thermoelectric conversion module of the present application includes a plurality of the thermoelectric conversion elements. According to the thermoelectric conversion module of the present application, a thermoelectric conversion module with improved thermoelectric conversion efficiency can be obtained by including a plurality of thermoelectric conversion elements of the present application having excellent thermoelectric conversion efficiency.
  • the optical sensor of the present application includes an absorber that absorbs light energy and a thermoelectric conversion material portion connected to the absorber.
  • the thermoelectric conversion material portion is made of the thermoelectric conversion material of the present application in which the component composition is adjusted so that the conductivity type is p-type or n-type.
  • the photosensor of the present application is made of a thermoelectric conversion material having an excellent thermoelectric conversion characteristic in which the composition of the thermoelectric conversion material portion is adjusted so that the conductivity type is p-type or n-type. Therefore, a highly sensitive optical sensor can be provided.
  • thermoelectric conversion material of the present application will be described with reference to the drawings.
  • the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
  • thermoelectric conversion material according to Embodiment 1 of the present application is a base material, which is a semiconductor composed of a base material element, and an element different from the base material element, and is a d-orbit or f located inside (outside) the outermost shell.
  • the difference between the number of electrons in the outermost shell of the second additive element and the number of electrons in the outermost shell of the base material element is 1.
  • the base material is, for example, SiGe that is a semiconductor.
  • the base material elements are Si and Ge.
  • the first additive element is Au.
  • the second additive element is B.
  • the first additional level formed by Au exists in the forbidden band of SiGe. The difference between the number of electrons in the outermost shell of B and the number of electrons in the outermost shells of Si and Ge, which are base materials, is 1.
  • Au is a transition metal.
  • the first additional level formed by Au exists in the forbidden band of SiGe.
  • the second additional level formed by B includes the valence band adjacent to the forbidden band of SiGe or the energy band closer to the first additional level of the conduction band and the first valence band and the first band. It exists between additional levels.
  • thermoelectric conversion material A method for manufacturing a thermoelectric conversion material according to Embodiment 1 of the present application will be briefly described.
  • a sapphire substrate as a base substrate is prepared.
  • a plurality of raw material elements constituting the thermoelectric conversion material are vapor-deposited on the sapphire substrate by using, for example, an MBE (Molecular Beam Epitaxy) method using an evaporation apparatus.
  • Si is simultaneously irradiated at a rate of 1 nm / min, Ge at 1 nm / min, Au at 0.1 nm / min, and B at a rate of 0.1 nm / min.
  • an amorphous film having a total thickness of 200 nm or more is deposited and film formation is performed.
  • the obtained product is annealed, specifically, for example, heated to 500 ° C. and held for 15 minutes. By this heat treatment, the first additive element Au and the second additive element B are activated. In this way, the thermoelectric conversion material according to Embodiment 1 is obtained.
  • FIG. 1 is a graph showing the relationship between the content ratio of Au and the value of ZT.
  • FIG. 1 shows the relationship between the Au content and ZT when 3 at% B is added, and the relationship between the Au content and ZT when B is not added.
  • the vertical axis indicates the value of ZT
  • the horizontal axis indicates the content ratio (at%) of Au.
  • the case where 3 at% of B which is the second additive element 10 is added and film formation is performed at an environmental temperature of 150 K is indicated by a circle.
  • B is 0 at%, that is, the case where film formation is performed at an environmental temperature of 150 K without adding the second additive element is also shown in FIG.
  • thermoelectric characteristic measuring apparatus RZ2001i by Ozawa Scientific Co., Ltd.
  • the measuring method of thermoelectric characteristics is as follows. First, the thermoelectric conversion material is fixed to a pair of quartz jigs so as to be bridged, and the atmosphere is heated in a resistance heating furnace. One side of the quartz jig is left hollow, and it is cooled by flowing nitrogen gas therein, and one end of the thermoelectric conversion material is cooled. Thereby, a temperature difference is provided to the thermoelectric conversion material.
  • thermoelectric conversion material For the thermoelectric conversion material, a temperature difference between two points on the surface of the thermoelectric conversion material is measured using a platinum-platinum rhodium-based thermocouple (R thermocouple). By connecting a voltmeter to the thermocouple, the voltage generated by the temperature difference between the two points is measured. Thereby, it is possible to measure the generated voltage with respect to the temperature difference, and from this, it is possible to estimate the Seebeck coefficient of the material. Further, the resistance value is measured by a four-terminal method. That is, two electric wires are connected to the outside of the two platinum wires connected to the voltmeter. Current is passed through the wire, and the amount of voltage drop is measured with the inner voltmeter. In this way, the resistance value of the thermoelectric conversion material is measured by the four-terminal method.
  • the content ratio of B is 0 at%, that is, the case where the second additive element is not added
  • the value of ZT gradually increases.
  • ZT is about 0.6 at the maximum.
  • the Au content is about 10 at%.
  • the value of ZT decreases. That is, when B is 0 at%, the content ratio of Au is 10 at% and ZT has a maximum value of 0.6.
  • FIG. 2 is a schematic diagram showing an energy state of a thermoelectric conversion material (SiGe) in the case of containing one additive element. That is, FIG. 2 shows the energy state of the thermoelectric conversion material that does not contain the second additive element defined in the thermoelectric conversion material of the present application.
  • the vertical axis indicates the energy level
  • the horizontal axis indicates the density of states. 2 shows the Fermi level E F in broken lines.
  • Au is used as an additive element.
  • a forbidden band 13 is formed between the valence band 11 and the conduction band 12.
  • Energy width W 1 is narrow in the state containing a small percentage of Au, the gap between the additional level 14 and the Fermi level E F is generated.
  • additional level 14 is in the vertical axis direction in the broad area of the conduction band 12 of the additional level 14 approaches to the Fermi level E F .
  • the value of ZT, as shown in FIG. 1 is slightly increased, but the energy width W 1 of the additional level 14 becomes wider in the vertical axis direction.
  • Such energy width W 1 is wide additional level 14 can not increase the ZT efficiently.
  • the content ratio of B is 3 at%
  • the Au content ratio is 0.1 at% and ZT takes a value of about 1.0.
  • the value of ZT exceeds 1.0.
  • the value of ZT is 1.2 to 1.3.
  • the value of ZT may have risen to about 1.4.
  • the value of ZT is less than 1.0.
  • FIG. 3 is a schematic diagram showing the energy state of the thermoelectric conversion material containing the first additive element and the second additive element.
  • the vertical axis indicates the energy level
  • the horizontal axis indicates the density of states.
  • FIG. 3 shows the Fermi level E F in broken lines.
  • thermoelectric conversion material according to Embodiment 1 of the present application, a forbidden band 13 exists between the valence band 11 and the conduction band 12.
  • the first additional level 15 and the second additional level 16 exist in the forbidden band 13.
  • the first additional level 15 is formed of Au as the first additive element.
  • Energy width W 2 of the first additional level 15 in this case, since the content ratio of Au is smaller, narrower than the energy width W 1 of the additional level 14 shown in FIG.
  • the second additional level 16 is formed by B which is the second additive element.
  • the difference between the number of electrons of B and the base material elements Si and Ge is 1.
  • the second additional level 16 formed by B is a valence electron that is an energy band closer to the first additional level 15 of the valence band 11 or the conduction band 12 adjacent to the forbidden band 13 of SiGe. It exists between the band 11 and the first additional level 15.
  • an acceptor level can be formed by the second additional level 16.
  • thermoelectric conversion material according to Embodiment 1 includes SiGe as a base material, the Seebeck coefficient can be increased. As a result, the dimensionless figure of merit ZT can be increased by employing SiGe as the base material.
  • thermoelectric conversion material according to Embodiment 1 includes Au as the first additive element, the first additional level can be formed as a new level.
  • Au is because it has an empty orbital to d orbital located inside the P shell, it is possible to reduce the energy width W 2 of the first additional level. Therefore, the conductivity can be increased despite the high Seebeck coefficient.
  • the thermoelectric conversion material according to the first embodiment includes B which is an element different from both of the base elements Si and Ge and the first additive element Au, and the number of electrons in the outermost shell of B and the base material The difference from the number of electrons in the outermost shell of the elements Si and Ge is 1. Therefore, it is possible to control the Fermi level by forming an acceptor level by the second additional level 16 formed by B. As a result, ZT can be increased more reliably and the efficiency of thermoelectric conversion can be improved.
  • thermoelectric conversion material according to Embodiment 1 Au, which is a transition metal, is applied as the first additive element. By doing so, it becomes easy to form the first additional level 15 having a small energy width. Therefore, the conductivity can be increased. As a result, ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the first additional level 15 formed of Au exists in the forbidden band 13 of SiGe.
  • the second additional level 16 formed by B is a valence electron that is an energy band closer to the first additional level 15 of the valence band 11 or the conduction band 12 adjacent to the forbidden band 13 of SiGe. It exists between the band 11 and the first additional level 15. Since the first additional level 15 exists in the forbidden band 13, a new level based on the first additional level 15 can be formed in the forbidden band 13.
  • the second additional level 16 formed by B is a valence band 11 which is an energy band of the SiGe Fermi level closer to the first additional level 15 of the valence band 11 or the conduction band 12. Can be approached. As a result, ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • the state density of the first additional level 15 formed of Au is 0 with respect to the maximum value of the state density of the valence band 11 adjacent to the forbidden band 13 of SiGe. Has a ratio of 1 or more (see FIG. 3).
  • the state density of the first additional level 15 can be made relatively large compared to the state density of the valence band 11. Therefore, the conductivity can be increased.
  • ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • thermoelectric conversion material according to Embodiment 1 the content ratio of Au may be 0.1 at% or more and 5 at% or less. By doing so, it becomes easy to form the first additional level 15 having a small energy width. Therefore, the conductivity can be increased. As a result, ZT can be increased and the efficiency of thermoelectric conversion can be improved. The same applies to thermoelectric conversion materials according to Embodiment 2 below.
  • the base material is a semiconductor made of SiGe
  • the first additive element is Au
  • the second additive element is B
  • the thermoelectric conversion material of the present application is not limited to this. Absent.
  • the base material may be a SiGe-based material.
  • the ratio of the energy difference between the first additional level closest to the valence band of the base material and the valence band of the base material with respect to the band gap of the base material may be 20% or more.
  • the ratio of the energy difference between the first additional level closest to the conduction band of the base material and the conduction band of the base material with respect to the band gap of the base material may be 20% or more.
  • the SiGe-based material means a material in which at least part of Si and Ge in SiGe and SiGe is replaced with another element such as C, Sn, and the like.
  • FIG. 4 is a diagram showing energy levels formed by each element as the first additive element when the base material is SiGe.
  • a conduction band is shown in a region 46a
  • a valence band is shown in a region 46b.
  • the band gap is the difference between the energy closest to the region 46b in the region 46a and the energy closest to the region 46a in the region 46b.
  • the first additional level is indicated by an energy level 47 between the region 46a and the region 46b, for example, as shown when the element is Cu.
  • FIG. 4 is derived based on the first principle calculation. In FIG.
  • the first additional level some energy levels are expressed by a single line such as Cu, and some energy levels are expressed by two lines such as Fe. In addition, depending on the element, the energy level may be represented by three or more lines.
  • the first additional level located closest to the valence band among the plurality of first additional levels and the valence band of the base material The difference in energy between the first additional level at the position closest to the conduction band and the conduction band of the base material among the plurality of first additional levels is 20% or more.
  • the ratio may be 20% or more.
  • the first additional level is the first additional level and the base that are closest to the valence band of the base material with respect to the band gap of the base material.
  • the ratio of the energy difference from the valence band of the material is 20% or more, and the first additional level located closest to the conduction band of the base material and the conduction band of the base material with respect to the band gap of the base material.
  • elements having an energy difference ratio of 20% or more include Au, Fe, Cu, Ni, Mn, Cr, V, Ti, Ag, Pd, Pt, and Ir. That is, when SiGe is used as the base material, the first additive element may be Au, Fe, Cu, Ni, Mn, Cr, V, Ti, Ag, Pd, Pt, or Ir.
  • the first additive element is Au or Cu
  • the second additive element is B.
  • the first additional level formed by Au or Cu exists in the forbidden band of SiGe.
  • the second additional level formed by B includes the valence band adjacent to the forbidden band of SiGe or the energy band closer to the first additional level of the conduction band and the first valence band and the first band. It exists between additional levels.
  • the base material is SiGe
  • the first additional level that becomes a new level in the forbidden band can be formed using Au or Cu as the first additive element.
  • the Fermi level can be controlled by using B as the second additive element and forming an acceptor level by the second additional level formed by the second additive element. As a result, ZT can be increased more reliably and the efficiency of thermoelectric conversion can be improved.
  • the first additive element is Fe
  • the second additive element is P.
  • the first additional level formed by Fe exists in the forbidden band of SiGe.
  • the second additional level formed by P includes the conduction band and the first addition which are energy bands closer to the first additional level of the valence band or the conduction band adjacent to the forbidden band of SiGe. It exists between the levels.
  • the Fermi level can be controlled by using P as the second additive element and forming a donor level by the second additional level formed by the second additive element. As a result, ZT can be increased more reliably and the efficiency of thermoelectric conversion can be improved.
  • thermoelectric conversion material according to Embodiment 2 can be manufactured by the following manufacturing method. First, the weighed Si, Ge, Fe and P powders are placed in a stainless steel pot. In this case, the content ratio of each element is adjusted to be Si 63 Ge 24 P 10 Fe 3 . Further, the inside of the pot is filled with a forming gas which is a mixed gas of hydrogen and nitrogen having a hydrogen content of 4% by volume or less to form a reducing atmosphere. Then, an amorphous powder obtained by adding Fe and P powder to SiGe is obtained by mechanical alloying. That is, the mechanical alloying is performed in a mixed gas of hydrogen and nitrogen having a hydrogen content of 4% by volume or less. In this way, mechanical alloying is performed in a reducing atmosphere to obtain an amorphous semiconductor material powder.
  • the obtained powder is filled into a die, and a sintered body is formed by a spark plasma sintering method.
  • the temperature at this time can be set to 600 ° C., for example.
  • FIG. 5 is a schematic view showing the state of the structure of the thermoelectric conversion material in the second embodiment.
  • the structure of thermoelectric conversion material 1 includes an amorphous phase 2 and a crystal phase 3.
  • the amorphous phase 2 is mainly composed of SiGe which is a base material element.
  • the content ratio of SiGe contained as a main component is, for example, 50% by mass or more, preferably 90% by mass or more, and more preferably 95% or more.
  • the crystal phase 3 is a microcrystal made of SiGe which is a base material element. Crystal phase 3 exists in amorphous phase 2. In the present embodiment, a plurality of granular crystal phases 3 are dispersed in the amorphous phase 2.
  • the grain size of the crystal phase 3 is 50 nm or less.
  • the measurement of the grain size of the crystal phase 3 can be calculated from the half width of the peak indicating SiGe in the X-ray diffraction pattern shown in FIG.
  • the thermoelectric conversion material in Embodiment 1 mentioned above also has the same structure. The same applies to the following embodiments.
  • the structure of the thermoelectric conversion material includes an amorphous phase 2 mainly composed of a base material element, and the crystal phase 3 of the base material element exists in the amorphous phase 2.
  • the thermoelectric conversion material containing the amorphous phase 2 can reduce the thermal conductivity. Therefore, ZT can be increased. Further, the presence of the crystal phase 3 made of the base material element in the amorphous phase 2 can improve the conductivity of the thermoelectric conversion material 1. Therefore, ZT can be increased. Therefore, the efficiency of thermoelectric conversion can be further improved. Further, since the crystal phase 3 has higher conductivity than the amorphous phase 2, ZT increases. On the other hand, when the grain size of the crystal phase 3 becomes too large, the thermal conductivity tends to increase.
  • thermoelectric conversion material 1 An increase in thermal conductivity can be suppressed by setting the grain size of the crystal phase 3 made of the base material element to 50 nm or less. Therefore, according to such a thermoelectric conversion material 1, an increase in thermal conductivity can be suppressed while improving electrical conductivity. Therefore, the efficiency of thermoelectric conversion can be further improved by increasing ZT.
  • FIG. 6 is a graph showing the relationship between the temperature of the thermoelectric conversion material and ZT in the second embodiment.
  • the horizontal axis indicates temperature (° C.), and the vertical axis indicates ZT.
  • the eye guide for the plot of the graph is indicated by line 5 in FIG.
  • FIG. 6 shows the case of the thermoelectric conversion material in Embodiment 2 in which mechanical alloying is performed for 10 hours.
  • ZT in FIG. 6 measured the resistivity, Seebeck coefficient and thermal conductivity of the thermoelectric conversion material in vacuum, and derived the value of ZT from the obtained measurement results.
  • FIG. 6 shows the result at the time of measuring when heating from low temperature to high temperature.
  • thermoelectric conversion can be performed with a high ZT value by use within a range not exceeding 700 ° C. or use near 700 ° C., and the efficiency of thermoelectric conversion can be further improved.
  • FIG. 7 is an X-ray diffraction pattern of the thermoelectric conversion material in the second embodiment.
  • an X-ray diffraction pattern 6a and an X-ray diffraction pattern 6b are shown when measured at 900 ° C.
  • the sample which measured thermal conductivity with X-ray diffraction pattern 6a is shown, and the sample which measured resistivity with X-ray diffraction pattern 6b is shown.
  • the case of sintering at 600 ° C. with the X-ray diffraction pattern 6c is shown.
  • An X-ray diffraction pattern when no spark plasma sintering is performed is shown by a line 6d.
  • the peak A 1 is a peak corresponding to the crystalline phases of SiGe.
  • a peak showing a crystal phase of SiGe which is a crystal phase composed of a base material element, appears.
  • the grain size of the crystal phase made of SiGe is 50 nm.
  • the peak A 1 is a peak having the maximum intensity among the peaks indicating the SiGe crystal phase.
  • the peak A 2 is a peak corresponding to the crystalline phase of Fe.
  • a peak indicating a crystal phase of Fe that is a crystal phase containing the first additive element appears.
  • the peak A 2 is the peak having the maximum intensity among peaks indicating a crystal phase of Fe.
  • the ratio of the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase of Fe to the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase made of SiGe is 1.6%. That is, the ratio of the intensity of the peak having the maximum intensity among the peaks showing the Fe crystal phase to the intensity of the peak having the maximum intensity among the peaks showing the crystal phase made of SiGe is 2.0% or less.
  • the peak A 3 is a peak indicating a crystal phase of P 4 Si 4 .
  • a peak indicating a crystal phase of P 4 Si 4 that is a crystal phase containing the second additive element appears.
  • This peak A 3 is a peak having the maximum intensity among the peaks showing the crystal phase of P 4 Si 4 .
  • the ratio of the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase of P 4 Si 4 to the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase made of SiGe is also 1.6%. . That is, the ratio of the peak intensity having the maximum intensity among the peaks showing the crystal phase of P 4 Si 4 to the peak intensity having the maximum intensity among the peaks showing the crystal phase made of SiGe is 2.0% or less. .
  • a peak showing a crystal phase of SiGe which is a crystal phase composed of a base material element appears.
  • the grain size of the crystal phase made of SiGe is 50 nm.
  • the peak A 1 is a peak having the maximum intensity among the peaks showing a crystal phase made of SiGe.
  • a peak indicating a crystal phase of Fe that is a crystal phase containing the first additive element appears.
  • the peak A 2 is the peak having the maximum intensity among peaks indicating a crystal phase of Fe.
  • the ratio of the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase of Fe to the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase made of SiGe is 1.6%. That is, the ratio of the intensity of the peak having the maximum intensity among the peaks showing the Fe crystal phase to the intensity of the peak having the maximum intensity among the peaks showing the crystal phase made of SiGe is 2.0% or less.
  • the X-ray diffraction pattern 6b no peak indicating the crystal phase of P 4 Si 4 appears. That is, the ratio of the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase of P 4 Si 4 to the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase made of SiGe is 2.0% or less. It is.
  • a peak indicating a SiGe crystal phase which is a crystal phase composed of a base material element, appears.
  • the grain size of the crystal phase made of SiGe is 16 nm.
  • the peak indicating the Fe crystal phase and the peak indicating the P 4 Si 4 crystal phase do not appear.
  • the ratio of the intensity of the peak having the maximum intensity among the peaks showing the Fe crystal phase to the intensity of the peak having the maximum intensity among the peaks showing the crystal phase made of SiGe is 2.0% or less.
  • the ratio of the intensity of the peak having the maximum intensity among the peaks showing the crystal phase of P 4 Si 4 to the intensity of the peak having the maximum intensity among the peaks showing the crystal phase made of SiGe is 2.0% or less. It is. That is, the peak indicating the crystal phase including at least one of the first additive element and the second additive element with respect to the intensity of the peak having the maximum intensity among the peaks indicating the crystal phase composed of the matrix element.
  • the ratio of the peak intensity having the maximum intensity is 2.0% or less.
  • thermoelectric conversion material In the X-ray diffraction pattern of the thermoelectric conversion material, Fe as the first additive element and second additive element with respect to the intensity of the peak having the maximum intensity among the peaks showing the crystal phase composed of SiGe as the base material element The ratio of the intensity of the peak having the maximum intensity among the peaks showing the crystal phase containing at least one of P is 2.0% or less.
  • the carrier concentration when a large amount of the crystal phase containing at least one of the first additive element and the second additive element is precipitated, the carrier concentration is reduced compared to the case where the crystal phase is small, and the Fermi level is reduced. The position of the position is shifted or the density of the first additional level is lowered.
  • thermoelectric conversion material since the precipitation amount of the first additive element as a crystal phase and the precipitation amount of the second additive element as a crystal phase is small, the formation of the first additional level by the first additive element The effect and the effect of forming the second additional level by the second additive element can be obtained more reliably. Therefore, the efficiency of thermoelectric conversion can be further improved.
  • a Rietveld analysis is performed for the case where measurement is performed at 900 ° C. indicated by the X-ray diffraction pattern 6a, and at least one of the first additive element and the second additive element The proportion of the crystal phase containing one was derived. In this case, a ratio of both the Fe crystal phase that is the crystal phase containing the first additive element and the P 4 Si 4 crystal phase that is the crystal phase containing the second additive element was derived.
  • thermoelectric conversion material a crystal phase including at least one of the first additive element and the second additive element with respect to the entire structure of the thermoelectric conversion material, in this case, a crystal phase of Fe and a crystal of P 4 Si 4
  • the ratio of both phases was 6.0% by volume or less, specifically 5.6% by volume.
  • the ratio of the crystal phase containing at least one of the first additive element and the second additive element to the entire thermoelectric conversion material is 0% by volume.
  • Met That is, the crystal phase containing at least one of the first additive element and the second additive element with respect to the entire structure of the thermoelectric conversion material is 6.0% by volume or less.
  • thermoelectric conversion material has a small amount of precipitation as a crystal phase of the first additive element and a crystal phase of the second additive element, formation of the first additional level by the first additive element And the effect of forming the second additional level by the second additive element can be obtained more reliably. Therefore, the efficiency of thermoelectric conversion can be further improved.
  • thermoelectric conversion material of the present application may include the first additive element having an empty orbit in the f orbit located inside the outermost shell. The same applies to the following embodiments.
  • thermoelectric conversion material in the thermoelectric conversion material according to the present embodiment, is a MnSi-based material, the first additive element is Re or W, and the second additive element is Cr or Fe.
  • the conductivity can be more reliably increased.
  • ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • thermoelectric conversion material according to Embodiment 3 may be manufactured by the following manufacturing method. First, using a high-frequency heating furnace, a raw material in which base materials Mn and Si, a first additive element Re, and a second additive element Cr are mixed is melted and hardened, Make an alloy. The produced mother alloy is melted and sprayed onto a rotating copper roll. By performing such a liquid quenching method in a non-equilibrium state, a ribbon-like (flaky) amorphous alloy is obtained. The obtained amorphous alloy is subjected to a heat treatment by a spark plasma sintering method to obtain a thermoelectric conversion material that is a bulk-shaped formed body. In this manner, the thermoelectric conversion material according to Embodiment 2 may be obtained.
  • FIG. 8 and 9 are graphs showing the density of states when the content ratio of Re added as the first additive element to MnSi is changed.
  • FIG. 8 shows a case of actual measurement by HAXPES (Hard X-ray Photoelectron Spectroscopy), and
  • FIG. 9 shows a case based on theoretical calculation.
  • a line 17a indicates a case where Re is not added
  • a line 17b indicates a case where Re is added at 4 at%
  • a line 17c indicates a case where Re is added at 6 at%.
  • the horizontal axis represents energy
  • the vertical axis in FIG. 8 represents intensity normalized with a value of 10 to 15 eV.
  • the vertical axis in FIG. 9 indicates the spectral conductivity.
  • thermoelectric conversion material in the thermoelectric conversion material according to the present embodiment, the base material is a SnSe-based material, the first additive element is Sc, Ti, or Zr, and the second additive element is F, Cl, Br, I , N, P, As, Sb, Bi, B, Al, Ga, or In.
  • the conductivity can be more reliably increased.
  • ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • FIG. 10 is a diagram showing an example of a band structure in the case where the first added level of Sc as the first additive element exists in the SnSe-based material.
  • the SnSe band is calculated by the FLAPW (Full-potential Linearized Augmented Plane Wave) method.
  • the exchange interaction is handled within the framework of the GGA (Generalized Gradient Application) method.
  • the band of the 3d orbit of Sc is derived by cluster calculation (referred to as calculation by a cluster model).
  • FIG. 11 is a diagram illustrating an example of a band structure in the case where the first added level of Ti and Zr as the first additive element exists in the SnSe-based material.
  • the FLAPW method and the GGA method are used.
  • the band of 3d orbital of Ti and the band of 4d orbital of Zr are also derived by cluster calculation.
  • the first additive elements Sc, Ti, and Zr have a small energy width and a steep first. Can be formed.
  • thermoelectric conversion material in the thermoelectric conversion material according to the present embodiment, the base material is a Cu 2 Se-based material, the first additive element is V, Sc, Ti, Co, or Ni, and the second additive element is F , Cl, Br, I, N, P, As, Sb, Bi, Mg, Zn or Cd.
  • the conductivity can be more reliably increased.
  • ZT can be increased and the efficiency of thermoelectric conversion can be improved.
  • FIG. 12 is a diagram illustrating an example of a band structure in the case where the first additional level of Sc, Ti, and V as the first additive element exists in the Cu 2 Se-based material. Also in FIG. 12, the Cu 2 Se band is calculated by the FLAPW method. The exchange interaction is also handled within the framework of the GGA method. The 3d orbital band of Sc, the 3d orbital band of Ti, and the 3d orbital band of V are each derived by cluster calculation.
  • FIG. 13 is a diagram illustrating an example of a band structure in the case where the first added level of Co and Ni as the first additive element exists in the SnSe-based material. Also in FIG. 13, the FLAPW method and the GGA method are used. The 3d orbital band of Co and the 3d orbital band of Ni are also derived by cluster calculation. In FIG. 12 and FIG. 13, “ ⁇ 8” in the annotation indicates that the signal is displayed with a magnification of 8 times.
  • thermoelectric conversion element using the thermoelectric conversion material according to the present application.
  • FIG. 14 is a schematic diagram showing the structure of a ⁇ -type thermoelectric conversion element (power generation element) 21 that is a thermoelectric conversion element in the present embodiment.
  • a ⁇ -type thermoelectric conversion element 21 includes a p-type thermoelectric conversion material portion 22 that is a first thermoelectric conversion material portion, an n-type thermoelectric conversion material portion 23 that is a second thermoelectric conversion material portion, and a high temperature.
  • a side electrode 24, a first low temperature side electrode 25, a second low temperature side electrode 26, and a wiring 27 are provided.
  • the p-type thermoelectric conversion material part 22 is made of the thermoelectric conversion material of Embodiment 1 in which the component composition is adjusted so that, for example, the conductivity type is p-type.
  • the p-type thermoelectric conversion material is formed by doping the thermoelectric conversion material of Embodiment 1 constituting the p-type thermoelectric conversion material portion 22 with, for example, a p-type impurity that generates p-type carriers (holes) that are majority carriers.
  • the conductivity type of the portion 22 is p-type.
  • the n-type thermoelectric conversion material portion 23 is made of the thermoelectric conversion material of Embodiment 1 in which the component composition is adjusted so that the conductivity type is n-type, for example.
  • the n-type thermoelectric conversion material portion is formed by doping the thermoelectric conversion material of the first embodiment constituting the n-type thermoelectric conversion material portion 23 with, for example, an n-type impurity that generates n-type carriers (electrons) that are majority carriers.
  • the conductivity type 23 is n-type.
  • the p-type thermoelectric conversion material part 22 and the n-type thermoelectric conversion material part 23 are arranged side by side at intervals.
  • the high temperature side electrode 24 is disposed so as to extend from one end portion 31 of the p-type thermoelectric conversion material portion 22 to one end portion 32 of the n-type thermoelectric conversion material portion 23.
  • the high temperature side electrode 24 is disposed so as to contact both one end portion 31 of the p-type thermoelectric conversion material portion 22 and one end portion 32 of the n-type thermoelectric conversion material portion 23.
  • the high temperature side electrode 24 is disposed so as to connect one end 31 of the p-type thermoelectric conversion material part 22 and one end 32 of the n-type thermoelectric conversion material part 23.
  • the high temperature side electrode 24 is made of a conductive material, for example, a metal.
  • the high temperature side electrode 24 is in ohmic contact with the p-type thermoelectric conversion material portion 22 and the n-type thermoelectric conversion material portion 23.
  • the first low temperature side electrode 25 is disposed in contact with the other end 33 of the p-type thermoelectric conversion material portion 22.
  • the first low temperature side electrode 25 is disposed away from the high temperature side electrode 24.
  • the first low temperature side electrode 25 is made of a conductive material, for example, a metal.
  • the first low temperature side electrode 25 is in ohmic contact with the p-type thermoelectric conversion material part 22.
  • the second low temperature side electrode 26 is disposed in contact with the other end 34 of the n-type thermoelectric conversion material portion 23.
  • the second low temperature side electrode 26 is disposed apart from the high temperature side electrode 24 and the first low temperature side electrode 25.
  • the second low temperature side electrode 26 is made of a conductive material, for example, a metal.
  • the second low temperature side electrode 26 is in ohmic contact with the n-type thermoelectric conversion material portion 23.
  • the wiring 27 is made of a conductor such as metal.
  • the wiring 27 electrically connects the first low temperature side electrode 25 and the second low temperature side electrode 26.
  • thermoelectric conversion element 21 for example, one end portion 31 of the p-type thermoelectric conversion material portion 22 and one end portion 32 side of the n-type thermoelectric conversion material portion 23 are at a high temperature.
  • the temperature difference is formed so that the end 33 and the other end 34 side of the n-type thermoelectric conversion material portion 23 are at a low temperature
  • P-type carriers holes
  • n-type carriers electrosprays
  • n-type carriers electros
  • thermoelectric conversion material part 22 and the n-type thermoelectric conversion material part 23 As the material constituting the p-type thermoelectric conversion material part 22 and the n-type thermoelectric conversion material part 23, for example, the thermoelectric conversion material of Embodiment 1 in which the value of ZT is increased is employed. As a result, the ⁇ -type thermoelectric conversion element 21 is a highly efficient power generation element.
  • thermoelectric conversion element of the present application has been described as an example of the thermoelectric conversion element of the present application, but the thermoelectric conversion element of the present application is not limited thereto.
  • the thermoelectric conversion element of the present application may be a thermoelectric conversion element having another structure such as an I-type (unileg type) thermoelectric conversion element.
  • a power generation module as a thermoelectric conversion module can be obtained by electrically connecting a plurality of ⁇ -type thermoelectric conversion elements 21.
  • the power generation module 41 that is the thermoelectric conversion module of the present embodiment has a structure in which a plurality of ⁇ -type thermoelectric conversion elements 21 are connected in series.
  • FIG. 15 is a diagram showing an example of the structure of the power generation module.
  • the power generation module 41 of the present embodiment corresponds to the p-type thermoelectric conversion material part 22, the n-type thermoelectric conversion material part 23, the first low-temperature side electrode 25, and the second low-temperature side electrode 26.
  • the low temperature side insulator substrate 28 and the high temperature side insulator substrate 29 are made of ceramic such as alumina.
  • the p-type thermoelectric conversion material portions 22 and the n-type thermoelectric conversion material portions 23 are alternately arranged.
  • the low temperature side electrodes 25 and 26 are disposed in contact with the p-type thermoelectric conversion material part 22 and the n-type thermoelectric conversion material part 23 in the same manner as the ⁇ -type thermoelectric conversion element 21 described above.
  • the high temperature side electrode 24 is disposed in contact with the p-type thermoelectric conversion material part 22 and the n-type thermoelectric conversion material part 23 in the same manner as the ⁇ -type thermoelectric conversion element 21 described above.
  • the p-type thermoelectric conversion material part 22 is connected to the n-type thermoelectric conversion material part 23 adjacent to one side by a common high-temperature side electrode 24.
  • the p-type thermoelectric conversion material part 22 is connected to the n-type thermoelectric conversion material part 23 adjacent to the side different from the one side by common low-temperature side electrodes 25 and 26. In this way, all the p-type thermoelectric conversion material portions 22 and the n-type thermoelectric conversion material portions 23 are connected in series.
  • the low temperature side insulator substrate 28 is arranged on the main surface side opposite to the side in contact with the p-type thermoelectric conversion material portion 22 and the n-type thermoelectric conversion material portion 23 of the low temperature side electrodes 25 and 26 having a plate shape. Is done.
  • One low temperature side insulator substrate 28 is disposed for a plurality of (all) low temperature side electrodes 25, 26.
  • the high temperature side insulator substrate 29 is disposed on the opposite side to the side in contact with the p-type thermoelectric conversion material portion 22 and the n-type thermoelectric conversion material portion 23 of the high temperature side electrode 24 having a plate shape.
  • One high temperature side insulator substrate 29 is arranged for a plurality of (all) high temperature side electrodes 24.
  • thermoelectric conversion material part 22 and the n-type thermoelectric conversion material part 23 connected in series the p-type thermoelectric conversion material part 22 or the n-type thermoelectric conversion material part 23 positioned at both ends, or the low-temperature side electrode 24
  • a wiring 27 is connected to the side electrodes 25 and 26.
  • thermoelectric conversion element using the thermoelectric conversion material according to the present application.
  • FIG. 16 is a diagram illustrating an example of the structure of the infrared sensor 51.
  • infrared sensor 51 includes a p-type thermoelectric conversion material portion 52 and an n-type thermoelectric conversion material portion 53 that are arranged adjacent to each other.
  • the p-type thermoelectric conversion material part 52 and the n-type thermoelectric conversion material part 53 are formed on the substrate 54.
  • the infrared sensor 51 includes a substrate 54, an etching stop layer 55, an n-type thermoelectric conversion material layer 56, an n + -type ohmic contact layer 57, an insulator layer 58, a p-type thermoelectric conversion material layer 59, and an n side.
  • An ohmic contact electrode 61, a p-side ohmic contact electrode 62, a heat absorption pad 63, an absorber 64, and a protective film 65 are provided.
  • the substrate 54 is made of an insulator such as silicon dioxide.
  • a concave portion 66 is formed in the substrate 54.
  • the etching stop layer 55 is formed so as to cover the surface of the substrate 54.
  • the etching stop layer 55 is made of an insulator such as silicon nitride.
  • a gap is formed between the etching stop layer 55 and the recess 66 of the substrate 54.
  • the n-type thermoelectric conversion material layer 56 is formed on the main surface of the etching stop layer 55 opposite to the substrate 54.
  • the n-type thermoelectric conversion material layer 56 is made of, for example, the thermoelectric conversion material of Embodiment 1 in which the component composition is adjusted so that the conductivity type is n-type.
  • the n-type thermoelectric conversion material layer 56 is doped with, for example, an n-type impurity that generates n-type carriers (electrons), which are majority carriers, in the thermoelectric conversion material of the first embodiment constituting the n-type thermoelectric conversion material layer 56.
  • the conductivity type 56 is n-type.
  • the n + -type ohmic contact layer 57 is formed on the main surface of the n-type thermoelectric conversion material layer 56 opposite to the etching stop layer 55.
  • an n-type impurity that generates n-type carriers (electrons) that are majority carriers is doped at a higher concentration than the n-type thermoelectric conversion material layer 56.
  • the conductivity type of the n + -type ohmic contact layer 57 is n-type.
  • the n-side ohmic contact electrode 61 is disposed so as to be in contact with the central portion of the main surface of the n + -type ohmic contact layer 57 opposite to the n-type thermoelectric conversion material layer 56.
  • the n-side ohmic contact electrode 61 is made of a material that can make ohmic contact with the n + -type ohmic contact layer 57, for example, a metal.
  • An insulator layer 58 made of an insulator such as silicon dioxide is disposed on the main surface of the n + -type ohmic contact layer 57 opposite to the n-type thermoelectric conversion material layer 56.
  • the insulator layer 58 is disposed on the main surface of the n + -type ohmic contact layer 57 on the p-type thermoelectric conversion material part 52 side when viewed from the n-side ohmic contact electrode 61.
  • a protective film 65 is further disposed on the main surface of the n + -type ohmic contact layer 57 opposite to the n-type thermoelectric conversion material layer 56.
  • the protective film 65 is disposed on the main surface of the n + -type ohmic contact layer 57 on the side opposite to the p-type thermoelectric conversion material part 52 when viewed from the n-side ohmic contact electrode 61.
  • On the main surface of the n + -type ohmic contact layer 57 opposite to the n-type thermoelectric conversion material layer 56 another n-side ohmic contact is provided on the opposite side of the n-side ohmic contact electrode 61 with the protective film 65 interposed therebetween. Contact electrode 61 is disposed.
  • a p-type thermoelectric conversion material layer 59 is disposed on the main surface of the insulator layer 58 opposite to the n + -type ohmic contact layer 57.
  • the p-type thermoelectric conversion material layer 59 is made of, for example, the thermoelectric conversion material of Embodiment 1 in which the component composition is adjusted so that the conductivity type is p-type.
  • the p-type thermoelectric conversion material is formed by doping the thermoelectric conversion material of the first embodiment constituting the p-type thermoelectric conversion material layer 59 with, for example, a p-type impurity that generates p-type carriers (holes) that are majority carriers.
  • the conductivity type of the layer 59 is p-type.
  • a protective film 65 is disposed at the center of the main surface of the p-type thermoelectric conversion material layer 59 opposite to the insulator layer 58.
  • a pair of p-side ohmic contact electrodes 62 sandwiching the protective film 65 are disposed on the main surface of the p-type thermoelectric conversion material layer 59 opposite to the insulator layer 58.
  • the p-side ohmic contact electrode 62 is made of a material that can make ohmic contact with the p-type thermoelectric conversion material layer 59, for example, a metal.
  • the p-side ohmic contact electrode 62 on the n-type thermoelectric conversion material part 53 side is connected to the n-side ohmic contact electrode 61.
  • Absorber 64 is arranged so as to cover the main surface of p-side ohmic contact electrode 62 and n-side ohmic contact electrode 61 connected to each other on the side opposite to n + -type ohmic contact layer 57.
  • the absorber 64 is made of titanium, for example.
  • the heat absorption pad 63 is arranged so as to contact the p-side ohmic contact electrode 62 on the side not connected to the n-side ohmic contact electrode 61. Further, the heat absorption pad 63 is arranged so as to contact the n-side ohmic contact electrode 61 on the side not connected to the p-side ohmic contact electrode 62.
  • As a material constituting the heat absorption pad 63 for example, Au (gold) / Ti (titanium) is employed.
  • the absorber 64 When the infrared sensor 51 is irradiated with infrared rays, the absorber 64 absorbs infrared energy. As a result, the temperature of the absorber 64 increases. On the other hand, the temperature rise of the heat absorbing pad 63 is suppressed. Therefore, a temperature difference is formed between the absorber 64 and the heat absorption pad 63. Then, in the p-type thermoelectric conversion material layer 59, p-type carriers (holes) move from the absorber 64 side toward the heat absorption pad 63 side. On the other hand, in the n-type thermoelectric conversion material layer 56, n-type carriers (electrons) move from the absorber 64 side toward the heat absorption pad 63 side. Infrared light is detected by taking out current generated as a result of carrier movement from the n-side ohmic contact electrode 61 and the p-side ohmic contact electrode 62.
  • the ZT value is increased by increasing the conductivity as a material constituting the p-type thermoelectric conversion material layer 59 and the n-type thermoelectric conversion material layer 56.
  • the thermoelectric conversion material of Form 1 is employed.
  • the infrared sensor 51 is a highly sensitive infrared sensor.
  • the base material that is a semiconductor is a SiGe-based material, a MnSi-based material, a SnSe-based material, and a Cu 2 Se-based material.
  • the present invention is not limited to this, and other semiconductors are used as the base material. Also good.
  • the base material is formed using a group III-V element as a base material element, the number of electrons in the outermost shell of the second additive element and the number of electrons in the outermost shell of at least one of the base material elements The difference may be 1 as well. Also in this way, the efficiency of thermoelectric conversion can be improved.
  • the state density of the first additional level may be a ratio of less than 0.1 with respect to the maximum value of the state density of the valence band adjacent to the forbidden band of the base material.
  • the first additive element may be an element other than the transition metal.
  • the second additive element is preferably formed in a region within 0.1 eV from the valence band or conduction band of the base material.
  • thermoelectric conversion material 1 Thermoelectric conversion material, 2 Crystal phase, 3 Amorphous phase, 5, 6a, 6b, 6c, 6d X-ray diffraction pattern, 10 Second additive element, 11 Valence band, 12 Conduction band, 13 Forbidden band, 14, 15 , 16 Addition level, 17a, 17b, 17c line, 21 ⁇ -type thermoelectric conversion element, 22, 52 p-type thermoelectric conversion material part, 23, 53 n-type thermoelectric conversion material part, 24 high temperature side electrode, 25 first low temperature side Electrode (low temperature side electrode), 26 second low temperature side electrode (low temperature side electrode), 27, 42, 43 wiring, 28 low temperature side insulator substrate, 29 high temperature side insulator substrate, 31, 32, 33, 34 end, 41 thermoelectric conversion module, 46a, 46b regions, 47 energy levels, 51 infrared sensor, 54 a substrate, 55 an etching stop layer, 56 n-type thermoelectric conversion material layer, 57 n + -type ohmic contact layer, 58 an insulator layer 59

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

熱電変換材料は、母材元素からなる半導体であるベース材料と、母材元素と異なる元素であり、最外殻の内側に位置するd軌道またはf軌道に空軌道を有し、ベース材料の禁制帯内に第一の付加準位を形成する第一の添加元素と、母材元素および第一の添加元素の双方と異なる元素であり、ベース材料の禁制帯内に第二の付加準位を形成する第二の添加元素と、を含む。第二の添加元素の最外殻の電子数と母材元素のうち少なくとも1つの最外殻の電子数との差は、1である。

Description

熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
 本開示は、熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサに関するものである。
 本出願は、2018年3月20日出願の日本出願第2018-53183号および2018年9月3日出願の国際出願PCT/JP2018/032583に基づく優先権を主張し、前記日本出願および前記国際出願に記載された全ての記載内容を援用するものである。
 熱電変換材料として、Si、Ge、Auを積層した後に得られた積層体を熱処理し、SiGe(シリコンゲルマニウム)中にAuのナノ粒子を形成する技術が報告されている(例えば、非特許文献1)。熱電変換材料として、Si/GeBを用いる技術が報告されている(例えば、非特許文献2)。
 特許文献1には、母材元素で構成される半導体材料からなる母材中に、母材元素と母材元素と異なる異種元素とを含むナノ粒子を含む熱電変換材料が開示されている。
国際公開第2014/196475号
Hiroaki Takiguchi et al.、"Nano Structural and Thermoelectric Properties of SiGeAu Thin Films"、Japanese Journal of Applied Physics 50 (2011) 041301 Akinari Matoba et al.、"Crystallinity and Thermoelectric Properties of Si/GeB Multilayers Prepared with Si Buffer Layer and SiO2 Substrates"、Japanese Journal of Applied Physics 48 (2009) 061201
 本開示に従った熱電変換材料は、母材元素からなる半導体であるベース材料と、母材元素と異なる元素であり、最外殻の内側に位置するd軌道またはf軌道に空軌道を有し、ベース材料の禁制帯内に第一の付加準位を形成する第一の添加元素と、母材元素および第一の添加元素の双方と異なる元素であり、ベース材料の禁制帯内に第二の付加準位を形成する第二の添加元素と、を含む。第二の添加元素の最外殻の電子数と母材元素のうち少なくとも1つの最外殻の電子数との差は、1である。
図1は、ZTの値とAuの含有割合との関係を示すグラフである。 図2は、第一の添加元素を含有する場合の熱電変換材料のエネルギー状態を示す概略図である。 図3は、実施の形態1に係る熱電変換材料のエネルギー状態を示す概略図である。 図4は、ベース材料をSiGeとした場合において、SiおよびGeに置換した第一の添加元素としての各元素が形成するエネルギー準位を示す図である。 図5は、実施の形態2における熱電変換材料の組織の状態を示す概略図である。 図6は、実施の形態2における熱電変換材料の温度とZTとの関係を示すグラフである。 図7は、実施の形態2における熱電変換材料のX線回折パターンである。 図8は、MnSiに第一の添加元素として添加するReの含有割合を変化させた場合の状態密度を示すグラフである。 図9は、MnSiに第一の添加元素として添加するReの含有割合を変化させた場合の状態密度を示すグラフである。 図10は、SnSe系材料において、第一の添加元素としてのScの第一の付加準位が存在する場合のバンド構造の一例を示す図である。 図11は、SnSe系材料において、第一の添加元素としてのTi、Zrの第一の付加準位が存在する場合のバンド構造の一例を示す図である。 図12は、CuSe系材料において、第一の添加元素としてのSc、Ti、Vの第一の付加準位が存在する場合のバンド構造の一例を示す図である。 図13は、SnSe系材料において、第一の添加元素としてのCo、Niの第一の付加準位が存在する場合のバンド構造の一例を示す図である。 図14は、実施の形態6における熱電変換素子であるπ型熱電変換素子(発電素子)の構造を示す概略図である。 図15は、発電モジュールの構造の一例を示す図である。 図16は、赤外線センサの構造の一例を示す図である。
 近年、石油などの化石燃料に代わるクリーンなエネルギーとして、再生可能エネルギーが注目されている。再生可能エネルギーには、太陽光、水力および風力を利用した発電のほか、温度差を利用した熱電変換による発電で得られるエネルギーが含まれる。熱電変換においては、熱が電気へと直接変換されるため、変換の際に余分な廃棄物が排出されない。熱電変換は、モータなどの駆動部を必要としないため、装置のメンテナンスが容易であるなどの特長がある。
 熱電変換を実施するための材料(熱電変換材料)を用いた温度差(熱エネルギー)の電気エネルギーへの変換効率ηは以下の式(1)で与えられる。
 η=ΔT/T・(M-1)/(M+T/T)・・・(1)
 ηは変換効率、ΔTはTとTとの差、Tは高温側の温度、Tは低温側の温度、Mは(1+ZT)1/2、ZT=αST/κ、ZTは無次元性能指数、αはゼーベック係数、Sは導電率、κは熱伝導率である。変換効率はZTの単調増加関数である。ZTを増大させることが、熱電変換材料の開発において重要である。
 [本開示が解決しようとする課題]
 非特許文献1、非特許文献2および特許文献1に開示の熱電変換材料よりも高い変換効率を有する熱電変換材料が求められている。ZTを増大させることができれば、熱電変換の効率を向上させることができる。
 そこで、熱電変換の効率を向上させた熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサを提供することを目的の1つとする。
 [本開示の効果]
 上記熱電変換材料によれば、熱電変換の効率を向上させることができる。
 [本願発明の実施形態の説明]
 最初に本願の実施態様を列記して説明する。本願に係る熱電変換材料は、母材元素からなる半導体であるベース材料と、母材元素と異なる元素であり、最外殻の内側に位置するd軌道またはf軌道に空軌道を有し、ベース材料の禁制帯内に第一の付加準位を形成する第一の添加元素と、母材元素および第一の添加元素の双方と異なる元素であり、ベース材料の禁制帯内に第二の付加準位を形成する第二の添加元素と、を含む。第二の添加元素の最外殻の電子数と母材元素のうち少なくとも1つの最外殻の電子数との差は、1である。
 上記熱電変換材料は、母材元素からなる半導体であるベース材料を含む。半導体はバンドギャップが導電材料よりも大きいため、ゼーベック係数を大きくすることができる。その結果、上記ベース材料を採用することにより、無次元性能指数ZTを大きくすることができる。
 上記熱電変換材料は、第一の添加元素を含むことにより新規準位としてベース材料の禁制帯内に第一の付加準位を形成することができる。第一の添加元素は、最外殻の内側に位置するd軌道またはf軌道に空軌道を有するため、第一の付加準位のエネルギー幅を小さくすることができる。したがって、ゼーベック係数が高いにも関わらず、導電性を上昇させることができる。上記熱電変換材料は、母材元素および第一の添加元素の双方と異なる元素であり、ベース材料の禁制帯内に第二の付加準位を形成する第二の添加元素を含む。第二の添加元素の最外殻の電子数と母材元素の最外殻の電子数との差は、1である。したがって、第二の添加元素によって形成される第二の付加準位によるアクセプタ準位またはドナー準位を形成してフェルミ準位を制御することができる。その結果、より確実にZTを増大させて、熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、熱電変換材料の組織中に、粒径が50nm以下である母材元素からなる結晶相を含んでもよい。結晶相はアモルファス相と比較して導電率が高いため、ZTが増大する。一方、結晶相の粒径が大きくなり過ぎると、熱伝導率が高くなる傾向がある。母材元素からなる結晶相の粒径を50nm以下とすることで、熱伝導率の上昇を抑制することができる。よって、このような熱電変換材料によると、導電率を向上させながら熱伝導率の上昇を抑制することができる。したがって、ZTを増大させて、より熱電変換の効率を向上させることができる。粒径については、25nm以下としてもよい。この場合、さらに熱伝導率の上昇を抑制することができる。また、粒径を20nmとすることにより、さらに熱伝導率の上昇を抑制することができる。
 上記熱電変換材料のX線回折パターンにおいて、母材元素からなる結晶相を示すピークのうちの最大強度を有するピークの強度に対する、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下であってもよい。熱電変換材料において、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相が多く析出すると、結晶相が少ない場合と比較して、キャリア濃度が低下してフェルミ準位の位置がずれてしまうか、または第一の付加準位の密度が低下する。これらのうちの少なくとも一方の要因または双方の要因で、第一の付加準位の形成の効果および第二の付加準位の形成の効果を十分に得にくくなる。上記熱電変換材料によると、第一の添加元素の結晶相としての析出および第二の添加元素の結晶相としての析出量が少ないため、第一の添加元素による第一の付加準位の形成の効果および第二の添加元素による第二の付加準位の形成の効果をより確実に得ることができる。したがって、より熱電変換の効率の向上を図ることができる。なお、上記した強度の比は、1.0%以下が好ましく、さらに0.5%以下が好ましく、さらに0.0%であることが好ましい。
 上記熱電変換材料において、熱電変換材料の組織全体に対する、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相の含有割合は、6.0体積%以下であってもよい。このような熱電変換材料は、第一の添加元素の結晶相としての析出および第二の添加元素の結晶相としての析出量が少ないため、第一の添加元素による第一の付加準位の形成の効果および第二の添加元素による第二の付加準位の形成の効果をより確実に得ることができる。したがって、より熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、熱電変換材料の組織は、母材元素を主成分とするアモルファス相を含んでもよい。母材元素からなる結晶相は、アモルファス相中に存在してもよい。アモルファス相を含む熱電変換材料は、熱伝導率を低くすることができる。よって、ZTを増大させることができる。また、アモルファス相中に母材元素からなる結晶相が存在することにより、熱電変換材料の導電率を向上させることができる。よって、ZTを増大させることができる。したがって、より熱電変換の効率を向上させることができる。
 上記熱電変換材料において、第一の添加元素は、遷移金属であってもよい。このようにすることにより、エネルギー幅の小さい第一の付加準位を形成することが容易となる。したがって、導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、第二の付加準位は、ベース材料の禁制帯に隣接する価電子帯または伝導帯のうちの第一の付加準位に近い方のエネルギーバンドと第一の付加準位との間に存在するようにしてもよい。第二の付加準位により、ベース材料のフェルミ準位を価電子帯または伝導帯のうちの第一の付加準位に近い方のエネルギーバンドに近づけることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、第一の付加準位の状態密度は、ベース材料の禁制帯に隣接する価電子帯の状態密度の最大値に対して0.1以上の比率を有してもよい。このようにすることにより、第一の付加準位の状態密度を、価電子帯の状態密度と比較して比較的大きくすることができる。したがって、導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、第一の添加元素の含有割合は、0.1at%以上5at%以下であってもよい。このようにすることにより、エネルギー幅の小さい第一の付加準位を形成することが容易となる。したがって、導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、ベース材料は、SiGe系材料であってもよい。ベース材料のバンドギャップに対する、ベース材料の価電子帯に最も近い位置にある第一の付加準位とベース材料の価電子帯とのエネルギー差の比が、20%以上であってもよい。ベース材料のバンドギャップに対する、ベース材料の伝導帯に最も近い位置にある第一の付加準位とベース材料の伝導帯とのエネルギー差の比が、20%以上であってもよい。このような第一の添加元素を含むことにより、ベース材料をSiGe系材料とした場合の禁制帯内に確実に新規準位としての第一の付加準位を形成することができる。SiGe系材料とは、SiGe、およびSiGeにおいてSiおよびGeの少なくとも一方の一部が他の元素、例えばC、Sn等に置き換えられた材料を意味する。なお、第一の付加準位が複数ある場合には、複数の第一の付加準位のうちの最も価電子帯に近い位置にある第一の付加準位とベース材料の価電子帯とのエネルギーの差の比が20%以上であり、複数の第一の付加準位のうちの最も伝導帯に近い位置にある第一の付加準位とベース材料の伝導帯とのエネルギーの差の比が20%以上であればよい。
 上記熱電変換材料において、第一の添加元素は、Au、Fe、Cu、Ni、Mn、Cr、V、Ti、Ag、Pd、PtまたはIrであってもよい。これらの元素は、ベース材料をSiGe系材料とした場合の禁制帯内に第一の付加準位を形成する際に、好適に用いられる。
 上記熱電変換材料において、第一の添加元素は、AuまたはCuであってもよい。第二の添加元素は、Bであってもよい。このようにすることにより、ベース材料をSiGe系材料とした場合に、AuまたはCuを第一の添加元素として、禁制帯内に新規準位となる第一の付加準位を形成することができる。また、Bを第二の添加元素とし、第二の添加元素によって形成される第二の付加準位によるアクセプタ準位を形成してフェルミ準位を制御することができる。その結果、より確実にZTを増大させて、熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、第一の添加元素は、Feであってもよい。第二の添加元素は、Pであってもよい。このようにすることにより、ベース材料をSiGe系材料とした場合に、Feを第一の添加元素として、禁制帯内に新規準位となる第一の付加準位を形成することができる。また、Pを第二の添加元素とし、第二の添加元素によって形成される第二の付加準位によるドナー準位を形成してフェルミ準位を制御することができる。その結果、より確実にZTを増大させて、熱電変換の効率の向上を図ることができる。
 上記熱電変換材料において、ベース材料は、MnSi系材料であってもよい。第一の添加元素は、ReまたはWであってもよい。第二の添加元素は、CrまたはFeであってもよい。このようにすることにより、より確実に導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。MnSi系材料とは、MnSi、およびMnSiにおいてMnおよびSiの少なくとも一方の一部が他の元素、例えばAl、W等に置き換えられた材料を意味する。
 上記熱電変換材料において、ベース材料は、SnSe系材料であってもよい。第一の添加元素は、Sc、TiまたはZrであってもよい。第二の添加元素は、F、Cl、Br、I、N、P、As、Sb、Bi、B、Al、GaまたはInであってもよい。このようにすることにより、より確実に導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。SnSe系材料とは、SnSe、およびSnSeにおいてSnおよびSeの少なくとも一方の一部が他の元素、例えばS、Teに置き換えられた材料を意味する。
 上記熱電変換材料において、ベース材料は、CuSe系材料であってもよい。第一の添加元素は、V、Sc、Ti、CoまたはNiであってもよい。第二の添加元素は、F、Cl、Br、I、N、P、As、Sb、Bi、Mg、ZnまたはCdであってもよい。このようにすることにより、より確実に導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。CuSe系材料とは、CuSe、およびCuSeにおいてCuおよびSeの少なくとも一方の一部が他の元素、例えばAg、S、Teに置き換えられた材料を意味する。
 本願の熱電変換素子は、熱電変換材料部と、熱電変換材料部に接触して配置される第1電極と、熱電変換材料部に接触し、第1電極と離れて配置される第2電極と、を備える。熱電変換材料部は、導電型がp型またはn型となるように成分組成が調整された上記本願の熱電変換材料からなる。
 本願の熱電変換素子は、熱電変換材料部が、導電型がp型またはn型となるように成分組成が調整された上記熱電変換特性に優れた熱電変換材料からなる。そのため、本願の熱電変換素子によれば、変換効率に優れた熱電変換素子を提供することができる。
 本願の熱電変換モジュールは、上記熱電変換素子を複数個含む。本願の熱電変換モジュールによれば、熱電変換の効率に優れた本願の熱電変換素子を複数個含むことにより、熱電変換の効率を向上させた熱電変換モジュールを得ることができる。
 本願の光センサは、光エネルギーを吸収する吸収体と、吸収体に接続される熱電変換材料部と、を備える。熱電変換材料部は、導電型がp型またはn型となるように成分組成が調整された上記本願の熱電変換材料からなる。
 本願の光センサは、熱電変換材料部が、導電型がp型またはn型となるように成分組成が調整された上記熱電変換特性に優れた熱電変換材料からなる。そのため、高感度な光センサを提供することができる。
 [本願発明の実施の形態の詳細]
 次に、本願の熱電変換材料の実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
 (実施の形態1)
 本願の実施の形態1に係る熱電変換材料の構成について説明する。本願の実施の形態1に係る熱電変換材料は、母材元素からなる半導体であるベース材料と、母材元素と異なる元素であり、最外殻の内側に位置する(隣接する)d軌道またはf軌道に空軌道を有する第一の添加元素と、母材元素および第一の添加元素の双方と異なる元素である第二の添加元素と、を含む。第二の添加元素の最外殻の電子数と母材元素の最外殻の電子数との差は、1である。本実施形態において、ベース材料は、例えば、半導体であるSiGeである。具体的には、母材元素は、SiとGeである。第一の添加元素は、Auである。第二の添加元素は、Bである。Auにより形成される第一の付加準位は、SiGeの禁制帯内に存在する。Bの最外殻の電子数と母材元素であるSi、Geの最外殻の電子数との差は、1である。
 Auは、遷移金属である。Auにより形成される第一の付加準位は、SiGeの禁制帯内に存在する。Bにより形成される第二の付加準位は、SiGeの禁制帯に隣接する価電子帯または伝導帯のうちの第一の付加準位に近い方のエネルギーバンドである価電子帯と第一の付加準位との間に存在する。
 本願の実施の形態1に係る熱電変換材料の製造方法について簡単に説明する。まず、ベース基板としてのサファイア基板を準備する。次に、例えばMBE(Molecular Beam Epitaxy)法により、蒸着装置を用い、熱電変換材料を構成する複数の原料元素をサファイア基板の上に蒸着させる。この時、Siを1nm/分、Geを1nm/分、Auを0.1nm/分、Bを0.1nm/分の割合で同時に照射する。この状態を維持することにより、総厚みが200nm以上のアモルファスを蒸着させ、成膜を行う。得られた生成物に対してアニール処理、具体的には、例えば500℃に加熱し、15分間保持する熱処理を行う。この熱処理により、第一の添加元素であるAuおよび第二の添加元素であるBの活性化を行う。このようにして、実施の形態1に係る熱電変換材料を得る。
 図1は、Auの含有割合とZTの値との関係を示すグラフである。図1には、3at%のBが添加された場合のAuの含有割合とZTとの関係と、Bが添加されなかった場合のAuの含有割合とZTとの関係が示されている。図1中、縦軸は、ZTの値を示し、横軸は、Auの含有割合(at%)を示す。図1においては、第二の添加元素10であるBを3at%添加し、150Kの環境温度で成膜を行った場合を丸印で示す。参考として、Bが0at%の場合、すなわち、第二の添加元素を添加せず、150Kの環境温度で成膜を行った場合についても菱形印で図1中に示す。Bを3at%添加した場合のアイガイドと、第二の添加元素を添加しなかった場合のアイガイドとを、それぞれ破線で示している。熱電特性については、熱電特性測定装置(オザワ科学株式会社製RZ2001i)で測定した。熱電特性の測定方法は、以下の通りである。まず、一対の石英治具に熱電変換材料を橋架するよう固定し、雰囲気を抵抗加熱炉で加熱する。石英治具の一方を中空にしておき、その中に窒素ガスを流すことで冷却し、熱電変換材料の一方の端部を冷却する。これにより、熱電変換材料に温度差を付与する。熱電変換材料については、白金-白金ロジウム系熱電対(R熱電対)を用いて、熱電変換材料の表面の2点間の温度差を測定する。熱電対に電圧計を繋げることで、2点間の温度差で発生した電圧を測定する。これにより、温度差に対する発生電圧を測定することが可能となり、これから材料のゼーベック係数を見積もることが可能となる。また、抵抗値は、4端子法で測定する。つまり、電圧計が繋がっている2つの白金線の外側に、2つの電線を接続する。その電線に電流を流し、内側の電圧計で、電圧降下量を測定する。このようにして、4端子法により、熱電変換材料の抵抗値を測定する。
 図1を参照して、Bの含有比率が0at%であった場合、すなわち、第二の添加元素が添加されなかった場合について説明する。Auの含有比率が0at%から上昇していくに従い、徐々にZTの値は増加していく。ZTは最大でも0.6程度である。この時のAuの含有割合は、10at%前後である。Auの含有割合が10at%を超えると、ZTの値は小さくなっていく。すなわち、Bが0at%の場合、Auの含有割合が10at%で、ZTは最大値0.6をとる。
 図2は、一つの添加元素を含有する場合の熱電変換材料(SiGe)のエネルギー状態を示す概略図である。すなわち、図2は、本願の熱電変換材料に規定する第二の添加元素が含有されていない熱電変換材料のエネルギー状態を示す。図2中において、縦軸はエネルギー準位を示し、横軸は状態密度を示す。図2において、フェルミ準位Eを破線で示している。図2において、添加元素として、例えばAuが用いられる。
 図2を参照して、価電子帯11と伝導帯12との間に、禁制帯13が形成されている。禁制帯13内には、添加元素であるAuによって形成される付加準位14が存在する。Auの含有割合が少ない状態ではエネルギー幅Wは狭く、付加準位14とフェルミ準位Eとの間にギャップが生じる。ZTの増大を図ろうとしてAuの含有割合を多くしていくと、付加準位14が縦軸方向にブロードになり、付加準位14の伝導帯12側の領域がフェルミ準位Eに近づく。その結果、図1に示すようにZTの値はやや上昇するが、付加準位14のエネルギー幅Wが縦軸方向に広くなってしまう。このようなエネルギー幅Wが広い付加準位14については、ZTを効率的に増大させることができない。
 次に、Bの含有比率が3at%であった場合について説明する。再び図1を参照して、Bの含有比率が3at%であった場合、Auの含有比率が0.1at%でZTが1.0程度の値をとる。Auの含有比率が1at%の時に、ZTの値が1.0を超えている。具体的には、ZTの値は1.2~1.3である。そして、Auの含有比率が5.4at%であった場合、ZTの値が1.4程度に上昇している場合もある。なお、Auの含有比率が8.9at%の場合、ZTの値は、1.0未満となっている。なお、これらの組成は、一般的な組成分析手法で測定可能である。例えば、電子線マイクロアナライザ法や、エネルギー分散型X線分光法等が挙げられる。
 図3は、上記した第一の添加元素および第二の添加元素を含む熱電変換材料のエネルギー状態を示す概略図である。図3中において、縦軸はエネルギー準位を示し、横軸は状態密度を示す。図3においても、フェルミ準位Eを破線で示している。
 図3を参照して、本願の実施の形態1に係る熱電変換材料において、価電子帯11と伝導帯12との間には、禁制帯13が存在する。そして、この禁制帯13内に第一の付加準位15および第二の付加準位16が存在する。この第一の付加準位15は、第一の添加元素であるAuにより形成される。この場合の第一の付加準位15のエネルギー幅Wは、Auの含有比率が小さいため、図2に示す付加準位14のエネルギー幅Wに比べて狭い。
 第二の付加準位16は、第二の添加元素であるBにより形成される。Bと母材元素であるSi、Geの電子数との差は1である。Bにより形成される第二の付加準位16は、SiGeの禁制帯13に隣接する価電子帯11または伝導帯12のうちの第一の付加準位15に近い方のエネルギーバンドである価電子帯11と第一の付加準位15との間に存在する。本実施形態においては、第二の付加準位16によりアクセプタ準位を形成することができる。
 実施の形態1に係る熱電変換材料は、ベース材料としてSiGeを含むため、ゼーベック係数を大きくすることができる。その結果、ベース材料としてSiGeを採用することにより、無次元性能指数ZTを大きくすることができる。
 実施の形態1に係る熱電変換材料は、第一の添加元素としてAuを含むため、新規準位として第一の付加準位を形成することができる。Auは、P殻の内側に位置するd軌道に空軌道を有するため、第一の付加準位のエネルギー幅Wを小さくすることができる。したがって、ゼーベック係数が高いにも関わらず、導電性を上昇させることができる。実施の形態1に係る熱電変換材料は、母材元素であるSi、Geおよび第一の添加元素であるAuの双方と異なる元素であるBを含み、Bの最外殻の電子数と母材元素であるSi、Geの最外殻の電子数との差は、1である。したがって、Bによって形成される第二の付加準位16によるアクセプタ準位を形成してフェルミ準位を制御することができる。その結果、より確実にZTを増大させて、熱電変換の効率の向上を図ることができる。
 実施の形態1に係る熱電変換材料において、遷移金属であるAuが第一の添加元素として適用される。このようにすることにより、エネルギー幅の小さい第一の付加準位15を形成することが容易となる。したがって、導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 実施の形態1に係る熱電変換材料において、Auにより形成される第一の付加準位15は、SiGeの禁制帯13内に存在する。Bにより形成される第二の付加準位16は、SiGeの禁制帯13に隣接する価電子帯11または伝導帯12のうちの第一の付加準位15に近い方のエネルギーバンドである価電子帯11と第一の付加準位15との間に存在する。第一の付加準位15は、禁制帯13内に存在するため、禁制帯13内に、第一の付加準位15による新規準位を形成することができる。Bにより形成される第二の付加準位16は、SiGeのフェルミ準位を価電子帯11または伝導帯12のうちの第一の付加準位15に近い方のエネルギーバンドである価電子帯11に近づけることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 実施の形態1に係る熱電変換材料において、Auにより形成される第一の付加準位15の状態密度は、SiGeの禁制帯13に隣接する価電子帯11の状態密度の最大値に対して0.1以上の比率を有する(図3参照)。このようにすることにより、第一の付加準位15の状態密度を、価電子帯11の状態密度と比べて比較的大きくすることができる。したがって、導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 実施の形態1に係る熱電変換材料において、Auの含有割合は、0.1at%以上5at%以下としてもよい。このようにすることにより、エネルギー幅の小さい第一の付加準位15を形成することが容易となる。したがって、導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。なお、以下実施の形態2に係る熱電変換材料等についても同様である。
 上記の実施の形態においては、ベース材料をSiGeからなる半導体とし、第一の添加元素をAuとし、第二の添加元素をBとすることとしたが、本願の熱電変換材料は、これに限らない。例えば、ベース材料は、SiGe系材料であってもよい。ベース材料のバンドギャップに対する、ベース材料の価電子帯に最も近い位置にある第一の付加準位とベース材料の価電子帯とのエネルギー差の比が、20%以上であってもよい。ベース材料のバンドギャップに対する、ベース材料の伝導帯に最も近い位置にある第一の付加準位とベース材料の伝導帯とのエネルギー差の比が、20%以上であってもよい。このような第一の添加元素を含むことにより、ベース材料をSiGe系材料とした場合の禁制帯内に確実に新規準位としての第一の付加準位を形成することができる。SiGe系材料とは、SiGe、およびSiGeにおいてSiおよびGeの少なくとも一方の一部が他の元素、例えばC、Sn等に置き換えられた材料を意味する。
 図4は、ベース材料をSiGeとした場合において、第一の添加元素としての各元素が形成するエネルギー準位を示す図である。図4において、領域46aで伝導帯を示し、領域46bで価電子帯を示している。バンドギャップは、図4中において、第一の添加元素をFeとした場合に示すように、領域46aのうちの最も領域46bに近いエネルギーと領域46bのうちの最も領域46aに近いエネルギーとの差Lで示される。第一の付加準位については、例えば、元素をCuとした場合に示すように、領域46aと領域46bとの間のエネルギー準位47によって示される。図4は、第一原理計算を基に導出している。図4において、第一の付加準位については、エネルギー準位がCuのように1本の線で表れるものもあれば、Feのように2本の線で表れるものもある。また、元素によっては、エネルギー準位が3本以上の線で表れるものもある。このように、第一の付加準位が複数ある場合には、複数の第一の付加準位のうちの最も価電子帯に近い位置にある第一の付加準位とベース材料の価電子帯とのエネルギーの差の比が20%以上であり、複数の第一の付加準位のうちの最も伝導帯に近い位置にある第一の付加準位とベース材料の伝導帯とのエネルギーの差の比が20%以上であればよい。
 図4を参照して、SiGeをベース材料とした場合、第一の付加準位は、ベース材料のバンドギャップに対する、ベース材料の価電子帯に最も近い位置にある第一の付加準位とベース材料の価電子帯とのエネルギー差の比が、20%以上であり、ベース材料のバンドギャップに対する、ベース材料の伝導帯に最も近い位置にある第一の付加準位とベース材料の伝導帯とのエネルギー差の比が、20%以上である元素として、Au、Fe、Cu、Ni、Mn、Cr、V、Ti、Ag、Pd、PtおよびIrが挙げられる。すなわち、SiGeをベース材料とした場合、第一の添加元素は、Au、Fe、Cu、Ni、Mn、Cr、V、Ti、Ag、Pd、PtまたはIrであってもよい。
 具体的には例えば、第一の添加元素を、AuまたはCuとし、第二の添加元素を、Bとする。AuまたはCuにより形成される第一の付加準位は、SiGeの禁制帯内に存在する。Bにより形成される第二の付加準位は、SiGeの禁制帯に隣接する価電子帯または伝導帯のうちの第一の付加準位に近い方のエネルギーバンドである価電子帯と第一の付加準位との間に存在する。このようにすることにより、ベース材料をSiGeとした場合に、AuまたはCuを第一の添加元素として、禁制帯内に新規準位となる第一の付加準位を形成することができる。また、Bを第二の添加元素とし、第二の添加元素によって形成される第二の付加準位によるアクセプタ準位を形成してフェルミ準位を制御することができる。その結果、より確実にZTを増大させて、熱電変換の効率の向上を図ることができる。
 (実施の形態2)
 実施の形態2に係る熱電変換材料では、上記実施の形態1の熱電変換材料において、第一の添加元素を、Feとし、第二の添加元素を、Pとする。Feにより形成される第一の付加準位は、SiGeの禁制帯内に存在する。Pにより形成される第二の付加準位は、SiGeの禁制帯に隣接する価電子帯または伝導帯のうちの第一の付加準位に近い方のエネルギーバンドである伝導帯と第一の付加準位との間に存在する。このようにすることにより、ベース材料をSiGeとした場合に、Feを第一の添加元素として、禁制帯内に新規準位となる第一の付加準位を形成することができる。また、Pを第二の添加元素とし、第二の添加元素によって形成される第二の付加準位によるドナー準位を形成してフェルミ準位を制御することができる。その結果、より確実にZTを増大させて、熱電変換の効率の向上を図ることができる。
 実施の形態2に係る熱電変換材料は、以下の製造方法で製造することができる。まず、計量したSi、Ge、FeおよびPの粉末をステンレス製のポットに入れる。この場合、それぞれの元素の含有割合が、Si63Ge2410Feとなるように調整する。また、ポットの内部には、水素の含有割合が4体積%以下である水素と窒素との混合ガスであるフォーミングガスを充填し、還元雰囲気とする。そして、メカニカルアロイングによりSiGeにFeおよびPの粉末が添加されたアモルファスの粉体を得る。すなわち、メカニカルアロイングは、水素の含有割合が4体積%以下である水素と窒素の混合ガス中で実施される。このようにして、還元雰囲気中においてメカニカルアロイングを実施してアモルファスの半導体材料の粉体を得る。
 次に、グローブボックス内を窒素ガスの雰囲気とした状態で、得られた粉体をダイに充填し、スパークプラズマ焼結(Spark Plasma Sintering)法により焼結体を形成する。この時の温度は、例えば600℃とすることができる。このようにして、アモルファス相中に母材元素の結晶相、本実施形態においてはSiGeの結晶相が存在する焼結体からなる熱電変換材料を製造する。
 図5は、実施の形態2における熱電変換材料の組織の状態を示す概略図である。図5を参照して、熱電変換材料1の組織は、アモルファス相2と、結晶相3とを含む。アモルファス相2は、母材元素であるSiGeを主成分としている。ここで、主成分として含有されるSiGeの含有割合は、例えば50質量%以上、好ましくは90質量%以上、さらに好ましくは95%以上である。結晶相3は、母材元素であるSiGeからなる微結晶である。結晶相3は、アモルファス相2中に存在する。本実施形態においては、複数の粒状の結晶相3が、アモルファス相2中において、分散して存在する。結晶相3の粒径は、50nm以下である。結晶相3の粒径の測定については、後述する図7に示すX線回折パターンにおいて、SiGeを示すピークの半値幅から算出することができる。なお、上記した実施の形態1における熱電変換材料も、同様の構成を有している。以下の実施の形態においても同様である。
 熱電変換材料1において、熱電変換材料の組織は、母材元素を主成分とするアモルファス相2を含み、母材元素の結晶相3は、アモルファス相2中に存在している。アモルファス相2を含む熱電変換材料は、熱伝導率を低くすることができる。よって、ZTを増大させることができる。また、アモルファス相2中に母材元素からなる結晶相3が存在することにより、熱電変換材料1の導電率を向上させることができる。よって、ZTを増大させることができる。したがって、より熱電変換の効率を向上させることができる。また、結晶相3はアモルファス相2と比較して導電率が高いため、ZTが増大する。一方、結晶相3の粒径が大きくなり過ぎると、熱伝導率が高くなる傾向がある。母材元素からなる結晶相3の粒径を50nm以下とすることで、熱伝導率の上昇を抑制することができる。よって、このような熱電変換材料1によると、導電率を向上させながら熱伝導率の上昇を抑制することができる。したがって、ZTを増大させて、より熱電変換の効率を向上させることができる。
 得られた熱電変換材料の温度とZTとの関係を導出した。図6は、実施の形態2における熱電変換材料の温度とZTとの関係を示すグラフである。図6において、横軸は温度(℃)を示し、縦軸はZTを示す。グラフのプロットに対するアイガイドを、図6中の線5で示す。図6は、メカニカルアロイングを10時間行った実施の形態2における熱電変換材料の場合を示す。図6におけるZTは、真空中において、熱電変換材料の抵抗率、ゼーベック係数および熱伝導率を測定し、得られた測定結果からZTの値を導出した。また、図6は、低温から高温へ加熱していく際に測定を行った場合の結果を示す。
 図6を参照して、常温から700℃までは温度を上昇させるに従い、ZTの値も大きくなっている。700℃ではZTの値が3以上となっており、非常に高い値となっている。700℃を超えると、ZTは緩やかに減少していく。したがって、例えば、700℃を超えない範囲での使用や700℃付近での使用により、高いZTの値で熱電変換を行うことができ、熱電変換の効率をより向上させることができる。
 図7は、実施の形態2における熱電変換材料のX線回折パターンである。図7において、X線回折パターン6aおよびX線回折パターン6bは、900℃で測定した場合を示す。X線回折パターン6aで熱伝導率を測定したサンプルを示し、X線回折パターン6bで抵抗率を測定したサンプルを示す。X線回折パターン6cで、600℃で焼結した場合を示す。スパークプラズマ焼結を行っていない場合のX線回折パターンを線6dで示す。
 なお、X線回折パターンの測定について、X線回折装置としてBruker社製のD8 Advanceを用いた。X線源としてCuKα線を使用し、測定方法としてθ-2θ法(ブラッグブレンターノ型発散集光系)を利用した。なお、後述するリートベルト解析については、PROGRAM FullProf.2kを使用して解析を行った。
 図7を参照して、ピークAは、SiGeの結晶相に対応するピークである。900℃で測定したX線回折パターン6aの場合、母材元素からなる結晶相であるSiGeの結晶相を示すピークが現れる。X線回折パターン6aに示されるSiGeからなる結晶相のピークの半値幅から導出すると、SiGeからなる結晶相の粒径は50nmである。ピークAは、SiGeの結晶相を示すピークの中で最大強度を有するピークである。
 また、ピークAは、Feの結晶相に対応するピークである。X線回折パターン6aでは、第一の添加元素を含む結晶相であるFeの結晶相を示すピークが現れる。このピークAは、Feの結晶相を示すピークの中で最大強度を有するピークである。SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するFeの結晶相を示すピークのうちの最大強度を有するピークの強度の比は、1.6%である。すなわち、SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するFeの結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である。
 また、ピークAは、PSiの結晶相を示すピークである。X線回折パターン6aでは、第二の添加元素を含む結晶相であるPSiの結晶相を示すピークが現れる。このピークAは、PSiの結晶相を示すピークの中で最大強度を有するピークである。SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するPSiの結晶相を示すピークのうちの最大強度を有するピークの強度の比についても、1.6%である。すなわち、SiGeからなる結晶相を示すピークのうちの最大強度を有するピーク強度に対するPSiの結晶相を示すピークのうちの最大強度を有するピーク強度の比は、2.0%以下である。
 900℃で測定したX線回折パターン6bの場合、母材元素からなる結晶相であるSiGeの結晶相を示すピークが現れる。X線回折パターン6bに示されるSiGeからなる結晶相のピークの半値幅から導出すると、SiGeからなる結晶相の粒径は50nmである。ピークAは、SiGeからなる結晶相を示すピークの中で最大強度を有するピークである。X線回折パターン6bでは、第一の添加元素を含む結晶相であるFeの結晶相を示すピークが現れる。このピークAは、Feの結晶相を示すピークの中で最大強度を有するピークである。SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するFeの結晶相を示すピークのうちの最大強度を有するピークの強度の比は、1.6%である。すなわち、SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するFeの結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である。なお、X線回折パターン6bにおいては、PSiの結晶相を示すピークは現れていない。すなわち、SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するPSiの結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である。
 600℃で焼結したX線回折パターン6cの場合、母材元素からなる結晶相であるSiGeの結晶相を示すピークが現れる。X線回折パターン6cに示されるSiGeからなる結晶相のピークの半値幅から導出すると、SiGeからなる結晶相の粒径は16nmである。なお、X線回折パターン6cにおいては、Feの結晶相を示すピークおよびPSiの結晶相を示すピークは現れていない。すなわち、SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するFeの結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である。また、SiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対するPSiの結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である。すなわち、母材元素からなる結晶相を示すピークのうちの最大強度を有するピークの強度に対する、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である。
 なお、X線回折パターン6dで示すスパークプラズマ焼結を行っていない場合でも、母材元素からなる結晶相であるSiGeからなる結晶相を示すピークが現れる。X線回折パターン6dに示されるSiGeからなる結晶相のピークの半値幅から導出すると、SiGeの結晶相の粒径は10nmである。なお、X線回折パターン6dにおいても、Feの結晶相を示すピークおよびPSiの結晶相を示すピークは現れていない。
 上記熱電変換材料のX線回折パターンにおいて、母材元素であるSiGeからなる結晶相を示すピークのうちの最大強度を有するピークの強度に対する、第一の添加元素であるFeおよび第二の添加元素であるPのうちの少なくともいずれか一方を含む結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である。熱電変換材料において、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相が多く析出すると、結晶相が少ない場合と比較して、キャリア濃度が低下してフェルミ準位の位置がずれてしまうか、または第一の付加準位の密度が低下する。これらのうちの少なくとも一方の要因または双方の要因で、第一の付加準位の形成の効果および第二の付加準位の形成の効果を十分に得にくくなる。上記熱電変換材料によると、第一の添加元素の結晶相としての析出および第二の添加元素の結晶相としての析出量が少ないため、第一の添加元素による第一の付加準位の形成の効果および第二の添加元素による第二の付加準位の形成の効果をより確実に得ることができる。したがって、より熱電変換の効率の向上を図ることができる。
 また、図7に示すX線回折パターンにおいて、X線回折パターン6aで示す900℃で測定した場合について、リートベルト解析を行い、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相の割合を導出した。この場合、第一の添加元素を含む結晶相であるFeの結晶相および第二の添加元素を含む結晶相であるPSiの結晶相の双方を足し合わせた割合を導出した。熱電変換材料において、熱電変換材料の組織全体に対する、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相、この場合、Feの結晶相とPSiの結晶相の双方を足し合わせた割合は、6.0体積%以下、具体的には5.6体積%であった。X線回折パターン6cで示す600℃で焼結した場合、熱電変換材料全体に対する、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相の割合は、0体積%であった。すなわち、熱電変換材料の組織全体に対する、第一の添加元素および第二の添加元素のうちの少なくともいずれか一方を含む結晶相が、6.0体積%以下である。
 このような熱電変換材料は、第一の添加元素の結晶相としての析出および第二の添加元素の結晶相としての析出量が少ないため、第一の添加元素による第一の付加準位の形成の効果および第二の添加元素による第二の付加準位の形成の効果をより確実に得ることができる。したがって、より熱電変換の効率の向上を図ることができる。
 上記の実施の形態において、本願の熱電変換材料において、最外殻の内側に位置するf軌道に空軌道を有する第一の添加元素を含むようにしてもよい。以下の実施形態についても同様である。
 (実施の形態3)
 本実施の形態に係る熱電変換材料において、ベース材料は、MnSi系材料であり、第一の添加元素は、ReまたはWであり、第二の添加元素は、CrまたはFeである。この実施の形態2に係る熱電変換材料により、より確実に導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 実施の形態3に係る熱電変換材料については、以下の製造方法で製造することにしてもよい。まず、高周波加熱炉を利用して、母材元素であるMnおよびSiと、第一の添加元素であるReと、第二の添加元素であるCrとを混合した原料を融解して固め、母合金を作製する。作製された母合金を溶かして回転する銅ロールに噴射する。このような液体急冷法を非平衡状態で行うことにより、リボン状(薄片状)のアモルファス合金を得る。得られたアモルファス合金に対してスパークプラズマ焼結法による熱処理を行い、バルク状の成形体である熱電変換材料を得る。このようにして、実施の形態2に係る熱電変換材料を得ることにしてもよい。
 図8および図9は、MnSiに第一の添加元素として添加するReの含有割合を変化させた場合の状態密度を示すグラフである。図8は、HAXPES(Hard X-ray Photoelectron Spectroscopy)で実測した場合を示し、図9は、理論計算に基づいた場合を示す。図8および図9中において、線17aは、Reを添加しなかった場合を示し、線17bは、Reを4at%添加した場合を示し、線17cは、Reを6at%添加した場合を示す。図8および図9において、横軸はエネルギーを示し、図8における縦軸は、10~15eVの値で規格化された強度を示す。図9における縦軸は、スペクトル電導度を示す。
 図8および図9を参照すると、いずれも矢印で示す禁制帯と隣接する価電子帯の端部の位置に、Reの添加による新規準位のピークが表れていることが把握できる。Reの添加により、エネルギー幅が小さく急峻な第一の付加準位を形成することができる。
 (実施の形態4)
 本実施の形態に係る熱電変換材料において、ベース材料は、SnSe系材料であり、第一の添加元素は、Sc、TiまたはZrであり、第二の添加元素は、F、Cl、Br、I、N、P、As、Sb、Bi、B、Al、GaまたはInである。この実施の形態3に係る熱電変換材料により、より確実に導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 図10は、SnSe系材料において、第一の添加元素としてのScの第一の付加準位が存在する場合のバンド構造の一例を示す図である。図10において、SnSeのバンドは、FLAPW(Full-potential Linearized Augmented Plane Wave)法により計算している。また、その交換相互作用については、GGA(Generalized Gradient Approximation)法の枠内で取り扱っている。Scの3d軌道のバンドは、クラスター計算(クラスターモデルによる計算をいう。)により導出している。図11は、SnSe系材料において、第一の添加元素としてのTi、Zrの第一の付加準位が存在する場合のバンド構造の一例を示す図である。図11においても、FLAPW法およびGGA法を利用している。また、Tiの3d軌道のバンドおよびZrの4d軌道のバンドも、クラスター計算により導出している。
 図10および図11を参照して、SnSeのバンドの禁制帯に隣接する伝導帯の端部の近傍において、第一の添加元素であるSc、Ti、Zrは、エネルギー幅が小さく急峻な第一の付加準位を形成することができる。
 (実施の形態5)
 本実施の形態に係る熱電変換材料において、ベース材料は、CuSe系材料であり、第一の添加元素は、V、Sc、Ti、CoまたはNiであり、第二の添加元素は、F、Cl、Br、I、N、P、As、Sb、Bi、Mg、ZnまたはCdである。この実施の形態4に係る熱電変換材料により、より確実に導電性を上昇させることができる。その結果、ZTを増大させて、熱電変換の効率の向上を図ることができる。
 図12は、CuSe系材料において、第一の添加元素としてのSc、Ti、Vの第一の付加準位が存在する場合のバンド構造の一例を示す図である。図12においても、CuSeのバンドは、FLAPW法により計算している。また、その交換相互作用についても、GGA法の枠内で取り扱っている。Scの3d軌道のバンド、Tiの3d軌道のバンドおよびVの3d軌道のバンドはそれぞれ、クラスター計算により導出している。図13は、SnSe系材料において、第一の添加元素としてのCo、Niの第一の付加準位が存在する場合のバンド構造の一例を示す図である。図13においても、FLAPW法およびGGA法を利用している。Coの3d軌道のバンドおよびNiの3d軌道のバンドも、クラスター計算により導出している。図12および図13において、注釈中の「×8」は、信号を8倍にして表示したことを示している。
 図12および図13を参照して、CuSeのバンドの禁制帯に隣接する伝導帯または価電子帯の端部の近傍において、第一の添加元素であるSc、Ti、V、Co、Niは、エネルギー幅が小さく急峻なバンドを形成することができる。
 (実施の形態6)
 次に、本願に係る熱電変換材料を用いた熱電変換素子の一実施形態として、発電素子について説明する。
 図14は、本実施の形態における熱電変換素子であるπ型熱電変換素子(発電素子)21の構造を示す概略図である。図14を参照して、π型熱電変換素子21は、第1熱電変換材料部であるp型熱電変換材料部22と、第2熱電変換材料部であるn型熱電変換材料部23と、高温側電極24と、第1低温側電極25と、第2低温側電極26と、配線27とを備えている。
 p型熱電変換材料部22は、例えば導電型がp型となるように成分組成が調整された実施の形態1の熱電変換材料からなる。p型熱電変換材料部22を構成する実施の形態1の熱電変換材料に、例えば多数キャリアであるp型キャリア(正孔)を生成させるp型不純物がドープされることにより、p型熱電変換材料部22の導電型はp型となっている。
 n型熱電変換材料部23は、例えば導電型がn型となるように成分組成が調整された実施の形態1の熱電変換材料からなる。n型熱電変換材料部23を構成する実施の形態1の熱電変換材料に、例えば多数キャリアであるn型キャリア(電子)を生成させるn型不純物がドープされることにより、n型熱電変換材料部23の導電型はn型となっている。
 p型熱電変換材料部22とn型熱電変換材料部23とは、間隔をおいて並べて配置される。高温側電極24は、p型熱電変換材料部22の一方の端部31からn型熱電変換材料部23の一方の端部32にまで延在するように配置される。高温側電極24は、p型熱電変換材料部22の一方の端部31およびn型熱電変換材料部23の一方の端部32の両方に接触するように配置される。高温側電極24は、p型熱電変換材料部22の一方の端部31とn型熱電変換材料部23の一方の端部32とを接続するように配置される。高温側電極24は、導電材料、例えば金属からなっている。高温側電極24は、p型熱電変換材料部22およびn型熱電変換材料部23にオーミック接触している。
 第1低温側電極25は、p型熱電変換材料部22の他方の端部33に接触して配置される。第1低温側電極25は、高温側電極24と離れて配置される。第1低温側電極25は、導電材料、例えば金属からなっている。第1低温側電極25は、p型熱電変換材料部22にオーミック接触している。
 第2低温側電極26は、n型熱電変換材料部23の他方の端部34に接触して配置される。第2低温側電極26は、高温側電極24および第1低温側電極25と離れて配置される。第2低温側電極26は、導電材料、例えば金属からなっている。第2低温側電極26は、n型熱電変換材料部23にオーミック接触している。
 配線27は、金属などの導電体からなる。配線27は、第1低温側電極25と第2低温側電極26とを電気的に接続する。
 π型熱電変換素子21において、例えばp型熱電変換材料部22の一方の端部31およびn型熱電変換材料部23の一方の端部32の側が高温、p型熱電変換材料部22の他方の端部33およびn型熱電変換材料部23の他方の端部34の側が低温、となるように温度差が形成されると、p型熱電変換材料部22においては、一方の端部31側から他方の端部33側に向けてp型キャリア(正孔)が移動する。このとき、n型熱電変換材料部23においては、一方の端部32側から他方の端部34側に向けてn型キャリア(電子)が移動する。その結果、配線27には、矢印Iの向きに電流が流れる。このようにして、π型熱電変換素子21において、温度差を利用した熱電変換による発電が達成される。すなわち、π型熱電変換素子21は発電素子である。
 p型熱電変換材料部22およびn型熱電変換材料部23を構成する材料として、例えば、ZTの値が増大した実施の形態1の熱電変換材料が採用される。その結果、π型熱電変換素子21は高効率な発電素子となっている。
 上記実施の形態においては、本願の熱電変換素子の一例としてπ型熱電変換素子について説明したが、本願の熱電変換素子はこれに限られない。本願の熱電変換素子は、例えばI型(ユニレグ型)熱電変換素子など、他の構造を有する熱電変換素子であってもよい。
 (実施の形態7)
 π型熱電変換素子21を複数個電気的に接続することにより、熱電変換モジュールとしての発電モジュールを得ることができる。本実施の形態の熱電変換モジュールである発電モジュール41は、π型熱電変換素子21が直列に複数個接続された構造を有する。
 図15は、発電モジュールの構造の一例を示す図である。図15を参照して、本実施の形態の発電モジュール41は、p型熱電変換材料部22と、n型熱電変換材料部23と、第1低温側電極25および第2低温側電極26に対応する低温側電極25、26と、高温側電極24と、低温側絶縁体基板28と、高温側絶縁体基板29とを備える。低温側絶縁体基板28および高温側絶縁体基板29は、アルミナなどのセラミックからなる。p型熱電変換材料部22とn型熱電変換材料部23とは、交互に並べて配置される。低温側電極25、26は、上述のπ型熱電変換素子21と同様にp型熱電変換材料部22およびn型熱電変換材料部23に接触して配置される。高温側電極24は、上述のπ型熱電変換素子21と同様にp型熱電変換材料部22およびn型熱電変換材料部23に接触して配置される。p型熱電変換材料部22は、一方側に隣接するn型熱電変換材料部23と共通の高温側電極24により接続される。また、p型熱電変換材料部22は、上記一方側とは異なる側に隣接するn型熱電変換材料部23と共通の低温側電極25、26により接続される。このようにして、全てのp型熱電変換材料部22とn型熱電変換材料部23とが直列に接続される。
 低温側絶縁体基板28は、板状の形状を有する低温側電極25、26のp型熱電変換材料部22およびn型熱電変換材料部23に接触する側とは反対側の主面側に配置される。低温側絶縁体基板28は、複数の(全ての)低温側電極25、26に対して1枚配置される。高温側絶縁体基板29は、板状の形状を有する高温側電極24のp型熱電変換材料部22およびn型熱電変換材料部23に接触する側とは反対側に配置される。高温側絶縁体基板29は、複数の(全ての)高温側電極24に対して1枚配置される。
 直列に接続されたp型熱電変換材料部22およびn型熱電変換材料部23のうち両端に位置するp型熱電変換材料部22またはn型熱電変換材料部23に接触する高温側電極24または低温側電極25、26に対して、配線27が接続される。そして、高温側絶縁体基板29側が高温、低温側絶縁体基板28側が低温となるように温度差が形成されると、直列に接続されたp型熱電変換材料部22およびn型熱電変換材料部23により、上記π型熱電変換素子21の場合と同様に矢印Iの向きに電流が流れる。このようにして、発電モジュール41において、温度差を利用した熱電変換による発電が達成される。
 (実施の形態8)
 次に、本願に係る熱電変換材料を用いた熱電変換素子の他の実施の形態として、光センサである赤外線センサについて説明する。
 図16は、赤外線センサ51の構造の一例を示す図である。図16を参照して、赤外線センサ51は、隣接して配置されるp型熱電変換材料部52と、n型熱電変換材料部53とを備える。p型熱電変換材料部52とn型熱電変換材料部53とは、基板54上に形成される。
 赤外線センサ51は、基板54と、エッチングストップ層55と、n型熱電変換材料層56と、n型オーミックコンタクト層57と、絶縁体層58と、p型熱電変換材料層59と、n側オーミックコンタクト電極61と、p側オーミックコンタクト電極62と、熱吸収用パッド63と、吸収体64と、保護膜65とを備えている。
 基板54は、二酸化珪素などの絶縁体からなる。基板54には、凹部66が形成されている。エッチングストップ層55は、基板54の表面を覆うように形成されている。エッチングストップ層55は、例えば窒化珪素などの絶縁体からなる。エッチングストップ層55と基板54の凹部66との間には空隙が形成される。
 n型熱電変換材料層56は、エッチングストップ層55の基板54とは反対側の主面上に形成される。n型熱電変換材料層56は、例えば導電型がn型となるように成分組成が調整された実施の形態1の熱電変換材料からなる。n型熱電変換材料層56を構成する実施の形態1の熱電変換材料に、例えば多数キャリアであるn型キャリア(電子)を生成させるn型不純物がドープされることにより、n型熱電変換材料層56の導電型はn型となっている。n型オーミックコンタクト層57は、n型熱電変換材料層56のエッチングストップ層55とは反対側の主面上に形成される。n型オーミックコンタクト層57は、例えば多数キャリアであるn型キャリア(電子)を生成させるn型不純物が、n型熱電変換材料層56よりも高濃度でドープされる。これにより、n型オーミックコンタクト層57の導電型はn型となっている。
 n型オーミックコンタクト層57のn型熱電変換材料層56とは反対側の主面の中央部に接触するように、n側オーミックコンタクト電極61が配置される。n側オーミックコンタクト電極61は、n型オーミックコンタクト層57に対してオーミック接触可能な材料、例えば金属からなっている。n型オーミックコンタクト層57のn型熱電変換材料層56とは反対側の主面上に、例えば二酸化珪素などの絶縁体からなる絶縁体層58が配置される。絶縁体層58は、n側オーミックコンタクト電極61から見てp型熱電変換材料部52側のn型オーミックコンタクト層57の主面上に配置される。
 n型オーミックコンタクト層57のn型熱電変換材料層56とは反対側の主面には、さらに保護膜65が配置される。保護膜65は、n側オーミックコンタクト電極61から見てp型熱電変換材料部52とは反対側のn型オーミックコンタクト層57の主面上に配置される。n型オーミックコンタクト層57のn型熱電変換材料層56とは反対側の主面上には、保護膜65を挟んで上記n側オーミックコンタクト電極61とは反対側に、他のn側オーミックコンタクト電極61が配置される。
 絶縁体層58のn型オーミックコンタクト層57とは反対側の主面上に、p型熱電変換材料層59が配置される。p型熱電変換材料層59は、例えば導電型がp型となるように成分組成が調整された実施の形態1の熱電変換材料からなる。p型熱電変換材料層59を構成する実施の形態1の熱電変換材料に、例えば多数キャリアであるp型キャリア(正孔)を生成させるp型不純物がドープされることにより、p型熱電変換材料層59の導電型はp型となっている。
 p型熱電変換材料層59の絶縁体層58とは反対側の主面上の中央部には、保護膜65が配置される。p型熱電変換材料層59の絶縁体層58とは反対側の主面上には、保護膜65を挟む一対のp側オーミックコンタクト電極62が配置される。p側オーミックコンタクト電極62は、p型熱電変換材料層59に対してオーミック接触可能な材料、例えば金属からなっている。一対のp側オーミックコンタクト電極62のうち、n型熱電変換材料部53側のp側オーミックコンタクト電極62は、n側オーミックコンタクト電極61に接続されている。
 互いに接続されたp側オーミックコンタクト電極62およびn側オーミックコンタクト電極61のn型オーミックコンタクト層57とは反対側の主面を覆うように、吸収体64が配置される。吸収体64は、例えばチタンからなる。n側オーミックコンタクト電極61に接続されない側のp側オーミックコンタクト電極62上に接触するように、熱吸収用パッド63が配置される。また、p側オーミックコンタクト電極62に接続されない側のn側オーミックコンタクト電極61上に接触するように、熱吸収用パッド63が配置される。熱吸収用パッド63を構成する材料としては、例えばAu(金)/Ti(チタン)が採用される。
 赤外線センサ51に赤外線が照射されると、吸収体64は赤外線のエネルギーを吸収する。その結果、吸収体64の温度が上昇する。一方、熱吸収用パッド63の温度上昇は抑制される。そのため、吸収体64と熱吸収用パッド63との間に温度差が形成される。そうすると、p型熱電変換材料層59においては、吸収体64側から熱吸収用パッド63側に向けてp型キャリア(正孔)が移動する。一方、n型熱電変換材料層56においては、吸収体64側から熱吸収用パッド63側に向けてn型キャリア(電子)が移動する。そして、n側オーミックコンタクト電極61およびp側オーミックコンタクト電極62からキャリアの移動の結果として生じする電流を取り出すことにより、赤外線が検出される。
 本実施の形態の赤外線センサ51においては、p型熱電変換材料層59およびn型熱電変換材料層56を構成する材料として、導電率を十分に高い値とすることによりZTの値が増大した実施の形態1の熱電変換材料が採用される。その結果、赤外線センサ51は、高感度な赤外線センサとなっている。
 上記熱電変換材料において、半導体であるベース材料をSiGe系材料、MnSi系材料、SnSe系材料およびCuSe系材料とすることとしたが、これに限らず、他の半導体をベース材料として用いてもよい。なお、例えば、III-V族元素を母材元素として用いてベース材料を構成した場合、第二の添加元素の最外殻の電子数と母材元素のうち少なくとも1つの最外殻の電子数との差が、1であるようにしてもよい。このようにすることによっても、熱電変換の効率を向上させることができる。
 上記熱電変換材料において、第一の付加準位の状態密度は、ベース材料の禁制帯に隣接する価電子帯の状態密度の最大値に対して0.1未満の比率であってもよい。
 上記熱電変換材料において、第一の添加元素は、遷移金属以外の元素を用いることとしてもよい。
 上記の実施の形態において、第二の添加元素は、ベース材料の価電子帯または伝導帯から0.1eV以内の領域に形成されることが好ましい。このようにすることにより、第二の添加元素の濃度が低くともキャリア濃度を高めることが可能であり、そのため効果的にフェルミ準位を移動させることが容易となる。
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本開示の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 熱電変換材料、2 結晶相、3 アモルファス相、5,6a,6b,6c,6d X線回折パターン、10 第二の添加元素、11 価電子帯、12 伝導帯、13 禁制帯、14,15,16 付加準位、17a,17b,17c 線、21 π型熱電変換素子、22,52 p型熱電変換材料部、23,53 n型熱電変換材料部、24 高温側電極、25 第1低温側電極(低温側電極)、26 第2低温側電極(低温側電極)、27,42,43 配線、28 低温側絶縁体基板、29 高温側絶縁体基板、31,32,33,34 端部、41 熱電変換モジュール、46a,46b 領域、47 エネルギー準位、51 赤外線センサ、54 基板、55 エッチングストップ層、56 n型熱電変換材料層、57 n型オーミックコンタクト層、58 絶縁体層、59 p型熱電変換材料層、61 n側オーミックコンタクト電極、62 p側オーミックコンタクト電極、63 熱吸収用パッド、64 吸収体、65 保護膜、66 凹部

Claims (19)

  1.  母材元素からなる半導体であるベース材料と、
     前記母材元素と異なる元素であり、最外殻の内側に位置するd軌道またはf軌道に空軌道を有し、前記ベース材料の禁制帯内に第一の付加準位を形成する第一の添加元素と、
     前記母材元素および前記第一の添加元素の双方と異なる元素であり、前記ベース材料の禁制帯内に第二の付加準位を形成する第二の添加元素と、を含み、
     前記第二の添加元素の最外殻の電子数と前記母材元素のうち少なくとも1つの最外殻の電子数との差は、1である、熱電変換材料。
  2.  前記熱電変換材料の組織中に、粒径が50nm以下である前記母材元素からなる結晶相を含む、請求項1に記載の熱電変換材料。
  3.  前記熱電変換材料のX線回折パターンにおいて、前記母材元素からなる結晶相を示すピークのうちの最大強度を有するピークの強度に対する、前記第一の添加元素および前記第二の添加元素のうちの少なくともいずれか一方を含む結晶相を示すピークのうちの最大強度を有するピークの強度の比は、2.0%以下である、請求項2に記載の熱電変換材料。
  4.  前記熱電変換材料の組織全体に対する、前記第一の添加元素および前記第二の添加元素のうちの少なくともいずれか一方を含む結晶相の割合は、6.0体積%以下である、請求項1から請求項3のいずれか1項に記載の熱電変換材料。
  5.  前記熱電変換材料の組織は、前記母材元素を主成分とするアモルファス相を含み、
     前記母材元素からなる結晶相は、前記アモルファス相中に存在する、請求項2から請求項4のいずれか1項に記載の熱電変換材料。
  6.  前記第一の添加元素は、遷移金属である、請求項1から請求項5のいずれか1項に記載の熱電変換材料。
  7.  前記第二の付加準位は、前記ベース材料の禁制帯に隣接する価電子帯または伝導帯のうちの前記第一の付加準位に近い方のエネルギーバンドと前記第一の付加準位との間に存在する、請求項1から請求項6のいずれか1項に記載の熱電変換材料。
  8.  前記第一の付加準位の状態密度は、前記ベース材料の禁制帯に隣接する価電子帯の状態密度の最大値に対して0.1以上の比率を有する、請求項1から請求項7のいずれか1項に記載の熱電変換材料。
  9.  前記第一の添加元素の含有割合は、0.1at%以上5at%以下である、請求項1から請求項8のいずれか1項に記載の熱電変換材料。
  10.  前記ベース材料は、SiGe系材料であり、
     前記ベース材料のバンドギャップに対する、前記ベース材料の価電子帯に最も近い位置にある前記第一の付加準位と前記ベース材料の価電子帯とのエネルギー差の比が、20%以上であり、
     前記ベース材料のバンドギャップに対する、前記ベース材料の伝導帯に最も近い位置にある前記第一の付加準位と前記ベース材料の伝導帯とのエネルギー差の比が、20%以上である、請求項1から請求項9のいずれか1項に記載の熱電変換材料。
  11.  前記第一の添加元素は、Au、Fe、Cu、Ni、Mn、Cr、V、Ti、Ag、Pd、PtまたはIrである、請求項10に記載の熱電変換材料。
  12.  前記第一の添加元素は、AuまたはCuであり、
     前記第二の添加元素は、Bである、請求項11に記載の熱電変換材料。
  13.  前記第一の添加元素は、Feであり、
     前記第二の添加元素は、Pである、請求項11に記載の熱電変換材料。
  14.  前記ベース材料は、MnSi系材料であり、
     前記第一の添加元素は、ReまたはWであり、
     前記第二の添加元素は、CrまたはFeである、請求項1から請求項9のいずれか1項に記載の熱電変換材料。
  15.  前記ベース材料は、SnSe系材料であり、
     前記第一の添加元素は、Sc、TiまたはZrであり、
     前記第二の添加元素は、F、Cl、Br、I、N、P、As、Sb、Bi、B、Al、GaまたはInである、請求項1から請求項9のいずれか1項に記載の熱電変換材料。
  16. 前記ベース材料は、CuSe系材料であり、
     前記第一の添加元素は、V、Sc、Ti、CoまたはNiであり、
     前記第二の添加元素は、F、Cl、Br、I、N、P、As、Sb、Bi、Mg、ZnまたはCdである、請求項1から請求項9のいずれか1項に記載の熱電変換材料。
  17.  熱電変換材料部と、
     前記熱電変換材料部に接触して配置される第1電極と、
     前記熱電変換材料部に接触し、前記第1電極と離れて配置される第2電極と、を備え、
     前記熱電変換材料部は、導電型がp型またはn型となるように成分組成が調整された請求項1から請求項16のいずれか1項に記載の熱電変換材料からなる、熱電変換素子。
  18.  請求項17に記載の熱電変換素子を複数個含む、熱電変換モジュール。
  19.  光エネルギーを吸収する吸収体と、
     前記吸収体に接続される熱電変換材料部と、を備え、
     前記熱電変換材料部は、導電型がp型またはn型となるように成分組成が調整された請求項1から請求項16のいずれか1項に記載の熱電変換材料からなる、光センサ。
PCT/JP2018/048440 2018-03-20 2018-12-28 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ WO2019181142A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020507364A JP7144506B2 (ja) 2018-03-20 2018-12-28 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
US16/981,586 US11737364B2 (en) 2018-03-20 2018-12-28 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and optical sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018053183 2018-03-20
JP2018-053183 2018-03-20
PCT/JP2018/032583 WO2019180999A1 (ja) 2018-03-20 2018-09-03 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
JPPCT/JP2018/032583 2018-09-03

Publications (1)

Publication Number Publication Date
WO2019181142A1 true WO2019181142A1 (ja) 2019-09-26

Family

ID=67986990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048440 WO2019181142A1 (ja) 2018-03-20 2018-12-28 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ

Country Status (1)

Country Link
WO (1) WO2019181142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193534A1 (ja) * 2020-03-27 2021-09-30 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、および、熱電変換モジュール

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856020A (ja) * 1994-06-08 1996-02-27 Nissan Motor Co Ltd 熱電材料および熱電素子
JP2007042963A (ja) * 2005-08-05 2007-02-15 Toyota Central Res & Dev Lab Inc 熱電材料及びその製造方法
JP2008160077A (ja) * 2006-11-30 2008-07-10 Fdk Corp Mg金属間化合物及びそれを応用したデバイス
JP2011520252A (ja) * 2008-04-28 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア 熱磁気発生機
JP2014524874A (ja) * 2011-05-13 2014-09-25 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
WO2017002514A1 (ja) * 2015-06-30 2017-01-05 住友電気工業株式会社 熱電材料、熱電素子、光センサおよび熱電材料の製造方法
WO2018043478A1 (ja) * 2016-08-31 2018-03-08 住友電気工業株式会社 熱電変換材料、熱電変換素子および熱電変換モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856020A (ja) * 1994-06-08 1996-02-27 Nissan Motor Co Ltd 熱電材料および熱電素子
JP2007042963A (ja) * 2005-08-05 2007-02-15 Toyota Central Res & Dev Lab Inc 熱電材料及びその製造方法
JP2008160077A (ja) * 2006-11-30 2008-07-10 Fdk Corp Mg金属間化合物及びそれを応用したデバイス
JP2011520252A (ja) * 2008-04-28 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア 熱磁気発生機
JP2014524874A (ja) * 2011-05-13 2014-09-25 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
WO2017002514A1 (ja) * 2015-06-30 2017-01-05 住友電気工業株式会社 熱電材料、熱電素子、光センサおよび熱電材料の製造方法
WO2018043478A1 (ja) * 2016-08-31 2018-03-08 住友電気工業株式会社 熱電変換材料、熱電変換素子および熱電変換モジュール

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GHODKE, SWAPNIL ET AL.: "Enhanced Thermoelectric Properties of W-and Fe-Substituted MnSi y", JOURNAL OF ELECTRONIC MATERIALS, vol. 45, no. 10, October 2016 (2016-10-01), pages 5279 - 5284, XP036044672 *
SEVIK, C. ET AL.: "Investigation of thermoelectric properties of chalcogenide semiconductors from first principles", JOURNAL OF APPLIED PHYSICS, vol. 109, June 2011 (2011-06-01), pages 123712 - 1 -123712-5, XP012147201 *
SHI, XIAOYA ET AL.: "Cu-Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure", CHEMISTRY OF MATERIALS, vol. 22, 2010, pages 6029 - 6031, XP055636204, doi:10.1021/cm101589c *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193534A1 (ja) * 2020-03-27 2021-09-30 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、および、熱電変換モジュール

Similar Documents

Publication Publication Date Title
JP6269352B2 (ja) 熱電材料、熱電モジュール、光センサおよび熱電材料の製造方法
JP6949850B2 (ja) 熱電変換材料、熱電変換素子および熱電変換モジュール
JP2013016685A (ja) 熱電変換材料、熱電変換素子およびその作製方法
US11758813B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, optical sensor, and method for manufacturing thermoelectric conversion material
JP4285665B2 (ja) 熱電変換素子
JP6927039B2 (ja) 熱電材料、熱電素子、光センサおよび熱電材料の製造方法
CN101969096B (zh) 纳米结构热电材料、器件及其制备方法
WO2019181142A1 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
JP7001093B2 (ja) 熱電変換材料、熱電変換素子および熱電変換材料の製造方法
WO2021002221A1 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
JP6473069B2 (ja) 熱電変換材料および熱電変換素子
WO2017208505A1 (ja) 熱電材料、熱電素子、光センサおよび熱電材料の製造方法
US11910714B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and optical sensor
JP7144506B2 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
JP7524204B2 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
WO2020049852A1 (ja) 熱電変換素子、熱電変換モジュール、光センサ、熱電変換材料の製造方法および熱電変換素子の製造方法
Madar et al. Thermoelectric Preferred Orientation of (GeTe) 0.962 (Bi2Te3) 0.038

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911035

Country of ref document: EP

Kind code of ref document: A1