WO2019177446A1 - Warning system for epilepsy alarm - Google Patents
Warning system for epilepsy alarm Download PDFInfo
- Publication number
- WO2019177446A1 WO2019177446A1 PCT/MX2018/000026 MX2018000026W WO2019177446A1 WO 2019177446 A1 WO2019177446 A1 WO 2019177446A1 MX 2018000026 W MX2018000026 W MX 2018000026W WO 2019177446 A1 WO2019177446 A1 WO 2019177446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- eeg
- sample
- signals
- signal
- epileptic
- Prior art date
Links
- 206010015037 epilepsy Diseases 0.000 title claims abstract description 36
- 230000001037 epileptic effect Effects 0.000 claims abstract description 31
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims abstract description 23
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 230000000007 visual effect Effects 0.000 claims abstract 3
- 239000006185 dispersion Substances 0.000 claims description 48
- 206010010904 Convulsion Diseases 0.000 claims description 38
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000005070 sampling Methods 0.000 claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 abstract description 17
- 238000000537 electroencephalography Methods 0.000 description 65
- 239000000523 sample Substances 0.000 description 54
- 238000000034 method Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 18
- 210000004556 brain Anatomy 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 5
- 208000028329 epileptic seizure Diseases 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000000926 neurological effect Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007958 sleep Effects 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 206010038743 Restlessness Diseases 0.000 description 1
- 101710154918 Trigger factor Proteins 0.000 description 1
- 208000028311 absence seizure Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
Definitions
- the present invention is related to the medical industry in general, in particular it relates to the field of medical systems and devices used in the measurement of physiological variables for the detection of problems and for the timely warning of the occurrence of an event, imbalance or physiological involvement. More specifically it refers to an alert system for the announcement of an epilepsy event.
- the brain activity of a person involves the generation of brain waves derived from the electrical activity of neurons; brain waves can be classified into different types according to their frequency, that is, the time that has a certain periodicity associated with the electrical impulse produced through the neurons, among them we find the Delta waves (from 1 to 3 Hz), the Theta waves (3.5 to 7.5 HZ), Alpha waves (8 to 13 Hz), Beta waves (12 to 33 Hz) and Gamma waves (25 to 100Hz).
- Electroencephalograph that generates electroencephalography signals (EEG) that can be collected, processed and interpreted for multiple purposes, such as to provide alerts of neurological events that occur in a subject as epileptic seizures, to detect at least some physiological parameter of a subject while the subject sleeps, among others.
- EEG electroencephalography signals
- the X series device - EEG Wireless moniforing [February 14, 2018, which can be found on the web: h ttp: // ad vancedbrain monitoring.com] is a portable EEG signal detector, which requires at least have 10 electrodes connected, while e! proposed in this patent only requires 2 electrodes.
- Pradhan N, et al. Detection heard seizure activi ⁇ y in EEG by an artificial neural network: a preliminary study Compui omiomed Res 1998; 29: 303-13.), Casson AJ, et al. (Algorithm for AEEG data selection leading to wireless and long term epi! Epsy monitoring. Conf Proc IEEE Eng Med Bio! Soc 2007; 2007: 2456-9.), Petersen EB, et al (Generic single-channel detection of absence seizures. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 4820-3.), Liu Y, ef al. (Automatic seizure detection using wavelet transform and SVM in ⁇ ong-term intracranial EEG.
- Wilson SB A neural network method ⁇ or automatic and increment! Learning applied to paien-dependent seizure detection ClinNeurophysio! 2005; 116: 1785-95.
- D'ASessandro M et al. (A mu l ⁇ i-featu re and multi-channel univariate selection process for seizure prediction. Clin Neurophysio! 2005: 116: 506— 16.), use a neuron network! of probability for the detection of epileptic seizures.
- SVM sin ⁇ vector machine
- This last article uses statistical comparison methods to detect epileptic seizures.
- the system includes: a monitoring module adapted to detect and sample a neurological signal; an event detection module coupled to the monitoring module to detect one or more types of predetermined notifiable events based on the neurological signal detected; and an alert module coupled to the event detection module, in which to detect an event notified by the event detection module, said alert module selects a first alert contact from a plurality of contacts contained in a distance of contacts and generates a first alert communication to the first alert contact.
- the Di document also does not reveal that the stored signal goes through a low-pass filtering process with a cut-off frequency of 40 Hz and order 20 for noise elimination.
- Document D1 also does not reveal that the filtered signal is passed to a third block of calculation of the dispersion parameter through calculation means in the same microcontroller, which allows the data to be sorted and the values of quantiles 25 and 75 of the filtered EEG signal, which are associated with the previously defined scatter parameter.
- the statistical quantiles are averaged and used in the estimation of the dispersion parameter that are again filtered to analyze them by means of analysis of the signals processed in order to look for epileptic seizures in real time.
- Document D1 does not disclose that a sample-by-sample comparison of each of the filtered dispersion values is executed, having two detection thresholds.
- the first threshold compares the current sample with the previous sample (each sample represents 0.03 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the patient is suffering an epileptic attack and sends an alert to the last block that is the attack notifier, where an LED is lit red color and an audible alarm sounds.
- the second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the patient left the seizure and is in normal state or recovering from the attack, sending a signal to! Notifier block e! which turns off the audible alarm and changes the color of the LED from red to green.
- Document US8679034 B2 was also located (which has been called document D 2) of Avner Halperin et al of January 25, 2013, which discloses devices and methods that include detecting at least one parameter of a subject while the subject is sleeping. parameter is analyzed, and a condition of the subject is determined at least in part in response to the analysis The subject is alerted to the condition only after the subject wakes up Other applications are also described.
- three sensors are proposed which will be in the patient's bed while he sleeps.
- the sensors are: motion, acoustic and temperature. With the combination of the three sensors they detect the following parameters of the patient: breathing, heartbeat, cough, whether he is excited or restless and his blood pressure.
- Said document D2 did not reveal, nor suggest sampling of the electroencephalography signals, nor that the electrocardiogram signals can be obtained by means of electrodes arranged in leads F p 1 - F7 (or in their counterpart leads F p 2 - F8, in where said electrodes are connected to a biomedical signal amplifier and an NXP Freedom K64 processing card It does not disclose that the system includes a microcontroller where the dispersion parameter calculation is executed and where the patient's EEG samples are stored in a buffer .
- Document D2 also did not reveal the stored signal going through a low-pass filtering process with a cut-off frequency of 40 Hz and order 20 for noise elimination.
- Document D2 also does not disclose that the filtered signal is passed to a third block of calculation of the dispersion parameter through calculation means in the same microcontroller. That allows the data to be sorted and the values of quantiles 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. The statistical quantiles are averaged and used in the estimation of the dispersion parameter that are again filtered to analyze them by means of analysis of the signals processed in order to look for epileptic seizures in real time.
- Document D2 does not disclose that a sample-by-sample comparison of each of the filtered dispersion values is executed, having two detection thresholds.
- the first threshold compares the sample current with the previous sample (each sample represents 0.Q3 second of signal), if the current sample is 7 times greater than the previous one, then the system determines that the patient is suffering an epileptic attack and sends an alert to the last block that is the attack notifier, where a red LED turns on and an audible alarm sounds.
- the second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one.
- the system determines that the patient left the seizure and is in normal state or recovering from the attack, sending a signal to the notification block e! which turns off the audible alarm and changes the color of the LED from red to green.
- the main difference in our request is the type of signal that enters our device.
- document D2 requires motion, acoustic and temperature sensors, the proposed patent is based on the patient's electroencephalography (EEG) signal. Since the signals considered are different, the processing is different in the own proposal compared to the one mentioned in the state of the art. Thus our invention is new on document D2.
- CN1Q1583311 B (which has been called document D3 for reference) was found by Uri Kramer et al. of September 19, 2006, which unveils a device and a procedure to detect and alert an epileptic seizure.
- the detector is portable by an active user and does not interfere with normal daily movement.
- the detector relies on at least one motion sensor and performs a computerized analysis to determine if a seizure is occurring.
- the parameters of the motion signal are compared with the non-epileptic epileptic movement signal parameters; and the epileptic parameters, and a decision is reached as to whether or not to indicate an alert.
- the analysis is based on one or more of the following movement signal parameters: the duration of the movement, the frequency of the movement, the amplitude of the signal, the direction of the movement and the ratio of the amplitude over the movement frequency
- sampling means of the electroencephalography signals are obtained by means of electrodes arranged in the leads F p 1 - F7 (or in their counterpart the leads F p 2 - F8), wherein said electrodes are connected to a biomedical signal amplifier and an NXP Freedom K84 processing card. It does not disclose that the system includes a microcontroller where the dispersion parameter calculation is executed and where the patient's EEG samples are stored in a buffer.
- Document D3 also does not reveal the signal stored for a low-pass filtering process with a cut-off frequency of 40 Hz and Order 20 for noise elimination.
- Document D3 also does not disclose that the filtered signal is passed to a third calculation block of the dispersion parameter through calculation means in the same microcontroller. That allows the data to be sorted and the values of quanile ios 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. The statistical quan ⁇ iles are averaged and are used in the estimation of the dispersion parameter that are again filtered to analyze them by means of analysis of the signals processed in order to look for epileptic seizures in real time.
- Document D3 does not disclose that a sample-by-sample comparison of each of the filtered dispersion values is executed, having two detection thresholds.
- the first threshold compares the current sample with the previous sample (each sample represents 003 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the patient is suffering an epileptic attack and sends an alert to the last block that is the notifier of attacks, where a red LED is lit and an audible alarm sounds And where the second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one.
- the system determines that the patient left the epileptic attack and is in normal state or recovering from the attack, sending a signal to the notifying block which turns off the audible alarm and changes the color of the LED from red to green.
- the invention of said document D3 also detects epileptic events (such as that proposed in our invention), it is based on the detection of sudden movements of the patient by a portable device.
- Our invention is an alert system for epilepsy warning based on the detection of the patient's EEG signal and the quantification of statistical signal parameters.
- our invention is new on document D3. Given the need for an alert system for the highly reliable epilepsy warning of rapid real-time detection of epileptic seizures using the dispersion parameter, the present invention was developed.
- the main objective of the present invention is to make available a system integrated by a device whose function is to alert for the warning of an epileptic attack, both auditively (with a sound), and visually (with a red LED ) in real time; where e!
- the system can be implemented in any person who suffers epileptic seizures, having as a priority those whose trigger factor is visually.
- Another objective of the invention is to provide such an alert system for epilepsy warning that, in addition, is less sensitive to noise by the stochastic processing of the EEG signal, which is also robust and that guarantees to alert effectively and in real time when a patient suffers an epileptic seizure,
- the alert system for epilepsy warning in accordance with the present invention, consists of means for sampling electroencephalography (EEG) signals to a person suffering from epileptic seizures, through preferably gold electrodes arranged in leads F p 1 - F7 (or in their counterpart leads F p 2 - F8); where the EEG signal has little amplitude (in the range of micro volts), so a conductive gel should be used before placing the gold electrodes preferably on the skin.
- Said electrodes are connected to a biomedical signal amplifier and to a processing card preferably an NXP Freedom K64 card.
- the system includes a microcontroller where the dispersion parameter calculation is executed and where the patient's EEG samples are stored in a buffer. These samples will be stored in an internal memory, the internal buffer (approximately 0.39 seconds or 1000 samples being the equivalent).
- This system also includes a low-pass filtering module of EEG signals with a cut-off frequency of 40 Hz and order 20, which will help eliminate noise caused by electrodes, environmental factors or voltages caused by the human body at the time Take sample.
- Said microcontroller also includes means for calculating the dispersion parameter of the filtered EEG signal where the data is ordered and the values of quantiles 25 and 75 of the signal are calculated! of filtered EEG, which are associated with the previously defined dispersion parameter. Statistical quantiles are averaged and used in the estimation of the dispersion parameter. This process is repeated consecutively, until complete the sign! EEG or until the device is removed from the user. The following equation 1 is associated with the calculation of the dispersion estimator d.
- Equation 1 Characteristic formula to calculate the dispersion parameter.
- the dispersion values within! The system is entered into a low-pass filter module with a cut-off frequency of 0.5 Hz and a filter order with a factor of 20, which will leave the dispersion values ready to be analyzed reliably.
- the analyzer makes a sample-by-sample comparison of each of the filtered dispersion values, having two detection thresholds.
- the first threshold compares the current sample with the previous sample (each sample represents 0.03 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the user is suffering an epileptic attack and sends an alert to attack notifier, where a red LED turns on and an audible alarm sounds.
- the second threshold is the same as the previous one, by amplitudes, where analyze the current sample with the previous one If the current sample is
- the system determines that the user left the epileptic attack and is in normal state or recovering from the attack, sending a signal to the notifying block which turns off the audible alarm and changes the color of the red LED green color
- the process is repeated constantly until the system is turned off or the electrodes are removed from the user.
- the alert system for the epilepsy warning analyzes and processes EEG signals in order to find epileptic seizures using the parameter of the analyzed EEG signal.
- the main advantage of the system of the present invention is that it is less sensitive to noise by the stochastic processing of the EEG signal, having a robust device, ensuring that it will be alerted effectively and in real time when a user suffers an epileptic attack.
- the computational expenditure consumed by the system is minimal and the amount of memory required to function properly is reduced, using only 0.39 seconds or 1,000 samples of the EEG signal for processing.
- the system has only one analysis channel, the user does not take much time to put on and take off the electrode that will be censoring the EEG signal, in addition to being more comfortable for the patient.
- FIGURES Figure 1 shows a block diagram of! device that integrates the alert system for the epilepsy warning, in accordance with the present invention.
- Figures 2 and 3 illustrate a side view and a top view, respectively, of the head of a user showing the placement and arrangement of the electrodes for taking the EEG signals, in accordance with the alert system for the epilepsy warning of The present invention.
- Figure 4 shows a flow chart of the process that follows the alert system for the epilepsy warning, in accordance with the present invention.
- Figure 5 illustrates a block diagram of the epilepsy event detector that integrates the alert system for the epilepsy warning, in accordance with the present invention.
- Figure 8 shows a block diagram and its graphs of the process of sampling of the electroencephalography (EEG) signals, their processing, conditioning and analysis for the alert of the occurrence of an epilepsy attack.
- Figure 7 shows a graph illustrating the spikes of the dispersion values associated with an epileptic attack.
- EEG electroencephalography
- the device that is integrated into the alert system for the epilepsy warning in accordance with The present invention consists of a sampling module of the electroencephalography (EEG) signals (1) where sampling means of the electroencephalography (EEG) signals (2) are integrated consisting of preferably gold electrodes arranged in the leads F p 1 - F7 or in their counterparts leads F p 2 - F8 (see figures 2 and 3) of the head of a user (3); where the EEG signal has little amplitude (in the range of micro volts), so a conductive gel should be used before placing the gold electrodes preferably on the skin.
- EEG electroencephalography
- Said device also includes a module for treatment, conditioning and processing (4) of the electroencephalography (EEG) signals, defined by a dispersion estimator (5) consisting of a biomedical signal amplifier (8) where said means of connection are connected sampling of the electroencephalography (EEG) signals (2) and a processing card (7) preferably an NXP Freedom K64 card that integrates a microcontroller (8) where the scatter parameter calculation is executed and where it is stored in a buffer the EEG samples of the patient, these samples will be stored in an internal memory (9) of the same device, the internal buffer (approximately 0.39 seconds or 1000 samples being the equivalent).
- a dispersion estimator (5) consisting of a biomedical signal amplifier (8) where said means of connection are connected sampling of the electroencephalography (EEG) signals (2) and a processing card (7) preferably an NXP Freedom K64 card that integrates a microcontroller (8) where the scatter parameter calculation is executed and where it is stored in a buffer the EEG samples of the patient, these samples will
- Said treatment, conditioning and processing modules (4) also includes a pass-through filtering module.
- Said treatment, conditioning and processing module (4) also includes means for calculating the dispersion parameter of the filtered EEG signal where the data is ordered and the values of quantile ios 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. Statistical quantiles are averaged and used in the estimation of the dispersion parameter. This process is repeated consecutively, until the EEG signal is completed or until the device is removed from the user. The following equation 1 is associated with the calculation of! scatter parameter.
- Equation 1 Characteristic formula to calculate the dispersion parameter.
- Said treatment, conditioning and processing module (4) also includes an epileptic attack detector (12) that performs a signal analysis through means of analyzing the processed signals, with the aim of searching for epileptic attacks in real time.
- the analyzer makes a sample-by-sample comparison of each of the filtered dispersion values, having two detection thresholds. The first threshold compares the current sample with the previous sample (each sample represents 0.03 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the user is suffering an epileptic attack and sends an alert to attack notifier
- the device includes an epileptic attack notification module (13) that notifies the occurrence of an epileptic attack on the user's head (3) through an LED (14) that is switched on at red color and also sounds an audible alarm (15) integrated in the device
- the second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the user left the epileptic attack and is in normal state or recovering from the attack, sending a signal to the notifying block which turns off the audible alarm (15) and Change the color of the LED (14) from red to green.
- an epileptic seizure consisting of a first stage (a) where "samples of an electroencephalography (EEG) signal are taken" a a person suffering from epileptic seizures, through preferably gold electrodes arranged in leads F p 1 - F7 or Fp2 - F8 where the user must be awake and relaxed, and using a conductive gel before placing the electrodes preferably gold on the skin
- EEG electroencephalography
- the signal goes to the second stage (b), which is the “filtering of EEG signals” through a low-pass filtering module (10) with a cut-off frequency of 40 Hz and order 20, which will help eliminate the noise caused by the electrodes, environmental factors or voltages caused by the human body when taking the sample.
- the filtered EEG signal passes to a third stage (c) which is the "calculation of the dispersion parameter" where the data is sorted and the values of quantiles 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. Statistical quantiles are averaged and used in the estimation of the dispersion parameter. This process is repeated consecutively, until the signal is completed. EEG or until the device is removed from! patient.
- the dispersion values within the system are entered into a low-pass filter module (11) with a cutoff frequency of 05 Hz and a filtering order with a factor of 20, which will leave the dispersion values ready to be analyzed reliably.
- the system performs a “signal analysis to look for epileptic attacks” through means of analysis of the processed signals, with the aim of searching for epileptic attacks in real time.
- the analyzer makes a sample-by-sample comparison of each of the filtered dispersion values, having two detection thresholds.
- the first threshold ⁇ e 1 ⁇ compares the current sample with the previous sample (each sample represents 003 second of signal) if the current sample is 7 times larger than the previous one, then the system determines that the patient is suffering an epileptic attack (e 1 ') and sends an alert to the last block that is the attack notifier (f), where a red LED turns on and an audible alarm sounds.
- the second threshold (e 2) is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the user left the epileptic seizure (e 2 ') and is in normal state or recovering from! attack by sending a signal to the notifying block and which turns off the audible alarm and changes the color of the LED from red to green (g).
- the alert system for the epilepsy warning analyzes and processes EEG signals in order to find epileptic seizures using the dispersion parameter of the analyzed EEG signal.
- the main advantage of the system of the present invention is that it is less sensitive to noise by stochastic processing of the EEG signal, having a robust device, ensuring that it will be alerted effectively and in real time when a patient suffers an epileptic attack.
- the system has only one analysis channel, the patient does not take much time to put on and take off the electrode that will be sensing the EEG signal, in addition to being more comfortable for the patient. If the system must process stored information, it is able to process 30 minutes of information in 0.17 seconds, with 100% alerts of epileptic attacks, making the system fast and efficient.
- Figure 7 shows a graph illustrating the peaks of the gamma values associated with an epileptic attack.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
The invention relates to a warning system for epilepsy alarm, characterised in that it comprises means for taking samples from electroencephalogram signals (EEG) of a person who suffers from epileptic fits, connected to a biomedical signal amplifier and to a processing card with a microcontroller and a memory where the EEG samples of the patient are stored; a module for low-pass filtering of EEG signals with a cut-off frequency of 40 Hz and of order 20 for suppressing the noise; said microcontroller also includes means for calculating the scattering parameter of the filtered EEG signal, in which the data are sorted and the values of the 25th and 75th quantiles of the filtered EEG signals are calculated, which are associated with the previously defined scattering parameter; wherein the scattering values within the system are entered into a low-pass filtering module with a cut-off frequency of 0.5 Hz and a filtering order with a factor of 20; an analyser which analyses the processed signals to find epileptic fits in real time; said analyser conducts a sample-by-sample comparison of each of the filtered scattering values, having two detection thresholds when an epileptic fit occurs or when the fit has ended, using visual and/or acoustic alarms.
Description
SISTEMA DE ALERTAS PARA EL AVISO DE EPILEPSIA ALERT SYSTEM FOR EPILEPSY NOTICE
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada con la industria médica en general, en lo particular se relaciona con el ámbito de los sistemas y dispositivos médicos empleados en la medición de variables fisiológicas para la detección de problemas y para el aviso oportuno de que ocurra de algún evento, desbalance o afectación fisiológica. Más específicamente se refiere a un sistema de alertas para el aviso de un evento de epilepsia. The present invention is related to the medical industry in general, in particular it relates to the field of medical systems and devices used in the measurement of physiological variables for the detection of problems and for the timely warning of the occurrence of an event, imbalance or physiological involvement. More specifically it refers to an alert system for the announcement of an epilepsy event.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La actividad cerebral de una persona implica la generación de ondas cerebrales derivadas de la actividad eléctrica de las neuronas; las ondas cerebrales pueden ser clasificadas en diferentes tipos según su frecuencia, es decir, ei tiempo que cuenta con cierta periodicidad asociado ai impulso eléctrico producido a través de ¡as neuronas, entre éstas encontramos las ondas Delta (de 1 a 3 Hz), las ondas Theta (de 3.5 a 7.5 HZ), las ondas Alfa (de 8 a 13 Hz), las ondas Beta (de 12 a 33 Hz) y ¡as ondas Gamma (de 25 a 100Hz). Estas ondas pueden ser detectadas mediante algunos dispositivos como el electroencefalógrafo que genera señales de electroencefalografia
(EEG) que pueden recabarse, procesarse e interpretarse para múltiples propósitos, como por ejemplo para proporcionar alertas de eventos neurológicos que ocurren en un sujeto como convulsiones epilépticas, detectar ai menos algún parámetro fisiológico de un sujeto mientras ei sujeto duerme, entre otros. The brain activity of a person involves the generation of brain waves derived from the electrical activity of neurons; brain waves can be classified into different types according to their frequency, that is, the time that has a certain periodicity associated with the electrical impulse produced through the neurons, among them we find the Delta waves (from 1 to 3 Hz), the Theta waves (3.5 to 7.5 HZ), Alpha waves (8 to 13 Hz), Beta waves (12 to 33 Hz) and Gamma waves (25 to 100Hz). These waves can be detected by some devices such as the electroencephalograph that generates electroencephalography signals (EEG) that can be collected, processed and interpreted for multiple purposes, such as to provide alerts of neurological events that occur in a subject as epileptic seizures, to detect at least some physiological parameter of a subject while the subject sleeps, among others.
En ¡a actualidad la adquisición de señales electroencefalográficas no es muy accesible aún, en cuanto a potabilidad y bajo costo. At present, the acquisition of electroencephalographic signals is not yet accessible, in terms of drinkability and low cost.
Actualmente el principal método para detectar un ataque epiléptico es mediante un electroencefalógrafo. Estos dispositivos miden las ondas eléctricas cerebrales del paciente. Cuando un paciente presenta un ataque epiléptico, la señal cambia en amplitud y frecuencia de forma repentina. Actualmente, existen varios aparatos en el mercado que utilizan ei EEG para medir las ondas cerebrales. Currently the main method to detect an epileptic attack is by an electroencephalograph. These devices measure the patient's brain electrical waves. When a patient has an epileptic seizure, the signal changes in amplitude and frequency suddenly. Currently, there are several devices on the market that use EEG to measure brain waves.
De acuerdo con S Ramgopal et al. (“Seizure detection, seizure p red iction , and close-loop warning systems in epilepsy”, Epilepsy & Behavlor Journal, vol. 37, pp. 291 -307, June 2014.), se hace una comparativa entre varios dispositivos de detección de epilepsia, de los cuales algunos están en el mercado. En este documento se muestran métodos basados en EEG y métodos basados en combinación de señales EEG junto con algún otro sensor: electro m logra fos (E MG) , electrocardiog ramas (ECG), acelerómetros, sensores de movimiento, medición de la estática de la piel, grabación de audio y video.
Honda et al. (Air Brain - íhe easy telemetric system with smartphone for EEG signa! and human behavior BODYNEST 2013. Boston, MA, US: ICST; 2013. p. 343-6) y Hodson H. (Smartphone EEG to diagnose epilepsy in poor nations. In: New Scientíst editor. 2014 [14 de febrero de 2018, web: http://www.newcientist.com/article/dn24887-smartphcne-eeg-to- diagnose-epilepsy-in-poor- nations. html#.U0v-KPIdX76j); muestran dispositivos de telemetría de un EEG portable utilizando una red 3G en un teléfono inteligente. A diferencia del propuesto, el sistema requiere un celular (3G) o una computadora con acceso a internet y conexión Bluetooth para poder tener comunicación con la tarjeta de procesamiento del sistema, además de un software especifico para ia recepción de señales. Por otra parte, el dispositivo X series - EEG Wireless moniforing, [14 de febrero de 2018, que puede encontrarse en web: h ttp ://ad vancedbrain monitoring.com] es un detector portable de señales EEG, el cual requiere como mínimo tener 10 electrodos conectados, mientras e! propuesto en esta patente solo requiere 2 electrodos. According to S Ramgopal et al. ("Seizure detection, seizure p red iction, and close-loop warning systems in epilepsy", Epilepsy & Behavlor Journal, vol. 37, pp. 291-307, June 2014.), a comparison is made between several detection devices for epilepsy, of which some are in the market. This document shows methods based on EEG and methods based on a combination of EEG signals together with some other sensor: electro m achieves fos (E MG), electrocardiog branches (ECG), accelerometers, motion sensors, static measurement of the skin, audio and video recording. Honda et al. (Air Brain - íhe easy telemetric system with smartphone for EEG signa! And human behavior BODYNEST 2013. Boston, MA, US: ICST; 2013. p. 343-6) and Hodson H. (Smartphone EEG to diagnose epilepsy in poor nations. In: New Scientist editor 2014 [February 14, 2018, web: http://www.newcientist.com/article/dn24887-smartphcne-eeg-to- diagnose-epilepsy-in-poor-nations. Html # .U0v -KPIdX76j); show telemetry devices of a portable EEG using a 3G network on a smartphone. Unlike the proposed one, the system requires a cell phone (3G) or a computer with internet access and Bluetooth connection to be able to communicate with the system's processing card, in addition to a specific software for signal reception. On the other hand, the X series device - EEG Wireless moniforing, [February 14, 2018, which can be found on the web: h ttp: // ad vancedbrain monitoring.com] is a portable EEG signal detector, which requires at least have 10 electrodes connected, while e! proposed in this patent only requires 2 electrodes.
Se debe considerar que todas las referencias antes mencionadas son dispositivos que se encuentran como un producto final. También existen algoritmos ios cuales tienen como finalidad detectar ataques epilépticos; sin embargo, éstos son únicamente teóricos y no tienen implementación física.
De acuerdo con Webber WR et al. (An approach to seizure detection using an artificial neural neíwork (ANN).It should be considered that all the aforementioned references are devices that are found as an end product. There are also algorithms which are intended to detect epileptic seizures; however, these are only theoretical and have no physical implementation. According to Webber WR et al. (An approach to seizure detection using an artificial neural neíwork (ANN).
Eiectroencephalogr Clin Neurophysiol 1996;98:250-72); Pradhan N, et ai. Detection of seizure activity in EEG by an artificial neural neíwork: a preíiminary study. Comput Biomed Res 1996;29:303-13.) y Alkan A, et al. (Automatic seizure detection in EEG using logistic regression and artificial neural network. J Neurosci Methods 2005;148:167-76.), utilizan una técnica llamada “artificial neural network” (ANN) para detección de ataques basadas únicamente en EEG Eiectroencephalogr Clin Neurophysiol 1996; 98: 250-72); Pradhan N, et ai. Detection of seizure activity in EEG by an artificial neural neíwork: a preíiminary study. Comput Biomed Res 1996; 29: 303-13.) And Alkan A, et al. (Automatic seizure detection in EEG using logistic regression and artificial neural network. J Neurosci Methods 2005; 148: 167-76.), Use a technique called “artificial neural network” (ANN) to detect attacks based solely on EEG
Pradhan N, et al. Detection oí seizure activiíy in EEG by an artificial neural network: a preliminary study Compuí ¾iomed Res 1998;29:303-13.), Casson AJ, et al. (Algorithm for AEEG data selection leading to wireless and long term epi!epsy monitoring. Conf Proc IEEE Eng Med Bio! Soc 2007;2007:2456-9.), Petersen EB, et al (Generic single-channel detection of absence seizures. Conf Proc IEEE Eng Med Biol Soc 2011;2011:4820-3.), Liu Y, ef al. (Automatic seizure detection using wavelet transform and SVM in ¡ong-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2012 ; 20(8) : 749-55.) y S.V Mehfa, et al. (Wavelet Anaíysis as a poteníial tool for seizure detection”, IEEE-SP ! n t . Symp., Philadelphia, PA, Oct. 1994.), utilizan la transformada Wavelet para la detección de ataques epilépticos; siendo que ésta transformada es calculada utilizando una gran cantidad de multiplicaciones y sumas, lo que conlleva un procesamiento
complejo y costoso computacionaimente. Pradhan N, et al. Detection heard seizure activiíy in EEG by an artificial neural network: a preliminary study Compui omiomed Res 1998; 29: 303-13.), Casson AJ, et al. (Algorithm for AEEG data selection leading to wireless and long term epi! Epsy monitoring. Conf Proc IEEE Eng Med Bio! Soc 2007; 2007: 2456-9.), Petersen EB, et al (Generic single-channel detection of absence seizures. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 4820-3.), Liu Y, ef al. (Automatic seizure detection using wavelet transform and SVM in ¡ong-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2012; 20 (8): 749-55.) And SV Mehfa, et al. (Wavelet Anaíysis as a potential tool for seizure detection ”, IEEE-SP! Nt. Symp., Philadelphia, PA, Oct. 1994.), use the Wavelet transform to detect epileptic seizures; being that this transformed is calculated using a large number of multiplications and sums, which entails a processing complex and expensive computationally.
En tanto Wilson SB (A neural network method íor automatic and incrementa! learning applied to paíiení-dependent seizure detection ClinNeurophysio! 2005;116:1785-95.) y D'ASessandro M, et al. (A mu líi-featu re and multi-channel univariate selection process for seizure predicíion. Clin Neurophysio! 2005:116:506— 16.), utiiizan una red neurona! de probabilidad para la detección de ataques epilépticos. Meanwhile, Wilson SB (A neural network method íor automatic and increment! Learning applied to paien-dependent seizure detection ClinNeurophysio! 2005; 116: 1785-95.) And D'ASessandro M, et al. (A mu líi-featu re and multi-channel univariate selection process for seizure prediction. Clin Neurophysio! 2005: 116: 506— 16.), use a neuron network! of probability for the detection of epileptic seizures.
Otros autores utilizan una técnica llamada “supporí vector machine” (SVM). Other authors use a technique called “supporí vector machine” (SVM).
Por otro lado, de acuerdo con Z. Jiang (Detecting menta! EEG properties using detrended fluctuation analysis”, lEMBS Con!., Shangai, China, Jan 2006.), utilizan una técnica llamada “Dentrended Fluctuation". On the other hand, according to Z. Jiang (Detecting mint! EEG properties using detrended fluctuation analysis ”, lEMBS Con!., Shanghai, China, Jan 2006.), they use a technique called“ Dentrended Fluctuation ”.
Por otra parte, Y. Wang, et al. (A Cauchy-based staíe-space model for seizure detection in EEG monitoring sysíems”, IEEE Inteiiigent Systems, pp. 6-12. January 2015), compara señales de EEG con ruido con distribuciones particulares. On the other hand, Y. Wang, et al. (A Cauchy-based staie-space model for seizure detection in EEG monitoring sysíems ”, IEEE Inteiiigent Systems, pp. 6-12. January 2015), compares EEG signals with noise with particular distributions.
Este último artículo, utiliza métodos de comparación estadísticos para detectar ataques epilépticos. This last article uses statistical comparison methods to detect epileptic seizures.
Se realizó una búsqueda para determinar el estado de la técnica más cercano, encontrándose los siguientes documentos que se
citan como referencia. A search was conducted to determine the closest state of the art, the following documents being found They cite as a reference.
Se encontró e! documento US9643019 B2 (que se ha denominado documento D1) de Higgins Jason A , et ai. del 14 de febrero de 2011, el cual revela un sistema para proporcionar alertas de eventos neurológicos que ocurren en un sujeto humano. El sistema incluye: un módulo de monitorizacíón adaptado para detectar y muestrear una señal neurológica; un módulo de detección de eventos acoplado al módulo de monitorizacíón para detectar uno o más tipos de sucesos notificadles predeterminados basados en la señal neurológica detectada; y un módulo de alerta acoplado al módulo de detección de eventos, en el que ai detectar un evento notificadle por el módulo de detección de eventos, dicho módulo de alerta selecciona un primer contacto de alerta de una pluralidad de contactos contenidos en una dista de contactos y genera una primera comunicación de alerta al primer contacto de alerta. It was found e! US9643019 B2 (which has been called document D1) by Higgins Jason A, et ai. of February 14, 2011, which reveals a system to provide alerts of neurological events that occur in a human subject. The system includes: a monitoring module adapted to detect and sample a neurological signal; an event detection module coupled to the monitoring module to detect one or more types of predetermined notifiable events based on the neurological signal detected; and an alert module coupled to the event detection module, in which to detect an event notified by the event detection module, said alert module selects a first alert contact from a plurality of contacts contained in a distance of contacts and generates a first alert communication to the first alert contact.
Si bien esta patente describe una metodología para tomar muestras de las señales neurológicas, describe los bloques o módulos a utilizar, tipo de comunicación entre módulos, se detalla el uso de un CPLD como dispositivo lógico programable para almacenamiento y posible procesamiento. Sin embargo, dicho documento Di no revela, ni sugiere que los medios de toma de muestras de las señales de electroencefaiograíía se obtengan mediante electrodos dispuestos en las derivaciones F p 1 - F7 (o en su contraparte las derivaciones F p 2 - F8), en donde dichos
electrodos se conecten a un amplificador de señales biomédicas y a una tarjeta de procesamiento NXP Freedom K64. No divulga que el sistema incluye un microcontrolador donde se ejecuta el cálculo de parámetro de dispersión y en donde se guardan en un buffer las muestras de EEG del paciente. Although this patent describes a methodology for sampling neurological signals, it describes the blocks or modules to be used, type of communication between modules, the use of a CPLD as a programmable logic device for storage and possible processing is detailed. However, said Di document does not disclose, nor does it suggest that the means for sampling the electroencephalography signals are obtained by means of electrodes arranged in leads F p 1 - F7 (or in their counterpart leads F p 2 - F8), where sayings electrodes are connected to a biomedical signal amplifier and an NXP Freedom K64 processing card. It does not disclose that the system includes a microcontroller where the dispersion parameter calculation is executed and where the patient's EEG samples are stored in a buffer.
El documento Di tampoco revela que la señal almacenada pasa por un proceso de filtrado pasa-bajas con frecuencia de corte de 40 Hz y orden 20 para la eliminación del ruido. El documento D1 tampoco revela que la señal filtrada se pase a un tercer bloque de cálculo del parámetro de dispersión a través de medios de cálculo en el mismo microcontrolador, que permita ordenar ios datos y se calculan ios valores de los cuantiles 25 y 75 de la señal de EEG filtrada, que están asociados al parámetro de dispersión definido previamente. Los cuantiles estadísticos son promediados y se utilizan en la estimación del parámetro de dispersión que nuevamente son filtrados para analizarlos mediante medios de análisis de las señales procesadas con el objetivo de buscar ataques epilépticos en tiempo real. El documento D1 no da a conocer que se ejecute una comparación muestra por muestra de cada uno de los valores de dispersión filtrados, teniendo dos umbrales de detección. El primer umbral compara la muestra actual con la muestra anterior (cada muestra representa 0.03 segundo de señal), si la muestra actual es 7 veces mayor a la anterior, entonces el sistema determina que el paciente está sufriendo un ataque epiléptico y manda una alerta al último bloque que es el notificador de ataques, en donde se enciende un LED
color rojo y suena una alarma auditiva. Y en donde el segundo umbral es de igual manera al anterior, por amplitudes, en donde se analizan la muestra actual con la anterior Si la muestra actual es 7 veces menor a la muestra anterior entonces el sistema determina que el paciente salió del ataque epiléptico y se encuentra en estado normal o recuperándose del ataque, mandando una señal a! bloque notifícador e! cual apaga la alarma auditiva y cambia el color del LED de color rojo a color verde. The Di document also does not reveal that the stored signal goes through a low-pass filtering process with a cut-off frequency of 40 Hz and order 20 for noise elimination. Document D1 also does not reveal that the filtered signal is passed to a third block of calculation of the dispersion parameter through calculation means in the same microcontroller, which allows the data to be sorted and the values of quantiles 25 and 75 of the filtered EEG signal, which are associated with the previously defined scatter parameter. The statistical quantiles are averaged and used in the estimation of the dispersion parameter that are again filtered to analyze them by means of analysis of the signals processed in order to look for epileptic seizures in real time. Document D1 does not disclose that a sample-by-sample comparison of each of the filtered dispersion values is executed, having two detection thresholds. The first threshold compares the current sample with the previous sample (each sample represents 0.03 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the patient is suffering an epileptic attack and sends an alert to the last block that is the attack notifier, where an LED is lit red color and an audible alarm sounds. And where the second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the patient left the seizure and is in normal state or recovering from the attack, sending a signal to! Notifier block e! which turns off the audible alarm and changes the color of the LED from red to green.
Por lo anterior nuestro sistema es nuevo sobre la materia divulgada en el documento D1 Therefore, our system is new to the subject matter disclosed in document D1
También se localizó el documento US8679034 B2 (que se ha denominado documento D 2 } de Avner Halperin et al del 25 de enero de 2013, el cual divulga aparatos y métodos que incluyen detectar ai menos un parámetro de un sujeto mientras el sujeto duerme. El parámetro se analiza, y una condición del sujeto se determina al menos en parte en respuesta al análisis El sujeto es alertado de ia condición sólo después de que el sujeto se despierte También se describen otras aplicaciones. Document US8679034 B2 was also located (which has been called document D 2) of Avner Halperin et al of January 25, 2013, which discloses devices and methods that include detecting at least one parameter of a subject while the subject is sleeping. parameter is analyzed, and a condition of the subject is determined at least in part in response to the analysis The subject is alerted to the condition only after the subject wakes up Other applications are also described.
En esta patente se proponen tres sensores los cuales estarán en la cama del paciente mientras este duerme. Los sensores son: de movimiento, acústico y de temperatura. Con ia combinación de ios tres sensores detectan los siguientes parámetros del paciente: ia respiración, latidos del corazón, tos, si está excitado o inquieto y su presión sanguínea.
Dicho documento D2 no reveía, ni sugiere toma de muestras de las señales de eiectroenceíaíografía, ni que las señales de electrocardiograma puedan obtenerse mediante electrodos dispuestos en las derivaciones F p 1 - F7 (o en su contraparte las derivaciones F p 2 - F8, en donde dichos electrodos se conecten a un amplificador de señales biomédicas y a una tarjeta de procesamiento NXP Freedom K64 No divulga que el sistema incluye un microcontrolador donde se ejecuta el cálculo de parámetro de dispersión y en donde se guardan en un buffer las muestras de EEG del paciente. In this patent three sensors are proposed which will be in the patient's bed while he sleeps. The sensors are: motion, acoustic and temperature. With the combination of the three sensors they detect the following parameters of the patient: breathing, heartbeat, cough, whether he is excited or restless and his blood pressure. Said document D2 did not reveal, nor suggest sampling of the electroencephalography signals, nor that the electrocardiogram signals can be obtained by means of electrodes arranged in leads F p 1 - F7 (or in their counterpart leads F p 2 - F8, in where said electrodes are connected to a biomedical signal amplifier and an NXP Freedom K64 processing card It does not disclose that the system includes a microcontroller where the dispersion parameter calculation is executed and where the patient's EEG samples are stored in a buffer .
El documento D2 tampoco reveía la señal almacenada pasa por un proceso de filtrado pasa-bajas con frecuencia de corte de 40 Hz y orden 20 para la eliminación del ruido. El documento D2 tampoco revela que la señal filtrada se pase a un tercer bloque de cálculo del parámetro de dispersión a través de medios de cálculo en el mismo microcontrolador. Que permite ordenar los datos y se calculan los valores de los cuantiles 25 y 75 de la señal de EEG filtrada, que están asociados al parámetro de dispersión definido previamente. Los cuantiles estadísticos son promediados y se utilizan en la estimación del parámetro de dispersión que nuevamente son filtrados para analizarlos mediante medios de análisis de las señales procesadas con el objetivo de buscar ataques epilépticos en tiempo real. El documento D2 no da a conocer que se ejecute una comparación muestra por muestra de cada uno de los valores de dispersión filtrados, teniendo dos umbrales de detección. El primer umbral compara la muestra
actual con la muestra anterior (cada muestra representa 0.Q3 segundo de señal), si la muestra actual es 7 veces mayor a la anterior, entonces el sistema determina que el paciente está sufriendo un ataque epiléptico y manda una alerta al último bloque que es el notifícador de ataques, en donde se enciende un LED color rojo y suena una alarma auditiva. Y en donde el segundo umbral es de igual manera al anterior, por amplitudes, en donde se analizan la muestra actual con la anterior Si la muestra actual es 7 veces menor a la muestra anterior entonces el sistema determina que el paciente salió del ataque epiléptico y se encuentra en estado normal o recuperándose del ataque, mandando una señal ai bloque notifícador e! cual apaga la alarma auditiva y cambia el color del LED de color rojo a color verde. La principal diferencia en nuestra solicitud es el tipo de señal que ingresa a nuestro dispositivo. Mientras el documento D2 requiere sensores de movimiento, acústico y temperatura, la patente que se propone se basa en la señal de electroencefalografia del paciente (EEG). Dado que las señales consideradas son diferentes, el procesamiento resulta distinto en la propuesta propia comparada con la mencionada en el estado del arte. Así nuestra invención es nueva sobre el documento D2. Document D2 also did not reveal the stored signal going through a low-pass filtering process with a cut-off frequency of 40 Hz and order 20 for noise elimination. Document D2 also does not disclose that the filtered signal is passed to a third block of calculation of the dispersion parameter through calculation means in the same microcontroller. That allows the data to be sorted and the values of quantiles 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. The statistical quantiles are averaged and used in the estimation of the dispersion parameter that are again filtered to analyze them by means of analysis of the signals processed in order to look for epileptic seizures in real time. Document D2 does not disclose that a sample-by-sample comparison of each of the filtered dispersion values is executed, having two detection thresholds. The first threshold compares the sample current with the previous sample (each sample represents 0.Q3 second of signal), if the current sample is 7 times greater than the previous one, then the system determines that the patient is suffering an epileptic attack and sends an alert to the last block that is the attack notifier, where a red LED turns on and an audible alarm sounds. And where the second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the patient left the seizure and is in normal state or recovering from the attack, sending a signal to the notification block e! which turns off the audible alarm and changes the color of the LED from red to green. The main difference in our request is the type of signal that enters our device. While document D2 requires motion, acoustic and temperature sensors, the proposed patent is based on the patient's electroencephalography (EEG) signal. Since the signals considered are different, the processing is different in the own proposal compared to the one mentioned in the state of the art. Thus our invention is new on document D2.
Por último, se ubicó ¡a patente CN1Q1583311 B (a! que se le ha denominado documento D3 para su referencia) de Uri Kramer et al. del 19 de septiembre de 2006, el cual da a conocer un
dispositivo y un procedimiento para detectar y alertar de una convulsión epiléptica. El detector es portable por un usuario activo y no interfiere con el movimiento diario normal El detector se basa en al menos un sensor de movimiento y realiza un análisis computarizado para determinar si está ocurriendo una convulsión Los parámetros de la señal de movimiento se comparan con los parámetros de señal de movimiento epiléptico no epilépticos; ya los parámetros epilépticos, y se llega a una decisión de si se debe o no indicar una alerta. En una modalidad preferida, el análisis se basa en uno o más de los siguientes parámetros de señal del movimiento: la duración del movimiento, la frecuencia del movimiento, la amplitud de la señal, la dirección del movimiento y la relación de la amplitud sobre la frecuencia del movimiento. Finally, CN1Q1583311 B (which has been called document D3 for reference) was found by Uri Kramer et al. of September 19, 2006, which unveils a device and a procedure to detect and alert an epileptic seizure. The detector is portable by an active user and does not interfere with normal daily movement. The detector relies on at least one motion sensor and performs a computerized analysis to determine if a seizure is occurring. The parameters of the motion signal are compared with the non-epileptic epileptic movement signal parameters; and the epileptic parameters, and a decision is reached as to whether or not to indicate an alert. In a preferred embodiment, the analysis is based on one or more of the following movement signal parameters: the duration of the movement, the frequency of the movement, the amplitude of the signal, the direction of the movement and the ratio of the amplitude over the movement frequency
Dicho documento D3 no revela, ni sugiere que los medios de toma de muestras de las señales de electroencefalografía se obtengan mediante electrodos dispuestos en las derivaciones F p 1 - F7 (o en su contraparte las derivaciones F p 2 - F8), en donde dichos electrodos se conecten a un amplificador de señales biomédicas y a una tarjeta de procesamiento NXP Freedom K84 No divulga que el sistema incluye un microcontrolador donde se ejecuta el cálculo de parámetro de dispersión y en donde se guardan en un buffer las muestras de EEG del paciente. Said document D3 does not disclose, nor does it suggest that the sampling means of the electroencephalography signals are obtained by means of electrodes arranged in the leads F p 1 - F7 (or in their counterpart the leads F p 2 - F8), wherein said electrodes are connected to a biomedical signal amplifier and an NXP Freedom K84 processing card. It does not disclose that the system includes a microcontroller where the dispersion parameter calculation is executed and where the patient's EEG samples are stored in a buffer.
El documento D3 tampoco revela la señal almacenada para por un proceso de filtrado pasa-bajas con frecuencia de corte de 40 Hz y
orden 20 para la eliminación del ruido. El documento D3 tampoco revela que la señal filtrada se pase a un tercer bloque de cálculo del parámetro de dispersión a través de medios de cálculo en el mismo micro controlador. Que permite ordenar los datos y se calculan los valores de ios cuaníiles 25 y 75 de la señal de EEG filtrada, que están asociados al parámetro de dispersión definido previamente. Los cuaníiles estadísticos son promediados y se utilizan en la estimación del parámetro de dispersión que nuevamente son filtrados para analizarlos mediante medios de análisis de las señales procesadas con el objetivo de buscar ataques epilépticos en tiempo real. El documento D3 no da a conocer que se ejecute una comparación muestra por muestra de cada uno de los valores de dispersión filtrados, teniendo dos umbrales de detección. El primer umbral compara la muestra actual con la muestra anterior (cada muestra representa 003 segundo de señal), si la muestra actual es 7 veces mayor a la anterior, entonces el sistema determina que el paciente está sufriendo un ataque epiléptico y manda una alerta al último bloque que es el notificador de ataques, en donde se enciende un LED color rojo y suena una alarma auditiva Y en donde el segundo umbral es de igual manera al anterior, por amplitudes, en donde se analizan la muestra actual con la anterior. Si la muestra actual es 7 veces menor a la muestra anterior entonces el sistema determina que el paciente salió del ataque epiléptico y se encuentra en estado normal o recuperándose del ataque, mandando una señal al bloque notificador el cual apaga la alarma auditiva y cambia el color del LED de color rojo a color verde.
Aunque la invención de dicho documento D3 también detecta eventos epilépticos (como el que se propone en nuestra invención), lo realiza basado en la detección de movimientos bruscos del paciente mediante un dispositivo portable. Nuestra invención es un sistema de alerta para el aviso de epilepsia basado en la detección de la señal EEG del paciente y ia cuantifscacíón de parámetros estadísticos de la señal. Asi nuestra invención es nueva sobre el documento D3. Ante la necesidad de contar con un sistema de alerta para el aviso de epilepsia altamente confiable de rápida detección en tiempo real de los ataques epilépticos utilizando el parámetro de dispersión, fue que se desarrolló la presente invención. Document D3 also does not reveal the signal stored for a low-pass filtering process with a cut-off frequency of 40 Hz and Order 20 for noise elimination. Document D3 also does not disclose that the filtered signal is passed to a third calculation block of the dispersion parameter through calculation means in the same microcontroller. That allows the data to be sorted and the values of quanile ios 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. The statistical quaníiles are averaged and are used in the estimation of the dispersion parameter that are again filtered to analyze them by means of analysis of the signals processed in order to look for epileptic seizures in real time. Document D3 does not disclose that a sample-by-sample comparison of each of the filtered dispersion values is executed, having two detection thresholds. The first threshold compares the current sample with the previous sample (each sample represents 003 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the patient is suffering an epileptic attack and sends an alert to the last block that is the notifier of attacks, where a red LED is lit and an audible alarm sounds And where the second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the patient left the epileptic attack and is in normal state or recovering from the attack, sending a signal to the notifying block which turns off the audible alarm and changes the color of the LED from red to green. Although the invention of said document D3 also detects epileptic events (such as that proposed in our invention), it is based on the detection of sudden movements of the patient by a portable device. Our invention is an alert system for epilepsy warning based on the detection of the patient's EEG signal and the quantification of statistical signal parameters. Thus our invention is new on document D3. Given the need for an alert system for the highly reliable epilepsy warning of rapid real-time detection of epileptic seizures using the dispersion parameter, the present invention was developed.
OBJETIVOS DE LÁ INVENCIÓN OBJECTIVES OF THE INVENTION
El objetivo principal de ¡a presente invención es hacer disponible un sistema integrado por un dispositivo que tiene como función alertar para el aviso de ocurrencia de un ataque epiléptico, tanto de manera auditiva (con un sonido), como visualmente (con un LED color rojo) en tiempo real; en donde e! sistema puede ser implementando en cualquier persona que sufra ataques epilépticos, teniendo como prioridad aquellas cuyo factor detonante sea de manera visual. The main objective of the present invention is to make available a system integrated by a device whose function is to alert for the warning of an epileptic attack, both auditively (with a sound), and visually (with a red LED ) in real time; where e! The system can be implemented in any person who suffers epileptic seizures, having as a priority those whose trigger factor is visually.
Otro objetivo de la invención es hacer disponible un sistema de
alerta para el aviso de epilepsia que además permita detectar de forma confiable, rápida y en tiempo real la ocurrencia de epilepsia utilizando el parámetro de dispersión. Otro objetivo de la invención es proveer dicho sistema de alertas para aviso de epilepsia que, además, permite el procesamiento de información y búsqueda de ataques epilépticos a través de un análisis esíocástico de la señal en cuestión, haciendo a! sistema más robusto a! ruido, de manera rápida y eficaz. Another object of the invention is to make available a system of alert for the epilepsy warning that also allows to detect reliably, quickly and in real time the occurrence of epilepsy using the dispersion parameter. Another objective of the invention is to provide such an alert system for epilepsy warning which, in addition, allows the processing of information and search for epileptic seizures through an esocostatic analysis of the signal in question, making a! most robust system to! noise, quickly and efficiently.
Otro objetivo de la invención es proveer dicho sistema de alertas para aviso de epilepsia que, además, sea menos sensible al ruido por el procesamiento estocástico de la señal de EEG, que además sea robusto y que garantice alertar de manera eficaz y en tiempo real cuando un paciente sufra un ataque epiléptico, Another objective of the invention is to provide such an alert system for epilepsy warning that, in addition, is less sensitive to noise by the stochastic processing of the EEG signal, which is also robust and that guarantees to alert effectively and in real time when a patient suffers an epileptic seizure,
Y todas aquellas cualidades y objetivos que se harán aparentes al realizar una descripción general y detallada de la presente invención apoyados en las modalidades ilustradas. And all those qualities and objectives that will become apparent when making a general and detailed description of the present invention supported by the illustrated modalities.
DEL INVENTO OF THE INVENTION
De manera general el sistema de alertas para aviso de epilepsia, de conformidad con la presente invención consiste en medios de toma de muestras de las señales de electroencefalografía (EEG) a una persona que sufre de ataques epilépticos, a través de
electrodos preferentemente de oro dispuestos en las derivaciones F p 1 - F7 (o en su contraparte las derivaciones F p 2 - F8); en donde la señal de EEG tiene poca amplitud (en el rango de los micro volts), por lo que se debe utilizar un gel conductor antes de colocar los electrodos preferentemente de oro sobre la piel. Dichos electrodos se conectan a un amplificador de señales biomédicas y a una tarjeta de procesamiento preferentemente una tarjeta NXP Freedom K64. El sistema incluye un microcontrolador donde se ejecuta el cálculo de parámetro de dispersión y en donde se guardan en un buffer las muestras de EEG del paciente. Estas muestras se irán almacenando en una memoria interna, el buffer interno (aproximadamente 0.39 segundos o 1000 muestras siendo el equivalente). In general, the alert system for epilepsy warning, in accordance with the present invention, consists of means for sampling electroencephalography (EEG) signals to a person suffering from epileptic seizures, through preferably gold electrodes arranged in leads F p 1 - F7 (or in their counterpart leads F p 2 - F8); where the EEG signal has little amplitude (in the range of micro volts), so a conductive gel should be used before placing the gold electrodes preferably on the skin. Said electrodes are connected to a biomedical signal amplifier and to a processing card preferably an NXP Freedom K64 card. The system includes a microcontroller where the dispersion parameter calculation is executed and where the patient's EEG samples are stored in a buffer. These samples will be stored in an internal memory, the internal buffer (approximately 0.39 seconds or 1000 samples being the equivalent).
Dicho sistema además incluye módulo de filtrado pasa-bajas de señales de EEG con frecuencia de corte de 40 Hz y orden 20, lo que ayudará a eliminar el ruido ocasionado por ¡os electrodos, factores ambientales o voltajes ocasionados por el cuerpo humano a la hora de tomar ¡a muestra. This system also includes a low-pass filtering module of EEG signals with a cut-off frequency of 40 Hz and order 20, which will help eliminate noise caused by electrodes, environmental factors or voltages caused by the human body at the time Take sample.
Dicho microcontrolador además incluye medios cálculo del parámetro de dispersión de la señal de EEG filtrada en donde se ordenan ios datos y se calculan los valores de los cuantiles 25 y 75 de la seña! de EEG filtrada, que están asociados al parámetro de dispersión definido previamente. Los cuantiles estadísticos son promediados y se utilizan en la estimación del parámetro de dispersión. Este proceso se repite de manera consecutiva, hasta
completar la seña! de EEG o hasta que el dispositivo sea retirado del usuario. La siguiente ecuación 1 está asociada al cálculo del estimador de dispersión d.
Said microcontroller also includes means for calculating the dispersion parameter of the filtered EEG signal where the data is ordered and the values of quantiles 25 and 75 of the signal are calculated! of filtered EEG, which are associated with the previously defined dispersion parameter. Statistical quantiles are averaged and used in the estimation of the dispersion parameter. This process is repeated consecutively, until complete the sign! EEG or until the device is removed from the user. The following equation 1 is associated with the calculation of the dispersion estimator d.
Ecuación 1. Fórmula característica para calcular el parámetro de dispersión. Equation 1. Characteristic formula to calculate the dispersion parameter.
Los valores de dispersión dentro de! sistema se ingresan a un módulo de filtro pasa-bajas con frecuencia de corte de 0.5 Hz y un orden de filtrado con factor de 20, lo que dejará los valores de dispersión listos para ser analizados de manera confiable. The dispersion values within! The system is entered into a low-pass filter module with a cut-off frequency of 0.5 Hz and a filter order with a factor of 20, which will leave the dispersion values ready to be analyzed reliably.
Finalmente, el sistema realiza un análisis de señal a través de medios de análisis de las señales procesadas, con el objetivo de buscar ataques epilépticos en tiempo real. El analizador hace una comparación muestra por muestra de cada uno de los valores de dispersión filtrados, teniendo dos umbrales de detección. El primer umbral compara la muestra actual con la muestra anterior (cada muestra representa 0.03 segundo de señal), si la muestra actual es 7 veces mayor a la anterior, entonces el sistema determina que el usuario está sufriendo un ataque epiléptico y manda una alerta ai notlficador de ataques, en donde se enciende un LED color rojo y suena una alarma auditiva. El segundo umbral es de igual manera al anterior, por amplitudes, en donde se
analizan la muestra actual con la anterior Si la muestra actual esFinally, the system performs a signal analysis through means of analysis of the processed signals, in order to look for epileptic seizures in real time. The analyzer makes a sample-by-sample comparison of each of the filtered dispersion values, having two detection thresholds. The first threshold compares the current sample with the previous sample (each sample represents 0.03 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the user is suffering an epileptic attack and sends an alert to attack notifier, where a red LED turns on and an audible alarm sounds. The second threshold is the same as the previous one, by amplitudes, where analyze the current sample with the previous one If the current sample is
7 veces menor a la muestra anterior entonces el sistema determina que el usuario salió del ataque epiléptico y se encuentra en estado normal o recuperándose del ataque, mandando una señal al bloque notificador el cual apaga la alarma auditiva y cambia el color del LED de color rojo a color verde. 7 times lower than the previous sample then the system determines that the user left the epileptic attack and is in normal state or recovering from the attack, sending a signal to the notifying block which turns off the audible alarm and changes the color of the red LED green color
El proceso se repite de manera constante hasta que el sistema es apagado o ios electrodos son retirados del usuario. The process is repeated constantly until the system is turned off or the electrodes are removed from the user.
El sistema de alertas para el aviso de epilepsia analiza y procesa señales de EEG con el objetivo de encontrar ataques epilépticos utilizando el parámetro de la señal EEG analizada. The alert system for the epilepsy warning analyzes and processes EEG signals in order to find epileptic seizures using the parameter of the analyzed EEG signal.
La principal ventaja del sistema de la presente invención es que es menos sensible al ruido por el procesamiento estocástico de la señal de EEG, teniendo un dispositivo robusto, garantizando que se alertará de manera eficaz y en tiempo real cuando un usuario sufra un ataque epiléptico. The main advantage of the system of the present invention is that it is less sensitive to noise by the stochastic processing of the EEG signal, having a robust device, ensuring that it will be alerted effectively and in real time when a user suffers an epileptic attack.
El gasto computacional que consume el sistema es mínimo y la cantidad de memoria que se requiere para que funcione de forma adecuada es reducida, utilizando solamente 0.39 segundos o 1,000 muestras de la señal de EEG para su procesamiento. The computational expenditure consumed by the system is minimal and the amount of memory required to function properly is reduced, using only 0.39 seconds or 1,000 samples of the EEG signal for processing.
Ai tener el sistema solamente un canal de análisis, el usuario no tarda mucho tiempo en ponerse y quitarse el electrodo que estará censando la señal de EEG, además de ser más cómodo para el
paciente. If the system has only one analysis channel, the user does not take much time to put on and take off the electrode that will be censoring the EEG signal, in addition to being more comfortable for the patient.
En caso de que el sistema deba procesar información almacenada, este es capaz de procesar 30 minutos de información en 0.17 segundos, con un 100 % de alertas de ataques epilépticos, haciendo ai sistema rápido y eficaz. In case the system must process stored information, it is able to process 30 minutes of information in 0.17 seconds, with 100% alerts of epileptic attacks, making the system fast and efficient.
Para comprender mejor las características de la presente invención se acompaña a la presente descripción, como parte integrante de la misma, ¡os dibujos con carácter ilustrativo más no limitativo, que se describen a continuación. BREVE DESCRIPCION DELAS FIGURAS La figura 1 muestra un diagrama de bloques de! dispositivo que integra el sistema de alertas para el aviso de epilepsia, de conformidad con la presente invención. In order to better understand the characteristics of the present invention, the present description is attached, as an integral part thereof, to drawings with illustrative but not limitative character, which are described below. BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows a block diagram of! device that integrates the alert system for the epilepsy warning, in accordance with the present invention.
Las figuras 2 y 3 ilustran una vista lateral y una vista superior, respectivamente, de la cabeza de un usuario mostrando la colocación y acomodo de los electrodos para tomar las señales de EEG, de conformidad con el sistema de alertas para el aviso de epilepsia de la presente invención. La figura 4 muestra un diagrama de flujo del proceso que sigue el sistema de alertas para el aviso de epilepsia, de conformidad con la presente invención
La figura 5 ilustra un diagrama de bloques del detector de eventos de epilepsia que se integra el sistema de alertas para el aviso de epilepsia, de conformidad con la presente invención. La figura 8 muestra un diagrama de bloques y sus gráficas del proceso de toma de muestras de las señales de electroencefalografía (EEG), su procesamiento, acondicionamiento y análisis para la alerta de ocurrencia de un ataque de epilepsia. La figura 7 muestra una gráfica que ilustra los picos de los valores de dispersión asociados con un ataque epiléptico. Figures 2 and 3 illustrate a side view and a top view, respectively, of the head of a user showing the placement and arrangement of the electrodes for taking the EEG signals, in accordance with the alert system for the epilepsy warning of The present invention. Figure 4 shows a flow chart of the process that follows the alert system for the epilepsy warning, in accordance with the present invention. Figure 5 illustrates a block diagram of the epilepsy event detector that integrates the alert system for the epilepsy warning, in accordance with the present invention. Figure 8 shows a block diagram and its graphs of the process of sampling of the electroencephalography (EEG) signals, their processing, conditioning and analysis for the alert of the occurrence of an epilepsy attack. Figure 7 shows a graph illustrating the spikes of the dispersion values associated with an epileptic attack.
Para una mejor comprensión del invento, se pasará a hacer la descripción detallada de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos mas no limitativos se anexan a la presente descripción. For a better understanding of the invention, a detailed description of some of the modalities thereof will be shown, shown in the drawings which, for illustrative but non-limiting purposes, are attached to this description.
DESCRIPCIÓN DETALLADA DEL INVENTO DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de! sistema de alertas para aviso de epilepsia, se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar las mismas partes. The characteristic details of! Alert system for epilepsy warning, are clearly shown in the following description and in the accompanying illustrative drawings, serving the same reference signs to indicate the same parts.
De acuerdo con las figuras 1 y 5, el dispositivo que se integra al sistema de alertas para el aviso de epilepsia, de conformidad con
la presente invención consta de un módulo de toma de muestras de las señales de electroencefalografía (EEG) (1) donde se integran medios de toma de muestras de las señales de electroencefalografía (EEG) (2) consisten en electrodos preferentemente de oro dispuestos en las derivaciones F p 1 - F7 o en su contraparte las derivaciones F p 2 - F8 (ver figuras 2 y 3) de la cabeza de un usuario (3); en donde la señal de EEG tiene poca amplitud (en el rango de los micro volts), por lo que se debe utilizar un gel conductor antes de colocar los electrodos preferentemente de oro sobre la piel. According to figures 1 and 5, the device that is integrated into the alert system for the epilepsy warning, in accordance with The present invention consists of a sampling module of the electroencephalography (EEG) signals (1) where sampling means of the electroencephalography (EEG) signals (2) are integrated consisting of preferably gold electrodes arranged in the leads F p 1 - F7 or in their counterparts leads F p 2 - F8 (see figures 2 and 3) of the head of a user (3); where the EEG signal has little amplitude (in the range of micro volts), so a conductive gel should be used before placing the gold electrodes preferably on the skin.
Dicho dispositivo además incluye un módulo de tratamiento, acondicionamiento y procesamiento (4) de las señales de electroencefalografía (EEG), definido por un estimador de dispersión (5) que consta de un amplificador de señales biomédicas (8) donde se conectan dichos medios de toma de muestras de las señales de electroencefalografía (EEG) (2) y una tarjeta de procesamiento (7) preferentemente una tarjeta NXP Freedom K64 que integra un microcontrolador (8) donde se ejecuta el cálculo de parámetro de dispersión y en donde se guardan en un buffer las muestras de EEG del paciente, estas muestras se irán almacenando en una memoria interna (9) del mismo dispositivo, el buffer interno (aproximadamente 0.39 segundos o 1000 muestras siendo el equivalente). Said device also includes a module for treatment, conditioning and processing (4) of the electroencephalography (EEG) signals, defined by a dispersion estimator (5) consisting of a biomedical signal amplifier (8) where said means of connection are connected sampling of the electroencephalography (EEG) signals (2) and a processing card (7) preferably an NXP Freedom K64 card that integrates a microcontroller (8) where the scatter parameter calculation is executed and where it is stored in a buffer the EEG samples of the patient, these samples will be stored in an internal memory (9) of the same device, the internal buffer (approximately 0.39 seconds or 1000 samples being the equivalent).
Dichos módulos de tratamiento, acondicionamiento y procesamiento (4) además incluye un módulo de filtrado pasa-
bajas (10) de medios de toma de muestras de las señales de electroencefalograma EEG (2) con frecuencia de corte de 40 Hz y orden 20, lo que ayudará a eliminar el ruido ocasionado por los electrodos, factores ambientales o voltajes ocasionados por el cuerpo humano a la hora de tomar la muestra. Said treatment, conditioning and processing modules (4) also includes a pass-through filtering module. low (10) sampling means of the EEG electroencephalogram signals (2) with cut-off frequency of 40 Hz and order 20, which will help eliminate noise caused by electrodes, environmental factors or voltages caused by the body human when taking the sample.
Dicho módulo de tratamiento, acondicionamiento y procesamiento (4) además incluye medios de cálculo del parámetro de dispersión de la señal de EEG filtrada en donde se ordenan los datos y se calculan los valores de ios cuantiles 25 y 75 de la señal de EEG filtrada, que están asociados al parámetro de dispersión definido previamente. Los cuantiles estadísticos son promediados y se utilizan en la estimación del parámetro de dispersión. Este proceso se repite de manera consecutiva, hasta completar la señal de EEG o hasta que el dispositivo sea retirado del usuario La siguiente ecuación 1 está asociada al cálculo de! parámetro de dispersión .
Said treatment, conditioning and processing module (4) also includes means for calculating the dispersion parameter of the filtered EEG signal where the data is ordered and the values of quantile ios 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. Statistical quantiles are averaged and used in the estimation of the dispersion parameter. This process is repeated consecutively, until the EEG signal is completed or until the device is removed from the user. The following equation 1 is associated with the calculation of! scatter parameter.
Ecuación 1. Formula característica para calcular el parámetro de dispersión. Equation 1. Characteristic formula to calculate the dispersion parameter.
Los valores de dispersión dentro del sistema son ingresados a un módulo de filtro pasa-bajas (11) con frecuencia de corte de 0.5 Hz y un orden de filtrado con factor de 20, lo que dejará los valores de dispersión lisios para ser analizados de manera confiable.
Dicho módulo de tratamiento, acondicionamiento y procesamiento (4) además incluye un detector de ataques epilépticos (12) que realiza un análisis de señal a través de medios de análisis de las señales procesadas, con el objetivo de buscar ataques epilépticos en tiempo real. El analizador hace una comparación muestra por muestra de cada uno de los valores de dispersión filtrados, teniendo dos umbrales de detección. El primer umbral compara la muestra actual con la muestra anterior (cada muestra representa 0.03 segundo de señal), si la muestra actual es 7 veces mayor a la anterior, entonces el sistema determina que el usuario está sufriendo un ataque epiléptico y manda una alerta ai notificador de ataques. The dispersion values within the system are entered into a low-pass filter module (11) with a cutoff frequency of 0.5 Hz and a filtering order with a factor of 20, which will leave the dispersion values smooth to be analyzed in a manner trustworthy. Said treatment, conditioning and processing module (4) also includes an epileptic attack detector (12) that performs a signal analysis through means of analyzing the processed signals, with the aim of searching for epileptic attacks in real time. The analyzer makes a sample-by-sample comparison of each of the filtered dispersion values, having two detection thresholds. The first threshold compares the current sample with the previous sample (each sample represents 0.03 second of signal), if the current sample is 7 times larger than the previous one, then the system determines that the user is suffering an epileptic attack and sends an alert to attack notifier
De acuerdo con dichas figuras 1 y 5, el dispositivo incluye un módulo de notificación de ataques epilépticos (13) que notifica la ocurrencia de un ataque epiléptico a la cabeza del usuario (3) a través de un LED (14) que se enciende a color rojo y además suena una alarma auditiva (15) integrados en el dispositivo El segundo umbral es de igual manera al anterior, por amplitudes, en donde se analizan la muestra actual con la anterior. Si la muestra actual es 7 veces menor a la muestra anterior entonces el sistema determina que el usuario salió del ataque epiléptico y se encuentra en estado normal o recuperándose del ataque, mandando una señal al bloque notificador el cual apaga la alarma auditiva (15) y cambia el color del LED (14) de color rojo a color verde.
Con referencia a las figuras 4 y 6, el proceso que sigue el sistema para detectar y notificar la ocurrencia de un ataque epiléptico que consta de una primera etapa (a) donde se "toman las muestras de una señal de electroencefalografía (EEG)” a una persona que sufre de ataques epilépticos, a través de electrodos preferentemente de oro dispuestos en las derivaciones F p 1 - F7 o Fp2 - F8 donde el usuario debe estar despierto y relajado, y utilizando un gel conductor antes de colocar los electrodos preferentemente de oro sobre la piel. Estos electrodos se conectan a un amplificador de señales biomédicas y a una tarjeta de procesamiento (7) con un microcontrolador (8) y una memoria interna (9) donde se guardan las muestras de EEG del paciente. In accordance with said figures 1 and 5, the device includes an epileptic attack notification module (13) that notifies the occurrence of an epileptic attack on the user's head (3) through an LED (14) that is switched on at red color and also sounds an audible alarm (15) integrated in the device The second threshold is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the user left the epileptic attack and is in normal state or recovering from the attack, sending a signal to the notifying block which turns off the audible alarm (15) and Change the color of the LED (14) from red to green. With reference to Figures 4 and 6, the process followed by the system to detect and report the occurrence of an epileptic seizure consisting of a first stage (a) where "samples of an electroencephalography (EEG) signal are taken" a a person suffering from epileptic seizures, through preferably gold electrodes arranged in leads F p 1 - F7 or Fp2 - F8 where the user must be awake and relaxed, and using a conductive gel before placing the electrodes preferably gold on the skin These electrodes are connected to a biomedical signal amplifier and a processing card (7) with a microcontroller (8) and an internal memory (9) where the patient's EEG samples are stored.
Una vez que se almacena la señal pasa a la segunda etapa (b) que es el “filtrado de señales de EEG" a través de un módulo de filtrado pasa-bajas (10) con frecuencia de corte de 40 Hz y orden 20, lo que ayudará a eliminar el ruido ocasionado por los electrodos, factores ambientales o voltajes ocasionados por el cuerpo humano a la hora de tomar la muestra. Once the signal is stored, it goes to the second stage (b), which is the “filtering of EEG signals” through a low-pass filtering module (10) with a cut-off frequency of 40 Hz and order 20, which will help eliminate the noise caused by the electrodes, environmental factors or voltages caused by the human body when taking the sample.
La señal de EEG filtrada pasa a una tercera etapa (c) que es el “cálculo del parámetro de dispersión” donde se ordenan los datos y se calculan ios valores de los cuantiles 25 y 75 de la señal de EEG filtrada, que están asociados al parámetro de dispersión definido previamente. Los cuantiles estadísticos son promediados y se utilizan en la estimación del parámetro de dispersión. Este proceso se repite de manera consecutiva, hasta completar la señal
de EEG o hasta que el dispositivo sea retirado de! paciente. The filtered EEG signal passes to a third stage (c) which is the "calculation of the dispersion parameter" where the data is sorted and the values of quantiles 25 and 75 of the filtered EEG signal are calculated, which are associated with the previously defined dispersion parameter. Statistical quantiles are averaged and used in the estimation of the dispersion parameter. This process is repeated consecutively, until the signal is completed. EEG or until the device is removed from! patient.
En la siguiente etapa (d) “filtrado de parámetro de dispersión", los valores de dispersión dentro del sistema son ingresados a un módulo de filtro pasa-bajas (11) con frecuencia de corte de 05 Hz y un orden de filtrado con factor de 20, lo que dejará los valores de dispersión listos para ser analizados de manera confiable. In the next step (d) "dispersion parameter filtering", the dispersion values within the system are entered into a low-pass filter module (11) with a cutoff frequency of 05 Hz and a filtering order with a factor of 20, which will leave the dispersion values ready to be analyzed reliably.
Finalmente, en la siguiente etapa (e) el sistema realiza un “análisis de señal para buscar ataques epilépticos” a través de medios de análisis de las señales procesadas, con el objetivo de buscar ataques epilépticos en tiempo real. Finally, in the next step (e) the system performs a “signal analysis to look for epileptic attacks” through means of analysis of the processed signals, with the aim of searching for epileptic attacks in real time.
El analizador hace una comparación muestra por muestra de cada uno de los valores de dispersión filtrados, teniendo dos umbrales de detección. El primer umbral { e 1 } compara la muestra actual con la muestra anterior (cada muestra representa 003 segundo de señal) si la muestra actual es 7 veces mayor a la anterior, entonces el sistema determina que el paciente está sufriendo un ataque epiléptico (e 1’ ) y manda una alerta al último bloque que es el notificador de ataques (f), en donde se enciende un LED color rojo y suena una alarma auditiva. The analyzer makes a sample-by-sample comparison of each of the filtered dispersion values, having two detection thresholds. The first threshold {e 1} compares the current sample with the previous sample (each sample represents 003 second of signal) if the current sample is 7 times larger than the previous one, then the system determines that the patient is suffering an epileptic attack (e 1 ') and sends an alert to the last block that is the attack notifier (f), where a red LED turns on and an audible alarm sounds.
El segundo umbral ( e 2 ) es de igual manera al anterior, por amplitudes, en donde se analizan la muestra actual con la anterior. Si la muestra actual es 7 veces menor a la muestra anterior entonces el sistema determina que el usuario salió del
ataque epiléptico (e 2 ' ) y se encuentra en estado normal o recuperándose de! ataque mandando una señal ai bloque notificador ei cual apaga la alarma auditiva y cambia el color del LED de color rojo a color verde (g). The second threshold (e 2) is the same as the previous one, by amplitudes, where the current sample is analyzed with the previous one. If the current sample is 7 times smaller than the previous sample then the system determines that the user left the epileptic seizure (e 2 ') and is in normal state or recovering from! attack by sending a signal to the notifying block and which turns off the audible alarm and changes the color of the LED from red to green (g).
E! proceso se repite de manera constante hasta que el sistema es apagado o ios electrodos son retirados del paciente. AND! The process is repeated constantly until the system is switched off or the electrodes are removed from the patient.
El sistema de alertas para el aviso de epilepsia analiza y procesa señales de EEG con ei objetivo de encontrar ataques epilépticos utilizando ei parámetro de dispersión de la señal EEG analizada. The alert system for the epilepsy warning analyzes and processes EEG signals in order to find epileptic seizures using the dispersion parameter of the analyzed EEG signal.
La principal ventaja del sistema de la presente invención es que es menos sensible al ruido por ei procesamiento estocástico de la señal de EEG, teniendo un dispositivo robusto, garantizando que se alertará de manera eficaz y en tiempo real cuando un paciente sufra un ataque epiléptico. The main advantage of the system of the present invention is that it is less sensitive to noise by stochastic processing of the EEG signal, having a robust device, ensuring that it will be alerted effectively and in real time when a patient suffers an epileptic attack.
Ei gasto computaciona! que consume el sistema es mínimo y la cantidad de memoria que se requiere para que funcione de forma adecuada es reducida, utilizando solamente 0.39 segundos o 1,000 muestras de la señal de EEG para su procesamiento. The expense computes! that consumes the system is minimal and the amount of memory required to function properly is reduced, using only 0.39 seconds or 1,000 samples of the EEG signal for processing.
Ai tener el sistema solamente un canal de análisis, el paciente no tarda mucho tiempo en ponerse y quitarse el electrodo que estará censando la señal de EEG, además de ser más cómodo para el paciente.
En caso de que el sistema deba procesar información almacenada este es capaz de procesar 30 minutos de información en 0.17 segundos, con un 100 % de alertas de ataques epilépticos, haciendo al sistema rápido y eficaz. If the system has only one analysis channel, the patient does not take much time to put on and take off the electrode that will be sensing the EEG signal, in addition to being more comfortable for the patient. If the system must process stored information, it is able to process 30 minutes of information in 0.17 seconds, with 100% alerts of epileptic attacks, making the system fast and efficient.
La figura 7 muestra una gráfica que ilustra los picos de ios valores gama asociados con un ataque epiléptico. Figure 7 shows a graph illustrating the peaks of the gamma values associated with an epileptic attack.
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. Sin embargo, cualquier persona hábil en el campo de la técnica que compete el presente invento puede ser capaz de hacer modificaciones no descritas en la presente solicitud, sin embargo, si para ia aplicación de estas modificaciones en una estructura determinada o en el proceso de manufactura del mismo, se requiere de la materia reclamada en las siguientes reivindicaciones, dichas estructuras deberán ser comprendidas dentro del alcance de la invención.
The invention has been described sufficiently that a person with average knowledge in the field can reproduce and obtain the results mentioned in the present invention. However, any skilled person in the field of the art that is in charge of the present invention may be able to make modifications not described in the present application, however, if for the application of these modifications in a given structure or in the manufacturing process thereof, the matter claimed in the following claims is required, said structures must be included within the scope of the invention.
Claims
1.- Un sistema de alertas para aviso de epilepsia, caracterizad© porque comprende medios de toma de muestras de las señales de electroencefalograma (EEG) a una persona que sufre de ataques epilépticos, conectados a un amplificador de señales biomédicas y a una tarjeta de procesamiento con un microcontrolador y una memoria donde se guardan las muestras de EEG del paciente; un módulo de filtrado pasa-bajas de señales de EEG con frecuencia de corte de 40 Hz y orden 20 para eliminar el ruido; dicho microcontrolador además incluye medios cálculo del parámetro de dispersión de la señal de EEG filtrada en donde se ordenan los da tos y se calculan Sos valores de los cuan ti les 25 y 75 de la seña! de EEG filtrada, que están asociados a! parámetro de dispersión definido previamente; en donde los valores de dispersión dentro del sistema son ingresados a un módulo de filtrado pasa-bajas con frecuencia de corte de 0.5 Hz y un orden de fiifrado con factor de 20; un analizador que analiza las señales procesadas para buscar ataques epilépticos en tiempo real; dicho analizador hace una comparación muestra por muestra de cada uno de ios valores de dispersión filtrados, teniendo dos umbrales de detección, en donde uno compara la muestra actual con la muestra anterior y si la muestra actual es 7 veces mayor a la
anterior, entonces e! usuario está sufriendo un ataque epiléptico y manda una alerta visual y/o auditiva al notificador de ataques y el segundo analiza la muestra actual con la anterior y si la muestra actual es 7 veces menor a la muestra anterior entonces el usuario sale del ataque epiléptico apagando la alarma visual y/o auditiva. 1.- An alert system for epilepsy warning, characterized in that it includes means for sampling electroencephalogram (EEG) signals to a person suffering from epileptic seizures, connected to a biomedical signal amplifier and a processing card with a microcontroller and a memory where the patient's EEG samples are stored; a low-pass filtering module of EEG signals with a cut-off frequency of 40 Hz and order 20 to eliminate noise; said microcontroller also includes means for calculating the dispersion parameter of the filtered EEG signal in which the data are ordered and the values of the 25 and 75 signals of the signal are calculated! of filtered EEG, which are associated with! previously defined dispersion parameter; where the dispersion values within the system are entered into a low-pass filtering module with a cut-off frequency of 0.5 Hz and an order of fixture with a factor of 20; an analyzer that analyzes the signals processed to look for epileptic seizures in real time; said analyzer makes a sample-by-sample comparison of each of the filtered dispersion values, having two detection thresholds, where one compares the current sample with the previous sample and if the current sample is 7 times greater than the previous, then e! The user is suffering from an epileptic attack and sends a visual and / or auditory alert to the attack notifier and the second analyzes the current sample with the previous one and if the current sample is 7 times smaller than the previous sample then the user leaves the epileptic attack by turning off the visual and / or auditory alarm.
2 - El sistema de alertas para aviso de epilepsia, de acuerdo con la reivindicación 1, caracterizado porque dichos medios de toma de muestras de las señales de electroencefalograma (EEG) consisten en electrodos preferentemente de oro dispuestos en las derivaciones F p 1 --- F7 o en su contraparte las derivaciones Fp2 - F8. 2 - The alert system for epilepsy warning, according to claim 1, characterized in that said sampling means of the electroencephalogram (EEG) signals consist preferably of gold electrodes arranged in the leads F p 1 --- F7 or in its counterpart the leads Fp2 - F8.
3.- El sistema de alertas para aviso de epilepsia, de acuerdo con la reivindicación 1, caracterizado porque dicho parámetro de dispersión se calcula mediante la fórmula.
4 El sistema de alertas para aviso de epilepsia, de acuerdo con la reivindicación 1, caracterizado porque el cálculo dei parámetro de dispersión de la señal de EEG ordenan ios datos y se calculan los valores de los cuantíles 25 y 75 de la señal de EEG filtrada.
3. The alert system for epilepsy warning, according to claim 1, characterized in that said dispersion parameter is calculated by the formula. The alert system for epilepsy warning, according to claim 1, characterized in that the calculation of the dispersion parameter of the EEG signal orders the data and the values of the quantiles 25 and 75 of the filtered EEG signal are calculated. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2018003153A MX2018003153A (en) | 2018-03-14 | 2018-03-14 | Alert system for epilepsy alarm. |
MXMX/A/2018/003153 | 2018-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019177446A1 true WO2019177446A1 (en) | 2019-09-19 |
Family
ID=67907918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2018/000026 WO2019177446A1 (en) | 2018-03-14 | 2018-03-15 | Warning system for epilepsy alarm |
Country Status (2)
Country | Link |
---|---|
MX (1) | MX2018003153A (en) |
WO (1) | WO2019177446A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6473639B1 (en) * | 2000-03-02 | 2002-10-29 | Neuropace, Inc. | Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures |
US6931274B2 (en) * | 1997-09-23 | 2005-08-16 | Tru-Test Corporation Limited | Processing EEG signals to predict brain damage |
CA2968645A1 (en) * | 2015-01-06 | 2016-07-14 | David Burton | Mobile wearable monitoring systems |
-
2018
- 2018-03-14 MX MX2018003153A patent/MX2018003153A/en unknown
- 2018-03-15 WO PCT/MX2018/000026 patent/WO2019177446A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6931274B2 (en) * | 1997-09-23 | 2005-08-16 | Tru-Test Corporation Limited | Processing EEG signals to predict brain damage |
US6473639B1 (en) * | 2000-03-02 | 2002-10-29 | Neuropace, Inc. | Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures |
CA2968645A1 (en) * | 2015-01-06 | 2016-07-14 | David Burton | Mobile wearable monitoring systems |
Also Published As
Publication number | Publication date |
---|---|
MX2018003153A (en) | 2019-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4566464A (en) | Implantable epilepsy monitor apparatus | |
US10618522B2 (en) | Drowsiness detection and intervention system and method | |
KR101970481B1 (en) | Monitoring system for stroke | |
US9898656B2 (en) | Systems and methods for identifying a contra-ictal condition in a subject | |
US8109891B2 (en) | Device and method for detecting an epileptic event | |
CN102481121B (en) | Consciousness monitoring | |
JP4497081B2 (en) | Human condition detection device | |
US8024032B1 (en) | Method and system for the prediction, rapid detection, warning, prevention, or control of changes in the brain states of a subject using hurst parameter estimation | |
US10441190B2 (en) | Systems and methods for providing a waking mechanism | |
Doudou et al. | A light on physiological sensors for efficient driver drowsiness detection system | |
CN106175799A (en) | Based on brain wave assessment human body emotion and the method and system of fatigue state | |
EP2734104B1 (en) | System for detecting the onset of seizures | |
JP2013514826A (en) | Automatic sleep therapy system | |
WO2007149553A2 (en) | Alertness/drowsiness and cognitive capacity index | |
WO2015168151A1 (en) | System and method for tracking sleep dynamics using behavioral and physiological information | |
Suprihadi et al. | DROWTION: Driver drowsiness detection software using MINDWAVE | |
Ramasamy et al. | Real time monitoring of driver drowsiness and alertness by textile based nanosensors and wireless communication platform | |
Chang et al. | A versatile wireless portable monitoring system for brain–behavior approaches | |
Kabanov et al. | Development of a wearable inertial system for motor epileptic seizure detection | |
WO2019177446A1 (en) | Warning system for epilepsy alarm | |
Hung et al. | VLSI implementation for epileptic seizure prediction system based on wavelet and chaos theory | |
KR101034886B1 (en) | System and method for determining drowsiness using short heart rate cycle | |
Chowdhury et al. | Wearable Real-Time Epileptic Seizure Detection and Warning System | |
Deeb et al. | Method of detection of early falling asleep while driving using EOG analysis | |
Gupta et al. | A prototype for realtime monitoring of fetal health using a pressure sensitive material and sensor based belt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18910011 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18910011 Country of ref document: EP Kind code of ref document: A1 |