WO2019176880A1 - Viewer for determining authenticity, photographing device, and method for determining authenticity - Google Patents
Viewer for determining authenticity, photographing device, and method for determining authenticity Download PDFInfo
- Publication number
- WO2019176880A1 WO2019176880A1 PCT/JP2019/009792 JP2019009792W WO2019176880A1 WO 2019176880 A1 WO2019176880 A1 WO 2019176880A1 JP 2019009792 W JP2019009792 W JP 2019009792W WO 2019176880 A1 WO2019176880 A1 WO 2019176880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarizing plate
- plate
- viewer
- retardation
- image
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/36—Identification or security features, e.g. for preventing forgery comprising special materials
- B42D25/364—Liquid crystals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/19—Dichroism
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to an authenticity determination viewer, an imaging device, and an authenticity determination method.
- an identification medium with a marking that cannot be easily copied may be attached to the surface of the article.
- marking materials a resin having cholesteric regularity (hereinafter sometimes referred to as “cholesteric resin” as appropriate) is known.
- Cholesteric resin usually has a circularly polarized light separation function.
- the “circularly polarized light separating function” means a function of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting a part or all of the other circularly polarized light. Reflection by cholesteric resin reflects circularly polarized light while maintaining its chirality. Further, the wavelength range in which the circularly polarized light separation function is exhibited in this way is sometimes referred to as “selective reflection band”.
- the marking formed using the cholesteric resin shows different images depending on whether it is observed with the right circularly polarizing plate or the left circularly polarizing plate. Therefore, authenticity can be determined based on the difference between the images (see Patent Documents 1 and 2).
- the observation for authenticity determination as described above is generally performed using two circularly polarizing plates, a right circularly polarizing plate and a left circularly polarizing plate.
- a user photographs a marking such as an identifier (bar code or the like) attached to a product with a photographing device such as a smartphone.
- the marking information obtained from the photographed image is sent to the manufacturer via the Internet.
- the manufacturer returns product information (for example, detailed product information and related information) corresponding to the sent information to the user.
- product information for example, detailed product information and related information
- the present inventor considered using the above-described system for authenticity determination. In order to determine the authenticity as described above, it is required to draw the marking with a cholesteric resin and photograph the marking with a photographing apparatus provided with a circularly polarizing plate. However, for general consumers and users, preparing a dedicated photographing device equipped with a circularly polarizing plate is considered to be costly and hinder system introduction.
- the photographing apparatus includes the observation with the right circular polarizing plate and the observation with the left circular polarizing plate. Both are required to be possible. In order to satisfy this requirement, it is conceivable to provide both the right circularly polarizing plate and the left circularly polarizing plate in the photographing apparatus. However, when two circularly polarizing plates are used in this way, the area for these two sheets is required. Therefore, it is considered that the size of the apparatus becomes large and the handleability becomes insufficient.
- the present invention was devised in view of the above-described problems, and can be used to shoot a marking formed using a cholesteric resin by being attached to a main body as a general-purpose photographing device.
- a sex determination viewer an imaging device including the authenticity determination viewer and capable of shooting a marking formed using a cholesteric resin
- an authenticity determination method using the imaging device For the purpose.
- the present inventor has intensively studied to solve the above problems.
- the inventor includes a linearly polarizing plate and a retardation plate, at least one of the linearly polarizing plate and the retardation plate is rotatable, and the absorption axis of the linearly polarizing plate is a slow axis of the retardation plate.
- the present inventors have found that a viewer capable of switching the angle formed with respect to can solve the above-mentioned problems and completed the present invention. Therefore, the present invention includes the following.
- An imaging device for imaging an identification medium provided with a marking including a resin having cholesteric regularity An imaging apparatus comprising: an apparatus main body including an imaging unit; and the authenticity determination viewer according to any one of [1] to [3] attached to the imaging unit of the apparatus main body.
- a method for determining the authenticity of an identification medium provided with a marking containing a resin having cholesteric regularity [4] Using the imaging apparatus described above, the identification medium is imaged in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is + 45 ° ⁇ 5 °, and the first image Obtaining Step of obtaining the second image by photographing the identification medium with the photographing device in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is ⁇ 45 ° ⁇ 5 °.
- an authenticity determination viewer having a small size that can be photographed with a marking formed using a cholesteric resin by being attached to a main body as a general-purpose image capturing apparatus; And a viewer for photographing a marking formed using a cholesteric resin; and a method for determining authenticity using the photographing device.
- FIG. 1 is a perspective view schematically showing an authenticity determination viewer according to an embodiment of the present invention.
- FIG. 2 is a perspective view schematically showing a genuineness determination viewer according to an embodiment of the present invention through a case.
- FIG. 3 is a schematic view schematically showing a linearly polarizing plate and a retardation plate included in the authenticity determination viewer according to the embodiment of the present invention.
- FIG. 4 is a schematic view schematically showing a linearly polarizing plate and a retardation plate included in the authenticity determination viewer according to the embodiment of the present invention.
- FIG. 5 is a perspective view schematically showing an example of a state when determining the authenticity of the identification medium attached to the article.
- FIG. 6 is a cross-sectional view schematically showing a cross section of an identification medium according to an example.
- the slow axis of the retardation plate represents the slow axis in the in-plane direction of the retardation plate unless otherwise specified.
- the angle formed by the optical axis (absorption axis, transmission axis, slow axis, etc.) of the linear polarizing plate and the retardation plate is the angle when viewed from the thickness direction of the linear polarizing plate, unless otherwise specified.
- linear polarizing plate “retardation plate”, and “wave plate” are not only rigid members but also flexible members such as resin films, unless otherwise specified. Including.
- nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the retardation plate and giving the maximum refractive index.
- ny represents the refractive index in the in-plane direction of the retardation plate and in the direction orthogonal to the nx direction.
- d represents the thickness of the retardation plate.
- FIG. 1 is a perspective view schematically showing an authenticity determination viewer 100 according to an embodiment of the present invention.
- FIG. 2 is a perspective view schematically showing the authenticity determination viewer 100 according to an embodiment of the present invention through a case 110.
- the case 110 is indicated by a one-dot chain line.
- an authenticity determination viewer 100 includes a case 110; a linear polarizing plate 120 housed in the case 110; a phase difference housed in the case 110. Plate 130; and a switching unit 140 provided on the linearly polarizing plate 120.
- the linearly polarizing plate 120 and the retardation plate 130 may be in contact with each other, but in the present embodiment, an example in which the linearly polarizing plate 120 and the retardation plate 130 are separated from each other is shown.
- the case 110 has a wall portion 111 formed in a cylindrical shape, and an optical path chamber 112 for accommodating the linearly polarizing plate 120 and the phase difference plate 130 is formed as an internal space surrounded by the wall portion 111. Yes.
- an example in which a cylindrical case 110 having a columnar optical path chamber 112 inside is used is shown.
- the wall portion 111 of the case 110 is formed with a long hole 113 that penetrates the wall portion 111.
- the elongated hole 113 is formed extending in the circumferential direction of the case 110.
- the linear polarizing plate 120 is provided in the optical path chamber 112 of the case 110 so that the in-plane direction of the linear polarizing plate 120 and the cylindrical radial direction of the case 110 are parallel to each other. Therefore, the thickness direction of the linear polarizing plate 120 is parallel to the cylindrical axial direction of the case 110.
- an example using a disc-shaped linearly polarizing plate 120 is shown.
- the linearly polarizing plate 120 has an absorption axis. Therefore, the linearly polarizing plate 120 can transmit linearly polarized light having a vibration direction perpendicular to the absorption axis and block linearly polarized light having a vibration direction parallel to the absorption axis.
- the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
- the phase difference plate 130 is provided in the optical path chamber 112 of the case 110 so that the in-plane direction of the phase difference plate 130 and the cylindrical radial direction of the case 110 are parallel to each other. Therefore, the thickness direction of the retardation film 130 is parallel to the cylindrical axial direction of the case 110 and the thickness direction of the linear polarizing plate 120.
- the retardation plate 130 is provided on one side of the linear polarizing plate 120 in the thickness direction so that light entering the optical path chamber 112 of the case 110 can pass through the retardation plate 130 and the linear polarizing plate 120 in this order. Yes.
- an example using a disc-shaped retardation plate 130 is shown.
- the retardation film 130 has in-plane retardation.
- the specific in-plane retardation of the retardation film 130 is such that circularly polarized light entering the viewer 100 can be converted into linearly polarized light or elliptically polarized light capable of authenticity determination at the wavelength of light used for authenticity determination. It is preferably set.
- the above-mentioned “wavelength of light used for authenticity determination” specifically represents the wavelength of the selective reflection band of the cholesteric resin included in the marking observed using the viewer 100.
- the specific in-plane retardation of the retardation film 130 is preferably set so that the retardation film 130 can function as a quarter-wave plate in the selective reflection band of the cholesteric resin included in the marking.
- the in-plane retardation of the retardation film 130 is preferably 140 nm ⁇ 40 nm (that is, 100 nm to 180 nm) at a measurement wavelength of 560 nm. More specifically, the in-plane retardation of the retardation plate 130 at a measurement wavelength of 560 nm is preferably 100 nm or more, more preferably 120 nm or more, particularly preferably 130 nm or more, preferably 180 nm or less, more preferably 160 nm or less, Especially preferably, it is 150 nm or less.
- the retardation plate 130 having in-plane retardation in the above range at a measurement wavelength of 560 nm can usually function as a quarter wavelength plate in the visible wavelength region. Therefore, by using such a retardation plate 130, the viewer 100 usable in the visible wavelength range can be realized.
- the retardation plate 130 preferably has reverse wavelength dispersion.
- the reverse wavelength dispersion means that the in-plane retardations Re (450) and Re (560) at the measurement wavelengths of 450 nm and 560 nm satisfy the following formula (1).
- the retardation plate 130 having reverse wavelength dispersion can exhibit its optical function in a wide wavelength range. Therefore, the viewer 100 that can be used in a wide wavelength range can be realized by using the retardation plate 130 having reverse wavelength dispersion.
- the retardation film 130 has a slow axis in the in-plane direction of the retardation film 130.
- the angle formed by the slow axis of the retardation plate 130 and the absorption axis of the linear polarizing plate 120 is set to about 45 °, the combination of the linear polarizing plate 120 and the retardation plate 130 is a circular polarizing plate. Can function.
- At least one of the linearly polarizing plate 120 and the phase difference plate 130 is rotatably provided.
- the angle ⁇ formed by the absorption axis of the linear polarizer 120 with respect to the slow axis of the phase difference plate 130 is + 45 ° ⁇ 5 ° (ie, + 40 ° to + 50 °) and ⁇ It is set so that it can be switched between 45 ° ⁇ 5 ° (ie, ⁇ 50 ° to ⁇ 40 °).
- the sign of the angle ⁇ represents the direction of rotation.
- the direction in which the absorption axis of the linearly polarizing plate 120 forms the angle ⁇ with respect to the slow axis of the phase difference plate 130 is determined. , Reverse.
- FIG. 3 and 4 are schematic views schematically showing the linearly polarizing plate 120 and the phase difference plate 130 provided in the authenticity determination viewer 100 according to the embodiment of the present invention, respectively.
- a straight line L130 extending in the same direction as the slow axis A130 of the retardation film 130 is indicated by a two-dot chain line.
- FIG. 3 shows an example in which the absorption axis A120 of the linearly polarizing plate 120 forms an angle ⁇ counterclockwise with respect to the slow axis A130 of the retardation film 130.
- 4 shows an example in which the absorption axis A120 of the linearly polarizing plate 120 forms an angle ⁇ clockwise with respect to the slow axis A130 of the retardation plate 130.
- the sign of the angle ⁇ shown in FIG. 3 is one of positive and negative
- the sign of the angle ⁇ shown in FIG. 4 is the other of positive and negative.
- the angle ⁇ is preferably + 45 ° ⁇ 4 ° (ie, + 41 ° to + 49 °), more preferably + 45 ° ⁇ 3 ° (ie, + 42 ° to + 48 °), particularly preferably + 45 ° ⁇ 2 ° (ie, + 43 ° to + 47 °).
- the angle ⁇ is preferably ⁇ 45 ° ⁇ 4 ° (ie, ⁇ 49 ° to ⁇ 41 °), more preferably ⁇ 45 ° ⁇ 3.
- angle ⁇ is in the above range, it is easy to clarify the difference between a first image and a second image, which will be described later, so that authenticity can be easily determined.
- the linearly polarizing plate 120 passes through the center of the disk of the linearly polarizing plate 120 and is parallel to the thickness direction of the linearly polarizing plate 120.
- An example in which it is provided to be rotatable around the center is shown.
- the rotation axis R120 is described in order to indicate the rotation direction of the linearly polarizing plate 120, and is not necessarily formed by a specific member.
- a rod-shaped switching unit 140 is provided at the edge 120E of the linear polarizing plate 120 so as to protrude in the radial direction of the linear polarizing plate 120.
- the switching part 140 is passed through a long hole 113 formed in the wall part 111 of the case 110.
- the switching unit 140 is provided so as to be movable along the long hole 113. Therefore, the switching unit 140 is provided so that the linear polarizing plate 120 can be rotated by the movement of the switching unit 140 by moving the switching unit 140 along the elongated hole 113 in the circumferential direction of the case 110. ing.
- the switching unit 140 is provided at the end of the elongated hole 113 in the extending direction so as to stop against the wall 111. In this case, it is preferable to set the positions of both ends of the elongated hole 113 in the extending direction so as to satisfy the following requirements (A1) and (A2). (A1) When the switching unit 140 is located at one end of the long hole 113, the angle ⁇ is + 45 ° ⁇ 5 °. (A2) When the switching unit 140 is at the other end of the elongated hole 113, the angle ⁇ is ⁇ 45 ° ⁇ 5 °.
- the switching unit 140 stops at one end of the long hole 113, the angle ⁇ becomes + 45 ° ⁇ 5 °.
- the switching unit 140 stops at the other end of the long hole 113, the angle ⁇ becomes ⁇ 45 ° ⁇ 5 °. Therefore, the switching unit 140 is provided so that the angle ⁇ can be easily switched by the movement of the switching unit 140.
- the viewer 100 has the above-described structure. Therefore, the light that has entered the optical path chamber 112 of the case 110 of the viewer 100 can pass through the retardation plate 130 and the linear polarizing plate 120 in this order.
- the circularly polarized light passes through the phase difference plate 130 to become linearly polarized light and enters the linearly polarizing plate 120.
- the vibration direction of the linearly polarized light is perpendicular to the absorption axis of the linearly polarizing plate 120, the linearly polarized light can pass through the linearly polarizing plate 120.
- the linearly polarized light when the vibration direction of the linearly polarized light is parallel to the absorption axis of the linearly polarizing plate 120, the linearly polarized light cannot pass through the linearly polarizing plate 120.
- the function as a circularly polarizing plate is obtained by the combination of the linearly polarizing plate 120 and the retardation plate 130.
- the viewer 100 described above makes the angle ⁇ that the absorption axis of the linear polarizing plate 120 forms with respect to the slow axis of the retardation plate 130 by the rotation of the linear polarizing plate 120, + 45 ° ⁇ 5 ° and ⁇ 45 ° ⁇ . It can be switched between 5 °.
- the angle ⁇ is one of + 45 ° ⁇ 5 ° and ⁇ 45 ° ⁇ 5 °, the vibration direction of the linearly polarized light transmitted through the phase difference plate 130 is perpendicular to the absorption axis of the linearly polarizing plate 120.
- the vibration direction of the linearly polarized light transmitted through the phase difference plate 130 is parallel to the absorption axis of the linearly polarizing plate 120. Therefore, in the viewer 100, the circularly polarized light blocked by the viewer 100 can be easily switched between the right circularly polarized light and the left circularly polarized light by switching the angle ⁇ . Therefore, if this viewer 100 is used, the authenticity determination using the marking containing the cholesteric resin can be performed smoothly.
- the viewer 100 realizes a circularly polarizing plate that can exhibit both the function of blocking the right circularly polarized light and the function of blocking the left circularly polarized light by combining at least one pair of the linearly polarizing plate 120 and the retardation plate 130. it can.
- the viewer 100 according to the present embodiment which can determine the authenticity by the area of one circularly polarizing plate by the combination of the linearly polarizing plate 120 and the retardation plate 130, has two circularly polarizing plates (that is, right circularly polarized light).
- the area can be reduced by reducing the number of circularly polarizing plates. Therefore, the viewer 100 according to the present embodiment can be downsized.
- FIG. 5 is a perspective view schematically showing an example of a state when determining the authenticity of the identification medium 200 attached to the article 10.
- the authenticity of the article 10 to which the identification medium 200 is attached is determined by determining the authenticity of the identification medium 200.
- FIG. 6 is a cross-sectional view schematically showing a cross section of the identification medium 200 according to the above example.
- the path of light reflected at the marking 230 is schematically shown.
- various light absorption and reflection can occur in addition to those described below.
- the main light paths are schematically illustrated for convenience of description of the operation. explain.
- part of the right circularly polarized light specifically, light in the selective reflection band
- the remaining part of the right circularly polarized light and all of the left circularly polarized light are reflected.
- a marking 230 containing a cholesteric resin to be transmitted is provided.
- the identification medium 200 includes a base 210, a base layer 220 provided on the base 210, and a marking 230 including a cholesteric resin provided on the base layer 220 in this order.
- a marking 230 including a cholesteric resin provided on the base layer 220 in this order.
- light L including right circularly polarized light is incident on the upper surface of the marking 230, a part of the right circularly polarized light is reflected by the marking 230 and becomes reflected light LR, and the rest becomes transmitted light LL.
- the reflection can occur not only on the surface of the marking 230 but also on the inside, but as a schematic expression, in FIG. 6, the reflection is illustrated as occurring on the surface of the marking 230.
- an apparatus main body 310 having a photographing unit (not shown) capable of photographing the identification medium 200 as a subject is prepared.
- FIG. 5 shows a smartphone including a lens unit as a photographing unit.
- the viewer 100 is attached to the photographing unit of the apparatus main body 310.
- the viewer 100 is mounted so that the linearly polarizing plate 120 and the phase difference plate 130 are arranged in this order from the photographing unit side.
- an imaging apparatus 300 including the apparatus main body 310 and the viewer 100 is prepared as an apparatus for imaging the identification medium 200.
- the identification medium 200 is imaged by the imaging apparatus 300.
- the identification medium 200 is photographed by the photographing apparatus 300 in a state where the angle ⁇ formed by the absorption axis A120 of the linear polarizing plate 120 with respect to the slow axis A130 of the retardation film 130 is + 45 ° ⁇ 5 °.
- the imaging device 300 the identification medium 200 is imaged in a state where the angle ⁇ formed by the absorption axis A120 of the linear polarizing plate 120 with respect to the slow axis A130 of the retardation plate 130 is ⁇ 45 ° ⁇ 5 °, Obtaining two images; I do. Any of these two steps may be performed first.
- the identification medium 200 is photographed by the photographing apparatus 300 in a state where the switching unit 140 of the viewer 100 is moved to one end of the long hole 113 formed in the case 110.
- photographing is performed in a state where the angle ⁇ is at one of + 45 ° ⁇ 5 ° and ⁇ 45 ° ⁇ 5 °.
- the angle ⁇ is switched between + 45 ° ⁇ 5 ° and ⁇ 45 ° ⁇ 5 ° by moving the switching unit 140 to the other end of the elongated hole 113.
- the identification medium 200 is photographed by the photographing apparatus 300 in this state.
- the imaging device 300 including the viewer 100 the first image and the second image can be easily obtained.
- the reflected light LR as the right circularly polarized light is absorbed by the retardation plate 130 by the retardation plate 130 when the angle ⁇ is one of + 45 ° ⁇ 5 ° and ⁇ 45 ° ⁇ 5 °. It is converted into linearly polarized light having a vibration direction perpendicular to A120 and can pass through the linearly polarizing plate 120. Therefore, the marking 230 appears in the image photographed through the viewer 100.
- the reflected light LR as right circularly polarized light is parallel to the absorption axis A120 of the linearly polarizing plate 120 by the phase difference plate 130 when the angle ⁇ is at the other of + 45 ° ⁇ 5 ° and ⁇ 45 ° ⁇ 5 °.
- the marking 230 does not appear in the image photographed through the viewer 100. Therefore, different images appear in the first image and the second image. Specifically, the marking 230 appears in one of the first image and the second image, but the marking 230 does not appear in the other of the first image and the second image.
- a step of determining the authenticity of the identification medium 200 based on the first image and the second image is performed. Specifically, if there is an image difference as described above between the first image and the second image, it can be determined that the identification medium 200 is authentic, and therefore the identification medium 200 is attached. The article 10 can be determined to be a regular product. On the other hand, if there is no image difference as described above between the first image and the second image, it can be determined that the identification medium 200 is improper, and therefore the article 10 to which the identification medium 200 is attached. Can be determined to be counterfeit.
- the authenticity may be determined based on the contrast between the first image and the second image.
- a contrast difference is usually generated between the first image and the second image depending on whether or not the marking 230 appears. Therefore, authenticity can be determined based on a difference in contrast rather than an image difference depending on the presence or absence of the marking 230.
- the identification medium 200 is authentic.
- the identification medium 200 is not authentic.
- the determination may be performed by the user.
- the user can determine the authenticity by looking at the first image and the second image displayed on the display unit.
- the determination may be performed by a server in response to the transmission of the information.
- the authenticity determination is performed by the server based on the information of the first image and the second image, and the result is returned to the user, so that the user can know the determination result of the authenticity.
- the shape of the case 110 is not limited to a cylindrical shape, and may be another shape. Further, for example, the case 110 may not be provided in the viewer 100. As a specific example, a frame material that supports the linearly polarizing plate 120 and the retardation plate 130 may be used instead of the case 110 that houses the linearly polarizing plate 120 and the retardation plate 130.
- the shapes of the linearly polarizing plate 120 and the retardation plate 130 are not limited to the disc shape, and may be different shapes.
- the retardation plate 130 may be rotatably provided, and both the linear polarizing plate 120 and the retardation plate 130 may be rotatably provided.
- the angle ⁇ formed by the absorption axis of the linear polarizing plate 120 with respect to the slow axis of the retardation plate 130 is + 45 ° as described above. It is possible to switch between ⁇ 5 ° and ⁇ 45 ° ⁇ 5 °.
- the switching unit 140 may not be provided in the viewer 100.
- the switching unit 140 is unnecessary.
- the viewer 100 may be provided with members other than the case 110, the linear polarizing plate 120, the phase difference plate 130, and the switching unit 140.
- covers may be provided at the entrance and exit of the optical path chamber 112 of the case 110.
- the case 110 may be provided with a fixture for detachably attaching the viewer 100 to the apparatus main body 310.
- a spacer material that suppresses contact between the linearly polarizing plate 120 and the retardation film 130 may be provided.
- the identification medium 200 may not include the base material 210 and may not include the base layer 220.
- the authenticity determination described above can be performed if there is a marking 230 containing a cholesteric resin. Therefore, for example, even when the marking 230 containing the cholesteric resin is directly formed on the surface of the article 10, the determination of the authenticity can be performed.
- a mobile phone for example, a mobile phone, a tablet terminal, a digital camera, a web camera, a personal computer with a camera, or the like may be used.
- the circularly polarized light that has entered the viewer 100 is converted into linearly polarized light by the phase difference plate 130, but as long as the authenticity can be determined, for example, the circularly polarized light that has entered the viewer 100 is
- the phase difference plate 130 may convert the light into elliptically polarized light. Even when the circularly polarized light is converted into elliptically polarized light by the phase difference plate 130, the angle ⁇ is normally + 45 ° ⁇ 5 ° and the angle ⁇ is such that the elliptically polarized light can pass through the linearly polarized light 120. It differs depending on the case of ⁇ 45 ° ⁇ 5 °. Therefore, as in the above-described embodiment, if the identification medium 200 is authentic, there is a difference between the first image and the second image, so authenticity can be determined.
- the viewer 100 that can transmit or block all of the reflected light LR at the marking 230 is shown as an example. However, as long as the authenticity can be determined, for example, a part of the reflected light LR is transmitted or You may perform determination using the viewer 100 which can be interrupted
- linear polarizing plate As a linear polarizing plate, you may use the film provided with a linear polarizer, for example.
- a linear polarizer for example, a film in which an appropriate vinyl alcohol polymer film is subjected to an appropriate process such as a dyeing process, a stretching process, and a crosslinking process with a dichroic substance in an appropriate order and method can be used.
- the vinyl alcohol polymer include polyvinyl alcohol and partially formalized polyvinyl alcohol.
- dichroic substances include iodine and dichroic dyes. Among these, from the viewpoint of improving heat resistance, a linear polarizer containing a dichroic dye is preferable.
- the linearly polarizing plate may be provided with a polarizer protective film in combination with a linear polarizer.
- the linearly polarizing plate is preferably excellent in the degree of polarization.
- the thickness of the linear polarizing plate is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
- phase difference plate for example, a stretched film can be used.
- the stretched film is a film obtained by stretching a resin film, and an arbitrary in-plane retardation can be obtained by appropriately adjusting factors such as the type of resin, stretching conditions, and thickness.
- thermoplastic resin As the resin, a thermoplastic resin is usually used.
- This thermoplastic resin may contain a polymer and optional components as necessary.
- the polymer include polycarbonate, polyethersulfone, polyethylene terephthalate, polyimide, polymethyl methacrylate, polysulfone, polyarylate, polyethylene, polyphenylene ether, polystyrene, polyvinyl chloride, cellulose diacetate, cellulose triacetate, and alicyclic. Examples include a structure-containing polymer.
- a polymer may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- alicyclic structure-containing polymers are preferred.
- the alicyclic structure-containing polymer is a polymer having an alicyclic structure in the main chain and / or side chain, and for example, those described in JP-A-2007-057971 can be used.
- a stretched film as a retardation film can be produced by producing a resin film from the above resin and then subjecting the resin film to a stretching treatment.
- Examples of the method for producing a resin film include a cast molding method, an inflation molding method, an extrusion molding method, and the like. Among these, an extrusion molding method is preferable.
- the stretching treatment can be performed by a method such as a roll method, a float method, or a tenter method.
- the stretching direction is preferably set appropriately so that the slow axis of the stretched film is in a desired direction. Therefore, the stretching treatment may be stretching in the width direction of the resin film (lateral stretching) or stretching in the longitudinal direction (longitudinal stretching) depending on the direction of the slow axis desired to be developed in the stretched film. It may be stretching in an oblique direction which is neither the width direction nor the longitudinal direction, or may be stretching combining these.
- the stretching temperature and the stretching ratio can be arbitrarily set as long as desired in-plane retardation is obtained.
- the stretching temperature is preferably Tg-30 ° C or higher, more preferably Tg-10 ° C or higher, preferably Tg + 60 ° C or lower, more preferably Tg + 50 ° C or lower.
- the draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, particularly preferably 1.5 times or more, preferably 30 times or less, more preferably 10 times or less, particularly preferably. 5 times or less.
- Tg represents the glass transition temperature of the resin.
- the thickness of the stretched film is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 20 ⁇ m or more, preferably 1 mm or less, more preferably 500 ⁇ m or less, particularly preferably 200 ⁇ m or less. .
- the liquid crystal cured layer is a layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
- the material called “liquid crystal composition” includes not only a mixture of two or more substances but also a material made of a single substance.
- a liquid crystal cured layer is obtained by forming a liquid crystal composition layer and orienting the molecules of the liquid crystal compound contained in the liquid crystal composition layer and then curing the liquid crystal composition layer. This liquid crystal cured layer can obtain arbitrary in-plane retardation by appropriately adjusting factors such as the type of liquid crystal compound, the alignment state of the liquid crystal compound, and the thickness.
- the kind of the liquid crystal compound is arbitrary, but in order to obtain a retardation plate having reverse wavelength dispersion, it is preferable to use a reverse wavelength dispersion liquid crystal compound.
- the reverse wavelength dispersive liquid crystal compound refers to a liquid crystal compound that exhibits reverse wavelength dispersibility when homogeneously aligned.
- the liquid crystal compound is homogeneously aligned means that a layer containing the liquid crystal compound is formed and the major axis direction of the mesogens of the molecules of the liquid crystal compound in the layer is aligned in one direction parallel to the plane of the layer. It means to make it.
- Specific examples of the reverse wavelength dispersive liquid crystal compound include compounds described in International Publication No. 2014/0669515, International Publication No. 2015/064581, and the like.
- the thickness of the liquid crystal cured layer is not particularly limited, but is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
- the markings observed by the viewer include cholesteric resin.
- the cholesteric resin is a resin having cholesteric regularity.
- Cholesteric regularity means that molecular axes are arranged in a certain direction on a plane inside the resin, but the direction of the molecular axis is shifted by a little angle on the next plane that overlaps it. In this structure, the angles of the molecular axes in the planes are shifted (twisted) as they sequentially pass through the overlapping planes. That is, when molecules in a layer of a certain material have cholesteric regularity, the molecules are aligned such that the molecular axis is in a certain direction on a first plane inside the layer.
- the direction of the molecular axis deviates slightly from the direction of the molecular axis in the first plane.
- the direction of the molecular axis deviates further from the direction of the molecular axis in the second plane.
- the angles of the molecular axes in the planes are sequentially shifted (twisted).
- Such a structure in which the direction of the molecular axis is twisted is usually a helical structure, and an optically chiral structure. Since this cholesteric resin has a circularly polarized light separating function, the marking can reflect circularly polarized light of a color corresponding to the selective reflection band of the cholesteric resin.
- cholesteric resin for example, a cured product of a cholesteric liquid crystal composition can be used.
- the cholesteric liquid crystal composition refers to a composition that can exhibit a liquid crystal phase (cholesteric liquid crystal phase) having cholesteric regularity when the liquid crystal compound contained in the liquid crystal composition is aligned.
- the liquid crystal compound is usually polymerized in a state of exhibiting a cholesteric liquid crystal phase, so that a layer of a non-liquid crystalline cholesteric resin cured while exhibiting cholesteric regularity can be obtained.
- cholesteric resin as a cured product of the cholesteric liquid crystal composition, for example, those described in JP-A Nos. 2014-174471 and 2015-27743 can be used.
- the marking can usually be formed as a layer containing a cholesteric resin.
- Such marking can be provided as a layer having a desired planar shape on an identification medium such as a label.
- an identification medium such as a label.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Polarising Elements (AREA)
- Credit Cards Or The Like (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Provided is a viewer for determining authenticity, comprising: a linear polarizer; and a retardation plate disposed on one side in the thickness direction of the linear polarizer, wherein at least one of the linear polarizer and the retardation plate is rotatably disposed and an angle between the absorption axis of the linear polarizer and the slow axis of the retardation plate is changeable within the range from +45°±5° to -45°±5°.
Description
本発明は、真正性判定用ビュワー、撮影装置、及び、真正性の判定方法に関する。
The present invention relates to an authenticity determination viewer, an imaging device, and an authenticity determination method.
物品が正規メーカーから供給された真正品であるか否かを判定する真贋判定のために、物品の表面に、容易に複製できないマーキングが形成された識別媒体を付すことがある。このようなマーキングのための材料の一つとして、コレステリック規則性を有する樹脂(以下、適宜「コレステリック樹脂」ということがある。)が知られている。
In order to determine whether or not an article is a genuine product supplied from an authorized manufacturer, an identification medium with a marking that cannot be easily copied may be attached to the surface of the article. As one of such marking materials, a resin having cholesteric regularity (hereinafter sometimes referred to as “cholesteric resin” as appropriate) is known.
コレステリック樹脂は、通常、円偏光分離機能を有する。この「円偏光分離機能」とは、右円偏光及び左円偏光のうちの一方の円偏光を透過させ、他方の円偏光の一部又は全部を反射させる機能を意味する。コレステリック樹脂による反射は、円偏光を、そのキラリティを維持したまま反射する。また、このように円偏光分離機能が発揮される波長範囲を、「選択反射帯域」ということがある。
Cholesteric resin usually has a circularly polarized light separation function. The “circularly polarized light separating function” means a function of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting a part or all of the other circularly polarized light. Reflection by cholesteric resin reflects circularly polarized light while maintaining its chirality. Further, the wavelength range in which the circularly polarized light separation function is exhibited in this way is sometimes referred to as “selective reflection band”.
よって、コレステリック樹脂を用いて形成されたマーキングは、右円偏光板によって観察した場合と、左円偏光板によって観察した場合とで、異なる像が現れる。そこで、前記の像の違いにより、真正性の判定を行うことができる(特許文献1及び2参照)。前記のような真正性の判定のための観察は、右円偏光板及び左円偏光板という2枚の円偏光板を用いて行われることが一般的である。
Therefore, the marking formed using the cholesteric resin shows different images depending on whether it is observed with the right circularly polarizing plate or the left circularly polarizing plate. Therefore, authenticity can be determined based on the difference between the images (see Patent Documents 1 and 2). The observation for authenticity determination as described above is generally performed using two circularly polarizing plates, a right circularly polarizing plate and a left circularly polarizing plate.
近年、メーカーが有する情報に消費者及びユーザーがインターネットを介してアクセスできるシステムが、普及しつつある。このシステムでは、例えば、ユーザーが、製品に付された識別子(バーコード等)等のマーキングを、スマートフォン等の撮影装置で撮影する。この撮影した画像から得られたマーキングの情報は、インターネットを介してメーカーに送られる。そして、メーカーは、送られてきた情報に対応する製品情報(例えば、製品の詳細情報、関連情報等)を、ユーザーに返す。これにより、ユーザーは、製品情報を得ることができる。
In recent years, systems that allow consumers and users to access information held by manufacturers via the Internet are becoming widespread. In this system, for example, a user photographs a marking such as an identifier (bar code or the like) attached to a product with a photographing device such as a smartphone. The marking information obtained from the photographed image is sent to the manufacturer via the Internet. Then, the manufacturer returns product information (for example, detailed product information and related information) corresponding to the sent information to the user. Thereby, the user can obtain product information.
本発明者は、前記のシステムを、真正性の判定のために用いることを検討した。このような真正性の判定のためには、マーキングをコレステリック樹脂によって描き、且つ、円偏光板を備えた撮影装置でそのマーキングを撮影することが求められる。ところが、一般の消費者及びユーザーにとって、円偏光板を備えた専用の撮影装置を用意することは、コスト負担が大きく、システム導入の妨げになると考えられる。
The present inventor considered using the above-described system for authenticity determination. In order to determine the authenticity as described above, it is required to draw the marking with a cholesteric resin and photograph the marking with a photographing apparatus provided with a circularly polarizing plate. However, for general consumers and users, preparing a dedicated photographing device equipped with a circularly polarizing plate is considered to be costly and hinder system introduction.
さらに、上述したように、コレステリック樹脂を用いて形成されたマーキングの真正性を判定するためには、前記の撮影装置には、右円偏光板での観察と左円偏光板での観察との両方が可能であることが要求される。この要求を満たすには、撮影装置に右円偏光板及び左円偏光板の両方を設けることが考えられる。しかし、このように2枚の円偏光板を用いると、それら2枚分の面積が要求される。よって、装置のサイズが大きくなり、取り扱い性が不十分になると考えられる。
Furthermore, as described above, in order to determine the authenticity of the marking formed using the cholesteric resin, the photographing apparatus includes the observation with the right circular polarizing plate and the observation with the left circular polarizing plate. Both are required to be possible. In order to satisfy this requirement, it is conceivable to provide both the right circularly polarizing plate and the left circularly polarizing plate in the photographing apparatus. However, when two circularly polarizing plates are used in this way, the area for these two sheets is required. Therefore, it is considered that the size of the apparatus becomes large and the handleability becomes insufficient.
本発明は、前記の課題に鑑みて創案されたもので、汎用の撮影装置としての装置本体に装着することで、コレステリック樹脂を用いて形成されたマーキングの撮影を可能にできる、サイズが小さい真正性判定用ビュワー;前記の真正性判定用ビュワーを備え、コレステリック樹脂を用いて形成されたマーキングの撮影が可能な撮影装置;並びに、前記の撮影装置を用いた真正性の判定方法;を提供することを目的とする。
The present invention was devised in view of the above-described problems, and can be used to shoot a marking formed using a cholesteric resin by being attached to a main body as a general-purpose photographing device. Provided are a sex determination viewer; an imaging device including the authenticity determination viewer and capable of shooting a marking formed using a cholesteric resin; and an authenticity determination method using the imaging device. For the purpose.
本発明者は、前記の課題を解決するべく、鋭意検討を行った。その結果、本発明者は、直線偏光板及び位相差板を備え、直線偏光板及び位相差板の少なくとも一方が回転可能であり、且つ、直線偏光板の吸収軸が位相差板の遅相軸に対してなす角度を切り替えできるビュワーが、前記の課題を解決できることを見い出し、本発明を完成させた。
よって、本発明は、下記のものを含む。 The present inventor has intensively studied to solve the above problems. As a result, the inventor includes a linearly polarizing plate and a retardation plate, at least one of the linearly polarizing plate and the retardation plate is rotatable, and the absorption axis of the linearly polarizing plate is a slow axis of the retardation plate. The present inventors have found that a viewer capable of switching the angle formed with respect to can solve the above-mentioned problems and completed the present invention.
Therefore, the present invention includes the following.
よって、本発明は、下記のものを含む。 The present inventor has intensively studied to solve the above problems. As a result, the inventor includes a linearly polarizing plate and a retardation plate, at least one of the linearly polarizing plate and the retardation plate is rotatable, and the absorption axis of the linearly polarizing plate is a slow axis of the retardation plate. The present inventors have found that a viewer capable of switching the angle formed with respect to can solve the above-mentioned problems and completed the present invention.
Therefore, the present invention includes the following.
〔1〕 直線偏光板と、前記直線偏光板の厚み方向の一側に設けられた位相差板とを備え、
前記直線偏光板及び前記位相差板の少なくとも一方が、回転可能に設けられ、
前記直線偏光板の吸収軸が前記位相差板の遅相軸に対してなす角度を、+45°±5°と-45°±5°との間で切り替えできる、真正性判定用ビュワー。
〔2〕 前記位相差板の面内レターデーションが、140nm±40nmである、〔1〕に記載の真正性判定用ビュワー。
〔3〕 前記位相差板は、逆波長分散性を有する、〔1〕又は〔2〕に記載の真正性判定用ビュワー。
〔4〕 コレステリック規則性を有する樹脂を含むマーキングを備えた識別媒体を撮影するための撮影装置であって、
撮影部を備えた装置本体と、前記装置本体の撮影部に装着された〔1〕~〔3〕のいずれか一項に記載の真正性判定用ビュワーとを備える、撮影装置。
〔5〕 コレステリック規則性を有する樹脂を含むマーキングを備えた識別媒体の真正性の判定方法であって、
〔4〕記載の撮影装置により、直線偏光板の吸収軸が位相差板の遅相軸に対してなす角度が+45°±5°にある状態で、前記識別媒体を撮影して、第一画像を得る工程と、
前記撮影装置により、直線偏光板の吸収軸が位相差板の遅相軸に対してなす角度が-45°±5°にある状態で、前記識別媒体を撮影して、第二画像を得る工程と、
前記第一画像及び前記第二画像に基づいて、前記識別媒体の真正性を判定する工程と、を含む、識別媒体の真正性の判定方法。 [1] A linearly polarizing plate, and a retardation plate provided on one side in the thickness direction of the linearly polarizing plate,
At least one of the linearly polarizing plate and the retardation plate is rotatably provided,
A viewer for authenticity determination, wherein the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate can be switched between + 45 ° ± 5 ° and −45 ° ± 5 °.
[2] The authenticity judging viewer according to [1], wherein an in-plane retardation of the retardation plate is 140 nm ± 40 nm.
[3] The authenticity determination viewer according to [1] or [2], wherein the retardation plate has reverse wavelength dispersion.
[4] An imaging device for imaging an identification medium provided with a marking including a resin having cholesteric regularity,
An imaging apparatus comprising: an apparatus main body including an imaging unit; and the authenticity determination viewer according to any one of [1] to [3] attached to the imaging unit of the apparatus main body.
[5] A method for determining the authenticity of an identification medium provided with a marking containing a resin having cholesteric regularity,
[4] Using the imaging apparatus described above, the identification medium is imaged in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is + 45 ° ± 5 °, and the first image Obtaining
Step of obtaining the second image by photographing the identification medium with the photographing device in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is −45 ° ± 5 °. When,
Determining the authenticity of the identification medium based on the first image and the second image.
前記直線偏光板及び前記位相差板の少なくとも一方が、回転可能に設けられ、
前記直線偏光板の吸収軸が前記位相差板の遅相軸に対してなす角度を、+45°±5°と-45°±5°との間で切り替えできる、真正性判定用ビュワー。
〔2〕 前記位相差板の面内レターデーションが、140nm±40nmである、〔1〕に記載の真正性判定用ビュワー。
〔3〕 前記位相差板は、逆波長分散性を有する、〔1〕又は〔2〕に記載の真正性判定用ビュワー。
〔4〕 コレステリック規則性を有する樹脂を含むマーキングを備えた識別媒体を撮影するための撮影装置であって、
撮影部を備えた装置本体と、前記装置本体の撮影部に装着された〔1〕~〔3〕のいずれか一項に記載の真正性判定用ビュワーとを備える、撮影装置。
〔5〕 コレステリック規則性を有する樹脂を含むマーキングを備えた識別媒体の真正性の判定方法であって、
〔4〕記載の撮影装置により、直線偏光板の吸収軸が位相差板の遅相軸に対してなす角度が+45°±5°にある状態で、前記識別媒体を撮影して、第一画像を得る工程と、
前記撮影装置により、直線偏光板の吸収軸が位相差板の遅相軸に対してなす角度が-45°±5°にある状態で、前記識別媒体を撮影して、第二画像を得る工程と、
前記第一画像及び前記第二画像に基づいて、前記識別媒体の真正性を判定する工程と、を含む、識別媒体の真正性の判定方法。 [1] A linearly polarizing plate, and a retardation plate provided on one side in the thickness direction of the linearly polarizing plate,
At least one of the linearly polarizing plate and the retardation plate is rotatably provided,
A viewer for authenticity determination, wherein the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate can be switched between + 45 ° ± 5 ° and −45 ° ± 5 °.
[2] The authenticity judging viewer according to [1], wherein an in-plane retardation of the retardation plate is 140 nm ± 40 nm.
[3] The authenticity determination viewer according to [1] or [2], wherein the retardation plate has reverse wavelength dispersion.
[4] An imaging device for imaging an identification medium provided with a marking including a resin having cholesteric regularity,
An imaging apparatus comprising: an apparatus main body including an imaging unit; and the authenticity determination viewer according to any one of [1] to [3] attached to the imaging unit of the apparatus main body.
[5] A method for determining the authenticity of an identification medium provided with a marking containing a resin having cholesteric regularity,
[4] Using the imaging apparatus described above, the identification medium is imaged in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is + 45 ° ± 5 °, and the first image Obtaining
Step of obtaining the second image by photographing the identification medium with the photographing device in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is −45 ° ± 5 °. When,
Determining the authenticity of the identification medium based on the first image and the second image.
本発明によれば、汎用の撮影装置としての装置本体に装着することで、コレステリック樹脂を用いて形成されたマーキングの撮影を可能にできる、サイズが小さい真正性判定用ビュワー;前記の真正性判定用ビュワーを備え、コレステリック樹脂を用いて形成されたマーキングの撮影が可能な撮影装置;並びに、前記の撮影装置を用いた真正性の判定方法;を提供できる。
According to the present invention, an authenticity determination viewer having a small size that can be photographed with a marking formed using a cholesteric resin by being attached to a main body as a general-purpose image capturing apparatus; And a viewer for photographing a marking formed using a cholesteric resin; and a method for determining authenticity using the photographing device.
以下、実施形態及び例示物を示して本発明について詳細に説明する。ただし、本発明は、以下に説明する実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において、任意に変更して実施できる。
Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples described below, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
以下の説明において、位相差板の遅相軸とは、別に断らない限り、位相差板の面内方向における遅相軸を表す。
In the following description, the slow axis of the retardation plate represents the slow axis in the in-plane direction of the retardation plate unless otherwise specified.
以下の説明において、直線偏光板及び位相差板の光学軸(吸収軸、透過軸、遅相軸等)がなす角度は、別に断らない限り、直線偏光板の厚み方向から見たときの角度を表す。
In the following description, the angle formed by the optical axis (absorption axis, transmission axis, slow axis, etc.) of the linear polarizing plate and the retardation plate is the angle when viewed from the thickness direction of the linear polarizing plate, unless otherwise specified. To express.
以下の説明において、「直線偏光板」、「位相差板」及び「波長板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
In the following description, “linear polarizing plate”, “retardation plate”, and “wave plate” are not only rigid members but also flexible members such as resin films, unless otherwise specified. Including.
以下の説明において、位相差板の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。ここで、nxは、位相差板の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、位相差板の前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、位相差板の厚みを表す。
In the following description, the in-plane retardation Re of the retardation plate is a value represented by Re = (nx−ny) × d unless otherwise specified. Here, nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the retardation plate and giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the retardation plate and in the direction orthogonal to the nx direction. d represents the thickness of the retardation plate.
以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°(即ち、-5°~+5°)の範囲内での誤差を含んでいてもよい。
In the following description, unless the direction of the element is “parallel”, “vertical” or “orthogonal”, unless otherwise specified, for example, ± 5 ° (ie, −5 ° to + 5 °) The error may be included within the range of °).
[1.実施形態]
図1は、本発明の一実施形態に係る真正性判定用ビュワー100を模式的に示す斜視図である。また、図2は、本発明の一実施形態に係る真正性判定用ビュワー100を、ケース110を透視して模式的に示す斜視図である。この図2においては、ケース110は、一点鎖線で示す。 [1. Embodiment]
FIG. 1 is a perspective view schematically showing anauthenticity determination viewer 100 according to an embodiment of the present invention. FIG. 2 is a perspective view schematically showing the authenticity determination viewer 100 according to an embodiment of the present invention through a case 110. In FIG. 2, the case 110 is indicated by a one-dot chain line.
図1は、本発明の一実施形態に係る真正性判定用ビュワー100を模式的に示す斜視図である。また、図2は、本発明の一実施形態に係る真正性判定用ビュワー100を、ケース110を透視して模式的に示す斜視図である。この図2においては、ケース110は、一点鎖線で示す。 [1. Embodiment]
FIG. 1 is a perspective view schematically showing an
図1及び図2に示すように、本発明の一実施形態に係る真正性判定用ビュワー100は、ケース110;ケース110内に収納された直線偏光板120;ケース110内に収納された位相差板130;及び、直線偏光板120に設けられたスイッチング部140;を備える。直線偏光板120と位相差板130とは、接触していてもよいが、本実施形態では、直線偏光板120と位相差板130とが離隔した例を示す。
As shown in FIGS. 1 and 2, an authenticity determination viewer 100 according to an embodiment of the present invention includes a case 110; a linear polarizing plate 120 housed in the case 110; a phase difference housed in the case 110. Plate 130; and a switching unit 140 provided on the linearly polarizing plate 120. The linearly polarizing plate 120 and the retardation plate 130 may be in contact with each other, but in the present embodiment, an example in which the linearly polarizing plate 120 and the retardation plate 130 are separated from each other is shown.
ケース110は、筒状に形成された壁部111を有し、この壁部111に囲まれた内部空間として、直線偏光板120及び位相差板130を収納するための光路室112が形成されている。本実施形態では、内部に円柱形の光路室112を有する円筒形のケース110を用いた例を示す。また、ケース110の壁部111には、当該壁部111を貫通する長穴113が形成されている。この長穴113は、ケース110の周方向に延在して形成されている。
The case 110 has a wall portion 111 formed in a cylindrical shape, and an optical path chamber 112 for accommodating the linearly polarizing plate 120 and the phase difference plate 130 is formed as an internal space surrounded by the wall portion 111. Yes. In the present embodiment, an example in which a cylindrical case 110 having a columnar optical path chamber 112 inside is used is shown. In addition, the wall portion 111 of the case 110 is formed with a long hole 113 that penetrates the wall portion 111. The elongated hole 113 is formed extending in the circumferential direction of the case 110.
直線偏光板120は、ケース110の光路室112に、その直線偏光板120の面内方向とケース110の円筒形の径方向とが平行となるように設けられている。よって、直線偏光板120の厚み方向は、ケース110の円筒形の軸方向に平行になっている。本実施形態では、円板形の直線偏光板120を用いた例を示す。
The linear polarizing plate 120 is provided in the optical path chamber 112 of the case 110 so that the in-plane direction of the linear polarizing plate 120 and the cylindrical radial direction of the case 110 are parallel to each other. Therefore, the thickness direction of the linear polarizing plate 120 is parallel to the cylindrical axial direction of the case 110. In this embodiment, an example using a disc-shaped linearly polarizing plate 120 is shown.
直線偏光板120は、吸収軸を有する。よって、直線偏光板120は、吸収軸と垂直な振動方向を有する直線偏光を透過させ、吸収軸と平行な振動方向を有する直線偏光を遮ることができる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。
The linearly polarizing plate 120 has an absorption axis. Therefore, the linearly polarizing plate 120 can transmit linearly polarized light having a vibration direction perpendicular to the absorption axis and block linearly polarized light having a vibration direction parallel to the absorption axis. Here, the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
位相差板130は、ケース110の光路室112に、その位相差板130の面内方向とケース110の円筒形の径方向とが平行となるように設けられている。よって、位相差板130の厚み方向は、ケース110の円筒形の軸方向、及び、直線偏光板120の厚み方向に平行になっている。また、ケース110の光路室112に進入した光が位相差板130及び直線偏光板120をこの順に通過できるように、位相差板130は、直線偏光板120の厚み方向の一側に設けられている。本実施形態では、円板形の位相差板130を用いた例を示す。
The phase difference plate 130 is provided in the optical path chamber 112 of the case 110 so that the in-plane direction of the phase difference plate 130 and the cylindrical radial direction of the case 110 are parallel to each other. Therefore, the thickness direction of the retardation film 130 is parallel to the cylindrical axial direction of the case 110 and the thickness direction of the linear polarizing plate 120. The retardation plate 130 is provided on one side of the linear polarizing plate 120 in the thickness direction so that light entering the optical path chamber 112 of the case 110 can pass through the retardation plate 130 and the linear polarizing plate 120 in this order. Yes. In the present embodiment, an example using a disc-shaped retardation plate 130 is shown.
位相差板130は、面内レターデーションを有する。位相差板130の具体的な面内レターデーションは、真正性の判定に用いる光の波長において、ビュワー100に進入する円偏光を真正性の判定が可能な直線偏光又は楕円偏光に変換できるように設定されることが好ましい。前記の「真正性の判定に用いる光の波長」とは、具体的には、ビュワー100を用いて観察するマーキングに含まれるコレステリック樹脂の選択反射帯域の波長を表す。よって、位相差板130の具体的な面内レターデーションは、マーキングに含まれるコレステリック樹脂の選択反射帯域において位相差板130が1/4波長板として機能できるように設定されることが好ましい。
The retardation film 130 has in-plane retardation. The specific in-plane retardation of the retardation film 130 is such that circularly polarized light entering the viewer 100 can be converted into linearly polarized light or elliptically polarized light capable of authenticity determination at the wavelength of light used for authenticity determination. It is preferably set. The above-mentioned “wavelength of light used for authenticity determination” specifically represents the wavelength of the selective reflection band of the cholesteric resin included in the marking observed using the viewer 100. Accordingly, the specific in-plane retardation of the retardation film 130 is preferably set so that the retardation film 130 can function as a quarter-wave plate in the selective reflection band of the cholesteric resin included in the marking.
特に望ましい態様では、位相差板130の面内レターデーションは、測定波長560nmにおいて、好ましくは140nm±40nm(即ち、100nm~180nm)である。より詳細には、位相差板130の測定波長560nmにおける面内レターデーションは、好ましくは100nm以上、より好ましくは120nm以上、特に好ましくは130nm以上であり、好ましくは180nm以下、より好ましくは160nm以下、特に好ましくは150nm以下である。測定波長560nmにおいて前記範囲の面内レターデーションを有する位相差板130は、通常、可視波長領域において1/4波長板として機能できる。よって、このような位相差板130を用いることにより、可視波長範囲において使用可能なビュワー100を実現できる。
In a particularly desirable mode, the in-plane retardation of the retardation film 130 is preferably 140 nm ± 40 nm (that is, 100 nm to 180 nm) at a measurement wavelength of 560 nm. More specifically, the in-plane retardation of the retardation plate 130 at a measurement wavelength of 560 nm is preferably 100 nm or more, more preferably 120 nm or more, particularly preferably 130 nm or more, preferably 180 nm or less, more preferably 160 nm or less, Especially preferably, it is 150 nm or less. The retardation plate 130 having in-plane retardation in the above range at a measurement wavelength of 560 nm can usually function as a quarter wavelength plate in the visible wavelength region. Therefore, by using such a retardation plate 130, the viewer 100 usable in the visible wavelength range can be realized.
位相差板130は、逆波長分散性を有することが好ましい。ここで、逆波長分散性とは、測定波長450nm及び560nmにおける面内レターデーションRe(450)及びRe(560)が、下記式(1)を満たすことをいう。
Re(450)<Re(560) (1)
逆波長分散性を有する位相差板130は、広い波長範囲においてその光学的機能を発揮できる。よって、逆波長分散性を有する位相差板130を用いることにより、広い波長範囲において使用可能なビュワー100を実現できる。 Theretardation plate 130 preferably has reverse wavelength dispersion. Here, the reverse wavelength dispersion means that the in-plane retardations Re (450) and Re (560) at the measurement wavelengths of 450 nm and 560 nm satisfy the following formula (1).
Re (450) <Re (560) (1)
Theretardation plate 130 having reverse wavelength dispersion can exhibit its optical function in a wide wavelength range. Therefore, the viewer 100 that can be used in a wide wavelength range can be realized by using the retardation plate 130 having reverse wavelength dispersion.
Re(450)<Re(560) (1)
逆波長分散性を有する位相差板130は、広い波長範囲においてその光学的機能を発揮できる。よって、逆波長分散性を有する位相差板130を用いることにより、広い波長範囲において使用可能なビュワー100を実現できる。 The
Re (450) <Re (560) (1)
The
位相差板130は、当該位相差板130の面内方向に、遅相軸を有する。この位相差板130の遅相軸と直線偏光板120の吸収軸とがなす角度が、略45°に設定された場合に、直線偏光板120及び位相差板130の組み合わせは、円偏光板として機能できる。
The retardation film 130 has a slow axis in the in-plane direction of the retardation film 130. When the angle formed by the slow axis of the retardation plate 130 and the absorption axis of the linear polarizing plate 120 is set to about 45 °, the combination of the linear polarizing plate 120 and the retardation plate 130 is a circular polarizing plate. Can function.
上述した実施形態において、直線偏光板120及び位相差板130の少なくとも一方は、回転可能に設けられている。そして、このように回転する範囲は、直線偏光板120の吸収軸が位相差板130の遅相軸に対してなす角度θを、+45°±5°(即ち、+40°~+50°)と-45°±5°(即ち、-50°~-40°)との間で切り替えできるように設定される。前記の角度θの正負の符号は、回転の向きを表す。よって、角度θが正の値である場合と、角度θが負の値である場合とでは、直線偏光板120の吸収軸が位相差板130の遅相軸に対して角度θをなす向きが、逆向きである。
In the above-described embodiment, at least one of the linearly polarizing plate 120 and the phase difference plate 130 is rotatably provided. In this range of rotation, the angle θ formed by the absorption axis of the linear polarizer 120 with respect to the slow axis of the phase difference plate 130 is + 45 ° ± 5 ° (ie, + 40 ° to + 50 °) and − It is set so that it can be switched between 45 ° ± 5 ° (ie, −50 ° to −40 °). The sign of the angle θ represents the direction of rotation. Therefore, in the case where the angle θ is a positive value and the case where the angle θ is a negative value, the direction in which the absorption axis of the linearly polarizing plate 120 forms the angle θ with respect to the slow axis of the phase difference plate 130 is determined. , Reverse.
図3及び図4は、それぞれ、本発明の一実施形態に係る真正性判定用ビュワー100が備える直線偏光板120及び位相差板130を模式的に示す概略図である。図3及び図4においては、位相差板130の遅相軸A130と同一方向に延びる直線L130を、二点鎖線で示す。図3には、直線偏光板120の吸収軸A120が、位相差板130の遅相軸A130に対して、反時計回りに角度θをなす例を示す。また、図4には、直線偏光板120の吸収軸A120が、位相差板130の遅相軸A130に対して、時計回りに角度θをなす例を示す。この場合、図3に示される角度θの符号は、正及び負の一方であり、図4で示される角度θの符号は、正及び負の他方である。
3 and 4 are schematic views schematically showing the linearly polarizing plate 120 and the phase difference plate 130 provided in the authenticity determination viewer 100 according to the embodiment of the present invention, respectively. 3 and 4, a straight line L130 extending in the same direction as the slow axis A130 of the retardation film 130 is indicated by a two-dot chain line. FIG. 3 shows an example in which the absorption axis A120 of the linearly polarizing plate 120 forms an angle θ counterclockwise with respect to the slow axis A130 of the retardation film 130. 4 shows an example in which the absorption axis A120 of the linearly polarizing plate 120 forms an angle θ clockwise with respect to the slow axis A130 of the retardation plate 130. In this case, the sign of the angle θ shown in FIG. 3 is one of positive and negative, and the sign of the angle θ shown in FIG. 4 is the other of positive and negative.
前記の角度θが+45°±5°である場合、当該角度θは、好ましくは+45°±4°(即ち、+41°~+49°)、より好ましくは+45°±3°(即ち、+42°~+48°)、特に好ましくは+45°±2°(即ち、+43°~+47°)である。また、前記の角度θが-45°±5°である場合、当該角度θは、好ましくは-45°±4°(即ち、-49°~-41°)、より好ましくは-45°±3°(即ち、-48°~-42°)、特に好ましくは-45°±2°(即ち、-47°~-43°)である。角度θが前記の範囲にある場合に、後述する第一画像と第二画像との差異を明確にし易いので、真正性の判定を容易に行うことができる。
When the angle θ is + 45 ° ± 5 °, the angle θ is preferably + 45 ° ± 4 ° (ie, + 41 ° to + 49 °), more preferably + 45 ° ± 3 ° (ie, + 42 ° to + 48 °), particularly preferably + 45 ° ± 2 ° (ie, + 43 ° to + 47 °). When the angle θ is −45 ° ± 5 °, the angle θ is preferably −45 ° ± 4 ° (ie, −49 ° to −41 °), more preferably −45 ° ± 3. ° (ie, -48 ° to -42 °), particularly preferably -45 ° ± 2 ° (ie, -47 ° to -43 °). When the angle θ is in the above range, it is easy to clarify the difference between a first image and a second image, which will be described later, so that authenticity can be easily determined.
本実施形態においては、図1及び図2に示すように、直線偏光板120が、当該直線偏光板120の円板形の中心を通り且つ当該直線偏光板120の厚み方向に平行な回転軸R120を中心にして、回転可能に設けられている例を示す。ただし、前記の回転軸R120は、直線偏光板120の回転方向を示すために説明するものであり、必ずしも具体的な部材によって形成されていなくてもよい。
In this embodiment, as shown in FIGS. 1 and 2, the linearly polarizing plate 120 passes through the center of the disk of the linearly polarizing plate 120 and is parallel to the thickness direction of the linearly polarizing plate 120. An example in which it is provided to be rotatable around the center is shown. However, the rotation axis R120 is described in order to indicate the rotation direction of the linearly polarizing plate 120, and is not necessarily formed by a specific member.
さらに、直線偏光板120の縁部120Eには、当該直線偏光板120の径方向に突出するように、棒状のスイッチング部140が設けられている。スイッチング部140は、ケース110の壁部111に形成された長穴113に通されている。また、スイッチング部140は、長穴113に沿って移動可能に設けられている。よって、スイッチング部140は、当該スイッチング部140を長穴113に沿ってケース110の周方向に移動させることにより、そのスイッチング部140の移動の分だけ直線偏光板120を回転させられるように設けられている。
Furthermore, a rod-shaped switching unit 140 is provided at the edge 120E of the linear polarizing plate 120 so as to protrude in the radial direction of the linear polarizing plate 120. The switching part 140 is passed through a long hole 113 formed in the wall part 111 of the case 110. The switching unit 140 is provided so as to be movable along the long hole 113. Therefore, the switching unit 140 is provided so that the linear polarizing plate 120 can be rotated by the movement of the switching unit 140 by moving the switching unit 140 along the elongated hole 113 in the circumferential direction of the case 110. ing.
スイッチング部140は、長穴113の延在方向の端部においては、壁部111に当たって止まるように設けられている。この場合、長穴113の延在方向の両端の位置は、下記の要件(A1)及び(A2)を満たすように設定することが好ましい。
(A1)長穴113の一端にスイッチング部140がいる場合に、角度θが、+45°±5°である。
(A2)長穴113の他端にスイッチング部140がいる場合に、角度θが、-45°±5°である。 Theswitching unit 140 is provided at the end of the elongated hole 113 in the extending direction so as to stop against the wall 111. In this case, it is preferable to set the positions of both ends of the elongated hole 113 in the extending direction so as to satisfy the following requirements (A1) and (A2).
(A1) When theswitching unit 140 is located at one end of the long hole 113, the angle θ is + 45 ° ± 5 °.
(A2) When theswitching unit 140 is at the other end of the elongated hole 113, the angle θ is −45 ° ± 5 °.
(A1)長穴113の一端にスイッチング部140がいる場合に、角度θが、+45°±5°である。
(A2)長穴113の他端にスイッチング部140がいる場合に、角度θが、-45°±5°である。 The
(A1) When the
(A2) When the
このように長穴113の両端の位置を設定した場合、スイッチング部140が長穴113の一端で止まると、角度θが+45°±5°になる。また、スイッチング部140が長穴113の他端で止まると、角度θが-45°±5°になる。よって、スイッチング部140は、当該スイッチング部140の移動による角度θの切り替えを容易に行うことができるように設けられている。
In this way, when the positions of both ends of the long hole 113 are set, when the switching unit 140 stops at one end of the long hole 113, the angle θ becomes + 45 ° ± 5 °. When the switching unit 140 stops at the other end of the long hole 113, the angle θ becomes −45 ° ± 5 °. Therefore, the switching unit 140 is provided so that the angle θ can be easily switched by the movement of the switching unit 140.
本実施形態に係るビュワー100は、上述した構造を有する。よって、ビュワー100のケース110の光路室112に進入した光は、位相差板130及び直線偏光板120をこの順に通ることができる。前記の光が円偏光である場合、その円偏光は、位相差板130を透過することによって直線偏光となって、直線偏光板120に入射する。前記の直線偏光の振動方向が直線偏光板120の吸収軸に垂直である場合、その直線偏光は直線偏光板120を透過できる。他方、前記の直線偏光の振動方向が直線偏光板120の吸収軸に平行である場合、その直線偏光は直線偏光板120を透過できない。このように、直線偏光板120及び位相差板130の組み合わせにより、円偏光板としての機能が得られる。
The viewer 100 according to the present embodiment has the above-described structure. Therefore, the light that has entered the optical path chamber 112 of the case 110 of the viewer 100 can pass through the retardation plate 130 and the linear polarizing plate 120 in this order. When the light is circularly polarized light, the circularly polarized light passes through the phase difference plate 130 to become linearly polarized light and enters the linearly polarizing plate 120. When the vibration direction of the linearly polarized light is perpendicular to the absorption axis of the linearly polarizing plate 120, the linearly polarized light can pass through the linearly polarizing plate 120. On the other hand, when the vibration direction of the linearly polarized light is parallel to the absorption axis of the linearly polarizing plate 120, the linearly polarized light cannot pass through the linearly polarizing plate 120. Thus, the function as a circularly polarizing plate is obtained by the combination of the linearly polarizing plate 120 and the retardation plate 130.
また、上述したビュワー100は、直線偏光板120の回転によって、直線偏光板120の吸収軸が位相差板130の遅相軸に対してなす角度θを、+45°±5°と-45°±5°との間で切り替えできる。角度θが+45°±5°及び-45°±5°の一方である場合、位相差板130を透過した直線偏光の振動方向は、直線偏光板120の吸収軸に垂直になる。また、角度θが+45°±5°及び-45°±5°の他方である場合、位相差板130を透過した直線偏光の振動方向は、直線偏光板120の吸収軸に平行になる。よって、前記のビュワー100では、角度θを切り替えることにより、ビュワー100によって遮られる円偏光を、右円偏光と左円偏光とで簡単に切り替えられる。したがって、このビュワー100を用いれば、コレステリック樹脂を含むマーキングを利用した真正性の判定を円滑に行うことができる。
Further, the viewer 100 described above makes the angle θ that the absorption axis of the linear polarizing plate 120 forms with respect to the slow axis of the retardation plate 130 by the rotation of the linear polarizing plate 120, + 45 ° ± 5 ° and −45 ° ±. It can be switched between 5 °. When the angle θ is one of + 45 ° ± 5 ° and −45 ° ± 5 °, the vibration direction of the linearly polarized light transmitted through the phase difference plate 130 is perpendicular to the absorption axis of the linearly polarizing plate 120. When the angle θ is the other of + 45 ° ± 5 ° and −45 ° ± 5 °, the vibration direction of the linearly polarized light transmitted through the phase difference plate 130 is parallel to the absorption axis of the linearly polarizing plate 120. Therefore, in the viewer 100, the circularly polarized light blocked by the viewer 100 can be easily switched between the right circularly polarized light and the left circularly polarized light by switching the angle θ. Therefore, if this viewer 100 is used, the authenticity determination using the marking containing the cholesteric resin can be performed smoothly.
さらに、前記のビュワー100は、少なくとも1組の直線偏光板120と位相差板130との組み合わせによって、右円偏光を遮る機能と左円偏光を遮る機能との両方を発揮できる円偏光板が実現できる。このように直線偏光板120及び位相差板130の組み合わせによる円偏光板1枚の面積で真正性の判定を行える本実施形態に係るビュワー100は、2枚の円偏光板(即ち、右円偏光板及び左円偏光板)を用いていた従来のビュワーに比べ、円偏光板の数を減らせる分だけ小面積化が可能である。したがって、本実施形態に係るビュワー100は、小型化が可能である。
Furthermore, the viewer 100 realizes a circularly polarizing plate that can exhibit both the function of blocking the right circularly polarized light and the function of blocking the left circularly polarized light by combining at least one pair of the linearly polarizing plate 120 and the retardation plate 130. it can. Thus, the viewer 100 according to the present embodiment, which can determine the authenticity by the area of one circularly polarizing plate by the combination of the linearly polarizing plate 120 and the retardation plate 130, has two circularly polarizing plates (that is, right circularly polarized light). Compared to a conventional viewer using a plate and a left circularly polarizing plate), the area can be reduced by reducing the number of circularly polarizing plates. Therefore, the viewer 100 according to the present embodiment can be downsized.
次に、ビュワー100を用いた真正性の判定方法を、例を示して説明する。図5は、物品10に付された識別媒体200の真正性を判定する際の様子の一例を模式的に示す斜視図である。
この例では、図5に示すように、識別媒体200の真正性を判定することで、その識別媒体200が付された物品10の真贋判定を行う。 Next, an authenticity determination method using theviewer 100 will be described with an example. FIG. 5 is a perspective view schematically showing an example of a state when determining the authenticity of the identification medium 200 attached to the article 10.
In this example, as shown in FIG. 5, the authenticity of thearticle 10 to which the identification medium 200 is attached is determined by determining the authenticity of the identification medium 200.
この例では、図5に示すように、識別媒体200の真正性を判定することで、その識別媒体200が付された物品10の真贋判定を行う。 Next, an authenticity determination method using the
In this example, as shown in FIG. 5, the authenticity of the
図6は、前記の一例に係る識別媒体200の断面を模式的に示す断面図である。この図6では、マーキング230において反射する光の経路を概略的に示す。なお、実際の識別媒体200では、下記に説明する以外にも、様々な光の吸収及び反射が発生しうるが、以下の説明では、作用の説明の便宜上、主な光の経路を概略的に説明する。また、図6に示す例では、可視光領域において右円偏光の一部(具体的には、選択反射帯域の光)を反射させ、右円偏光の残りの一部及び左円偏光の全部を透過させるコレステリック樹脂を含むマーキング230を設けている。
FIG. 6 is a cross-sectional view schematically showing a cross section of the identification medium 200 according to the above example. In FIG. 6, the path of light reflected at the marking 230 is schematically shown. In the actual identification medium 200, various light absorption and reflection can occur in addition to those described below. However, in the following description, the main light paths are schematically illustrated for convenience of description of the operation. explain. In the example shown in FIG. 6, part of the right circularly polarized light (specifically, light in the selective reflection band) is reflected in the visible light region, and the remaining part of the right circularly polarized light and all of the left circularly polarized light are reflected. A marking 230 containing a cholesteric resin to be transmitted is provided.
図6に示すように、識別媒体200は、基材210と、基材210に設けられた下地層220と、下地層220上に設けられたコレステリック樹脂を含むマーキング230とを、この順に備える。このマーキング230の上面に、右円偏光を含む光Lが入射した場合、右円偏光の一部はマーキング230で反射されて反射光LRとなり、残りは透過光LLとなる。ここで、反射は、マーキング230の表面だけでなく内部でも発生しうるが、模式的な表現として、図6では、反射はマーキング230の表面において発生しているものとして図示する。
As shown in FIG. 6, the identification medium 200 includes a base 210, a base layer 220 provided on the base 210, and a marking 230 including a cholesteric resin provided on the base layer 220 in this order. When light L including right circularly polarized light is incident on the upper surface of the marking 230, a part of the right circularly polarized light is reflected by the marking 230 and becomes reflected light LR, and the rest becomes transmitted light LL. Here, the reflection can occur not only on the surface of the marking 230 but also on the inside, but as a schematic expression, in FIG. 6, the reflection is illustrated as occurring on the surface of the marking 230.
本例に示す真正性の判定方法では、図5に示すように、被写体として識別媒体200を撮影可能な撮影部(図示せず)を備えた装置本体310を用意する。このような装置本体310として、図5には、撮影部としてのレンズ部を備えたスマートフォンを示す。この装置本体310の撮影部に、前記のビュワー100を装着する。この際、ビュワー100は、撮影部側から直線偏光板120及び位相差板130がこの順に並ぶように、装着される。これにより、識別媒体200を撮影するための装置として、装置本体310及びビュワー100を備える撮影装置300が用意される。
In the authenticity determination method shown in this example, as shown in FIG. 5, an apparatus main body 310 having a photographing unit (not shown) capable of photographing the identification medium 200 as a subject is prepared. As such an apparatus main body 310, FIG. 5 shows a smartphone including a lens unit as a photographing unit. The viewer 100 is attached to the photographing unit of the apparatus main body 310. At this time, the viewer 100 is mounted so that the linearly polarizing plate 120 and the phase difference plate 130 are arranged in this order from the photographing unit side. Thereby, an imaging apparatus 300 including the apparatus main body 310 and the viewer 100 is prepared as an apparatus for imaging the identification medium 200.
このように撮影装置300を用意した後で、撮影装置300により、識別媒体200の撮影を行う。具体的には、
撮影装置300により、直線偏光板120の吸収軸A120が位相差板130の遅相軸A130に対してなす角度θが+45°±5°にある状態で、識別媒体200を撮影して、第一画像を得る工程と;
撮影装置300により、直線偏光板120の吸収軸A120が位相差板130の遅相軸A130に対してなす角度θが-45°±5°にある状態で、識別媒体200を撮影して、第二画像を得る工程と;
を行う。これら2つの工程は、いずれを先に行ってもよい。 After theimaging apparatus 300 is prepared in this way, the identification medium 200 is imaged by the imaging apparatus 300. In particular,
Theidentification medium 200 is photographed by the photographing apparatus 300 in a state where the angle θ formed by the absorption axis A120 of the linear polarizing plate 120 with respect to the slow axis A130 of the retardation film 130 is + 45 ° ± 5 °. Obtaining an image;
With theimaging device 300, the identification medium 200 is imaged in a state where the angle θ formed by the absorption axis A120 of the linear polarizing plate 120 with respect to the slow axis A130 of the retardation plate 130 is −45 ° ± 5 °, Obtaining two images;
I do. Any of these two steps may be performed first.
撮影装置300により、直線偏光板120の吸収軸A120が位相差板130の遅相軸A130に対してなす角度θが+45°±5°にある状態で、識別媒体200を撮影して、第一画像を得る工程と;
撮影装置300により、直線偏光板120の吸収軸A120が位相差板130の遅相軸A130に対してなす角度θが-45°±5°にある状態で、識別媒体200を撮影して、第二画像を得る工程と;
を行う。これら2つの工程は、いずれを先に行ってもよい。 After the
The
With the
I do. Any of these two steps may be performed first.
より詳細には、ビュワー100のスイッチング部140を、ケース110に形成された長穴113の一端に移動させた状態で、撮影装置300により、識別媒体200を撮影する。これにより、角度θが+45°±5°及び-45°±5°の一方にある状態での撮影が行われる。次いで、スイッチング部140を、長穴113の他端に移動させることにより、角度θを+45°±5°と-45°±5°との間で切り替える。その後、この状態で撮影装置300により識別媒体200を撮影する。このように、ビュワー100を備える撮影装置300によれば、第一画像及び第二画像が容易に得られる。
More specifically, the identification medium 200 is photographed by the photographing apparatus 300 in a state where the switching unit 140 of the viewer 100 is moved to one end of the long hole 113 formed in the case 110. Thus, photographing is performed in a state where the angle θ is at one of + 45 ° ± 5 ° and −45 ° ± 5 °. Next, the angle θ is switched between + 45 ° ± 5 ° and −45 ° ± 5 ° by moving the switching unit 140 to the other end of the elongated hole 113. Thereafter, the identification medium 200 is photographed by the photographing apparatus 300 in this state. Thus, according to the imaging device 300 including the viewer 100, the first image and the second image can be easily obtained.
前記の撮影の際、右円偏光としての反射光LRは、角度θが+45°±5°及び-45°±5°の一方にある状態では、位相差板130によって直線偏光板120の吸収軸A120に垂直な振動方向を有する直線偏光に変換され、直線偏光板120を透過できる。よって、ビュワー100を介して撮影された像には、マーキング230が現れる。
しかし、右円偏光としての反射光LRは、角度θが+45°±5°及び-45°±5°の他方にある状態では、位相差板130によって直線偏光板120の吸収軸A120に平行な振動方向を有する直線偏光に変換され、直線偏光板120に遮られる。よって、ビュワー100を介して撮影された像には、マーキング230は現れない。
したがって、第一画像及び第二画像には、異なる像が現れる。具体的には、第一画像及び第二画像の一方には、マーキング230が現れるが、第一画像及び第二画像の他方には、マーキング230は現れない。 In the above photographing, the reflected light LR as the right circularly polarized light is absorbed by theretardation plate 130 by the retardation plate 130 when the angle θ is one of + 45 ° ± 5 ° and −45 ° ± 5 °. It is converted into linearly polarized light having a vibration direction perpendicular to A120 and can pass through the linearly polarizing plate 120. Therefore, the marking 230 appears in the image photographed through the viewer 100.
However, the reflected light LR as right circularly polarized light is parallel to the absorption axis A120 of the linearlypolarizing plate 120 by the phase difference plate 130 when the angle θ is at the other of + 45 ° ± 5 ° and −45 ° ± 5 °. It is converted into linearly polarized light having a vibration direction and is blocked by the linearly polarizing plate 120. Therefore, the marking 230 does not appear in the image photographed through the viewer 100.
Therefore, different images appear in the first image and the second image. Specifically, the marking 230 appears in one of the first image and the second image, but the marking 230 does not appear in the other of the first image and the second image.
しかし、右円偏光としての反射光LRは、角度θが+45°±5°及び-45°±5°の他方にある状態では、位相差板130によって直線偏光板120の吸収軸A120に平行な振動方向を有する直線偏光に変換され、直線偏光板120に遮られる。よって、ビュワー100を介して撮影された像には、マーキング230は現れない。
したがって、第一画像及び第二画像には、異なる像が現れる。具体的には、第一画像及び第二画像の一方には、マーキング230が現れるが、第一画像及び第二画像の他方には、マーキング230は現れない。 In the above photographing, the reflected light LR as the right circularly polarized light is absorbed by the
However, the reflected light LR as right circularly polarized light is parallel to the absorption axis A120 of the linearly
Therefore, different images appear in the first image and the second image. Specifically, the marking 230 appears in one of the first image and the second image, but the marking 230 does not appear in the other of the first image and the second image.
このようにして第一画像及び第二画像を得た後で、これらの第一画像及び第二画像に基づいて、識別媒体200の真正性を判定する工程を行う。具体的には、第一画像と第二画像との間で上述したような像の差がある場合、識別媒体200は真正なものであると判定でき、したがって、その識別媒体200を付された物品10は正規品と判断できる。他方、第一画像と第二画像との間で上述したような像の差が無い場合、識別媒体200は非真正なものであると判定でき、したがって、その識別媒体200を付された物品10は偽造品と判断できる。
After obtaining the first image and the second image in this way, a step of determining the authenticity of the identification medium 200 based on the first image and the second image is performed. Specifically, if there is an image difference as described above between the first image and the second image, it can be determined that the identification medium 200 is authentic, and therefore the identification medium 200 is attached. The article 10 can be determined to be a regular product. On the other hand, if there is no image difference as described above between the first image and the second image, it can be determined that the identification medium 200 is improper, and therefore the article 10 to which the identification medium 200 is attached. Can be determined to be counterfeit.
また、識別媒体200の真正性を判定する工程では、第一画像及び第二画像との間のコントラストにより、真正性の判定を行ってもよい。真正な識別媒体200を撮影した場合には、通常、マーキング230が現れるか否かに応じて、第一画像と第二画像との間にはコントラストの差が生じる。よって、マーキング230の有無による像の差ではなく、コントラストの差によって、真正性の判定を行うことも可能である。具体的には、第一画像と第二画像との間にコントラストの差がある場合、識別媒体200は真正なものであると判定できる。他方、第一画像と第二画像との間でコントラストの差が無い場合、識別媒体200は非真正なものであると判定できる。
Further, in the step of determining the authenticity of the identification medium 200, the authenticity may be determined based on the contrast between the first image and the second image. When the authentic identification medium 200 is photographed, a contrast difference is usually generated between the first image and the second image depending on whether or not the marking 230 appears. Therefore, authenticity can be determined based on a difference in contrast rather than an image difference depending on the presence or absence of the marking 230. Specifically, when there is a difference in contrast between the first image and the second image, it can be determined that the identification medium 200 is authentic. On the other hand, if there is no difference in contrast between the first image and the second image, it can be determined that the identification medium 200 is not authentic.
撮影装置300が第一画像及び第二画像を表示する表示部を有する場合、前記の判定は、使用者が行ってもよい。この場合、表示部に表示される第一画像及び第二画像を見て、使用者が、真正性の判定を行うことができる。
また、撮影装置300が第一画像及び第二画像の情報を送信する送信部を有する場合、前記の判定は、前記の情報の送信を受けてサーバーで行ってもよい。この場合、第一画像及び第二画像の情報に基づいてサーバーで真正性の判定を行い、その結果を使用者に返すことで、使用者は真正性の判定結果を知ることができる。 When theimaging apparatus 300 includes a display unit that displays the first image and the second image, the determination may be performed by the user. In this case, the user can determine the authenticity by looking at the first image and the second image displayed on the display unit.
Moreover, when theimaging device 300 includes a transmission unit that transmits information on the first image and the second image, the determination may be performed by a server in response to the transmission of the information. In this case, the authenticity determination is performed by the server based on the information of the first image and the second image, and the result is returned to the user, so that the user can know the determination result of the authenticity.
また、撮影装置300が第一画像及び第二画像の情報を送信する送信部を有する場合、前記の判定は、前記の情報の送信を受けてサーバーで行ってもよい。この場合、第一画像及び第二画像の情報に基づいてサーバーで真正性の判定を行い、その結果を使用者に返すことで、使用者は真正性の判定結果を知ることができる。 When the
Moreover, when the
以上、本発明の一実施形態について説明したが、上述した実施形態は、更に変更して実施してもよい。
例えば、ケース110の形状は円筒形に限定されず、別の形状であってもよい。また、例えば、ビュワー100にケース110を設けなくてもよい。具体例を挙げると、直線偏光板120及び位相差板130を収納するケース110の代わりに、直線偏光板120及び位相差板130を支持する枠材を用いてもよい。 Although one embodiment of the present invention has been described above, the above-described embodiment may be further modified.
For example, the shape of thecase 110 is not limited to a cylindrical shape, and may be another shape. Further, for example, the case 110 may not be provided in the viewer 100. As a specific example, a frame material that supports the linearly polarizing plate 120 and the retardation plate 130 may be used instead of the case 110 that houses the linearly polarizing plate 120 and the retardation plate 130.
例えば、ケース110の形状は円筒形に限定されず、別の形状であってもよい。また、例えば、ビュワー100にケース110を設けなくてもよい。具体例を挙げると、直線偏光板120及び位相差板130を収納するケース110の代わりに、直線偏光板120及び位相差板130を支持する枠材を用いてもよい。 Although one embodiment of the present invention has been described above, the above-described embodiment may be further modified.
For example, the shape of the
例えば、直線偏光板120及び位相差板130の形状は、円板形に限定されず、別の形状であってもよい。
For example, the shapes of the linearly polarizing plate 120 and the retardation plate 130 are not limited to the disc shape, and may be different shapes.
例えば、位相差板130を回転可能に設けてもよく、直線偏光板120及び位相差板130の両方を回転可能に設けてもよい。位相差板130に対する直線偏光板120の相対的な回転が可能である場合、直線偏光板120の吸収軸が位相差板130の遅相軸に対してなす角度θを、上述したように+45°±5°と-45°±5°との間で切り替えすることが可能である。
For example, the retardation plate 130 may be rotatably provided, and both the linear polarizing plate 120 and the retardation plate 130 may be rotatably provided. When relative rotation of the linear polarizing plate 120 with respect to the retardation plate 130 is possible, the angle θ formed by the absorption axis of the linear polarizing plate 120 with respect to the slow axis of the retardation plate 130 is + 45 ° as described above. It is possible to switch between ± 5 ° and −45 ° ± 5 °.
例えば、ビュワー100には、スイッチング部140を設けなくてもよい。具体例を挙げると、使用者が直線偏光板120又は位相差板130を把持して回転させる場合、スイッチング部140は不要である。
For example, the switching unit 140 may not be provided in the viewer 100. As a specific example, when the user holds and rotates the linearly polarizing plate 120 or the retardation plate 130, the switching unit 140 is unnecessary.
例えば、ビュワー100には、ケース110、直線偏光板120、位相差板130及びスイッチング部140以外の部材を設けてもよい。具体例を挙げると、ケース110の光路室112の入口及び出口にカバーを設けてもよい。別の具体例を挙げると、ケース110に、ビュワー100を装置本体310に着脱可能に取り付けるための固定具を設けてもよい。更に別の具体例を挙げると、直線偏光板120と位相差板130との接触を抑制するスペーサー材を設けてもよい。
For example, the viewer 100 may be provided with members other than the case 110, the linear polarizing plate 120, the phase difference plate 130, and the switching unit 140. As a specific example, covers may be provided at the entrance and exit of the optical path chamber 112 of the case 110. As another specific example, the case 110 may be provided with a fixture for detachably attaching the viewer 100 to the apparatus main body 310. As another specific example, a spacer material that suppresses contact between the linearly polarizing plate 120 and the retardation film 130 may be provided.
例えば、識別媒体200は、基材210を備えなくてもよく、下地層220を備えなくてもよい。上述した真正性の判定は、コレステリック樹脂を含むマーキング230があれば、実施可能である。よって、例えば、コレステリック樹脂を含むマーキング230が物品10の表面に直接形成された場合であっても、前記の真正性の判定を実施することができる。
For example, the identification medium 200 may not include the base material 210 and may not include the base layer 220. The authenticity determination described above can be performed if there is a marking 230 containing a cholesteric resin. Therefore, for example, even when the marking 230 containing the cholesteric resin is directly formed on the surface of the article 10, the determination of the authenticity can be performed.
例えば、装置本体310としては、携帯電話、タブレット型端末、デジタルカメラ、ウェブカメラ、カメラ付きパーソナルコンピュータ、等を用いてもよい。
For example, as the apparatus main body 310, a mobile phone, a tablet terminal, a digital camera, a web camera, a personal computer with a camera, or the like may be used.
上述した実施形態では、ビュワー100に進入した円偏光が位相差板130によって直線偏光に変換される例を示したが、真正性の判定が可能な限り、例えば、ビュワー100に進入した円偏光は、位相差板130によって楕円偏光に変換されてもよい。円偏光が位相差板130によって楕円偏光に変換される場合であっても、通常、その楕円偏光が直線偏光120を透過できる程度は、角度θが+45°±5°にある場合と角度θが-45°±5°にある場合とで、異なる。よって、上述した実施形態と同じく、識別媒体200が真正なものであれば第一画像及び第二画像とには差が生じるので、真正性の判定が可能である。
In the above-described embodiment, an example in which the circularly polarized light that has entered the viewer 100 is converted into linearly polarized light by the phase difference plate 130, but as long as the authenticity can be determined, for example, the circularly polarized light that has entered the viewer 100 is The phase difference plate 130 may convert the light into elliptically polarized light. Even when the circularly polarized light is converted into elliptically polarized light by the phase difference plate 130, the angle θ is normally + 45 ° ± 5 ° and the angle θ is such that the elliptically polarized light can pass through the linearly polarized light 120. It differs depending on the case of −45 ° ± 5 °. Therefore, as in the above-described embodiment, if the identification medium 200 is authentic, there is a difference between the first image and the second image, so authenticity can be determined.
上述した実施形態では、マーキング230での反射光LRの全部を透過又は遮断可能なビュワー100を例に示したが、真正性の判定が可能な限り、例えば、反射光LRの一部を透過又は遮断可能なビュワー100を用いて判定を行ってもよい。
In the embodiment described above, the viewer 100 that can transmit or block all of the reflected light LR at the marking 230 is shown as an example. However, as long as the authenticity can be determined, for example, a part of the reflected light LR is transmitted or You may perform determination using the viewer 100 which can be interrupted | blocked.
[2.直線偏光板]
直線偏光板としては、例えば、直線偏光子を備えるフィルムを用いてもよい。直線偏光子としては、例えば、適切なビニルアルコール系重合体のフィルムに、二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したフィルムを用いうる。ビニルアルコール系重合体としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等が挙げられる。また、二色性物質としては、例えば、ヨウ素及び二色性色素等が挙げられる。中でも、耐熱性を向上させる観点では、二色性色素を含む直線偏光子が好ましい。また、直線偏光板は、直線偏光子に組み合わせて、偏光子保護フィルムを備えていてもよい。直線偏光板は、偏光度に優れるものが好ましい。直線偏光板の厚みは、5μm~80μmが一般的であるが、これに限定されない。 [2. Linear polarizing plate]
As a linear polarizing plate, you may use the film provided with a linear polarizer, for example. As the linear polarizer, for example, a film in which an appropriate vinyl alcohol polymer film is subjected to an appropriate process such as a dyeing process, a stretching process, and a crosslinking process with a dichroic substance in an appropriate order and method can be used. . Examples of the vinyl alcohol polymer include polyvinyl alcohol and partially formalized polyvinyl alcohol. Examples of dichroic substances include iodine and dichroic dyes. Among these, from the viewpoint of improving heat resistance, a linear polarizer containing a dichroic dye is preferable. Moreover, the linearly polarizing plate may be provided with a polarizer protective film in combination with a linear polarizer. The linearly polarizing plate is preferably excellent in the degree of polarization. The thickness of the linear polarizing plate is generally 5 μm to 80 μm, but is not limited thereto.
直線偏光板としては、例えば、直線偏光子を備えるフィルムを用いてもよい。直線偏光子としては、例えば、適切なビニルアルコール系重合体のフィルムに、二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したフィルムを用いうる。ビニルアルコール系重合体としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等が挙げられる。また、二色性物質としては、例えば、ヨウ素及び二色性色素等が挙げられる。中でも、耐熱性を向上させる観点では、二色性色素を含む直線偏光子が好ましい。また、直線偏光板は、直線偏光子に組み合わせて、偏光子保護フィルムを備えていてもよい。直線偏光板は、偏光度に優れるものが好ましい。直線偏光板の厚みは、5μm~80μmが一般的であるが、これに限定されない。 [2. Linear polarizing plate]
As a linear polarizing plate, you may use the film provided with a linear polarizer, for example. As the linear polarizer, for example, a film in which an appropriate vinyl alcohol polymer film is subjected to an appropriate process such as a dyeing process, a stretching process, and a crosslinking process with a dichroic substance in an appropriate order and method can be used. . Examples of the vinyl alcohol polymer include polyvinyl alcohol and partially formalized polyvinyl alcohol. Examples of dichroic substances include iodine and dichroic dyes. Among these, from the viewpoint of improving heat resistance, a linear polarizer containing a dichroic dye is preferable. Moreover, the linearly polarizing plate may be provided with a polarizer protective film in combination with a linear polarizer. The linearly polarizing plate is preferably excellent in the degree of polarization. The thickness of the linear polarizing plate is generally 5 μm to 80 μm, but is not limited thereto.
[3.位相差板]
位相差板としては、例えば、延伸フィルムを用いることができる。延伸フィルムは、樹脂フィルムを延伸して得られるフィルムであり、樹脂の種類、延伸条件、厚み等の要素を適切に調整することで、任意の面内レターデーションを得ることができる。 [3. Phase difference plate]
As the retardation plate, for example, a stretched film can be used. The stretched film is a film obtained by stretching a resin film, and an arbitrary in-plane retardation can be obtained by appropriately adjusting factors such as the type of resin, stretching conditions, and thickness.
位相差板としては、例えば、延伸フィルムを用いることができる。延伸フィルムは、樹脂フィルムを延伸して得られるフィルムであり、樹脂の種類、延伸条件、厚み等の要素を適切に調整することで、任意の面内レターデーションを得ることができる。 [3. Phase difference plate]
As the retardation plate, for example, a stretched film can be used. The stretched film is a film obtained by stretching a resin film, and an arbitrary in-plane retardation can be obtained by appropriately adjusting factors such as the type of resin, stretching conditions, and thickness.
樹脂としては、通常、熱可塑性樹脂を用いる。この熱可塑性樹脂は、重合体と、必要に応じて任意の成分を含みうる。重合体としては、例えば、ポリカーボネート、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリイミド、ポリメチルメタクリレート、ポリスルホン、ポリアリレート、ポリエチレン、ポリフェニレンエーテル、ポリスチレン、ポリ塩化ビニル、二酢酸セルロース、三酢酸セルロース、及び脂環式構造含有重合体などが挙げられる。また、重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、透明性、低吸湿性、寸法安定性及び加工性の観点から、脂環式構造含有重合体が好適である。脂環式構造含有重合体は、主鎖及び/又は側鎖に脂環式構造を有する重合体であり、例えば、特開2007-057971号公報に記載のものを用いうる。
As the resin, a thermoplastic resin is usually used. This thermoplastic resin may contain a polymer and optional components as necessary. Examples of the polymer include polycarbonate, polyethersulfone, polyethylene terephthalate, polyimide, polymethyl methacrylate, polysulfone, polyarylate, polyethylene, polyphenylene ether, polystyrene, polyvinyl chloride, cellulose diacetate, cellulose triacetate, and alicyclic. Examples include a structure-containing polymer. Moreover, a polymer may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Among these, from the viewpoints of transparency, low hygroscopicity, dimensional stability and processability, alicyclic structure-containing polymers are preferred. The alicyclic structure-containing polymer is a polymer having an alicyclic structure in the main chain and / or side chain, and for example, those described in JP-A-2007-057971 can be used.
位相差板としての延伸フィルムは、前記の樹脂から樹脂フィルムを製造した後で、その樹脂フィルムに延伸処理を施して、製造できる。
A stretched film as a retardation film can be produced by producing a resin film from the above resin and then subjecting the resin film to a stretching treatment.
樹脂フィルムの製造方法としては、例えば、キャスト成形法、インフレーション成形法、押出成形法などが挙げられ、中でも押出成形法が好ましい。
Examples of the method for producing a resin film include a cast molding method, an inflation molding method, an extrusion molding method, and the like. Among these, an extrusion molding method is preferable.
延伸処理は、例えば、ロール方式、フロート方式、テンター方式などの方式で行うことができる。延伸処理において、延伸方向は、延伸フィルムの遅相軸が所望の方向となるように、適切に設定することが好ましい。よって、延伸処理は、延伸フィルムに発現させたい遅相軸の方向に応じて、樹脂フィルムの幅方向への延伸(横延伸)であってもよく、長手方向への延伸(縦延伸)であってもよく、幅方向でも長手方向でもない斜め方向への延伸であってもよく、これらを組み合わせた延伸であってもよい。
The stretching treatment can be performed by a method such as a roll method, a float method, or a tenter method. In the stretching treatment, the stretching direction is preferably set appropriately so that the slow axis of the stretched film is in a desired direction. Therefore, the stretching treatment may be stretching in the width direction of the resin film (lateral stretching) or stretching in the longitudinal direction (longitudinal stretching) depending on the direction of the slow axis desired to be developed in the stretched film. It may be stretching in an oblique direction which is neither the width direction nor the longitudinal direction, or may be stretching combining these.
延伸温度及び延伸倍率は、所望の面内レターデーションが得られる範囲で任意に設定しうる。具体的な範囲を挙げると、延伸温度は、好ましくはTg-30℃以上、より好ましくはTg-10℃以上であり、好ましくはTg+60℃以下、より好ましくはTg+50℃以下である。また、延伸倍率は、好ましくは1.1倍以上、より好ましくは1.2倍以上、特に好ましくは1.5倍以上であり、好ましくは30倍以下、より好ましくは10倍以下、特に好ましくは5倍以下である。ここで、Tgは、樹脂のガラス転移温度を表す。
The stretching temperature and the stretching ratio can be arbitrarily set as long as desired in-plane retardation is obtained. Specifically, the stretching temperature is preferably Tg-30 ° C or higher, more preferably Tg-10 ° C or higher, preferably Tg + 60 ° C or lower, more preferably Tg + 50 ° C or lower. The draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, particularly preferably 1.5 times or more, preferably 30 times or less, more preferably 10 times or less, particularly preferably. 5 times or less. Here, Tg represents the glass transition temperature of the resin.
延伸フィルムの厚みは、特段の制限は無いが、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは20μm以上であり、好ましくは1mm以下、より好ましくは500μm以下、特に好ましくは200μm以下である。
The thickness of the stretched film is not particularly limited, but is preferably 5 μm or more, more preferably 10 μm or more, particularly preferably 20 μm or more, preferably 1 mm or less, more preferably 500 μm or less, particularly preferably 200 μm or less. .
位相差板としては、例えば、液晶硬化層を含むフィルムを用いることができる。液晶硬化層とは、液晶化合物を含む液晶組成物の硬化物で形成された層である。ここで、便宜上「液晶組成物」と称する材料は、2以上の物質の混合物のみならず、単一の物質からなる材料をも包含する。通常、液晶組成物の層を形成し、その液晶組成物の層に含まれる液晶化合物の分子を配向させた後に、液晶組成物の層を硬化させることにより、液晶硬化層が得られる。この液晶硬化層は、液晶化合物の種類、液晶化合物の配向状態、厚み等の要素を適切に調整することで、任意の面内レターデーションを得ることができる。
As the retardation plate, for example, a film including a liquid crystal cured layer can be used. The liquid crystal cured layer is a layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound. Here, for convenience, the material called “liquid crystal composition” includes not only a mixture of two or more substances but also a material made of a single substance. Usually, a liquid crystal cured layer is obtained by forming a liquid crystal composition layer and orienting the molecules of the liquid crystal compound contained in the liquid crystal composition layer and then curing the liquid crystal composition layer. This liquid crystal cured layer can obtain arbitrary in-plane retardation by appropriately adjusting factors such as the type of liquid crystal compound, the alignment state of the liquid crystal compound, and the thickness.
液晶化合物の種類は任意であるが、逆波長分散性を有する位相差板を得たい場合には、逆波長分散性液晶化合物を用いることが好ましい。逆波長分散性液晶化合物とは、ホモジニアス配向した場合に、逆波長分散性を示す液晶化合物をいう。また、液晶化合物をホモジニアス配向させる、とは、当該液晶化合物を含む層を形成し、その層における液晶化合物の分子のメソゲンの長軸方向を、前記層の面に平行なある一の方向に配向させることをいう。逆波長分散性液晶化合物の具体例としては、例えば、国際公開第2014/069515号、国際公開第2015/064581号などに記載された化合物が挙げられる。
The kind of the liquid crystal compound is arbitrary, but in order to obtain a retardation plate having reverse wavelength dispersion, it is preferable to use a reverse wavelength dispersion liquid crystal compound. The reverse wavelength dispersive liquid crystal compound refers to a liquid crystal compound that exhibits reverse wavelength dispersibility when homogeneously aligned. Also, the liquid crystal compound is homogeneously aligned means that a layer containing the liquid crystal compound is formed and the major axis direction of the mesogens of the molecules of the liquid crystal compound in the layer is aligned in one direction parallel to the plane of the layer. It means to make it. Specific examples of the reverse wavelength dispersive liquid crystal compound include compounds described in International Publication No. 2014/0669515, International Publication No. 2015/064581, and the like.
液晶硬化層の厚みは、特段の制限は無いが、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは10μm以下、より好ましくは7μm以下、特に好ましくは5μm以下である。
The thickness of the liquid crystal cured layer is not particularly limited, but is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 10 μm or less, more preferably 7 μm or less, and particularly preferably 5 μm or less.
[4.マーキング]
ビュワーによって観察されるマーキングは、コレステリック樹脂を含む。コレステリック樹脂は、前記の通り、コレステリック規則性を有する樹脂である。コレステリック規則性とは、樹脂内部のある平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。即ち、ある材料の層の内部の分子がコレステリック規則性を有する場合、分子は、層の内部のある第一の平面上では分子軸が一定の方向になるよう並ぶ。層の内部の、当該第一の平面に重なる次の第二の平面では、分子軸の方向が、第一の平面における分子軸の方向と、少し角度をなしてずれる。当該第二の平面にさらに重なる次の第三の平面では、分子軸の方向が、第二の平面における分子軸の方向から、さらに角度をなしてずれる。このように、重なって配列している平面において、当該平面中の分子軸の角度が順次ずれて(ねじれて)いく。このように分子軸の方向がねじれてゆく構造は、通常はらせん構造であり、光学的にカイラルな構造となる。このコレステリック樹脂が円偏光分離機能を有するので、マーキングは、コレステリック樹脂の選択反射帯域に応じた色の円偏光を反射できる。 [4. marking]
The markings observed by the viewer include cholesteric resin. As described above, the cholesteric resin is a resin having cholesteric regularity. Cholesteric regularity means that molecular axes are arranged in a certain direction on a plane inside the resin, but the direction of the molecular axis is shifted by a little angle on the next plane that overlaps it. In this structure, the angles of the molecular axes in the planes are shifted (twisted) as they sequentially pass through the overlapping planes. That is, when molecules in a layer of a certain material have cholesteric regularity, the molecules are aligned such that the molecular axis is in a certain direction on a first plane inside the layer. In the next second plane inside the layer that overlaps the first plane, the direction of the molecular axis deviates slightly from the direction of the molecular axis in the first plane. In the next third plane that further overlaps the second plane, the direction of the molecular axis deviates further from the direction of the molecular axis in the second plane. In this way, in the planes arranged in an overlapping manner, the angles of the molecular axes in the planes are sequentially shifted (twisted). Such a structure in which the direction of the molecular axis is twisted is usually a helical structure, and an optically chiral structure. Since this cholesteric resin has a circularly polarized light separating function, the marking can reflect circularly polarized light of a color corresponding to the selective reflection band of the cholesteric resin.
ビュワーによって観察されるマーキングは、コレステリック樹脂を含む。コレステリック樹脂は、前記の通り、コレステリック規則性を有する樹脂である。コレステリック規則性とは、樹脂内部のある平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。即ち、ある材料の層の内部の分子がコレステリック規則性を有する場合、分子は、層の内部のある第一の平面上では分子軸が一定の方向になるよう並ぶ。層の内部の、当該第一の平面に重なる次の第二の平面では、分子軸の方向が、第一の平面における分子軸の方向と、少し角度をなしてずれる。当該第二の平面にさらに重なる次の第三の平面では、分子軸の方向が、第二の平面における分子軸の方向から、さらに角度をなしてずれる。このように、重なって配列している平面において、当該平面中の分子軸の角度が順次ずれて(ねじれて)いく。このように分子軸の方向がねじれてゆく構造は、通常はらせん構造であり、光学的にカイラルな構造となる。このコレステリック樹脂が円偏光分離機能を有するので、マーキングは、コレステリック樹脂の選択反射帯域に応じた色の円偏光を反射できる。 [4. marking]
The markings observed by the viewer include cholesteric resin. As described above, the cholesteric resin is a resin having cholesteric regularity. Cholesteric regularity means that molecular axes are arranged in a certain direction on a plane inside the resin, but the direction of the molecular axis is shifted by a little angle on the next plane that overlaps it. In this structure, the angles of the molecular axes in the planes are shifted (twisted) as they sequentially pass through the overlapping planes. That is, when molecules in a layer of a certain material have cholesteric regularity, the molecules are aligned such that the molecular axis is in a certain direction on a first plane inside the layer. In the next second plane inside the layer that overlaps the first plane, the direction of the molecular axis deviates slightly from the direction of the molecular axis in the first plane. In the next third plane that further overlaps the second plane, the direction of the molecular axis deviates further from the direction of the molecular axis in the second plane. In this way, in the planes arranged in an overlapping manner, the angles of the molecular axes in the planes are sequentially shifted (twisted). Such a structure in which the direction of the molecular axis is twisted is usually a helical structure, and an optically chiral structure. Since this cholesteric resin has a circularly polarized light separating function, the marking can reflect circularly polarized light of a color corresponding to the selective reflection band of the cholesteric resin.
コレステリック樹脂としては、例えば、コレステリック液晶組成物の硬化物を用いることができる。コレステリック液晶組成物とは、当該液晶組成物に含まれる液晶化合物を配向させた場合に、液晶化合物がコレステリック規則性を有した液晶相(コレステリック液晶相)を呈することができる組成物をいう。コレステリック液晶組成物を硬化させる際、通常は、液晶化合物がコレステリック液晶相を呈した状態で重合するので、コレステリック規則性を呈したまま硬化した非液晶性のコレステリック樹脂の層を得ることができる。
As the cholesteric resin, for example, a cured product of a cholesteric liquid crystal composition can be used. The cholesteric liquid crystal composition refers to a composition that can exhibit a liquid crystal phase (cholesteric liquid crystal phase) having cholesteric regularity when the liquid crystal compound contained in the liquid crystal composition is aligned. When the cholesteric liquid crystal composition is cured, the liquid crystal compound is usually polymerized in a state of exhibiting a cholesteric liquid crystal phase, so that a layer of a non-liquid crystalline cholesteric resin cured while exhibiting cholesteric regularity can be obtained.
コレステリック液晶組成物の硬化物としてのコレステリック樹脂としては、例えば、特開2014-174471号公報、特開2015-27743号公報などに記載のものを用いることができる。
As the cholesteric resin as a cured product of the cholesteric liquid crystal composition, for example, those described in JP-A Nos. 2014-174471 and 2015-27743 can be used.
マーキングは、通常、コレステリック樹脂を含む層として、形成できる。このようなマーキングは、例えば、ラベル等の識別媒体に、所望の平面形状を有する層として設けることができる。この場合、前記の識別媒体を物品に貼り付けることで、当該物品にマーキングを付すことができる。また、マーキングは、例えば、コレステリック樹脂を含む層を含有する顔料を含む塗料により、物品に所望の平面形状を描画することで、形成してもよい。
The marking can usually be formed as a layer containing a cholesteric resin. Such marking can be provided as a layer having a desired planar shape on an identification medium such as a label. In this case, by marking the identification medium on the article, the article can be marked. Moreover, you may form marking by drawing a desired plane shape on articles | goods with the coating material containing the pigment containing the layer containing a cholesteric resin, for example.
マーキングを付す対象としての物品に制限は無く、広範な物品を採用できる。これらの物品の例としては、衣類等の布製品;カバン、靴等の皮革製品;ネジ等の金属製品;値札等の紙製品;タイヤ等のゴム製品;が挙げられるが、物品はこれらの例に限定されない。
There are no restrictions on the items to be marked, and a wide range of items can be used. Examples of these articles include cloth products such as clothing; leather products such as bags and shoes; metal products such as screws; paper products such as price tags; and rubber products such as tires. It is not limited to.
10 物品
100 ビュワー
110 ケース
111 壁部
112 光路室
113 長穴
120 直線偏光板
130 位相差板
140 スイッチング部
200 識別媒体
210 基材
220 下地層
230 マーキング
300 撮影装置
310 装置本体
A120 吸収軸
A130 遅相軸
R120 回転軸 DESCRIPTION OFSYMBOLS 10 article | item 100 viewer 110 case 111 wall part 112 optical path chamber 113 long hole 120 linearly polarizing plate 130 phase difference plate 140 switching part 200 identification medium 210 base material 220 underlayer 230 marking 300 imaging | photography apparatus 310 apparatus main body A120 absorption axis A130 slow axis R120 rotating shaft
100 ビュワー
110 ケース
111 壁部
112 光路室
113 長穴
120 直線偏光板
130 位相差板
140 スイッチング部
200 識別媒体
210 基材
220 下地層
230 マーキング
300 撮影装置
310 装置本体
A120 吸収軸
A130 遅相軸
R120 回転軸 DESCRIPTION OF
Claims (5)
- 直線偏光板と、前記直線偏光板の厚み方向の一側に設けられた位相差板とを備え、
前記直線偏光板及び前記位相差板の少なくとも一方が、回転可能に設けられ、
前記直線偏光板の吸収軸が前記位相差板の遅相軸に対してなす角度を、+45°±5°と-45°±5°との間で切り替えできる、真正性判定用ビュワー。 A linear polarizing plate, and a retardation plate provided on one side of the thickness direction of the linear polarizing plate,
At least one of the linearly polarizing plate and the retardation plate is rotatably provided,
A viewer for authenticity determination, wherein the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate can be switched between + 45 ° ± 5 ° and −45 ° ± 5 °. - 前記位相差板の面内レターデーションが、140nm±40nmである、請求項1に記載の真正性判定用ビュワー。 The authenticity determination viewer according to claim 1, wherein an in-plane retardation of the retardation plate is 140 nm ± 40 nm.
- 前記位相差板は、逆波長分散性を有する、請求項1又は2に記載の真正性判定用ビュワー。 3. The authenticity judging viewer according to claim 1, wherein the retardation plate has reverse wavelength dispersion.
- コレステリック規則性を有する樹脂を含むマーキングを備えた識別媒体を撮影するための撮影装置であって、
撮影部を備えた装置本体と、前記装置本体の撮影部に装着された請求項1~3のいずれか一項に記載の真正性判定用ビュワーとを備える、撮影装置。 An imaging apparatus for imaging an identification medium having a marking including a resin having cholesteric regularity,
An imaging apparatus comprising: an apparatus main body including an imaging unit; and an authenticity determination viewer according to any one of claims 1 to 3 attached to the imaging unit of the apparatus main body. - コレステリック規則性を有する樹脂を含むマーキングを備えた識別媒体の真正性の判定方法であって、
請求項4記載の撮影装置により、直線偏光板の吸収軸が位相差板の遅相軸に対してなす角度が+45°±5°にある状態で、前記識別媒体を撮影して、第一画像を得る工程と、
前記撮影装置により、直線偏光板の吸収軸が位相差板の遅相軸に対してなす角度が-45°±5°にある状態で、前記識別媒体を撮影して、第二画像を得る工程と、
前記第一画像及び前記第二画像に基づいて、前記識別媒体の真正性を判定する工程と、を含む、識別媒体の真正性の判定方法。 A method for determining the authenticity of an identification medium provided with a marking containing a resin having cholesteric regularity,
5. The first image is obtained by photographing the identification medium in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is + 45 ° ± 5 °. Obtaining
Step of obtaining the second image by photographing the identification medium with the photographing device in a state where the angle formed by the absorption axis of the linearly polarizing plate with respect to the slow axis of the retardation plate is −45 ° ± 5 °. When,
Determining the authenticity of the identification medium based on the first image and the second image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020506525A JP7238883B2 (en) | 2018-03-16 | 2019-03-11 | Imaging device and authenticity determination method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048843 | 2018-03-16 | ||
JP2018-048843 | 2018-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176880A1 true WO2019176880A1 (en) | 2019-09-19 |
Family
ID=67906760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009792 WO2019176880A1 (en) | 2018-03-16 | 2019-03-11 | Viewer for determining authenticity, photographing device, and method for determining authenticity |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7238883B2 (en) |
TW (1) | TWI793281B (en) |
WO (1) | WO2019176880A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110618483A (en) * | 2019-10-30 | 2019-12-27 | 京东方科技集团股份有限公司 | Polaroid and manufacturing method thereof and display device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5475370A (en) * | 1992-10-20 | 1995-12-12 | Robotic Vision Systems, Inc. | System for detecting ice or snow on surface which specularly reflects light |
JP2005260170A (en) * | 2004-03-15 | 2005-09-22 | National Institute Of Advanced Industrial & Technology | System and method for particle rotation |
JP2007101280A (en) * | 2005-10-03 | 2007-04-19 | Jasco Corp | Optical accessory and spectrophotometer using it |
JP2010525343A (en) * | 2007-04-24 | 2010-07-22 | シクパ・ホールディング・ソシエテ・アノニム | Method for marking a document or item, method and apparatus for identifying a marked document or item, usage of circularly polarized particles |
JP2011174978A (en) * | 2010-02-23 | 2011-09-08 | Sony Corp | Hologram recording medium |
WO2012137550A1 (en) * | 2011-04-01 | 2012-10-11 | 日本発條株式会社 | Distinguishing medium |
WO2014069515A1 (en) * | 2012-10-30 | 2014-05-08 | 日本ゼオン株式会社 | Liquid crystal composition, retardation plate, image display device, and method for controlling wavelength dispersion in optically anisotropic layer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4549119B2 (en) * | 2004-07-15 | 2010-09-22 | 日本発條株式会社 | Identification medium and article provided with identification medium |
-
2019
- 2019-03-11 JP JP2020506525A patent/JP7238883B2/en active Active
- 2019-03-11 WO PCT/JP2019/009792 patent/WO2019176880A1/en active Application Filing
- 2019-03-13 TW TW108108503A patent/TWI793281B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5475370A (en) * | 1992-10-20 | 1995-12-12 | Robotic Vision Systems, Inc. | System for detecting ice or snow on surface which specularly reflects light |
JP2005260170A (en) * | 2004-03-15 | 2005-09-22 | National Institute Of Advanced Industrial & Technology | System and method for particle rotation |
JP2007101280A (en) * | 2005-10-03 | 2007-04-19 | Jasco Corp | Optical accessory and spectrophotometer using it |
JP2010525343A (en) * | 2007-04-24 | 2010-07-22 | シクパ・ホールディング・ソシエテ・アノニム | Method for marking a document or item, method and apparatus for identifying a marked document or item, usage of circularly polarized particles |
JP2011174978A (en) * | 2010-02-23 | 2011-09-08 | Sony Corp | Hologram recording medium |
WO2012137550A1 (en) * | 2011-04-01 | 2012-10-11 | 日本発條株式会社 | Distinguishing medium |
WO2014069515A1 (en) * | 2012-10-30 | 2014-05-08 | 日本ゼオン株式会社 | Liquid crystal composition, retardation plate, image display device, and method for controlling wavelength dispersion in optically anisotropic layer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110618483A (en) * | 2019-10-30 | 2019-12-27 | 京东方科技集团股份有限公司 | Polaroid and manufacturing method thereof and display device |
CN110618483B (en) * | 2019-10-30 | 2022-04-26 | 京东方科技集团股份有限公司 | Polaroid and manufacturing method thereof and display device |
Also Published As
Publication number | Publication date |
---|---|
JP7238883B2 (en) | 2023-03-14 |
TWI793281B (en) | 2023-02-21 |
JPWO2019176880A1 (en) | 2021-04-08 |
TW201945714A (en) | 2019-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114945856B (en) | Optical system | |
JP7428137B2 (en) | Viewer for determining authenticity and its manufacturing method, method for determining authenticity of identification medium, and set for determining authenticity | |
TW200821710A (en) | Optical compensating film, producing method thereof polarizing plate, and liquid crystal display device | |
WO2021065484A1 (en) | Display medium, display product, and display set | |
CN111696440B (en) | Image display device and circularly polarizing plate used in the same | |
WO2019176880A1 (en) | Viewer for determining authenticity, photographing device, and method for determining authenticity | |
JP7264055B2 (en) | Authenticity judgment viewer | |
CN114096902B (en) | Display medium, display article, and display kit | |
JP2021001934A (en) | Set of optical films for image creation system | |
TW201928448A (en) | Head-up display apparatus | |
KR102574840B1 (en) | liquid crystal display | |
WO2023176691A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2024171829A1 (en) | Manufacturing method for display system, and optical film group | |
JP7516458B2 (en) | Lens portion, laminate, display, manufacturing method of display, and display method | |
WO2023176692A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176627A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176626A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176693A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
CN118891567A (en) | Display system, display method, display body, and method for manufacturing display body | |
JP2024122666A (en) | Display system, display method, display body, and method for manufacturing display body | |
CN118050366A (en) | Defect inspection method for lambda/4 plate | |
JP2024022338A (en) | Optical film set and image generation system | |
CN116762026A (en) | Optical laminate, method for judging authenticity of optical laminate, and article | |
JP2009103949A (en) | Transflective liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19767683 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020506525 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19767683 Country of ref document: EP Kind code of ref document: A1 |