WO2019174653A2 - 一种锂电池热失控预警保护系统及方法 - Google Patents
一种锂电池热失控预警保护系统及方法 Download PDFInfo
- Publication number
- WO2019174653A2 WO2019174653A2 PCT/CN2019/091558 CN2019091558W WO2019174653A2 WO 2019174653 A2 WO2019174653 A2 WO 2019174653A2 CN 2019091558 W CN2019091558 W CN 2019091558W WO 2019174653 A2 WO2019174653 A2 WO 2019174653A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- lithium battery
- temperature
- current
- abnormal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the technical field of lithium batteries, in particular to a thermal runaway early warning protection system for lithium batteries.
- the prior art lacks an accurate and effective early warning and protection system and method for the thermal runaway of the lithium battery.
- the present invention provides a lithium battery thermal runaway warning protection system and method.
- the technical solution of the lithium battery thermal runaway warning protection system of the present invention is as follows:
- a thermal runaway warning protection system for a lithium battery comprising: a voltage and current anomaly detection subsystem, configured to collect voltage data at both ends of the lithium battery and current data through the lithium battery in real time during charging and discharging of the lithium battery, and determine Whether the voltage data and the current data are abnormal; when the voltage and/or the current is abnormal, stopping charging and discharging; and the temperature abnormality detecting subsystem, configured to collect the lithium in real time during charging and discharging of the lithium battery a temperature of the battery, determining whether the temperature exceeds a preset temperature threshold, and when the temperature exceeds the temperature threshold, issuing a temperature abnormality alarm; and a smoke sensing abnormality detecting subsystem for charging and discharging the lithium battery Real-time detection of smoke, start alarms and fire sprinklers when smoke is detected.
- the voltage current abnormality detecting subsystem captures an abnormal signal before the temperature abnormality detecting subsystem and the smoke sensing abnormality detecting subsystem; and the voltage current abnormality detecting subsystem synchronously collects the lithium battery in real time. At least one of voltage data at both ends and current data passing through the lithium battery is monitored, and an internal short-circuit indicator is monitored, and it is determined whether an internal short-circuit indicator of at least one of the voltage data and the current data is abnormal.
- determining whether the voltage data is abnormal comprises: filtering out noise of the voltage data, selecting the voltage data whose under-sampling rate reaches a set value in real time, and dynamically updating a maximum recording voltage; performing the internal short circuit
- the monitoring of the internal short-circuit indicator includes synchronous detection of voltage rise abnormality, voltage abnormal drop detection, and voltage drop trend abnormality detection.
- the lithium battery is in a state of constant current charging, constant voltage charging or constant current discharging, and the corresponding current abnormality is: constant current charging abnormality, constant voltage charging abnormality or constant current discharging abnormality.
- Set the rate of change of the current rate threshold the rate of change of the current set by the lithium battery in the constant current state of charge is T 1 , if d>T 1 , the constant current charging is abnormal; the lithium battery is at a constant voltage
- the rate of change rate of the current set in the charging state is T 2 . If d>T 2 , the constant voltage charging is abnormal; when the lithium battery is in the constant current discharging state, the preset rate of change of the current is T 3 , if d>T 3 , the constant current discharge is abnormal
- the temperature abnormality detecting subsystem comprises: a temperature probe crimped to the ear pressure of the lithium battery; or a row of temperature sensor arrays mounted on the front and the back of the needle bed of the lithium battery, the temperature sensor The array includes L temperature sensors equally spaced; and computing means for calculating a cell surface temperature of the lithium battery based on the detection result of the temperature sensor array.
- the method for calculating the cell surface temperature of the lithium battery comprises the steps of: calculating a correlation between a cell surface temperature of the lithium battery and a measured temperature of the temperature sensor; T2: according to the correlation
- the cell surface temperature of the lithium battery is estimated in real time with the measured temperature of the temperature sensor array.
- step T1 comprises: T11: calculating a cross-correlation matrix between the temperature sensors:
- r n,l is the cross-correlation between the measured temperature of the nth temperature sensor and the measured temperature of the first temperature sensor, The covariance between the measured temperature of the nth temperature sensor and the measured temperature of the 1st temperature sensor, The variance of the measured temperature for the nth temperature sensor, The first temperature sensor measures the variance of the temperature;
- T12 calculating a cross-correlation matrix between each of the lithium battery and the temperature sensor
- c m,l is the cross-correlation between the surface temperature of the mth cell and the measured temperature of the first temperature sensor
- the first temperature sensor measures the variance of the temperature.
- step T2 comprises: setting the measured temperature vector of the temperature sensor at time k: According to the 2D-MMSE criterion, the temperature of the cell surface is:
- the invention also includes a method for early warning protection of thermal runaway of a lithium battery, comprising the following steps: S1: charging and discharging a lithium battery and determining that the lithium battery enters a state of charge and discharge; S2: performing abnormal voltage and current detection on the lithium battery, and abnormal temperature Detection and smoke sensing abnormality detection; wherein the voltage current abnormality detection comprises synchronously acquiring at least one of voltage data at both ends of the lithium battery and current data passing through the lithium battery, and performing internal short-circuit indicator monitoring; Whether the internal short-circuit index of at least one of the voltage data and the current data is abnormal; when one of the voltage data and the current data is abnormal, stopping charging and discharging of the lithium battery; the temperature detecting
- the method includes: collecting, in a charging and discharging process of the lithium battery, a temperature of the lithium battery
- the embodiment of the present invention further includes the following features:
- Determining whether the voltage data is abnormal comprises: filtering out noise of the voltage data, selecting the voltage data whose under-sampling rate reaches a set value in real time, and dynamically updating a maximum recording voltage; the inner short-circuit indicator monitoring includes a voltage At least one of rising abnormality detection, voltage abnormality drop detection, and voltage drop tendency abnormality detection.
- the lithium battery is in a state of constant current charging, constant voltage charging or constant current discharging, and the corresponding current abnormality is: constant current charging abnormality, constant voltage charging abnormality or constant current discharging abnormality.
- Determining whether the current data is abnormal comprises: filtering out noise of the current data and dynamically updating the buffer data; determining a state of the lithium battery and calculating a rate of change of the current; a rate of change of the current and a preset current
- the change rate threshold comparison is abnormal if the rate of change of the current is greater than a rate of change rate of the preset current.
- d (C n - C n - N + 1 ) / N, where Cn is real-time current data, and C n-N+1 is current data before N time in real time, N is a time interval; a threshold rate of change of the current set in advance when the lithium battery is in a constant current state of charge is T1, and if d>T1, the constant current charging is abnormal; and the lithium battery is preset in a constant voltage state of charge.
- the rate of change of the current rate is T2. If d>T2, the constant voltage charging is abnormal; when the lithium battery is in the constant current discharging state, the preset rate of change of the current is T3, and if d>T3, the constant current discharge is abnormal.
- the temperature sensor array includes L temperature sensors equally spaced; calculating the electricity of the lithium battery according to the detection result of the temperature sensor array by using a computing device a core surface temperature; wherein the method for calculating a cell surface temperature of the lithium battery comprises the steps of: calculating a correlation between a cell surface temperature of the lithium battery and a measured temperature of the temperature sensor; T2: The correlation and the measured temperature of the temperature sensor array estimate the cell surface temperature of the lithium battery in real time.
- Step T1 includes: T11: calculating a cross-correlation matrix between the temperature sensors:
- r n,l is the cross-correlation between the measured temperature of the nth temperature sensor and the measured temperature of the first temperature sensor, The covariance between the measured temperature of the nth temperature sensor and the measured temperature of the 1st temperature sensor, The variance of the measured temperature for the nth temperature sensor, The first temperature sensor measures the variance of the temperature; T12: calculates a cross-correlation matrix between each of the lithium battery and the temperature sensor,
- c m,l is the cross-correlation between the surface temperature of the mth cell and the measured temperature of the first temperature sensor
- the first temperature sensor measures the variance of the temperature.
- the present invention also employs a computer readable storage medium having stored thereon a computer program, characterized in that the computer program, when executed by a processor, implements the method as described above.
- the invention has the beneficial effects of providing a thermal runaway early warning protection system for a lithium battery, and realizing an early warning of thermal runaway of the lithium battery through the synergistic effect of the voltage and current anomaly detection subsystem, the temperature anomaly detection subsystem and the smoke induction anomaly detection subsystem. Effectively avoid adverse consequences due to thermal runaway.
- the various performance modes of the internal short circuit are summarized, and the characterization parameters in each mode are formulated. By monitoring these characterization parameters, the occurrence of an internal short circuit is monitored.
- the heat is conducted from the inside to the outside when the short circuit occurs, and the temperature indicates that there is a certain hysteresis, so that the short circuit condition cannot be fed back in the first time, especially for the soft pack battery, because
- the thermal conductivity of the soft plastic battery aluminum plastic seal is not good, so the temperature difference between the soft pack core body and the pole piece temperature is large, and a unique method for setting a suitable temperature sensor array and calculating the surface temperature of the lithium battery by the software is developed.
- FIG. 1 is a schematic diagram of a thermal alarm early warning protection system for a lithium battery according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a method for detecting an abnormality of a short-circuit voltage and current in a lithium battery according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a method for determining whether the voltage data is abnormal in an embodiment of the present invention.
- FIG. 4 is a schematic diagram of a method for detecting abnormal voltage rise in an embodiment of the present invention.
- FIG. 5 is a schematic diagram of a method for detecting abnormal voltage drop in an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a method for detecting an abnormality of a voltage drop trend in an embodiment of the present invention.
- FIG. 7 is a schematic diagram of a method for determining whether the current data is abnormal in an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a short circuit voltage and current abnormality detecting system in a lithium battery according to an embodiment of the present invention.
- Figure 9 is a schematic diagram of a charging voltage in an embodiment of the present invention.
- Figure 10 is a schematic diagram of voltage trends in an embodiment of the present invention.
- Figure 11 is a schematic diagram of a charging current in an embodiment of the present invention.
- Figure 12 is a schematic diagram of current trends in an embodiment of the present invention.
- Figure 13 is a schematic view showing a method of calculating the surface temperature of a battery cell of a lithium battery in an embodiment of the present invention.
- FIG. 14 is a schematic view showing a method of calculating the correlation between the surface temperature of the cell of the lithium battery and the measured temperature of the temperature sensor in the embodiment of the present invention.
- Figure 15 is a block diagram showing the structure of a temperature abnormality detecting subsystem in the embodiment of the present invention.
- Figure 16 is a graph showing the estimated error distribution between the surface temperature of the cell estimated by the temperature anomaly detection subsystem and the actual measured temperature in the embodiment of the present invention.
- 1-temperature sensor 2-needle bed, 3-tray, 4-cell, 5-smoke sensor, 6-probe mounting module, 7-probe support module.
- connection can be for a fixed effect or for circuit communication.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” and “second” may include one or more of the features, either explicitly or implicitly.
- the meaning of "a plurality” is two or more, unless specifically defined otherwise.
- the internal short circuit is divided into the following types: diaphragm defects or aging cracks; lithium dendrites, elemental iron ions reduction deposition pierce the diaphragm; foreign matter entrainment causes piercing of the diaphragm when making the cell; current collector copper foil or aluminum foil edge glitch.
- the internal short circuit form of the battery is divided into the following types: short circuit of anode material and aluminum current collector; short circuit of copper current collector and aluminum current collector; short circuit of copper current collector and positive electrode material; positive electrode material and negative electrode material Short circuit
- the performance of various internal short circuits is different: among them, the short circuit of the aluminum current collector and the charged negative electrode material has a large current through the small contact resistance, and it is easy to cause a thermal side reaction due to a rapid increase in the temperature of the internal short circuit portion in a short time, thereby generating thermal runaway;
- the short circuit of the aluminum current collector and the copper current collector is similar to the external short circuit, and the temperature is uniformly conducted to the entire battery; the short circuit between the positive electrode material and the copper current collector and the positive and negative materials is minimized due to the large impedance of the positive electrode material.
- the present invention analyzes the internal short circuit caused by various causes and locations, summarizes the typical mode, and finds the appropriate characterization parameters of each mode, so that the monitoring of the parameters can be realized to realize the monitoring of the internal short circuit.
- these modes include:
- the lithium iron phosphate (LiFeP04) as the secondary battery of the positive electrode material has low conductivity and the lithium ion diffusion rate is extremely slow, after puncture (simulated internal short circuit)
- puncture simulated internal short circuit
- the voltage drops from the initial 3.7V to 3.2V in 1 second, and then the voltage goes into a steady state and no longer drops.
- the surface temperature of the casing gradually increases rapidly as the puncture progresses, and enters the thermal runaway state in 4 to 6 seconds.
- the internal short circuit detection methods of lithium batteries include the following:
- Voltage abnormality detection The internal short circuit of the lithium battery will cause the voltage to drop. By monitoring the voltage drop trend, the internal short circuit can be judged and early warning.
- Thermal detection It is determined whether a short circuit has occurred by attaching a thermocouple to the side wall of the lithium battery to detect a temperature change.
- the temperature display has a certain hysteresis, so that the short circuit condition cannot be fed back in the first time.
- Capacity abnormality detection Since some internal energy is converted into heat energy loss due to internal short circuit, the charging capacity during charging will be higher than when no internal short circuit occurs, so when the charging capacity is higher than the reference capacity, the internal short circuit fault is reported. When the charging capacity is lower than or equal to the reference capacity, the lithium battery is in a normal state.
- a lithium battery thermal runaway warning protection system includes:
- a voltage and current abnormality detecting subsystem configured to collect voltage data at both ends of the lithium battery and current data of the lithium battery in real time during charging and discharging of the lithium battery, and determine whether the voltage data and the current data are abnormal; When the voltage and/or the current is abnormal, the charging and discharging are stopped;
- a temperature abnormality detecting subsystem configured to collect the temperature of the lithium battery in real time during charging and discharging of the lithium battery, determine whether the temperature exceeds a preset temperature threshold, and when the temperature exceeds the temperature threshold, issue Abnormal temperature alarm;
- the smoke sensing abnormality detecting subsystem is configured to detect whether there is smoke in real time during charging and discharging of the lithium battery, and when the smoke is detected, start an alarm and a fire spray.
- the voltage change occurs first within 1 to 2 seconds of internal short circuit, and the rise of the shell problem can be clearly detected in the next 2 to 4 seconds, and most of the time after 4 to 6 seconds
- the lithium battery will enter the thermal runaway state. Therefore, the accurate and safe thermal runaway protection strategy should be protected step by step according to the strategy of abnormal current current ⁇ temperature abnormality ⁇ smoke induction abnormality.
- the voltage current abnormality detecting subsystem captures an abnormal signal before the temperature abnormality detecting subsystem and the smoke sensing abnormal detecting subsystem; when the smoke sensing abnormality detecting subsystem issues an early warning When the voltage current abnormality detecting subsystem and the temperature abnormality detecting subsystem fail to capture the abnormal signal, it is determined that the smoke sensing abnormality detecting subsystem is falsely reported.
- the voltage current abnormality detecting subsystem synchronously collects at least one of voltage data at both ends of the lithium battery and current data passing through the lithium battery, and performs internal short-circuit index monitoring, and determines the voltage data and the current data. Whether the internal short-circuit indicator of at least one of them is abnormal.
- the three subsystems effectively prevent the thermal runaway of the lithium battery by comprehensive monitoring of voltage, temperature and smoke sensing, and adopt strategies such as single channel stop, complete disk stop and start fire observation, start fire spray, and six-sided protection. Control and protect the thermal runaway step by step.
- the voltage and current anomaly monitoring subsystem will detect the abnormal signal before the temperature anomaly detection subsystem and the smoke induction anomaly detection subsystem, and usually stop the single channel charging when the voltage and current abnormality monitoring subsystem is early warning.
- the discharge operation prevents further increase of the side reaction; when the temperature abnormality detecting subsystem detects a significant rise in the temperature of the casing of the lithium battery, the whole disk is stopped according to the user configuration and the fire observation operation is started; when the smoke sensing abnormality detection When the subsystem issues an early warning, it will alarm and start the fire sprinkler.
- the system will determine that the smoke-sensing anomaly detection subsystem has misreported according to the configuration.
- the automatic needle bed location of the thermal runaway warning protection system in the automated production of lithium batteries is equipped with a 6-face protection device to prevent expansion to adjacent locations when thermal runaway occurs.
- the system has independent step protection and global protection, eliminating the potential factors of thermal runaway caused by overcharge, overdischarge, poor crimping, voltage and current exceeding the upper and lower limits.
- the voltage and current anomaly detection subsystem is the core of the thermal runaway warning protection system in the automatic production of lithium batteries. By monitoring and tracking the changes of voltage and current in real time, the law of voltage and current changes during short circuit in the battery is used to judge the short circuit of the internal battery. And early warning.
- the voltage and current anomaly detection subsystem can usually stop the abnormal channel within 1 second of the occurrence of the internal short circuit, thereby preventing the internal short circuit negative reaction from further aggravating, thereby greatly reducing the probability of occurrence of thermal runaway.
- the internal short circuit judgment and early warning are realized by monitoring the abnormality of the voltage during charging and discharging and the abnormal drop of the current during discharging. Because the voltage and current abnormalities of the internal short circuit are small instantaneous fluctuations, this places high demands on the accuracy and response speed of the detecting device.
- High-precision charge and discharge equipment has the following conditions:
- High sampling rate The sampling rate of the lower computer is up to 5ms.
- the digital finite impulse response filter of the Kassel window is used to filter out the white noise and out-of-band interference while outputting each point, avoiding the length of the moving average filter. Delay
- the high-performance lower position machine can realize the trend tracking algorithm in the lower position machine. Combined with high precision and high sampling rate, it can track the abnormality of voltage and current in real time.
- the anomaly tracking algorithm (internally called an electron microscopy magnifier) tracks the following trends:
- the anomaly tracking algorithm tracks the abnormally decreasing trend of the current, that is, the slope of ⁇ I/ ⁇ t is abnormal.
- a method for detecting an abnormality of a short-circuit voltage current in a lithium battery includes the following steps:
- S2 synchronously collecting at least one of voltage data at both ends of the lithium battery and current data passing through the lithium battery, and performing internal short-circuit indicator monitoring;
- S3 determining whether an internal short circuit indicator of at least one of the voltage data and the current data is abnormal; when one of the voltage data and the current data is abnormal, stopping charging and discharging of the lithium battery.
- determining whether the voltage data is abnormal includes the following steps:
- the internal short-circuit indicator monitoring is performed, and the internal short-circuit indicator monitoring includes at least one of synchronously performing voltage rise abnormality detection, voltage abnormality drop detection, and voltage drop trend abnormality detection.
- the voltage rise anomaly detection includes:
- the voltage drop anomaly detection includes:
- the abnormality detection of the voltage drop trend includes:
- Step 1 The device enters the chemical composition process, and starts the step of charging and discharging the lithium battery;
- Step 2 Reset all variables
- Step 3 Determine whether the lithium battery enters the charging state, if it enters the charging state, proceeds to step 4;
- Step 4 The device collects the battery voltage data V n and filters the noise through a low-pass filter, and at the same time, the under-sampling counter is incremented;
- Step 5 If the undersampling counter reaches the undersampling rate N, update the voltage buffer (remove the sampling point before the W time in the voltage buffer, and save the current sampling data V n into the buffer), otherwise return to step 4; Where W is the size of the observation window. Generally, the default setting is 128. N is adjusted according to the sampling rate, and is generally set to 1 or 2.
- Step 7 Voltage rise abnormality detection: If the voltage rise abnormality detection switch is turned on, voltage rise abnormality detection is performed, otherwise this step is skipped.
- the rising trend abnormal threshold that is, v ras ⁇ V rais_Thres , the system issues a voltage rise abnormal alarm and stops the channel from exiting the current working state;
- Step 8 Voltage abnormality drop monitoring: If the voltage abnormality drop monitoring switch is turned on, the voltage abnormal drop detection is performed, otherwise skip this step.
- Step 9 Voltage drop trend abnormal monitoring: If the voltage drop trend abnormality monitoring switch is turned on, the voltage drop trend abnormality detection is performed, otherwise this step is skipped.
- the voltage drop trend anomaly detection algorithm is as follows:
- Step 10 Repeat steps 4 through 9 for each sample point until the channel step is completed or exits abnormally.
- an abnormality detecting method for internal short-circuit voltage and current in automatic production of a lithium battery is in a state of constant current charging, constant voltage charging or constant current discharging, and the corresponding current abnormality is: constant Abnormal flow charging, constant voltage charging abnormality or constant current discharge abnormality.
- determining whether the current data is abnormal includes the following steps:
- the rate of change of the current is compared with a threshold of a rate of change of the current set in advance, and if the rate of change of the current is greater than a threshold of a rate of change of the current set in advance, the change in current is abnormal.
- the rate of change rate of the current set in advance when the lithium battery is in the constant current charging state is T 1 , and if d>T 1 , the constant current charging is abnormal;
- the rate of change rate of the current set in advance when the lithium battery is in the constant voltage state of charge is T 2 , and if d>T 2 , the constant voltage charging is abnormal;
- the rate of change rate of the current set in advance when the lithium battery is in the constant current discharge state is T 3 , and if d>T 3 , the constant current discharge is abnormal.
- Step 1 The device enters the chemical composition process, and starts the step of charging and discharging the lithium battery;
- Step 2 Reset all variables
- Step 3 Determine whether the lithium battery enters the charge and discharge state, if it enters the charge and discharge state, proceeds to step 4;
- Step 4 The device collects the current data C n and filters the noise through the low-pass filter to update the current observation buffer c_buff buffer: removes the sampling point before the N time in the buffer, and drops the current sampling data C n .
- the device collects the current data C n and filters the noise through the low-pass filter to update the current observation buffer c_buff buffer: removes the sampling point before the N time in the buffer, and drops the current sampling data C n .
- c_buff buffer removes the sampling point before the N time in the buffer, and drops the current sampling data C n .
- the present invention further provides a short-circuit voltage and current abnormality detecting system for a lithium battery, comprising:
- a charge and discharge unit for charging and discharging a lithium battery
- a voltage collecting unit configured to collect voltage data at both ends of the lithium battery in real time
- a current collecting unit configured to collect current data through the lithium battery in real time
- the processing unit is configured to determine whether the voltage data and the current data are abnormal; when the voltage and/or the current is abnormal, the charging and discharging are stopped.
- the processing unit may also determine whether the temperature is abnormal or the smoke is abnormal, and the corresponding operation as described above is taken.
- the present invention implements all or part of the processes in the foregoing embodiments, and may also be completed by a computer program to instruct related hardware.
- the computer program may be stored in a computer readable storage medium, and the computer program is in the processor. When executed, the steps of the various method embodiments described above can be implemented.
- the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
- the computer readable medium may include any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM).
- RAM Random Access Memory
- electrical carrier signals telecommunications signals
- software distribution media any suitable distribution media.
- the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media Does not include electrical carrier signals and telecommunication signals.
- FIG. 9 is a voltage curve of a cell during constant current constant voltage charging
- FIG. 10 is a voltage trend calculated in real time by the system of the present invention
- FIG. 11 is a current curve during constant current constant voltage charging
- FIG. 12 is a system using the present invention.
- Current trend calculated in real time As shown in Figure 10 and Figure 12, in the constant voltage charging phase, the voltage trend and current trend of three cells are shown in Figure 9-12.
- the bad cells are different from the normal voltage trend and current trend.
- the abnormal jump of the battery can detect and mark the bad battery.
- the system detects and determines 23,000 bad cells, and verifies 150 false positives by offline test, and the false positive rate is less than 0.01 ⁇ .
- the temperature abnormality detecting subsystem of this embodiment includes: the lithium battery is crimped to a temperature probe on the tab; it is understood that since each lithium battery has a temperature probe crimped to the ear, in the lithium During the charging and discharging process of the battery, the temperature of the lithium battery is monitored in real time. When the temperature of the ear ear continuously exceeds the temperature threshold, the temperature abnormality detecting subsystem will issue a temperature abnormality alarm.
- the present embodiment 8 gives a method of calculating the surface temperature of the battery cell of the lithium battery by software.
- a row of temperature sensor arrays are mounted on the front and back of the needle bed of the lithium battery, and the temperature sensor array includes L temperature sensors equally spaced to form a 2*L temperature sensor array.
- the temperature of each battery pack can be calculated from 2*L temperature sensor measurement data.
- the top and bottom rows of the needle bed 2 of the lithium battery thermal runaway warning protection system Four temperature sensors are installed, a total of eight temperature sensors form a temperature sensor array, and one tray 3 is provided with 32 soft-packed cells 4, and a surface of each cell 4 is mounted with a temperature sensor 1 for measuring the surface of the cell. temperature.
- Each lithium battery is crimped to a temperature probe on the tab, and the probe mounting module 6 and the probe support module 7 are visible in the figure.
- the smoke sensor 5 is disposed between the temperature sensor 1 and the battery core 4.
- a method of calculating a cell surface temperature of the lithium battery includes the following steps:
- T1 calculating a correlation between a cell surface temperature of the lithium battery and a measured temperature of the temperature sensor
- T2 estimating a cell surface temperature of the lithium battery in real time according to the correlation and the measured temperature of the temperature sensor array.
- step T1 includes:
- T11 Calculate a cross-correlation matrix between the temperature sensors:
- r n,l is the cross-correlation between the measured temperature of the nth temperature sensor and the measured temperature of the first temperature sensor, The covariance between the measured temperature of the nth temperature sensor and the measured temperature of the 1st temperature sensor, The variance of the measured temperature for the nth temperature sensor, The first temperature sensor measures the variance of the temperature;
- T12 calculating a cross-correlation matrix between each of the lithium battery and the temperature sensor
- c m,l is the cross-correlation between the surface temperature of the mth cell and the measured temperature of the first temperature sensor
- the first temperature sensor measures the variance of the temperature.
- Step T2 includes: setting the measured temperature vector of the temperature sensor at time k:
- the temperature of the cell surface is:
- the surface temperature of the battery tab or the surface temperature of the battery exceeds 100 degrees Celsius, it can be judged that the temperature is abnormal and an alarm is activated.
- Figure 16 shows the estimated error distribution between the surface temperature of the cell estimated by the system and the actual measured temperature. From the results, it can be seen that most of the error distribution is in the range of [-0.1, 0.1], and the mean square error It is 6e-3. It can be seen that the result is very reliable and can meet the requirements of thermal runaway warning protection.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Claims (20)
- 一种锂电池热失控预警保护系统,其特征在于,包括:电压电流异常检测子系统,用于在锂电池充放电过程中实时采集所述锂电池两端的电压数据和通过所述锂电池的电流数据,判断所述电压数据和所述电流数据是否异常;当所述电压和/或所述电流异常时,停止充放电;温度异常检测子系统,用于在所述锂电池充放电过程中实时采集所述锂电池的温度,判断所述温度是否超过预先设置的温度阈值,当所述温度超过所述温度阈值时,发出温度异常报警;烟雾感应异常检测子系统,用于在所述锂电池充放电过程中实时探测是否有烟雾,当探测到烟雾时,启动报警和消防喷淋。
- 如权利要求1所述的锂电池热失控预警保护系统,其特征在于,所述电压电流异常检测子系统会先于所述温度异常检测子系统和所述烟雾感应异常检测子系统捕捉到异常信号;所述电压电流异常检测子系统同步实时采集所述锂电池两端的电压数据和通过所述锂电池的电流数据中的至少一者,并进行内短路指标监测,并判断所述电压数据和所述电流数据中的至少一者的内短路指标是否异常。
- 如权利要求2所述的锂电池热失控预警保护系统,其特征在于,判断所述电压数据是否异常包括如下步骤:滤除所述电压数据的噪音,实时选取欠采样率达到设定数值的所述电压数据,并动态更新最大记录电压;进行所述内短路指标监测,所述内短路指标监测包括同步进行电压上升异常检测、电压异常下降检测、电压下降趋势异常检测中的至少一者。
- 如权利要求3所述的锂电池热失控预警保护系统,其特征在于,所述电压上升异常检测包括:计算实时的电压数据V n与充电起始电压V start的差值V ras=V n-V start;判断所述差值是否小于预先设置的电压上升阈值,若所述差值小于所述预先设置的电压上升阈值则电压上升异常。所述电压异常下降检测包括:计算所述最大记录电压V max与实时的电压数据V n的差值ΔV=V max-V n;判断所述差值是否超过预先设置的电压下降阈值,若所述差值超过所述预先 设置的电压下降阈值则电压下降异常;所述电压下降趋势异常检测包括:计算实时采集的所述锂电池两端的电压数据的差分:dn=V n-V n-1并获取dn的正负的符号d sng-n,计算所述符号的和是否超过预先设置的电压下降趋势阈值,若所述符号的和小于所述预先设置的电压下降趋势阈值,则记录电压下降趋势起始点电压V ref,计算电压下降斜率:S=(V ref-V n)/N,其中N为电压欠采样率;判断所述电压下降斜率是否超过预先设置的下降斜率阈值,如果所述电压下降斜率超过所述预先设置的下降斜率阈值则电压下降趋势异常。
- 如权利要求1所述的锂电池热失控预警保护系统,其特征在于,所述锂电池处于恒流充电、恒压充电或恒流放电状态,对应的所述电流异常为:恒流充电异常、恒压充电异常或恒流放电异常。
- 如权利要求5所述的锂电池热失控预警保护系统,其特征在于,判断所述电流数据是否异常包括如下步骤:滤除所述电流数据的噪音并动态更新缓存数据;确定所述锂电池的状态并计算电流的变化速率:d=(C n-C n-N+1)/N,其中,C n是实时的电流数据,C n-N+1是在实时的时刻的N时刻之前的电流数据,N是时间间隔;所述电流的变化速率与预先设置的电流的变化速率阈值比较:所述锂电池处于恒流充电状态时预先设置的电流的变化速率阈值是T 1,若d>T 1,则恒流充电异常;所述锂电池处于恒压充电状态时预先设置的电流的变化速率阈值是T 2,若d>T 2,则恒压充电异常;所述锂电池处于恒流放电状态时预先设置的电流的变化速率阈值是T 3,若d>T 3,则恒流放电异常。
- 如权利要求1所述的锂电池热失控预警保护系统,其特征在于,温度异常检测子系统包括:压接于所述锂电池极耳的温度探针;或,温度异常检测子系统包括:在所述锂电池的针床顶部前后各安装的一排温度传感器阵列,所述温度传感器阵列包括等间距的L个温度传感器;计算装置,用于根据温度传感器阵列的检测结果计算所述锂电池的电芯表面温度。
- 如权利要求7所述的锂电池热失控预警保护系统,其特征在于,计算所述 锂电池的电芯表面温度的方法包括如下步骤:T1:计算所述锂电池的电芯表面温度与所述温度传感器的测量温度的相关性;T2:根据所述相关性和所述温度传感器阵列的测量温度实时估计所述锂电池的电芯表面温度。
- 如权利要求8所述的锂电池热失控预警保护系统,其特征在于,步骤T1包括:T11:计算所述温度传感器之间的互相关矩阵:其中,r n,l为第n个温度传感器的测量温度与第l个温度传感器的测量温度之间的互相关, 为第n个温度传感器的测量温度与第l个温度传感器的测量温度之间的协方差, 为第n个温度传感器的测量温度的方差, 第l个温度传感器测量温度的方差;T12:计算每个所述锂电池与所述温度传感器之间的互相关矩阵,
- 一种锂电池热失控预警保护方法,其特征在于,包括如下步骤:S1:对锂电池进行充放电并确定所述锂电池进入充放电状态;S2:对锂电池进行电压电流异常检、温度异常检测和烟雾感应异常检测;其中,所述电压电流异常检包括同步实时采集所述锂电池两端的电压数据和通过所述锂电池的电流数据中的至少一者,并进行内短路指标监测;判断所述电压数据和所述电流数据中的至少一者的内短路指标是否异常;当所述电压数据和所述电流数据中的一者异常时,停止对锂电池进行充放电;所述温度检测包括:在所述锂电池充放电过程中实时采集所述锂电池的温度,判断所述温度是否超过预先设置的温度阈值,当所述温度超过所述温度阈值时,发出温度异常报警;所述烟雾感应异常检测包括在所述锂电池充放电过程中实时探测是否有烟雾,当探测到烟雾时,启动报警和消防喷淋。
- 如权利要求11所述的锂电池热失控预警保护方法,其特征在于,判断所述电压数据是否异常包括如下步骤:滤除所述电压数据的噪音,实时选取欠采样率达到设定数值的所述电压数据,并动态更新最大记录电压;进行所述内短路指标监测,所述内短路指标监测包括同步进行电压上升异常检测、电压异常下降检测、电压下降趋势异常检测中的至少一者。
- 如权利要求12所述的锂电池热失控预警保护方法,其特征在于,所述电压上升异常检测包括:计算实时的电压数据V n与充电起始电压V start的差值V ras=V n-V start;判断所述差值是否小于预先设置的电压上升阈值,若所述差值小于所述预先设置的电压上升阈值则电压上升异常。
- 如权利要求12所述的锂电池热失控预警保护方法,其特征在于,所述电 压异常下降检测包括:计算所述最大记录电压V max与实时的电压数据V n的差值ΔV=V max-V n;判断所述差值是否超过预先设置的电压下降阈值,若所述差值超过所述预先设置的电压下降阈值则电压下降异常。
- 如权利要求12所述的锂电池热失控预警保护方法,其特征在于,所述电压下降趋势异常检测包括:计算实时采集的所述锂电池两端的电压数据的差分:dn=V n-V n-1并获取dn的正负的符号d sng-n;计算所述符号的和是否超过预先设置的电压下降趋势阈值,若所述符号的和小于所述预先设置的电压下降趋势阈值,则记录电压下降趋势起始点电压V ref;计算电压下降斜率:S=(V ref-V n)/N,其中N为电压欠采样率;判断所述电压下降斜率是否超过预先设置的下降斜率阈值,如果所述电压下降斜率超过所述预先设置的下降斜率阈值则电压下降趋势异常。
- 如权利要求11所述的锂电池热失控预警保护方法,其特征在于,所述锂电池处于恒流充电、恒压充电或恒流放电状态,对应的所述电流异常为:恒流充电异常、恒压充电异常或恒流放电异常。
- 如权利要求16所述的锂电池热失控预警保护方法,其特征在于,判断所述电流数据是否异常包括如下步骤:滤除所述电流数据的噪音并动态更新缓存数据;确定所述锂电池的状态并计算电流的变化速率;所述电流的变化速率与预先设置的电流的变化速率阈值比较,若所述电流的变化速率大于预先设置的电流的变化速率阈值,则电流的变化异常。
- 如权利要求17所述的锂电池热失控预警保护方法,其特征在于,计算电流的变化速率:d=(C n-C n-N+1)/N,其中,C n是实时的电流数据,C n-N+1是在实时的时刻的N时刻之前的电流数据,N是时间间隔;所述锂电池处于恒流充电状态时预先设置的电流的变化速率阈值是T 1,若d>T 1,则恒流充电异常;所述锂电池处于恒压充电状态时预先设置的电流的变化速率阈值是T 2,若d>T 2,则恒压充电异常;所述锂电池处于恒流放电状态时预先设置的电流的变化速率阈值是T 3,若d>T 3,则恒流放电异常。
- 如权利要求11所述的锂电池热失控预警保护方法,其特征在于,在所述锂电池的针床顶部前后各安装的一排温度传感器阵列,所述温度传感器阵列包括等间距的L个温度传感器;利用计算装置根据温度传感器阵列的检测结果计算所述锂电池的电芯表面温度;其中,计算所述锂电池的电芯表面温度的方法包括如下步骤:T1:计算所述锂电池的电芯表面温度与所述温度传感器的测量温度的相关性;T2:根据所述相关性和所述温度传感器阵列的测量温度实时估计所述锂电池的电芯表面温度;步骤T1包括:T11:计算所述温度传感器之间的互相关矩阵:其中,r n,l为第n个温度传感器的测量温度与第l个温度传感器的测量温度之间的互相关, 为第n个温度传感器的测量温度与第l个温度传感器的测量温度之间的协方差, 为第n个温度传感器的测量温度的方差, 第l个温度传感器测量温度的方差;T12:计算每个所述锂电池与所述温度传感器之间的互相关矩阵
- 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求11-19任一所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/091558 WO2019174653A2 (zh) | 2019-06-17 | 2019-06-17 | 一种锂电池热失控预警保护系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/091558 WO2019174653A2 (zh) | 2019-06-17 | 2019-06-17 | 一种锂电池热失控预警保护系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2019174653A2 true WO2019174653A2 (zh) | 2019-09-19 |
WO2019174653A3 WO2019174653A3 (zh) | 2020-04-23 |
Family
ID=67908722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/091558 WO2019174653A2 (zh) | 2019-06-17 | 2019-06-17 | 一种锂电池热失控预警保护系统及方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019174653A2 (zh) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110824373A (zh) * | 2019-12-09 | 2020-02-21 | 天津市捷威动力工业有限公司 | 锂电池防护箱 |
CN110949178A (zh) * | 2019-12-13 | 2020-04-03 | 重庆美顺电子科技有限公司 | 一种智能化锂电池并联管理控制系统及方法 |
CN111047203A (zh) * | 2019-12-16 | 2020-04-21 | 江苏荣夏安全科技有限公司 | 一种基于大数据的蓄电池电气火灾监控方法 |
CN111123125A (zh) * | 2020-01-16 | 2020-05-08 | 欣旺达电动汽车电池有限公司 | 电池检测装置及方法 |
CN111289468A (zh) * | 2020-03-31 | 2020-06-16 | 浙江大学 | 一种含有氢氟酸的锂离子电池热失控产气分析方法及其系统 |
CN111391668A (zh) * | 2020-03-31 | 2020-07-10 | 威睿电动汽车技术(宁波)有限公司 | 一种电池热失控预警处理方法、装置、设备及存储介质 |
CN111736075A (zh) * | 2020-07-10 | 2020-10-02 | 中国民用航空飞行学院 | 一种动压变温条件下锂离子电池热安全监测方法 |
CN111913114A (zh) * | 2020-07-23 | 2020-11-10 | 蜂巢能源科技有限公司 | 电池热失控检测方法、装置、存储介质及电子设备 |
CN112037479A (zh) * | 2020-09-25 | 2020-12-04 | 华侨大学 | 一种锂电池热失控监测预警系统及方法 |
CN112793465A (zh) * | 2021-01-22 | 2021-05-14 | 合肥国轩高科动力能源有限公司 | 一种三元锂离子电池系统热失控预警方法及运用 |
CN112816885A (zh) * | 2021-01-06 | 2021-05-18 | 北京嘀嘀无限科技发展有限公司 | 一种电池异常检测方法、装置、电子设备及存储介质 |
CN112858935A (zh) * | 2021-01-11 | 2021-05-28 | 摩拜(北京)信息技术有限公司 | 电池组热失控预警方法、装置、电池组及用电设备 |
CN113452094A (zh) * | 2020-03-24 | 2021-09-28 | 博众精工科技股份有限公司 | 充电仓消防隔离方法、充电仓电池包隔离结构 |
CN113466721A (zh) * | 2021-08-31 | 2021-10-01 | 蜂巢能源科技有限公司 | 锂离子电池的失效识别方法、装置、电子设备及介质 |
CN113865714A (zh) * | 2021-08-27 | 2021-12-31 | 深圳市新嘉拓自动化技术有限公司 | 一种检测极片横向温度分布和预警极片翘曲的检测方法 |
CN114019383A (zh) * | 2021-09-24 | 2022-02-08 | 浙江安力能源有限公司 | 一种钠镍电池单体的筛选方法 |
CN114122537A (zh) * | 2021-10-27 | 2022-03-01 | 华为数字能源技术有限公司 | 电池模组的安全检测方法及电池模组、电池包、储能系统 |
CN114184964A (zh) * | 2021-12-08 | 2022-03-15 | 蜂巢能源科技(无锡)有限公司 | 一种电芯内部温度分布的评估方法及装置 |
CN114278485A (zh) * | 2021-11-17 | 2022-04-05 | 南瑞集团有限公司 | 一种水电站开机温度告警方法及系统 |
CN114312482A (zh) * | 2020-10-10 | 2022-04-12 | 宝能汽车集团有限公司 | 电动汽车及其热失效监控方法、装置和存储介质 |
CN114361617A (zh) * | 2021-12-31 | 2022-04-15 | 重庆长安新能源汽车科技有限公司 | 一种动力电池热失控风险预警方法及预警系统 |
CN114487018A (zh) * | 2022-01-05 | 2022-05-13 | 惠州亿纬集能有限公司 | 锂电池电芯焊接处箔材断裂的检测方法 |
CN114670711A (zh) * | 2021-03-23 | 2022-06-28 | 北京新能源汽车股份有限公司 | 获取电池包内电芯温度的控制方法、装置、系统及车辆 |
CN114721859A (zh) * | 2022-04-29 | 2022-07-08 | 苏州浪潮智能科技有限公司 | 一种监控mlcc电容短路风险的方法、装置及存储介质 |
CN114781256A (zh) * | 2022-04-18 | 2022-07-22 | 北京航空航天大学 | 一种基于云端终身学习的动力电池热失控风险评估方法 |
CN115061049A (zh) * | 2022-08-08 | 2022-09-16 | 山东卓朗检测股份有限公司 | 一种数据中心ups电池故障快速检测方法及系统 |
CN115275365A (zh) * | 2019-09-25 | 2022-11-01 | 荣耀终端有限公司 | 支持高功率快充的电池模组、充电模组和电子设备 |
CN115327400A (zh) * | 2021-11-04 | 2022-11-11 | 广汽埃安新能源汽车有限公司 | 锂电池和模组的析锂检测装置及方法 |
CN115494404A (zh) * | 2022-07-19 | 2022-12-20 | 广州杉和信息科技有限公司 | 一种蓄电池组在线监测方法 |
WO2023274318A1 (zh) * | 2021-06-29 | 2023-01-05 | 蜂巢能源科技股份有限公司 | 电池突发型内短路诊断方法、装置、存储介质及电子设备 |
CN115951232A (zh) * | 2023-03-14 | 2023-04-11 | 苏州时代华景新能源有限公司 | 一种锂电池充放电质量检测方法及系统 |
CN115980591A (zh) * | 2023-01-17 | 2023-04-18 | 昆山金鑫新能源科技股份有限公司 | 一种动力电池的放电安全同步预警方法及系统 |
CN116359747A (zh) * | 2023-05-31 | 2023-06-30 | 苏州精控能源科技有限公司 | 基于dcr的圆柱锂电池热失控预测方法、装置 |
CN116605082A (zh) * | 2023-07-18 | 2023-08-18 | 华东交通大学 | 一种充电桩安全充电方法、系统、计算机及可读存储介质 |
CN116760134A (zh) * | 2023-06-13 | 2023-09-15 | 厦门广开电子有限公司 | 一种可动态调温的充电宝用防过热充电保护系统 |
CN117030051A (zh) * | 2023-10-10 | 2023-11-10 | 尚宁智感(北京)科技有限公司 | 一种分布式光纤测温的锂电池仓储温度监测系统 |
FR3135567A1 (fr) * | 2022-05-13 | 2023-11-17 | Safran Electrical & Power | Procédé de contrôle de batterie |
CN117310519A (zh) * | 2023-11-30 | 2023-12-29 | 交通运输部东海航海保障中心上海航标处 | 一种新能源航标的储能电池防漏检测装置及系统 |
CN117347902A (zh) * | 2023-10-26 | 2024-01-05 | 自然资源部第四海洋研究所(中国-东盟国家海洋科技联合研发中心) | 一种10kv输入直流一体化不间断电源用监测系统 |
CN117405240A (zh) * | 2023-12-14 | 2024-01-16 | 徐州海宣机械制造有限公司 | 一种电气设备金属表面温差检测方法和系统 |
CN117563184A (zh) * | 2024-01-15 | 2024-02-20 | 东营昆宇电源科技有限公司 | 一种基于物联网的储能消防控制系统 |
CN117706389A (zh) * | 2023-12-21 | 2024-03-15 | 中国矿业大学(北京) | 一种电化学储能电站的监测预警系统及方法 |
CN117709194A (zh) * | 2023-12-16 | 2024-03-15 | 江苏讯汇科技股份有限公司 | 一种支持黑白名单存储的传感器数据存储保护方法 |
CN117810579A (zh) * | 2023-12-22 | 2024-04-02 | 无锡晨涛新能源科技有限公司 | 一种锂电池异常报警装置 |
CN118249442A (zh) * | 2024-03-18 | 2024-06-25 | 东莞景钛科技有限公司 | 一种锂电池充放电管理方法及系统 |
CN118472446A (zh) * | 2024-07-09 | 2024-08-09 | 烟台海博电气设备有限公司 | 一种锂电池的热失控安全预警方法及系统 |
CN118483596A (zh) * | 2024-07-08 | 2024-08-13 | 烟台海博电气设备有限公司 | 一种基于voc的锂电池组热失控监测方法及系统 |
CN118730337A (zh) * | 2024-09-04 | 2024-10-01 | 保定恒艺电气科技有限公司 | 一种高压设备立体温度预警方法及系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9869726B2 (en) * | 2012-05-22 | 2018-01-16 | Lawrence Livermore National Security, Llc | Wireless battery management control and monitoring system |
CN105304843A (zh) * | 2015-11-23 | 2016-02-03 | 曾凯涛 | 一种防爆锂电池箱 |
CN208705362U (zh) * | 2018-08-08 | 2019-04-05 | 中国检验检疫科学研究院 | 一种用于电池循环寿命试验的防爆箱 |
CN208752185U (zh) * | 2018-08-21 | 2019-04-16 | 福州艾斯佩克检测设备有限公司 | 一种锂离子电池组多工位防爆检测装置 |
-
2019
- 2019-06-17 WO PCT/CN2019/091558 patent/WO2019174653A2/zh active Application Filing
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115275365A (zh) * | 2019-09-25 | 2022-11-01 | 荣耀终端有限公司 | 支持高功率快充的电池模组、充电模组和电子设备 |
CN110824373A (zh) * | 2019-12-09 | 2020-02-21 | 天津市捷威动力工业有限公司 | 锂电池防护箱 |
CN110949178A (zh) * | 2019-12-13 | 2020-04-03 | 重庆美顺电子科技有限公司 | 一种智能化锂电池并联管理控制系统及方法 |
CN111047203A (zh) * | 2019-12-16 | 2020-04-21 | 江苏荣夏安全科技有限公司 | 一种基于大数据的蓄电池电气火灾监控方法 |
CN111123125A (zh) * | 2020-01-16 | 2020-05-08 | 欣旺达电动汽车电池有限公司 | 电池检测装置及方法 |
CN113452094A (zh) * | 2020-03-24 | 2021-09-28 | 博众精工科技股份有限公司 | 充电仓消防隔离方法、充电仓电池包隔离结构 |
CN111289468A (zh) * | 2020-03-31 | 2020-06-16 | 浙江大学 | 一种含有氢氟酸的锂离子电池热失控产气分析方法及其系统 |
CN111391668A (zh) * | 2020-03-31 | 2020-07-10 | 威睿电动汽车技术(宁波)有限公司 | 一种电池热失控预警处理方法、装置、设备及存储介质 |
CN111736075A (zh) * | 2020-07-10 | 2020-10-02 | 中国民用航空飞行学院 | 一种动压变温条件下锂离子电池热安全监测方法 |
CN111913114A (zh) * | 2020-07-23 | 2020-11-10 | 蜂巢能源科技有限公司 | 电池热失控检测方法、装置、存储介质及电子设备 |
CN112037479A (zh) * | 2020-09-25 | 2020-12-04 | 华侨大学 | 一种锂电池热失控监测预警系统及方法 |
CN114312482A (zh) * | 2020-10-10 | 2022-04-12 | 宝能汽车集团有限公司 | 电动汽车及其热失效监控方法、装置和存储介质 |
CN112816885A (zh) * | 2021-01-06 | 2021-05-18 | 北京嘀嘀无限科技发展有限公司 | 一种电池异常检测方法、装置、电子设备及存储介质 |
CN112858935A (zh) * | 2021-01-11 | 2021-05-28 | 摩拜(北京)信息技术有限公司 | 电池组热失控预警方法、装置、电池组及用电设备 |
CN112858935B (zh) * | 2021-01-11 | 2023-11-03 | 摩拜(北京)信息技术有限公司 | 电池组热失控预警方法、装置、电池组及用电设备 |
CN112793465A (zh) * | 2021-01-22 | 2021-05-14 | 合肥国轩高科动力能源有限公司 | 一种三元锂离子电池系统热失控预警方法及运用 |
CN114670711B (zh) * | 2021-03-23 | 2024-03-15 | 北京新能源汽车股份有限公司 | 获取电池包内电芯温度的控制方法、装置、系统及车辆 |
CN114670711A (zh) * | 2021-03-23 | 2022-06-28 | 北京新能源汽车股份有限公司 | 获取电池包内电芯温度的控制方法、装置、系统及车辆 |
WO2023274318A1 (zh) * | 2021-06-29 | 2023-01-05 | 蜂巢能源科技股份有限公司 | 电池突发型内短路诊断方法、装置、存储介质及电子设备 |
CN113865714A (zh) * | 2021-08-27 | 2021-12-31 | 深圳市新嘉拓自动化技术有限公司 | 一种检测极片横向温度分布和预警极片翘曲的检测方法 |
CN113466721A (zh) * | 2021-08-31 | 2021-10-01 | 蜂巢能源科技有限公司 | 锂离子电池的失效识别方法、装置、电子设备及介质 |
CN114019383A (zh) * | 2021-09-24 | 2022-02-08 | 浙江安力能源有限公司 | 一种钠镍电池单体的筛选方法 |
CN114019383B (zh) * | 2021-09-24 | 2024-03-29 | 浙江安力能源有限公司 | 一种钠镍电池单体的筛选方法 |
CN114122537A (zh) * | 2021-10-27 | 2022-03-01 | 华为数字能源技术有限公司 | 电池模组的安全检测方法及电池模组、电池包、储能系统 |
CN115327400A (zh) * | 2021-11-04 | 2022-11-11 | 广汽埃安新能源汽车有限公司 | 锂电池和模组的析锂检测装置及方法 |
CN114278485A (zh) * | 2021-11-17 | 2022-04-05 | 南瑞集团有限公司 | 一种水电站开机温度告警方法及系统 |
CN114184964A (zh) * | 2021-12-08 | 2022-03-15 | 蜂巢能源科技(无锡)有限公司 | 一种电芯内部温度分布的评估方法及装置 |
CN114184964B (zh) * | 2021-12-08 | 2023-08-29 | 蜂巢能源科技(无锡)有限公司 | 一种电芯内部温度分布的评估方法及装置 |
CN114361617A (zh) * | 2021-12-31 | 2022-04-15 | 重庆长安新能源汽车科技有限公司 | 一种动力电池热失控风险预警方法及预警系统 |
CN114361617B (zh) * | 2021-12-31 | 2023-07-21 | 深蓝汽车科技有限公司 | 一种动力电池热失控风险预警方法及预警系统 |
CN114487018A (zh) * | 2022-01-05 | 2022-05-13 | 惠州亿纬集能有限公司 | 锂电池电芯焊接处箔材断裂的检测方法 |
CN114781256A (zh) * | 2022-04-18 | 2022-07-22 | 北京航空航天大学 | 一种基于云端终身学习的动力电池热失控风险评估方法 |
CN114721859B (zh) * | 2022-04-29 | 2024-05-24 | 苏州浪潮智能科技有限公司 | 一种监控mlcc电容短路风险的方法、装置及存储介质 |
CN114721859A (zh) * | 2022-04-29 | 2022-07-08 | 苏州浪潮智能科技有限公司 | 一种监控mlcc电容短路风险的方法、装置及存储介质 |
FR3135567A1 (fr) * | 2022-05-13 | 2023-11-17 | Safran Electrical & Power | Procédé de contrôle de batterie |
CN115494404A (zh) * | 2022-07-19 | 2022-12-20 | 广州杉和信息科技有限公司 | 一种蓄电池组在线监测方法 |
CN115494404B (zh) * | 2022-07-19 | 2023-09-22 | 广州杉和信息科技有限公司 | 一种蓄电池组在线监测方法 |
CN115061049B (zh) * | 2022-08-08 | 2022-11-01 | 山东卓朗检测股份有限公司 | 一种数据中心ups电池故障快速检测方法及系统 |
CN115061049A (zh) * | 2022-08-08 | 2022-09-16 | 山东卓朗检测股份有限公司 | 一种数据中心ups电池故障快速检测方法及系统 |
CN115980591A (zh) * | 2023-01-17 | 2023-04-18 | 昆山金鑫新能源科技股份有限公司 | 一种动力电池的放电安全同步预警方法及系统 |
CN115980591B (zh) * | 2023-01-17 | 2024-05-07 | 昆山金鑫新能源科技股份有限公司 | 一种动力电池的放电安全同步预警方法及系统 |
CN115951232A (zh) * | 2023-03-14 | 2023-04-11 | 苏州时代华景新能源有限公司 | 一种锂电池充放电质量检测方法及系统 |
CN116359747A (zh) * | 2023-05-31 | 2023-06-30 | 苏州精控能源科技有限公司 | 基于dcr的圆柱锂电池热失控预测方法、装置 |
CN116760134B (zh) * | 2023-06-13 | 2024-02-06 | 厦门广开电子有限公司 | 一种可动态调温的充电宝用防过热充电保护系统 |
CN116760134A (zh) * | 2023-06-13 | 2023-09-15 | 厦门广开电子有限公司 | 一种可动态调温的充电宝用防过热充电保护系统 |
CN116605082B (zh) * | 2023-07-18 | 2023-09-26 | 华东交通大学 | 一种充电桩安全充电方法、系统、计算机及可读存储介质 |
CN116605082A (zh) * | 2023-07-18 | 2023-08-18 | 华东交通大学 | 一种充电桩安全充电方法、系统、计算机及可读存储介质 |
CN117030051A (zh) * | 2023-10-10 | 2023-11-10 | 尚宁智感(北京)科技有限公司 | 一种分布式光纤测温的锂电池仓储温度监测系统 |
CN117030051B (zh) * | 2023-10-10 | 2023-12-22 | 尚宁智感(北京)科技有限公司 | 一种分布式光纤测温的锂电池仓储温度监测系统 |
CN117347902A (zh) * | 2023-10-26 | 2024-01-05 | 自然资源部第四海洋研究所(中国-东盟国家海洋科技联合研发中心) | 一种10kv输入直流一体化不间断电源用监测系统 |
CN117310519B (zh) * | 2023-11-30 | 2024-02-13 | 交通运输部东海航海保障中心上海航标处 | 一种新能源航标的储能电池防漏检测装置及系统 |
CN117310519A (zh) * | 2023-11-30 | 2023-12-29 | 交通运输部东海航海保障中心上海航标处 | 一种新能源航标的储能电池防漏检测装置及系统 |
CN117405240B (zh) * | 2023-12-14 | 2024-02-23 | 徐州海宣机械制造有限公司 | 一种电气设备金属表面温差检测方法和系统 |
CN117405240A (zh) * | 2023-12-14 | 2024-01-16 | 徐州海宣机械制造有限公司 | 一种电气设备金属表面温差检测方法和系统 |
CN117709194A (zh) * | 2023-12-16 | 2024-03-15 | 江苏讯汇科技股份有限公司 | 一种支持黑白名单存储的传感器数据存储保护方法 |
CN117706389A (zh) * | 2023-12-21 | 2024-03-15 | 中国矿业大学(北京) | 一种电化学储能电站的监测预警系统及方法 |
CN117810579A (zh) * | 2023-12-22 | 2024-04-02 | 无锡晨涛新能源科技有限公司 | 一种锂电池异常报警装置 |
CN117563184B (zh) * | 2024-01-15 | 2024-03-22 | 东营昆宇电源科技有限公司 | 一种基于物联网的储能消防控制系统 |
CN117563184A (zh) * | 2024-01-15 | 2024-02-20 | 东营昆宇电源科技有限公司 | 一种基于物联网的储能消防控制系统 |
CN118249442A (zh) * | 2024-03-18 | 2024-06-25 | 东莞景钛科技有限公司 | 一种锂电池充放电管理方法及系统 |
CN118249442B (zh) * | 2024-03-18 | 2024-10-15 | 东莞景钛科技有限公司 | 一种锂电池充放电管理方法及系统 |
CN118483596A (zh) * | 2024-07-08 | 2024-08-13 | 烟台海博电气设备有限公司 | 一种基于voc的锂电池组热失控监测方法及系统 |
CN118472446A (zh) * | 2024-07-09 | 2024-08-09 | 烟台海博电气设备有限公司 | 一种锂电池的热失控安全预警方法及系统 |
CN118730337A (zh) * | 2024-09-04 | 2024-10-01 | 保定恒艺电气科技有限公司 | 一种高压设备立体温度预警方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2019174653A3 (zh) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019174653A2 (zh) | 一种锂电池热失控预警保护系统及方法 | |
CN110350258B (zh) | 一种锂电池热失控预警保护系统及方法 | |
CN110187225B (zh) | 一种锂电池内短路电压电流异常检测方法及系统 | |
CN110635182B (zh) | 电池热失控的预警方法和装置、电子设备、存储介质 | |
CN111391668B (zh) | 一种电池热失控预警处理方法、装置、设备及存储介质 | |
CN109980309B (zh) | 一种防过载的动力电池充放电监管控制方法 | |
KR101989491B1 (ko) | 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법 | |
CN111505532A (zh) | 基于soc相关系数的串联锂电池组早期内短路在线检测方法 | |
CN111198328A (zh) | 一种电池析锂检测方法及电池析锂检测系统 | |
CN111751741A (zh) | 一种锂离子电池析锂阈值电压的无损检测方法 | |
CN112034359A (zh) | 基于氢气探测的锂电池早期安全预警方法及装置 | |
WO2020192325A1 (zh) | 温度补偿方法、具有充电电池的设备及存储介质 | |
CN112946522A (zh) | 低温工况导致电池储能系统内短路故障的在线监测方法 | |
CN113848489B (zh) | 电池的短路识别方法、装置及存储介质 | |
WO2019166035A2 (zh) | 一种锂电池内短路电压电流异常检测方法及系统 | |
CN111123148B (zh) | 一种判断金属二次电池内短路的方法及设备 | |
KR102632629B1 (ko) | 배터리 셀 진단 장치 및 방법 | |
CN113437371A (zh) | 一种新能源汽车锂离子电池热失控预警系统及预警方法 | |
CN113721156A (zh) | 一种用于磷酸铁锂电池的多时间尺度综合预警方法 | |
CN113135115B (zh) | 检测电池系统短路的方法、装置、车辆及存储介质 | |
CN114062932A (zh) | 电池析锂检测方法 | |
JP7485043B2 (ja) | 電源装置および電池の不具合検出方法 | |
CN114252792A (zh) | 电池包的内短路检测方法、装置、电子设备及存储介质 | |
CN112776667A (zh) | 一种车端动力电池析锂在线监控方法 | |
CN219106257U (zh) | 用于电池温度检测和补偿的电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19767074 Country of ref document: EP Kind code of ref document: A2 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19767074 Country of ref document: EP Kind code of ref document: A2 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19767074 Country of ref document: EP Kind code of ref document: A2 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.07.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19767074 Country of ref document: EP Kind code of ref document: A2 |