[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019174194A1 - 一种利用微生物还原co2同时产甲烷和乙酸的方法 - Google Patents

一种利用微生物还原co2同时产甲烷和乙酸的方法 Download PDF

Info

Publication number
WO2019174194A1
WO2019174194A1 PCT/CN2018/102690 CN2018102690W WO2019174194A1 WO 2019174194 A1 WO2019174194 A1 WO 2019174194A1 CN 2018102690 W CN2018102690 W CN 2018102690W WO 2019174194 A1 WO2019174194 A1 WO 2019174194A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetic acid
reducing
methane
inorganic salt
simultaneously producing
Prior art date
Application number
PCT/CN2018/102690
Other languages
English (en)
French (fr)
Inventor
牟伯中
刘金峰
杨世忠
周蕾
马蕾
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2019174194A1 publication Critical patent/WO2019174194A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/95Specific microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Definitions

  • the invention relates to the field of CO2 resource utilization, and in particular to a method for reducing CO2 and simultaneously producing methane and acetic acid by using microorganisms.
  • CO 2 resource technology is the CO 2 conversion to value-added chemicals, this method is not only effective in reducing CO 2 emissions, can bring certain economic benefits.
  • the method of chemically converting CO 2 is usually carried out under conditions of high temperature, high pressure and presence of a catalyst, and the reaction conditions are harsh, energy consumption, and high cost.
  • the use of biotransformation to achieve CO 2 resource utilization has attracted much attention because it does not require external catalysts, high selectivity, low cost, high yield, high potential economic value, and economic and environmental protection.
  • the microalgae method is commonly used in biotransformation, that is, the use of light energy autotrophic microalgae to convert CO 2 , which has the problems of complicated screening process, high cultivation cost, and high energy consumption in the process of oil separation.
  • CO 2 reduced methanogens and acetogenic bacteria are strictly anaerobic microorganisms and are widely found in natural environments such as anaerobic activated sludge and oil reservoirs.
  • Methane (CO 2 + 4H 2 ⁇ CH 4 + 2H 2 O) and acetic acid (2CO 2 + 4H 2 ⁇ CH 3 COOH + 2H 2 O) can be produced by using CO 2 and hydrogen, respectively, and the above processes are thermodynamic spontaneous reactions.
  • environmental microorganisms have the potential to convert CO 2 to produce a variety of organic matter, thereby realizing the utilization of CO 2 resources.
  • the participation of hydrogen is required in the process of microbial conversion of CO 2 .
  • Cisode In the natural environment, hydrogen is mostly derived from the anaerobic degradation of organic matter and maintains a low partial pressure of hydrogen. Therefore, the limited source of hydrogen largely limits the process by which microorganisms convert CO 2 to organic matter.
  • Chinese Patent Publication No. CN102925492A discloses a method for producing methane and acetic acid by reducing CO 2 by a bioelectrochemical system, as follows: preparing a biocathode in a bioelectrochemical system, and introducing CO into a cathode chamber and an anode chamber. 2 cycle aeration, set the cathodic polarization potential -850 ⁇ 1150mV (vs.
  • the microorganisms on the cathode can directly obtain electrons from the hydrogen produced by the electrode or electrode for carbon dioxide reduction, and generate methane and acetic acid.
  • This method has the problems of complicated operation process, large energy consumption, complicated and difficult regulation of bacteria, and high cost.
  • the object of the present invention is to provide a simple, low-cost, high-efficiency, diversified product, mild condition, low energy consumption, and environmentally friendly microbial reduction of CO 2 while producing methane and The method of acetic acid.
  • the object of the present invention can be achieved by the following technical solution: a method for reducing CO 2 and simultaneously producing methane and acetic acid by using microorganisms, characterized in that a mixed bacteria containing methanogenic bacteria and acid producing bacteria are inoculated into a common inorganic salt medium.
  • the system was added with Fe 0 and passed through a CO 2 gas culture to recover methane and acetic acid.
  • the mixed bacteria of the methanogenic bacteria and the acid producing bacteria are separated and enriched by, but not limited to, a reservoir production liquid.
  • the mixed strains include Methanosarcina (M. sphaeroides, purchased from the American Type Culture Collection, accession number ATCC No. 43572) and Clostridiaceae (Cymbidaceae, purchased from the American Type Culture Collection, Deposit number ATCC No. 55383).
  • the ratio of the number of cells of the mixed strain including Methanosarcina and Clostridiaceae is 1:2 to 5:1.
  • the Fe 0 has a particle diameter of 10 to 50 ⁇ m.
  • the ratio of the Fe 0 to the general inorganic salt medium is 0.01 to 0.7 mol (Fe 0 )/L (inorganic salt medium).
  • the culture temperature is 23 ° C to 36 ° C
  • the pH is 6.0 to 8.0.
  • the ratio of the Fe 0 to the general inorganic salt medium is 0.1 mol (Fe 0 )/L (inorganic salt medium), the culture temperature is 30 ° C, and the pH is 7.0.
  • the general inorganic salt medium is configured in accordance with an academic paper (DOI: 10.1016/j.ibiod.2017.12.002) reported by Ma Lei et al., International Journal of Biodeterioration & Biodegradation.
  • the inorganic salt medium (g/L): NaCl, 0.2; MgCl ⁇ 6H 2 O, 1.2; NH 4 Cl, 0.25; KCl, 1.3; CaCl 2 ⁇ 2H 2 O, 0.1; KH 2 PO 4 , 0.53 Na 2 HPO 4 ⁇ 3H 2 O, 2.18; Na 2 S ⁇ 9H 2 O, 0.5.
  • the above culture medium, zero-valent iron and CO 2 gas were added to the culture apparatus, sealed, and mixed bacteria containing Methanosarcina (ATCC 43572) and Clostridiaceae (ATCC 55383) were inoculated, and the inoculation rate was 2-20%. Cultivate under normal pressure and normal temperature and protected from light.
  • methane and acetic acid are produced and accumulated, and the rate of production is relatively fast.
  • Methane is collected from the headspace of the culture device, and acetic acid is collected in the culture solution after the completion of the culture.
  • the object of the present invention is to establish a method for reducing CO 2 by microorganisms while producing methane and acetic acid, and using a zero-valent metal (Fe 0 ) as an electron donor to stimulate microbial metabolism and promote CO 2 conversion. It is characterized by the use of a mixed strain containing methanogens and acid-producing bacteria, including Methanosarcina (ATCC 43572) and Clostridiaceae (ATCC 55383), with Fe 0 as an electron donor, and bio-conversion of CO 2 to methane at ambient temperature without adding organic matter. And acetic acid.
  • Methanosarcina ATCC 43572
  • Clostridiaceae ATCC 55383
  • the use of zero-valent metal iron as an electron donor can effectively promote hydrogen production (Fe 0 +2H 2 O ⁇ Fe 2+ +H 2 +2OH - ) in an anaerobic environment, thereby further promoting microbial conversion of CO 2 while producing methane and The process of acetic acid.
  • the present invention proposes a method for converting CO 2 and producing methane and acetic acid under the action of an enriched strain using Fe 0 as an electron donor.
  • Methane and acetic acid are mainly present in the gas phase and the liquid phase, respectively, to facilitate product recycling.
  • Figure 1 is a graph showing changes in methane and carbon dioxide content over time.
  • Figure 2 is a graph of acetic acid production versus time.
  • Inorganic salt medium (g/L): NaCl, 0.2; MgCl ⁇ 6H 2 O, 1.2; NH 4 Cl, 0.25; KCl, 1.3; CaCl 2 ⁇ 2H 2 O, 0.1; KH 2 PO 4 , 0.53; Na 2 HPO 4 ⁇ 3H 2 O, 2.18; Na 2 S ⁇ 9H 2 O, 0.5.
  • the pH of the inorganic salt medium was adjusted to 7.0.
  • 0.1645g of zero-valent iron, 30mL of medium (0.1mol (Fe 0 ) / L (inorganic salt medium)) and CO 2 gas were added to the culture device, sealed, and inoculated with 7% (2 mL) containing Methanosarcina (ATCC 43572) and Clostridiaceae In the strain of ATCC 55383, the ratio of the number of cells was 1:1. Incubate at 30 ° C under normal pressure and dark conditions.
  • Fig. 1 is a graph showing changes in the content of acetic acid in the culture system G1 (Fe 0 + CO 2 ) as a function of the culture time.
  • Inorganic salt medium (refer to the academic paper DOI: 10.1016/j.ibiod.2017.12.002 reported by Ma Lei et al. in the academic journal International Biodeterioration & Biodegradation)
  • Inorganic salt medium (g/L): NaCl, 0.2; MgCl ⁇ 6H 2 O, 1.2; NH 4 Cl, 0.25; KCl, 1.3; CaCl 2 ⁇ 2H 2 O, 0.1; KH 2 PO 4 , 0.53; Na 2 HPO 4 ⁇ 3H 2 O, 2.18; Na 2 S ⁇ 9H 2 O, 0.5.
  • the pH of the inorganic salt medium was adjusted to 6.0.
  • Inorganic salt medium (refer to the academic paper DOI: 10.1016/j.ibiod.2017.12.002 reported by Ma Lei et al. in the academic journal International Biodeterioration & Biodegradation)
  • Inorganic salt medium (g/L): NaCl, 0.2; MgCl ⁇ 6H 2 O, 1.2; NH 4 Cl, 0.25; KCl, 1.3; CaCl 2 ⁇ 2H 2 O, 0.1; KH 2 PO 4 , 0.53; Na 2 HPO 4 ⁇ 3H 2 O, 2.18; Na 2 S ⁇ 9H 2 O, 0.5.
  • the pH of the inorganic salt medium was adjusted to 8.0.
  • the culture apparatus was charged with 1.176 g of zero-valent iron, 30 mL of medium (0.7 mol (Fe 0 )/L (inorganic salt medium)) and CO 2 gas, sealed, and inoculated with 20% (6 mL) containing Methanosarcina (ATCC 43572) and Clostridiaceae ( The strain of ATCC 55383) has a ratio of 5:1. Incubate at 36 ° C under normal pressure and protected from light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种利用微生物还原CO2同时生产甲烷和乙酸的方法,在通用无机盐培养基中接种含有产甲烷菌和产酸菌的混合菌系,加入Fe0并通入CO2气体培养,收获甲烷和乙酸。

Description

一种利用微生物还原CO2同时产甲烷和乙酸的方法 技术领域
本发明涉及CO2资源化利用领域,尤其是涉及一种利用微生物还原CO2同时产甲烷和乙酸的方法。
背景技术
自工业革命后,化石燃料的大量使用导致空气中CO 2的浓度增加,由此引发的温室效应等环境问题日益严重,如何控制并减少CO 2的含量已成为当今世界亟待解决的重大问题之一。其中,CO 2的资源化利用技术是将CO 2转化成具有附加价值的化学品,此方法不但能有效减少CO 2排放,也能带来一定的经济效益。采用化学转化CO 2的方法,通常需要在高温、高压以及催化剂存在的条件下进行,其反应条件苛刻、能耗大、成本高。利用生物转化的方式实现CO 2资源化利用因其无需外加催化剂、选择性高、成本低、收益高、潜在经济价值高、经济环保等优势备受关注。目前,生物转化中普遍采用微藻法,即,使用光能自养型微生物微藻转化CO 2,该方法存在筛选过程复杂,培育成本高,油脂分离过程能耗大的问题。
CO 2还原型产甲烷菌和产乙酸菌属于严格厌氧的微生物,广泛存在于厌氧活性污泥、油藏等自然环境中。分别能够利用CO 2和氢气产生甲烷(CO 2+4H 2→CH 4+2H 2O)和乙酸(2CO 2+4H 2→CH 3COOH+2H 2O),并且上述过程均为热力学自发反应。由此,环境微生物具有转化CO 2产生多种有机质,从而实现CO 2资源化利用的潜力。同时,微生物转化CO 2过程中需要氢气的参与。在自然环境中,氢气大多来源于有机质的厌氧降解并且保持较低的氢气分压,因此,有限的氢气来源很大程度上限制了微生物转化CO 2产生有机质的过程。公开号为CN102925492A的中国发明专利公布了一种利用生物电化学系统还原CO 2生产甲烷和乙酸的方法,具体如下:在生物电化学系统中制备生物阴极,在阴极室和阳极室中通入CO 2循环曝气,设定阴极极化电势-850~-1150mV(vs.Ag/AgCl),阴极上的微生物可以直接从电极或电极产生的氢气获得电子进行二氧化碳还原,并生成甲烷和乙酸。此方法存在操作过程复杂、能耗大、菌 系复杂不易调控、成本高等问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种作简单、成本低廉、效率高、产物多样、条件温和、能耗低、环境友好型的利用微生物还原CO 2同时产甲烷和乙酸的方法。
本发明的目的可以通过以下技术方案来实现:一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,在通用无机盐培养基中接种含有产甲烷菌和产酸菌的混合菌系,加入Fe 0并通入CO 2气体培养,收获甲烷和乙酸。
所述的产甲烷菌和产酸菌的混合菌系由但不限于油藏产出液中分离富集得到。
进一步地,所述的混合菌系包括Methanosarcina(甲烷八叠球菌属,购买自美国典型培养物保藏中心,保藏号ATCC No.43572)和Clostridiaceae(梭菌科,购买自美国典型培养物保藏中心,保藏号ATCC No.55383)。
进一步地,所述的混合菌系包括Methanosarcina和Clostridiaceae的菌体数比例为1:2~5:1。
所述的Fe 0的粒径为10~50μm。
进一步地,所述的Fe 0与通用无机盐培养基比例为0.01~0.7mol(Fe 0)/L(无机盐培养基)。
进一步地,所述的培养温度为23℃~36℃,pH为6.0~8.0。
进一步地,所述的Fe 0与通用无机盐培养基比例为0.1mol(Fe 0)/L(无机盐培养基),培养温度为30℃,pH为7.0。
通用无机盐培养基参照马蕾等在学术期刊International Biodeterioration&Biodegradation报道的学术论文(DOI:10.1016/j.ibiod.2017.12.002)配置。
进一步地,无机盐培养基(g/L):NaCl,0.2;MgCl×6H 2O,1.2;NH 4Cl,0.25;KCl,1.3;CaCl 2×2H 2O,0.1;KH 2PO 4,0.53;Na 2HPO 4×3H 2O,2.18;Na 2S×9H 2O,0.5。
培养装置中加入上述培养基、零价铁和CO 2气体,密封,接种含Methanosarcina(ATCC 43572)和Clostridiaceae(ATCC 55383)的混合菌系, 接种率为2-20%。在常压、常温避光条件下培养。
厌氧培养开始即有甲烷和乙酸产生并累积,并且产生速率较快,甲烷自培养装置顶空收集,培养结束后在培养液中收集乙酸。
本发明的目的是建立一种利用微生物还原CO 2同时产生甲烷和乙酸的方法,并利用零价态金属(Fe 0)作为电子供体刺激微生物代谢并促进CO 2转化的方法。其特征是利用含有产甲烷菌和产酸菌的混合菌,包括Methanosarcina(ATCC 43572)和Clostridiaceae(ATCC 55383),以Fe 0作为电子供体,不添加有机质的常温条件将CO 2生物转化为甲烷和乙酸。
电子供体在微生物转化CO 2产甲烷和乙酸过程中发挥着重要作用。利用零价态金属铁作为电子供体在厌氧环境中可以有效促进氢气产生(Fe 0+2H 2O→Fe 2++H 2+2OH -),从而进一步促进微生物转化CO 2同时产生甲烷和乙酸的过程。基于上述认识,本发明提出一种使用Fe 0作为电子供体在富集菌系的作用下转化CO 2同时产生甲烷和乙酸的方法。
与现有技术相比,本发明的有益效果:
(1)在无外加碳源、无外加能量的常温、常压环境中利用微生物还原CO 2同时产生甲烷和乙酸。反应条件温和、操作简单、成本低廉、能耗低、无环境污染。
(2)微生物合成产物甲烷和乙酸分别主要存在于气相和液相,便于产品的回收利用。
(3)本发明还原CO 2产生甲烷和乙酸的速率较快,CO 2转化率为82%。
附图说明
图1为甲烷与二氧化碳含量随时间变化图。
图2为乙酸产量随时间变化图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
以下实施例详细的描述是为了便于更好的理解本发明,但并非对本发明的限制。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改或等 同替换,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动,其均应涵盖在本发明的保护范围之中。
实施例1:
(1)配置无机盐培养基(参照马蕾等在学术期刊International Biodeterioration&Biodegradation报道的学术论文DOI:10.1016/j.ibiod.2017.12.002)
无机盐培养基(g/L):NaCl,0.2;MgCl×6H 2O,1.2;NH 4Cl,0.25;KCl,1.3;CaCl 2×2H 2O,0.1;KH 2PO 4,0.53;Na 2HPO 4×3H 2O,2.18;Na 2S×9H 2O,0.5。无机盐培养基pH值调至7.0。
培养装置中加入0.1645g零价铁、30mL培养基(0.1mol(Fe 0)/L(无机盐培养基))和CO 2气体,密封,接种7%(2mL)含Methanosarcina(ATCC 43572)和Clostridiaceae(ATCC 55383)的菌系,菌体数比例为1:1。在30℃常压避光条件下培养。
转化过程中甲烷和二氧化碳的含量变化见图1。图中:G1:Fe 0+CO 2;G2:含有CO 2的无菌对照组。
从图1中可以看出,在培养时间为1~65天,含Fe 0的转化CO 2的培养体系,产甲烷速率达到48.43μmol/(L·d),培养结束得到的甲烷产量约为102.3μmol。同时,在不同培养阶段检测体系中乙酸的含量,在培养时间为1~65天,含Fe 0的CO 2体系中,产乙酸速率达到4.8μmol/(L·d)。结果见图2。图2为培养体系G1(Fe 0+CO 2)中乙酸含量随培养时间的变化图。
实施例2:
(1)无机盐培养基(参照马蕾等在学术期刊International Biodeterioration&Biodegradation报道的学术论文DOI:10.1016/j.ibiod.2017.12.002)
无机盐培养基(g/L):NaCl,0.2;MgCl×6H 2O,1.2;NH 4Cl,0.25;KCl,1.3;CaCl 2×2H 2O,0.1;KH 2PO 4,0.53;Na 2HPO 4×3H 2O,2.18;Na 2S×9H 2O,0.5。无机盐培养基pH值调至6.0。
(2)厌氧培养体系的构建
培养装置中加入0.0165g零价铁、30mL培养基(0.01mol(Fe 0)/L(无机盐培养基))和CO 2气体,密封,接种2%(0.6mL)含Methanosarcina和 Clostridiaceae的菌系(以新疆油田油藏产出液作为接种物,加入乙醇、乙酸和酵母粉作为碳源,在23℃下厌氧富集培养,转接3次,分离得到),菌体数比例为1:2。在23℃常压避光条件下培养。
经过65天的培养,含Fe 0的CO 2体系中,产甲烷和乙酸的速率分别为:12.92和1.35μmol/(L·d)。
实施例3
(1)无机盐培养基(参照马蕾等在学术期刊International Biodeterioration&Biodegradation报道的学术论文DOI:10.1016/j.ibiod.2017.12.002)
无机盐培养基(g/L):NaCl,0.2;MgCl×6H 2O,1.2;NH 4Cl,0.25;KCl,1.3;CaCl 2×2H 2O,0.1;KH 2PO 4,0.53;Na 2HPO 4×3H 2O,2.18;Na 2S×9H 2O,0.5。无机盐培养基pH值调至8.0。
(2)厌氧培养体系的构建
培养装置中加入1.176g零价铁、30mL培养基(0.7mol(Fe 0)/L(无机盐培养基))和CO 2气体,密封,接种20%(6mL)含Methanosarcina(ATCC43572)和Clostridiaceae(ATCC 55383)的菌系,菌体数比例为5:1。在36℃常压避光条件下培养。
经过65天的培养,含Fe 0的CO 2体系中,产甲烷和乙酸的速率分别为:41.77和4.23μmol/(L·d)。

Claims (8)

  1. 一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,在通用无机盐培养基中接种含有产甲烷菌和产酸菌的混合菌系,加入Fe 0并通入CO 2气体培养,收获甲烷和乙酸。
  2. 根据权利要求1所述的一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,所述的产甲烷菌和产酸菌的混合菌系由但不限于油藏产出液中分离富集得到。
  3. 根据权利要求1或2所述的一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,所述的混合菌系包括甲烷八叠球菌属Methanosarcina,保藏号ATCC No.43572和梭菌科Clostridiaceae保藏号ATCC No.55383。
  4. 根据权利要求3所述的一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,所述的混合菌系包括Methanosarcina和Clostridiaceae的菌体数比例为1:2~5:1。
  5. 根据权利要求1所述的一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,所述的Fe 0的粒径为10~50μm。
  6. 根据权利要求1所述的一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,所述的Fe 0与通用无机盐培养基比例为0.01~0.7mol(Fe 0)/L(无机盐培养基)。
  7. 根据权利要求1所述的一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,所述的培养温度为23℃~36℃,pH为6.0~8.0。
  8. 根据权利要求1或6或7所述的一种利用微生物还原CO 2同时产甲烷和乙酸的方法,其特征在于,所述的Fe 0与通用无机盐培养基比例为0.1mol(Fe 0)/L(无机盐培养基),培养温度为30℃,pH为7.0。
PCT/CN2018/102690 2018-03-15 2018-08-28 一种利用微生物还原co2同时产甲烷和乙酸的方法 WO2019174194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810217180.7A CN108424947A (zh) 2018-03-15 2018-03-15 一种利用微生物还原co2同时产甲烷和乙酸的方法
CN201810217180.7 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019174194A1 true WO2019174194A1 (zh) 2019-09-19

Family

ID=63158309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102690 WO2019174194A1 (zh) 2018-03-15 2018-08-28 一种利用微生物还原co2同时产甲烷和乙酸的方法

Country Status (2)

Country Link
CN (1) CN108424947A (zh)
WO (1) WO2019174194A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108424947A (zh) * 2018-03-15 2018-08-21 华东理工大学 一种利用微生物还原co2同时产甲烷和乙酸的方法
CN110316818A (zh) * 2019-06-04 2019-10-11 北京交通大学 一种基于co2曝气的自养反硝化强化工艺方法及装置
CN111019977B (zh) * 2019-12-30 2021-08-13 福建农林大学 一种驱动甲烷八叠球菌产甲烷的方法
CN113881716B (zh) * 2021-10-27 2023-12-19 江南大学 一种促进碳链延长微生物电合成有机酸的方法
CN115646141A (zh) * 2022-09-29 2023-01-31 中国化学工程第六建设有限公司 降低碳排放的污水处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925492A (zh) * 2012-11-09 2013-02-13 中国科学院成都生物研究所 一种利用生物电化学系统还原二氧化碳生产甲烷和乙酸的方法
CN106544369A (zh) * 2016-10-11 2017-03-29 华东理工大学 促进油藏微生物转化co2产甲烷的方法
CN108424947A (zh) * 2018-03-15 2018-08-21 华东理工大学 一种利用微生物还原co2同时产甲烷和乙酸的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087821A2 (en) * 2009-12-22 2011-07-21 University Of Massachusetts Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current
CN103670347B (zh) * 2013-10-14 2017-01-04 华东理工大学 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法
BR112018016927A8 (pt) * 2016-02-19 2022-09-06 Invista Tech Sarl Processos e materiais biocatalíticos para utilização de carbono aprimorada

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925492A (zh) * 2012-11-09 2013-02-13 中国科学院成都生物研究所 一种利用生物电化学系统还原二氧化碳生产甲烷和乙酸的方法
CN106544369A (zh) * 2016-10-11 2017-03-29 华东理工大学 促进油藏微生物转化co2产甲烷的方法
CN108424947A (zh) * 2018-03-15 2018-08-21 华东理工大学 一种利用微生物还原co2同时产甲烷和乙酸的方法

Also Published As

Publication number Publication date
CN108424947A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2019174194A1 (zh) 一种利用微生物还原co2同时产甲烷和乙酸的方法
Kawaguchi et al. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus
CA2655474C (en) System for the production of methane from co2
Wang et al. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch
CN106947688B (zh) 微生物/光电耦合还原二氧化碳产甲烷的系统与方法
Akroum-Amrouche et al. Biohydrogen production by dark and photo-fermentation processes
CN103773807A (zh) 一种利用纳米磁铁矿提高厌氧产甲烷效率的方法
CN103555566B (zh) 一种促进厌氧消化产甲烷的外置电解设备
CN107204479A (zh) 一种联用超声和碱促进污泥微生物电解产氢的方法
CN110106223B (zh) 一种促进玉米秸秆光合产氢的方法
CN110284150A (zh) 一种促进微生物电化学转化二氧化碳产甲烷的方法
CN104263764A (zh) 一种富集同型产乙酸菌污泥厌氧高效产乙酸工艺
CN105803001A (zh) 一种利用微生物电解池实现剩余污泥产氢的方法
CN114703233B (zh) 一种提高梭菌发酵产氢效率的方法及其应用
Kim et al. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration
CN106085926A (zh) 快速解除丙酸积累的复合菌及其制备方法和应用
Blanchet et al. Coupled iron-microbial catalysis for CO2 hydrogenation with multispecies microbial communities
CN104651875B (zh) 将乙醇转化为乙酸的同时产甲烷的方法
CN108517337A (zh) 一种促进二氧化碳生物转化为甲烷的方法
CN115215386B (zh) 一种钴酸镍纳米颗粒的制备及促进暗发酵产氢的方法
JP3224992B2 (ja) 水素生産光合成微生物及びこれを用いた水素の生産方法
CN106609294B (zh) 一种强化双菌发酵纤维素产氢的方法
CN108179112B (zh) 蛋白核小球藻联合菌类产氢的方法
CN107937475B (zh) 利用斜生栅藻和菌类协同产氢的工艺
CN115287308A (zh) 利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909534

Country of ref document: EP

Kind code of ref document: A1