[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019172335A1 - Flight control device, method, program, and storage medium - Google Patents

Flight control device, method, program, and storage medium Download PDF

Info

Publication number
WO2019172335A1
WO2019172335A1 PCT/JP2019/008939 JP2019008939W WO2019172335A1 WO 2019172335 A1 WO2019172335 A1 WO 2019172335A1 JP 2019008939 W JP2019008939 W JP 2019008939W WO 2019172335 A1 WO2019172335 A1 WO 2019172335A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
target point
midpoint
flight
nth
Prior art date
Application number
PCT/JP2019/008939
Other languages
French (fr)
Japanese (ja)
Inventor
宮川 勲
杵渕 哲也
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2019172335A1 publication Critical patent/WO2019172335A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present invention relates to a flight control apparatus, method, program, and storage medium, and more particularly, to a flight control apparatus, method, program, and storage medium for controlling an unmanned airplane.
  • the quad-rotor type UAV (Unmanned Aerial Vehicle) is an unmanned airplane that has four propellers and controls the lift applied to each propeller. Many unmanned airplanes called drones are a kind of quadrotor type UAV. The unmanned airplane that will be handled hereinafter is abbreviated as UAV.
  • a local coordinate system is set on the aircraft as shown in FIG.
  • the UAV forward direction is the X axis
  • the direction perpendicular to the X axis is the Y axis
  • the direction opposite to gravity is the Z axis.
  • a certain global coordinate system is set.
  • the coordinate system is a three-dimensional coordinate system
  • the measurement coordinate system is a global coordinate system.
  • the UAV posture is expressed by the rotation angle of the local coordinate system with respect to the global coordinate system.
  • the rotation around the X axis is roll rotation (rotation angle ⁇ )
  • the rotation around the Y axis is pitch rotation (rotation angle ⁇ )
  • the Z axis is set in order to measure the three-dimensional position of the UAV.
  • the rotation around is called yaw rotation (rotation angle ⁇ ).
  • the flight movement of the UAV generates rotation about the X axis, rotation about the Y axis, and rotation about the Z axis by changing the lift applied to the four propellers.
  • Rotation around the Y axis produces a translational motion in the X axis direction
  • rotation around the X axis produces a translational motion in the Y axis direction.
  • Rotation around the Z-axis produces azimuthal rotation, and when the same lift is applied to the four propellers simultaneously, it produces a translational movement (high elevation) in the Z-axis direction.
  • Non-Patent Document 1 discloses backstepping control based on UAV equations of motion and angular equations of motion.
  • Non-Patent Document 2 discloses a flight motion control method related to AR Drone 2.0 (commercially available low-cost UAV). In many of the conventional technologies, discrete predetermined positions and predetermined directions are given as flight trajectories in the global coordinate system, and the movement is controlled so that the UAV tracks each point and each direction.
  • UAV since UAV has the ability to fly freely in space, it can play an active role as a robot that replaces people.
  • UAV is used as a tool for collaborative work with humans.
  • Non-Patent Document 4 a plurality of UAVs are used to set up a network in the space, and humans and UAVs exchange balls. A method for controlling movements of a plurality of UAVs as an operation is disclosed.
  • the tasks for freely controlling UAV flight can be roughly divided into three categories, hovering, trajectory tracking, and path following.
  • Hovering keeps flying to stay in a given position and orientation.
  • trajectory tracking control is performed so that tracking is performed in real time along a given route (a discrete three-dimensional position and direction in space).
  • the path follow does not matter in real time, the flight is controlled by giving a constraint condition in some space at a given three-dimensional position and orientation in the space.
  • Non-Patent Document 1 and Non-Patent Document 2 it is possible to appropriately control the flight motion of the UAV so as to fly according to a predetermined route with respect to the problem of trajectory tracking.
  • these techniques are controls aimed at reaching a target location along a predetermined route, stable flight of UAV is not guaranteed.
  • a constraint condition can be set in the space so as not to fly in a specific place.
  • various sensors and cameras may be attached to the UAV.
  • the ultrasonic sensor can measure the altitude from the ground or the floor, and can measure the speed and posture of the aircraft by using a gyro sensor and an acceleration sensor. Cameras are used to fly autonomously in space while detecting moving objects.
  • the accuracy of sensors built into most UAVs is not guaranteed to be measured with accurate accuracy in millimeters. It is necessary to measure the exact position and orientation of the aircraft using the means.
  • stable flight of UAV has not been guaranteed.
  • the present invention has been made to solve the above-described problems, and is a flight control device, method, program, and storage medium that can control an unmanned airplane to operate freely and stably fly.
  • the purpose is to provide.
  • a flight control apparatus measures the three-dimensional coordinates of each of a plurality of markers that are assigned to a UAV (Unmanned Aerial Vehicle) and the distance between the markers is known.
  • UAV Unmanned Aerial Vehicle
  • a position and direction detection unit that calculates a point, a distance from the midpoint to the target point, and an azimuth angle of a line segment connecting each three-dimensional coordinate of the marker with respect to the target point in a global coordinate system; and the target A speed control unit for updating control data for controlling the speed vector of the UAV based on a distance to a point so as to become a speed vector determined from the middle point and the target point; Flight command conversion for calculating flight command data in the UAV based on the updated control data and the calculated azimuth, and controlling movement of the UAV based on the calculated flight command data Part.
  • the flight control method includes a step of measuring a three-dimensional coordinate of each of a plurality of markers provided with a position measurement sensor in a UAV (Unmanned Aerial Vehicle) and having a known distance between the markers;
  • the position / orientation detection unit is configured to determine the three-dimensional coordinates of each of the markers based on the three-dimensional coordinates of each of the markers measured by the position measurement sensor and the preset target point of the target location of the UAV.
  • the program according to the third invention is a program for causing a computer to function as each part of the flight control device according to the first invention.
  • a storage medium according to a fourth invention is a storage medium for storing a program for causing a computer to function as each part of the flight control device according to the first invention.
  • the flight control device, method, program, and storage medium of the present invention based on the three-dimensional coordinates of each marker measured by the position measurement sensor and the target point of the preset UAV target location, Calculate the midpoint of each 3D coordinate of the marker, the distance from the midpoint to the target point, and the azimuth of the line segment connecting each 3D coordinate of the marker to the target point in the global coordinate system.
  • the control data for controlling the speed vector of the UAV is updated based on the distance up to the speed vector determined from the midpoint and the target point, and the updated control data and the calculated azimuth angle
  • the flight command data in the UAV is calculated, and the UAV motion is controlled based on the calculated flight command data. To be controlled so as to fly, the effect is obtained that.
  • the flight control apparatus 100 includes a CPU, a RAM, a ROM for storing a program and various data for executing a flight control processing routine to be described later, Can be configured with a computer including Functionally, the flight control apparatus 100 includes a position measurement sensor 10, a calculation unit 20, and a communication unit 50 as shown in FIG. In this configuration, the position measurement sensor 10 does not necessarily have to be connected as a component, and only needs to acquire data necessary for processing.
  • the position / direction detection unit 30, the speed control unit 32, and the flight command in the calculation unit 20 may be in the form of using a recording medium such as a hard disk, a RAID device, a CD-ROM, or using remote data resources via a network.
  • the position measurement sensor 10 measures, as measurement data, three-dimensional coordinates of each of a plurality of markers (points q 1 and q 2 ) given to the UAV 14 and having known distances between the markers.
  • a motion capture device is used as an example of the position measurement sensor 10.
  • the position of the target point p of the target location 12 of the UAV 14 is arbitrarily set according to the flight plan, and a sensing marker is attached to the position of the points q 1 and q 2 on the UAV 14.
  • the position measurement sensor 10 is set up to measure three-dimensional coordinates in a global coordinate system, and the three-dimensional coordinates of each marker are sequentially measured at a certain interval.
  • the movement is controlled so that the UAV 14 flies at a constant speed until the midpoint between the marker point q 1 and the marker point q 2 attached to the UAV 14 reaches the target point p.
  • the number of markers is two. However, the number of markers is not limited to this. The number of markers may be three or more, and the relative positional relationship between objects may be obtained.
  • the calculation unit 20 uses a position / orientation detection unit 30 that detects the position and orientation of the UAV 14 in the global coordinate system by the position measurement sensor 10, and a speed control unit 32 that controls the flight speed of the UAV 14 based on the position and orientation. And a flight command conversion unit 34 for sending a command in accordance with the UAV 14.
  • the specific processing contents of the position / orientation detection unit 30, the speed control unit 32, and the flight command conversion unit 34 will be described in the description of the operation described later.
  • the position / orientation detection unit 30 is based on the three-dimensional coordinates of the marker points q 1 and q 2 of the UAV 14 measured by the position measurement sensor 10 and the target point p of the target location 12 of the UAV 14 set in advance. , Marker point q 1 , and midpoint q of the three-dimensional coordinates of point q 2 , distance
  • the speed control unit 32 updates the control data u for controlling the speed vector of the UAV 14 so that it becomes a speed vector V 0 determined from the midpoint q and the target point p. To do.
  • the flight command conversion unit 34 Based on the updated control data u and the calculated azimuth angle ⁇ , the flight command conversion unit 34 converts the rotation speed V x around the X axis, the rotation speed V y around the Y axis, and the Z axis in the UAV 14.
  • the speed V z along and the rotation speed V ⁇ around the Z axis are calculated as flight command data, and the flight command data is transmitted to the UAV 14 via the communication unit 50, so that the UAV 14 Control movement.
  • the flight control device 100 executes a flight control processing routine shown in FIG.
  • the position / orientation detection unit 30 uses the three-dimensional coordinates of the marker points q 1 and q 2 of the UAV 14 measured by the position measurement sensor 10 and the target of the target location 12 of the UAV 14 set in advance. Based on the point p, the point q 1 of the marker and the center point q of the three-dimensional coordinates of the point q 2 , the distance
  • step S102 the speed control unit 32 obtains control data u for controlling the speed vector of the UAV 14 based on the distance to the target point p.
  • the speed vector is determined from the midpoint q and the target point p. updated so that the V 0.
  • step S104 the flight command conversion unit 34, based on the updated control data u and the calculated azimuth angle ⁇ , in the UAV 14, the rotational speed V x around the X axis and the rotational speed V y around the Y axis.
  • the speed V z along the Z axis and the rotational speed V ⁇ around the Z axis are calculated as flight command data, and the flight command data is transmitted to the UAV 14 via the communication unit 50, whereby the calculated flight command data Based on this, the movement of the UAV 14 is controlled.
  • step S100 details of the position / orientation detection processing of the position / orientation detection unit 30 in step S100 will be described.
  • FIG. 4 is a flowchart of the processing of the position / orientation detection unit 30.
  • the position / orientation detection unit 30 sets a target point p of the target location 12 in the global coordinate system in step S1000.
  • the target point p may be any three-dimensional coordinate determined by the operator.
  • step S1002 the three-dimensional coordinates of the marker points q 1 and q 2 of the UAV 14 measured by the position measurement sensor 10 are acquired.
  • step S1004 the calculated distance from the midpoint q point markers q 1 and point q 2 to the target point p.
  • the distance between the current position (midpoint q) of the UAV 14 obtained by the position measurement sensor 10 and the target point p of the target location 12 is obtained from the vector T by calculating
  • represents the norm (size) of the vector.
  • step S1006 the azimuth angle ⁇ of the line segment connecting the point q 1 of the marker with respect to the target point p in the global coordinate system and the midpoint q of the point q 2 by three-dimensional coordinates is calculated. 5, a point q 1 marker, and point q 2, and shows the position and orientation relationship between the target point p of the target areas 12 as viewed from the Z w axis.
  • the rotation angle (azimuth angle ⁇ ) is set so that the three-dimensional coordinate line segments of the marker points q 1 and q 2 are perpendicular to the line segment of the target point p. Calculated using the vector dot product relationship.
  • step S1008 it is determined whether to stop the position / orientation detection process. If the process is stopped, the process of the position / orientation detection unit 30 is terminated. If not, the process returns to step S1000 to repeat the process.
  • the case where the process is stopped is a case where the operator ends the flight control of the UAV 14, and the same applies to the following processes.
  • the position / orientation detection unit 30 calculates the distance
  • FIG. 6 is a process flow diagram of the speed control unit 32.
  • the speed control unit 32 acquires a distance
  • step S1102 it is determined whether the distance
  • step S1104 control is performed so that the flight is maintained by hovering.
  • step S1106 the velocity vector v of the UAV 14 is calculated.
  • the velocity vector v m / ⁇ t when the midpoint q moves by the vector m during the time interval ⁇ t is calculated.
  • step S1108 it determines whether the UAV14, updates the control data u order to fly at a speed vector V 0 which constant velocity obtained from the vector T from the midpoint q to the target point p.
  • between the constant velocity vector V o obtained from the vector T from the midpoint q to the target point p and the current velocity vector v is obtained, and an allowable error for satisfying the constant velocity is obtained.
  • ⁇ v. it is determined whether or not
  • step S1110 the control data u is updated.
  • the control data u is
  • the updated control data u is output to the flight command converter 34.
  • step S1112 it is determined whether to stop the speed control process. If the process is stopped, the process of the speed control unit 32 is terminated. If not, the process returns to step S1100 to repeat the process.
  • the speed control unit 32 updates the control data u by feedback control until
  • the control data u given by the speed controller 32 and the azimuth ⁇ obtained by the position / orientation detector 30 are converted into flight command flight command data according to the UAV 14 to be used.
  • Command from 50 via wireless There are various data formats for the flight command to the UAV 14, but in the present embodiment, a case where a commercially available product AR Drone 2.0 is taken as an example is shown. However, it is needless to say that this embodiment can also be used when controlling the flight of other UAVs 14.
  • FIG. 7 is a flowchart of processing of the flight command conversion unit 34.
  • the flight command conversion unit 34 receives input of the updated control data u and the calculated azimuth angle ⁇ in step S1200.
  • step S1202 the control data u and the azimuth angle ⁇ are converted into flight command data for transmission to the UAV 14.
  • Flight command data to the UAV 14 includes a rotation speed V x around the x axis, a rotation speed V y around the y axis, a speed V z along the Z axis, and a rotation speed V ⁇ around the Z axis set in the aircraft.
  • rotation around the x-axis produces a translational movement in the y-axis
  • rotation around the y-axis produces a translational movement in the x-axis.
  • step S1204 the flight command data calculated by the equations (1) to (4) is transmitted to the UAV 14 by wireless communication via the communication unit 50.
  • step S1206 it is determined whether to stop the flight command conversion process. If the process is stopped, the process of the flight command conversion unit 34 is terminated. If not, the process returns to step S1200 to repeat the process.
  • the position measurement sensor 10 calculates the position and orientation of the UAV 14 and can control the flight movement of the UAV 14 so as to fly at a predetermined speed toward the destination.
  • the flight navigation of the UAV 14 can be realized by continuously setting the coordinates of the destination.
  • the three-dimensional coordinates of each of the markers measured by the position measurement sensor and the preset target point of the target location 12 of the UAV 14 are set. Based on the above, the midpoint of each 3D coordinate of the marker, the distance from the midpoint to the target point, and the azimuth angle of the line segment connecting each 3D coordinate of the marker to the target point in the global coordinate system Calculating and updating the control data for controlling the velocity vector of the UAV based on the distance to the target point so as to become a velocity vector determined from the middle point and the target point, and the updated control data; Based on the calculated azimuth angle, UAV flight command data is calculated, and the UAV motion is controlled based on the calculated flight command data, so that the unmanned airplane can be operated freely. And, and it can be controlled so as to stably fly.
  • the second embodiment of the present invention does not fix the speed limit of the UAV 14 to V 0 in the configuration of FIG. 2 described above, but allows the UAV 14 to fly at a predetermined speed when an arbitrary speed limit is given. It is an example in the case of controlling by accelerating or decelerating.
  • symbol is attached
  • FIG. 8 shows the flight speed of the UAV 14 controlled by the method of this embodiment.
  • the horizontal axis is time t, and the vertical axis is speed v.
  • the left diagram in FIG. 8 shows the case of acceleration (
  • the speed limit may be given in time series as the speed limit input. Or according to the magnitude
  • FIG. 9 is a flowchart of the speed control process of the speed control unit 32 of the present embodiment.
  • step S1102 If it is determined in step S1102 that
  • step S2102 based on the input of the speed limit, a speed vector V t determined from the speed limit and the vector T from the midpoint q to the target point p so as to accelerate or decelerate with respect to the speed of V t ⁇ 1.
  • V t a speed vector V t determined from the speed limit and the vector T from the midpoint q to the target point p so as to accelerate or decelerate with respect to the speed of V t ⁇ 1.
  • step S2104 the velocity vector v of the UAV 14 is calculated.
  • the calculation method is the same as that in step S1106.
  • step S2106 UAV14 and updates the control data u order to fly at a velocity vector V t of the speed limit set in step S2102.
  • between an arbitrary velocity vector V t and a current velocity vector v is obtained, and an allowable error for satisfying the arbitrary velocity is ⁇ v,
  • step S2108 the control data u is updated.
  • the control data u is
  • the flight of the UAV 14 is controlled so as to have an arbitrary speed according to the input of the speed limit for acceleration or deceleration.
  • the third embodiment of the present invention is an example of simultaneously controlling the flight of N UAVs 14 in the configuration of FIG.
  • FIG. 10 shows a situation in which N UAVs 14 form a flight starting from UAV 14 # 1.
  • Each UAV 14 is provided with two markers that can be detected by the position measurement sensor 10.
  • UAV14 # midpoint of A 1 and point B 1 point 1 is assumed to correspond to the target point p of the first embodiment
  • the middle point of the Nth UAV 14 is q
  • the target point of the (N ⁇ 1) th UAV 14 is p.
  • the positions of the points A 2 and B 2 of the UAV 14 # 2 are set according to the settings of the midpoint coordinates of the points A 1 and B 1 of the UAV 14 # 1 and the distance L.
  • the azimuth and UAV # 2 speed are controlled.
  • the points A N and B N of the UAV 14 # N are made to correspond to the points q 1 and q 2 of the first embodiment, and the target point p is the point of the UAV 14 # N-1 that is flying one before.
  • the midpoint of A N-1 and point B N-1 is the target point p, the position, azimuth, and speed of the UAV 14 # N are controlled.
  • the movements of a plurality of UAVs 14 can be simultaneously controlled so as to fly at a constant speed. According to the present embodiment, it is possible to organize N UAVs 14 with UAV 14 # 1 at the head.
  • the position / orientation detection unit 30, the speed control unit 32, and the flight command conversion unit 34 of the present embodiment perform the same process for the first UAV 14 as in the first embodiment. Thereafter, the following processing is performed for the second and subsequent UUAVs 14.
  • the position / orientation detection unit 30 of this embodiment is based on the three-dimensional coordinates of each of the Nth markers measured by the position measurement sensor 10 and the midpoint of the (N ⁇ 1) th UAV 14 obtained in advance. , The midpoint of the three-dimensional coordinates of each of the Nth UAV14 markers, the distance
  • the speed control unit 32 Based on the distance from the midpoint q of the Nth UAV 14 to the target point p of the (N-1) th UAV 14, the speed control unit 32 obtains the control data u for the Nth UAV 14 from the midpoint q and the target Update so that the velocity vector V 0 is determined from the point p.
  • the flight command conversion unit 34 calculates flight command data in the Nth UAV 14 based on the control data u updated for the Nth UAV 14 and the azimuth angle ⁇ calculated for the Nth UAV 14. The movement of the Nth UAV 14 is controlled based on the calculated flight command data.
  • the speed vector V 0 is not set, but the speed vector V t is controlled by giving a speed limit by acceleration or deceleration as in the second embodiment. Also good.
  • Position measurement sensor 12 Target location 14
  • UAV 20 arithmetic unit 30 position and direction detection unit 32 speed control unit 34 flight command conversion unit 50 communication unit 100 flight control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The objective of the present invention is to enable an unmanned aerial vehicle to be operated freely and controlled to fly stably. On the basis of three-dimensional coordinates of each marker, measured by means of a position measuring sensor, and on the basis of a preset target point at a target location of a UAV, a position and azimuth detecting unit calculates a midpoint of the three-dimensional coordinates of each marker, the distance from the midpoint to the target point, and the azimuth angle of a line segment joining the three-dimensional coordinates of each marker, relative to the target point in a global coordinate system. On the basis of the distance to the target point, a velocity control unit updates control data for controlling a velocity vector of the UAV, in such a way as to achieve a velocity vector defined from the midpoint and the target point. A flight command converting unit calculates flight instruction data for the UAV on the basis of the updated control data and the calculated azimuth angle, and controls the operation of the UAV on the basis of the calculated flight instruction data.

Description

飛行制御装置、方法、プログラム、及び記憶媒体Flight control apparatus, method, program, and storage medium
 本発明は、飛行制御装置、方法、プログラム、及び記憶媒体に係り、特に、無人飛行機を制御する飛行制御装置、方法、プログラム、及び記憶媒体に関する。 The present invention relates to a flight control apparatus, method, program, and storage medium, and more particularly, to a flight control apparatus, method, program, and storage medium for controlling an unmanned airplane.
 クアッドロータ型UAV(Unmanned Aerial Vehicle)は4つのプロペラを持ち、それぞれのプロペラに与える揚力を制御することにより飛行操縦する無人飛行機である。ドローンと呼ばれる無人飛行機の多くは、クアッドロータ型UAVの一種である。以降で扱う無人飛行機をUAVと略称する。 The quad-rotor type UAV (Unmanned Aerial Vehicle) is an unmanned airplane that has four propellers and controls the lift applied to each propeller. Many unmanned airplanes called drones are a kind of quadrotor type UAV. The unmanned airplane that will be handled hereinafter is abbreviated as UAV.
 一般的に、UAVの姿勢を計測するために、図11に示すように機体にローカル座標系が設定される。UAVの前進方向をX軸、X軸と垂直な方向をY軸、重力とは逆方向をZ軸とする。 Generally, in order to measure the UAV attitude, a local coordinate system is set on the aircraft as shown in FIG. The UAV forward direction is the X axis, the direction perpendicular to the X axis is the Y axis, and the direction opposite to gravity is the Z axis.
 また、UAVの三次元位置を計測するため、図12に示すように、ある基準となるグローバル座標系を設定する。GPSでは世界座標系とした三次元座標となり、モーションキャプチャシステムではその計測座標系がグローバル座標系となる。UAVの重心すなわちUAVの位置(ローカル座標系の原点)はグローバル座標系の点P=(X,Y,Z)として表現する。また、UAVの姿勢はグローバル座標系に対するローカル座標系の回転角で表現し、X軸周りの回転はロール回転(回転角φ)、Y軸周りの回転はピッチ回転(回転角ω)、Z軸周りの回転はヨー回転(回転角θ)と呼ばれる。UAVの飛行運動は、4つのプロペラに与える揚力を変化させることにより、X軸周りの回転、Y軸周りの回転、Z軸周りの回転を発生させる。Y軸周りの回転はX軸方向の並進運動を生み出し、X軸周りの回転はY軸方向の並進運動を生み出す。Z軸周りの回転は方位の回転を生み出し、同じ揚力が同時に4つのプロペラに与えられたとき、その強弱によってZ軸方向の並進運動(高度の昇降)を生み出す。 In addition, in order to measure the three-dimensional position of the UAV, as shown in FIG. 12, a certain global coordinate system is set. In GPS, the coordinate system is a three-dimensional coordinate system, and in the motion capture system, the measurement coordinate system is a global coordinate system. The center of gravity of the UAV, that is, the position of the UAV (the origin of the local coordinate system) is expressed as a point P = (X, Y, Z) in the global coordinate system. The UAV posture is expressed by the rotation angle of the local coordinate system with respect to the global coordinate system. The rotation around the X axis is roll rotation (rotation angle φ), the rotation around the Y axis is pitch rotation (rotation angle ω), and the Z axis. The rotation around is called yaw rotation (rotation angle θ). The flight movement of the UAV generates rotation about the X axis, rotation about the Y axis, and rotation about the Z axis by changing the lift applied to the four propellers. Rotation around the Y axis produces a translational motion in the X axis direction, and rotation around the X axis produces a translational motion in the Y axis direction. Rotation around the Z-axis produces azimuthal rotation, and when the same lift is applied to the four propellers simultaneously, it produces a translational movement (high elevation) in the Z-axis direction.
 グローバル座標系において所定の座標値(X,Y,Z)と方位θが与えられたとき、UAVの現在位置P=(X,Y,Z)と現在方位θから、その所定の座標値の位置へ飛行して所定方位に機体を向けるためには、UAVの姿勢と高度を制御する必要がある。非特許文献1には、UAVの運動方程式と角運動方程式に基づいたバックステッピング制御が公開されている。非特許文献2では、AR Drone 2.0(市販の低価格なUAV)に関する飛行運動制御法が公開されている。従来技術の多くは、グローバル座標系における飛行の軌跡として離散的な所定位置と所定方位が与えられ、UAVが各点と各方位を追跡するようにその運動が制御される。 When given coordinate values (X d , Y d , Z d ) and azimuth θ d are given in the global coordinate system, the UAV current position P = (X, Y, Z) and the current azimuth θ are In order to fly to the position of the coordinate value and point the aircraft in a predetermined direction, it is necessary to control the attitude and altitude of the UAV. Non-Patent Document 1 discloses backstepping control based on UAV equations of motion and angular equations of motion. Non-Patent Document 2 discloses a flight motion control method related to AR Drone 2.0 (commercially available low-cost UAV). In many of the conventional technologies, discrete predetermined positions and predetermined directions are given as flight trajectories in the global coordinate system, and the movement is controlled so that the UAV tracks each point and each direction.
 さらに、UAVには空間中を自由自在に飛行する能力があるため、人の代わりとなるロボットとして活躍することができる.非特許文献3では,UAVを人と協調作業するための道具として使われており、非特許文献4には、複数のUAVを使って空間中に網を張り、人とUAVがボールをやり取りする動作として複数のUAVの運動を制御する方法が公開されている。 Furthermore, since UAV has the ability to fly freely in space, it can play an active role as a robot that replaces people. In Non-Patent Document 3, UAV is used as a tool for collaborative work with humans. In Non-Patent Document 4, a plurality of UAVs are used to set up a network in the space, and humans and UAVs exchange balls. A method for controlling movements of a plurality of UAVs as an operation is disclosed.
 UAVの飛行を自由自在に制御する課題は、大まかに3つに大別でき、ホバリング(hovering)、軌跡追跡(trajectory tracking)、パスフォロー(path following)と呼ばれる。ホバリングは、与えられた位置と方位に留まるよう飛行を維持する。軌跡追跡では、与えられた経路(空間中の離散的な三次元位置と方位)に沿ってリアルタイムに追跡するよう制御する。これに対して、パスフォローは、リアルタイム性は問わないが、与えられた空間中の三次元位置と方位において、何らかの空間中の拘束条件を与えて飛行を制御する。非特許文献1と非特許文献2によれば、軌跡追跡の課題に対して、所定の経路に従って飛行するように、UAVの飛行運動を適切に制御することができる。しかしながら、これらの技術は所定の経路に沿って目標地に到達することを目的とした制御であるため、UAVの安定した飛行が保証されていない。 The tasks for freely controlling UAV flight can be roughly divided into three categories, hovering, trajectory tracking, and path following. Hovering keeps flying to stay in a given position and orientation. In trajectory tracking, control is performed so that tracking is performed in real time along a given route (a discrete three-dimensional position and direction in space). On the other hand, although the path follow does not matter in real time, the flight is controlled by giving a constraint condition in some space at a given three-dimensional position and orientation in the space. According to Non-Patent Document 1 and Non-Patent Document 2, it is possible to appropriately control the flight motion of the UAV so as to fly according to a predetermined route with respect to the problem of trajectory tracking. However, since these techniques are controls aimed at reaching a target location along a predetermined route, stable flight of UAV is not guaranteed.
 これに対して、パスフォローは障害物あるいは人との衝突を避けるため、特定の場所を飛行しないように空間中に拘束条件を設定することができる。また、飛行運動中のトラブルを回避するため、UAVには多様なセンサやカメラが取り付けられている場合がある。例えば、超音波センサは地面あるいは床からの高度を計測し、ジャイロセンサと加速度センサによって機体の速度と姿勢を計測することができる。また、移動物体を検出しながら、空間中を自律的に飛行させることにカメラが利用されている。これらの機体から計測した空間情報や画像情報を使うことも考えられるが、大半のUAVに内蔵されているセンサの精度はミリ単位での正確な精度で計測できることを保証しておらず、別の手段を使って機体の正確な位置と方位を計測する必要がある。さらに、これらの技術も目標地に到達することを目的とした制御であるため、UAVの安定した飛行が保証されているものではなかった。 On the other hand, in order to avoid a collision with an obstacle or a person in the path follow, a constraint condition can be set in the space so as not to fly in a specific place. In addition, in order to avoid troubles during flight movement, various sensors and cameras may be attached to the UAV. For example, the ultrasonic sensor can measure the altitude from the ground or the floor, and can measure the speed and posture of the aircraft by using a gyro sensor and an acceleration sensor. Cameras are used to fly autonomously in space while detecting moving objects. Although it is conceivable to use spatial information and image information measured from these aircraft, the accuracy of sensors built into most UAVs is not guaranteed to be measured with accurate accuracy in millimeters. It is necessary to measure the exact position and orientation of the aircraft using the means. Furthermore, since these technologies are also controlled for reaching the target location, stable flight of UAV has not been guaranteed.
 本発明は、上記問題点を解決するために成されたものであり、無人飛行機を自由自在に操作し、かつ、安定的に飛行させるように制御できる飛行制御装置、方法、プログラム、及び記憶媒体を提供することを目的とする。 The present invention has been made to solve the above-described problems, and is a flight control device, method, program, and storage medium that can control an unmanned airplane to operate freely and stably fly. The purpose is to provide.
 上記目的を達成するために、第1の発明に係る飛行制御装置は、UAV(Unmanned Aerial Vehicle)に付与され、かつ、マーカ間の距離が既知の複数のマーカの各々の三次元座標を計測する位置計測センサと、前記位置計測センサによって計測された前記マーカの各々の三次元座標と、予め設定された前記UAVの目標地の目標点とに基づいて、前記マーカの各々の三次元座標の中点、前記中点からの前記目標点までの距離、及びグローバル座標系における前記目標点に対する前記マーカの各々の三次元座標を結んだ線分の方位角を算出する位置方位検出部と、前記目標点までの距離に基づいて、前記UAVの速度ベクトルを制御するための制御データを、前記中点及び前記目標点から定められた速度ベクトルとなるように更新する速度制御部と、更新された前記制御データと、算出された前記方位角とに基づいて、前記UAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記UAVの運動を制御する飛行コマンド変換部と、を含んで構成されている。 In order to achieve the above object, a flight control apparatus according to a first aspect of the present invention measures the three-dimensional coordinates of each of a plurality of markers that are assigned to a UAV (Unmanned Aerial Vehicle) and the distance between the markers is known. Based on the position measurement sensor, the three-dimensional coordinates of each of the markers measured by the position measurement sensor, and the preset target point of the UAV target location, A position and direction detection unit that calculates a point, a distance from the midpoint to the target point, and an azimuth angle of a line segment connecting each three-dimensional coordinate of the marker with respect to the target point in a global coordinate system; and the target A speed control unit for updating control data for controlling the speed vector of the UAV based on a distance to a point so as to become a speed vector determined from the middle point and the target point; Flight command conversion for calculating flight command data in the UAV based on the updated control data and the calculated azimuth, and controlling movement of the UAV based on the calculated flight command data Part.
 第2の発明に係る飛行制御方法は、位置計測センサが、UAV(Unmanned Aerial Vehicle)に付与され、かつ、マーカ間の距離が既知の複数のマーカの各々の三次元座標を計測するステップと、位置方位検出部が、前記位置計測センサによって計測された前記マーカの各々の三次元座標と、予め設定された前記UAVの目標地の目標点とに基づいて、前記マーカの各々の三次元座標の中点、前記中点からの前記目標点までの距離、及びグローバル座標系における前記目標点に対する前記マーカの各々の三次元座標を結んだ線分の方位角を算出するステップと、速度制御部が、前記目標点までの距離に基づいて、前記UAVの速度ベクトルを制御するための制御データを、前記中点及び前記目標点から定められた速度ベクトルとなるように更新するステップと、飛行コマンド変換部が、更新された前記制御データと、算出された前記方位角とに基づいて、前記UAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記UAVの運動を制御するステップと、を含んで実行することを特徴とする。 The flight control method according to the second invention includes a step of measuring a three-dimensional coordinate of each of a plurality of markers provided with a position measurement sensor in a UAV (Unmanned Aerial Vehicle) and having a known distance between the markers; The position / orientation detection unit is configured to determine the three-dimensional coordinates of each of the markers based on the three-dimensional coordinates of each of the markers measured by the position measurement sensor and the preset target point of the target location of the UAV. A step of calculating a midpoint, a distance from the midpoint to the target point, and an azimuth angle of a line segment connecting each three-dimensional coordinate of the marker with respect to the target point in a global coordinate system; Based on the distance to the target point, the control data for controlling the speed vector of the UAV is updated so as to be a speed vector determined from the midpoint and the target point. And a flight command conversion unit calculates flight command data in the UAV based on the updated control data and the calculated azimuth angle, and the UAV based on the calculated flight command data And controlling the movement of the robot.
 第3の発明に係るプログラムは、コンピュータを、第1の発明に係る飛行制御装置の各部として機能させるためのプログラムである。 The program according to the third invention is a program for causing a computer to function as each part of the flight control device according to the first invention.
 第4の発明に係る記憶媒体は、コンピュータを、第1の発明に係る飛行制御装置の各部として機能させるためのプログラムを格納する記憶媒体である。 A storage medium according to a fourth invention is a storage medium for storing a program for causing a computer to function as each part of the flight control device according to the first invention.
 本発明の飛行制御装置、方法、プログラム、及び記憶媒体によれば、位置計測センサによって計測されたマーカの各々の三次元座標と、予め設定されたUAVの目標地の目標点とに基づいて、マーカの各々の三次元座標の中点、中点からの目標点までの距離、及びグローバル座標系における目標点に対するマーカの各々の三次元座標を結んだ線分の方位角を算出し、目標点までの距離に基づいて、UAVの速度ベクトルを制御するための制御データを、中点及び目標点から定められた速度ベクトルとなるように更新し、更新された制御データと、算出された方位角とに基づいて、UAVにおける、飛行指令データを算出し、算出した飛行指令データに基づいてUAVの運動を制御することにより、無人飛行機を自由自在に操作し、かつ、安定的に飛行させるように制御できる、という効果が得られる。 According to the flight control device, method, program, and storage medium of the present invention, based on the three-dimensional coordinates of each marker measured by the position measurement sensor and the target point of the preset UAV target location, Calculate the midpoint of each 3D coordinate of the marker, the distance from the midpoint to the target point, and the azimuth of the line segment connecting each 3D coordinate of the marker to the target point in the global coordinate system. The control data for controlling the speed vector of the UAV is updated based on the distance up to the speed vector determined from the midpoint and the target point, and the updated control data and the calculated azimuth angle Based on the above, the flight command data in the UAV is calculated, and the UAV motion is controlled based on the calculated flight command data. To be controlled so as to fly, the effect is obtained that.
本発明の実施形態に係る飛行制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the flight control apparatus which concerns on embodiment of this invention. UAVの飛行を制御する状況の一例を示す図である。It is a figure which shows an example of the condition which controls the flight of UAV. 本発明の実施形態に係る飛行制御装置における飛行制御処理ルーチンを示すフローチャートである。It is a flowchart which shows the flight control processing routine in the flight control apparatus which concerns on embodiment of this invention. 飛行制御処理ルーチンにおける位置方位検出処理のフローチャートである。It is a flowchart of the position direction detection process in a flight control processing routine. 点q、及び点q、並びに、目標点pをZ軸方向から視た位置と方位の関係を示す図である。Point q 1, and point q 2, and a view of the target point p indicating the position and orientation of the relationship viewed from Z w axis. 飛行制御処理ルーチンにおける速度制御処理のフローチャートである。It is a flow chart of speed control processing in a flight control processing routine. 飛行コマンド変換処理ルーチンにおける飛行コマンド変換処理のフローチャートである。It is a flowchart of the flight command conversion process in a flight command conversion process routine. 飛行速度を加速又は減速させる場合の一例を示す図である。It is a figure which shows an example in the case of accelerating or decelerating flight speed. 第2の実施形態の飛行制御処理ルーチンにおける速度制御処理のフローチャートである。It is a flowchart of the speed control process in the flight control process routine of 2nd Embodiment. 複数のUAVの空間配置の一例を示す図である。It is a figure which shows an example of the space arrangement | positioning of several UAV. UAVの概観とUAV固定のローカル座標系の一例を示す図である。It is a figure which shows an example of a UAV external appearance, and a UAV fixed local coordinate system. グローバル座標系とUAV固定のローカル座標系の関係の一例を示す図である。It is a figure which shows an example of the relationship between a global coordinate system and a UAV fixed local coordinate system.
 以下、図面を参照して本発明の実施形態を詳細に説明する。本発明の実施形態に係る手法は、UAVの飛行を自由自在に操作し、かつ、安定的にUAVを飛行させる、という課題を解決するものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The technique according to the embodiment of the present invention solves the problem of freely operating UAV flight and allowing the UAV to fly stably.
<本発明の第1の実施形態に係る飛行制御装置の構成> <Configuration of Flight Control Device According to First Embodiment of the Present Invention>
 本発明の第1の実施形態に係るクアッドロータ型UAVの飛行制御装置の構成について説明する。本実施形態は1台のUAVの飛行速度を制御する形態である。図1に示すように、本発明の第1の実施形態に係る飛行制御装置100は、CPUと、RAMと、後述する飛行制御処理ルーチンを実行するためのプログラムや各種データを記憶したROMと、を含むコンピュータで構成することが出来る。この飛行制御装置100は、機能的には図1に示すように位置計測センサ10と、演算部20と、通信部50とを備えている。この構成において、位置計測センサ10は必ずしも構成要素として接続している必要はなく、処理に必要なデータを取得すればよく、演算部20における位置方位検出部30、速度制御部32、及び飛行コマンド変換部34からそれぞれの矢印へのデータの流れは、ハードディスク、RAID装置、CD-ROMなどの記録媒体を利用する、または、ネットワークを介してリモートなデータ資源を利用する形態でもどちらでも構わない。 A configuration of a quadrotor UAV flight control apparatus according to the first embodiment of the present invention will be described. In this embodiment, the flight speed of one UAV is controlled. As shown in FIG. 1, the flight control apparatus 100 according to the first embodiment of the present invention includes a CPU, a RAM, a ROM for storing a program and various data for executing a flight control processing routine to be described later, Can be configured with a computer including Functionally, the flight control apparatus 100 includes a position measurement sensor 10, a calculation unit 20, and a communication unit 50 as shown in FIG. In this configuration, the position measurement sensor 10 does not necessarily have to be connected as a component, and only needs to acquire data necessary for processing. The position / direction detection unit 30, the speed control unit 32, and the flight command in the calculation unit 20 The flow of data from the conversion unit 34 to each arrow may be in the form of using a recording medium such as a hard disk, a RAID device, a CD-ROM, or using remote data resources via a network.
 位置計測センサ10は、UAV14に付与され、かつ、マーカ間の距離が既知の複数のマーカ(点q、及び点qとする)との各々の三次元座標を計測データとして計測する。本実施形態では、位置計測センサ10の例として、モーションキャプチャ装置を利用する。UAV14の目標地12の目標点pの位置は飛行計画に応じて任意に設定し、UAV14には点q、及び点qの位置にセンシング用のマーカが取り付けられている.図2に示す状況において、位置計測センサ10はグローバル座標系において3次元座標を計測するようにセットアップされており、各マーカの3次元座標が、ある一定間隔で逐次計測される。本実施形態は、UAV14に取り付けたマーカ点qとマーカ点qの中点が目標点pに到達するまでに、UAV14を一定速度で飛行するようにその運動を制御する。なお、本実施形態では、マーカの数は2つとしたが、これに限定されるものではなく、3つ以上として、物体間の相対的な位置関係を求めるようにしてもよい。 The position measurement sensor 10 measures, as measurement data, three-dimensional coordinates of each of a plurality of markers (points q 1 and q 2 ) given to the UAV 14 and having known distances between the markers. In this embodiment, a motion capture device is used as an example of the position measurement sensor 10. The position of the target point p of the target location 12 of the UAV 14 is arbitrarily set according to the flight plan, and a sensing marker is attached to the position of the points q 1 and q 2 on the UAV 14. In the situation shown in FIG. 2, the position measurement sensor 10 is set up to measure three-dimensional coordinates in a global coordinate system, and the three-dimensional coordinates of each marker are sequentially measured at a certain interval. In the present embodiment, the movement is controlled so that the UAV 14 flies at a constant speed until the midpoint between the marker point q 1 and the marker point q 2 attached to the UAV 14 reaches the target point p. In the present embodiment, the number of markers is two. However, the number of markers is not limited to this. The number of markers may be three or more, and the relative positional relationship between objects may be obtained.
 演算部20は、位置計測センサ10によりグローバル座標系におけるUAV14の位置と方位を検出する位置方位検出部30と、位置と方位に基づき、UAV14の飛行速度を制御する速度制御部32と、使用するUAV14に応じて指令を送出するための飛行コマンド変換部34とを含んで構成されている。なお、位置方位検出部30、速度制御部32、及び飛行コマンド変換部34の具体的な処理内容は後述の作用の説明において説明する。 The calculation unit 20 uses a position / orientation detection unit 30 that detects the position and orientation of the UAV 14 in the global coordinate system by the position measurement sensor 10, and a speed control unit 32 that controls the flight speed of the UAV 14 based on the position and orientation. And a flight command conversion unit 34 for sending a command in accordance with the UAV 14. The specific processing contents of the position / orientation detection unit 30, the speed control unit 32, and the flight command conversion unit 34 will be described in the description of the operation described later.
 位置方位検出部30は、位置計測センサ10によって計測されたUAV14のマーカの点q、及び点qの三次元座標と、予め設定されたUAV14の目標地12の目標点pとに基づいて、マーカの点q、及び点qの三次元座標の中点q、中点qからの目標点pまでのベクトルTから求まる距離||T||、及びグローバル座標系における目標点pに対するマーカの点q、及び点qの中点qを三次元座標で結んだ線分の方位角θを算出する。 The position / orientation detection unit 30 is based on the three-dimensional coordinates of the marker points q 1 and q 2 of the UAV 14 measured by the position measurement sensor 10 and the target point p of the target location 12 of the UAV 14 set in advance. , Marker point q 1 , and midpoint q of the three-dimensional coordinates of point q 2 , distance || T || determined from vector T from midpoint q to target point p, and target point p in the global coordinate system The azimuth angle θ of the line segment connecting the marker point q 1 and the midpoint q 2 of the point q 2 with three-dimensional coordinates is calculated.
 速度制御部32は、目標点pまでの距離に基づいて、UAV14の速度ベクトルを制御するための制御データuを、中点q及び目標点pから定められた速度ベクトルVとなるように更新する。 Based on the distance to the target point p, the speed control unit 32 updates the control data u for controlling the speed vector of the UAV 14 so that it becomes a speed vector V 0 determined from the midpoint q and the target point p. To do.
 飛行コマンド変換部34は、更新された制御データuと、算出された方位角θとに基づいて、UAV14における、X軸周りの回転速度Vx、Y軸周りの回転速度Vy、Z軸に沿った速度V、及びZ軸周りの回転速度Vθを飛行指令データとして算出し、飛行指令データを通信部50を介してUAV14に送信することで、算出した飛行指令データに基づいてUAV14の運動を制御する。 Based on the updated control data u and the calculated azimuth angle θ, the flight command conversion unit 34 converts the rotation speed V x around the X axis, the rotation speed V y around the Y axis, and the Z axis in the UAV 14. The speed V z along and the rotation speed V θ around the Z axis are calculated as flight command data, and the flight command data is transmitted to the UAV 14 via the communication unit 50, so that the UAV 14 Control movement.
<本発明の第1の実施形態に係る飛行制御装置の作用> <Operation of the flight control apparatus according to the first embodiment of the present invention>
 次に、本発明の第1の実施形態に係る飛行制御装置100の作用について説明する。UAV14のマーカの点q、及び点qの三次元座標の計測を開始すると、飛行制御装置100は、図3に示す飛行制御処理ルーチンを実行する。 Next, the operation of the flight control device 100 according to the first embodiment of the present invention will be described. When the measurement of the three-dimensional coordinates of the marker points q 1 and q 2 of the UAV 14 is started, the flight control device 100 executes a flight control processing routine shown in FIG.
 まず、ステップS100では、位置方位検出部30が、位置計測センサ10によって計測されたUAV14のマーカの点q、及び点qの三次元座標と、予め設定されたUAV14の目標地12の目標点pとに基づいて、マーカの点q、及び点qの三次元座標の中点q、中点qからの目標点pまでのベクトルTから求まる距離||T||、及びグローバル座標系における目標点pに対するマーカの点q、及び点qの中点qを三次元座標で結んだ線分の方位角θを算出する。 First, in step S100, the position / orientation detection unit 30 uses the three-dimensional coordinates of the marker points q 1 and q 2 of the UAV 14 measured by the position measurement sensor 10 and the target of the target location 12 of the UAV 14 set in advance. Based on the point p, the point q 1 of the marker and the center point q of the three-dimensional coordinates of the point q 2 , the distance || T || obtained from the vector T from the center point q to the target point p, and the global coordinates The azimuth angle θ of the line segment connecting the marker point q 1 with respect to the target point p in the system and the midpoint q of the point q 2 by three-dimensional coordinates is calculated.
 次に、ステップS102では、速度制御部32が、目標点pまでの距離に基づいて、UAV14の速度ベクトルを制御するための制御データuを、中点q及び目標点pから定められた速度ベクトルVとなるように更新する。 Next, in step S102, the speed control unit 32 obtains control data u for controlling the speed vector of the UAV 14 based on the distance to the target point p. The speed vector is determined from the midpoint q and the target point p. updated so that the V 0.
 ステップS104では、飛行コマンド変換部34が、更新された制御データuと、算出された方位角θとに基づいて、UAV14における、X軸周りの回転速度Vx、Y軸周りの回転速度Vy、Z軸に沿った速度V、及びZ軸周りの回転速度Vθを飛行指令データとして算出し、飛行指令データを通信部50を介してUAV14に送信することで、算出した飛行指令データに基づいてUAV14の運動を制御する。 In step S104, the flight command conversion unit 34, based on the updated control data u and the calculated azimuth angle θ, in the UAV 14, the rotational speed V x around the X axis and the rotational speed V y around the Y axis. The speed V z along the Z axis and the rotational speed V θ around the Z axis are calculated as flight command data, and the flight command data is transmitted to the UAV 14 via the communication unit 50, whereby the calculated flight command data Based on this, the movement of the UAV 14 is controlled.
 次に、ステップS100の位置方位検出部30の位置方位検出処理の詳細について説明する。 Next, details of the position / orientation detection processing of the position / orientation detection unit 30 in step S100 will be described.
 図4は位置方位検出部30の処理のフロー図である。位置方位検出部30は処理を開始すると、ステップS1000で、グローバル座標系における目標地12の目標点pを設定する。目標点pは操作者が決定した任意の三次元座標でよい。 FIG. 4 is a flowchart of the processing of the position / orientation detection unit 30. When the processing starts, the position / orientation detection unit 30 sets a target point p of the target location 12 in the global coordinate system in step S1000. The target point p may be any three-dimensional coordinate determined by the operator.
 ステップS1002で、位置計測センサ10によって計測されたUAV14のマーカの点q、及び点qの三次元座標を取得する。 In step S1002, the three-dimensional coordinates of the marker points q 1 and q 2 of the UAV 14 measured by the position measurement sensor 10 are acquired.
 ステップS1004で、マーカの点q及び点qの中点qから目標点pまでの距離を算出する。中点qの座標は、q=(q+q)/2により計算する。位置計測センサ10で得た現在のUAV14の位置(中点q)と目標地12の目標点p間の距離を、ベクトルTから||T||=||p-q||の計算により求める。||・||はベクトルのノルム(大きさ)を表す。 In step S1004, the calculated distance from the midpoint q point markers q 1 and point q 2 to the target point p. The coordinates of the midpoint q are calculated by q = (q 1 + q 2 ) / 2. The distance between the current position (midpoint q) of the UAV 14 obtained by the position measurement sensor 10 and the target point p of the target location 12 is obtained from the vector T by calculating || T || = || p−q ||. . || · || represents the norm (size) of the vector.
 ステップS1006で、グローバル座標系における目標点pに対するマーカの点q、及び点qの中点qを三次元座標で結んだ線分の方位角θを算出する。図5に、マーカの点q、及び点q、並びに、目標地12の目標点pをZ軸方向から視た位置と方位の関係を示す。位置方位検出部30では、マーカの点q及び点qの三次元座標の線分が、目標点pの線分に対して直交する線分となるように回転角(方位角θ)をベクトル内積の関係を用いて算出する。 In step S1006, the azimuth angle θ of the line segment connecting the point q 1 of the marker with respect to the target point p in the global coordinate system and the midpoint q of the point q 2 by three-dimensional coordinates is calculated. 5, a point q 1 marker, and point q 2, and shows the position and orientation relationship between the target point p of the target areas 12 as viewed from the Z w axis. In the position / orientation detection unit 30, the rotation angle (azimuth angle θ) is set so that the three-dimensional coordinate line segments of the marker points q 1 and q 2 are perpendicular to the line segment of the target point p. Calculated using the vector dot product relationship.
 ステップS1008では、位置方位検出の処理を停止するかを判定し、処理を停止する場合には位置方位検出部30の処理を終了し、終了しない場合にはステップS1000に戻って処理を繰り返す。なお、処理を停止する場合とは、ここでは操作者がUAV14の飛行制御を終了する場合とし、以下の処理においても同様である。 In step S1008, it is determined whether to stop the position / orientation detection process. If the process is stopped, the process of the position / orientation detection unit 30 is terminated. If not, the process returns to step S1000 to repeat the process. Here, the case where the process is stopped is a case where the operator ends the flight control of the UAV 14, and the same applies to the following processes.
 位置方位検出部30では、以上の処理により、中点qから目標点pまでの距離||T||、及び方位角θを算出する。 The position / orientation detection unit 30 calculates the distance || T || from the midpoint q to the target point p and the azimuth angle θ by the above processing.
 次に、ステップS102の速度制御部32の速度制御処理の詳細について説明する。 Next, details of the speed control processing of the speed control unit 32 in step S102 will be described.
 図6は速度制御部32の処理のフロー図である。速度制御部32は処理を開始すると、ステップS1100で、中点qから目標点pまでの距離||T||を取得する。 FIG. 6 is a process flow diagram of the speed control unit 32. When starting the process, the speed control unit 32 acquires a distance || T || from the midpoint q to the target point p in step S1100.
 ステップS1102で、距離||T||が許容距離ΔL未満(||T||<ΔL)であるか否かを判定する。||T||<ΔLであればステップS1104へ移行する。||T||<ΔLでなく、||T||≧ΔLであれば運動を制御するためステップS1106へ移行する。 In step S1102, it is determined whether the distance || T || is less than the allowable distance ΔL (|| T || <ΔL). If || T || <ΔL, the process proceeds to step S1104. If || T || ≧ ΔL instead of || T || <ΔL, the process proceeds to step S1106 to control the motion.
 ステップS1104で、ホバリングにより飛行を維持するように制御する。 In step S1104, control is performed so that the flight is maintained by hovering.
 ステップS1106で、UAV14の速度ベクトルvを算出する。本実施形態では、位置計測センサ10によって点qから点qの三次元位置が入力として与えられるため、逐次、中点qが入力として与えられる。中点qを用いて、時間間隔Δtの間に中点qがベクトルmだけ移動したときの速度ベクトルv=m/Δtを算出する。 In step S1106, the velocity vector v of the UAV 14 is calculated. In the present embodiment, since the three-dimensional position of the point q 2 from the point q 1 by the position measuring sensor 10 is provided as an input, sequentially, given midpoint q as input. Using the midpoint q, the velocity vector v = m / Δt when the midpoint q moves by the vector m during the time interval Δt is calculated.
 ステップS1108で、UAV14を、中点qから目標点pまでのベクトルTから求まる一定速度の速度ベクトルVで飛行させるため制御データuを更新するか否かを判定する。中点qから目標点pまでのベクトルTから求まる一定速度の速度ベクトルVと現在の速度ベクトルvとの絶対差分||V-v||を求め、一定速度を満たすための許容誤差をΔvとする。このとき、||V-v||>Δvのであるか否かを判定する。条件を満たす場合はステップS1110へ移行し、条件を満たさない場合は、ステップS1100へ移行する。 In step S1108, it determines whether the UAV14, updates the control data u order to fly at a speed vector V 0 which constant velocity obtained from the vector T from the midpoint q to the target point p. An absolute difference || V 0 −v || between the constant velocity vector V o obtained from the vector T from the midpoint q to the target point p and the current velocity vector v is obtained, and an allowable error for satisfying the constant velocity is obtained. Let Δv. At this time, it is determined whether or not || V 0 −v || Δv. If the condition is satisfied, the process proceeds to step S1110. If the condition is not satisfied, the process proceeds to step S1100.
 ステップS1110で、制御データuを更新する。制御データuは In step S1110, the control data u is updated. The control data u is
Figure JPOXMLDOC01-appb-I000001

 
により更新する。
Figure JPOXMLDOC01-appb-I000001


Update with
Figure JPOXMLDOC01-appb-I000002

 
はフィードバック制御におけるゲインパラメータであり、ユーザが状況に応じて設定する。更新された制御データuは、飛行コマンド変換部34に出力する。
Figure JPOXMLDOC01-appb-I000002


Is a gain parameter in feedback control and is set by the user according to the situation. The updated control data u is output to the flight command converter 34.
 ステップS1112では、速度制御の処理を停止するかを判定し、処理を停止する場合には速度制御部32の処理を終了し、終了しない場合にはステップS1100に戻って処理を繰り返す。 In step S1112, it is determined whether to stop the speed control process. If the process is stopped, the process of the speed control unit 32 is terminated. If not, the process returns to step S1100 to repeat the process.
 以上の処理によって、速度制御部32は、||T||<ΔL、かつ、||V-v||≦Δvになるまで,フィードバック制御によって制御データuを更新する。 With the above processing, the speed control unit 32 updates the control data u by feedback control until || T || <ΔL and || V 0 −v || ≦ Δv.
 次に、ステップS104の飛行コマンド変換部34の飛行コマンド変換処理の詳細について説明する。 Next, details of the flight command conversion process of the flight command conversion unit 34 in step S104 will be described.
 飛行コマンド変換部34の処理により、速度制御部32より与えられる制御データuと位置方位検出部30で得た方位θを、使用するUAV14に応じて飛行コマンドの飛行指令データへ変換して通信部50から無線経由で指令する。UAV14への飛行コマンドには様々なデータ形式が存在するが、本実施形態では、市販製品のAR Drone 2.0を例にした場合を示す。ただし、それ以外のUAV14の飛行を制御する場合にも、本実施形態を利用できることはもちろんである。 By the processing of the flight command converter 34, the control data u given by the speed controller 32 and the azimuth θ obtained by the position / orientation detector 30 are converted into flight command flight command data according to the UAV 14 to be used. Command from 50 via wireless. There are various data formats for the flight command to the UAV 14, but in the present embodiment, a case where a commercially available product AR Drone 2.0 is taken as an example is shown. However, it is needless to say that this embodiment can also be used when controlling the flight of other UAVs 14.
 図7は飛行コマンド変換部34の処理のフロー図である。飛行コマンド変換部34は処理を開始すると、ステップS1200で、更新された制御データuと、算出された方位角θとの入力を受け付ける。 FIG. 7 is a flowchart of processing of the flight command conversion unit 34. When the process is started, the flight command conversion unit 34 receives input of the updated control data u and the calculated azimuth angle θ in step S1200.
 ステップS1202で、制御データuと、方位角θとを、UAV14へ送信するための飛行指令データへ変換する。UAV14への飛行指令データは、機体に設定されたx軸周りの回転速度V、y軸周りの回転速度V、Z軸に沿った速度Vと、Z軸周りの回転速度Vθになる。制御データuがu=(u,u,u)と与えられるとする。UAV14では、x軸周りの回転がy軸の並進運動を生み出し、y軸周りの回転がx軸の並進運動を生み出するため、本処理では、UAV14に与える飛行指令データを以下(1)~(4)式により変換する。 In step S1202, the control data u and the azimuth angle θ are converted into flight command data for transmission to the UAV 14. Flight command data to the UAV 14 includes a rotation speed V x around the x axis, a rotation speed V y around the y axis, a speed V z along the Z axis, and a rotation speed V θ around the Z axis set in the aircraft. Become. It is assumed that the control data u is given as u = (u x , u y , u z ). In UAV14, rotation around the x-axis produces a translational movement in the y-axis, and rotation around the y-axis produces a translational movement in the x-axis. 4) Convert according to equation.
Figure JPOXMLDOC01-appb-M000003

 
 係数α、α、α、αθはAR Drone 2.0が扱うことができる変換係数であり、パラメータとしてユーザが決めてよく、例えば、α=α=α=αθ=0.1と与える。
Figure JPOXMLDOC01-appb-M000003


The coefficients α x , α y , α z , and α θ are conversion coefficients that can be handled by the AR Drone 2.0, and may be determined by the user as parameters, for example, α x = α y = α z = α θ = 0. Give it one.
 ステップS1204で、通信部50を介して無線通信により(1)~(4)式で算出した飛行指令データをUAV14へ送信する。 In step S1204, the flight command data calculated by the equations (1) to (4) is transmitted to the UAV 14 by wireless communication via the communication unit 50.
 ステップS1206で、飛行コマンド変換の処理を停止するかを判定し、処理を停止する場合には飛行コマンド変換部34の処理を終了し、終了しない場合にはステップS1200に戻って処理を繰り返す。 In step S1206, it is determined whether to stop the flight command conversion process. If the process is stopped, the process of the flight command conversion unit 34 is terminated. If not, the process returns to step S1200 to repeat the process.
 以上により、本実施形態は、位置計測センサ10によってUAV14の位置と方位を算出し、目的地に向かって所定速度で飛行するように、UAV14の飛行運動を制御することができる。なお、目的地の座標を連続的に設定することにより、UAV14の飛行ナビゲーションを実現することができる。 As described above, according to the present embodiment, the position measurement sensor 10 calculates the position and orientation of the UAV 14 and can control the flight movement of the UAV 14 so as to fly at a predetermined speed toward the destination. Note that the flight navigation of the UAV 14 can be realized by continuously setting the coordinates of the destination.
 以上説明したように、第1の発明の実施形態に係る飛行制御装置によれば、位置計測センサによって計測されたマーカの各々の三次元座標と、予め設定されたUAV14の目標地12の目標点とに基づいて、マーカの各々の三次元座標の中点、中点からの目標点までの距離、及びグローバル座標系における目標点に対するマーカの各々の三次元座標を結んだ線分の方位角を算出し、目標点までの距離に基づいて、UAVの速度ベクトルを制御するための制御データを、中点及び目標点から定められた速度ベクトルとなるように更新し、更新された制御データと、算出された方位角とに基づいて、UAVにおける、飛行指令データを算出し、算出した飛行指令データに基づいてUAVの運動を制御することにより、無人飛行機を自由自在に操作し、かつ、安定的に飛行させるように制御できる。 As described above, according to the flight control device according to the embodiment of the first invention, the three-dimensional coordinates of each of the markers measured by the position measurement sensor and the preset target point of the target location 12 of the UAV 14 are set. Based on the above, the midpoint of each 3D coordinate of the marker, the distance from the midpoint to the target point, and the azimuth angle of the line segment connecting each 3D coordinate of the marker to the target point in the global coordinate system Calculating and updating the control data for controlling the velocity vector of the UAV based on the distance to the target point so as to become a velocity vector determined from the middle point and the target point, and the updated control data; Based on the calculated azimuth angle, UAV flight command data is calculated, and the UAV motion is controlled based on the calculated flight command data, so that the unmanned airplane can be operated freely. And, and it can be controlled so as to stably fly.
<本発明の第2の実施形態に係る飛行制御装置の構成及び作用> <Configuration and Action of Flight Control Device According to Second Embodiment of the Present Invention>
 本発明の第2の実施形態は、上記図2の構成において、UAV14の制限速度をVに固定するのでなく、任意の制限速度が与えられたときに、所定の速度で飛行するようUAV14を加速又は減速させて制御する場合の例である。なお、第1の実施形態と同様となる箇所には同一符号を付して説明を省略する。 The second embodiment of the present invention does not fix the speed limit of the UAV 14 to V 0 in the configuration of FIG. 2 described above, but allows the UAV 14 to fly at a predetermined speed when an arbitrary speed limit is given. It is an example in the case of controlling by accelerating or decelerating. In addition, the same code | symbol is attached | subjected to the location similar to 1st Embodiment, and description is abbreviate | omitted.
 図8に、本実施形態の手法により制御されたUAV14の飛行速度を示す。横軸は時間tであり、縦軸は速度vである。図8の左図は、加速した場合(||V||<||V||)であり、図8の右図は、減速した場合(||V||>||V||)である。なお、制限速度の入力として、時系列に制限速度を与えてよい。あるいは、距離||T||の大きさに応じて、ある一定距離に離れた場合は加速させ、ある一定距離以内になったときに減速させるようにしてもよい。 FIG. 8 shows the flight speed of the UAV 14 controlled by the method of this embodiment. The horizontal axis is time t, and the vertical axis is speed v. The left diagram in FIG. 8 shows the case of acceleration (|| V 0 || <|| V 1 ||), and the right diagram in FIG. 8 shows the case of deceleration (|| V 0 ||> || V 1 ||). Note that the speed limit may be given in time series as the speed limit input. Or according to the magnitude | size of distance || T ||, you may make it accelerate when it leaves | separates to a certain fixed distance, and you may make it decelerate when it comes within a certain fixed distance.
 図9は本実施形態の速度制御部32の速度制御処理のフロー図である。 FIG. 9 is a flowchart of the speed control process of the speed control unit 32 of the present embodiment.
 ステップS1102で||T||≧ΔLと判定されると、ステップS2100で、所定の制限速度の入力があるか否かを判定する。制限速度の入力がある場合には、ステップS2102へ移行する。制限速度の入力がある場合には、ステップS2104へ移行する。 If it is determined in step S1102 that || T || ΔL, it is determined in step S2100 whether there is an input of a predetermined speed limit. If there is an input of the speed limit, the process proceeds to step S2102. If there is an input of the speed limit, the process proceeds to step S2104.
 ステップS2102で、制限速度の入力に基づいて、Vt-1の速度に対して加速、又は減速するように、制限速度と中点qから目標点pまでのベクトルTとから定まる速度ベクトルVtを設定する。ここでは、Vt-1の速度に対し制限速度が速ければ加速させるようにVtを設定し、Vt-1の速度に対し制限速度が遅ければ減速させるようにVtを設定する。 In step S2102, based on the input of the speed limit, a speed vector V t determined from the speed limit and the vector T from the midpoint q to the target point p so as to accelerate or decelerate with respect to the speed of V t−1. Set. This sets the V t to accelerate if Hayakere speed limit to the speed of the V t-1, to set the V t to decelerate as late speed limit to the speed of the V t-1.
 ステップS2104で、UAV14の速度ベクトルvを算出する。算出方法はステップS1106と同様である。 In step S2104, the velocity vector v of the UAV 14 is calculated. The calculation method is the same as that in step S1106.
 ステップS2106で、UAV14を、ステップS2102で設定した制限速度の速度ベクトルVで飛行させるため制御データuを更新する。任意の速度の速度ベクトルVと現在の速度ベクトルvとの絶対差分||V-v||を求め、任意の速度を満たすための許容誤差をΔvとして、||V-v||>Δvのであるか否かを判定する。条件を満たす場合はステップS2108へ移行し、条件を満たさない場合は、ステップS1104へ移行する。 In step S2106, UAV14 and updates the control data u order to fly at a velocity vector V t of the speed limit set in step S2102. An absolute difference || V t −v || between an arbitrary velocity vector V t and a current velocity vector v is obtained, and an allowable error for satisfying the arbitrary velocity is Δv, || V t −v || It is determined whether or not> Δv. If the condition is satisfied, the process proceeds to step S2108. If the condition is not satisfied, the process proceeds to step S1104.
 ステップS2108で、制御データuを更新する。制御データuは In step S2108, the control data u is updated. The control data u is
Figure JPOXMLDOC01-appb-I000004

 
により更新する。
Figure JPOXMLDOC01-appb-I000004


Update with
 以上のようにして本実施形態では、加速又は減速の制限速度の入力に応じて任意の速度となるようにUAV14の飛行を制御する。 As described above, in this embodiment, the flight of the UAV 14 is controlled so as to have an arbitrary speed according to the input of the speed limit for acceleration or deceleration.
<本発明の第3の実施形態に係る飛行制御装置の構成及び作用> <Configuration and Action of Flight Control Device According to Third Embodiment of the Present Invention>
 本発明の第3の実施形態は、上記図2の構成において、N台のUAV14の飛行を同時に制御する例である。図10に、UAV14#1を先頭にしてN台のUAV14が編成を組んで飛行する状況を示す。それぞれのUAV14には位置計測センサ10で検出可能な2つのマーカが設置されている。UAV14#1の点Aと点Bの中点が第1の実施形態の目標点pに対応するものとし、UAV14#2の点Aと点Bの中点が第1の実施形態の点qと点qに対応するものとする。以下、N台目のUAV14の中点をq、N-1台目のUAV14の目標点をpとして説明する。各UAV14が互いに衝突しないように、第1の実施形態と同様に速度制御部32において、ΔL=Lと与えて、UAV14間の距離をLとするようにUAV14#2の運動を制御する。 The third embodiment of the present invention is an example of simultaneously controlling the flight of N UAVs 14 in the configuration of FIG. FIG. 10 shows a situation in which N UAVs 14 form a flight starting from UAV 14 # 1. Each UAV 14 is provided with two markers that can be detected by the position measurement sensor 10. UAV14 # midpoint of A 1 and point B 1 point 1 is assumed to correspond to the target point p of the first embodiment, UAV14 # midpoint of A 2 and point B 2 points 2 the first embodiment It corresponds to a q 1 and the point q 2 points. In the following description, it is assumed that the middle point of the Nth UAV 14 is q, and the target point of the (N−1) th UAV 14 is p. In order to prevent the UAVs 14 from colliding with each other, similarly to the first embodiment, the speed control unit 32 gives ΔL = L and controls the movement of the UAV 14 # 2 so that the distance between the UAVs 14 is L.
 この割り当てにより、第1の実施形態1と同様に、UAV14#1の点Aと点Bの中点座標と距離Lの設定に従って、UAV14#2の点Aと点Bの位置と方位、並びにUAV#2の速度が制御される。 As a result of this assignment, as in the first embodiment, the positions of the points A 2 and B 2 of the UAV 14 # 2 are set according to the settings of the midpoint coordinates of the points A 1 and B 1 of the UAV 14 # 1 and the distance L. The azimuth and UAV # 2 speed are controlled.
 同様にして、UAV14#Nの点Aと点Bを実施形態1の点qと点qに対応させ、目標点pについては、1つ前を飛行するUAV14#N-1の点AN-1と点BN-1の中点を目標点pとすることにより、UAV14#Nの位置、方位、並びに速度を制御する。 Similarly, the points A N and B N of the UAV 14 # N are made to correspond to the points q 1 and q 2 of the first embodiment, and the target point p is the point of the UAV 14 # N-1 that is flying one before. By setting the midpoint of A N-1 and point B N-1 as the target point p, the position, azimuth, and speed of the UAV 14 # N are controlled.
 本実施形態において、一定速度で飛行させるように複数のUAV14の運動を同時に制御することができる。本実施形態により、UAV14#1を先頭にしてN台のUAV14の編成飛行を可能とする。 In this embodiment, the movements of a plurality of UAVs 14 can be simultaneously controlled so as to fly at a constant speed. According to the present embodiment, it is possible to organize N UAVs 14 with UAV 14 # 1 at the head.
 本実施形態の位置方位検出部30、速度制御部32、及び飛行コマンド変換部34は1台目のUAV14について上記第1の実施形態と同様に処理を行う。以下、2台目以降のUUAV14について以下の処理を行う。 The position / orientation detection unit 30, the speed control unit 32, and the flight command conversion unit 34 of the present embodiment perform the same process for the first UAV 14 as in the first embodiment. Thereafter, the following processing is performed for the second and subsequent UUAVs 14.
 本実施形態の位置方位検出部30は、位置計測センサ10によって計測されたN台目のマーカの各々の三次元座標と、予め求められたN-1台目のUAV14の中点とに基づいて、N台目のUAV14のマーカの各々の三次元座標の中点、中点からN-1台目のUAV14の中点である目標点pまでの距離||T||、及びグローバル座標系におけるN-1台目のUAV14の中点である目標点pに対するN台目のUAV14のマーカの各々の三次元座標を結んだ線分の方位角θを算出する。 The position / orientation detection unit 30 of this embodiment is based on the three-dimensional coordinates of each of the Nth markers measured by the position measurement sensor 10 and the midpoint of the (N−1) th UAV 14 obtained in advance. , The midpoint of the three-dimensional coordinates of each of the Nth UAV14 markers, the distance || T || from the midpoint to the target point p, which is the midpoint of the (N-1) th UAV14, and the global coordinate system The azimuth angle θ of the line segment connecting the three-dimensional coordinates of each marker of the Nth UAV 14 with respect to the target point p, which is the middle point of the (N−1) th UAV 14, is calculated.
 速度制御部32は、N台目のUAV14の中点qに対するN-1台目のUAV14の目標点pまでの距離に基づいて、N台目のUAV14に対する制御データuを、中点q及び目標点pから定められた速度ベクトルVとなるように更新する。 Based on the distance from the midpoint q of the Nth UAV 14 to the target point p of the (N-1) th UAV 14, the speed control unit 32 obtains the control data u for the Nth UAV 14 from the midpoint q and the target Update so that the velocity vector V 0 is determined from the point p.
 飛行コマンド変換部34は、N台目のUAV14について更新された制御データuと、N台目のUAV14について算出された方位角θとに基づいて、N台目のUAV14における、飛行指令データを算出し、算出した飛行指令データに基づいてN台目のUAV14の運動を制御する。 The flight command conversion unit 34 calculates flight command data in the Nth UAV 14 based on the control data u updated for the Nth UAV 14 and the azimuth angle θ calculated for the Nth UAV 14. The movement of the Nth UAV 14 is controlled based on the calculated flight command data.
 なお、本実施形態の速度制御部32において、速度ベクトルVとするのではなく、第2の実施形態のように、速度ベクトルVとして加速又は減速による制限速度を与えて制御するようにしてもよい。 In the speed control unit 32 of the present embodiment, the speed vector V 0 is not set, but the speed vector V t is controlled by giving a speed limit by acceleration or deceleration as in the second embodiment. Also good.
 なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the gist of the present invention.
10 位置計測センサ
12 目標地
14 UAV
20 演算部
30 位置方位検出部
32 速度制御部
34 飛行コマンド変換部
50 通信部
100 飛行制御装置
10 Position measurement sensor 12 Target location 14 UAV
20 arithmetic unit 30 position and direction detection unit 32 speed control unit 34 flight command conversion unit 50 communication unit 100 flight control device

Claims (8)

  1.  UAV(Unmanned Aerial Vehicle)に付与され、かつ、マーカ間の距離が既知の複数のマーカの各々の三次元座標を計測する位置計測センサと、
     前記位置計測センサによって計測された前記マーカの各々の三次元座標と、予め設定された前記UAVの目標地の目標点とに基づいて、前記マーカの各々の三次元座標の中点、前記中点からの前記目標点までの距離、及びグローバル座標系における前記目標点に対する前記マーカの各々の三次元座標を結んだ線分の方位角を算出する位置方位検出部と、
     前記目標点までの距離に基づいて、前記UAVの速度ベクトルを制御するための制御データを、前記中点及び前記目標点から定められた速度ベクトルとなるように更新する速度制御部と、
     更新された前記制御データと、算出された前記方位角とに基づいて、前記UAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記UAVの運動を制御する飛行コマンド変換部と、
     を含む飛行制御装置。
    A position measuring sensor that is provided to a UAV (Unmanned Aerial Vehicle) and that measures the three-dimensional coordinates of each of a plurality of markers whose distances between the markers are known;
    Based on the three-dimensional coordinates of each of the markers measured by the position measurement sensor and the target point of the target location of the UAV set in advance, the midpoint, the midpoint of each of the markers A position and orientation detection unit that calculates a distance from the target point to the target point, and an azimuth angle of a line segment connecting each three-dimensional coordinate of the marker with respect to the target point in a global coordinate system;
    A speed control unit that updates control data for controlling the speed vector of the UAV based on a distance to the target point so as to be a speed vector determined from the middle point and the target point;
    A flight command conversion unit that calculates flight command data in the UAV based on the updated control data and the calculated azimuth angle, and controls movement of the UAV based on the calculated flight command data When,
    Including flight control device.
  2.  前記速度制御部は、前記中点及び前記目標点から定められた速度ベクトルを一定とし、あるいは、前記中点及び前記目標点から定められた速度ベクトルを加速又は減速させた任意の速度ベクトルとして、前記制御データを更新する請求項1に記載の飛行制御装置。 The speed control unit makes the speed vector determined from the midpoint and the target point constant, or as an arbitrary speed vector obtained by accelerating or decelerating the speed vector determined from the midpoint and the target point, The flight control apparatus according to claim 1, wherein the control data is updated.
  3.  前記UAVをN台のUAVとし、N-1台目のUAVの中点をN台目のUAVの前記目標点とし、
     前記位置方位検出部は、前記位置計測センサによって計測された前記N台目の前記マーカの各々の三次元座標と、予め求められた前記N-1台目の前記UAVの中点とに基づいて、前記N台目の前記UAVの前記マーカの各々の三次元座標の中点、前記中点からN-1台目のUAVの中点である前記目標点までの距離、及びグローバル座標系におけるN-1台目のUAVの中点である前記目標点に対する前記N台目の前記UAVの前記マーカの各々の三次元座標を結んだ線分の方位角を算出し、
     前記速度制御部は、前記N台目の前記UAVの前記中点に対する前記目標点までの距離に基づいて、前記N台目の前記UAVに対する前記制御データを、前記中点及び前記目標点から定められた速度ベクトルとなるように更新し、
     前記飛行コマンド変換部は、前記N台目のUAVについて更新された前記制御データと、前記N台目のUAVについて算出された前記方位角とに基づいて、前記N台目の前記UAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記N台目の前記UAVの運動を制御する請求項1又は請求項2に記載の飛行制御装置。
    The UAV is the N UAVs, the midpoint of the (N-1) th UAV is the target point of the Nth UAV,
    The position / orientation detection unit is based on the three-dimensional coordinates of each of the Nth markers measured by the position measurement sensor and the midpoint of the N−1th UAV obtained in advance. , The midpoint of each of the markers of the Nth UAV, the distance from the midpoint to the target point which is the midpoint of the (N-1) th UAV, and N in the global coordinate system -Calculating the azimuth angle of the line segment connecting the three-dimensional coordinates of each of the markers of the Nth UAV with respect to the target point which is the midpoint of the first UAV;
    The speed control unit determines the control data for the Nth UAV from the midpoint and the target point based on a distance from the midpoint of the Nth UAV to the target point. Updated to the given velocity vector,
    The flight command conversion unit is configured to perform a flight in the Nth UAV based on the control data updated for the Nth UAV and the azimuth calculated for the Nth UAV. The flight control device according to claim 1, wherein command data is calculated, and the movement of the Nth UAV is controlled based on the calculated flight command data.
  4.  位置計測センサが、UAV(Unmanned Aerial Vehicle)に付与され、かつ、マーカ間の距離が既知の複数のマーカの各々の三次元座標を計測するステップと、
     位置方位検出部が、前記位置計測センサによって計測された前記マーカの各々の三次元座標と、予め設定された前記UAVの目標地の目標点とに基づいて、前記マーカの各々の三次元座標の中点、前記中点からの前記目標点までの距離、及びグローバル座標系における前記目標点に対する前記マーカの各々の三次元座標を結んだ線分の方位角を算出するステップと、
     速度制御部が、前記目標点までの距離に基づいて、前記UAVの速度ベクトルを制御するための制御データを、前記中点及び前記目標点から定められた速度ベクトルとなるように更新するステップと、
     飛行コマンド変換部が、更新された前記制御データと、算出された前記方位角とに基づいて、前記UAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記UAVの運動を制御するステップと、
     を含む飛行制御方法。
    A step of measuring a three-dimensional coordinate of each of a plurality of markers provided with a position measurement sensor on a UAV (Unmanned Aerial Vehicle) and having a known distance between the markers;
    The position / orientation detection unit is configured to determine the three-dimensional coordinates of each of the markers based on the three-dimensional coordinates of each of the markers measured by the position measurement sensor and the preset target point of the target location of the UAV. Calculating a midpoint, a distance from the midpoint to the target point, and an azimuth of a line segment connecting each three-dimensional coordinate of the marker with respect to the target point in a global coordinate system;
    A speed control unit updating control data for controlling the speed vector of the UAV based on a distance to the target point so as to become a speed vector determined from the middle point and the target point; ,
    A flight command conversion unit calculates flight command data in the UAV based on the updated control data and the calculated azimuth angle, and moves the UAV based on the calculated flight command data. Controlling step;
    Including flight control method.
  5.  前記速度制御部が更新するステップは、前記中点及び前記目標点から定められた速度ベクトルを一定とし、あるいは、前記中点及び前記目標点から定められた速度ベクトルを加速又は減速させた任意の速度ベクトルとして、前記制御データを更新する請求項4に記載の飛行制御方法。 The step of updating by the speed control unit is an arbitrary one in which the speed vector determined from the midpoint and the target point is constant, or the speed vector determined from the midpoint and the target point is accelerated or decelerated. The flight control method according to claim 4, wherein the control data is updated as a velocity vector.
  6.  前記UAVをN台のUAVとし、N-1台目のUAVの中点をN台目のUAVの前記目標点とし、
     前記位置方位検出部が算出するステップは、前記位置計測センサによって計測された前記N台目の前記マーカの各々の三次元座標と、予め求められた前記N-1台目の前記UAVの中点とに基づいて、前記N台目の前記UAVの前記マーカの各々の三次元座標の中点、前記中点からN-1台目のUAVの中点である前記目標点までの距離、及びグローバル座標系におけるN-1台目のUAVの中点である前記目標点に対する前記N台目の前記UAVの前記マーカの各々の三次元座標を結んだ線分の方位角を算出し、
     前記速度制御部が更新するステップは、前記N台目の前記UAVの前記中点に対する前記目標点までの距離に基づいて、前記N台目の前記UAVに対する前記制御データを、前記中点及び前記目標点から定められた速度ベクトルとなるように更新し、
     前記飛行コマンド変換部が制御するステップは、前記N台目のUAVについて更新された前記制御データと、前記N台目のUAVについて算出された前記方位角とに基づいて、前記N台目の前記UAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記N台目の前記UAVの運動を制御する請求項4又は請求項5に記載の飛行制御方法。
    The UAV is the N UAVs, the midpoint of the (N-1) th UAV is the target point of the Nth UAV,
    The step of calculating the position / orientation detection unit includes the three-dimensional coordinates of each of the Nth markers measured by the position measurement sensor, and the midpoint of the N−1th UAV obtained in advance. Based on the three-dimensional coordinates of each of the markers of the Nth UAV, the distance from the midpoint to the target point which is the midpoint of the (N-1) th UAV, and global Calculating an azimuth angle of a line segment connecting the three-dimensional coordinates of each of the markers of the Nth UAV with respect to the target point which is the middle point of the N-1st UAV in the coordinate system;
    The step of updating by the speed control unit is based on the distance from the middle point of the Nth UAV to the target point to the target point, the control data for the Nth UAV, the middle point and the middle point Update to the speed vector determined from the target point,
    The step of controlling the flight command conversion unit is based on the control data updated for the Nth UAV and the azimuth calculated for the Nth UAV. 6. The flight control method according to claim 4, wherein flight command data in a UAV is calculated, and a motion of the Nth UAV is controlled based on the calculated flight command data. 7.
  7.  コンピュータを、請求項1~請求項3のいずれか1項に記載の飛行制御装置の各部として機能させるためのプログラム。 A program for causing a computer to function as each part of the flight control device according to any one of claims 1 to 3.
  8.  コンピュータを、請求項1~請求項3のいずれか1項に記載の飛行制御装置の各部として機能させるためのプログラムを格納する記憶媒体。 A storage medium for storing a program for causing a computer to function as each part of the flight control device according to any one of claims 1 to 3.
PCT/JP2019/008939 2018-03-08 2019-03-06 Flight control device, method, program, and storage medium WO2019172335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042132A JP2019159488A (en) 2018-03-08 2018-03-08 Flight controller, method, program, and storage medium
JP2018-042132 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019172335A1 true WO2019172335A1 (en) 2019-09-12

Family

ID=67847050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008939 WO2019172335A1 (en) 2018-03-08 2019-03-06 Flight control device, method, program, and storage medium

Country Status (2)

Country Link
JP (1) JP2019159488A (en)
WO (1) WO2019172335A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200528A (en) * 2022-09-15 2022-10-18 杭州申昊科技股份有限公司 Thickness measuring method and device based on thickness measuring unmanned aerial vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509068B1 (en) * 2021-08-26 2023-03-09 경희대학교 산학협력단 Haptic apparatus, haptic system and haptic control method using unmanned aerial vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051864A (en) * 2004-08-10 2006-02-23 Seiko Epson Corp Automatic flight controlling system, and automatic flight controlling method
JP2009544528A (en) * 2006-07-24 2009-12-17 ザ・ボーイング・カンパニー Autonomous vehicle rapid development test bed system and method
JP2013175221A (en) * 2006-07-24 2013-09-05 Boeing Co:The Closed-loop feedback control using motion capture systems
WO2016059930A1 (en) * 2014-10-17 2016-04-21 ソニー株式会社 Device, method, and program
JP2016177640A (en) * 2015-03-20 2016-10-06 三菱電機株式会社 Video monitoring system
WO2017022058A1 (en) * 2015-08-03 2017-02-09 Necソリューションイノベータ株式会社 Location management device, location management method, and computer readable recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051864A (en) * 2004-08-10 2006-02-23 Seiko Epson Corp Automatic flight controlling system, and automatic flight controlling method
JP2009544528A (en) * 2006-07-24 2009-12-17 ザ・ボーイング・カンパニー Autonomous vehicle rapid development test bed system and method
JP2013175221A (en) * 2006-07-24 2013-09-05 Boeing Co:The Closed-loop feedback control using motion capture systems
WO2016059930A1 (en) * 2014-10-17 2016-04-21 ソニー株式会社 Device, method, and program
JP2016177640A (en) * 2015-03-20 2016-10-06 三菱電機株式会社 Video monitoring system
WO2017022058A1 (en) * 2015-08-03 2017-02-09 Necソリューションイノベータ株式会社 Location management device, location management method, and computer readable recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200528A (en) * 2022-09-15 2022-10-18 杭州申昊科技股份有限公司 Thickness measuring method and device based on thickness measuring unmanned aerial vehicle
CN115200528B (en) * 2022-09-15 2022-12-09 杭州申昊科技股份有限公司 Thickness measuring method and device based on thickness measuring unmanned aerial vehicle

Also Published As

Publication number Publication date
JP2019159488A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6758271B2 (en) Flight controls, methods, and programs
US11801938B2 (en) Aircraft control apparatus, control system and control method
US10860040B2 (en) Systems and methods for UAV path planning and control
Thomas et al. Toward image based visual servoing for aerial grasping and perching
AU2017386252B2 (en) Rotor units having asymmetric rotor blades
US10240930B2 (en) Sensor fusion
US10717525B2 (en) Aircraft control apparatus, control system and control method
US20190346562A1 (en) Systems and methods for radar control on unmanned movable platforms
WO2020032058A1 (en) Flight control device, method, and program
Bhargavapuri et al. Vision-based autonomous tracking and landing of a fully-actuated rotorcraft
JP2009173263A (en) Method and system for autonomous tracking of mobile target by unmanned aerial vehicle (uav)
CN103394199A (en) Method for controlling rotary-wing drone to operate photography by on-board camera with minimisation of interfering movements
WO2019203166A1 (en) Flight control device, method, and program
Becker et al. In-flight collision avoidance controller based only on OS4 embedded sensors
Chowdhary et al. Self-contained autonomous indoor flight with ranging sensor navigation
US20240076066A1 (en) Fixed-wing unmanned aerial vehicle capable of high angle-of-attack maneuvering
WO2019172335A1 (en) Flight control device, method, program, and storage medium
Liu et al. An autonomous quadrotor avoiding a helicopter in low-altitude flights
WO2021177139A1 (en) Information processing method, information processing device, and program
WO2019194011A1 (en) Flight control device, method and program
Wang et al. Vision-aided tracking of a moving ground vehicle with a hybrid uav
Phang et al. Autonomous tracking and landing on moving ground vehicle with multi-rotor UAV
He et al. Vision based autonomous landing of the quadrotor using fuzzy logic control
Rossouw et al. An open-source autopilot and source localisation for bio-inspired miniature blimps
Salunkhe et al. Design, trajectory generation and control of quadrotor research platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763714

Country of ref document: EP

Kind code of ref document: A1