[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019172201A1 - Polyurethane foam and shoe sole member - Google Patents

Polyurethane foam and shoe sole member Download PDF

Info

Publication number
WO2019172201A1
WO2019172201A1 PCT/JP2019/008465 JP2019008465W WO2019172201A1 WO 2019172201 A1 WO2019172201 A1 WO 2019172201A1 JP 2019008465 W JP2019008465 W JP 2019008465W WO 2019172201 A1 WO2019172201 A1 WO 2019172201A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane foam
less
jis
measured
soft segment
Prior art date
Application number
PCT/JP2019/008465
Other languages
French (fr)
Japanese (ja)
Inventor
宏生 森
拓磨 南
Original Assignee
アキレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アキレス株式会社 filed Critical アキレス株式会社
Priority to JP2019512847A priority Critical patent/JP7224713B2/en
Publication of WO2019172201A1 publication Critical patent/WO2019172201A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers

Definitions

  • the present invention relates to a polyurethane foam and a sole member that can be used to form a sole member.
  • Polyurethane foam is widely used as a sole member because of its excellent shock absorption.
  • shoe sole members include insole, midsole and outsole.
  • the sole member is required to have durability realized by a small compression set, shock absorption achieved by impact absorption and relaxation force applied to the foot, rebound resilience, and bending resistance.
  • Patent Document 1 describes an invention of a polyurethane foam having both impact absorption and rebound resilience.
  • Patent Document 2 describes an invention of a polyurethane foam having improved bending resistance.
  • a shoe sole member is required to have a further improved lightness without impairing the properties such as durability, impact absorption, rebound resilience, and bending resistance.
  • the present invention provides a polyurethane foam and a shoe sole member that are excellent in light weight without impairing properties such as durability, impact absorption, impact resilience, and bending resistance, and that can be used to form a shoe sole member.
  • the purpose is to provide.
  • the present invention is (1) a polyurethane foam having a soft segment formed from a polyol component and a hard segment formed from a structural part having a urethane bond,
  • the abundance ratio of the soft segment and the hard segment is a mass ratio of the soft segment to the hard segment when the total of the soft segment and the hard segment is 100 parts by mass, and is 70/30 or more and 80/20 or less.
  • the average cell diameter of the polyurethane foam is 30 ⁇ m or more and 100 ⁇ m or less, 90% or more of all the bubbles formed in the polyurethane foam have a bubble diameter of 20 ⁇ m or more and 300 ⁇ m or less,
  • the apparent density of the polyurethane foam measured in accordance with JIS K 7222 is 0.25 g / cm 3 or more and 0.50 g / cm 3 or less,
  • a bending back operation composed of an operation of bending the composite at a central position along the longitudinal direction by bending the half of the composite by 90 ° and returning the half of the composite to the original position is repeated at a speed of 144 times / minute.
  • the maximum impact load is 0.9 kN or less
  • the resilience modulus of the polyurethane foam measured in accordance with JIS K 6255 is 60% or more
  • the compression set rate of polyurethane foam measured in accordance with JIS K 6262 is 20% or less
  • a polyurethane foam formed to have a length of 120 mm, a width of 60 mm, and a thickness of 6 mm is prepared, and a composite is prepared by adhering a resin-impregnated board having a thickness of 2 mm to the polyurethane foam.
  • the gist is a shoe sole member characterized by using the polyurethane foam according to any one of (1) to (8) above.
  • a polyurethane foam and a shoe bottom portion that are excellent in light weight without impairing properties such as durability, shock absorption, impact resilience, and bending resistance, and that can be used to form a shoe sole member. Material can be provided.
  • the polyurethane foam has a soft segment and a hard segment.
  • the soft segment is formed from a structure portion of a polyol component in a polymer structure forming polyurethane, and is a highly flexible molecular chain site.
  • the hard segment is a molecular chain portion formed from a structural portion having a urethane bond portion formed by a reaction between an isocyanate group and a hydroxyl group in a polymer structure forming polyurethane.
  • the hard segment is a rigid molecular chain site that is easily crystallized or aggregated by hydrogen bonding at the urethane bond.
  • the hard segment is formed by a portion excluding a structural portion due to a polyol component.
  • the range of the structure part by the polyol component which forms a soft segment includes the site
  • the structure part of the polyol component that forms the soft segment is a molecular chain site having higher flexibility than the structure part having a urethane bond. Therefore, the ratio between the soft segment and the hard segment has a great influence on the performance of the polyurethane foam.
  • the mass ratio of the soft segment to the hard segment is 70/30 or more and 80/20 when the total ratio of the soft segment and the hard segment is 100 parts by mass.
  • the range is as follows. Polyurethane foam in which the mass ratio of the soft segment to the hard segment exceeds 80/20 cannot satisfy a specific hardness, and is inferior in durability to impact absorption. Moreover, the polyurethane foam whose mass ratio of the soft segment with respect to a hard segment is less than 70/30 becomes hard, and is inferior to shock absorption.
  • the abundance ratio of the soft segment and the hard segment in the present specification is a value obtained in advance according to the blending ratio of the polyol and the isocyanate.
  • a method for specifying the abundance ratio will be described with respect to an example in which the first PTMG described later is used as the polyol component and an isocyanate group-terminated prepolymer and modified MDI are used as the isocyanate component.
  • the isocyanate group-terminated prepolymer is a reaction product of the second PTMG and MDI.
  • the existence ratio of the soft segment and the hard segment can be specified as follows.
  • the abundance ratio (%) of the soft segment is (the total amount of the first PTMG and the amount of the second PTMG component in the isocyanate group-terminated prepolymer) / (the first PTMG amount and the isocyanate group terminal).
  • the abundance ratio (%) of the hard segment can be specified by 100 ⁇ (abundance ratio of the soft segment).
  • the existence ratio of the soft segment and the hard segment can also be specified as follows. That is, the abundance ratio of the soft segment and the hard segment in the polyurethane foam is determined by pyrolysis GC / MS analysis of the polyurethane foam (pyrolysis gas chromatography mass spectrometry) and 1 H-NMR (nuclear magnetic field) of the hydrolyzate of the polyurethane foam. (Resonance) measurement result. More specifically, the pyrolysis product is qualitatively determined by pyrolysis GC / MS analysis of the polyurethane foam. Moreover, a hydrolyzate is obtained by hydrolyzing a polyurethane foam.
  • the polyurethane foam is decomposed into a diamine salt (compound derived from an isocyanate component) and a polyol by hydrolysis. From the integrated value of the 1 H-NMR spectrum of the obtained hydrolyzate, the composition in the polyurethane foam can be identified. From these results, the isocyanate component and the polyol component, which are starting materials, can be converted into parts by mass, and the ratio can be determined.
  • the polyurethane foam of the present invention has a uniform cell having an average cell diameter in a specific range and has no variation, impact absorption, rebound resilience, durability, and flex resistance are also improved. Can do. From the viewpoint of enhancing this effect, the average cell diameter of the polyurethane foam is preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the distribution of the size of the cell diameter formed in the polyurethane foam 90% or more of the cells (cells) formed in the polyurethane foam have a cell diameter of 20 ⁇ m or more and 300 ⁇ m or less. It has a distribution like this.
  • the ratio of the number of bubbles having a certain range of bubble diameters to the whole is an index for determining the degree of variation.
  • the number of bubbles having a specific range of bubble diameters accounting for 90% or more indicates a uniform state without variation.
  • the bubble diameter indicates the cell diameter.
  • the cell diameter distribution of the polyurethane foam can be specified as follows. First, the polyurethane foam is cut at a position selected in advance at random to expose the cut surface. On the cut surface, a predetermined area (for example, a rectangular area having a length of 4 mm and a width of 3 mm) is randomly selected as a selection area. Using a microscope, count the number of all bubbles present in the selected area. Next, the number of bubbles having a bubble diameter of 20 ⁇ m or more and 300 ⁇ m or less in the selected region is measured.
  • a predetermined area for example, a rectangular area having a length of 4 mm and a width of 3 mm
  • the ratio of the total number of bubbles in the selected area to be a, the number of cells having a bubble diameter of 20 ⁇ m to 300 ⁇ m to b, and the ratio of cells having a bubble diameter of 20 ⁇ m to 300 ⁇ m to all cells is It is determined by the formula b / a ⁇ 100 (%).
  • the average bubble diameter can be specified as follows, for example. First, the polyurethane foam is cut at a randomly selected position to expose the cut surface. On the cut surface, a predetermined area (for example, a rectangular area having a length of 4 mm and a width of 3 mm) is randomly selected as a selection area. The number of cells existing in the selected area (the number of all cells) and the diameter of each bubble (cell diameter) are measured using a microscope. The average bubble diameter is specified as an arithmetic average value calculated from each bubble diameter.
  • a predetermined area for example, a rectangular area having a length of 4 mm and a width of 3 mm
  • the apparent density of the polyurethane foam measured in accordance with JIS K7222 is 0.25 g / cm 3 or more and 0.50 g / cm 3 or less.
  • the polyurethane foam has excellent impact absorbability, rebound resilience, durability, A polyurethane foam that retains physical properties such as flexibility can be obtained.
  • Such a polyurethane foam of the present invention can be preferably used for applications such as a shoe sole member in which weight reduction is regarded as important.
  • the polyurethane foam of the present invention has a hardness of 50 or more and 65 or less in accordance with JIS K 7312 and measured using an Asker rubber hardness meter C type.
  • the hardness of the polyurethane foam is 50 or more and 65 or less, shoes using the polyurethane foam as a sole member are excellent in stability at the time of landing.
  • the hardness of polyurethane foam fluctuates under the influence of three variables: the abundance ratio of soft segments and hard segments, average cell diameter, and cell size distribution. However, the hardness is not determined only by setting these three variables within a specific range. On the other hand, in the present invention, it has been realized that the hardness of the polyurethane foam is in the range of 50 to 65 in consideration of the balance of three variables. And, in the present invention, while adjusting the abundance ratio of the soft segment and the hard segment, the average bubble diameter, and the distribution of the bubble diameter, the hardness and the apparent density range are set to a specific range, thereby reducing the weight. However, a polyurethane foam excellent in durability, impact absorbability, impact resilience and flex resistance described later can be obtained.
  • the polyurethane foam of the present invention has a compression set of 20% or less measured in accordance with JIS K 6262.
  • the measurement conditions for measuring the compression set are those of a compression rate of 25%, 40 ° C., and 24 hours.
  • shoes in which the polyurethane foam is used as a shoe sole member may be inferior in generally required durability performance.
  • the polyurethane foam of the present invention has bending resistance. This can be specified by performing the following flexibility confirmation test.
  • a polyurethane foam having a predetermined size (for example, length 120 mm, width 60 mm, thickness 6 mm) is prepared and used as a test piece.
  • a composite in which a resin-impregnated board having a predetermined thickness (for example, 2 mm) is bonded to the test piece is prepared.
  • the bending back operation is repeated at a speed of 144 times / minute.
  • the bending back operation includes an operation A for bending a half of the composite by 90 ° at a central position along the longitudinal direction, and an operation B for returning the half of the composite to the original position. This is an operation of repeating A and the above operation B.
  • the number of bending back operations is counted as one. If the number of bending back operations until the occurrence of cracks in the polyurethane foam is 20,000 times or more, the bending resistance is excellent. In the polyurethane foam of the present invention, as a result of the bending resistance confirmation test, the number of bending back operations until the occurrence of cracks is 20,000 times or more, preferably 30,000 times or more.
  • the resin-impregnated board is a pulp board (impregnated paper) impregnated with synthetic resin, synthetic rubber, natural rubber or the like, and is used as, for example, a core material of an insole or an insole.
  • a commercially available one can be appropriately selected.
  • a trade name “Texon Board 437” manufactured by Vontex, Inc. can be used.
  • the impact absorption of polyurethane foam can be specified by the maximum impact load.
  • the maximum impact load is preferably 0.9 kN or less.
  • the maximum impact load can be specified by the following drop impact test. The smaller the maximum impact load value, the more impact is absorbed.
  • the maximum impact load on the polyurethane foam is 0.9 kN or less, it is possible to obtain a polyurethane foam having an impact absorbability enough to be used as a shoe sole member.
  • a polyurethane foam formed to have a thickness of 12.5 mm is prepared and used as a test piece.
  • a 5.1 kg weight is dropped from a height of 50 mm to collide with the test piece.
  • a bullet-shaped weight W as shown in FIG. 1 may be used.
  • the maximum impact load in that case is specified.
  • the maximum impact load can be measured using, for example, trade name dynaup GRC8200 manufactured by Instron.
  • the polyurethane foam of the present invention preferably has a rebound resilience measured in accordance with JIS K 6255 of 60% or more.
  • the rebound resilience of the polyurethane foam is 60% or more, it is possible to obtain a rebound resilience suitable as a sole member of a sports shoe.
  • the polyurethane foam of the present invention has a relatively small apparent density of not less than 0.25 g / cm 3 and not more than 0.50 g / cm 3 and is excellent in light weight, but also has an impact absorption property. It has a sufficient hardness while being excellent in impact resilience, durability, and bending resistance.
  • the polyurethane foam of the present invention can be formed by reacting a polyurethane raw material composition containing a polyol component, an isocyanate component, a foaming agent, a catalyst, and a foam stabilizer.
  • the polyol component becomes a material for forming the structure portion of the soft segment of the polyurethane foam.
  • Examples of the polyol component that is a material for forming the structural part include polyether polyol and polyester polyol.
  • polyether polyol for example, a polyether polyol obtained by ring-opening polymerization of alkylene oxide is suitable.
  • alkylene oxide examples include propylene oxide (PO), ethylene oxide (EO), butylene oxide, and the like. These may be used alone or in combination of two or more.
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, tetramethylene ether glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, sucrose, etc.
  • An added polyether polyol may be used.
  • polyester polyol examples include an aliphatic carboxylic acid such as malonic acid, succinic acid, or adipic acid, or an aromatic carboxylic acid such as phthalic acid, and a polyhydric alcohol such as ethylene glycol, diethylene glycol, or propylene glycol. Those obtained by condensation can be used.
  • the range of the polyol component includes the polyol used for reacting with the isocyanate, and includes, for example, the compounds shown in ( ⁇ ), ( ⁇ ), and ( ⁇ ) described later. *
  • the polyol component is preferably a polyether polyol having a number average molecular weight of 300 to 3,500, an average functional group number of 2 to 3, and an average hydroxyl value of 35 mgKOH / g to 200 mgKOH / g.
  • polytetramethylene ether glycol also referred to as first PTMG
  • two or more kinds of first PTMGs having different number average molecular weights may be mixed and used as the polyol component.
  • the number average molecular weight of the polyol component is less than 300, and / or when the average hydroxyl value exceeds 200 mgKOH / g, the cell diameter of the resulting urethane foam tends to be non-uniform and flexibility is likely to be impaired. The desired bending resistance may not be obtained.
  • the number average molecular weight of the polyol component exceeds 3500 and / or when the average hydroxyl value is less than 35 mgKOH / g, the existing ratio of the soft segment to the hard segment increases, and the impact absorption of the resulting polyurethane foam is obtained. However, the desired resilience may not be obtained. *
  • crosslinking agent examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, tetramethylene ether glycol, glycerin, pentaerythritol, trimethylolpropane, monoethanolamine, diethanolamine, isopropanolamine, amino Alcohols such as ethylethanolamine, sucrose, sorbitol and glucose can be used. Of these, those having 3 or more functional groups are preferred.
  • the hard segment is formed by a structure part having a urethane bond part formed by a reaction between an isocyanate group and a hydroxyl group, and the material for forming the structure part includes an isocyanate component.
  • Specific examples include aromatic isocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and isocyanate group-terminated prepolymers.
  • an isocyanate component for reacting with a polyol 4,4′-diphenylmethane diisocyanate (4,4′-MDI), polymeric MDI (crude MDI), 2,4-tolylene diisocyanate (2,4 -TDI), or aromatic isocyanates such as 2,6-tolylene diisocyanate (2,6-TDI), aliphatic diisocyanates such as tetramethylene diisocyanate or hexamethylene diisocyanate (HDI), isophorone diisocyanate, hydrogenated TDI, Alternatively, alicyclic diisocyanates such as hydrogenated MDI, or isocyanate group-terminated prepolymers obtained by prepolymerizing these may be used, and these may be used alone or in combination of two or more. Among the above-mentioned compounds, an isocyanate group-terminated prepolymer is preferable as the isocyanate component.
  • Examples of the isocyanate component include those containing an isocyanate group-terminated prepolymer described later and a modified MDI described later.
  • the content ratio of the isocyanate group-terminated prepolymer and the modified MDI is 97 in terms of the ratio of the isocyanate group-terminated prepolymer to the modified MDI when the total amount of the isocyanate group-terminated prepolymer and the modified MDI described later is 100 parts by mass.
  • a range of / 3 to 80/20 is preferred.
  • isocyanate group-terminated prepolymer those having a number average molecular weight of 500 to 4000, an average functional group number of 2 to 3 and an isocyanate group content of 3% to 10% by weight are preferably used.
  • the resulting polyurethane foam When the number average molecular weight of the isocyanate group-terminated prepolymer exceeds 4000 and / or the isocyanate group content is less than 3% by mass, the resulting polyurethane foam is hard to foam and becomes too hard, and the viscosity is too high. Large and easy to mix with other materials.
  • the isocyanate group-terminated prepolymer has a number average molecular weight of less than 500 and / or an isocyanate group content of more than 10% by mass, the resulting polyurethane foam tends to foam easily and becomes too soft, resulting in a desired There is a possibility that impact absorbability and impact resilience cannot be obtained.
  • the isocyanate group-terminated prepolymer can be obtained by reacting a polyol and an isocyanate so that the isocyanate group (NCO group) becomes excessive.
  • Examples of the polyol to be reacted with isocyanate include the following ( ⁇ ), ( ⁇ ), and ( ⁇ ).
  • the polyol to be reacted with isocyanate is preferably a polyether polyol, more preferably polytetramethylene ether glycol (hereinafter referred to as a second PTMG). It is.
  • the range of the second PTMG includes “first PTMG (polyethylene having a number average molecular weight of 300 to 3,500, an average functional group number of 2 to 3, and an average hydroxyl value of 35 mgKOH / g to 200 mgKOH / g”.
  • Tetramethylene ether glycol Tetramethylene ether glycol
  • polytetramethylene ether in which at least one of the number average molecular weight, the average number of functional groups, and the average hydroxyl value is out of the range for satisfying the first PTMG ” Glycol ".
  • aromatic isocyanates aliphatic diisocyanates, or alicyclic diisocyanates can be preferably used as exemplified in the above-mentioned isocyanate component.
  • 4,4′-MDI is preferred.
  • the isocyanate group-terminated prepolymer constituting the isocyanate component is preferably one obtained by reacting the second PTMG with 4,4'-MDI. If the isocyanate group-terminated prepolymer is a prepolymer obtained by reacting the second PTMG with 4,4'-MDI, the crystallinity of the PTMG portion is increased. Therefore, it is easy to obtain a urethane foam with high impact resilience, and the compatibility when used in combination with modified MDI as an isocyanate component is good.
  • the isocyanate group-terminated prepolymer obtained by reacting 4,4′-MDI with the second PTMG has good mixing properties when reacting with the first PTMG used as the polyol component, and has a molecular structure. Tends to be uniform. Therefore, the quality of the urethane foam obtained can be stabilized.
  • Modified MDI As the modified MDI, those having an isocyanate group content of 25% by mass or more and 33% by mass or less are preferably used. This is because such a modified MDI is liquid at room temperature, so that the viscosity of the isocyanate component can be lowered.
  • Modified MDI having an isocyanate group content of less than 25% by mass has little effect of increasing the NCO group content when mixed with an isocyanate group-terminated prepolymer. Therefore, in order to sufficiently increase foamability and reduce the density of the foam while using a modified MDI having an isocyanate group content of less than 25% by mass, the modified MDI must be mixed at a very high ratio. However, in this case, the produced polyurethane foam may not obtain the desired bending resistance. On the other hand, a modified MDI having an isocyanate group content exceeding 33% by mass can increase the NCO group content in a very small amount. However, since the amount of the modified MDI becomes small, the viscosity of the isocyanate group-terminated prepolymer cannot be lowered, and the mixing property when reacting with the first PTMG as the polyol component is deteriorated.
  • modified MDI that is liquid at room temperature
  • polymeric (crude MDI) urethane modified, urea modified, allophanate modified, biuret modified, carbodiimide modified, uretonimine modified, uretdione modified.
  • isocyanurate-modified products From the viewpoint of excellent molecular (crosslinked) structure after reaction with the above-mentioned polyol component, it is preferable to select a polymer (crude MDI) or a carbodiimide-modified product as the modified MDI.
  • Foaming agent water (ion exchange water) can be preferably used.
  • the addition amount of the foaming agent in the polyurethane raw material composition is preferably 0.5 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the aforementioned polyol component. If the addition amount is less than 0.5 parts by mass, foaming is insufficient and the impact resilience is exhibited, but the impact absorption tends to be inferior. When the added amount exceeds 3 parts by mass, cells of polyurethane foam obtained by excessive foaming are rough and the foam state is inferior, such as the inside being easily cracked, and the resilience tends to be inferior.
  • the catalyst is not particularly limited as long as it can be used for producing a polyurethane foam.
  • the catalyst conventionally used include amine catalysts such as triethylenediamine and diethanolamine, and metal catalysts such as bismuth catalyst.
  • the addition amount of the catalyst in the polyurethane raw material composition is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the aforementioned polyol component.
  • the foam stabilizer is not particularly limited as long as it can be used in urethane foam.
  • urethane foam is used as a sole member for performing intense exercise such as sports shoes, higher resilience is required. Therefore, it is preferable to use a silicone compound having a viscosity of 300 mPa ⁇ s (25 ° C.) or more and 2000 mPa ⁇ s (25 ° C.) or less as the foam stabilizer.
  • the viscosity of the silicone compound used as the foam stabilizer is less than 300 mPa ⁇ s (25 ° C.), the foam regulating action is weak, the cell is coarsened, and high rebound resilience is difficult to obtain.
  • the viscosity of the silicone compound used as the foam stabilizer is more preferably 600 mPa ⁇ s (25 ° C.) or more and 1000 mPa ⁇ s (25 ° C.) or less.
  • the viscosity of the silicone compound is a value measured with a B-type rotational viscometer.
  • the addition amount of the silicone compound added as the foam stabilizer is preferably 0.5 parts by mass or more and 9 parts by mass or less with respect to 100 parts by mass of the above-described polyol component.
  • the addition amount of the silicone compound is less than 0.5 parts by mass, the foam regulating action is weak, and the resulting polyurethane foam has a large and uneven cell diameter, low rebound resilience, and desired shock absorption and durability. Is difficult to obtain.
  • the addition amount of the silicone compound exceeds 9 parts by mass, not only the obtained polyurethane foam tends to be inferior in impact resilience, but also a bleed out that the foam stabilizer exudes from the foam surface occurs. There is also a possibility that it may be inferior in handleability.
  • the addition amount of the silicone compound exceeds 5 parts by mass, the desired resilience, impact absorption, and durability can be obtained, but there is a tendency for a tacky feeling (sticky feeling) to occur to the extent that there is no problem in use. is there.
  • the addition amount of the silicone compound is more preferably 0.5 parts by mass or more and 5 parts by mass or less.
  • the polyurethane raw material composition raw material for producing the polyurethane foam of the present invention may further contain other additives as necessary. Also good. Examples of other additives include plasticizers, fillers, antioxidants, defoamers, compatibilizers, colorants, stabilizers, and UV absorbers that can be generally used in the production of polyurethane foam. be able to. The addition amount of other additives may be appropriately selected within a range that does not impair the effects of the present invention.
  • the polyurethane foam is preferably produced by reacting the above-mentioned polyurethane raw material composition by molding.
  • molding is a method in which the polyurethane raw material (stock solution) is poured into a mold (molding die), foamed and cured in the mold, and then demolded to obtain a foam.
  • the polyurethane foam is produced by molding a polyurethane raw material composition, the cell diameter can be made uniform and fine due to the compression effect during foaming. Moreover, when a polyurethane raw material composition is molded, the density of the obtained polyurethane foam can be easily adjusted by the injection amount of the polyurethane raw material composition with respect to the volume in the mold.
  • a polyurethane raw material composition is formed by mixing a polyol component, an isocyanate component, a foaming agent, a catalyst, and a foam stabilizer using a screw. Furthermore, in order to obtain a uniform polyurethane foam with no variation in cell diameter, the screw rotation speed when mixing the polyol component, isocyanate component, foaming agent, catalyst, and foam stabilizer is 2000 rpm or more and 20000 rpm or less. preferable. If the rotational speed is less than 2000 rpm, the dispersion of the bubble diameter is large, and the resulting polyurethane foam tends to be inferior in bending resistance. On the other hand, if it exceeds 20000 rpm, the solidification speed becomes high and the injection into the mold remains incomplete. It will harden.
  • the polyurethane foam of the present invention is a material having both impact absorption and impact resilience, and has a low compression set and excellent durability, and has high bending resistance, hardness and excellent lightness. Therefore, the polyurethane foam of the present invention can be suitably used as, for example, a shoe sole member. When used as a shoe sole member, the polyurethane foam can be used for any of an outsole, a midsole, and an insole.
  • the polyurethane foam of the present invention When the polyurethane foam is used for a shoe sole member, not only the polyurethane foam of the present invention is provided on the entire surface of the shoe sole, but also a recess is formed in a midsole formed of another material, and the polyurethane foam of the present invention is formed there. It is also possible to partially arrange such as inserting. Further, as the shoe sole, the polyurethane foam of the present invention may be used for the midsole, and an outsole made of a rubber material having anti-slip properties may be laminated on the ground contact surface side. In that case, the outsole may be arranged at any location on the midsole ground plane side, or the midsole on the ground plane side may be partially exposed by cutting out a part of the outsole. Good. Since the midsole formed using the polyurethane foam of the present invention is excellent in bending resistance, the midsole will not be cracked even if a load is applied to the boundary between the midsole and the outsole.
  • the polyurethane foam of the present invention is suitable for applications requiring impact absorption, rebound resilience, durability, flex resistance, etc. in addition to shoe sole members, such as inside helmets, protectors, cushioning materials for vehicles, and flooring materials. Can be used for
  • Examples 1 to 3, 7, and 8, Comparative Examples 1, 3, 4, 6 Prepare a mold of a predetermined shape, and as shown in Table 1 and Table 2, the polyol component, isocyanate component, catalyst, foaming agent, and foam stabilizer are mixed in the mold by stirring them using a screw. Injected into. The number of rotations of the screw was set to 3500 rpm. The amount of the polyurethane raw material composition injected into the mold is as shown in the “filling amount” column of Tables 1 and 2.
  • the polyurethane raw material composition is formed by mixing a polyol component, an isocyanate component, a catalyst, a foaming agent, and a foam stabilizer using a screw.
  • the polyurethane raw material composition was injected into the mold, the polyurethane raw material composition was reacted under the condition of a mold temperature of 40 ° C. After the reaction, it was demolded to obtain a polyurethane foam.
  • blending of the material in Table 1, 2 is a mass part.
  • the polyol component, isocyanate component, catalyst, foaming agent, and foam stabilizer in Tables 1 and 2 are as shown below.
  • PTMG polytetramethylene ether glycol (number average molecular weight 2000, hydroxyl value 57.2 mgKOH / g, average number of functional groups 2)
  • PPG polyoxypropylene glycol (number average) The molecular weight is 2200, the hydroxyl value is 51 mgKOH / g, and the average number of functional groups is 2).
  • the amine-based catalyst is triethylenediamine (trade name TEDA-L33, manufactured by Tosoh Corporation), and the bismuth-based catalyst is bismuth catalyst (trade name: Pcat 25, manufactured by Nippon Chemical Industry Co., Ltd.).
  • the foam stabilizer A is a silicone compound (viscosity 900 mPa ⁇ s (25 ° C.)), and the foam stabilizer B is a silicone compound (viscosity 250 mPa ⁇ s (25 ° C.)).
  • the foaming agent is ion exchange water.
  • the isocyanate group-terminated prepolymer is a prepolymer obtained by reacting the second PTMG and 4,4′-MDI (number average molecular weight 1000, average functional group number 2, isocyanate group content 7.9%).
  • the modified MDI is a modified carbodiimide (average number of functional groups: 2, isocyanate group content: 29.0%).
  • Example 4 A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 3000 rpm and the filling amount was changed.
  • Example 5 A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 15000 rpm and the filling amount was changed.
  • Example 6 A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 2500 rpm and the filling amount was changed.
  • Comparative Example 2 A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 1500 rpm and the filling amount was changed.
  • Comparative Example 5 A polyurethane foam was obtained in the same manner as in Comparative Example 3 except that foam stabilizer B was used as the foam stabilizer and the screw rotation speed was 1500 rpm.
  • the hardness of the polyurethane foam was measured using an Asker rubber hardness tester C type according to JIS K 7312. Further, the polyurethane foams obtained in Examples 1 to 8 and Comparative Examples 1 to 6 were appropriately cut to prepare test pieces, and the following measurements were performed using the test pieces. The results are as shown in Tables 1 and 2.
  • a rectangular solid having a length of 15 mm, a width of 15 mm, and a thickness of 10 mm is cut out from the polyurethane foam to obtain a test piece for density measurement, and the apparent density (g / cm 3 ) is measured using this test piece for density measurement in accordance with JIS K7222. It was.
  • Polyurethane foam was cut at randomly selected locations to expose the cut surface. Among the cut surfaces, a rectangular range of 4 mm in length and 3 mm in width was randomly selected to be a selected region. The number of cells present in the selected region (the number of all cells) and the diameter of each bubble (cell diameter) were measured using a microscope. The average bubble diameter ( ⁇ m) was an arithmetic average value calculated from each bubble diameter.
  • Percentage of cells having a bubble diameter in the range of 20 ⁇ m to 300 ⁇ m When the total number of cells is a and the number of cells having a bubble diameter of 20 ⁇ m or more and 300 ⁇ m or less is b, the ratio of cells having a bubble diameter of 20 ⁇ m or more and 300 ⁇ m or less (cells with a bubble diameter of 20 ⁇ m or more and 300 ⁇ m or less are all The ratio of the number of cells to the cell) is determined by the equation b / a ⁇ 100 (%).
  • the ratio of cells having a bubble diameter of 20 ⁇ m to 300 ⁇ m. (%) was identified.
  • a test piece for measuring an impact load was cut from a polyurethane foam into a rectangular parallelepiped shape having a length of 70 mm, a width of 60 mm, and a thickness of 12.5 mm.
  • the maximum impact load was measured by a drop impact test using the test piece for impact load measurement.
  • the drop impact test is performed using a “dynaup GRC8200 (manufactured by Instron)” with a bullet-shaped weight W (iron, 5.1 kg) as shown in FIG. This was done by specifying the maximum impact load (kN) when dropped and collided.
  • compression set A specimen having a diameter of 29 mm and a thickness of 12.5 mm was cut out from the polyurethane foam to obtain a test piece for measuring compression set.
  • the compression set (%) was measured in accordance with JIS K 6262 under the conditions of a compression rate of 25%, 40 ° C., and 24 hours using the above-mentioned compression set test piece.
  • a test piece for bending was cut from a polyurethane foam into a rectangular parallelepiped shape having a length of 120 mm, a width of 60 mm, and a thickness of 6 mm.
  • a composite was prepared by bonding a resin-impregnated board having a thickness of 2 mm (trade name, Texon board 437, manufactured by Vontex Co., Ltd.) to this bending test piece.
  • a bending back operation comprised of an operation of bending the composite at a central position along the longitudinal direction by bending the half of the composite by 90 ° and returning the half of the composite to the original position was repeated at a speed of 144 times / minute. .
  • Example 7 and Comparative Examples 2 and 5 no crack was observed even when the bending back operation was repeated from 20,000 times to less than 30,000 times. In Example 8, no crack was observed even when the bending back operation was repeated from 80,000 times to less than 90,000 times. In Comparative Example 1, no crack was observed even when the bending back operation was repeated from 40,000 times to less than 50,000 times. In Comparative Example 4, cracking was observed when the bending back operation was repeated less than 10,000 times.
  • the polyurethane foam was maintained in the range of hardness of 50 or more and 65 or less even with a low apparent density of 0.5 g / cm 3 or less, and the maximum impact load (kN) was from Comparative Example 1. It was lower than any of 6. That is, all of the examples were found to be excellent in impact absorption while maintaining lightness and hardness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Provided is a polyurethane foam that has outstanding lightness of weight and can be used to form a shoe sole member without sacrificing the properties of durability, shock absorption, rebound resilience, and flex resistance. The polyurethane foam comprises a soft segment formed from a polyol constituent and a hard segment formed from a structure section that includes a urethane bonding section, wherein: the presence ratio of the soft segment and that of the hard segment, expressed as the mass ratio of the soft segment to the hard segment with the total of the soft segment and the hard segment being 100 parts by mass, is in the range of 70/30 to 80/20; the average bubble diameter of the polyurethane foam is 30 µm–100 µm; at least 90% of all air bubbles formed in the polyurethane foam have bubble diameters of 20–300 µm; the apparent density of the polyurethane foam, measured in accordance with JIS K 7222, is 0.25–0.50 g/cm3; and the hardness of the polyurethane foam, measured using a type C Asker durometer in accordance with JIS K 7312 is 50–65.

Description

ポリウレタンフォームおよび靴底部材Polyurethane foam and sole material
 本発明は、靴底部材を形成するために利用可能なポリウレタンフォームおよび靴底部材に関する。 The present invention relates to a polyurethane foam and a sole member that can be used to form a sole member.
 ポリウレタンフォームは、衝撃吸収性に優れることから、靴底部材として汎用されている。汎用される靴底部材の例としては、インソール、ミッドソール及びアウトソールを例示することができる。 Polyurethane foam is widely used as a sole member because of its excellent shock absorption. Examples of commonly used shoe sole members include insole, midsole and outsole.
 また、靴底部材には、圧縮永久歪の小ささにより実現される耐久性、足に負荷される衝撃の吸収力や緩和力により実現される衝撃吸収性、反発弾性および耐屈曲性が要請される。靴底部材が耐久性に優れることで、その靴底部材を用いた靴の継続的な使用がなされても靴底部材の構造と機能を維持することができる。靴底底部が衝撃吸収性に優れることで、運動時の足裏への衝撃が抑制され怪我の発生を防止することができる。靴底部材が反発弾性に優れることで、蹴り出しの際に足の動きを効果的に補助することができる。また、靴底部材が耐屈曲性に優れると、足裏の屈曲動作によって靴底部材に亀裂が入る虞を抑制することができる。 In addition, the sole member is required to have durability realized by a small compression set, shock absorption achieved by impact absorption and relaxation force applied to the foot, rebound resilience, and bending resistance. The Since the sole member is excellent in durability, the structure and function of the sole member can be maintained even if the shoe using the sole member is continuously used. Since the sole of the shoe sole is excellent in shock absorption, the impact on the sole during exercise can be suppressed and injury can be prevented. Since the sole member is excellent in rebound resilience, it is possible to effectively assist the movement of the foot when kicking out. Moreover, if the sole member is excellent in bending resistance, it is possible to suppress the possibility that the sole member is cracked by the bending operation of the sole.
 これらの点について、例えば、特許文献1には、衝撃吸収性と反発弾性を同時に有するポリウレタンフォームの発明が記載されている。また、特許文献2には、耐屈曲性を向上させたポリウレタンフォームの発明が記載されている。 Regarding these points, for example, Patent Document 1 describes an invention of a polyurethane foam having both impact absorption and rebound resilience. Patent Document 2 describes an invention of a polyurethane foam having improved bending resistance.
特開2016-069658号公報JP 2016-069658 A 特開2017-105913号公報JP 2017-105913 A
 しかしながら、靴底部材には、上記した耐久性、衝撃吸収性、反発弾性および耐屈曲性といった性質を損なうことなく、軽量性についてもより一層向上したものが要請されている。 However, a shoe sole member is required to have a further improved lightness without impairing the properties such as durability, impact absorption, rebound resilience, and bending resistance.
 本発明は、耐久性、衝撃吸収性、反発弾性および耐屈曲性といった性質を損なうことなく、軽量性にも優れており、靴底部材を形成するために利用可能なポリウレタンフォームおよび靴底部材を提供することを目的とする。 The present invention provides a polyurethane foam and a shoe sole member that are excellent in light weight without impairing properties such as durability, impact absorption, impact resilience, and bending resistance, and that can be used to form a shoe sole member. The purpose is to provide.
 本発明は、(1)ポリオール成分から形成されるソフトセグメントとウレタン結合部を有する構造部から形成されるハードセグメントとを有するポリウレタンフォームであって、
 上記ソフトセグメントと上記ハードセグメントの存在比率が、上記ソフトセグメントと上記ハードセグメントの合計を100質量部とした場合における上記ハードセグメントに対する上記ソフトセグメントの質量比率で、70/30以上80/20以下の範囲であり、
 ポリウレタンフォームの平均気泡径が、30μm以上100μm以下であり、
 ポリウレタンフォーム内に形成された全ての気泡のうちの90%以上の個数の気泡が、20μm以上300μm以下の気泡径を有しており、
 JIS K 7222に準拠して測定されたポリウレタンフォームの見かけ密度が0.25g/cm以上0.50g/cm以下であり、
 JIS K 7312に準拠し、アスカーゴム硬度計C型を用いて測定されたポリウレタンフォームの硬度が50以上65以下である、ことを特徴とするポリウレタンフォーム、
(2)厚みが12.5mmとなるように形成された前記ポリウレタンフォームからなる試験片を準備し、該試験片に5.1kgの錘を50mmの高さから衝突させた場合に、試験片への最大衝撃荷重が0.9kN以下である、上記(1)に記載のポリウレタンフォーム、
(3)前記ポリオール成分が、ポリテトラメチレンエーテルポリオールを含む、上記(1)又は(2)記載のポリウレタンフォーム、
(4)JIS K 6255に準拠して測定されたポリウレタンフォームの反発弾性率が60%以上である、上記(1)から(3)のいずれか一項に記載のポリウレタンフォーム、
(5)JIS K 6262に準拠して測定されたポリウレタンフォームの圧縮永久歪率が20%以下である、上記(1)から(4)のいずれか一項に記載のポリウレタンフォーム、
(6)縦が120mm、横が60mm、且つ、厚みが6mmとなるように形成されたポリウレタンフォームを準備し、該ポリウレタンフォームに厚さが2mmの樹脂含浸ボードを接着した複合体を作成し、該複合体を縦方向に沿った中央位置で複合体の半分を90°折り曲げる操作と該複合体の半分を元の位置に戻す操作で構成される曲げ戻し操作を144回/分の速度で繰り返した場合に、ポリウレタンフォームに亀裂の発生が認められるまでの曲げ戻し操作の回数が3万回以上である、上記(1)から(5)のいずれか一項に記載のポリウレタンフォーム、
(7)モールド成型体である、上記(1)から(6)のいずれか一項に記載のポリウレタンフォーム、
(8)厚みが12.5mmとなるように形成されたポリウレタンフォームからなる試験片を準備し、該試験片に5.1kgの錘を50mmの高さから衝突させた場合に、前記試験片への最大衝撃荷重が0.9kN以下であり、
 JIS K 6255に準拠して測定されたポリウレタンフォームの反発弾性率が60%以上であり、
 JIS K 6262に準拠して測定されたポリウレタンフォームの圧縮永久歪率が20%以下であり、
 縦が120mm、横が60mm、および、厚みが6mmとなるように形成されたポリウレタンフォームを準備し、該ポリウレタンフォームに厚さが2mmの樹脂含浸ボードを接着した複合体を作成し、前記複合体を縦方向に沿った中央位置で該複合体の半分を90°折り曲げる操作と該複合体の半分を元の位置に戻す操作で構成される曲げ戻し操作を144回/分の速度で繰り返した場合に、前記ポリウレタンフォームに亀裂の発生が認められるまでの曲げ戻し操作の回数が3万回以上である、請求項1から7のいずれか一項に記載のポリウレタンフォーム。
(9)上記(1)から(8)のいずれか一項に記載のポリウレタンフォームを用いたことを特徴とする靴底部材、を要旨とする。
The present invention is (1) a polyurethane foam having a soft segment formed from a polyol component and a hard segment formed from a structural part having a urethane bond,
The abundance ratio of the soft segment and the hard segment is a mass ratio of the soft segment to the hard segment when the total of the soft segment and the hard segment is 100 parts by mass, and is 70/30 or more and 80/20 or less. Range,
The average cell diameter of the polyurethane foam is 30 μm or more and 100 μm or less,
90% or more of all the bubbles formed in the polyurethane foam have a bubble diameter of 20 μm or more and 300 μm or less,
The apparent density of the polyurethane foam measured in accordance with JIS K 7222 is 0.25 g / cm 3 or more and 0.50 g / cm 3 or less,
A polyurethane foam characterized in that the polyurethane foam has a hardness of 50 or more and 65 or less in accordance with JIS K 7312 and measured using an Asker rubber hardness tester C type;
(2) When a test piece made of the polyurethane foam formed so as to have a thickness of 12.5 mm is prepared, and a 5.1 kg weight collides with the test piece from a height of 50 mm, the test piece is moved to the test piece. The polyurethane foam according to (1), wherein the maximum impact load is 0.9 kN or less,
(3) The polyurethane foam according to the above (1) or (2), wherein the polyol component comprises a polytetramethylene ether polyol,
(4) The polyurethane foam according to any one of (1) to (3) above, wherein the rebound resilience of the polyurethane foam measured according to JIS K 6255 is 60% or more,
(5) The polyurethane foam according to any one of (1) to (4) above, wherein the compression set of the polyurethane foam measured in accordance with JIS K 6262 is 20% or less,
(6) A polyurethane foam formed to have a length of 120 mm, a width of 60 mm, and a thickness of 6 mm is prepared, and a composite in which a resin-impregnated board having a thickness of 2 mm is bonded to the polyurethane foam is prepared. A bending back operation composed of an operation of bending the composite at a central position along the longitudinal direction by bending the half of the composite by 90 ° and returning the half of the composite to the original position is repeated at a speed of 144 times / minute. The polyurethane foam according to any one of (1) to (5) above, wherein the number of bending back operations until the occurrence of cracks in the polyurethane foam is 30,000 or more,
(7) The polyurethane foam according to any one of (1) to (6) above, which is a molded body,
(8) When a test piece made of polyurethane foam formed so as to have a thickness of 12.5 mm is prepared and a 5.1 kg weight collides with the test piece from a height of 50 mm, the test piece is moved to the test piece. The maximum impact load is 0.9 kN or less,
The resilience modulus of the polyurethane foam measured in accordance with JIS K 6255 is 60% or more,
The compression set rate of polyurethane foam measured in accordance with JIS K 6262 is 20% or less,
A polyurethane foam formed to have a length of 120 mm, a width of 60 mm, and a thickness of 6 mm is prepared, and a composite is prepared by adhering a resin-impregnated board having a thickness of 2 mm to the polyurethane foam. When a bending back operation consisting of an operation of bending a half of the composite at a central position along the vertical direction by 90 ° and an operation of returning the half of the composite to the original position is repeated at a speed of 144 times / minute Further, the polyurethane foam according to any one of claims 1 to 7, wherein the number of bending back operations until the occurrence of cracks in the polyurethane foam is 30,000 or more.
(9) The gist is a shoe sole member characterized by using the polyurethane foam according to any one of (1) to (8) above.
 本発明によれば、耐久性、衝撃吸収性、反発弾性および耐屈曲性といった性質を損なうことなく、軽量性にも優れており、靴底部材を形成するために利用可能なポリウレタンフォームおよび靴底部材を提供することができる。 According to the present invention, a polyurethane foam and a shoe bottom portion that are excellent in light weight without impairing properties such as durability, shock absorption, impact resilience, and bending resistance, and that can be used to form a shoe sole member. Material can be provided.
落下衝撃試験で用いられた錘の形状を説明するための図である。It is a figure for demonstrating the shape of the weight used by the drop impact test.
[ポリウレタンフォーム]
 ポリウレタンフォームは、ソフトセグメントとハードセグメントとを有する。
[Polyurethane foam]
The polyurethane foam has a soft segment and a hard segment.
(ソフトセグメントとハードセグメント)
 ソフトセグメントは、ポリウレタンを形成する高分子構造のうちポリオール成分による構造部から形成され、柔軟性の高い分子鎖部位である。ハードセグメントは、ポリウレタンを形成する高分子構造のうちイソシアネート基とヒドロキシル基との反応により形成されたウレタン結合部を有する構造部から形成された分子鎖部位である。上記ハードセグメントは、ウレタン結合部での水素結合により結晶化あるいは凝集しやすい剛直性の分子鎖部位である。上記ハードセグメントは、ポリオール成分による構造部を除いた部分で形成される。
(Soft segment and hard segment)
The soft segment is formed from a structure portion of a polyol component in a polymer structure forming polyurethane, and is a highly flexible molecular chain site. The hard segment is a molecular chain portion formed from a structural portion having a urethane bond portion formed by a reaction between an isocyanate group and a hydroxyl group in a polymer structure forming polyurethane. The hard segment is a rigid molecular chain site that is easily crystallized or aggregated by hydrogen bonding at the urethane bond. The hard segment is formed by a portion excluding a structural portion due to a polyol component.
 なお、ソフトセグメントを形成するポリオール成分による構造部の範囲には、後述するイソシアネート基末端プレポリマーを形成する際に用いるポリオール(α)、(β)、(γ)から形成される部位が含まれる。 In addition, the range of the structure part by the polyol component which forms a soft segment includes the site | part formed from polyol ((alpha)), ((beta)), and ((gamma)) used when forming the isocyanate group terminal prepolymer mentioned later. .
 ソフトセグメントを形成するポリオール成分による構造部は、ウレタン結合を有する構造部よりも柔軟性の高い分子鎖部位である。そのため、ソフトセグメントとハードセグメントの比率が、ポリウレタンフォームの性能に大きな影響を与える。 The structure part of the polyol component that forms the soft segment is a molecular chain site having higher flexibility than the structure part having a urethane bond. Therefore, the ratio between the soft segment and the hard segment has a great influence on the performance of the polyurethane foam.
(ソフトセグメントとハードセグメントの存在比率)
 本発明のポリウレタンフォームにおいては、ソフトセグメントとハードセグメントの存在比率が、ソフトセグメントとハードセグメントの合計を100質量部とした場合におけるハードセグメントに対するソフトセグメントの質量比率で、70/30以上80/20以下の範囲である。ハードセグメントに対するソフトセグメントの質量比率が80/20を超えたポリウレタンフォームは、特定の硬度を満たすことができず、衝撃吸収性のほか、耐久性に劣る。また、ハードセグメントに対するソフトセグメントの質量比率が70/30未満であるポリウレタンフォームは、硬くなり、衝撃吸収性に劣る。
(Existence ratio of soft segment and hard segment)
In the polyurethane foam of the present invention, the mass ratio of the soft segment to the hard segment is 70/30 or more and 80/20 when the total ratio of the soft segment and the hard segment is 100 parts by mass. The range is as follows. Polyurethane foam in which the mass ratio of the soft segment to the hard segment exceeds 80/20 cannot satisfy a specific hardness, and is inferior in durability to impact absorption. Moreover, the polyurethane foam whose mass ratio of the soft segment with respect to a hard segment is less than 70/30 becomes hard, and is inferior to shock absorption.
(ソフトセグメントとハードセグメントの存在比率の特定方法)
 本明細書におけるソフトセグメントとハードセグメントの存在比率は、ポリオールとイソシアネートの配合比に応じて予め求められる値である。
 例えば、ポリウレタンフォームが形成されるにあたり、ポリオール成分として後述の第1のPTMGを用い、イソシアネート成分として、イソシアネート基末端プレポリマーと変性MDIを用いる例について上記存在比率の特定方法を説明する。尚、本具体例では、上記イソシアネート基末端プレポリマーは第2のPTMGとMDIの反応生成物である。この場合、ソフトセグメントとハードセグメントの存在比率は次のように特定できる。まずソフトセグメントの存在比率(%)は、(第1のPTMGの配合量とイソシアネート基末端プレポリマーにおける第2のPTMGの成分の量の合計)/(第1のPTMGの配合量とイソシアネート基末端プレポリマーの配合量と変性MDIの配合量の合計)×100で特定される。ハードセグメントの存在比率(%)は、100-(ソフトセグメントの存在比率)で特定することができる。
(Method for determining the ratio of soft segments to hard segments)
The abundance ratio of the soft segment and the hard segment in the present specification is a value obtained in advance according to the blending ratio of the polyol and the isocyanate.
For example, when a polyurethane foam is formed, a method for specifying the abundance ratio will be described with respect to an example in which the first PTMG described later is used as the polyol component and an isocyanate group-terminated prepolymer and modified MDI are used as the isocyanate component. In this specific example, the isocyanate group-terminated prepolymer is a reaction product of the second PTMG and MDI. In this case, the existence ratio of the soft segment and the hard segment can be specified as follows. First, the abundance ratio (%) of the soft segment is (the total amount of the first PTMG and the amount of the second PTMG component in the isocyanate group-terminated prepolymer) / (the first PTMG amount and the isocyanate group terminal). The sum of the blending amount of the prepolymer and the blending amount of the modified MDI) × 100. The abundance ratio (%) of the hard segment can be specified by 100− (abundance ratio of the soft segment).
 ソフトセグメントとハードセグメントの存在比率は、次のようにして特定することもできる。すなわち、ポリウレタンフォーム中のソフトセグメントとハードセグメントの存在比率は、ポリウレタンフォームの熱分解GC/MS分析(熱分解ガスクロマトグラフィー質量分析法)およびポリウレタンフォームの加水分解物のH-NMR(核磁気共鳴)測定の結果より算出できる。より具体的には、ポリウレタンフォームの熱分解GC/MS分析により、熱分解生成物の定性を行う。また、ポリウレタンフォームを加水分解することによって加水分解物を得る。ポリウレタンフォームは、加水分解によってジアミンの塩(イソシアネート成分由来の化合物)とポリオールに分解する。得られた加水分解物のH-NMRスペクトルの積分値から、ポリウレタンフォーム中の組成分を同定することが出来る。これらの結果より、出発物質であるイソシアネート成分、ポリオール成分を質量部に換算し、その比率を求めることができる。 The existence ratio of the soft segment and the hard segment can also be specified as follows. That is, the abundance ratio of the soft segment and the hard segment in the polyurethane foam is determined by pyrolysis GC / MS analysis of the polyurethane foam (pyrolysis gas chromatography mass spectrometry) and 1 H-NMR (nuclear magnetic field) of the hydrolyzate of the polyurethane foam. (Resonance) measurement result. More specifically, the pyrolysis product is qualitatively determined by pyrolysis GC / MS analysis of the polyurethane foam. Moreover, a hydrolyzate is obtained by hydrolyzing a polyurethane foam. The polyurethane foam is decomposed into a diamine salt (compound derived from an isocyanate component) and a polyol by hydrolysis. From the integrated value of the 1 H-NMR spectrum of the obtained hydrolyzate, the composition in the polyurethane foam can be identified. From these results, the isocyanate component and the polyol component, which are starting materials, can be converted into parts by mass, and the ratio can be determined.
(平均気泡径)
 本発明のポリウレタンフォームが、特定の範囲の平均気泡径を有してばらつきのない均一なセルを形成したものであると、衝撃吸収性、反発弾性、耐久性、及び耐屈曲性も向上させることができる。この効果を高める観点からは、ポリウレタンフォームの平均気泡径は、30μm以上100μm以下であることが好ましい。
(Average bubble diameter)
When the polyurethane foam of the present invention has a uniform cell having an average cell diameter in a specific range and has no variation, impact absorption, rebound resilience, durability, and flex resistance are also improved. Can do. From the viewpoint of enhancing this effect, the average cell diameter of the polyurethane foam is preferably 30 μm or more and 100 μm or less.
(気泡径の大きさの分布)
 ポリウレタンフォーム内に形成された気泡径の大きさの分布については、ポリウレタンフォームに形成された全てのセル(気泡)のうちの90%以上の個数の気泡が、20μm以上300μm以下の気泡径を有するような分布となっている。ここで、一定範囲の気泡径を有する気泡の個数が全体に占める割合は、ばらつきの程度を判断する指標となる。特定範囲の気泡径を有する気泡の個数が90%以上占めていることは、ばらつきのない均一な状態であることを示している。なお、気泡径はセルの直径を示すものとする。
(Distribution of bubble size)
Regarding the distribution of the size of the cell diameter formed in the polyurethane foam, 90% or more of the cells (cells) formed in the polyurethane foam have a cell diameter of 20 μm or more and 300 μm or less. It has a distribution like this. Here, the ratio of the number of bubbles having a certain range of bubble diameters to the whole is an index for determining the degree of variation. The number of bubbles having a specific range of bubble diameters accounting for 90% or more indicates a uniform state without variation. The bubble diameter indicates the cell diameter.
(平均気泡径と気泡径の大きさの分布に関する特定方法)
 ポリウレタンフォームの気泡径の分布は次のように特定することができる。まず、ポリウレタンフォームを予め無作為に選択された位置で切断して切断面を露出させる。切断面において、所定の領域(例えば、縦4mm、横3mmの矩形状の領域)を無作為に選択して選択領域とする。マイクロスコープを用いて、選択領域に存在する全ての気泡の数を計測する。次に、選択領域内の20μm以上300μm以下の気泡径を有するような気泡の数を計測する。計測された選択領域内の全ての気泡の個数をaとし、気泡径が20μm以上300μm以下のセルの個数をbとし、気泡径が20μm以上300μm以下のセルが全セルに対して占める割合は、b/a×100(%)の式で求められる。
(Identification method for average bubble size and bubble size distribution)
The cell diameter distribution of the polyurethane foam can be specified as follows. First, the polyurethane foam is cut at a position selected in advance at random to expose the cut surface. On the cut surface, a predetermined area (for example, a rectangular area having a length of 4 mm and a width of 3 mm) is randomly selected as a selection area. Using a microscope, count the number of all bubbles present in the selected area. Next, the number of bubbles having a bubble diameter of 20 μm or more and 300 μm or less in the selected region is measured. The ratio of the total number of bubbles in the selected area to be a, the number of cells having a bubble diameter of 20 μm to 300 μm to b, and the ratio of cells having a bubble diameter of 20 μm to 300 μm to all cells is It is determined by the formula b / a × 100 (%).
 平均気泡径は例えば次のように特定することができる。まず、ポリウレタンフォームから無作為に選択された位置で切断して切断面を露出させる。切断面において、所定の領域(例えば、縦4mm、横3mmの矩形状の領域)を無作為に選択して選択領域とする。選択領域内に存在するセルの個数(全セルの個数)、及び各気泡径(セルの直径)を、マイクロスコープを用いて計測する。平均気泡径は、各気泡径から算出された算術平均値として特定される。 The average bubble diameter can be specified as follows, for example. First, the polyurethane foam is cut at a randomly selected position to expose the cut surface. On the cut surface, a predetermined area (for example, a rectangular area having a length of 4 mm and a width of 3 mm) is randomly selected as a selection area. The number of cells existing in the selected area (the number of all cells) and the diameter of each bubble (cell diameter) are measured using a microscope. The average bubble diameter is specified as an arithmetic average value calculated from each bubble diameter.
(見かけ密度)
 本発明のポリウレタンフォームは、JIS K 7222に準拠して測定されたポリウレタンフォームの見かけ密度が0.25g/cm以上0.50g/cm以下である。
本発明においては、ポリウレタンフォームの見かけ密度が0.25g/cm以上0.50g/cm以下という比較的小さい値であっても優れた衝撃吸収性を有し、反発弾性、耐久性、耐屈曲性などの物性も保持するポリウレタンフォームが得られる。このような本発明のポリウレタンフォームは、軽量化が重要視される靴底部材などの用途として好ましく使用することができるものである。 
(Apparent density)
In the polyurethane foam of the present invention, the apparent density of the polyurethane foam measured in accordance with JIS K7222 is 0.25 g / cm 3 or more and 0.50 g / cm 3 or less.
In the present invention, even if the apparent density of the polyurethane foam is a relatively small value of 0.25 g / cm 3 or more and 0.50 g / cm 3 or less, the polyurethane foam has excellent impact absorbability, rebound resilience, durability, A polyurethane foam that retains physical properties such as flexibility can be obtained. Such a polyurethane foam of the present invention can be preferably used for applications such as a shoe sole member in which weight reduction is regarded as important.
(硬度)
 本発明のポリウレタンフォームは、JIS K 7312に準拠し、アスカーゴム硬度計C型を用いて測定された硬度が50以上65以下である。ポリウレタンフォームの硬度が50以上65以下であることで、そのポリウレタンフォームを靴底部材として用いた靴は着地時の安定性に優れる。
(hardness)
The polyurethane foam of the present invention has a hardness of 50 or more and 65 or less in accordance with JIS K 7312 and measured using an Asker rubber hardness meter C type. When the hardness of the polyurethane foam is 50 or more and 65 or less, shoes using the polyurethane foam as a sole member are excellent in stability at the time of landing.
 ポリウレタンフォームの硬度は、ソフトセグメントとハードセグメントの存在比率、平均気泡径、気泡径の大きさの分布という3つの変数の影響を受けて変動するものである。しかし、これら3つの変数を特定の範囲にするだけで上記硬度が決定されるものではない。これに対し、本発明においては、3つの変数のバランスを考慮しながらポリウレタンフォームの硬度を50以上65以下の範囲にすることが実現された。そして、本発明では、上記ソフトセグメントとハードセグメントの存在比率、平均気泡径、気泡径の大きさの分布の調整を図りつつ、さらに硬度および見かけ密度の範囲を特定範囲にすることで、軽量性でありながら、後述する耐久性、衝撃吸収性、反発弾性及び耐屈曲性に優れるポリウレタンフォームが得られる。 The hardness of polyurethane foam fluctuates under the influence of three variables: the abundance ratio of soft segments and hard segments, average cell diameter, and cell size distribution. However, the hardness is not determined only by setting these three variables within a specific range. On the other hand, in the present invention, it has been realized that the hardness of the polyurethane foam is in the range of 50 to 65 in consideration of the balance of three variables. And, in the present invention, while adjusting the abundance ratio of the soft segment and the hard segment, the average bubble diameter, and the distribution of the bubble diameter, the hardness and the apparent density range are set to a specific range, thereby reducing the weight. However, a polyurethane foam excellent in durability, impact absorbability, impact resilience and flex resistance described later can be obtained.
(圧縮永久歪)
 本発明のポリウレタンフォームは、JIS K 6262に準拠して測定された圧縮永久歪率が20%以下である。ただし、圧縮永久歪率を測定する際の測定条件は、圧縮率25%、40℃、24時間の条件である。ポリウレタンフォームの圧縮永久歪が20%を超える場合、該ポリウレタンフォームが靴底部材として使用された靴は、一般的に要請される耐久性能に劣る虞がある。 
(Compression set)
The polyurethane foam of the present invention has a compression set of 20% or less measured in accordance with JIS K 6262. However, the measurement conditions for measuring the compression set are those of a compression rate of 25%, 40 ° C., and 24 hours. When the compression set of the polyurethane foam exceeds 20%, shoes in which the polyurethane foam is used as a shoe sole member may be inferior in generally required durability performance.
(耐屈曲性)
 本発明のポリウレタンフォームは、耐屈曲性を備えている。これは、次に示す屈曲性確認試験を行うことで特定することができる。
(Flexibility)
The polyurethane foam of the present invention has bending resistance. This can be specified by performing the following flexibility confirmation test.
(耐屈曲性確認試験)
 所定の大きさ(例えば縦120mm、横60mm、厚み6mm)のポリウレタンフォームを準備してこれを試験片とする。該試験片に所定の厚さ(例えば、厚さ2mm)の樹脂含浸ボードを接着した複合体を作成する。そして、曲げ戻し操作を144回/分の速度で繰り返す。上記曲げ戻し操作とは、複合体を縦方向に沿った中央位置で複合体の半分を90°折り曲げる操作Aと、複合体の上記半分を元の位置に戻す操作Bとで構成され、上記操作Aと上記操作Bとを繰り返す操作である。操作Aおよび操作Bを連続して一度ずつ行ったとき、曲げ戻し操作の回数を1回とカウントする。
 ポリウレタンフォームに亀裂の発生が認められるまでの曲げ戻し操作の回数が2万回以上であれば、耐屈曲性に優れたものである。本発明のポリウレタンフォームにおいては、耐屈曲性確認試験の結果、亀裂の発生が認められるまでの曲げ戻し操作の回数が2万回以上であり、好ましくは3万回以上である。 
(Bending resistance confirmation test)
A polyurethane foam having a predetermined size (for example, length 120 mm, width 60 mm, thickness 6 mm) is prepared and used as a test piece. A composite in which a resin-impregnated board having a predetermined thickness (for example, 2 mm) is bonded to the test piece is prepared. Then, the bending back operation is repeated at a speed of 144 times / minute. The bending back operation includes an operation A for bending a half of the composite by 90 ° at a central position along the longitudinal direction, and an operation B for returning the half of the composite to the original position. This is an operation of repeating A and the above operation B. When the operation A and the operation B are successively performed once, the number of bending back operations is counted as one.
If the number of bending back operations until the occurrence of cracks in the polyurethane foam is 20,000 times or more, the bending resistance is excellent. In the polyurethane foam of the present invention, as a result of the bending resistance confirmation test, the number of bending back operations until the occurrence of cracks is 20,000 times or more, preferably 30,000 times or more.
 ここで、樹脂含浸ボードとは、合成樹脂や合成ゴム、天然ゴムなどを含浸させたパルプボード(含浸紙)であって、例えばインソールや中底の芯材として使用されているものである。樹脂含浸ボードとしては、上市されているもの等を適宜選択することができ、例えば、ボンテックス社製の商品名「テキソンボード437」等を用いることができる。 Here, the resin-impregnated board is a pulp board (impregnated paper) impregnated with synthetic resin, synthetic rubber, natural rubber or the like, and is used as, for example, a core material of an insole or an insole. As the resin-impregnated board, a commercially available one can be appropriately selected. For example, a trade name “Texon Board 437” manufactured by Vontex, Inc. can be used.
(衝撃吸収性)
 ポリウレタンフォームの衝撃吸収性は、最大衝撃荷重によって特定することができる。本発明のポリウレタンフォームにおいては、最大衝撃荷重が0.9kN以下であることが好適である。最大衝撃荷重は、次に示す落下衝撃試験によって特定することができる。最大衝撃荷重の値は小さいほど衝撃が吸収されていることを示す。ポリウレタンフォームへの最大衝撃荷重が0.9kN以下であることで、靴底部材として利用できる程度の衝撃吸収性を有するポリウレタンフォームが得られる。
(Shock absorption)
The impact absorption of polyurethane foam can be specified by the maximum impact load. In the polyurethane foam of the present invention, the maximum impact load is preferably 0.9 kN or less. The maximum impact load can be specified by the following drop impact test. The smaller the maximum impact load value, the more impact is absorbed. When the maximum impact load on the polyurethane foam is 0.9 kN or less, it is possible to obtain a polyurethane foam having an impact absorbability enough to be used as a shoe sole member.
(落下衝撃試験)
 厚みが12.5mmとなるように形成されたポリウレタンフォームを準備して、これを試験片とする。上記試験片に対し5.1kgの錘を50mmの高さから落下させ衝突させる。錘としては、図1に示すような砲弾状の錘Wが利用されてよい。そして、その際の最大衝撃荷重が特定される。最大衝撃荷重は、例えば、Instron社製、商品名 dynatup GRC8200 等を用いて測定することができる。
(Drop impact test)
A polyurethane foam formed to have a thickness of 12.5 mm is prepared and used as a test piece. A 5.1 kg weight is dropped from a height of 50 mm to collide with the test piece. As the weight, a bullet-shaped weight W as shown in FIG. 1 may be used. And the maximum impact load in that case is specified. The maximum impact load can be measured using, for example, trade name dynaup GRC8200 manufactured by Instron.
(反発弾性)
 本発明のポリウレタンフォームは、JIS K 6255に準拠して測定した反発弾性率が60%以上であることが好ましい。ポリウレタンフォームの反発弾性率が60%以上であることで、スポーツシューズの靴底部材として好適な反発弾性を備えたものが得られる。
(Rebound resilience)
The polyurethane foam of the present invention preferably has a rebound resilience measured in accordance with JIS K 6255 of 60% or more. When the rebound resilience of the polyurethane foam is 60% or more, it is possible to obtain a rebound resilience suitable as a sole member of a sports shoe.
 このように、本発明のポリウレタンフォームは、見かけ密度が0.25g/cm以上0.50g/cm以下という比較的小さいものであり軽量性に優れたものであるのみならず、衝撃吸収性、反発弾性、耐久性、耐屈曲性に優れつつ、十分な硬度を有するものである。 As described above, the polyurethane foam of the present invention has a relatively small apparent density of not less than 0.25 g / cm 3 and not more than 0.50 g / cm 3 and is excellent in light weight, but also has an impact absorption property. It has a sufficient hardness while being excellent in impact resilience, durability, and bending resistance.
[ポリウレタンフォームの製造方法]
 本発明のポリウレタンフォームは、ポリオール成分、イソシアネート成分、発泡剤、触媒、整泡剤を含むポリウレタン原料組成物を反応させることで形成することができる。 
[Production method of polyurethane foam]
The polyurethane foam of the present invention can be formed by reacting a polyurethane raw material composition containing a polyol component, an isocyanate component, a foaming agent, a catalyst, and a foam stabilizer.
[ポリオール成分]
 ポリオール成分は、ポリウレタンフォームのソフトセグメントの構造部を形成するための材料となる。この構造部を形成するための材料となるポリオール成分の例としては、ポリエーテルポリオール、ポリエステルポリオールが挙げられる。
[Polyol component]
The polyol component becomes a material for forming the structure portion of the soft segment of the polyurethane foam. Examples of the polyol component that is a material for forming the structural part include polyether polyol and polyester polyol.
 ポリエーテルポリオールとしては、例えば、アルキレンオキシドの開環重合により得られるポリエーテルポリオールが好適である。該アルキレンオキシドとしては、プロピレンオキシド(PO)、エチレンオキシド(EO)、ブチレンオキシド等が挙げられ、これらは1種を単独で、又は2種以上を併用してもよい。また、必要に応じて、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、テトラメチレンエーテルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、シュークロース等の多価アルコールを付加したポリエーテルポリオールでもよい。 As the polyether polyol, for example, a polyether polyol obtained by ring-opening polymerization of alkylene oxide is suitable. Examples of the alkylene oxide include propylene oxide (PO), ethylene oxide (EO), butylene oxide, and the like. These may be used alone or in combination of two or more. If necessary, polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, tetramethylene ether glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, sucrose, etc. An added polyether polyol may be used.
 ポリエステルポリオールとしては、例えば、マロン酸、コハク酸、もしくはアジピン酸等の脂肪族カルボン酸またはフタル酸等の芳香族カルボン酸と、エチレングリコール、ジエチレングリコール、もしくはプロピレングリコール等の多価アルコールと、から重縮合して得られたものが使用できる。 Examples of the polyester polyol include an aliphatic carboxylic acid such as malonic acid, succinic acid, or adipic acid, or an aromatic carboxylic acid such as phthalic acid, and a polyhydric alcohol such as ethylene glycol, diethylene glycol, or propylene glycol. Those obtained by condensation can be used.
 ポリオール成分の範囲には、イソシアネートに反応させるために用いられたポリオールも含まれ、例えば後述する(α)、(β)、(γ)に示す各化合物も含まれる。  The range of the polyol component includes the polyol used for reacting with the isocyanate, and includes, for example, the compounds shown in (α), (β), and (γ) described later. *
 ポリオール成分としては、数平均分子量が300以上3500以下、平均官能基数が2以上3以下、及び平均水酸基価が35mgKOH/g以上200mgKOH/g以下を満たすポリエーテルポリオールが好ましい。例えば、ポリテトラメチレンエーテルグリコール(第1のPTMGとも言う)が用いられてもよい。なお、本発明では、ポリオール成分として数平均分子量が異なる第1のPTMGを2種以上混合して用いてもよい。 The polyol component is preferably a polyether polyol having a number average molecular weight of 300 to 3,500, an average functional group number of 2 to 3, and an average hydroxyl value of 35 mgKOH / g to 200 mgKOH / g. For example, polytetramethylene ether glycol (also referred to as first PTMG) may be used. In the present invention, two or more kinds of first PTMGs having different number average molecular weights may be mixed and used as the polyol component.
 ポリオール成分の数平均分子量が300未満である場合、および/または、平均水酸基価が200mgKOH/gを超える場合には、得られるウレタンフォームの気泡径が不均一になりやすく、柔軟性が損なわれやすく、所望の耐屈曲性が得られない虞がある。ポリオール成分の数平均分子量が3500を超える場合、および/または、平均水酸基価が35mgKOH/g未満の場合では、ハードセグメントに対するソフトセグメントの存在割合が多くなり、得られるポリウレタンフォームの衝撃吸収性は得られやすいが、目的とする反発弾性が得られない虞がある。  When the number average molecular weight of the polyol component is less than 300, and / or when the average hydroxyl value exceeds 200 mgKOH / g, the cell diameter of the resulting urethane foam tends to be non-uniform and flexibility is likely to be impaired. The desired bending resistance may not be obtained. When the number average molecular weight of the polyol component exceeds 3500 and / or when the average hydroxyl value is less than 35 mgKOH / g, the existing ratio of the soft segment to the hard segment increases, and the impact absorption of the resulting polyurethane foam is obtained. However, the desired resilience may not be obtained. *
 なお、ポリオール成分には、必要に応じて、架橋剤を添加してもよい。架橋剤としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、テトラメチレンエーテルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、モノエタノールアミン、ジエタノールアミン、イソプロパノールアミン、アミノエチルエタノールアミン、ショ糖、ソルビトール、グルコース等のアルコール類が使用できる。特に、これらのうち、3官能以上のものが好ましい。 In addition, you may add a crosslinking agent to a polyol component as needed. Examples of the crosslinking agent include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, tetramethylene ether glycol, glycerin, pentaerythritol, trimethylolpropane, monoethanolamine, diethanolamine, isopropanolamine, amino Alcohols such as ethylethanolamine, sucrose, sorbitol and glucose can be used. Of these, those having 3 or more functional groups are preferred.
[イソシアネート成分]
 ハードセグメントは、イソシアネート基とヒドロキシル基との反応により形成されたウレタン結合部を有する構造部により形成されるが、この構造部を形成するための材料は、イソシアネート成分が含まれる。具体的には、芳香族イソシアネート類、脂肪族ジイソシアネート、脂環族ジイソシアネート、イソシアネート基末端プレポリマーなどが挙げられる。
[Isocyanate component]
The hard segment is formed by a structure part having a urethane bond part formed by a reaction between an isocyanate group and a hydroxyl group, and the material for forming the structure part includes an isocyanate component. Specific examples include aromatic isocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and isocyanate group-terminated prepolymers.
 より具体的に、ポリオールと反応させるためのイソシアネート成分としては、4,4'-ジフェニルメタンジイソシアネート(4,4'-MDI)、ポリメリックMDI(クルードMDI)、2,4-トリレンジイソシアネート(2,4-TDI)、もしくは2,6-トリレンジイソシアネート(2,6-TDI)などの芳香族イソシアネート類、テトラメチレンジイソシアネート、もしくはヘキサメチレンジイソシアネート(HDI)などの脂肪族ジイソシアネート、イソホロンジイソシアネート、水素添加TDI、もしくは水素添加MDIなどの脂環族ジイソシアネート、またはこれらをプレポリマー化したイソシアネート基末端プレポリマーなどが挙げられ、これらを単独でまたは2種以上を組み合わせて使用することもできる。イソシアネート成分としては、上述した化合物の中でも、イソシアネート基末端プレポリマーが好ましい。 More specifically, as an isocyanate component for reacting with a polyol, 4,4′-diphenylmethane diisocyanate (4,4′-MDI), polymeric MDI (crude MDI), 2,4-tolylene diisocyanate (2,4 -TDI), or aromatic isocyanates such as 2,6-tolylene diisocyanate (2,6-TDI), aliphatic diisocyanates such as tetramethylene diisocyanate or hexamethylene diisocyanate (HDI), isophorone diisocyanate, hydrogenated TDI, Alternatively, alicyclic diisocyanates such as hydrogenated MDI, or isocyanate group-terminated prepolymers obtained by prepolymerizing these may be used, and these may be used alone or in combination of two or more. Among the above-mentioned compounds, an isocyanate group-terminated prepolymer is preferable as the isocyanate component.
 イソシアネート成分は、後述するイソシアネート基末端プレポリマー及び後述する変性MDIを含有するものを例示することができる。このとき、イソシアネート基末端プレポリマーと変性MDIの含有比率は、イソシアネート基末端プレポリマー及び後述する変性MDIの合計量を100質量部とした場合に、変性MDIに対するイソシアネート基末端プレポリマーの比率で97/3から80/20の範囲であることが好ましい。 Examples of the isocyanate component include those containing an isocyanate group-terminated prepolymer described later and a modified MDI described later. At this time, the content ratio of the isocyanate group-terminated prepolymer and the modified MDI is 97 in terms of the ratio of the isocyanate group-terminated prepolymer to the modified MDI when the total amount of the isocyanate group-terminated prepolymer and the modified MDI described later is 100 parts by mass. A range of / 3 to 80/20 is preferred.
(イソシアネート基末端プレポリマー)
 イソシアネート基末端プレポリマーとしては、数平均分子量が500以上4000以下、平均官能基数が2以上3以下、イソシアネート基含有率が3質量%以上10質量%以下のものを用いることが好ましい。
(Isocyanate group-terminated prepolymer)
As the isocyanate group-terminated prepolymer, those having a number average molecular weight of 500 to 4000, an average functional group number of 2 to 3 and an isocyanate group content of 3% to 10% by weight are preferably used.
 イソシアネート基末端プレポリマーが、数平均分子量が4000を超えている、及び/又は、イソシアネート基含有率が3質量%未満である場合、得られるポリウレタンフォームは発泡しづらく硬くなりすぎてしまい、粘度が大きく、他の材料との混合が困難になりやすい。イソシアネート基末端プレポリマーが、数平均分子量が500未満である、及び/又は、イソシアネート基含有率が10質量%を超えている場合、得られるポリウレタンフォームは発泡しやすく柔らかくなりすぎてしまい、所望の衝撃吸収性や反発弾性が得られない虞がある。 When the number average molecular weight of the isocyanate group-terminated prepolymer exceeds 4000 and / or the isocyanate group content is less than 3% by mass, the resulting polyurethane foam is hard to foam and becomes too hard, and the viscosity is too high. Large and easy to mix with other materials. When the isocyanate group-terminated prepolymer has a number average molecular weight of less than 500 and / or an isocyanate group content of more than 10% by mass, the resulting polyurethane foam tends to foam easily and becomes too soft, resulting in a desired There is a possibility that impact absorbability and impact resilience cannot be obtained.
 上記イソシアネート基末端プレポリマーは、ポリオールとイソシアネートとを、イソシアネート基(NCO基)が過剰となるように反応させて得ることができる。  The isocyanate group-terminated prepolymer can be obtained by reacting a polyol and an isocyanate so that the isocyanate group (NCO group) becomes excessive. *
 イソシアネートに反応させるポリオールの例としては、次の(α)、(β)、(γ)に示すもの等を挙げることができる。 Examples of the polyol to be reacted with isocyanate include the following (α), (β), and (γ).
(α):ポリエーテルポリオール、ポリエステルポリオール。
(β):ポリマーポリオール(例えば、ポリエーテルポリオールに、ポリアクリロニトリル、アクリロニトリル-スチレン共重合体などをグラフト共重合させたもの)。
(γ):前記架橋剤の例として挙げたアルコール類のうち、2官能のもの。 
(Α): polyether polyol, polyester polyol.
(Β): Polymer polyol (for example, a polyether polyol obtained by graft copolymerization of polyacrylonitrile, acrylonitrile-styrene copolymer, etc.).
(Γ): A bifunctional alcohol among the alcohols mentioned as examples of the crosslinking agent.
 イソシアネートに反応させるポリオールについて、上記(α)、(β)、(γ)に示すものは単独でまたは2種以上混合したものでもよい。イソシアネートに反応させるポリオールは、上記(α)、(β)、(γ)に示すものの中でも、ポリエーテルポリオールが好ましく、より好ましくはポリテトラメチレンエーテルグリコール(以下、これを第2のPTMGと言う)である。なお、第2のPTMGの範囲には、「第1のPTMG(数平均分子量が300以上3500以下、平均官能基数が2以上3以下、及び平均水酸基価が35mgKOH/g以上200mgKOH/g以下のポリテトラメチレンエーテルグリコール)」、及び、「数平均分子量と平均官能基数と平均水酸基価のうちの少なくとも一種が第1のPTMGに該当するための条件となる範囲から外れているようなポリテトラメチレンエーテルグリコール」が含まれる。 Regarding the polyol to be reacted with isocyanate, those shown in the above (α), (β), and (γ) may be used alone or in combination of two or more. Among the polyols (α), (β), and (γ), the polyol to be reacted with isocyanate is preferably a polyether polyol, more preferably polytetramethylene ether glycol (hereinafter referred to as a second PTMG). It is. In addition, the range of the second PTMG includes “first PTMG (polyethylene having a number average molecular weight of 300 to 3,500, an average functional group number of 2 to 3, and an average hydroxyl value of 35 mgKOH / g to 200 mgKOH / g”. Tetramethylene ether glycol) ”, and“ polytetramethylene ether in which at least one of the number average molecular weight, the average number of functional groups, and the average hydroxyl value is out of the range for satisfying the first PTMG ” Glycol ".
 イソシアネート基末端プレポリマーを形成するためのイソシアネートは、上記のイソシアネート成分の例に挙げたように、芳香族イソシアネート類、脂肪族ジイソシアネート、または脂環族ジイソシアネートを好ましく利用できるが、上述した化合物の中でも、4,4’-MDIが好ましい。 As the isocyanate for forming the isocyanate group-terminated prepolymer, aromatic isocyanates, aliphatic diisocyanates, or alicyclic diisocyanates can be preferably used as exemplified in the above-mentioned isocyanate component. 4,4′-MDI is preferred.
 したがって、イソシアネート成分を構成するイソシアネート基末端プレポリマーとしては、第2のPTMGに、4,4’-MDIを反応させて得られるものが好ましい。イソシアネート基末端プレポリマーが、第2のPTMGに4,4’-MDIを反応させてなるプレポリマーであれば、PTMGの部分の結晶性が高くなる。そのため、反発弾性の高いウレタンフォームが得られやすいうえ、イソシアネート成分として、変性MDIと併用する際の相溶性が良好である。さらに、第2のPTMGに、4,4’-MDIを反応させて得られるイソシアネート基末端プレポリマーは、ポリオール成分として用いられた第1のPTMGと反応する際の混合性も良好で、分子構造が均一になりやすい。そのため、得られるウレタンフォームの品質の安定化を図ることができる。 Therefore, the isocyanate group-terminated prepolymer constituting the isocyanate component is preferably one obtained by reacting the second PTMG with 4,4'-MDI. If the isocyanate group-terminated prepolymer is a prepolymer obtained by reacting the second PTMG with 4,4'-MDI, the crystallinity of the PTMG portion is increased. Therefore, it is easy to obtain a urethane foam with high impact resilience, and the compatibility when used in combination with modified MDI as an isocyanate component is good. Furthermore, the isocyanate group-terminated prepolymer obtained by reacting 4,4′-MDI with the second PTMG has good mixing properties when reacting with the first PTMG used as the polyol component, and has a molecular structure. Tends to be uniform. Therefore, the quality of the urethane foam obtained can be stabilized.
(変性MDI)
 変性MDIとしては、イソシアネート基含有率が25質量%以上33質量%以下のものを好ましく用いられる。これは、このような変性MDIが常温で液体であることから、イソシアネート成分の粘度を下げることができるためである。 
(Modified MDI)
As the modified MDI, those having an isocyanate group content of 25% by mass or more and 33% by mass or less are preferably used. This is because such a modified MDI is liquid at room temperature, so that the viscosity of the isocyanate component can be lowered.
 イソシアネート基含有率が25質量%未満の変性MDIは、イソシアネート基末端プレポリマーとの混合時にNCO基含有率を高める効果が小さい。そのため、イソシアネート基含有率が25質量%未満の変性MDIを用いつつ、発泡性を十分に上げてフォームの低密度化を図るためには、当該変性MDIを極めて高い割合で混合しなければならない。しかしこの場合、製造されたポリウレタンフォームは、所望の耐屈曲性が得られない虞がある。一方、イソシアネート基含有率が33質量%を超える変性MDIは、非常に少量でNCO基含有率を高めることができる。しかし、変性MDIの量が少量になるために、イソシアネート基末端プレポリマーの粘度を低下させることができず、ポリオール成分である第1のPTMGと反応する際の混合性が悪くなる。 Modified MDI having an isocyanate group content of less than 25% by mass has little effect of increasing the NCO group content when mixed with an isocyanate group-terminated prepolymer. Therefore, in order to sufficiently increase foamability and reduce the density of the foam while using a modified MDI having an isocyanate group content of less than 25% by mass, the modified MDI must be mixed at a very high ratio. However, in this case, the produced polyurethane foam may not obtain the desired bending resistance. On the other hand, a modified MDI having an isocyanate group content exceeding 33% by mass can increase the NCO group content in a very small amount. However, since the amount of the modified MDI becomes small, the viscosity of the isocyanate group-terminated prepolymer cannot be lowered, and the mixing property when reacting with the first PTMG as the polyol component is deteriorated.
 このような常温で液体である変性MDIの具体例としては、ポリメリック体(クルードMDI)、ウレタン変性体、ウレア変性体、アロファネート変性体、ビウレット変性体、カルボジイミド変性体、ウレトンイミン変性体、ウレトジオン変性体、イソシアヌレート変性体などが挙げられる。前述のポリオール成分との反応後の分子(架橋)構造が優れる点からは、変性MDIとして、ポリメリック体(クルードMDI)あるいはカルボジイミド変性体が選択されることが好ましい。 Specific examples of such modified MDI that is liquid at room temperature include polymeric (crude MDI), urethane modified, urea modified, allophanate modified, biuret modified, carbodiimide modified, uretonimine modified, uretdione modified. And isocyanurate-modified products. From the viewpoint of excellent molecular (crosslinked) structure after reaction with the above-mentioned polyol component, it is preferable to select a polymer (crude MDI) or a carbodiimide-modified product as the modified MDI.
[発泡剤]
 発泡剤としては、水(イオン交換水)を好ましく用いることができる。ポリウレタン原料組成物における発泡剤の添加量は、前述のポリオール成分100質量部に対し、0.5質量部以上3質量部以下が好ましい。添加量が0.5質量部未満であれば、発泡が不十分で、反発弾性は発揮するものの、衝撃吸収性に劣ってしまう傾向にある。添加量が3質量部を超えると、発泡しすぎて得られるポリウレタンフォームのセルが荒れ、その内部が割れやすいなどフォーム状態が劣るほか、反発弾性に劣る傾向にある。
[Foaming agent]
As the foaming agent, water (ion exchange water) can be preferably used. The addition amount of the foaming agent in the polyurethane raw material composition is preferably 0.5 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the aforementioned polyol component. If the addition amount is less than 0.5 parts by mass, foaming is insufficient and the impact resilience is exhibited, but the impact absorption tends to be inferior. When the added amount exceeds 3 parts by mass, cells of polyurethane foam obtained by excessive foaming are rough and the foam state is inferior, such as the inside being easily cracked, and the resilience tends to be inferior.
[触媒]
 触媒としては、ポリウレタンフォームを製造するために使用可能なものであればよく、特に限定されるものではない。触媒として、従来から使用されているものとしては、例えば、トリエチレンジアミン、もしくはジエタノールアミンなどのアミン系触媒、またはビスマス触媒などの金属触媒が挙げられる。ポリウレタン原料組成物における触媒の添加量は、前述のポリオール成分100質量部に対して、0.1質量部以上5質量部以下が好ましい。 
[catalyst]
The catalyst is not particularly limited as long as it can be used for producing a polyurethane foam. Examples of the catalyst conventionally used include amine catalysts such as triethylenediamine and diethanolamine, and metal catalysts such as bismuth catalyst. The addition amount of the catalyst in the polyurethane raw material composition is preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the aforementioned polyol component.
[整泡剤]
 整泡剤としては、ウレタンフォームで使用できるものであれば特に限定されない。スポーツシューズなどの激しい運動を行うための靴底部材としてウレタンフォームを使用する場合には、より高い反発弾性が必要となる。そのため、整泡剤として、粘度が300mPa・s(25℃)以上2000mPa・s(25℃)以下のシリコーン系化合物を用いることが好ましい。整泡剤として使用するシリコーン系化合物の粘度が300mPa・s(25℃)未満であると、整泡作用が弱く、セルが粗大化してしまい、高い反発弾性が得られにくい。一方、粘度が2000mPa・s(25℃)を超えると、ポリウレタン原料中に整泡剤を均一に分散しづらくなる。その結果、得られるフォームの気泡径が均一とならないばかりか、局所的に物性が変化してしまう(測定箇所によって物性値が変わってしまう)。これらの点を考慮して、整泡剤として使用するシリコーン系化合物の粘度は、600mPa・s(25℃)以上1000mPa・s(25℃)以下であることがより好ましい。なお、シリコーン系化合物の粘度は、B型回転粘度計で測定された値である。
[Foam stabilizer]
The foam stabilizer is not particularly limited as long as it can be used in urethane foam. When urethane foam is used as a sole member for performing intense exercise such as sports shoes, higher resilience is required. Therefore, it is preferable to use a silicone compound having a viscosity of 300 mPa · s (25 ° C.) or more and 2000 mPa · s (25 ° C.) or less as the foam stabilizer. When the viscosity of the silicone compound used as the foam stabilizer is less than 300 mPa · s (25 ° C.), the foam regulating action is weak, the cell is coarsened, and high rebound resilience is difficult to obtain. On the other hand, when the viscosity exceeds 2000 mPa · s (25 ° C.), it becomes difficult to uniformly disperse the foam stabilizer in the polyurethane raw material. As a result, not only the bubble diameter of the obtained foam is not uniform, but also the physical properties change locally (the physical property values change depending on the measurement location). Considering these points, the viscosity of the silicone compound used as the foam stabilizer is more preferably 600 mPa · s (25 ° C.) or more and 1000 mPa · s (25 ° C.) or less. The viscosity of the silicone compound is a value measured with a B-type rotational viscometer.
 整泡剤として添加するシリコーン系化合物の添加量は、前述のポリオール成分100質量部に対して、0.5質量部以上9質量部以下とされることが好ましい。シリコーン系化合物の添加量が0.5質量部未満であると、整泡作用が弱く、得られるポリウレタンフォームは、気泡径が大きく不均一化し、反発弾性が低く、所望の衝撃吸収性や耐久性が得られにくい。シリコーン系化合物の添加量が9質量部を超えると、得られるポリウレタンフォームが反発弾性に劣るものとなりやすくなってしまうだけでなく、フォーム表面から整泡剤が染み出すブリードアウトが生じ、他部材との接着を阻害するおそれもあるため、取扱い性に劣るものとなる虞がある。特に、シリコーン系化合物の添加量が5質量部を超えると、目的とする反発弾性、衝撃吸収性、耐久性は得られるものの、使用には問題ない程度にタック感(ベタベタ感)が生じる傾向がある。この点を考慮すれば、シリコーン系化合物の添加量は、0.5質量部以上5質量部以下であることがより好ましい。  The addition amount of the silicone compound added as the foam stabilizer is preferably 0.5 parts by mass or more and 9 parts by mass or less with respect to 100 parts by mass of the above-described polyol component. When the addition amount of the silicone compound is less than 0.5 parts by mass, the foam regulating action is weak, and the resulting polyurethane foam has a large and uneven cell diameter, low rebound resilience, and desired shock absorption and durability. Is difficult to obtain. When the addition amount of the silicone compound exceeds 9 parts by mass, not only the obtained polyurethane foam tends to be inferior in impact resilience, but also a bleed out that the foam stabilizer exudes from the foam surface occurs. There is also a possibility that it may be inferior in handleability. In particular, when the addition amount of the silicone compound exceeds 5 parts by mass, the desired resilience, impact absorption, and durability can be obtained, but there is a tendency for a tacky feeling (sticky feeling) to occur to the extent that there is no problem in use. is there. Considering this point, the addition amount of the silicone compound is more preferably 0.5 parts by mass or more and 5 parts by mass or less. *
[他の添加剤]
 本発明のポリウレタンフォームを製造するためのポリウレタン原料組成物原料には、ポリオール成分、イソシアネート成分、発泡剤、触媒、整泡剤の他に、必要に応じて、さらに他の添加剤が添加されてもよい。他の添加剤としては、可塑剤、充填剤、酸化防止剤、脱泡剤、相溶化剤、着色剤、安定剤、紫外線吸収剤などポリウレタンフォームの製造に際して一般的に使用可能な添加剤をあげることができる。他の添加剤の添加量は、本発明の効果を阻害しない範囲内において適宜選択されてよい。
[Other additives]
In addition to the polyol component, the isocyanate component, the foaming agent, the catalyst, and the foam stabilizer, the polyurethane raw material composition raw material for producing the polyurethane foam of the present invention may further contain other additives as necessary. Also good. Examples of other additives include plasticizers, fillers, antioxidants, defoamers, compatibilizers, colorants, stabilizers, and UV absorbers that can be generally used in the production of polyurethane foam. be able to. The addition amount of other additives may be appropriately selected within a range that does not impair the effects of the present invention.
[ポリウレタンフォームの成形]
 ポリウレタンフォームは、上述したポリウレタン原料組成物を、モールド成形で反応させて製造されることが好ましい。ここに、モールド成形とは、上記ポリウレタン原料(原液)をモールド(成形型)内に注入し、モールド内で発泡硬化させ、その後に脱型してフォームを得る方法である。
[Polyurethane foam molding]
The polyurethane foam is preferably produced by reacting the above-mentioned polyurethane raw material composition by molding. Here, molding is a method in which the polyurethane raw material (stock solution) is poured into a mold (molding die), foamed and cured in the mold, and then demolded to obtain a foam.
 ポリウレタンフォームが、ポリウレタン原料組成物をモールド成形することで製造されることで、発泡時の圧縮効果により、気泡径を均一に細かくすることができる。また、ポリウレタン原料組成物をモールド成形する場合には、モールド内の容積に対するポリウレタン原料組成物の注入量によって、得られるポリウレタンフォームの密度の調整を容易に行うことができる。 Since the polyurethane foam is produced by molding a polyurethane raw material composition, the cell diameter can be made uniform and fine due to the compression effect during foaming. Moreover, when a polyurethane raw material composition is molded, the density of the obtained polyurethane foam can be easily adjusted by the injection amount of the polyurethane raw material composition with respect to the volume in the mold.
 なお、ポリウレタンフォームをモールド成形で製造するにあたり、ポリオール成分、イソシアネート成分、発泡剤、触媒および整泡剤が、スクリューを用いて混合されることで、ポリウレタン原料組成物が形成される。更に気泡径のばらつきのない、均一なポリウレタンフォームを得るためには、ポリオール成分、イソシアネート成分、発泡剤、触媒、整泡剤を混合する際のスクリュー回転数は、2000rpm以上20000rpm以下であることが好ましい。回転数が2000rpm未満だと、気泡径のばらつきが大きく、得られるポリウレタンフォームの耐屈曲性に劣る傾向にあり、一方20000rpmを超えると、固化速度が早くなり金型への注入が不完全のまま、硬化してしまう。 In manufacturing polyurethane foam by molding, a polyurethane raw material composition is formed by mixing a polyol component, an isocyanate component, a foaming agent, a catalyst, and a foam stabilizer using a screw. Furthermore, in order to obtain a uniform polyurethane foam with no variation in cell diameter, the screw rotation speed when mixing the polyol component, isocyanate component, foaming agent, catalyst, and foam stabilizer is 2000 rpm or more and 20000 rpm or less. preferable. If the rotational speed is less than 2000 rpm, the dispersion of the bubble diameter is large, and the resulting polyurethane foam tends to be inferior in bending resistance. On the other hand, if it exceeds 20000 rpm, the solidification speed becomes high and the injection into the mold remains incomplete. It will harden.
[ポリウレタンフォームの使用]
 本発明のポリウレタンフォームは、衝撃吸収性および反発弾性の両方を兼ね備えた素材であり、しかも圧縮永久歪が小さく耐久性に優れるうえ、耐屈曲性が強く、硬度があり軽量性にも優れる。そのため本発明のポリウレタンフォームは、例えば、靴底部材として好適に利用することができる。靴底部材として使用される場合、ポリウレタンフォームは、アウトソール、ミッドソール、インソールのいずれについても利用することが可能である。ポリウレタンフォームを靴底部材に利用する場合、靴底全面に本発明のポリウレタンフォームを設けることはもちろんのこと、他の材料で形成したミッドソールに凹部を形成し、そこに本発明のポリウレタンフォームを挿入するなど、部分的に配置することも可能である。また、靴底としては、ミッドソールに本発明のポリウレタンフォームを使用し、その接地面側に防滑性を有するゴム素材からなるアウトソールを積層させてもよい。その場合、アウトソールは、ミッドソール接地面側の任意の箇所に配置してもよく、或いは、アウトソールの一部を切り欠くなどして接地面側のミッドソールを部分的に露出させてもよい。本発明のポリウレタンフォームを用いて構成されたミッドソールは、耐屈曲性に優れているため、ミッドソールとアウトソールとの境界部分に荷重がかかっても、ミッドソールに割れが生じることはない。
[Use of polyurethane foam]
The polyurethane foam of the present invention is a material having both impact absorption and impact resilience, and has a low compression set and excellent durability, and has high bending resistance, hardness and excellent lightness. Therefore, the polyurethane foam of the present invention can be suitably used as, for example, a shoe sole member. When used as a shoe sole member, the polyurethane foam can be used for any of an outsole, a midsole, and an insole. When the polyurethane foam is used for a shoe sole member, not only the polyurethane foam of the present invention is provided on the entire surface of the shoe sole, but also a recess is formed in a midsole formed of another material, and the polyurethane foam of the present invention is formed there. It is also possible to partially arrange such as inserting. Further, as the shoe sole, the polyurethane foam of the present invention may be used for the midsole, and an outsole made of a rubber material having anti-slip properties may be laminated on the ground contact surface side. In that case, the outsole may be arranged at any location on the midsole ground plane side, or the midsole on the ground plane side may be partially exposed by cutting out a part of the outsole. Good. Since the midsole formed using the polyurethane foam of the present invention is excellent in bending resistance, the midsole will not be cracked even if a load is applied to the boundary between the midsole and the outsole.
 本発明のポリウレタンフォームは、靴底部材の他にも、ヘルメット内部、プロテクター、車両用の緩衝材料、床材など、衝撃吸収性、反発弾性、耐久性、耐屈曲性などが必要な用途に好適に使用することができる。 The polyurethane foam of the present invention is suitable for applications requiring impact absorption, rebound resilience, durability, flex resistance, etc. in addition to shoe sole members, such as inside helmets, protectors, cushioning materials for vehicles, and flooring materials. Can be used for
実施例1から3、7および8、比較例1、3、4、6
 所定形状のモールドを準備し、表1及び表2に示すように、ポリオール成分、イソシアネート成分、触媒、発泡剤、および整泡剤を、スクリューを用いて撹拌することでそれらを混合しながらモールド内に注入した。スクリューの回転数は、3500rpmに設定された。モールド内に注入したポリウレタン原料組成物の量は、表1,2の「充填量」欄に示すとおりである。ポリウレタン原料組成物は、スクリューを用いたポリオール成分、イソシアネート成分、触媒、発泡剤、および整泡剤の混合により形成される。モールド内にポリウレタン原料組成物が注入された後、モールド温度40℃の条件下でポリウレタン原料組成物を反応させた。反応後、脱型してポリウレタンフォームを得た。なお、表1,2中の材料の配合を示す数値の単位は、質量部である。
Examples 1 to 3, 7, and 8, Comparative Examples 1, 3, 4, 6
Prepare a mold of a predetermined shape, and as shown in Table 1 and Table 2, the polyol component, isocyanate component, catalyst, foaming agent, and foam stabilizer are mixed in the mold by stirring them using a screw. Injected into. The number of rotations of the screw was set to 3500 rpm. The amount of the polyurethane raw material composition injected into the mold is as shown in the “filling amount” column of Tables 1 and 2. The polyurethane raw material composition is formed by mixing a polyol component, an isocyanate component, a catalyst, a foaming agent, and a foam stabilizer using a screw. After the polyurethane raw material composition was injected into the mold, the polyurethane raw material composition was reacted under the condition of a mold temperature of 40 ° C. After the reaction, it was demolded to obtain a polyurethane foam. In addition, the unit of the numerical value which shows the mixing | blending of the material in Table 1, 2 is a mass part.
 なお、表1及び表2中におけるポリオール成分、イソシアネート成分、触媒、発泡剤、および整泡剤については、以下に示すとおりである。 The polyol component, isocyanate component, catalyst, foaming agent, and foam stabilizer in Tables 1 and 2 are as shown below.
[ポリオール成分]
 ポリオール成分について、PTMG(第1のPTMG)は、ポリテトラメチレンエーテルグリコール(数平均分子量2000、水酸基価57.2mgKOH/g、平均官能基数2)であり、PPGは、ポリオキシプロピレングリコール(数平均分子量2200、水酸基価51mgKOH/g、平均官能基数2)である。
[Polyol component]
Regarding the polyol component, PTMG (first PTMG) is polytetramethylene ether glycol (number average molecular weight 2000, hydroxyl value 57.2 mgKOH / g, average number of functional groups 2), and PPG is polyoxypropylene glycol (number average) The molecular weight is 2200, the hydroxyl value is 51 mgKOH / g, and the average number of functional groups is 2).
[触媒]
 触媒について、アミン系触媒は、トリエチレンジアミン(東ソー(株)製、商品名TEDA-L33)であり、ビスマス系触媒は、ビスマス触媒(日本化学産業(株)製、商品名プキャット25)である。
[catalyst]
Regarding the catalyst, the amine-based catalyst is triethylenediamine (trade name TEDA-L33, manufactured by Tosoh Corporation), and the bismuth-based catalyst is bismuth catalyst (trade name: Pcat 25, manufactured by Nippon Chemical Industry Co., Ltd.).
[整泡剤]
 整泡剤Aは、シリコーン系化合物(粘度900mPa・s(25℃))であり、整泡剤Bは、シリコーン系化合物(粘度250mPa・s(25℃))である。
[Foam stabilizer]
The foam stabilizer A is a silicone compound (viscosity 900 mPa · s (25 ° C.)), and the foam stabilizer B is a silicone compound (viscosity 250 mPa · s (25 ° C.)).
[発泡剤]
 発泡剤は、イオン交換水である。
[Foaming agent]
The foaming agent is ion exchange water.
[イソシアネート成分]
 イソシアネート成分について、イソシアネート基末端プレポリマーは、第2のPTMGと4,4’-MDIを反応させたプレポリマー(数平均分子量1000、平均官能基数2、イソシアネート基含有率7.99%)であり、変性MDIは、カルボジイミド変性体(平均官能基数2、イソシアネート基含有率29.0%)である。
[Isocyanate component]
Regarding the isocyanate component, the isocyanate group-terminated prepolymer is a prepolymer obtained by reacting the second PTMG and 4,4′-MDI (number average molecular weight 1000, average functional group number 2, isocyanate group content 7.9%). The modified MDI is a modified carbodiimide (average number of functional groups: 2, isocyanate group content: 29.0%).
実施例4
 スクリュー回転数を3000rpmとし、かつ充填量を変更した以外は、実施例1と同様にして、ポリウレタンフォームを得た。
実施例5
 スクリュー回転数を15000rpmとし、かつ充填量を変更した以外は、実施例1と同様にして、ポリウレタンフォームを得た。
実施例6
 スクリュー回転数を2500rpmとし、かつ充填量を変更した以外は、実施例1と同様にして、ポリウレタンフォームを得た。 
Example 4
A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 3000 rpm and the filling amount was changed.
Example 5
A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 15000 rpm and the filling amount was changed.
Example 6
A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 2500 rpm and the filling amount was changed.
比較例2
 スクリュー回転数を1500rpmとし、かつ充填量を変更した以外は、実施例1と同様にして、ポリウレタンフォームを得た。 
Comparative Example 2
A polyurethane foam was obtained in the same manner as in Example 1 except that the screw rotation speed was 1500 rpm and the filling amount was changed.
比較例5
 整泡剤として整泡剤Bを用い、スクリュー回転数を1500rpm以外は、比較例3と同様にして、ポリウレタンフォームを得た。
Comparative Example 5
A polyurethane foam was obtained in the same manner as in Comparative Example 3 except that foam stabilizer B was used as the foam stabilizer and the screw rotation speed was 1500 rpm.
 実施例1から8および比較例1から6で得られたポリウレタンフォームについて、JIS K 7312に準拠しアスカーゴム硬度計C型を用いてポリウレタンフォームの硬度を測定した。また、実施例1から8および比較例1から6で得られたポリウレタンフォームを適宜裁断して試験片を作成し、試験片を用いて以下に示す測定を行った。結果は、表1、表2に示すとおりである。 For the polyurethane foams obtained in Examples 1 to 8 and Comparative Examples 1 to 6, the hardness of the polyurethane foam was measured using an Asker rubber hardness tester C type according to JIS K 7312. Further, the polyurethane foams obtained in Examples 1 to 8 and Comparative Examples 1 to 6 were appropriately cut to prepare test pieces, and the following measurements were performed using the test pieces. The results are as shown in Tables 1 and 2.
(ソフトセグメントとハードセグメントの存在比率)
 ソフトセグメントとハードセグメントの存在比率(ソフトセグメント/ハードセグメント)は、上述したポリオール成分とイソシアネート成分の配合比に応じて特定された。
(Existence ratio of soft segment and hard segment)
The abundance ratio of the soft segment and the hard segment (soft segment / hard segment) was specified according to the blending ratio of the polyol component and the isocyanate component described above.
(見かけ密度)
 ポリウレタンフォームから縦15mm、横15mm、厚み10mmの直方体を切り出して密度測定用試験片とし、この密度測定用試験片を用いてJIS K 7222に準拠して見かけ密度(g/cm)が測定された。
(Apparent density)
A rectangular solid having a length of 15 mm, a width of 15 mm, and a thickness of 10 mm is cut out from the polyurethane foam to obtain a test piece for density measurement, and the apparent density (g / cm 3 ) is measured using this test piece for density measurement in accordance with JIS K7222. It was.
(平均気泡径)
 ポリウレタンフォームを無作為選択された位置で切断して切断面を露出させた。切断面のうち、縦4mm、横3mmの矩形範囲を無作為に選択して選択領域とした。選択領域内に存在するセルの個数(全セルの個数)、及び各気泡径(セルの直径)を、マイクロスコープを用いて計測した。平均気泡径(μm)は、各気泡径から算出された算術平均値とした。
(Average bubble diameter)
Polyurethane foam was cut at randomly selected locations to expose the cut surface. Among the cut surfaces, a rectangular range of 4 mm in length and 3 mm in width was randomly selected to be a selected region. The number of cells present in the selected region (the number of all cells) and the diameter of each bubble (cell diameter) were measured using a microscope. The average bubble diameter (μm) was an arithmetic average value calculated from each bubble diameter.
(気泡径が20μm以上300μm以下の範囲のセルの割合)
 全セルの個数をa、気泡径が20μ以上300μm以下のセルの個数をbとした場合において、気泡径が20μm以上300μm以下の範囲のセルの割合(気泡径が20μ以上300μm以下のセルが全セルに対して占める個数割合)は、b/a×100(%)の式で求められる。ここでは、上記した平均気泡径を測定する際に特定される全セルの個数、および、気泡径が20μ以上300μm以下のセルの個数に基づき、気泡径が20μm以上300μm以下の範囲のセルの割合(%)が特定された。
(Percentage of cells having a bubble diameter in the range of 20 μm to 300 μm)
When the total number of cells is a and the number of cells having a bubble diameter of 20 μm or more and 300 μm or less is b, the ratio of cells having a bubble diameter of 20 μm or more and 300 μm or less (cells with a bubble diameter of 20 μm or more and 300 μm or less are all The ratio of the number of cells to the cell) is determined by the equation b / a × 100 (%). Here, based on the number of all cells specified when measuring the average bubble diameter and the number of cells having a bubble diameter of 20 μm to 300 μm, the ratio of cells having a bubble diameter of 20 μm to 300 μm. (%) Was identified.
(反発弾性率)
 ポリウレタンフォームから直径29mm、厚み12.5mmの円柱状に切り出して反発弾性率測定用試験片とした。上記反発弾性率測定試験片を用いてJIS K 6255に準拠して反発弾性率(%)が測定された。
(Rebound resilience)
A specimen having a diameter of 29 mm and a thickness of 12.5 mm was cut out from the polyurethane foam to obtain a test piece for measuring the resilience modulus. The rebound resilience (%) was measured according to JIS K 6255 using the rebound resilience measurement test piece.
(最大衝撃荷重)
 ポリウレタンフォームから縦70mm、横60mm、厚み12.5mmの直方体状に切り出して衝撃荷重測定用試験片とした。上記衝撃荷重測定用試験片を用いて落下衝撃試験により最大衝撃荷重が測定された。落下衝撃試験は、「dynatup GRC8200(Instron社製)」を用いて、図1に示すような砲弾状の錘W(鉄製、5.1kg)を50mmの高さから衝撃荷重測定用試験片に対し落下させ衝突させた際の最大衝撃荷重(kN)を特定することで実施された。
(Maximum impact load)
A test piece for measuring an impact load was cut from a polyurethane foam into a rectangular parallelepiped shape having a length of 70 mm, a width of 60 mm, and a thickness of 12.5 mm. The maximum impact load was measured by a drop impact test using the test piece for impact load measurement. The drop impact test is performed using a “dynaup GRC8200 (manufactured by Instron)” with a bullet-shaped weight W (iron, 5.1 kg) as shown in FIG. This was done by specifying the maximum impact load (kN) when dropped and collided.
(圧縮永久歪)
 ポリウレタンフォームから直径29mm、厚み12.5mmの円柱状に切り出して圧縮永久歪測定用試験片とした。上記圧縮永久歪測定試験片を用いて、圧縮率25%、40℃、24時間の条件下で、JIS K 6262に準拠して、圧縮永久歪(%)が測定された。
(Compression set)
A specimen having a diameter of 29 mm and a thickness of 12.5 mm was cut out from the polyurethane foam to obtain a test piece for measuring compression set. The compression set (%) was measured in accordance with JIS K 6262 under the conditions of a compression rate of 25%, 40 ° C., and 24 hours using the above-mentioned compression set test piece.
(耐屈曲性確認試験)
 ポリウレタンフォームから縦120mm、横60mm、厚み6mmの直方体状に切り出してこれを屈曲用試験片とした。この屈曲用試験片に厚さ2mmの樹脂含浸ボード(ボンテックス社製、商品名 テキソンボード437)を接着した複合体を作成した。上記複合体を縦方向に沿った中央位置で複合体の半分を90°折り曲げる操作と複合体の半分を元の位置に戻す操作で構成される曲げ戻し操作を144回/分の速度で繰り返した。そして、複合体における屈曲用試験片に亀裂の発生が認められるまで、曲げ戻し操作が繰りかえし実施され、亀裂の発生が認められたときの回数が測定された。なお、表1、2に結果が記載されているが、表1、2においては、1万回を単位として亀裂が発生したか否かについて記載をしている。具体的には、表1中、実施例1、2および比較例6では、10万回を超えて曲げ戻し操作を繰り返しても亀裂の発生が認められなかった。実施例3、4、6、および比較例3では、3万回を超えて4万回未満まで曲げ戻し操作を繰り返しても亀裂の発生が認められなかった。実施例5では、5万回を超えて6万回未満まで曲げ戻し操作を繰り返しても亀裂の発生が認められなかった。実施例7、比較例2、5では、2万回を超えて3万回未満まで曲げ戻し操作を繰り返しても亀裂の発生が認められなかった。実施例8では、8万回を超えて9万回未満まで曲げ戻し操作を繰り返しても亀裂の発生が認められなかった。比較例1では、4万回を超えて5万回未満まで曲げ戻し操作を繰り返しても亀裂の発生が認められなかった。比較例4では、曲げ戻し操作の繰り返しが1万回未満で亀裂の発生が認められた。
(Bending resistance confirmation test)
A test piece for bending was cut from a polyurethane foam into a rectangular parallelepiped shape having a length of 120 mm, a width of 60 mm, and a thickness of 6 mm. A composite was prepared by bonding a resin-impregnated board having a thickness of 2 mm (trade name, Texon board 437, manufactured by Vontex Co., Ltd.) to this bending test piece. A bending back operation comprised of an operation of bending the composite at a central position along the longitudinal direction by bending the half of the composite by 90 ° and returning the half of the composite to the original position was repeated at a speed of 144 times / minute. . Then, the bending back operation was repeated until the occurrence of cracks in the bending test piece in the composite, and the number of times when the occurrence of cracks was observed was measured. In addition, although a result is described in Tables 1 and 2, in Tables 1 and 2, it is described whether or not a crack has occurred in units of 10,000 times. Specifically, in Table 1, in Examples 1 and 2 and Comparative Example 6, generation of cracks was not observed even when the bending back operation was repeated more than 100,000 times. In Examples 3, 4, 6 and Comparative Example 3, generation of cracks was not observed even when the bending back operation was repeated from 30,000 times to less than 40,000 times. In Example 5, no crack was observed even when the bending back operation was repeated from 50,000 times to less than 60,000 times. In Example 7 and Comparative Examples 2 and 5, no crack was observed even when the bending back operation was repeated from 20,000 times to less than 30,000 times. In Example 8, no crack was observed even when the bending back operation was repeated from 80,000 times to less than 90,000 times. In Comparative Example 1, no crack was observed even when the bending back operation was repeated from 40,000 times to less than 50,000 times. In Comparative Example 4, cracking was observed when the bending back operation was repeated less than 10,000 times.
 実施例1から8のいずれについても、ポリウレタンフォームは、0.5g/cm以下という低い見かけ密度でも、硬度が50以上65以下の範囲に保たれ、最大衝撃荷重(kN)が比較例1から6のいずれよりも低かった。すなわち実施例はいずれも、軽量性と硬度を維持しつつ衝撃吸収性に優れていることが明らかにされた。 In any of Examples 1 to 8, the polyurethane foam was maintained in the range of hardness of 50 or more and 65 or less even with a low apparent density of 0.5 g / cm 3 or less, and the maximum impact load (kN) was from Comparative Example 1. It was lower than any of 6. That is, all of the examples were found to be excellent in impact absorption while maintaining lightness and hardness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
W・・・錘

 
W ・ ・ ・ Weight

Claims (9)

  1.  ポリオール成分から形成されるソフトセグメントとウレタン結合部を有する構造部から形成されるハードセグメントとを有するポリウレタンフォームであって、
     前記ソフトセグメントと前記ハードセグメントの存在比率が、前記ソフトセグメントと前記ハードセグメントの合計を100質量部とした場合における前記ハードセグメントに対する前記ソフトセグメントの質量比率で、70/30以上80/20以下の範囲であり、
     ポリウレタンフォームの平均気泡径が、30μm以上100μm以下であり、
     ポリウレタンフォーム内に形成された全ての気泡のうちの90%以上の個数の気泡が、20μm以上300μm以下の気泡径を有しており、
     JIS K 7222に準拠して測定されたポリウレタンフォームの見かけ密度が0.25g/cm以上0.50g/cm以下であり、
     JIS K 7312に準拠し、アスカーゴム硬度計C型を用いて測定されたポリウレタンフォームの硬度が50以上65以下である、ことを特徴とするポリウレタンフォーム。
    A polyurethane foam having a soft segment formed from a polyol component and a hard segment formed from a structure having a urethane bond,
    The abundance ratio of the soft segment and the hard segment is a mass ratio of the soft segment to the hard segment when the total of the soft segment and the hard segment is 100 parts by mass, and is 70/30 or more and 80/20 or less. Range,
    The average cell diameter of the polyurethane foam is 30 μm or more and 100 μm or less,
    90% or more of all the bubbles formed in the polyurethane foam have a bubble diameter of 20 μm or more and 300 μm or less,
    The apparent density of the polyurethane foam measured in accordance with JIS K 7222 is 0.25 g / cm 3 or more and 0.50 g / cm 3 or less,
    A polyurethane foam characterized in that the polyurethane foam has a hardness of 50 to 65 in accordance with JIS K 7312 and measured using an Asker rubber hardness meter C type.
  2.  厚みが12.5mmとなるように形成された前記ポリウレタンフォームからなる試験片を準備し、該試験片に5.1kgの錘を50mmの高さから衝突させた場合に、前記試験片への最大衝撃荷重が0.9kN以下である、請求項1に記載のポリウレタンフォーム。 When a test piece made of the polyurethane foam formed so as to have a thickness of 12.5 mm was prepared and a weight of 5.1 kg was collided with the test piece from a height of 50 mm, The polyurethane foam according to claim 1, wherein the impact load is 0.9 kN or less.
  3.  前記ポリオール成分が、ポリテトラメチレンエーテルポリオールを含む、請求項1又は2記載のポリウレタンフォーム。 The polyurethane foam according to claim 1 or 2, wherein the polyol component contains a polytetramethylene ether polyol.
  4.  JIS K 6255に準拠して測定されたポリウレタンフォームの反発弾性率が60%以上である、請求項1から3のいずれか一項に記載のポリウレタンフォーム。 The polyurethane foam according to any one of claims 1 to 3, wherein the rebound resilience of the polyurethane foam measured according to JIS K 6255 is 60% or more.
  5.  JIS K 6262に準拠して測定されたポリウレタンフォームの圧縮永久歪率が20%以下である、請求項1から4のいずれか一項に記載のポリウレタンフォーム。 The polyurethane foam according to any one of claims 1 to 4, wherein the compression set rate of the polyurethane foam measured according to JIS K 6262 is 20% or less.
  6.  縦が120mm、横が60mm、および、厚みが6mmとなるように形成されたポリウレタンフォームを準備し、
     該ポリウレタンフォームに厚さが2mmの樹脂含浸ボードを接着した複合体を作成し、前記複合体を縦方向に沿った中央位置で該複合体の半分を90°折り曲げる操作と該複合体の半分を元の位置に戻す操作で構成される曲げ戻し操作を144回/分の速度で繰り返した場合に、前記ポリウレタンフォームに亀裂の発生が認められるまでの曲げ戻し操作の回数が3万回以上である、請求項1から5のいずれか一項に記載のポリウレタンフォーム。
    A polyurethane foam formed so that the length is 120 mm, the width is 60 mm, and the thickness is 6 mm,
    A composite in which a resin-impregnated board having a thickness of 2 mm is bonded to the polyurethane foam is prepared, and the half of the composite is bent 90 ° at a central position along the longitudinal direction, and the half of the composite is When the bending back operation constituted by the operation of returning to the original position is repeated at a speed of 144 times / minute, the number of bending back operations until the occurrence of cracks in the polyurethane foam is 30,000 times or more. The polyurethane foam according to any one of claims 1 to 5.
  7.  モールド成型体である、請求項1から6のいずれか一項に記載のポリウレタンフォーム。 The polyurethane foam according to any one of claims 1 to 6, which is a molded body.
  8. 厚みが12.5mmとなるように形成されたポリウレタンフォームからなる試験片を準備し、該試験片に5.1kgの錘を50mmの高さから衝突させた場合に、前記試験片への最大衝撃荷重が0.9kN以下であり、
     JIS K 6255に準拠して測定されたポリウレタンフォームの反発弾性率が60%以上であり、
     JIS K 6262に準拠して測定されたポリウレタンフォームの圧縮永久歪率が20%以下であり、
     縦が120mm、横が60mm、および、厚みが6mmとなるように形成されたポリウレタンフォームを準備し、該ポリウレタンフォームに厚さが2mmの樹脂含浸ボードを接着した複合体を作成し、前記複合体を縦方向に沿った中央位置で該複合体の半分を90°折り曲げる操作と該複合体の半分を元の位置に戻す操作で構成される曲げ戻し操作を144回/分の速度で繰り返した場合に、前記ポリウレタンフォームに亀裂の発生が認められるまでの曲げ戻し操作の回数が3万回以上である、請求項1から7のいずれか一項に記載のポリウレタンフォーム。
    When a test piece made of polyurethane foam formed so as to have a thickness of 12.5 mm is prepared, and a 5.1 kg weight collides with the test piece from a height of 50 mm, the maximum impact on the test piece The load is 0.9 kN or less,
    The resilience modulus of the polyurethane foam measured in accordance with JIS K 6255 is 60% or more,
    The compression set rate of polyurethane foam measured in accordance with JIS K 6262 is 20% or less,
    A polyurethane foam formed to have a length of 120 mm, a width of 60 mm, and a thickness of 6 mm is prepared, and a composite is prepared by adhering a resin-impregnated board having a thickness of 2 mm to the polyurethane foam. When a bending back operation consisting of an operation of bending a half of the composite at a central position along the vertical direction by 90 ° and an operation of returning the half of the composite to the original position is repeated at a speed of 144 times / minute Further, the polyurethane foam according to any one of claims 1 to 7, wherein the number of bending back operations until the occurrence of cracks in the polyurethane foam is 30,000 or more.
  9.  請求項1から8のいずれか一項に記載のポリウレタンフォームを用いたことを特徴とする靴底部材。

     
     
    A shoe sole member using the polyurethane foam according to any one of claims 1 to 8.


PCT/JP2019/008465 2018-03-08 2019-03-04 Polyurethane foam and shoe sole member WO2019172201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019512847A JP7224713B2 (en) 2018-03-08 2019-03-04 Polyurethane foam and sole material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018041972 2018-03-08
JP2018-041972 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019172201A1 true WO2019172201A1 (en) 2019-09-12

Family

ID=67847207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008465 WO2019172201A1 (en) 2018-03-08 2019-03-04 Polyurethane foam and shoe sole member

Country Status (3)

Country Link
JP (1) JP7224713B2 (en)
TW (1) TWI718489B (en)
WO (1) WO2019172201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193363A1 (en) * 2020-03-27 2021-09-30 アキレス株式会社 Polyurethane foam and shoe sole member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263618A (en) * 1996-03-28 1997-10-07 Toyo Tire & Rubber Co Ltd Production of polyurethane for shoe sole
JP2000290345A (en) * 1999-02-04 2000-10-17 Kao Corp Manufacture of polyurethane foam for sole
JP2016069658A (en) * 2014-09-30 2016-05-09 アキレス株式会社 Polyurethane foam
JP2017105913A (en) * 2015-12-09 2017-06-15 アキレス株式会社 Polyurethane foam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6759648B2 (en) * 2015-04-15 2020-09-23 東ソー株式会社 Polyurethane integral skin foam and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263618A (en) * 1996-03-28 1997-10-07 Toyo Tire & Rubber Co Ltd Production of polyurethane for shoe sole
JP2000290345A (en) * 1999-02-04 2000-10-17 Kao Corp Manufacture of polyurethane foam for sole
JP2016069658A (en) * 2014-09-30 2016-05-09 アキレス株式会社 Polyurethane foam
JP2017105913A (en) * 2015-12-09 2017-06-15 アキレス株式会社 Polyurethane foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193363A1 (en) * 2020-03-27 2021-09-30 アキレス株式会社 Polyurethane foam and shoe sole member
CN115315457A (en) * 2020-03-27 2022-11-08 阿基里斯株式会社 Polyurethane foam and sole member

Also Published As

Publication number Publication date
TWI718489B (en) 2021-02-11
JP7224713B2 (en) 2023-02-20
TW201938625A (en) 2019-10-01
JPWO2019172201A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6676356B2 (en) Polyurethane foam
EP0988334B1 (en) Thermoplastic polyether urethane
JP6725903B2 (en) Shoe sole member using polyurethane foam
JP6838133B2 (en) Method for manufacturing polyurethane foam elastomer raw material, polyurethane foam elastomer and polyurethane foam elastomer
JP2011038005A (en) Manufacturing method of foamed polyurethane elastomer
JP7364780B2 (en) Foamed polyurethane resin compositions and foamed polyurethane elastomers
JP6886354B2 (en) Polyurethane foam
JP7193934B2 (en) polyurethane foam
WO2019172201A1 (en) Polyurethane foam and shoe sole member
JP4459711B2 (en) Rail pad manufacturing method
JP7045257B2 (en) Polyurethane foam
JP2021031564A (en) Polyurethane foam and shoe sole member
JP7359656B2 (en) polyurethane foam
CN115698114A (en) Viscoelastic elastomer polyurethane foam, method for the production thereof and use thereof
WO2021193363A1 (en) Polyurethane foam and shoe sole member
JP2004231706A (en) Seat cushion
JP2021187931A (en) Polyurethane foam and shoe sole material
JP2001354746A (en) Polyol composition and production method for semirigid polyurethane foam
JP4688055B2 (en) Method for producing flexible polyurethane foam for heating carpet
JP2023047288A (en) Polyurethane foam, and shoe sole
CN109937220B (en) Polyurethane foam having sufficient hardness and good flexibility
CN115850631A (en) Polyurethane foam and shoe sole
JP2006002054A (en) Terminal isocyanate group-containing prepolymer, method for producing polyurethane by using the same, and polyurethane for roll
JP2005015591A (en) Thermosetting polyurethane elastomer molding, method for producing the same and composition used therefor
JP2022061547A (en) Flexible polyurethane foam

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512847

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763779

Country of ref document: EP

Kind code of ref document: A1