WO2019171627A1 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- WO2019171627A1 WO2019171627A1 PCT/JP2018/032396 JP2018032396W WO2019171627A1 WO 2019171627 A1 WO2019171627 A1 WO 2019171627A1 JP 2018032396 W JP2018032396 W JP 2018032396W WO 2019171627 A1 WO2019171627 A1 WO 2019171627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- air conditioner
- operating condition
- unit
- time
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 claims abstract description 35
- 238000007664 blowing Methods 0.000 abstract description 26
- 210000000352 storage cell Anatomy 0.000 abstract 2
- 230000007613 environmental effect Effects 0.000 description 19
- 239000003507 refrigerant Substances 0.000 description 13
- 230000006870 function Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/04—Arrangements for portability
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
Definitions
- the present invention relates to an air conditioner driven by a storage battery.
- a portable air conditioner is generally driven by a storage battery.
- Patent Document 1 describes an air conditioner mounted on an electric vehicle. This air conditioner reduces the power consumption of the electric compressor by limiting the current or power supplied from the storage battery when detecting that the power saving switch is on in order to extend the travel distance of the electric vehicle .
- Japanese Patent Publication Japanese Patent Laid-Open No. 5-201241 (published on August 10, 1993)”
- the air conditioner described in Patent Document 1 can be operated longer than the desired operation time by providing a power saving operation mode.
- the air conditioner since power consumption is suppressed, it is difficult to operate at a temperature desired by the user.
- the present invention has been made in view of the above-described problems, and an object thereof is to bring the temperature close to a specified temperature within a range of electric energy that can be used in a specified time operation.
- an air conditioner includes a storage battery, an air conditioner that blows air at a temperature higher or lower than the ambient temperature by heat exchange, the ambient temperature, and the air conditioner.
- the basic temperature consumption per unit time when the air conditioner is operated under the operation condition of the air conditioner and the air conditioner is operated within the predetermined temperature range of the target difference between the target blowout temperature of the air blown out A storage unit for storing a plurality of different temperature ranges, and an operation power consumption determined by the basic power consumption corresponding to the temperature range in which the temperature difference is entered and a designated continuous operation time,
- An operating condition determining unit that determines the operating condition from the table selected to be equal to or less than the remaining power of the storage battery, and an operation of the air conditioning unit with the determined operating condition.
- a a driving control unit for controlling.
- the temperature can be brought close to the specified temperature within the range of the amount of power that can be used in the operation for the specified time.
- FIG. 2 is a side view showing the appearance of an air conditioner according to Embodiments 1 to 3 of the present invention. It is a block diagram which shows the system configuration
- Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIGS.
- FIG. 1 is a side view showing an appearance of the air conditioner 100 according to the first embodiment.
- FIG. 2 is a block diagram showing a system configuration of the air conditioner 100.
- FIG. 3 is a diagram showing the configuration of the air conditioner 1 in the air conditioner 100 and the operation cycle during the cooling operation.
- FIG. 4 is a diagram illustrating a configuration of the air conditioner 1 in the air conditioner 100 and an operation cycle during heating operation.
- FIG. 5 is a diagram illustrating a configuration and an operation cycle of the air conditioner 1 having only a cooling function in the air conditioner 100.
- the air conditioner 100 is a portable device and includes a housing 101 that forms an exterior body.
- the housing 101 has a cylindrical side surface, a bottom surface, and an upper surface.
- the upper surface is formed in a curved shape so as to swell upward.
- a first air inlet 102 is provided on the upper side, and a second air inlet 103 is provided on the lower side.
- the first air inlet 102 is an opening for taking in outside air for sending air to a condenser 12 (see FIG. 3) described later.
- the second air inlet 103 is an opening for taking in outside air for sending air to an evaporator 14 (see FIG. 3) described later.
- a heat exhaust port 104 is provided on the side of the housing 101 opposite to the portion where the first air inlet 102 and the second air inlet 103 are provided.
- the heat exhaust port 104 is an opening through which heat generated as a result of the air conditioning operation by the air conditioning unit 1 (see FIG. 2) described later is discharged.
- a plurality of outlets 105 are provided on the upper surface of the housing 101.
- the outlet 105 is an opening for discharging cool air or warm air generated by the air conditioning operation.
- the air conditioner 100 includes an air conditioner 1, a controller 2, a storage battery 3, an operation unit 4, an environmental temperature sensor 5, and a blowing temperature sensor 6.
- the air-conditioning unit 1 is a part that performs an air-conditioning operation that generates cold air lower than the environmental temperature (ambient temperature) or warm air higher than the environmental temperature by heat exchange with the outside air via the refrigerant. Operates with the power supplied.
- the air conditioning unit 1 will be described in more detail.
- the air conditioner 1 includes a compressor 11, a condenser 12, a condenser fan 13, an evaporator 14, an evaporator fan 15, an expansion valve 16, and a four-way valve. 17.
- the high-temperature and high-pressure refrigerant compressed by the compressor 11 in the air conditioning unit 1 during the cooling operation is sent to the condenser 12 via the four-way valve 17.
- the refrigerant liquefies when cooled by sending the air sucked from the second air inlet 103 by the condenser fan 13 toward the condenser 12.
- the air that has passed through the condenser 12 is discharged from the heat exhaust port 104 in a state that includes heat released by the refrigerant in the condenser 12 being liquefied.
- the liquefied refrigerant is vaporized at a stroke by being injected into the evaporator 14 from a minute nozzle hole of the expansion valve 16.
- the evaporator 14 is cooled by the vaporized refrigerant taking heat around the evaporator 14.
- the air taken in from the first air inlet 102 by the evaporator fan 15 is cooled by passing through the evaporator 14.
- Cold air from the evaporator 14 is discharged from the outlet 105.
- the refrigerant exiting the evaporator 14 returns to the compressor 11 and is compressed again.
- the high-temperature and high-pressure refrigerant compressed by the compressor 11 in the air conditioning unit 1 during heating operation is sent to the condenser 12 via the four-way valve 17.
- the refrigerant liquefies when cooled by sending the air sucked from the second air inlet 103 by the condenser fan 13 toward the condenser 12.
- the air that has passed through the condenser 12 is released as warm air from the blowout port 105 in a state that includes heat released by the refrigerant in the condenser 12 being liquefied.
- the liquefied refrigerant is sent to the expansion valve 16 and is vaporized at a stroke by being injected into the evaporator 14 from a minute nozzle hole of the expansion valve 16.
- the evaporator 14 is cooled by the vaporized refrigerant taking heat around the evaporator 14.
- the air taken in from the first air inlet 102 by the evaporator fan 15 is cooled by passing through the evaporator 14.
- the cold air from the evaporator 14 is discharged from the heat exhaust port 104.
- the refrigerant exiting the evaporator 14 returns to the compressor 11 and is compressed again.
- the air conditioner 1 has two heat exchangers (a first heat exchanger and a second heat exchanger).
- the first heat exchanger functions as the condenser 12 and the second heat exchanger functions as the evaporator 14.
- the first heat exchanger functions as the evaporator 14 and the second heat exchanger functions as the condenser 12.
- the positions of the condenser 12 and the evaporator 14 are interchanged in FIGS. 3 and 4. With this replacement, the positions of the condenser fan 13 and the evaporator fan 15 are also switched.
- the air conditioner 100 may have only a cooling function because the air conditioner 1 does not include the four-way valve 17.
- the storage battery 3 is a chargeable / dischargeable secondary battery.
- the storage battery 3 supplies power to the air conditioning unit 1 and the control unit 2. Moreover, the storage battery 3 outputs information on remaining power.
- the operation unit 4 is a part that receives an input operation for operating the air conditioning unit 1 or setting an air conditioning temperature.
- the operation unit 4 includes a mode selection switch for selecting an operation mode, a temperature setting switch for setting a blowing temperature, and a time setting switch for setting a continuous operation time.
- the mode selection switch is a switch for selecting a normal operation mode or an operation time priority mode.
- the air conditioner 1 In the normal operation mode, the air conditioner 1 is operated under the operation condition determined by the operation condition determination unit regardless of the remaining power of the storage battery 3 so that the target blow temperature (target blow temperature) set by the temperature setting switch is obtained. It is a mode to drive.
- the operation time priority mode is a mode in which the air conditioning unit 1 is operated under the operation condition determined by the operation condition determination unit 23 so that the operation can be performed with the continuous operation time set by the time setting switch.
- the environmental temperature sensor 5 is a sensor that measures the environmental temperature that is the ambient temperature of the air conditioner 100.
- the environmental temperature sensor 5 is attached to the housing 101 such that the detection unit is exposed on the outer surface of the housing 101.
- the blowing temperature sensor 6 is a sensor that measures the temperature of the air blown from the blowing port 105 (blowing temperature).
- the blowing temperature sensor 6 is attached to the periphery of the blowing port 105 on the inner surface of the housing 101.
- the control unit 2 is a part that controls the operation of the air conditioning unit 1, and is configured by, for example, a microcomputer.
- the control unit 2 includes a memory 21 (storage unit), a temperature difference calculation unit 22, an operation condition determination unit 23, and an operation control unit 24.
- the memory 21 stores an operation table, a target blowing temperature set by the operation unit 4, and a continuous operation time.
- the operation table includes a temperature difference [° C.], power consumption [W / h], a rotation speed [rpm] of the compressor 11, a rotation speed [rpm] of the condenser fan 13, and A plurality of tables in which the rotation speed [rpm] of the evaporator fan 15 is associated are included.
- Each table is assigned a table number TN.
- the rotational speed of the compressor 11, the rotational speed of the condenser fan 13, and the rotational speed of the evaporator fan 15 are the operating conditions of the air conditioner 1. Such operating conditions are determined to be optimum values obtained in the basic experiment.
- the temperature difference is a difference between the environmental temperature detected by the environmental temperature sensor 5 and the target blowing temperature stored in the memory 21.
- the temperature difference between the tables has a range of 2 ° C., for example.
- Power consumption is a predicted unit time when the air conditioner 1 is operated at the rotation speed of the compressor 11, the rotation speed of the condenser fan 13 and the rotation speed of the evaporator fan 15 corresponding to each other in the table. It is the power consumption per hit (per hour here).
- the number of revolutions 15 increases as the table number TN increases.
- the temperature difference calculation unit 22 calculates a difference (temperature difference) between the environmental temperature detected by the environmental temperature sensor 5 and the target blowing temperature stored in the memory 21 when the operation time priority mode is selected. calculate.
- the operation condition determination unit 23 refers to the operation table stored in the memory 21 and the temperature difference calculated by the temperature difference calculation unit 22 and the remaining power acquired from the storage battery 3. The operating conditions are determined based on the information. Specifically, the operating condition determination unit 23 determines that the power consumption (operating power consumption) determined by the product of the power consumption corresponding to the temperature range in which the temperature difference enters and the continuous operation time set by the time setting switch is the storage battery 3. The operating conditions are determined from the table selected to be less than the remaining power.
- the operation control unit 24 controls the operation of the air conditioning unit 1 based on the operation condition determined by the operation condition determination unit 23. Specifically, the operation control unit 24 determines that the rotation speeds of the compressor 11, the condenser fan 13, and the evaporator fan 15 are the compressor rotation speed of the table selected by the operation condition determination unit 23, and the condenser fan. The operation of the air conditioner 1 is controlled so as to be the rotational speed and the evaporator fan rotational speed.
- FIG. 6 is a flowchart showing an operation procedure of the air conditioner 100.
- the operating condition determination unit 23 determines whether or not the operating time setting mode has been selected by the user (step S1). In step S1, if the operation condition determination unit 23 determines that the operation time priority mode is not selected (NO), the operation condition determination unit 23 ends the process without executing the operation time priority mode. When the normal operation mode is selected, the operation condition determination unit 23 determines the operation condition so that the target blowing temperature set by the temperature setting switch is obtained.
- step S1 when the operation condition determination unit 23 determines that the operation time priority mode has been selected (YES), the temperature difference calculation unit 22 takes in the environmental temperature from the environmental temperature sensor 5 (step S2). Next, the temperature difference calculation unit 22 reads the target blowing temperature stored in the memory 21, and the operation condition determination unit 23 reads the continuous operation time H (step S3). Here, the temperature difference calculation unit 22 calculates a temperature difference between the environmental temperature and the target blowing temperature.
- the operating condition determination unit 23 obtains a table number TN from the temperature difference calculated by the temperature difference calculation unit 22 (step S4).
- the operation condition determination unit 23 refers to the operation table and selects a table including a temperature range in which a temperature difference enters, thereby obtaining the table number TN of the table. For example, when the temperature difference is 5 ° C., the operating condition determination unit 23 obtains the table number “3”.
- the operating condition determination unit 23 obtains the power consumption W [TN] from the table of the obtained table number TN (Step S5), and takes in the information on the remaining power (BC) from the storage battery 3 (Step S6).
- the operating condition determination unit 23 determines whether or not the remaining power (BC) is equal to or greater than the product (operating power consumption) of the power consumption W [TN] and the continuous operation time H (step S7). In step S7, if the operating condition determining unit 23 determines that the remaining power is equal to or higher than the operating power consumption (YES), the operating condition is determined to be included in the table of the selected table number TN.
- the operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S8).
- step S7 if the operating condition determining unit 23 determines that the remaining power is not equal to or higher than the operating power consumption (less than the operating power consumption) (NO), 1 is subtracted from the table number TN (step S9), and the process is performed. Is returned to step S5.
- the air conditioner 100 includes the memory 21, the operation condition determination unit 23, and the operation control unit 24.
- the memory 21 stores, for a plurality of different temperature ranges, a table in which a predetermined temperature range of the temperature difference between the environmental temperature and the target blowing temperature is associated with the operating condition and basic power consumption of the air conditioning unit 1.
- the operation condition determination unit 23 operates from a table selected so that the operation power consumption determined by the basic power consumption corresponding to the temperature range where the temperature difference enters and the specified continuous operation time is less than the remaining power of the storage battery 3. Determine the conditions.
- the operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation conditions.
- the air conditioner 1 operates under the operating conditions selected so that the power consumption is less than the remaining power within the continuous operation time. Driven. As a result, the air conditioner 1 can be operated while the temperature difference is always maintained at the maximum within a range not exceeding the remaining power within the continuous operation time. Therefore, it is possible to approach the blowing temperature desired by the user within the continuous operation time.
- the operating condition determining unit 23 determines the operating condition corresponding to the power consumption when the operating power consumption is equal to or less than the remaining power of the storage battery 3, while the selected table is selected when the operating power consumption exceeds the remaining power.
- a new operating condition is determined from a table including a temperature range one smaller than the temperature range.
- the driving conditions can be determined so that the driving power consumption becomes small.
- Embodiment 2 of the present invention will be described below with reference to FIGS. 2 and 7.
- components having functions equivalent to those of the components in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
- the air conditioner 100 according to the present embodiment is different from the air conditioner 100 according to the first embodiment in that the temperature difference is periodically calculated and the operation conditions are updated.
- movement at the time of operation time priority mode of the air conditioner 100 which concerns on this embodiment is demonstrated with reference to the flowchart of FIG.
- FIG. 7 is a flowchart showing an operation procedure of the air conditioner 100 according to the present embodiment.
- the operation condition determination unit 23 determines whether or not the operation time setting mode has been selected by the user in the same manner as in step S1 described above (step S11). In step S11, if the operation condition determination unit 23 determines that the operation time priority mode is not selected (NO), the operation condition determination unit 23 ends the process without executing the operation time priority mode.
- step S11 when the operation condition determination unit 23 determines that the operation time priority mode is selected (YES), the temperature difference calculation unit 22 takes in the environmental temperature from the environmental temperature sensor 5 (step S12). Next, the temperature difference calculation unit 22 reads the target blowing temperature stored in the memory 21, and the operation condition determination unit 23 reads the continuous operation time TT (step S13). Here, the temperature difference calculation unit 22 calculates a temperature difference between the environmental temperature and the target blowing temperature.
- the operating condition determination unit 23 obtains a table number TN from the temperature difference calculated by the temperature difference calculation unit 22 (step S14).
- the operating condition determination unit 23 obtains the power consumption W [TN] from the table of the obtained table number TN in the same manner as in step S5 described above (step S15), and takes in the information on the remaining power (BC) from the storage battery 3. (Step S16).
- the operation condition determination unit 23 determines whether or not the remaining power (BC) is equal to or greater than the operation power consumption that is the product of the power consumption W [TN] and the continuous operation time TT (step S17). If the operating condition determining unit 23 determines in step S17 that the remaining power is equal to or greater than the operating power consumption (YES), the operating condition included in the table of the selected table number TN is determined. The operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S18).
- step S17 when the operating condition determining unit 23 determines that the remaining power is not equal to or higher than the operating power consumption (less than the operating power consumption) (NO), 1 is subtracted from the table number TN (step S19), and the process is performed. Is returned to step S15.
- the operating condition determination unit 23 sets the number of standby times n to wait for a waiting time TW described later to 1 (step S20), and waits for a certain waiting time TW (step S21). Thereafter, the operating condition determination unit 23 obtains the table number TN from the temperature difference between the environmental temperature newly calculated by the temperature difference calculation unit 22 and the blowing temperature measured by the blowing temperature sensor 6 (step S22). The power consumption W [TN] is obtained from the table with the table number TN (step S23).
- the operating condition determination part 23 takes in the information of remaining power (BC) from the storage battery 3 (step S24).
- the operating condition determination unit 23 calculates the remaining power (BC) as the product of the power consumption W [TN] and the time obtained by subtracting the product of the standby time TW and the number of standby times n from the continuous operation time TT (remaining operation time). It is determined whether it is more than a certain driving power consumption (step S25).
- step S25 when the operating condition determining unit 23 determines that the remaining power is equal to or greater than the operating power consumption (YES), it further determines whether or not the standby time TW is less than or equal to the remaining operating time (step S26). In step S26, if the operation condition determination unit 23 determines that the standby time TW is not less than the remaining operation time (exceeds the remaining operation time) (NO), the operation condition determination unit 23 determines that the standby time TW cannot be secured and selects the selected table number. The operating conditions included in the TN table are determined. The operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S27).
- step S25 if the operating condition determining unit 23 determines that the remaining power exceeds the operating power consumption (NO), the operating condition determining unit 23 determines that the operation with the remaining power cannot be performed and subtracts 1 from the table number TN (step S25). S28) The process returns to step S23.
- step S26 when the operating condition determining unit 23 determines that the standby time TW is less than or equal to the remaining operating time (YES), the operating condition is determined to be included in the table of the selected table number TN.
- the operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S29).
- the operating condition determination unit 23 determines that the standby time TW can be secured when the standby time TW is equal to or longer than the remaining operating time, adds 1 to the standby count n (step S30), and returns the process to step S21.
- the operation condition determination unit 23 determines the operation condition based on the temperature difference acquired every predetermined time (standby time TW).
- the operating condition is updated according to the remaining power of the storage battery 3 that changes sequentially. Therefore, the air conditioner 1 can be operated so that the blowing temperature is as close as possible to the target blowing temperature during the remaining operation time.
- the operating condition determination unit 23 determines the operating condition based on the temperature difference acquired after waiting for a certain period of time during which the air conditioning unit 1 is operating under the determined operating condition. In addition, when the operation condition determination unit 23 determines that the fixed time can be secured within the remaining operation time obtained by subtracting the total standby time (TW ⁇ n), which is the product of the fixed time and the number of standby times, from the continuous operation time TT. Wait for a certain time.
- the air conditioner 100 is configured by combining the storage battery 3 shown in FIG. 2 with a plurality of unit storage batteries. Information about the configuration of the storage battery 3 is stored (registered) in, for example, the memory 21. When there is no remaining power in the unit storage battery in use, the storage battery 3 switches the unit storage battery to the next unit storage battery and outputs power.
- the operating condition determination unit 23 receives information on the total remaining power of each unit storage battery from the storage battery 3, and determines the operating condition based on the result of comparison between the total remaining power and the operating power consumption.
- the storage battery 3 includes a plurality of unit storage batteries. Thereby, when a malfunction arises in a certain unit storage battery, the use of the storage battery 3 can be continued by replacing the unit storage battery with a new unit storage battery.
- the control block of the air conditioner 100 (particularly, the temperature difference calculation unit 22, the operation condition determination unit 23, and the operation control unit 24 of the control unit 2) is a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized or may be realized by software.
- the air conditioner 100 includes a computer that executes instructions of a program that is software for realizing each function.
- the computer includes at least one processor (control device), for example, and at least one computer-readable recording medium storing the program.
- the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
- a CPU Central Processing Unit
- a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
- a RAM Random Access Memory
- the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
- any transmission medium communication network, broadcast wave, etc.
- one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
- the air conditioner according to aspect 1 of the present invention includes a storage battery 3, an air conditioner 1 that blows out air at a temperature higher or lower than the ambient temperature by heat exchange, and the ambient temperature and a target of air that the air conditioner 1 blows out.
- the predetermined temperature range of the temperature difference from the target blowing temperature to be associated is associated with the operating conditions of the air conditioner 1 and the basic power consumption per unit time when the air conditioner 1 is operated under the operating conditions.
- a storage unit (memory 21) that stores a table for a plurality of different temperature ranges, and an operation power consumption determined by the basic power consumption corresponding to the temperature range in which the temperature difference enters and a designated continuous operation time
- the operating condition determining unit 23 that determines the operating condition from the table selected to be equal to or less than the remaining power of the storage battery 3, and the air conditioner 1 with the determined operating condition.
- a driving control unit 24 for controlling the rotation, the.
- the air conditioning is performed under the operating conditions selected so that the power consumption is less than the remaining power within the continuous operation time. Department is driven.
- the air-conditioning unit can be operated while the temperature difference is always maintained at the maximum within a range that does not exceed the remaining power within the continuous operation time. Therefore, it is possible to approach the blowing temperature desired by the user during the continuous operation time.
- the air conditioner according to aspect 2 of the present invention is the air conditioner according to aspect 1, wherein the operation condition determination unit 23 sets the operation condition corresponding to the basic power consumption when the operation power consumption is equal to or less than the remaining power.
- the new operating condition may be determined from the table including the temperature range smaller than the temperature range of the selected table.
- the driving conditions can be determined so that the driving power consumption becomes small.
- the operation condition determination unit 23 may determine the operation condition based on the temperature difference acquired at regular intervals.
- the air conditioner can be operated so as to make the blowing temperature as close as possible to the target blowing temperature in the remaining operation time by updating the operating condition according to the remaining power that changes sequentially.
- the operating condition determination unit 23 waits for a certain period of time while the air conditioning unit 1 is operating according to the determined operating condition.
- the operating condition is determined based on the temperature difference acquired after the operation time, and the predetermined time is equal to or less than a remaining operation time obtained by subtracting a total standby time which is a product of the constant time and the number of standby times from the continuous operation time. When it is determined that, it is possible to wait for the predetermined time.
- the operating conditions can be updated as much as possible within the continuous operation time.
- the storage battery 3 may be composed of a plurality of unit storage batteries.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
The present invention enables a designated temperature to be approached, such temperature being within the range of an amount of power that can be used in operation which is executed for a designated length of time. An air conditioner (100) is provided with: a storage cell (3); an air conditioning unit (1) for blowing out air of a higher or lower temperature than the ambient temperature, by heat exchange; a memory (21) where a table is stored for a plurality of different temperature ranges, such table associating a predetermined temperature range, for a temperature difference between the ambient temperature and a target blowout temperature that is a target for the air blown out by the air conditioning unit (1), with an operating condition for the air conditioning unit (1) and a basic consumed power per unit time for when the air conditioning unit (1) is operated under said operating condition; an operating condition determination unit (23) for determining an operating condition from the table that has been selected so that an operation consumed power, established by the basic consumed power corresponding to the temperature range where the temperature difference comes in and a continuous operation duration that has been designated, will not exceed a remaining power of the storage cell (3); and an operation control unit (24) for controlling the operation of the air conditioning unit (1) under the determined operating condition.
Description
本発明は、蓄電池で駆動される空気調和機に関する。
The present invention relates to an air conditioner driven by a storage battery.
可搬型の空気調和機は、一般に蓄電池で駆動される。
A portable air conditioner is generally driven by a storage battery.
特許文献1には、電気自動車に搭載されるエアコンが記載されている。このエアコンは、電気自動車の走行距離を伸ばすために、節電スイッチがオンであることを検出したときに、蓄電池から供給される電流または電力を制限することにより、電動圧縮機の消費電力を低減する。
Patent Document 1 describes an air conditioner mounted on an electric vehicle. This air conditioner reduces the power consumption of the electric compressor by limiting the current or power supplied from the storage battery when detecting that the power saving switch is on in order to extend the travel distance of the electric vehicle .
可搬型の空気調和機には、小型に構成され、キャンプ、スポーツ観戦などの目的で、屋外や体育館のような広い空間で使用される機種がある。このような空気調和機は、家屋などに設置される空気調和機のように長時間にわたって運転されることはむしろ少なく、限られた時間内で運転されることが多い。
There are portable air conditioners that are small in size and are used in large spaces such as outdoors and gymnasiums for camping and sports watching. Such an air conditioner is rather rarely operated for a long time like an air conditioner installed in a house or the like, and is often operated within a limited time.
これに対し、特許文献1に記載された空気調和機は、節電の運転モードを設けることで、所望の運転時間よりも長く運転することができる。しかしながら、当該空気調和機では、消費電力が抑えられるため、ユーザが希望する温度で運転することが難しくなる。
On the other hand, the air conditioner described in Patent Document 1 can be operated longer than the desired operation time by providing a power saving operation mode. However, in the air conditioner, since power consumption is suppressed, it is difficult to operate at a temperature desired by the user.
本発明は、前記の問題点に鑑みてなされたものであり、その目的は、指定時間の運転において使用可能な電力量の範囲内で指定温度に近づけることにある。
The present invention has been made in view of the above-described problems, and an object thereof is to bring the temperature close to a specified temperature within a range of electric energy that can be used in a specified time operation.
上記の課題を解決するために、本発明の一態様に係る空気調和機は、蓄電池と、熱交換により周囲温度より高温または低温の空気を吹き出す空気調和部と、前記周囲温度と前記空気調和部が吹き出す空気の目標とする目標吹き出し温度との温度差の所定の温度範囲を、前記空気調和部の運転条件および前記空気調和部が当該運転条件で運転されたときの単位時間当たりの基礎消費電力と対応付けたテーブルを、複数の異なる前記温度範囲について記憶する記憶部と、前記温度差が入る前記温度範囲に対応する前記基礎消費電力と指定された連続運転時間とで定まる運転消費電力が、前記蓄電池の残電力以下となるように選択された前記テーブルから前記運転条件を決定する運転条件決定部と、決定された前記運転条件で前記空気調和部の運転を制御する運転制御部と、を備えている。
In order to solve the above problems, an air conditioner according to an aspect of the present invention includes a storage battery, an air conditioner that blows air at a temperature higher or lower than the ambient temperature by heat exchange, the ambient temperature, and the air conditioner. The basic temperature consumption per unit time when the air conditioner is operated under the operation condition of the air conditioner and the air conditioner is operated within the predetermined temperature range of the target difference between the target blowout temperature of the air blown out A storage unit for storing a plurality of different temperature ranges, and an operation power consumption determined by the basic power consumption corresponding to the temperature range in which the temperature difference is entered and a designated continuous operation time, An operating condition determining unit that determines the operating condition from the table selected to be equal to or less than the remaining power of the storage battery, and an operation of the air conditioning unit with the determined operating condition. And a, a driving control unit for controlling.
本発明の一態様によれば、指定時間の運転において使用可能な電力量の範囲内で指定温度に近づけることができるという効果を奏する。
According to one aspect of the present invention, there is an effect that the temperature can be brought close to the specified temperature within the range of the amount of power that can be used in the operation for the specified time.
〔実施形態1〕
以下、本発明の実施形態1について、図1~図6に基づいて詳細に説明する。Embodiment 1
Hereinafter,Embodiment 1 of the present invention will be described in detail with reference to FIGS.
以下、本発明の実施形態1について、図1~図6に基づいて詳細に説明する。
Hereinafter,
(空気調和機100の構成)
本発明の実施形態1に係る空気調和機100について、図1に基づいて説明する。図1は、本実施形態1に係る空気調和機100の外観を示す側面図である。図2は、空気調和機100のシステム構成を示すブロック図である。図3は、空気調和機100における空気調和部1の構成および冷房運転時の運転サイクルを示す図である。図4は、空気調和機100における空気調和部1の構成および暖房運転時の運転サイクルを示す図である。図5は、空気調和機100における冷房機能のみを有する空気調和部1の構成および運転サイクルを示す図である。 (Configuration of the air conditioner 100)
Theair conditioner 100 which concerns on Embodiment 1 of this invention is demonstrated based on FIG. FIG. 1 is a side view showing an appearance of the air conditioner 100 according to the first embodiment. FIG. 2 is a block diagram showing a system configuration of the air conditioner 100. FIG. 3 is a diagram showing the configuration of the air conditioner 1 in the air conditioner 100 and the operation cycle during the cooling operation. FIG. 4 is a diagram illustrating a configuration of the air conditioner 1 in the air conditioner 100 and an operation cycle during heating operation. FIG. 5 is a diagram illustrating a configuration and an operation cycle of the air conditioner 1 having only a cooling function in the air conditioner 100.
本発明の実施形態1に係る空気調和機100について、図1に基づいて説明する。図1は、本実施形態1に係る空気調和機100の外観を示す側面図である。図2は、空気調和機100のシステム構成を示すブロック図である。図3は、空気調和機100における空気調和部1の構成および冷房運転時の運転サイクルを示す図である。図4は、空気調和機100における空気調和部1の構成および暖房運転時の運転サイクルを示す図である。図5は、空気調和機100における冷房機能のみを有する空気調和部1の構成および運転サイクルを示す図である。 (Configuration of the air conditioner 100)
The
図1に示すように、空気調和機100は、可搬型の装置であり、外装体を成す筐体101を備えている。筐体101は、円筒形状を成す側面と、底面と、上面とを有している。上面は、上方に膨らむように曲面状に形成されている。
As shown in FIG. 1, the air conditioner 100 is a portable device and includes a housing 101 that forms an exterior body. The housing 101 has a cylindrical side surface, a bottom surface, and an upper surface. The upper surface is formed in a curved shape so as to swell upward.
筐体101の側面には、上側に第1吸気口102が設けられ、下側に第2吸気口103が設けられている。第1吸気口102は、後述する凝縮器12(図3参照)へ送風するための外気を取り込む開口である。第2吸気口103は、後述する蒸発器14(図3参照)へ送風するための外気を取り込む開口である。
On the side surface of the housing 101, a first air inlet 102 is provided on the upper side, and a second air inlet 103 is provided on the lower side. The first air inlet 102 is an opening for taking in outside air for sending air to a condenser 12 (see FIG. 3) described later. The second air inlet 103 is an opening for taking in outside air for sending air to an evaporator 14 (see FIG. 3) described later.
筐体101の側面における、第1吸気口102および第2吸気口103が設けられた部位と反対側には、排熱口104が設けられている。排熱口104は、後述する空気調和部1(図2参照)による空気調和動作の結果で生じた熱を排出する開口である。
A heat exhaust port 104 is provided on the side of the housing 101 opposite to the portion where the first air inlet 102 and the second air inlet 103 are provided. The heat exhaust port 104 is an opening through which heat generated as a result of the air conditioning operation by the air conditioning unit 1 (see FIG. 2) described later is discharged.
筐体101の上面には、複数の吹き出し口105が設けられている。吹き出し口105は、上記の空気調和動作で生じた冷気または暖気を放出するための開口である。
A plurality of outlets 105 are provided on the upper surface of the housing 101. The outlet 105 is an opening for discharging cool air or warm air generated by the air conditioning operation.
図2に示すように、空気調和機100は、空気調和部1と、制御部2と、蓄電池3と、操作部4と、環境温度センサ5と、吹き出し温度センサ6とを備えている。
As shown in FIG. 2, the air conditioner 100 includes an air conditioner 1, a controller 2, a storage battery 3, an operation unit 4, an environmental temperature sensor 5, and a blowing temperature sensor 6.
空気調和部1は、冷媒を介した外気との熱交換によって、環境温度(周囲温度)より低温の冷気または環境温度より高温の暖気を発生する空気調和動作を行う部分であり、蓄電池3に蓄えられた電力によって動作する。ここで、空気調和部1について、より詳細に説明する。
The air-conditioning unit 1 is a part that performs an air-conditioning operation that generates cold air lower than the environmental temperature (ambient temperature) or warm air higher than the environmental temperature by heat exchange with the outside air via the refrigerant. Operates with the power supplied. Here, the air conditioning unit 1 will be described in more detail.
図3および図4に示すように、空気調和部1は、圧縮機11と、凝縮器12と、凝縮器ファン13と、蒸発器14と、蒸発器ファン15と、膨張弁16と、四方弁17とを備えている。
As shown in FIGS. 3 and 4, the air conditioner 1 includes a compressor 11, a condenser 12, a condenser fan 13, an evaporator 14, an evaporator fan 15, an expansion valve 16, and a four-way valve. 17.
図3に示すように、冷房運転時の空気調和部1において、圧縮機11によって圧縮された高温かつ高圧の冷媒は、四方弁17を介して凝縮器12に送られる。冷媒は、凝縮器12において、凝縮器ファン13が第2吸気口103から吸い込んだ空気を凝縮器12に向けて送ることによって冷却されると液化する。凝縮器12を通過した空気は、凝縮器12内の冷媒が液化することで放出した熱を含んだ状態で、排熱口104から排出される。
As shown in FIG. 3, the high-temperature and high-pressure refrigerant compressed by the compressor 11 in the air conditioning unit 1 during the cooling operation is sent to the condenser 12 via the four-way valve 17. In the condenser 12, the refrigerant liquefies when cooled by sending the air sucked from the second air inlet 103 by the condenser fan 13 toward the condenser 12. The air that has passed through the condenser 12 is discharged from the heat exhaust port 104 in a state that includes heat released by the refrigerant in the condenser 12 being liquefied.
液化した冷媒は、膨張弁16の微小なノズル穴から蒸発器14内へ噴射されることで一気に気化する。気化した冷媒が蒸発器14の周囲の熱を奪っていくことにより、蒸発器14が冷やされる。そして、蒸発器ファン15が第1吸気口102から取り入れた空気は、蒸発器14を通過することで冷却される。蒸発器14からの冷気は、吹き出し口105から放出される。蒸発器14を出た冷媒は、圧縮機11に戻って再び圧縮される。
The liquefied refrigerant is vaporized at a stroke by being injected into the evaporator 14 from a minute nozzle hole of the expansion valve 16. The evaporator 14 is cooled by the vaporized refrigerant taking heat around the evaporator 14. The air taken in from the first air inlet 102 by the evaporator fan 15 is cooled by passing through the evaporator 14. Cold air from the evaporator 14 is discharged from the outlet 105. The refrigerant exiting the evaporator 14 returns to the compressor 11 and is compressed again.
図4に示すように、暖房運転時の空気調和部1において、圧縮機11によって圧縮された高温かつ高圧の冷媒は、四方弁17を介して凝縮器12に送られる。冷媒は、凝縮器12において、凝縮器ファン13が第2吸気口103から吸い込んだ空気を凝縮器12に向けて送ることによって冷却されると液化する。凝縮器12を通過した空気は、凝縮器12内の冷媒が液化することで放出した熱を含んだ状態で、吹き出し口105から暖気として放出される。
As shown in FIG. 4, the high-temperature and high-pressure refrigerant compressed by the compressor 11 in the air conditioning unit 1 during heating operation is sent to the condenser 12 via the four-way valve 17. In the condenser 12, the refrigerant liquefies when cooled by sending the air sucked from the second air inlet 103 by the condenser fan 13 toward the condenser 12. The air that has passed through the condenser 12 is released as warm air from the blowout port 105 in a state that includes heat released by the refrigerant in the condenser 12 being liquefied.
液化した冷媒は、膨張弁16に送られて、膨張弁16の微小なノズル穴から蒸発器14内へ噴射されることで一気に気化する。気化した冷媒が蒸発器14の周囲の熱を奪っていくことにより、蒸発器14が冷やされる。そして、蒸発器ファン15が第1吸気口102から取り入れた空気は、蒸発器14を通過することで冷却される。蒸発器14からの冷気は、排熱口104から排出される。蒸発器14を出た冷媒は、圧縮機11に戻って再び圧縮される。
The liquefied refrigerant is sent to the expansion valve 16 and is vaporized at a stroke by being injected into the evaporator 14 from a minute nozzle hole of the expansion valve 16. The evaporator 14 is cooled by the vaporized refrigerant taking heat around the evaporator 14. The air taken in from the first air inlet 102 by the evaporator fan 15 is cooled by passing through the evaporator 14. The cold air from the evaporator 14 is discharged from the heat exhaust port 104. The refrigerant exiting the evaporator 14 returns to the compressor 11 and is compressed again.
なお、空気調和部1は、2つの熱交換器(第1熱交換器および第2熱交換器)を有している。冷房時には、第1熱交換器が凝縮器12として機能し、第2熱交換器が蒸発器14として機能する。一方、暖房時には、第1熱交換器が蒸発器14として機能し、第2熱交換器が凝縮器12として機能する。このため、図3および図4では、凝縮器12および蒸発器14の位置が入れ替わっている。この入れ替えに伴って、凝縮器ファン13および蒸発器ファン15の位置も入れ替わっている。
The air conditioner 1 has two heat exchangers (a first heat exchanger and a second heat exchanger). During cooling, the first heat exchanger functions as the condenser 12 and the second heat exchanger functions as the evaporator 14. On the other hand, during heating, the first heat exchanger functions as the evaporator 14 and the second heat exchanger functions as the condenser 12. For this reason, the positions of the condenser 12 and the evaporator 14 are interchanged in FIGS. 3 and 4. With this replacement, the positions of the condenser fan 13 and the evaporator fan 15 are also switched.
ところで、四方弁17を設けると空気調和機100が大型になる。そこで、空気調和機100は、図5に示すように、空気調和部1が四方弁17を備えないことにより、冷房機能のみを備えていてもよい。
By the way, if the four-way valve 17 is provided, the air conditioner 100 becomes large. Therefore, as shown in FIG. 5, the air conditioner 100 may have only a cooling function because the air conditioner 1 does not include the four-way valve 17.
ここで、図2を参照した空気調和機100の説明に戻る。
Here, it returns to description of the air conditioner 100 with reference to FIG.
蓄電池3は、充放電可能な二次電池である。蓄電池3は、空気調和部1および制御部2に電力を供給する。また、蓄電池3は、残電力の情報を出力する。
The storage battery 3 is a chargeable / dischargeable secondary battery. The storage battery 3 supplies power to the air conditioning unit 1 and the control unit 2. Moreover, the storage battery 3 outputs information on remaining power.
操作部4は、空気調和部1の運転を操作したり、空調温度などを設定したりするための入力操作を受け付ける部分である。操作部4は、運転モードを選択するモード選択スイッチと、吹き出し温度を設定する温度設定スイッチと、連続運転時間を設定する時間設定スイッチとを有している。モード選択スイッチは、通常運転モードまたは運転時間優先モードを選択するスイッチである。通常運転モードは、温度設定スイッチによって設定された目標の吹き出し温度(目標吹き出し温度)となるように、蓄電池3の残電力に関係なく運転条件決定部によって決定された運転条件で空気調和部1を運転するモードである。運転時間優先モードは、時間設定スイッチによって設定された連続運転時間での運転が可能となるように、運転条件決定部23によって決定された運転条件で空気調和部1を運転するモードである。
The operation unit 4 is a part that receives an input operation for operating the air conditioning unit 1 or setting an air conditioning temperature. The operation unit 4 includes a mode selection switch for selecting an operation mode, a temperature setting switch for setting a blowing temperature, and a time setting switch for setting a continuous operation time. The mode selection switch is a switch for selecting a normal operation mode or an operation time priority mode. In the normal operation mode, the air conditioner 1 is operated under the operation condition determined by the operation condition determination unit regardless of the remaining power of the storage battery 3 so that the target blow temperature (target blow temperature) set by the temperature setting switch is obtained. It is a mode to drive. The operation time priority mode is a mode in which the air conditioning unit 1 is operated under the operation condition determined by the operation condition determination unit 23 so that the operation can be performed with the continuous operation time set by the time setting switch.
環境温度センサ5は、空気調和機100の周囲温度である環境温度を計測するセンサである。環境温度センサ5は、その検出部が筐体101の外表面に露出するように筐体101に取り付けられている。
The environmental temperature sensor 5 is a sensor that measures the environmental temperature that is the ambient temperature of the air conditioner 100. The environmental temperature sensor 5 is attached to the housing 101 such that the detection unit is exposed on the outer surface of the housing 101.
吹き出し温度センサ6は、吹き出し口105から吹き出される空気の温度(吹き出し温度)を計測するセンサである。吹き出し温度センサ6は、筐体101の内面における吹き出し口105の周辺に取り付けられている。
The blowing temperature sensor 6 is a sensor that measures the temperature of the air blown from the blowing port 105 (blowing temperature). The blowing temperature sensor 6 is attached to the periphery of the blowing port 105 on the inner surface of the housing 101.
制御部2は、空気調和部1の動作を制御する部分であり、例えば、マイクロコンピュータによって構成されている。制御部2は、メモリ21(記憶部)と、温度差算出部22と、運転条件決定部23と、運転制御部24とを有している。
The control unit 2 is a part that controls the operation of the air conditioning unit 1, and is configured by, for example, a microcomputer. The control unit 2 includes a memory 21 (storage unit), a temperature difference calculation unit 22, an operation condition determination unit 23, and an operation control unit 24.
メモリ21は、運転テーブルと、操作部4で設定された目標吹き出し温度および連続運転時間とを記憶している。運転テーブルは、表1に示すように、温度差[℃]と、消費電力[W/h]と、圧縮機11の回転数[rpm]と、凝縮器ファン13の回転数[rpm]と、蒸発器ファン15の回転数[rpm]とを対応付けたテーブルを複数含んでいる。各テーブルには、テーブル番号TNが付与されている。圧縮機11の回転数、凝縮器ファン13の回転数および蒸発器ファン15の回転数は、空気調和部1の運転条件となる。このような運転条件は、基礎実験で得られた最適な値に決められている。
The memory 21 stores an operation table, a target blowing temperature set by the operation unit 4, and a continuous operation time. As shown in Table 1, the operation table includes a temperature difference [° C.], power consumption [W / h], a rotation speed [rpm] of the compressor 11, a rotation speed [rpm] of the condenser fan 13, and A plurality of tables in which the rotation speed [rpm] of the evaporator fan 15 is associated are included. Each table is assigned a table number TN. The rotational speed of the compressor 11, the rotational speed of the condenser fan 13, and the rotational speed of the evaporator fan 15 are the operating conditions of the air conditioner 1. Such operating conditions are determined to be optimum values obtained in the basic experiment.
消費電力(基礎消費電力)は、テーブルにおいて対応する、圧縮機11の回転数、凝縮器ファン13の回転数および蒸発器ファン15の回転数で空気調和部1を運転したときの予測の単位時間当たり(ここでは1時間あたり)の消費電力である。運転テーブルにおいて、各テーブルの消費電力W1~W6、圧縮機11の回転数(圧縮機回転数C1~C6)、凝縮器ファン13の回転数(凝縮器ファン回転数FC1~FC6)および蒸発器ファン15の回転数(蒸発器ファン回転数FE1~FE6)は、それぞれテーブル番号TNが大きいほど大きい値となる。
Power consumption (basic power consumption) is a predicted unit time when the air conditioner 1 is operated at the rotation speed of the compressor 11, the rotation speed of the condenser fan 13 and the rotation speed of the evaporator fan 15 corresponding to each other in the table. It is the power consumption per hit (per hour here). In the operation table, the power consumption W1 to W6 of each table, the rotational speed of the compressor 11 (compressor rotational speed C1 to C6), the rotational speed of the condenser fan 13 (condenser fan rotational speed FC1 to FC6), and the evaporator fan The number of revolutions 15 (evaporator fan revolutions FE1 to FE6) increases as the table number TN increases.
温度差算出部22は、運転時間優先モードが選択されているときに、上記の環境温度センサ5によって検出された環境温度と、メモリ21に記憶された目標吹き出し温度との差(温度差)を算出する。
The temperature difference calculation unit 22 calculates a difference (temperature difference) between the environmental temperature detected by the environmental temperature sensor 5 and the target blowing temperature stored in the memory 21 when the operation time priority mode is selected. calculate.
運転条件決定部23は、運転時間優先モードが選択されたとき、メモリ21に記憶された運転テーブルを参照して、温度差算出部22によって算出された温度差と、蓄電池3から取得した残電力の情報とに基づいて運転条件を決定する。具体的には、運転条件決定部23は、温度差が入る温度範囲に対応する消費電力と、時間設定スイッチによって設定された連続運転時間との積で定まる消費電力(運転消費電力)が蓄電池3の残電力未満となるように選択されたテーブルから運転条件を決定する。
When the operation time priority mode is selected, the operation condition determination unit 23 refers to the operation table stored in the memory 21 and the temperature difference calculated by the temperature difference calculation unit 22 and the remaining power acquired from the storage battery 3. The operating conditions are determined based on the information. Specifically, the operating condition determination unit 23 determines that the power consumption (operating power consumption) determined by the product of the power consumption corresponding to the temperature range in which the temperature difference enters and the continuous operation time set by the time setting switch is the storage battery 3. The operating conditions are determined from the table selected to be less than the remaining power.
運転制御部24は、運転条件決定部23によって決定された運転条件に基づいて空気調和部1の運転を制御する。具体的には、運転制御部24は、圧縮機11、凝縮器ファン13および蒸発器ファン15のそれぞれの回転数が、運転条件決定部23によって選択されたテーブルの圧縮機回転数、凝縮器ファン回転数および蒸発器ファン回転数となるように、空気調和部1の運転を制御する。
The operation control unit 24 controls the operation of the air conditioning unit 1 based on the operation condition determined by the operation condition determination unit 23. Specifically, the operation control unit 24 determines that the rotation speeds of the compressor 11, the condenser fan 13, and the evaporator fan 15 are the compressor rotation speed of the table selected by the operation condition determination unit 23, and the condenser fan. The operation of the air conditioner 1 is controlled so as to be the rotational speed and the evaporator fan rotational speed.
(空気調和機100の動作)
空気調和機100の運転時間優先モード時の動作を図6のフローチャートを参照して説明する。図6は、空気調和機100の動作手順を示すフローチャートである。 (Operation of the air conditioner 100)
The operation of theair conditioner 100 in the operation time priority mode will be described with reference to the flowchart of FIG. FIG. 6 is a flowchart showing an operation procedure of the air conditioner 100.
空気調和機100の運転時間優先モード時の動作を図6のフローチャートを参照して説明する。図6は、空気調和機100の動作手順を示すフローチャートである。 (Operation of the air conditioner 100)
The operation of the
図6に示すように、まず、運転条件決定部23は、ユーザによって運転時間設定モードが選択されたか否かを判定する(ステップS1)。ステップS1において、運転条件決定部23は、運転時間優先モードが選択されなかったと判定すると(NO)、運転時間優先モードを実行せずに処理を終える。なお、通常運転モードが選択されているとき、運転条件決定部23は、温度設定スイッチによって設定された目標吹き出し温度となるように運転条件を決定する。
As shown in FIG. 6, first, the operating condition determination unit 23 determines whether or not the operating time setting mode has been selected by the user (step S1). In step S1, if the operation condition determination unit 23 determines that the operation time priority mode is not selected (NO), the operation condition determination unit 23 ends the process without executing the operation time priority mode. When the normal operation mode is selected, the operation condition determination unit 23 determines the operation condition so that the target blowing temperature set by the temperature setting switch is obtained.
ステップS1において、運転時間優先モードが選択されたことを運転条件決定部23が判定すると(YES)、温度差算出部22は、環境温度センサ5から環境温度を取り込む(ステップS2)。次いで、温度差算出部22は、メモリ21に記憶された目標吹き出し温度を読み込み、運転条件決定部23は、連続運転時間Hを読み込む(ステップS3)。ここで、温度差算出部22は、環境温度と目標吹き出し温度との温度差を算出する。
In step S1, when the operation condition determination unit 23 determines that the operation time priority mode has been selected (YES), the temperature difference calculation unit 22 takes in the environmental temperature from the environmental temperature sensor 5 (step S2). Next, the temperature difference calculation unit 22 reads the target blowing temperature stored in the memory 21, and the operation condition determination unit 23 reads the continuous operation time H (step S3). Here, the temperature difference calculation unit 22 calculates a temperature difference between the environmental temperature and the target blowing temperature.
続いて、運転条件決定部23は、温度差算出部22によって算出された温度差からテーブル番号TNを求める(ステップS4)。運転条件決定部23は、運転テーブルを参照して、温度差が入る温度範囲を含むテーブルを選択することで、当該テーブルのテーブル番号TNを求める。例えば、温度差が5℃である場合、運転条件決定部23は、テーブル番号“3”を求める。
Subsequently, the operating condition determination unit 23 obtains a table number TN from the temperature difference calculated by the temperature difference calculation unit 22 (step S4). The operation condition determination unit 23 refers to the operation table and selects a table including a temperature range in which a temperature difference enters, thereby obtaining the table number TN of the table. For example, when the temperature difference is 5 ° C., the operating condition determination unit 23 obtains the table number “3”.
さらに、運転条件決定部23は、求めたテーブル番号TNのテーブルから消費電力W[TN]を求め(ステップS5)、蓄電池3から残電力(BC)の情報を取り込む(ステップS6)。
Furthermore, the operating condition determination unit 23 obtains the power consumption W [TN] from the table of the obtained table number TN (Step S5), and takes in the information on the remaining power (BC) from the storage battery 3 (Step S6).
そして、運転条件決定部23は、残電力(BC)が、消費電力W[TN]と連続運転時間Hとの積(運転消費電力)以上であるか否かを判定する(ステップS7)。ステップS7において、運転条件決定部23は、残電力が運転消費電力以上であると判定すると(YES)、選択したテーブル番号TNのテーブルに含まれる運転条件を決定する。運転制御部24は、決定された運転条件で空気調和部1の運転を制御する(ステップS8)。
Then, the operating condition determination unit 23 determines whether or not the remaining power (BC) is equal to or greater than the product (operating power consumption) of the power consumption W [TN] and the continuous operation time H (step S7). In step S7, if the operating condition determining unit 23 determines that the remaining power is equal to or higher than the operating power consumption (YES), the operating condition is determined to be included in the table of the selected table number TN. The operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S8).
また、ステップS7において、運転条件決定部23は、残電力が運転消費電力以上でない(運転消費電力未満である)と判定すると(NO)、テーブル番号TNから1を減じて(ステップS9)、処理をステップS5に戻す。
In step S7, if the operating condition determining unit 23 determines that the remaining power is not equal to or higher than the operating power consumption (less than the operating power consumption) (NO), 1 is subtracted from the table number TN (step S9), and the process is performed. Is returned to step S5.
以上のように、本実施形態に係る空気調和機100は、メモリ21と、運転条件決定部23と、運転制御部24とを備えている。メモリ21は、環境温度と目標吹き出し温度との温度差の所定の温度範囲を空気調和部1の運転条件および基礎消費電力と対応付けたテーブルを、複数の異なる温度範囲について記憶する。運転条件決定部23は、温度差が入る温度範囲に対応する基礎消費電力と指定された連続運転時間とで定まる運転消費電力が、蓄電池3の残電力未満となるように選択されたテーブルから運転条件を決定する。運転制御部24は、決定された運転条件で空気調和部1の運転を制御する。
As described above, the air conditioner 100 according to the present embodiment includes the memory 21, the operation condition determination unit 23, and the operation control unit 24. The memory 21 stores, for a plurality of different temperature ranges, a table in which a predetermined temperature range of the temperature difference between the environmental temperature and the target blowing temperature is associated with the operating condition and basic power consumption of the air conditioning unit 1. The operation condition determination unit 23 operates from a table selected so that the operation power consumption determined by the basic power consumption corresponding to the temperature range where the temperature difference enters and the specified continuous operation time is less than the remaining power of the storage battery 3. Determine the conditions. The operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation conditions.
これにより、温度差が入る温度範囲に対応した消費電力が蓄電池3の残電力を超えるときには、連続運転時間内で消費電力が残電力未満となるように選択された運転条件で空気調和部1が運転される。これにより、連続運転時間内に残電力を超えない範囲で常に温度差を最大に維持しながら空気調和部1を運転することができる。したがって、連続運転時間内では、ユーザの希望する吹き出し温度に近づけることができる。
Thereby, when the power consumption corresponding to the temperature range where the temperature difference enters exceeds the remaining power of the storage battery 3, the air conditioner 1 operates under the operating conditions selected so that the power consumption is less than the remaining power within the continuous operation time. Driven. As a result, the air conditioner 1 can be operated while the temperature difference is always maintained at the maximum within a range not exceeding the remaining power within the continuous operation time. Therefore, it is possible to approach the blowing temperature desired by the user within the continuous operation time.
また、運転条件決定部23は、運転消費電力が蓄電池3の残電力以下であるときに、消費電力に対応する運転条件を決定する一方、運転消費電力が残電力を超えるとき、選択されたテーブルの温度範囲より1つ小さい温度範囲を含むテーブルから新たな運転条件を決定する。
In addition, the operating condition determining unit 23 determines the operating condition corresponding to the power consumption when the operating power consumption is equal to or less than the remaining power of the storage battery 3, while the selected table is selected when the operating power consumption exceeds the remaining power. A new operating condition is determined from a table including a temperature range one smaller than the temperature range.
これにより、運転消費電力が蓄電池3の残電力を超えるときには、運転消費電力が小さくなるように運転条件を決定することができる。
Thereby, when the driving power consumption exceeds the remaining power of the storage battery 3, the driving conditions can be determined so that the driving power consumption becomes small.
〔実施形態2〕
本発明の実施形態2について図2および図7を用いて説明すれば、以下のとおりである。なお、本実施形態において、実施形態1における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。 [Embodiment 2]
Embodiment 2 of the present invention will be described below with reference to FIGS. 2 and 7. In the present embodiment, components having functions equivalent to those of the components in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
本発明の実施形態2について図2および図7を用いて説明すれば、以下のとおりである。なお、本実施形態において、実施形態1における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。 [Embodiment 2]
本実施形態に係る空気調和機100は、定期的に温度差を算出して運転条件を更新する点で実施形態1の空気調和機100と異なっている。以下に、本実施形態に係る空気調和機100の運転時間優先モード時の動作を図7のフローチャートを参照して説明する。図7は、本実施形態に係る空気調和機100の動作手順を示すフローチャートである。
The air conditioner 100 according to the present embodiment is different from the air conditioner 100 according to the first embodiment in that the temperature difference is periodically calculated and the operation conditions are updated. Below, the operation | movement at the time of operation time priority mode of the air conditioner 100 which concerns on this embodiment is demonstrated with reference to the flowchart of FIG. FIG. 7 is a flowchart showing an operation procedure of the air conditioner 100 according to the present embodiment.
図7に示すように、まず、運転条件決定部23は、ユーザによって運転時間設定モードが選択されたか否かを上述のステップS1と同じように判定する(ステップS11)。ステップS11において、運転条件決定部23は、運転時間優先モードが選択されなかったと判定すると(NO)、運転時間優先モードを実行せずに処理を終える。
As shown in FIG. 7, first, the operation condition determination unit 23 determines whether or not the operation time setting mode has been selected by the user in the same manner as in step S1 described above (step S11). In step S11, if the operation condition determination unit 23 determines that the operation time priority mode is not selected (NO), the operation condition determination unit 23 ends the process without executing the operation time priority mode.
ステップS11において、運転時間優先モードが選択されたことを運転条件決定部23が判定すると(YES)、温度差算出部22は、環境温度センサ5から環境温度を取り込む(ステップS12)。次いで、温度差算出部22は、メモリ21に記憶された目標吹き出し温度を読み込み、運転条件決定部23は、連続運転時間TTを読み込む(ステップS13)。ここで、温度差算出部22は、環境温度と目標吹き出し温度との温度差を算出する。
In step S11, when the operation condition determination unit 23 determines that the operation time priority mode is selected (YES), the temperature difference calculation unit 22 takes in the environmental temperature from the environmental temperature sensor 5 (step S12). Next, the temperature difference calculation unit 22 reads the target blowing temperature stored in the memory 21, and the operation condition determination unit 23 reads the continuous operation time TT (step S13). Here, the temperature difference calculation unit 22 calculates a temperature difference between the environmental temperature and the target blowing temperature.
続いて、運転条件決定部23は、温度差算出部22によって算出された温度差からテーブル番号TNを求める(ステップS14)。運転条件決定部23は、上述のステップS5と同じようにして、求めたテーブル番号TNのテーブルから消費電力W[TN]を求め(ステップS15)、蓄電池3から残電力(BC)の情報を取り込む(ステップS16)。
Subsequently, the operating condition determination unit 23 obtains a table number TN from the temperature difference calculated by the temperature difference calculation unit 22 (step S14). The operating condition determination unit 23 obtains the power consumption W [TN] from the table of the obtained table number TN in the same manner as in step S5 described above (step S15), and takes in the information on the remaining power (BC) from the storage battery 3. (Step S16).
そして、運転条件決定部23は、残電力(BC)が、消費電力W[TN]と連続運転時間TTとの積である運転消費電力以上であるか否かを判定する(ステップS17)。ステップS17において、運転条件決定部23が、残電力が運転消費電力以上であると判定すると(YES)、選択したテーブル番号TNのテーブルに含まれる運転条件を決定する。運転制御部24は、決定された運転条件で空気調和部1の運転を制御する(ステップS18)。
Then, the operation condition determination unit 23 determines whether or not the remaining power (BC) is equal to or greater than the operation power consumption that is the product of the power consumption W [TN] and the continuous operation time TT (step S17). If the operating condition determining unit 23 determines in step S17 that the remaining power is equal to or greater than the operating power consumption (YES), the operating condition included in the table of the selected table number TN is determined. The operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S18).
また、ステップS17において、運転条件決定部23は、残電力が運転消費電力以上でない(運転消費電力未満である)と判定すると(NO)、テーブル番号TNから1を減じて(ステップS19)、処理をステップS15に戻す。
In step S17, when the operating condition determining unit 23 determines that the remaining power is not equal to or higher than the operating power consumption (less than the operating power consumption) (NO), 1 is subtracted from the table number TN (step S19), and the process is performed. Is returned to step S15.
ステップS18の後、運転条件決定部23は、後述する待機時間TWを待機する待機回数nを1に設定し(ステップS20)、一定の待機時間TW待機する(ステップS21)。その後、運転条件決定部23は、温度差算出部22によって新たに算出された、環境温度と吹き出し温度センサ6によって計測された吹き出し温度との温度差からテーブル番号TNを求め(ステップS22)、求めたテーブル番号TNのテーブルから消費電力W[TN]を求める(ステップS23)。
After step S18, the operating condition determination unit 23 sets the number of standby times n to wait for a waiting time TW described later to 1 (step S20), and waits for a certain waiting time TW (step S21). Thereafter, the operating condition determination unit 23 obtains the table number TN from the temperature difference between the environmental temperature newly calculated by the temperature difference calculation unit 22 and the blowing temperature measured by the blowing temperature sensor 6 (step S22). The power consumption W [TN] is obtained from the table with the table number TN (step S23).
そして、運転条件決定部23は、蓄電池3から残電力(BC)の情報を取り込む(ステップS24)。運転条件決定部23は、残電力(BC)が、消費電力W[TN]と、連続運転時間TTから待機時間TWと待機回数nとの積を減じた時間(残り運転時間)との積である運転消費電力以上であるか否かを判定する(ステップS25)。
And the operating condition determination part 23 takes in the information of remaining power (BC) from the storage battery 3 (step S24). The operating condition determination unit 23 calculates the remaining power (BC) as the product of the power consumption W [TN] and the time obtained by subtracting the product of the standby time TW and the number of standby times n from the continuous operation time TT (remaining operation time). It is determined whether it is more than a certain driving power consumption (step S25).
ステップS25において、運転条件決定部23は、残電力が運転消費電力以上であると判定すると(YES)、さらに、待機時間TWが残り運転時間以下であるか否かを判定する(ステップS26)。ステップS26において、運転条件決定部23は、待機時間TWが残り運転時間以下でない(残り運転時間を超える)と判定すると(NO)、さらに待機時間TWが確保できないと判断して、選択したテーブル番号TNのテーブルに含まれる運転条件を決定する。運転制御部24は、決定された運転条件で空気調和部1の運転を制御する(ステップS27)。
In step S25, when the operating condition determining unit 23 determines that the remaining power is equal to or greater than the operating power consumption (YES), it further determines whether or not the standby time TW is less than or equal to the remaining operating time (step S26). In step S26, if the operation condition determination unit 23 determines that the standby time TW is not less than the remaining operation time (exceeds the remaining operation time) (NO), the operation condition determination unit 23 determines that the standby time TW cannot be secured and selects the selected table number. The operating conditions included in the TN table are determined. The operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S27).
また、ステップS25において、運転条件決定部23は、残電力が運転消費電力を超えると判定すると(NO)、残電力での運転ができないと判断して、テーブル番号TNから1を減じて(ステップS28)、処理をステップS23に戻す。
In step S25, if the operating condition determining unit 23 determines that the remaining power exceeds the operating power consumption (NO), the operating condition determining unit 23 determines that the operation with the remaining power cannot be performed and subtracts 1 from the table number TN (step S25). S28) The process returns to step S23.
また、ステップS26において、運転条件決定部23は、待機時間TWが残り運転時間以下であると判定すると(YES)、選択したテーブル番号TNのテーブルに含まれる運転条件を決定する。運転制御部24は、決定された運転条件で空気調和部1の運転を制御する(ステップS29)。
In step S26, when the operating condition determining unit 23 determines that the standby time TW is less than or equal to the remaining operating time (YES), the operating condition is determined to be included in the table of the selected table number TN. The operation control unit 24 controls the operation of the air conditioning unit 1 under the determined operation condition (step S29).
運転条件決定部23は、待機時間TWが残り運転時間以上であるときには待機時間TWが確保できると判断し、待機回数nに1を加えて(ステップS30)、処理をステップS21に戻す。
The operating condition determination unit 23 determines that the standby time TW can be secured when the standby time TW is equal to or longer than the remaining operating time, adds 1 to the standby count n (step S30), and returns the process to step S21.
以上のように、本実施形態に係る空気調和機100は、運転条件決定部23が、一定時間(待機時間TW)ごとに取得した温度差に基づいて前記運転条件を決定する。
As described above, in the air conditioner 100 according to the present embodiment, the operation condition determination unit 23 determines the operation condition based on the temperature difference acquired every predetermined time (standby time TW).
これにより、逐次変化する蓄電池3の残電力に応じて運転条件が更新される。それゆえ、残り運転時間で吹き出し温度を目標吹き出し温度にできるだけ近づけるように空気調和部1を運転することができる。
Thereby, the operating condition is updated according to the remaining power of the storage battery 3 that changes sequentially. Therefore, the air conditioner 1 can be operated so that the blowing temperature is as close as possible to the target blowing temperature during the remaining operation time.
運転条件決定部23は、決定した運転条件による空気調和部1の運転が行われている状態を一定時間待機してから取得した温度差に基づいて運転条件を決定する。また、運転条件決定部23は、連続運転時間TTから一定時間と待機の回数との積である総待機時間(TW×n)を減じた残り運転時間内に一定時間を確保できると判定したときに、一定時間待機する。
The operating condition determination unit 23 determines the operating condition based on the temperature difference acquired after waiting for a certain period of time during which the air conditioning unit 1 is operating under the determined operating condition. In addition, when the operation condition determination unit 23 determines that the fixed time can be secured within the remaining operation time obtained by subtracting the total standby time (TW × n), which is the product of the fixed time and the number of standby times, from the continuous operation time TT. Wait for a certain time.
これにより、連続運転時間内で可能な限り運転条件を更新することができる。
This makes it possible to update the operating conditions as much as possible within the continuous operation time.
〔実施形態3〕
本発明の実施形態3について図2を用いて説明すれば、以下のとおりである。なお、本実施形態において、実施形態1および2における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。 [Embodiment 3]
The third embodiment of the present invention will be described with reference to FIG. In the present embodiment, components having the same functions as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
本発明の実施形態3について図2を用いて説明すれば、以下のとおりである。なお、本実施形態において、実施形態1および2における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。 [Embodiment 3]
The third embodiment of the present invention will be described with reference to FIG. In the present embodiment, components having the same functions as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
本実施形態に係る空気調和機100は、図2に示す蓄電池3が、複数の単位蓄電池が組み合わされることによって構成されている。また、このような蓄電池3の構成についての情報は、例えばメモリ21に記憶(登録)されている。蓄電池3は、使用中の単位蓄電池の残電力がなくなると、当該単位蓄電池から次の単位蓄電池に切り替えて電力を出力する。
The air conditioner 100 according to the present embodiment is configured by combining the storage battery 3 shown in FIG. 2 with a plurality of unit storage batteries. Information about the configuration of the storage battery 3 is stored (registered) in, for example, the memory 21. When there is no remaining power in the unit storage battery in use, the storage battery 3 switches the unit storage battery to the next unit storage battery and outputs power.
運転条件決定部23は、蓄電池3から各単位蓄電池の残電力の総量についての情報を受け、その残電力の総量と運転消費電力との比較の結果に基づいて運転条件を決定する。
The operating condition determination unit 23 receives information on the total remaining power of each unit storage battery from the storage battery 3, and determines the operating condition based on the result of comparison between the total remaining power and the operating power consumption.
以上のように、本実施形態に係る空気調和機100は、蓄電池3が複数の単位蓄電池によって構成される。これにより、ある単位蓄電池に不具合が生じると、当該単位蓄電池を新たな単位蓄電池と交換することで、蓄電池3の使用を継続することができる。
As described above, in the air conditioner 100 according to the present embodiment, the storage battery 3 includes a plurality of unit storage batteries. Thereby, when a malfunction arises in a certain unit storage battery, the use of the storage battery 3 can be continued by replacing the unit storage battery with a new unit storage battery.
〔ソフトウェアによる実現例〕
空気調和機100の制御ブロック(特に制御部2の温度差算出部22、運転条件決定部23および運転制御部24)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。 [Example of software implementation]
The control block of the air conditioner 100 (particularly, the temperaturedifference calculation unit 22, the operation condition determination unit 23, and the operation control unit 24 of the control unit 2) is a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized or may be realized by software.
空気調和機100の制御ブロック(特に制御部2の温度差算出部22、運転条件決定部23および運転制御部24)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。 [Example of software implementation]
The control block of the air conditioner 100 (particularly, the temperature
後者の場合、空気調和機100は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えているとともに、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。
In the latter case, the air conditioner 100 includes a computer that executes instructions of a program that is software for realizing each function. The computer includes at least one processor (control device), for example, and at least one computer-readable recording medium storing the program. In the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。
As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
〔まとめ〕
本発明の態様1に係る空気調和機は、蓄電池3と、熱交換により周囲温度より高温または低温の空気を吹き出す空気調和部1と、前記周囲温度と前記空気調和部1が吹き出す空気の目標とする目標吹き出し温度との温度差の所定の温度範囲を、前記空気調和部1の運転条件および前記空気調和部1が当該運転条件で運転されたときの単位時間当たりの基礎消費電力と対応付けたテーブルを、複数の異なる前記温度範囲について記憶する記憶部(メモリ21)と、前記温度差が入る前記温度範囲に対応する前記基礎消費電力と指定された連続運転時間とで定まる運転消費電力が、前記蓄電池3の残電力以下となるように選択された前記テーブルから前記運転条件を決定する運転条件決定部23と、決定された前記運転条件で前記空気調和部1の運転を制御する運転制御部24と、を備えている。 [Summary]
The air conditioner according toaspect 1 of the present invention includes a storage battery 3, an air conditioner 1 that blows out air at a temperature higher or lower than the ambient temperature by heat exchange, and the ambient temperature and a target of air that the air conditioner 1 blows out. The predetermined temperature range of the temperature difference from the target blowing temperature to be associated is associated with the operating conditions of the air conditioner 1 and the basic power consumption per unit time when the air conditioner 1 is operated under the operating conditions. A storage unit (memory 21) that stores a table for a plurality of different temperature ranges, and an operation power consumption determined by the basic power consumption corresponding to the temperature range in which the temperature difference enters and a designated continuous operation time, The operating condition determining unit 23 that determines the operating condition from the table selected to be equal to or less than the remaining power of the storage battery 3, and the air conditioner 1 with the determined operating condition. Includes a driving control unit 24 for controlling the rotation, the.
本発明の態様1に係る空気調和機は、蓄電池3と、熱交換により周囲温度より高温または低温の空気を吹き出す空気調和部1と、前記周囲温度と前記空気調和部1が吹き出す空気の目標とする目標吹き出し温度との温度差の所定の温度範囲を、前記空気調和部1の運転条件および前記空気調和部1が当該運転条件で運転されたときの単位時間当たりの基礎消費電力と対応付けたテーブルを、複数の異なる前記温度範囲について記憶する記憶部(メモリ21)と、前記温度差が入る前記温度範囲に対応する前記基礎消費電力と指定された連続運転時間とで定まる運転消費電力が、前記蓄電池3の残電力以下となるように選択された前記テーブルから前記運転条件を決定する運転条件決定部23と、決定された前記運転条件で前記空気調和部1の運転を制御する運転制御部24と、を備えている。 [Summary]
The air conditioner according to
上記の構成によれば、温度差が入る温度範囲に対応した消費電力が蓄電池の残電力を超えるときには、連続運転時間内で消費電力が残電力未満となるように選択された運転条件で空気調和部が運転される。これにより、連続運転時間内に残電力を超えない範囲で常に温度差を最大に維持しながら空気調和部を運転することができる。したがって、連続運転時間内は、ユーザの希望する吹き出し温度に近づけることができる。
According to the above configuration, when the power consumption corresponding to the temperature range where the temperature difference exceeds the remaining power of the storage battery, the air conditioning is performed under the operating conditions selected so that the power consumption is less than the remaining power within the continuous operation time. Department is driven. As a result, the air-conditioning unit can be operated while the temperature difference is always maintained at the maximum within a range that does not exceed the remaining power within the continuous operation time. Therefore, it is possible to approach the blowing temperature desired by the user during the continuous operation time.
本発明の態様2に係る空気調和機は、上記態様1において、前記運転条件決定部23が、前記運転消費電力が前記残電力以下であるときに、前記基礎消費電力に対応する前記運転条件を決定する一方、前記運転消費電力が前記残電力を超えるとき、選択された前記テーブルの前記温度範囲より小さい前記温度範囲を含む前記テーブルから新たな前記運転条件を決定してもよい。
The air conditioner according to aspect 2 of the present invention is the air conditioner according to aspect 1, wherein the operation condition determination unit 23 sets the operation condition corresponding to the basic power consumption when the operation power consumption is equal to or less than the remaining power. On the other hand, when the operating power consumption exceeds the remaining power, the new operating condition may be determined from the table including the temperature range smaller than the temperature range of the selected table.
上記の構成によれば、運転消費電力が蓄電池3の残電力を超えるときには、運転消費電力が小さくなるように運転条件を決定することができる。
According to the above configuration, when the driving power consumption exceeds the remaining power of the storage battery 3, the driving conditions can be determined so that the driving power consumption becomes small.
本発明の態様3に係る空気調和機は、上記態様1または2において、前記運転条件決定部23が、一定時間ごとに取得した前記温度差に基づいて前記運転条件を決定してもよい。
In the air conditioner according to aspect 3 of the present invention, in the above aspect 1 or 2, the operation condition determination unit 23 may determine the operation condition based on the temperature difference acquired at regular intervals.
上記の構成によれば、逐次変化する残電力に応じて運転条件を更新することで、残りの運転時間で吹き出し温度を目標吹き出し温度にできるだけ近づけるように空気調和部を運転することができる。
According to the above-described configuration, the air conditioner can be operated so as to make the blowing temperature as close as possible to the target blowing temperature in the remaining operation time by updating the operating condition according to the remaining power that changes sequentially.
本発明の態様4に係る空気調和機は、上記態様3において、前記運転条件決定部23が、決定した前記運転条件による前記空気調和部1の運転が行われている状態を前記一定時間待機してから取得した前記温度差に基づいて前記運転条件を決定するとともに、前記一定時間が、前記連続運転時間から前記一定時間と待機の回数との積である総待機時間を減じた残り運転時間以下であると判定したときに、前記一定時間待機してもよい。
In the air conditioner according to aspect 4 of the present invention, in the above aspect 3, the operating condition determination unit 23 waits for a certain period of time while the air conditioning unit 1 is operating according to the determined operating condition. The operating condition is determined based on the temperature difference acquired after the operation time, and the predetermined time is equal to or less than a remaining operation time obtained by subtracting a total standby time which is a product of the constant time and the number of standby times from the continuous operation time. When it is determined that, it is possible to wait for the predetermined time.
上記の構成によれば、連続運転時間内で可能な限り運転条件を更新することができる。
According to the above configuration, the operating conditions can be updated as much as possible within the continuous operation time.
本発明の態様5に係る空気調和機は、上記態様1から3のいずれかにおいて、前記蓄電池3が複数の単位蓄電池によって構成されていてもよい。
In the air conditioner according to aspect 5 of the present invention, in any one of the above aspects 1 to 3, the storage battery 3 may be composed of a plurality of unit storage batteries.
上記の構成によれば、単位蓄電池に不具合が生じると、当該単位蓄電池を新たな単位蓄電池と交換することで、蓄電池3の使用を継続することができる。
According to the above configuration, when a problem occurs in the unit storage battery, it is possible to continue using the storage battery 3 by replacing the unit storage battery with a new unit storage battery.
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 [Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 [Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
1 空気調和部
3 蓄電池
5 環境温度センサ
21 メモリ(記憶部)
22 温度差算出部
23 運転条件決定部
24 運転制御部
100 空気調和機 DESCRIPTION OFSYMBOLS 1 Air conditioning part 3 Storage battery 5 Environmental temperature sensor 21 Memory (memory | storage part)
22 temperaturedifference calculation unit 23 operation condition determination unit 24 operation control unit 100 air conditioner
3 蓄電池
5 環境温度センサ
21 メモリ(記憶部)
22 温度差算出部
23 運転条件決定部
24 運転制御部
100 空気調和機 DESCRIPTION OF
22 temperature
Claims (5)
- 蓄電池と、
熱交換により周囲温度より高温または低温の空気を吹き出す空気調和部と、
前記周囲温度と前記空気調和部が吹き出す空気の目標とする目標吹き出し温度との温度差の所定の温度範囲を、前記空気調和部の運転条件および前記空気調和部が当該運転条件で運転されたときの単位時間当たりの基礎消費電力と対応付けたテーブルを、複数の異なる前記温度範囲について記憶する記憶部と、
前記温度差が入る前記温度範囲に対応する前記基礎消費電力と指定された連続運転時間とで定まる運転消費電力が、前記蓄電池の残電力以下となるように選択された前記テーブルから前記運転条件を決定する運転条件決定部と、
決定された前記運転条件で前記空気調和部の運転を制御する運転制御部と、を備えていることを特徴とする空気調和機。 A storage battery,
An air conditioner that blows air at a temperature higher or lower than the ambient temperature by heat exchange;
When the operating condition of the air conditioner and the air conditioner are operated under the operation condition within a predetermined temperature range of the temperature difference between the ambient temperature and a target blowout temperature that is the target of the air blown out by the air conditioner A storage unit that stores a table associated with basic power consumption per unit time for a plurality of different temperature ranges;
The operating condition is determined from the table selected so that the operating power consumption determined by the basic power consumption corresponding to the temperature range where the temperature difference enters and the specified continuous operation time is equal to or less than the remaining power of the storage battery. An operating condition determining unit to determine;
And an operation control unit that controls the operation of the air conditioner under the determined operation condition. - 前記運転条件決定部は、前記運転消費電力が前記残電力以下であるときに、前記基礎消費電力に対応する前記運転条件を決定する一方、前記運転消費電力が前記残電力を超えるとき、選択された前記テーブルの前記温度範囲より小さい前記温度範囲を含む前記テーブルから新たな前記運転条件を決定することを特徴とする請求項1に記載の空気調和機。 The operation condition determination unit is selected when the operation power consumption exceeds the remaining power while the operation condition corresponding to the basic power consumption is determined when the operation power consumption is less than or equal to the remaining power. 2. The air conditioner according to claim 1, wherein a new operation condition is determined from the table including the temperature range smaller than the temperature range of the table.
- 前記運転条件決定部は、一定時間ごとに取得した前記温度差に基づいて前記運転条件を決定することを特徴とする請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the operating condition determining unit determines the operating condition based on the temperature difference acquired at regular time intervals.
- 前記運転条件決定部は、決定した前記運転条件による前記空気調和部の運転が行われている状態を前記一定時間待機してから取得した前記温度差に基づいて前記運転条件を決定するとともに、前記一定時間が、前記連続運転時間から前記一定時間と待機の回数との積である総待機時間を減じた残り運転時間以下であると判定したときに、前記一定時間待機することを特徴とする請求項3に記載の空気調和機。 The operating condition determining unit determines the operating condition based on the temperature difference acquired after waiting for the predetermined time during the operation of the air conditioning unit according to the determined operating condition. When the predetermined time is determined to be equal to or less than a remaining operation time obtained by subtracting a total standby time that is a product of the constant time and the number of standby times from the continuous operation time, the device waits for the predetermined time. Item 4. The air conditioner according to Item 3.
- 前記蓄電池は、複数の単位蓄電池によって構成されていることを特徴とする請求項1から4のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 4, wherein the storage battery includes a plurality of unit storage batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020504653A JP7063980B2 (en) | 2018-03-06 | 2018-08-31 | Air conditioner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018039933 | 2018-03-06 | ||
JP2018-039933 | 2018-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019171627A1 true WO2019171627A1 (en) | 2019-09-12 |
Family
ID=67845954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/032396 WO2019171627A1 (en) | 2018-03-06 | 2018-08-31 | Air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7063980B2 (en) |
WO (1) | WO2019171627A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111928420A (en) * | 2020-07-17 | 2020-11-13 | 珠海格力电器股份有限公司 | Air conditioner control method and device, electronic equipment and storage medium |
CN113280406A (en) * | 2021-06-15 | 2021-08-20 | 佛山市顺德区美的电子科技有限公司 | Air conditioner, control method and device of air conditioner and readable storage medium |
JP2022085820A (en) * | 2020-11-27 | 2022-06-08 | 広東美的制冷設備有限公司 | Air conditioner, its control method, and computer storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7231777B1 (en) * | 2004-10-26 | 2007-06-19 | Henry Arnold | Portable personal cooling device |
WO2011065496A1 (en) * | 2009-11-30 | 2011-06-03 | 京セラ株式会社 | Control apparatus, control system, and control method |
WO2016088289A1 (en) * | 2014-12-05 | 2016-06-09 | パナソニックIpマネジメント株式会社 | Controlling device and controlling method |
-
2018
- 2018-08-31 WO PCT/JP2018/032396 patent/WO2019171627A1/en active Application Filing
- 2018-08-31 JP JP2020504653A patent/JP7063980B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7231777B1 (en) * | 2004-10-26 | 2007-06-19 | Henry Arnold | Portable personal cooling device |
WO2011065496A1 (en) * | 2009-11-30 | 2011-06-03 | 京セラ株式会社 | Control apparatus, control system, and control method |
WO2016088289A1 (en) * | 2014-12-05 | 2016-06-09 | パナソニックIpマネジメント株式会社 | Controlling device and controlling method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111928420A (en) * | 2020-07-17 | 2020-11-13 | 珠海格力电器股份有限公司 | Air conditioner control method and device, electronic equipment and storage medium |
CN111928420B (en) * | 2020-07-17 | 2022-02-11 | 珠海格力电器股份有限公司 | Air conditioner control method and device, electronic equipment and storage medium |
JP2022085820A (en) * | 2020-11-27 | 2022-06-08 | 広東美的制冷設備有限公司 | Air conditioner, its control method, and computer storage medium |
CN113280406A (en) * | 2021-06-15 | 2021-08-20 | 佛山市顺德区美的电子科技有限公司 | Air conditioner, control method and device of air conditioner and readable storage medium |
CN113280406B (en) * | 2021-06-15 | 2023-03-10 | 佛山市顺德区美的电子科技有限公司 | Air conditioner, control method and device of air conditioner and readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019171627A1 (en) | 2021-03-04 |
JP7063980B2 (en) | 2022-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110260493A (en) | Progress control method and control device, air conditioner and computer readable storage medium | |
EP2148147B1 (en) | Method of controlling air conditioner | |
WO2019171627A1 (en) | Air conditioner | |
CN102401450B (en) | Air-conditioning and control method thereof | |
CN109716035A (en) | System for air conditioning and hot water supply | |
CN104142007A (en) | An air conditioner | |
CN113692189B (en) | Machine room air conditioner, control method and device thereof, and storage medium | |
CN109716033A (en) | System for air conditioning and hot water supply | |
CN110848852B (en) | Air conditioner and control method and control device thereof | |
JP3593474B2 (en) | Refrigerator control method | |
KR101932084B1 (en) | Air conditoiner and control method thereof | |
JP2010190484A (en) | Electronic apparatus cooling device | |
JPH10148378A (en) | Air conditioner | |
CN115854542A (en) | Air conditioner and fresh air control method of air conditioner | |
US20060207273A1 (en) | Method of controlling over-load cooling operation of air conditioner | |
JP6716024B2 (en) | Air conditioner | |
EP1672296B1 (en) | Method for controlling an air conditioning system | |
CN109442785A (en) | Refrigeration equipment and control method | |
JP2007192479A (en) | Air conditioner | |
JP4023077B2 (en) | Air conditioning control device for vehicles | |
JP4185836B2 (en) | Refrigerator operation control method | |
KR20190043392A (en) | HVAC for ship based on multiple AHU cooler | |
JP2019211153A (en) | Refrigerator, refrigerator control method, and refrigerator control program | |
KR20180071033A (en) | Method for controlling of air conditioner | |
JP2005016877A (en) | refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18908507 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020504653 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18908507 Country of ref document: EP Kind code of ref document: A1 |