WO2019171519A1 - ユーザ端末及び無線通信方法 - Google Patents
ユーザ端末及び無線通信方法 Download PDFInfo
- Publication number
- WO2019171519A1 WO2019171519A1 PCT/JP2018/008876 JP2018008876W WO2019171519A1 WO 2019171519 A1 WO2019171519 A1 WO 2019171519A1 JP 2018008876 W JP2018008876 W JP 2018008876W WO 2019171519 A1 WO2019171519 A1 WO 2019171519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coreset
- user terminal
- control
- unit
- field
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to a user terminal and a wireless communication method in a next generation mobile communication system.
- LTE Long Term Evolution
- LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
- LTE Long Term Evolution
- Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 13, 14 or (Also referred to as after 15).
- a user terminal In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) is based on downlink control information (DCI: Downlink Control Information, also called DL assignment) from a radio base station. Then, reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel) is controlled. Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
- DCI Downlink Control Information
- PUSCH Physical Uplink Shared Channel
- BF beam forming
- the user terminal is based on the state (TCI state) of the transmission configuration index (TCI) indicating (including) information related to the QCL of the control resource set (CORESET: Control Resource Set).
- TCI state state of the transmission configuration index (TCI) indicating (including) information related to the QCL of the control resource set (CORESET: Control Resource Set).
- CORESET Control Resource Set
- MAC CE Medium Access Control Control Element
- the user terminal cannot properly recognize the CORESET TCI state, and as a result, receives the downlink control channel in the CORESET. Processing may not be properly controlled.
- the present invention has been made in view of this point, and an object of the present invention is to provide a user terminal and a wireless communication method capable of appropriately recognizing one or more CORESET TCI states set in the user terminal.
- a user terminal receives a MAC (Medium Access Control) control element including a field indicating a state of a transmission configuration index (TCI) of a control resource set set in a partial band in a carrier And a control unit that controls reception of a downlink control channel mapped to a predetermined resource unit in the control resource set based on the state of the TCI indicated by the field.
- MAC Medium Access Control
- the user terminal can appropriately recognize one or more CORESET TCI states set in the user terminal.
- FIG. 1 is a diagram illustrating an example of BWP and CORESET set in a user terminal.
- 2A to 2C are diagrams illustrating an example of a MAC CE according to the first aspect.
- 3A to 3C are diagrams illustrating an example of a MAC CE according to the second aspect.
- the user terminal may Control of reception processing (for example, at least one of demapping, demodulation, and decoding) of a downlink shared channel is under consideration.
- pseudo-collocation is an index indicating the statistical properties of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift, a Doppler spread, an average delay, and a delay spread (delay) are set between these different signals. spread) and a spatial parameter (for example, a spatial reception parameter (Spatial Rx Parameter)) can be assumed to be the same.
- QCL may be provided with one or more types (QCL types) having different parameters that can be assumed to be the same.
- QCL types QCL types
- four QCL types A to D having different parameters that can be assumed to be the same may be provided.
- QCL type A QCL that can be assumed to have the same Doppler shift, Doppler spread, average delay and delay spread
- QCL type B QCL that can be assumed to have the same Doppler shift and Doppler spread
- QCL type C QCL that can be assumed to have the same average delay and Doppler shift
- QCL type D QCL that can be assumed to have the same spatial reception parameters
- the state of a transmission configuration indicator (TCI: Transmission Configuration Indicator) (TCI state (TCI-state)) may indicate (may also include information on QSCH of PDSCH (also referred to as QCL information or QCL information for PDSCH)).
- TCI state Transmission Configuration Indicator
- the PDCL QCL information is, for example, information related to the QCL between the PDSCH (or the DMRS port for the PDSCH) and a downlink reference signal (DL-RS), for example, a DL- It may include at least one of RS information (DL-RS related information) and information indicating the QCL type (QCL type information).
- the DMRS port is an antenna port for a demodulation reference signal (DMRS).
- the DMRS port may be a DMRS port group including a plurality of DMRS ports, and the DMRS port in this specification may be read as a DMRS port group.
- the DL-RS related information may include at least one of information indicating a DL-RS having a QCL relationship and information indicating a resource of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the user terminal, the DL-RS related information includes the PDSCH (or the DMRS port for PDSCH) and the QCL among the reference signals included in the RS set. A predetermined DL-RS to be related and a resource for the DL-RS may be indicated.
- RS sets reference signal sets
- the DL-RS is a synchronization signal (for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS)), a mobility reference signal (MRS: Mobility RS), Synchronization signal block (SSB), channel state information reference signal (CSI-RS: Channel Sate Information-Reference Signal), demodulation reference signal (DMRS: DeModulation Reference Signal), broadcast channel (PBCH: Physical Broadcast Channel), beam-specific It may be a signal configured by extending and / or changing at least one of the signals or the like (for example, a signal configured by changing density and / or period).
- PSS Primary Synchronization Signal
- SSS secondary synchronization signal
- MRS Mobility Reference signal
- SSB Synchronization signal block
- CSI-RS Channel Sate Information-Reference Signal
- DMRS Demodulation Reference Signal
- PBCH Physical Broadcast Channel
- beam-specific It may be a signal configured by extending and / or changing at
- each TCI state can indicate (can include) QCL information for PDSCH.
- one or more TCI states may be notified (configured) from the radio base station by higher layer signaling (for example, RRC signaling). Note that the number of TCI states set in the user terminal may be limited by the QCL type.
- DCI used for scheduling of PDSCH may include a predetermined field (TCI state ID field) indicating a TCI state (QCL information for PDSCH).
- TCI state ID field may be configured with a predetermined number of bits (for example, 3 bits). Whether or not the TCI state ID field is included in the DCI may be controlled by a notification from the radio base station (for example, higher layer signaling).
- the radio base station may preconfigure (configure) a maximum of 8 types of TCI states in the user terminal by higher layer signaling.
- the value of the TCI state ID field in the DCI (TCI state ID field value) may indicate one of the TCI states set in advance by higher layer signaling.
- TCI states When more than 8 types of TCI states are set in the user terminal, 8 or less types of TCI states may be activated (designated) by the MAC CE.
- the value of the TCI state ID field in DCI may indicate one of the TCI states activated by the MAC CE.
- the user terminal determines the QCL of the PDSCH (or the DMRS port of PDSCH) based on the TCI state (PDCL QCL information) indicated by the DCI. For example, the user terminal assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell is a DL-RS and a QCL corresponding to the TCI state notified by DCI (for example, decoding) Processing and / or demodulation processing, etc.). Thereby, the reception precision of PDSCH can be improved.
- the user terminal controls reception processing of the downlink control channel based on information (QCL information) regarding the QCL of the downlink control channel (for example, PDCCH). .
- the TCI state may indicate (may include) information about the PDCCH QCL (also referred to as QCL information or PCLCH QCL information).
- the QCL information for the PDCCH is, for example, information related to the QCL between the PDCCH (or the DMRS port for the PDCCH) and the DL-RS.
- information related to the DL-RS that is related to the QCL DL-RS related information
- information indicating the QCL type QCL type information.
- the DL-RS related information and the DL-RS are as described in the PDSCH QCL.
- the QCL information for the PDCCH may be information related to the QCL between the control resource set (CORESET: control resource set) to which the PDCCH is mapped and the DL-RS, for example, a DL-RS having a QCL relationship.
- Information DL-RS related information
- information indicating the QCL type may be included.
- CORESET is a resource area to which a PDCCH is allocated, and may be configured to include a predetermined frequency domain resource and a time domain resource (for example, 1 or 2 OFDM symbols).
- PDCCH (or DCI) is mapped to a predetermined resource unit in CORESET.
- the predetermined resource unit includes, for example, a control channel element (CCE: Control Channel Element), a CCE group including one or more CCEs, and a resource element group (REG: Resource Element) including one or more resource elements (RE: Resource Element). Group), one or more REG bundles (REG group), and at least one physical resource block (PRB).
- CCE Control Channel Element
- CCE group including one or more CCEs
- REG Resource Element
- Group resource elements
- REG group Resource Element
- PRB physical resource block
- the user terminal monitors (blind decoding) DCI mapped to a predetermined resource unit in CORESET (or search space in CORESET), and detects DCI for the user terminal.
- K (K ⁇ 1) TCI states (QCL information for K PDCCHs) are notified (configured) from the radio base station by higher layer signaling (for example, RRC signaling) per CORESET. ).
- the radio base station activates (designates) a predetermined TCI state (for example, one TCI state) for the user terminal by MAC CE May be.
- the MAC CE may indicate (or may include) at least one of a CORESET index for changing the TCI state and one TCI state set for the CORESET.
- two or more TCI state candidates may be set in advance by higher layer signaling (for example, RRC signaling).
- the user terminal After the elapse of a predetermined period (for example, 4 slots or 10 symbols, etc.) from the reception of the MAC CE (PDSCH that transmits the MAC CE), the user terminal performs PDCCH monitored in the CORESET specified by the MAC CE.
- reception channel estimation, demodulation
- the notification of the TCI state by MAC CE may not be performed, or the notification of the TCI state may be performed.
- the user terminal determines the QCL of the PDCCH (DMRS port or CORESET of the PDCCH) based on the TCI state (QCL information for PDCCH) set or specified as described above. For example, assuming that the DMRS port (or CORESET) of the PDCCH is a DL-RS and a QCL corresponding to the TCI state, the user terminal performs PDCCH reception processing (for example, decoding processing and / or demodulation processing). Control. Thereby, the reception precision of PDCCH can be improved.
- one or more CORESETs are configured for the user terminal by higher layer signaling (for example, RRC signaling).
- RRC signaling for example, RRC signaling
- one or more CORESET may be set for one serving cell (carrier, component carrier (CC)) set for the user terminal.
- CC component carrier
- one or more partial frequency bands also referred to as a partial band or a bandwidth part (BWP)
- BWP CORESET may be set.
- FIG. 1 is a diagram illustrating an example of BWP and CORESET set in a user terminal.
- one or more BWPs (BWPs # 1 and # 2 in FIG. 1) may be configured in the carrier set in the user terminal.
- one or more CORESETs (1 CORESET per BWP in FIG. 1) may be set for each BWP.
- BWP # 2 overlaps with BWP # 1, but BWP # 1 and # 2 may be set to non-overlapping bands.
- one BWP active BWP
- one or more BWPs may be activated.
- only one carrier is shown, but two or more carriers may be set for the user terminal.
- the user terminal monitors the CORESET (search space in the CORESET) of the active BWP, and detects DCI for the user terminal.
- the DCI may include information (BWP information) indicating which BWP is the DCI.
- the BWP information is, for example, a BWP index, and may be a predetermined field value in DCI.
- the user terminal may determine a BWP on which PDSCH or PUSCH is scheduled by the DCI based on the BWP information in the DCI.
- a user terminal when a user terminal detects DCI including an index of BWP # 1 in CORESET # 1, it receives a PDSCH scheduled in BWP # 1 based on the DCI. Also good. Further, when detecting the DCI including the index of BWP # 2 in CORESET # 1, the user terminal may receive the PDSCH scheduled in BWP # 2 based on the DCI. Note that DCI for scheduling PUSCH may be mapped to CORESET # 1 and / or # 2.
- At least one TCI state is higher layer signaling for at least one of the CORESET # 1 and # 2. It is assumed that it will be configured with In this case, it is assumed that at least one TCI state of CORESET # 1 and # 2 is designated using MAC CE.
- the present inventors can appropriately control the reception processing of the PDCCH corresponding to the CORESET by appropriately configuring the MAC CE that specifies one or more CORESET TC states set for the user terminal. Attention was paid to the following points, and the present invention was achieved.
- QCL may be read as QCL (spatially quasi co-located) in space, spatial relation (spatial relation), or the like.
- the MAC CE includes a field (also referred to as a TCI state field or a TCI state ID field) indicating a TCI state (or an identifier (TCI state ID) of the TCI state), and a TCI state indicated by the field. It includes at least a field (also referred to as a CORESET field, a CORESET ID field, or the like) indicating an applied CORESET (or an identifier (CORESET ID) of the CORESET).
- the user terminal Based on the TCI state indicated by the TCI state ID field, the user terminal maps to a predetermined resource unit (for example, at least one of CCE, CCE group, REG, REG bundle, PRB) in the CORESET indicated by the CORESET ID field. Reception of the received PDCCCH may be controlled.
- a predetermined resource unit for example, at least one of CCE, CCE group, REG, REG bundle, PRB
- the TCI state may indicate (may include) information related to the above-mentioned PDCCH (or DMRS port of the PDCCH) and DL-RS QCL, or information related to the above-mentioned QCL between CORESET and DL-RS. ).
- 2A to 2C are diagrams showing an example of the MAC CE according to the first mode.
- the MAC CE may be divided in units of octets (8 bits).
- “R” is a reserved bit, and may be set to 0, for example.
- 2A to 2C are merely examples, and the number of bits and / or positions of each field are not limited to those illustrated. Further, the spare bit “R” is not limited to the first bit, and may be inserted at one or more positions (not shown).
- the MAC CE may include a TCI state ID field indicating the TCI state identified by the TCI state ID and a CORESET ID field indicating the CORESET to which the TCI state is applied.
- the TCI state ID field may be 6 bits, for example.
- the CORESET ID field may be 2 bits.
- the MAC CE may include one or more CORESET ID fields and one or more TCI state ID fields.
- a set of a 2-bit CORESET ID field and a 6-bit TCI state ID field may be repeatedly arranged.
- the CORESET ID field may specify a CORESET ID to which the TCI state ID field is applied in a bitmap format.
- the CORESET ID field may be composed of 2 bits or more. For example, if the CORESET ID field is composed of 4 bits and the value is “0110”, the CORESET to which the TCI state ID field is applied is CORESET # 1 and CORESET # 2, and different TCI state ID fields for each. Can be included. That is, a single CORESET ID field indicating one or more CORESET and one or more TCI state ID fields respectively corresponding to the one or more CORESET may be included in the MAC CE.
- the MAC CE may include a serving cell to which the MAC CE is applied (or a field (also referred to as a serving cell field or a serving cell ID field) indicating an identifier (serving cell ID) of the serving cell).
- a serving cell to which the MAC CE is applied or a field (also referred to as a serving cell field or a serving cell ID field) indicating an identifier (serving cell ID) of the serving cell.
- the serving cell ID field may be 5 bits.
- the MAC CE may include a BWP to which the MAC CE is applied (or a field indicating the identifier (BWP ID) of the BWP (also referred to as a BWP field or a BWP ID field).
- BWP ID field may be 2 bits.
- a set including a 2-bit BWP ID field, one or more CORESET ID fields, and one or more TCI state ID fields is repeated. It may be arranged.
- the BWP ID field may be composed of two or more bits, and may specify one or more BWPs to which the TCI state ID field is applied in a bitmap format.
- the BWP ID field may be composed of 2 bits or more. For example, if the BWP ID field is composed of 2 bits and the value is “11”, one or more CORESET TCI state ID fields corresponding to 2 bits each (for example, BWP # 0 and # 1) May be included.
- the CORESET ID field may be provided for each BWP, or may be provided for one or more BWPs. Further, the CORESET ID field may designate a CORESET ID to which the TCI state ID field is applied in the corresponding BWP in the bitmap format as described above.
- the CORESET ID is 2 bits, it can take only a value of 0 to 3.
- the CORESET ID is assigned to a plurality of BWPs by serial numbers, and therefore the range of the CORESET ID set in higher layer signaling (for example, RRC signaling) is 0-11. It becomes.
- the user terminal obtains the CORESET ID to which the TCI state is applied from both the BWP ID and the CORESET ID included in the MAC CE. Also good.
- the user terminal selects a predetermined number (for example, a maximum of 4) of CORESET included in (corresponding to) the BWP according to the value of the BWP ID, and sets the CORESET ID of the predetermined number of CORESET to a predetermined value.
- a rule for example, ascending order
- it can be mapped to the value of the CORESET ID field (for example, a maximum of four values in the case of 2 bits) included in the MAC CE.
- the MAC CE may not include the BWP ID field (see FIG. 2A). 2B and 2C, it demonstrates centering on difference with FIG. 2A.
- the user terminal may assume that the MAC CE includes one or more CORESET TCI states of the active BWP in the serving cell indicated by the serving cell ID field.
- the user terminal may assume that the CORESET and TCI states indicated by the CORESET ID field and the TCI state ID field are the CORESET of the active BWP and its TCI state, respectively.
- the user terminal assumes that the MAC CE includes one or more CORESET TCI states in at least one of the active BWP, the initial BWP, and the default BWP in the serving cell indicated by the serving cell ID field. Also good.
- the initial BWP is a BWP used for initial access (also referred to as a random access procedure or the like) in the serving cell, and may be referred to as an initial active BWP or the like.
- the default BWP is a BWP activated by default and may be used for initial access.
- the default BWP may be a BWP that is activated (falls back) by deactivating the active BWP when the PDSCH or the PUSCH is not scheduled for a predetermined period of time in the active BWP.
- the determination that the PDSCH or the PUSCH is not scheduled for a predetermined period can be made, for example, based on whether or not a BWP inactivity timer that counts a non-scheduled period with a timer has expired.
- the MAC CE is the CORESET ID for the active BWP CORESET ID field and TCI state ID field, and at least one of the initial BWP and default BWP (initial / default BWP) following the serving cell ID field. Field and a TCI state ID field.
- the CORESET ID field and the TCI state ID field for active BWP may be two or more.
- the CORESET ID field and the TCI state ID field for the initial / default BWP may be two or more.
- a set of a 2-bit CORESET ID field and a 6-bit TCI state ID field may be repeatedly arranged. .
- BWP CORESET ID field and TCI state ID field are included in the MAC CE in any order may be determined in advance or explicitly notified by higher layer signaling (for example, system information or RRC signaling). Or may be derived implicitly.
- the CORESET ID field and the TCI state ID field are provided in the order of active BWP and initial / default BWP.
- the order is not limited to this, and the order of initial / default BWP and active BWP is as follows. Also good.
- the MAC CE since the MAC CE includes the CORESET ID field and the TCI state ID field, it is possible to explicitly notify the user terminal which CORESET TCI state is to be designated. Therefore, the user terminal can appropriately recognize one or more CORESET TCI states set in the user terminal.
- the second aspect is different from the first aspect in that the MAC CE includes a TCI state ID field but does not include a CORESET ID field. Below, it demonstrates centering on difference with a 1st aspect.
- the user terminal determines (assums) which CORESET TCI state each TCI state ID field indicates to the MAC CE according to a predetermined rule.
- the predetermined rule may specify that a CORESET TCI state ID field indicated by the CORESET ID is included according to a predetermined order (for example, ascending order) of the CORESET ID.
- the predetermined rule may include only a CORESET CORESET ID in which a plurality of TCI states are set by RRC signaling and a TCI state ID can be specified by the MAC CE in a predetermined order, or all CORESET CORESETs. IDs may be included in a predetermined order.
- the predetermined rule may specify that the TCI state ID field is included in a predetermined order (for example, ascending order) of the CORE ID for each BWP.
- the BWP may be designated by a BWP ID field, or may be a predetermined BWP (for example, at least one of active BWP, initial BWP, and default BWP).
- one or more CORESET TCI state ID fields for the initial BWP are arranged in ascending order of the CORESET ID of the initial BWP, and then one or more for the initial BWP in ascending order of the CORESET ID of the default BWP.
- CORESET TCI state ID field may be arranged, and subsequently, one or more CORESET TCI state ID fields for the initial BWP may be arranged in ascending order of the CORESET ID of the active BWP.
- FIGS. 3A to 3C are diagrams illustrating an example of the MAC CE according to the second aspect.
- the difference from FIGS. 2A to 2C will be mainly described.
- the MAC CE may include a serving cell ID field, a BWP ID field, and a TCI state ID field indicating the TCI state of each CORESET in the BWP indicated by the BWP ID field.
- the MAC CE may include a TCI state ID field for CORESET # 1 followed by a TCI state ID field for CORESET # 0 in ascending order of the CORESET ID.
- a plurality of sets each including a BWP ID field and one or more TCI state ID fields may be repeated in the MAC CE.
- the BWP ID field may specify one or more BWPs to which the TCI state ID field is applied in a bitmap format.
- the BWP ID field may be composed of 2 bits or more. For example, if the BWP ID field is composed of 2 bits and the value is “11”, one or more CORESET TCI state ID fields corresponding to 2 bits each (for example, BWP # 0 and # 1) May be included.
- the MAC CE may not include the BWP ID field (see FIG. 3A). 3B and 3C, it demonstrates centering on difference with FIG. 3A.
- the user terminal may assume that the MAC CE includes one or more CORESET TCI states of the active BWP in the serving cell indicated by the serving cell ID field.
- the user terminal may assume that the TCI state indicated by each TCI state ID field is CORESET defined by a predetermined rule in the active BWP.
- the user terminal assumes that the MAC CE includes one or more CORESET TCI states in at least one of the active BWP, initial BWP, and default BWP in the serving cell indicated by the serving cell ID field. Also good.
- the MAC CE follows the serving cell ID field, one or more TCI state ID fields for the active BWP, and one or more for at least one of the initial BWP and the default BWP (initial / default BWP). Includes a TCI state ID field.
- the active BWP includes CORESET # 0 and # 1
- the initial / default BWP includes CORESET # 0.
- the TCI state ID field of the CORESET # 0 of the initial / default BWP is set in the MAC CE following the TCI state ID field for the CORESET # 0 and # 1 in ascending order of the CORESET ID in the active BWP. Placed in.
- the MAC CE since the MAC CE includes one or more BWP TCI state ID fields in the order determined by a predetermined rule, explicitly indicate the CORESET to which the TCI state indicated by the TCI state ID field is applied. There is no need to do. For this reason, there is no need to include the CORESET ID field in the MAC CE, and the overhead of the MAC CE can be reduced.
- wireless communication system Wireless communication system
- communication is performed using at least one combination of the plurality of aspects.
- FIG. 4 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
- carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
- DC dual connectivity
- the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
- the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
- the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
- CC cells
- Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
- the same carrier may be used.
- the configuration of the frequency band used by each radio base station is not limited to this.
- the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
- TDD time division duplex
- FDD frequency division duplex
- a single neurology may be applied, or a plurality of different neurology may be applied.
- Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, filtering process, windowing process, and the like.
- the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
- the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
- the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
- the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
- the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
- Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
- orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
- SC-FDMA single carrier-frequency division multiple access
- Frequency Division Multiple Access and / or OFDMA is applied.
- OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
- SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
- the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
- downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
- PDSCH downlink shared channel
- PBCH Physical Broadcast Channel
- SIB System Information Block
- MIB Master Information Block
- Downlink L1 / L2 control channel is downlink control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) Including at least one of Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
- PDCH Physical Downlink Control Channel
- EPDCCH Enhanced Physical Downlink Control Channel
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- DCI Downlink Control Information
- scheduling information may be notified by DCI.
- DCI for scheduling DL data reception may be referred to as DL assignment
- DCI for scheduling UL data transmission may be referred to as UL grant.
- the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
- the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
- HARQ Hybrid Automatic Repeat reQuest
- EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
- an uplink shared channel (PUSCH) shared by each user terminal 20
- an uplink control channel (PUCCH: Physical Uplink Control Channel)
- a random access channel (PRACH: Physical Random Access Channel)
- User data, higher layer control information, etc. are transmitted by PUSCH.
- downlink radio link quality information CQI: Channel Quality Indicator
- delivery confirmation information SR
- scheduling request etc.
- a random access preamble for establishing connection with the cell is transmitted by the PRACH.
- a cell-specific reference signal CRS
- CSI-RS channel state information reference signal
- DMRS demodulation reference signal
- PRS Positioning Reference Signal
- a measurement reference signal SRS: Sounding Reference Signal
- a demodulation reference signal DMRS
- the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
- FIG. 5 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
- the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
- User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access
- Retransmission control for example, HARQ transmission processing
- scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
- IFFT Inverse Fast Fourier Transform
- precoding processing precoding processing, and other transmission processing
- the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
- the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
- the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
- the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
- the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
- the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
- the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
- the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
- the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
- the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
- the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
- the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
- CPRI Common Public Radio Interface
- X2 interface May be.
- the transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming.
- the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
- the transmission / reception antenna 101 can be configured by an array antenna, for example.
- the transmission / reception unit 103 is configured to be able to apply single BF and multi-BF.
- the transmission / reception unit 103 may transmit a signal using a transmission beam or may receive a signal using a reception beam.
- the transmission / reception unit 103 may transmit and / or receive a signal using a predetermined beam determined by the control unit 301.
- the transceiver 103 transmits a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) to the user terminal 20. Then, an uplink (UL) signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal) is received from the user terminal 20.
- DL downlink
- DL control signal downlink control channel
- UL uplink
- the transmission / reception part 103 transmits DCI with respect to the user terminal 20 using a downlink control channel. Further, the transmission / reception unit 103 transmits a MAC control element (MAC CE) using the downlink shared channel. Further, the transmission / reception unit 103 may transmit information (QCL information) related to the QCL of the downlink shared channel and / or downlink control channel (CORESET) (or a TCI state indicating (including) the QCL information).
- QCL information information related to the QCL of the downlink shared channel and / or downlink control channel (CORESET) (or a TCI state indicating (including) the QCL information).
- FIG. 6 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
- the functional block of the characteristic part in this Embodiment is mainly shown, and it may be assumed that the radio base station 10 also has another functional block required for radio
- the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
- the control unit (scheduler) 301 controls the entire radio base station 10.
- the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
- the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
- the control unit 301 controls scheduling (for example, resource allocation) of system information, downlink data signals (for example, signals transmitted on PDSCH), and downlink control signals (for example, signals transmitted on PDCCH and / or EPDCCH). .
- the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
- the control unit 301 controls scheduling such as a synchronization signal (for example, PSS / SSS) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
- a synchronization signal for example, PSS / SSS
- a downlink reference signal for example, CRS, CSI-RS, DMRS
- the control unit 301 uses the digital BF (for example, precoding) by the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 103 to form a transmission beam and / or a reception beam. May be performed.
- digital BF for example, precoding
- analog BF for example, phase rotation
- the control unit 301 may control at least one configuration of carrier, BWP, and CORESET for the user terminal 20. Further, the control unit 301 may control setting of one or more TCI states per CORESET for the user terminal 20.
- control unit 301 may control the relationship of pseudo collocation (QCL) among a plurality of signals, and may control at least one of setting, generation, and transmission of information (TCI state) related to QCL.
- control unit 301 may control the QCL relationship between the downlink control channel (PDCCH or CORESET) and the downlink reference signal. Further, the control unit 301 may control mapping of the downlink control channel to a predetermined resource unit in CORESET and transmission of the downlink control channel.
- control unit 301 transmits a MAC control element (MAC CE) including a field indicating the TCI state (transmission configuration index (TCI) state) of the control resource set set in the BWP (partial band) in the carrier. You may control.
- MAC CE MAC control element
- TCI transmission configuration index
- the MAC CE may include a field indicating CORESET (control resource set) (first mode).
- the MAC CE may include a field indicating the TCI state of the CORESET determined according to a predetermined rule without including the field indicating the CORESET (second mode).
- the MAC CE may include a field (BWP ID field) indicating BWP (partial band) (FIGS. 2A and 3A).
- BWP ID field BWP (partial band) field
- TCI state ID field may be included in the MAC CE according to a predetermined rule (FIGS. 2B, 2C, 3B, 3C).
- the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
- the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
- the DL assignment and UL grant are both DCI and follow the DCI format.
- the downlink data signal is subjected to coding processing, modulation processing, and the like according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
- CSI Channel State Information
- the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
- the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
- the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
- the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
- the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
- the measurement unit 305 performs measurement on the received signal.
- the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
- the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
- Signal strength for example, RSSI (Received Signal Strength Indicator)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 301.
- FIG. 7 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
- the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
- the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
- the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
- the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
- the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
- the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
- the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. can do.
- the transmission / reception antenna 201 can be configured by, for example, an array antenna.
- the transmission / reception unit 203 is configured to be able to apply single BF and multi-BF.
- the transmission / reception unit 203 may transmit a signal using a transmission beam, or may receive a signal using a reception beam.
- the transmission / reception unit 203 may transmit and / or receive a signal using a predetermined beam determined by the control unit 401.
- the transceiver 203 receives a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) from the radio base station 10, Then, an uplink (UL) signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal) is transmitted to the radio base station 10.
- DL downlink
- DL control signal downlink control channel
- UL uplink
- the transmission / reception unit 203 receives DCI for the user terminal 20 using the downlink control channel.
- the transmission / reception unit 203 receives a MAC control element (MAC CE) using the downlink shared channel.
- MAC CE MAC control element
- the transmission / reception unit 203 may receive information (QCL information) (or a TCI state indicating (including) the QCL information) related to the QCL of the downlink shared channel and / or the downlink control channel (CORESET).
- QCL information information
- TCI state indicating (including) the QCL information related to the QCL of the downlink shared channel and / or the downlink control channel (CORESET).
- FIG. 8 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
- the functional block of the characteristic part in this Embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for radio
- the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
- the control unit 401 controls the entire user terminal 20.
- the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
- the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
- the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
- the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
- the control unit 401 uses a digital BF (for example, precoding) by the baseband signal processing unit 204 and / or an analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. May be performed.
- a digital BF for example, precoding
- an analog BF for example, phase rotation
- control unit 401 may control a signal reception process based on information (TCI state) regarding QCL, assuming a pseudo collocation (QCL) relationship between a plurality of signals. Specifically, the control unit 401 assumes a QCL relationship between a downlink control channel (PDCCH or CORESET) and a downlink reference signal, and controls PDCCH reception processing based on information related to the QCL (TCI state). Also good.
- TCI state information
- QCL pseudo collocation
- the control unit 401 also includes a MAC control element (TCI state ID field) indicating a TCI state (transmission configuration index (TCI) state) of a control resource set set in the BWP (partial band) in the carrier. (MAC CE) reception may be controlled.
- TCI state ID field indicating a TCI state (transmission configuration index (TCI) state) of a control resource set set in the BWP (partial band) in the carrier.
- the MAC CE may include a field (CORESET ID field) indicating CORESET (control resource set) (first mode).
- the control unit 401 may control the reception process of the downlink control channel in the CORESET indicated by the field based on the TCI state indicated by the TCI state ID field.
- the MAC CE may not include a CORESET field (CORESET ID field) (second mode).
- the control unit 401 may identify the CORESET corresponding to the TCI state indicated by the TCI state ID field according to a predetermined rule.
- the MAC CE may include a field (BWP ID field) indicating BWP (partial band). Based on this field, the control unit 401 may recognize the CORESET BWP in the TCI state indicated by the TCI state ID field (FIGS. 2A and 3A).
- the MAC CE may not include a field (BWP ID field) indicating BWP (partial band).
- the control unit 401 may identify the CORESET BWP corresponding to the TCI state indicated by the TCI state ID field according to a predetermined rule (FIGS. 2B, 2C, 3B, and 3C).
- the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
- the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
- CSI channel state information
- the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
- the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
- the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
- the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
- the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
- the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
- the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
- the measurement unit 405 performs measurement on the received signal.
- the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
- the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 401.
- each functional block is realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
- the radio base station, the user terminal, and the like in this embodiment may function as a computer that performs the processing of each aspect of this embodiment.
- FIG. 9 is a diagram illustrating an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
- the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
- processor 1001 may be implemented by one or more chips.
- Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
- the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
- programs program codes
- software modules software modules
- data data
- the like data
- the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
- the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
- the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
- FDD frequency division duplex
- TDD time division duplex
- the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
- the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
- DSP digital signal processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the channel and / or symbol may be a signal (signaling).
- the signal may be a message.
- the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
- a component carrier CC: Component Carrier
- CC Component Carrier
- the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
- a subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
- the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
- the slot may be a time unit based on the numerology.
- the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
- Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- a plurality of consecutive subframes may be called a TTI
- TTI slot or one minislot
- a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
- TTI means, for example, a minimum time unit for scheduling in wireless communication.
- a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
- a time interval for example, the number of symbols
- a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
- a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
- a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
- One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
- the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
- RE Resource Element
- 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
- the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
- the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
- the radio resource may be indicated by a predetermined index.
- names used for parameters and the like are not limited names in any way.
- various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
- information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
- the name is not limited in any way.
- information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
- Information, signals, and the like may be input / output via a plurality of network nodes.
- the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
- information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
- DCI downlink control information
- UCI uplink control information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
- the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
- notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
- the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
- the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
- software, instructions, information, etc. may be transmitted / received via a transmission medium.
- software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
- system and “network” used in this specification are used interchangeably.
- base station BS
- radio base station eNB
- gNB gNodeB
- cell gNodeB
- cell group a base station
- carrier a base station
- a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
- the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
- a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
- RRH Remote Radio Head
- the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
- MS mobile station
- UE user equipment
- a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
- the radio base station in this specification may be read by the user terminal.
- each aspect of the present disclosure / this embodiment may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). Good.
- the user terminal 20 may have a function that the wireless base station 10 has.
- words such as “up” and “down” may be read as “side”.
- the uplink channel may be read as a side channel.
- a user terminal in this specification may be read by a radio base station.
- the wireless base station 10 may have a function that the user terminal 20 has.
- the operation performed by the base station may be performed by the upper node in some cases.
- various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect / this embodiment described in this specification may be used alone, in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / this embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
- Each aspect described in this specification / this embodiment includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system, 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access) ), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registration) (Trademark), systems using other appropriate wireless communication methods, and / or next-generation systems extended based on them may be applied.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
- “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
- connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
- the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本開示のユーザ端末は、キャリア内の部分帯域に設定される制御リソースセットの送信構成指標(TCI)の状態を示すフィールドを含むMAC(Medium Access Control)制御要素を受信する受信部と、前記フィールドが示す前記TCIの状態に基づいて、前記制御リソースセット内の所定のリソース単位にマッピングされる下り制御チャネルの受信を制御する制御部と、を具備する。
Description
本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延等を目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.13、14又は15以降等ともいう)も検討されている。
既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、無線基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。
将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。BFを利用した通信品質を向上するために、複数の信号間の疑似コロケーション(QCL:Quasi-Co-Location)の関係(QCL関係)を考慮して信号の送信及び受信の少なくとも一つを制御することが検討されている。
また、上記将来の無線通信システムでは、ユーザ端末が、制御リソースセット(CORESET:Control Resource Set)のQCLに関する情報を示す(含む)送信構成指標(TCI)の状態(TCI状態)に基づいて、当該CORESETの所定のリソース単位にマッピングされる下り制御チャネル(例えば、PDCCH)の受信を制御することが検討されている。
また、上記将来の無線通信システムでは、当該CORESETに適用されるTCI状態をMAC制御要素(MAC CE:Medium Access Control Control Element)を用いて指定することも検討されている。
しかしながら、MAC CEを用いてユーザ端末に設定される一以上のCORESETのTCI状態を指定する場合、ユーザ端末が、当該CORESETのTCI状態を適切に認識できない結果、当該CORESET内における下り制御チャネルの受信処理を適切に制御できない恐れがある。
本発明はかかる点に鑑みてなされたものであり、ユーザ端末に設定される一以上のCORESETのTCI状態を適切に認識可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
本発明の一態様に係るユーザ端末は、キャリア内の部分帯域に設定される制御リソースセットの送信構成指標(TCI)の状態を示すフィールドを含むMAC(Medium Access Control)制御要素を受信する受信部と、前記フィールドが示す前記TCIの状態に基づいて、前記制御リソースセット内の所定のリソース単位にマッピングされる下り制御チャネルの受信を制御する制御部と、を具備することを特徴とする。
本発明の一態様によれば、ユーザ端末に設定される一以上のCORESETのTCI状態をユーザ端末が適切に認識できる。
(PDSCH用のQCL)
将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、ユーザ端末は、下り共有チャネル(例えば、PDSCH)の疑似コロケーション(QCL)に関する情報(QCL情報)に基づいて、当該下り共有チャネルの受信処理(例えば、デマッピング、復調、復号の少なくとも一つ)を制御することが検討されている。
将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、ユーザ端末は、下り共有チャネル(例えば、PDSCH)の疑似コロケーション(QCL)に関する情報(QCL情報)に基づいて、当該下り共有チャネルの受信処理(例えば、デマッピング、復調、復号の少なくとも一つ)を制御することが検討されている。
ここで、疑似コロケーション(QCL)とは、チャネルの統計的性質を示す指標である。例えば、ある信号と他の信号がQCLの関係である場合、これらの異なる複数の信号間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Prameter))の少なくとも一つが同一であると仮定できることをいう。
QCLには、同一であると仮定できるパラメータが異なる一以上のタイプ(QCLタイプ)が設けられてもよい。例えば、同一であると仮定できるパラメータが異なる4つのQCLタイプA~Dが設けられてもよい。
・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッドが同一であると仮定できるQCL
・QCLタイプB:ドップラーシフト及びドップラースプレッドが同一であると仮定できるQCL
・QCLタイプC:平均遅延及びドップラーシフトが同一であると仮定できるQCL
・QCLタイプD:空間受信パラメータが同一であると仮定できるQCL
・QCLタイプB:ドップラーシフト及びドップラースプレッドが同一であると仮定できるQCL
・QCLタイプC:平均遅延及びドップラーシフトが同一であると仮定できるQCL
・QCLタイプD:空間受信パラメータが同一であると仮定できるQCL
送信構成指標(TCI:Transmission Configuration Indicator)の状態(TCI状態(TCI-state))は、PDSCHのQCLに関する情報(QCL情報又はPDSCH用のQCL情報等ともいう)を示してもよい(含んでもよい)。当該PDSCH用のQCL情報は、例えば、当該PDSCH(又は当該PDSCH用のDMRSポート)と下り参照信号(DL-RS:Downlink Reference Signal)とのQCLに関する情報であり、例えば、QCL関係となるDL-RSに関する情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)の少なくとも一つを含んでもよい。
ここで、DMRSポートは、復調用参照信号(DMRS:Demodulation Reference Signal)のアンテナポートである。DMRSポートは、複数のDMRSポートを含むDMRSポートグループであってもよく、本明細書におけるDMRSポートは、DMRSポートグループと読み替えられてもよい。
当該DL-RS関連情報は、QCL関係となるDL-RSを示す情報及び当該DL-RSのリソースを示す情報の少なくとも一つを含んでもよい。例えば、ユーザ端末に複数の参照信号セット(RSセット)が設定される場合、当該DL-RS関連情報は、当該RSセットに含まれる参照信号の中でPDSCH(又はPDSCH用のDMRSポート)とQCL関係となる所定のDL-RS及び当該DL-RS用のリソースを示してもよい。
ここで、DL-RSは、同期信号(例えば、プライマリ同期信号(PSS:Primary Synchronaization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronaization Signal)の少なくとも一つ)、モビリティ参照信号(MRS:Mobility RS)、同期信号ブロック(SSB)、チャネル状態情報参照信号(CSI-RS:Channel Satate Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、報知チャネル(PBCH:Physical Broadcast Channel)、ビーム固有の信号などの少なくとも1つ、又はこれらを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号)であってもよい。
以上のように、各TCI状態は、PDSCH用のQCL情報を示すことができる(含むことができる)。ユーザ端末に対しては、一以上のTCI状態(一以上のPDSCH用のQCL情報)が上位レイヤシグナリング(例えば、RRCシグナリング)により無線基地局から通知(設定(configure))されてもよい。なお、ユーザ端末に設定されるTCI状態の数は、QCLタイプによって制限されてもよい。
PDSCHのスケジューリングに用いられるDCI(DLアサインメント)は、TCI状態(PDSCH用のQCL情報)を示す所定のフィールド(TCI状態IDフィールド)を含んでもよい。TCI状態IDフィールドは、所定ビット数(例えば、3ビット)で構成されてもよい。当該TCI状態IDフィールドがDCIに含まれるか否かは、無線基地局からの通知(例えば、上位レイヤシグナリング)によって制御されてもよい。
例えば、DCIが3ビットのTCI状態IDフィールドを含む場合、無線基地局は、最大8種類のTCI状態を上位レイヤシグナリングによりユーザ端末に予め設定(configure)してもよい。DCI内のTCI状態IDフィールドの値(TCI状態IDフィールド値)は、上位レイヤシグナリングにより予め設定されたTCI状態の一つを示してもよい。
8種類を超えるTCI状態がユーザ端末に設定される場合、MAC CEにより、8種類以下のTCI状態がアクティブ化(指定)されてもよい。DCI内のTCI状態IDフィールドの値は、MAC CEによりアクティブ化されたTCI状態の一つを示してもよい。
ユーザ端末は、DCIが示すTCI状態(PDSCH用のQCL情報)に基づいて、PDSCH(又はPDSCHのDMRSポート)のQCLを決定する。例えば、ユーザ端末は、サービングセルのPDSCHのDMRSポート(又は、DMRSポートグループ)が、DCIで通知されたTCI状態に対応するDL-RSとQCLであると想定してPDSCHの受信処理(例えば、復号処理及び/又は復調処理等)を制御する。これにより、PDSCHの受信精度を向上できる。
(PDCCH用のQCL)
また、当該将来の無線通信システムでは、ユーザ端末は、下り制御チャネル(例えば、PDCCH)のQCLに関する情報(QCL情報)に基づいて、当該下り制御チャネルの受信処理を制御することが検討されている。
また、当該将来の無線通信システムでは、ユーザ端末は、下り制御チャネル(例えば、PDCCH)のQCLに関する情報(QCL情報)に基づいて、当該下り制御チャネルの受信処理を制御することが検討されている。
TCI状態は、PDCCHのQCLに関する情報(QCL情報又はPDCCH用のQCL情報等ともいう)を示してもよい(含んでもよい)。当該PDCCH用のQCL情報は、例えば、当該PDCCH(又は当該PDCCH用のDMRSポート)とDL-RSとのQCLに関する情報であり、例えば、QCL関係となるDL-RSに関する情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)の少なくとも一つを含んでもよい。DL-RS関連情報及びDL-RSについては、PDSCH用のQCLで説明した通りである。
或いは、当該PDCCH用のQCL情報は、当該PDCCHがマッピングされる制御リソースセット(CORESET:control resource set)とDL-RSとのQCLに関する情報であってもよく、例えば、QCL関係にあるDL-RSを示す情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)の少なくとも一つを含んでもよい。
ここで、CORESETとは、PDCCHが割当てられるリソース領域であり、所定の周波数領域リソースと時間領域リソース(例えば1又は2OFDMシンボルなど)を含んで構成されてもよい。PDCCH(又はDCI)は、CORESET内の所定のリソース単位にマッピングされる。
当該所定のリソース単位は、例えば、制御チャネル要素(CCE:Control Channel Element)、一以上のCCEを含むCCEグループ、一以上のリソース要素(RE:Resource Element)を含むリソース要素グループ(REG:Resource Element Group)、一以上のREGバンドル(REGグループ)、物理リソースブロック(PRB:Physical Resource Block)の少なくとも一つであればよい。
ユーザ端末は、CORESET(又はCORESET内のサーチスペース)内の所定のリソース単位にマッピングされるDCIを監視(monitor)(ブラインド復号)して当該ユーザ端末に対するDCIを検出する。
ユーザ端末に対しては、CORESETあたりK個(K≧1)のTCI状態(K個のPDCCH用のQCL情報)が上位レイヤシグナリング(例えば、RRCシグナリング)により無線基地局から通知(設定(configure))されてもよい。
CORESETに対して複数のTCI状態が設定される場合(K>1)、無線基地局はユーザ端末に対して所定のTCI状態(例えば、1つのTCI状態)を、MAC CEによりアクティブ化(指定)してもよい。MAC CEは、TCI状態の変更を行うCORESETのインデックスと、そのCORESETに対して設定する1つのTCI状態との少なくとも一つを示してもよい(含んでもよい)。また、TCI状態の変更を行うCORESETに対しては、予め上位レイヤシグナリング(例えば、RRCシグナリング等)によって、2つ以上のTCI状態候補が設定されているものとしてもよい。
また、ユーザ端末は、上記MAC CE(当該MAC CEを伝送するPDSCH)の受信から所定期間(例えば4スロット、あるいは10シンボル、など)経過以降、当該MAC CEにより指定されたCORESETにおいてモニタリングされるPDCCHに対して、当該MAC CEにより指定されたTCI状態を想定して受信(チャネル推定、復調)を行ってもよい。
なお、CORESETに対して単一のTCI状態が設定される場合(K=1)、MAC CEによるTCI状態の通知は行われなくともよいし、当該TCI状態の通知が行われてもよい。
ユーザ端末は、以上のように設定又は指定されるTCI状態(PDCCH用のQCL情報)に基づいて、PDCCH(当該PDCCHのDMRSポート又はCORESET)のQCLを決定する。例えば、ユーザ端末は、PDCCHのDMRSポート(又はCORESET)が、上記TCI状態に対応するDL-RSとQCLであると想定してPDCCHの受信処理(例えば、復号処理及び/又は復調処理等)を制御する。これにより、PDCCHの受信精度を向上できる。
ところで、上記将来の無線通信システムでは、ユーザ端末に対して一以上のCORESETが上位レイヤシグナリング(例えば、RRCシグナリング)により設定(configure)されることが想定される。例えば、当該ユーザ端末に設定される1サービングセル(キャリア、コンポーネントキャリア(CC))あたり一以上のCORESETが設定されてもよい。
また、1サービングセルのシステム帯域幅(キャリア帯域幅)内に一以上の部分的な周波数帯域(部分帯域又は帯域幅部分(BWP:Bandwidth Part)等ともいう)が設定される場合、1BWPあたり一以上のCORESETが設定されてもよい。
図1は、ユーザ端末に設定されるBWP及びCORESETの一例を示す図である。図1に示すように、ユーザ端末に設定されるキャリア内には、一以上のBWP(図1では、BWP#1及び#2)が設定(configure)されてもよい。また、各BWPには、一以上のCORESET(図1では、BWPあたり1CORESET)が設定されてもよい。
なお、図1では、BWP#2の一部がBWP#1と重複するが、BWP#1及び#2は重複しない帯域に設定されてもよい。また、図1では、あるタイミングでアクティブであるBWP(アクティブBWP)は一つであるものとするが、一以上のBWPがアクティブ化されてもよい。また、図1では、1キャリアだけが示されるが、ユーザ端末に対して2以上のキャリアが設定されてもよい。
図1において、ユーザ端末は、アクティブBWPのCORESET(当該CORESET内のサーチスペース)を監視して、当該ユーザ端末に対するDCIを検出する。当該DCIは、どのBWPに対するDCIであるかを示す情報(BWP情報)を含んでもよい。当該BWP情報は、例えば、BWPのインデックスであり、DCI内の所定フィールド値であればよい。ユーザ端末は、DCI内のBWP情報に基づいて、当該DCIによってPDSCH又はPUSCHがスケジューリングされるBWPを決定してもよい。
例えば、図1に示すように、ユーザ端末は、CORESET#1内でBWP#1のインデックスを含むDCIを検出する場合、当該DCIに基づいて、BWP#1内にスケジューリングされたPDSCHを受信してもよい。また、ユーザ端末は、CORESET#1内でBWP#2のインデックスを含むDCIを検出する場合、当該DCIに基づいて、BWP#2内にスケジューリングされたPDSCHを受信してもよい。なお、CORESET#1及び/又は#2には、PUSCHをスケジューリングするDCIがマッピングされてもよい。
図1に示すように、ユーザ端末に対して複数のCORESET#1及び#2が設定される場合、当該CORESET#1及び#2の少なくとも一つに対して、一以上のTCI状態が上位レイヤシグナリングで設定(configure)されることが想定される。この場合、MAC CEを用いてCORESET#1及び#2の少なくとも一つのTCI状態を指定することが想定される。
しかしながら、MAC CEを用いてユーザ端末に設定される一以上のCORESETのTCI状態を指定する場合、ユーザ端末が、当該CORESETのTCI状態を適切に認識できない結果、当該CORESETの受信処理を適切に制御できない恐れがある。
そこで、本発明者らは、ユーザ端末に対して設定される一以上のCORESETのTC状態を指定するMAC CEを適切に構成することで、当該CORESETに対応するPDCCHの受信処理を適切に制御可能となる点に着目し、本発明に至った。
以下、本実施の形態について、図面を参照して詳細に説明する。なお、以下の説明では、TCI状態に基づいてPDSCHの復調に利用する場合について説明するが、本実施の形態はこれに限られない。TCI状態を利用する動作(例えば、他の信号又はチャネルの受信処理)について適用することができる。また、以下の説明において、QCLは、空間におけるQCL(spatially quasi co-located)、空間関係(spatial relation)等と読み替えられてもよい。
(第1の態様)
第1の態様では、MAC CEは、TCI状態(又は当該TCI状態の識別子(TCI状態ID))を示すフィールド(TCI状態フィールド又はTCI状態IDフィールド等ともいう)と、当該フィールドが示すTCI状態が適用されるCORESET(又は、当該CORESETの識別子(CORESET ID))を示すフィールド(CORESETフィールド又はCORESET IDフィールド等ともいう)とを少なくとも含む。
第1の態様では、MAC CEは、TCI状態(又は当該TCI状態の識別子(TCI状態ID))を示すフィールド(TCI状態フィールド又はTCI状態IDフィールド等ともいう)と、当該フィールドが示すTCI状態が適用されるCORESET(又は、当該CORESETの識別子(CORESET ID))を示すフィールド(CORESETフィールド又はCORESET IDフィールド等ともいう)とを少なくとも含む。
ユーザ端末は、当該TCI状態IDフィールドが示すTCI状態に基づいて、CORESET IDフィールドが示すCORESET内の所定のリソース単位(例えば、CCE、CCEグループ、REG、REGバンドル、PRBの少なくとも一つ)にマッピングされるPDCCCHの受信を制御してもよい。
ここで、TCI状態は、上述のPDCCH(又は当該PDCCHのDMRSポート)とDL-RSのQCLに関する情報、又は、上述のCORESETとDL-RSとのQCLに関する情報を示してもよい(含んでもよい)。
図2A~2Cは、第1の態様に係るMAC CEの一例を示す図である。図2A~2Cに示すように、MAC CEは、オクテット(8ビット)単位で区切られてもよい。また、図2A~2Cにおいて「R」は、予備ビット(reserved bit)であり、例えば、0に設定されてもよい。なお、図2A~2Cは例示にすぎず、各フィールドのビット数及び/又は位置は図示するものに限られない。また、予備ビット「R」も、先頭ビットに限られず、図示しない一以上の位置に挿入されてもよい。
図2Aに示すように、MAC CEは、TCI状態IDによって識別されるTCI状態を示すTCI状態IDフィールドと、当該TCI状態が適用されるCORESETを示すCORESET IDフィールドとを含んでもよい。TCI状態IDフィールドは、例えば、6ビットであってもよい。また、CORESET IDフィールドは、2ビットであってもよい。
図2Aにおいて、MAC CEは、一以上のCORESET IDフィールド及び一以上のTCI状態IDフィールドを含んでもよい。複数のCORESETのTCI状態が指定される場合、2ビットのCORESET IDフィールドと6ビットのTCI状態IDフィールドとのセットが繰り返して配置されてもよい。
或いは、CORESET IDフィールドは、ビットマップ形式にて、当該TCI状態IDフィールドを適用するCORESET IDを指定するものとしてもよい。当該CORESET IDフィールドは、2ビット以上で構成されてもよい。例えばCORESET IDフィールドが4ビットで構成され、その値が“0110”である場合、当該TCI状態IDフィールドを適用するCORESETはCORESET #1とCORESET #2となり、かつそれぞれに対して異なるTCI状態IDフィールドを含めるものとすることができる。すなわち、一以上のCORESETを示す単一のCORESET IDフィールドと、当該一以上のCORESETにそれぞれ対応する一以上のTCI状態IDフィールドとが、MAC CEに含まれてもよい。
また、図2Aに示すように、当該MAC CEは、当該MAC CEが適用されるサービングセル(又は当該サービングセルの識別子(サービングセルID)を示すフィールド(サービングセルフィールド又はサービングセルIDフィールド等ともいう)を含んでもよい。例えば、サービングセルIDフィールドは、5ビットであってもよい。
また、図2Aに示すように、当該MAC CEは、当該MAC CEが適用されるBWP)(又は当該BWPの識別子(BWP ID)を示すフィールド(BWPフィールド、BWP IDフィールド等ともいう)を含んでもよい。例えば、BWP IDフィールドは、2ビットであってもよい。
なお、図2Aにおいて、複数のBWP内の一以上のCORESETのTCI状態を指定する場合、2ビットのBWP IDフィールド、一以上のCORESET IDフィールド及び一以上のTCI状態IDフィールドを含むセットが繰り返して配置されてもよい。
或いは、BWP IDフィールドは、2ビット以上で構成され、ビットマップ形式にて、TCI状態IDフィールドを適用する一以上のBWPを指定するものとしてもよい。当該BWP IDフィールドは、2ビット以上で構成されてもよい。例えば、BWP IDフィールドが2ビットで構成され、その値が“11”である場合、2ビットそれぞれに対応する2BWP(例えば、BWP#0及び#1)の一以上のCORESETのTCI状態IDフィールドが含まれてもよい。この場合、CORESET IDフィールドは、BWP毎に設けられてもよいし、一以上のBWP共通に設けられてもよい。また、当該CORESET IDフィールドは、上述のように、ビットマップ形式にて、対応するBWP内でTCI状態IDフィールドを適用するCORESET IDを指定するものとしてもよい。
また、図2Aにおいて、CORESET IDは2ビットであるため、0~3の値しかとることができない。一方、ユーザ端末に設定されるCORESETには、CORESET IDは、複数のBWPに対して通番で割り振られることから、上位レイヤシグナリング(例えば、RRCシグナリング)で設定されるCORESET IDのレンジは0~11となる。MAC CEに含まれるCORESET IDフィールドの値と実際のCORESET IDを対応させるため、ユーザ端末は、TCI状態を適用するCORESET IDを、当該MAC CEに含まれるBWP IDとCORESET IDの両方から求めるものとしてもよい。
例えば、ユーザ端末は、BWP IDの値に応じて、当該BWPに含められる(対応する)所定数(例えば、最大4つ)のCORESETを選択し、当該所定数のCORESETのCORESET IDを、所定のルール(例えば昇順)に従って、MAC CEに含まれるCORESET IDフィールドの値(例えば、2ビットの場合、最大4つの値)にマッピングするものとすることができる。例えばBWP ID #1に対応するCORESETがCORESET ID = #3、#4、#6、#7である場合、MAC CEに含まれるBWP ID = 1の場合に、当該MAC CEのCORESET IDフィールドの値0、1、2、3に対応するCORESETは、それぞれCORESET ID = #3、#4、#6、#7となる。
また、図2B及び2Cに示すように、当該MAC CEは、BWP IDフィールド(図2A参照)を含まなくともよい。図2B及び2Cでは、図2Aとの相違点を中心に説明する。
図2Bに示すように、ユーザ端末は、MAC CEが、サービングセルIDフィールドが示すサービングセルにおけるアクティブBWPの一以上のCORESETのTCI状態を含むと想定してもよい。例えば、図2Bでは、ユーザ端末は、CORESET IDフィールド及びTCI状態IDフィールドが示すCORESET及びTCI状態がそれぞれアクティブBWPのCORESET及びそのTCI状態であると想定してもよい。
或いは、図2Cに示すように、ユーザ端末は、MAC CEが、サービングセルIDフィールドが示すサービングセルにおけるアクティブBWP、初期BWP及びデフォルトBWPの少なくとも一つにおける一以上のCORESETのTCI状態を含むと想定してもよい。
ここで、初期BWPとは、サービングセルおける初期アクセス(ランダムアクセス手順等ともいう)に用いられるBWPであり、初期アクティブBWP等と呼ばれてもよい。また、デフォルトBWPは、デフォルトでアクティブ化されるBWPであり、初期アクセスに用いられてもよい。また、デフォルトBWPは、アクティブBWPで所定期間でPDSCH又はPUSCHがスケジューリングされない場合に当該アクティブBWPを非アクティブ化して、アクティブ化される(フォールバックする)BWPであってもよい。所定期間PDSCH又はPUSCHがスケジューリングされないことの判断は、例えば、スケジューリングされない期間をタイマでカウントするBWPインアクティビティタイマが満了したかどうかで判断することができる。
例えば、図2Cでは、MAC CEは、サービングセルIDフィールドに続いて、アクティブBWP用のCORESET IDフィールド及びTCI状態IDフィールドと、初期BWP及びデフォルトBWPの少なくとも一つ(初期/デフォルトBWP)用のCORESET IDフィールド及びTCI状態IDフィールドを含む。
図2Cにおいて、アクティブBWP用のCORESET IDフィールド及びTCI状態IDフィールドは、2以上であってもよい。同様に、初期/デフォルトBWP用のCORESET IDフィールド及びTCI状態IDフィールドは、2以上であってもよい。アクティブBWP、初期/デフォルトBWPの少なくとも一つにおいて、複数のCORESETのTCI状態が指定される場合、2ビットのCORESET IDフィールドと6ビットのTCI状態IDフィールドとのセットが繰り返して配置されてもよい。
なお、どのBWPのCORESET IDフィールド及びTCI状態IDフィールドをどの順番でMAC CE内に含めるかは、予め定められてもよいし、上位レイヤシグナリング(例えば、システム情報又はRRCシグナリング)により明示的に通知されてもよいし、又は、黙示的に導出されてもよい。例えば、図2Cでは、アクティブBWP、初期/デフォルトBWPの順番で、CORESET IDフィールド及びTCI状態IDフィールドが設けられるものとするが、これに限られず、初期/デフォルトBWP、アクティブBWPの順番であってもよい。
第1の態様では、MAC CEが、CORESET IDフィールド及びTCI状態IDフィールドを含むので、どのCORESETのTCI状態を指定するかを明示的にユーザ端末に通知できる。したがって、ユーザ端末に設定される一以上のCORESETのTCI状態をユーザ端末が適切に認識できる。
(第2の態様)
第2の態様では、MAC CEが、TCI状態IDフィールドを含むが、CORESET IDフィールドを含まない点で、第1の態様と異なる。以下では、第1の態様との相違点を中心に説明する。
第2の態様では、MAC CEが、TCI状態IDフィールドを含むが、CORESET IDフィールドを含まない点で、第1の態様と異なる。以下では、第1の態様との相違点を中心に説明する。
第2の態様において、ユーザ端末は、所定のルールに従って、MAC CEに各TCI状態IDフィールドがどのCORESETのTCI状態を示すかを決定(想定する)する。
当該所定のルールは、CORESET IDの所定順序(例えば、昇順)に従って、当該CORESET IDが示すCORESETのTCI状態IDフィールドが含まれることを規定してもよい。当該所定のルールは、複数のTCI状態がRRCシグナリングによって設定され、MAC CEによってTCI状態IDを指定可能なCORESETのCORESET IDだけを所定順序で含めるものであってもよいし、すべてのCORESETのCORESET IDを所定順序で含めるものであってもよい。また、当該所定のルールは、BWP毎にCORESET IDの所定順序(例えば、昇順)に当該TCI状態IDフィールドが含まれることを規定してもよい。BWPは、BWP IDフィールドによって指定されてもよいし、予め定められたBWP(例えば、アクティブBWP、初期BWP、デフォルトBWPの少なくとも一つ)であってもよい。
例えば、当該所定のルールは、初期BWPのCORESET IDの昇順に初期BWP用の一以上のCORESETのTCI状態IDフィールドが配置され、続いて、デフォルトBWPのCORESET IDの昇順に初期BWP用の一以上のCORESETのTCI状態IDフィールドが配置され、続いて、アクティブBWPのCORESET IDの昇順に初期BWP用の一以上のCORESETのTCI状態IDフィールドが配置されることを規定してもよい。
図3A~3Cは、第2の態様に係るMAC CEの一例を示す図である。図3A~3Cでは、図2A~2Cとの相違点を中心に説明する。
図3Aに示すように、MAC CEは、サービングセルIDフィールドと、BWP IDフィールドと、当該BWP IDフィールドが示すBWP内の各CORESETのTCI状態を示すTCI状態IDフィールドを含んでもよい。
例えば、図3Aでは、BWP IDが示すBWP内にCORESET#0及び#1が含まれるものとする。この場合、図3Aに示すように、MAC CEは、CORESET IDの昇順に、CORESET#0用のTCI状態IDフィールドに続いてCORESET#1用のTCI状態IDフィールドを含んでもよい。
なお、図3Aにおいて、複数のBWP内のCORESETのTCI状態を指定する場合、BWP IDフィールド及び一以上のTCI状態IDフィールドをそれぞれ含む複数のセットがMAC CE内で繰り返されてもよい。
或いは、BWP IDフィールドは、ビットマップ形式にて、TCI状態IDフィールドを適用する一以上のBWPを指定するものとしてもよい。当該BWP IDフィールドは、2ビット以上で構成されてもよい。例えば、BWP IDフィールドが2ビットで構成され、その値が“11”である場合、2ビットそれぞれに対応する2BWP(例えば、BWP#0及び#1)の一以上のCORESETのTCI状態IDフィールドが含まれてもよい。
また、図3B及び3Cに示すように、当該MAC CEは、BWP IDフィールド(図3A参照)を含まなくともよい。図3B及び3Cでは、図3Aとの相違点を中心に説明する。
図3Bに示すように、ユーザ端末は、MAC CEが、サービングセルIDフィールドが示すサービングセルにおけるアクティブBWPの一以上のCORESETのTCI状態を含むと想定してもよい。例えば、図3Bでは、ユーザ端末は、各TCI状態IDフィールドが示すTCI状態がアクティブBWP内の所定のルールによって定められたCORESETであると想定してもよい。
或いは、図3Cに示すように、ユーザ端末は、MAC CEが、サービングセルIDフィールドが示すサービングセルにおけるアクティブBWP、初期BWP及びデフォルトBWPの少なくとも一つにおける一以上のCORESETのTCI状態を含むと想定してもよい。
図3Cに示すように、MAC CEは、サービングセルIDフィールドに続いて、アクティブBWP用の一以上のTCI状態IDフィールドと、初期BWP及びデフォルトBWPの少なくとも一つ(初期/デフォルトBWP)用の一以上のTCI状態IDフィールドを含む。
例えば、図3Cでは、アクティブBWPがCORESET#0及び#1を含み、初期/デフォルトBWPがCORESET#0を含むものとする。このため、図3Cでは、アクティブBWP内のCORESET IDの昇順に、CORESET#0及び#1用のTCI状態IDフィールドに続いて、初期/デフォルトBWPのCORESET#0のTCI状態IDフィールドがMAC CE内に配置される。
第2の態様では、MAC CEが、所定のルールで定められた順序で一以上のBWPのTCI状態IDフィールドを含むので、TCI状態IDフィールドが示すTCI状態が適用されるCORESETを明示的に指示する必要がない。このため、MAC CEにCORESET IDフィールドを含める必要がなく、MAC CEのオーバーヘッドを削減できる。
(無線通信システム)
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記複数の態様の少なくとも一つの組み合わせを用いて通信が行われる。
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記複数の態様の少なくとも一つの組み合わせを用いて通信が行われる。
図4は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも1つを示してもよい。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)の少なくとも一つを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線リンク品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
<無線基地局>
図5は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
図5は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ101は、例えばアレーアンテナにより構成することができる。また、送受信部103は、シングルBF、マルチBFを適用できるように構成されている。
送受信部103は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部103は、制御部301によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
また、送受信部103は、ユーザ端末20に対して下り(DL)信号(DLデータ信号(下り共有チャネル)、DL制御信号(下り制御チャネル)、DL参照信号の少なくとも一つを含む)を送信し、当該ユーザ端末20からの上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を受信する。
また、送受信部103は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを送信する。また、送受信部103は、下り共有チャネルを用いて、MAC制御要素(MAC CE)を送信する。また、送受信部103は、下り共有チャネル及び/又は下り制御チャネル(CORESET)のQCLに関する情報(QCL情報)(又は、当該QCL情報を示す(含む)TCI状態)を送信してもよい。
図6は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
制御部301は、同期信号(例えば、PSS/SSS)、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
制御部301は、ユーザ端末20に対するキャリア、BWP、CORESETの少なくとも一つの設定(configure)を制御してもよい。また、制御部301は、ユーザ端末20に対するCORESETあたり一以上のTCI状態の設定(configure)を制御してもよい。
また、制御部301は、複数の信号間における疑似コロケーション(QCL)の関係を制御し、QCLに関する情報(TCI状態)の設定、生成、送信の少なくとも一つを制御してもよい。具体的には、制御部301は、下り制御チャネル(PDCCH又はCORESET)と下り参照信号との間におけるQCL関係を制御してもよい。また、制御部301は、CORESET内の所定のリソース単位に対する下り制御チャネルのマッピング、当該下り制御チャネルの送信を制御してもよい。
また、制御部301は、キャリア内のBWP(部分帯域)に設定される制御リソースセットのTCI状態(送信構成指標(TCI)の状態)を示すフィールドを含むMAC制御要素(MAC CE)の送信を制御してもよい。
当該MAC CEは、CORESET(制御リソースセット)を示すフィールドを含んでもよい(第1の態様)。或いは、当該MAC CEは、CORESETを示すフィールドを含まず、所定のルールに従って決定されたCORESETのTCI状態を示すフィールドを含んでもよい(第2の態様)。
また、当該MAC CEは、BWP(部分帯域)を示すフィールド(BWP IDフィールド)を含んでもよい(図2A、3A)。或いは、当該MAC CEは、BWP(部分帯域)を示すフィールド(BWP IDフィールド)を含まず、所定のルールに従ってTCI状態IDフィールドがMAC CEに含められてもよい(図2B、2C、図3B、3C)。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理などが行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
図7は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
図7は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。また、送受信部203は、シングルBF、マルチBFを適用できるように構成されている。
送受信部203は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部203は、制御部401によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
また、送受信部203は、無線基地局10から下り(DL)信号(DLデータ信号(下り共有チャネル)、DL制御信号(下り制御チャネル)、DL参照信号の少なくとも一つを含む)を受信し、、無線基地局10に対して上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を送信する。
また、送受信部203は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを受信する。また、送受信部203は、下り共有チャネルを用いて、MAC制御要素(MAC CE)を受信する。また、送受信部203は、下り共有チャネル及び/又は下り制御チャネル(CORESET)のQCLに関する情報(QCL情報)(又は、当該QCL情報を示す(含む)TCI状態)を受信してもよい。
図8は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
また、制御部401は、複数の信号間における疑似コロケーション(QCL)の関係を想定し、QCLに関する情報(TCI状態)に基づいて信号の受信処理を制御してもよい。具体的には、制御部401は、下り制御チャネル(PDCCH又はCORESET)と下り参照信号との間におけるQCL関係を想定し、QCLに関する情報(TCI状態)に基づいてPDCCHの受信処理を制御してもよい。
また、制御部401は、キャリア内のBWP(部分帯域)に設定される制御リソースセットのTCI状態(送信構成指標(TCI)の状態)を示すフィールド(TCI状態IDフィールド)を含むMAC制御要素(MAC CE)の受信を制御してもよい。
また、当該MAC CEは、CORESET(制御リソースセット)を示すフィールド(CORESET IDフィールド)を含んでもよい(第1の態様)。制御部401は、当該フィールドが示すCORESET内における下り制御チャネルの受信処理を、上記TCI状態IDフィールドが示すTCI状態に基づいて制御してもよい。
或いは、当該MAC CEは、CORESETを示すフィールド(CORESET IDフィールド)を含まなくともよい(第2の態様)。制御部401は、所定のルールに従ってTCI状態IDフィールドが示すTCI状態に対応するCORESETを識別してもよい。
また、当該MAC CEは、BWP(部分帯域)を示すフィールド(BWP IDフィールド)を含んでもよい。制御部401は、当該フィールドに基づいて、上記TCI状態IDフィールドが示すTCI状態のCORESETのBWPを認識してもよい(図2A、3A)。
また、当該MAC CEは、BWP(部分帯域)を示すフィールド(BWP IDフィールド)を含まなくともよい。制御部401は、所定のルールに従ってTCI状態IDフィールドが示すTCI状態に対応するCORESETのBWPを識別してもよい(図2B、2C、図3B、3C)。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
<ハードウェア構成>
なお、本実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
なお、本実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
例えば、本実施の形態における無線基地局、ユーザ端末などは、本実施の形態の各態様の処理を行うコンピュータとして機能してもよい。図9は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の本実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書において説明した態様/本実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本開示の各態様/本実施の形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書において説明した各態様/本実施の形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/本実施の形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において説明した各態様/本実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した本実施の形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- キャリア内の部分帯域に設定される制御リソースセットの送信構成指標(TCI)の状態を示すフィールドを含むMAC(Medium Access Control)制御要素を受信する受信部と、
前記フィールドが示す前記TCIの状態に基づいて、前記制御リソースセット内の所定のリソース単位にマッピングされる下り制御チャネルの受信を制御する制御部と、
を具備することを特徴とするユーザ端末。 - 前記MAC制御要素は、前記制御リソースセットを示すフィールドを含むことを特徴とする請求項1に記載のユーザ端末。
- 前記MAC制御要素は、前記制御リソースセットを示すフィールドを含まず、
前記制御部は、前記制御リソースセットを所定のルールに従って識別することを特徴とする請求項1に記載のユーザ端末。 - 前記MAC制御要素は、前記部分帯域を示すフィールドを含むことを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
- 前記MAC制御要素は、前記部分帯域を示すフィールドを含まず、
前記制御部は、前記部分帯域を所定のルールに従って識別することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 - ユーザ端末において、
キャリア内の部分帯域に設定される制御リソースセットの送信構成指標(TCI)の状態を示すフィールドを含むMAC(Medium Access Control)制御要素を受信する工程と、
前記フィールドが示す前記TCIの状態に基づいて、前記制御リソースセット内の所定のリソース単位にマッピングされる下り制御チャネルの受信を制御する工程と、
を具備することを特徴とする無線通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880090902.5A CN111819823A (zh) | 2018-03-07 | 2018-03-07 | 用户终端以及无线通信方法 |
PCT/JP2018/008876 WO2019171519A1 (ja) | 2018-03-07 | 2018-03-07 | ユーザ端末及び無線通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/008876 WO2019171519A1 (ja) | 2018-03-07 | 2018-03-07 | ユーザ端末及び無線通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019171519A1 true WO2019171519A1 (ja) | 2019-09-12 |
Family
ID=67845625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008876 WO2019171519A1 (ja) | 2018-03-07 | 2018-03-07 | ユーザ端末及び無線通信方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111819823A (ja) |
WO (1) | WO2019171519A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021065015A1 (ja) * | 2019-10-04 | 2021-04-08 | 株式会社Nttドコモ | 端末及び無線通信方法 |
WO2022074605A1 (en) * | 2020-10-07 | 2022-04-14 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Methods and apparatus for indicating common transmission configuration indicator (tci) state |
CN114390614A (zh) * | 2020-10-21 | 2022-04-22 | 联发科技股份有限公司 | 用于无线通信的方法及用户设备 |
CN114788327A (zh) * | 2019-10-11 | 2022-07-22 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
CN114846858A (zh) * | 2019-10-17 | 2022-08-02 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
US20220278787A1 (en) * | 2019-08-23 | 2022-09-01 | Lenovo (Beijing) Limited | Apparatus and method for transmission configuration indication states |
CN115118405A (zh) * | 2021-03-23 | 2022-09-27 | 大唐移动通信设备有限公司 | 一种信息处理方法、装置及可读存储介质 |
WO2024057523A1 (ja) * | 2022-09-16 | 2024-03-21 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114765865A (zh) * | 2021-01-14 | 2022-07-19 | 索尼公司 | 用于无线通信的电子设备和方法、计算机可读存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9516637B2 (en) * | 2012-05-31 | 2016-12-06 | Lg Electronics Inc. | Method for transceiving control signals, and apparatus therefor |
JP6143153B2 (ja) * | 2012-08-01 | 2017-06-07 | シャープ株式会社 | 基地局、端末、通信方法および集積回路 |
WO2014035085A1 (ko) * | 2012-08-28 | 2014-03-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 하향링크 제어 채널 검출 방법 및 이를 위한 장치 |
CN103685118B (zh) * | 2012-09-11 | 2018-04-27 | 株式会社Ntt都科摩 | 一种数据的发送方法及装置 |
CN104936275A (zh) * | 2014-03-20 | 2015-09-23 | 中兴通讯股份有限公司 | 一种上行功率控制的方法、系统、以及终端和基站 |
US9660736B2 (en) * | 2014-11-19 | 2017-05-23 | Intel Corporation | Systems, methods, and devices for interference mitigation in wireless networks |
-
2018
- 2018-03-07 WO PCT/JP2018/008876 patent/WO2019171519A1/ja active Application Filing
- 2018-03-07 CN CN201880090902.5A patent/CN111819823A/zh active Pending
Non-Patent Citations (6)
Title |
---|
"Medium Access Control (MAC) protocol specification (Release 15)", 3GPP TS 38.321 V15.1.0 (2018-03), 2 April 2018 (2018-04-02), XP055638232 * |
HUAWEI ET AL.: "Introducing new MAC CEs for NR MIMO", 3GPP TSG-RAN WG2 NR AD HOC 0118 R2-1801523, 26 January 2018 (2018-01-26), XP051386983 * |
HUAWEI ET AL.: "Introducing new MAC CEs for NR MIMO", 3GPP TSG-RAN WG2 NR AD HOC 0118 R2-1801524, 26 January 2018 (2018-01-26), XP051386982 * |
NOKIA ET AL.: "MAC CEs definition for NR MIMO", 3GPP TSG-RAN WG2 NR AD HOC 1801 R2-1801088, 26 January 2018 (2018-01-26), XP051386566 * |
NOKIA ET AL.: "Summary of offline on MAC CEs definition for NR MIMO", 3GPP TSG-RAN WG2 #101 R2-1803971, 2 March 2018 (2018-03-02), XP051401008 * |
VIVO: "MAC CEs format for beam management", 3GPP TSG-RAN WG2 NR AD HOC 1801 R2-1801543, 26 January 2018 (2018-01-26), XP051387000 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220278787A1 (en) * | 2019-08-23 | 2022-09-01 | Lenovo (Beijing) Limited | Apparatus and method for transmission configuration indication states |
JP7323629B2 (ja) | 2019-10-04 | 2023-08-08 | 株式会社Nttドコモ | 端末、無線通信方法、基地局及びシステム |
JPWO2021065015A1 (ja) * | 2019-10-04 | 2021-04-08 | ||
WO2021065015A1 (ja) * | 2019-10-04 | 2021-04-08 | 株式会社Nttドコモ | 端末及び無線通信方法 |
CN114762377A (zh) * | 2019-10-04 | 2022-07-15 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
CN114762377B (zh) * | 2019-10-04 | 2024-02-13 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
CN114788327A (zh) * | 2019-10-11 | 2022-07-22 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
CN114788327B (zh) * | 2019-10-11 | 2024-03-01 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
CN114846858A (zh) * | 2019-10-17 | 2022-08-02 | 株式会社Ntt都科摩 | 终端以及无线通信方法 |
WO2022074605A1 (en) * | 2020-10-07 | 2022-04-14 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Methods and apparatus for indicating common transmission configuration indicator (tci) state |
CN114390614A (zh) * | 2020-10-21 | 2022-04-22 | 联发科技股份有限公司 | 用于无线通信的方法及用户设备 |
CN115118405B (zh) * | 2021-03-23 | 2023-06-27 | 大唐移动通信设备有限公司 | 一种信息处理方法、装置及可读存储介质 |
CN115118405A (zh) * | 2021-03-23 | 2022-09-27 | 大唐移动通信设备有限公司 | 一种信息处理方法、装置及可读存储介质 |
WO2024057523A1 (ja) * | 2022-09-16 | 2024-03-21 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
Also Published As
Publication number | Publication date |
---|---|
CN111819823A (zh) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7407256B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
KR102456057B1 (ko) | 유저단말 및 무선 통신 방법 | |
CN110999452B (zh) | 终端、基站、系统以及无线通信方法 | |
WO2019138499A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019171518A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2018198343A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019171519A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019087340A1 (ja) | ユーザ端末及び無線通信方法 | |
JPWO2019021443A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020016934A1 (ja) | ユーザ端末 | |
JPWO2020053942A1 (ja) | 端末、無線通信方法、基地局及びシステム | |
CN111543095B (zh) | 用户终端及无线通信方法 | |
WO2019215794A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019215895A1 (ja) | ユーザ端末 | |
WO2018207369A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019234929A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019193735A1 (ja) | ユーザ端末及び無線基地局 | |
JPWO2019021473A1 (ja) | 送信装置、受信装置及び無線通信方法 | |
WO2019193666A1 (ja) | ユーザ端末及び無線基地局 | |
WO2019159295A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019135287A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019239503A1 (ja) | ユーザ端末 | |
WO2019239504A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019135288A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2018207374A1 (ja) | ユーザ端末及び無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18908927 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18908927 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |