[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019171459A1 - Low-hysteresis cam mechanism provided with tapered rollers - Google Patents

Low-hysteresis cam mechanism provided with tapered rollers Download PDF

Info

Publication number
WO2019171459A1
WO2019171459A1 PCT/JP2018/008518 JP2018008518W WO2019171459A1 WO 2019171459 A1 WO2019171459 A1 WO 2019171459A1 JP 2018008518 W JP2018008518 W JP 2018008518W WO 2019171459 A1 WO2019171459 A1 WO 2019171459A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
pressure plate
plate
axis
outer peripheral
Prior art date
Application number
PCT/JP2018/008518
Other languages
French (fr)
Japanese (ja)
Inventor
篠原 正
豊史 丸山
Original Assignee
Gkn ドライブライン ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkn ドライブライン ジャパン株式会社 filed Critical Gkn ドライブライン ジャパン株式会社
Priority to PCT/JP2018/008518 priority Critical patent/WO2019171459A1/en
Publication of WO2019171459A1 publication Critical patent/WO2019171459A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams

Definitions

  • the following disclosure relates to a cam mechanism that generates an axial force using a taper roller, and a power transmission device such as a clutch device including the cam mechanism.
  • a clutch may be interposed between two shafts for the purpose of switching between a two-wheel drive (2WD) mode and a four-wheel drive (4WD) mode, and an actuator may control connection / disconnection of the clutch. Since it is difficult to generate an axial force sufficient to connect the clutch by a single means, a cam mechanism may be combined to increase the output.
  • the cam mechanism presses the pressure ring against the clutch in accordance with the current applied to the actuator, thereby connecting the clutch and transmitting torque thereto. From the viewpoint of controllability of torque transmission, it is ideal that the torque transmitted for the applied current is unique.
  • the curve C p of the torque T transmitted with respect to the applied current I has a current increasing process (process for engaging the clutch) P I and a current decreasing process (demounting). deviate in an attempt linked to the process) and P D, exhibit not be ignored hysteresis. Needless to say, hysteresis is a factor that impairs controllability.
  • the present inventors have studied the structure of a cam mechanism for the purpose of reducing hysteresis, and have come up with the following mechanism or apparatus.
  • the following disclosure relates to a cam mechanism that can reduce hysteresis while using a tapered roller, and a power transmission device such as a clutch device including the cam mechanism.
  • a cam mechanism for generating an axial force in combination with a means for generating a differential around an axis is rotatable about the axis and coupled to the means for receiving the differential
  • a plurality of tapered rollers each having a rolling surface having a conical surface tapered toward the shaft and an outer circumferential surface facing radially outward, and each of the plurality of tapered rollers is rotated around the radial axis.
  • An annular support that is in contact with the outer peripheral surface so as to be supported and move in the axial direction together with the plurality of taper rollers, and the cam plate and the pressure pressure
  • Each cam surface is in contact with the rolling surface, and each cam surface rolls the taper roller in accordance with the differential to generate the axial force on the pressure plate. It is inclined in the circumferential direction with respect to the surface.
  • a clutch device for controlling transmission of torque between a first rotating body and a second rotating body, each rotatable around an axis, is rotatable around the axis A cam plate, a braking device coupled to the cam plate to controllably brake the cam plate with respect to the first rotating body, an axially opposed to the cam plate, together with the second rotating body A pressure plate that is rotated and movable in the axial direction, and is interposed between the cam plate and the pressure plate, each of which is rotationally symmetric with respect to a radial axis orthogonal to the axis, and forms a conical surface tapered toward the axis.
  • a plurality of taper rollers each having a rolling surface and an outer circumferential surface facing radially outward; and each of the plurality of taper rollers rotatably supported around the radial axis and the tape.
  • An annular support that contacts the outer peripheral surface so as to move in the axial direction together with the roller, and the torque between the first rotating body and the second rotating body when pressed in the axial direction by the pressure plate.
  • Each of the cam plate and the pressure plate includes cam surfaces that are in contact with the rolling surfaces, respectively, and the cam plate is braked to generate a differential with respect to the pressure plate.
  • the cam surface is inclined in the circumferential direction with respect to the circumferential surface orthogonal to the shaft so as to generate an axial force that rolls the taper roller according to the differential and presses the pressure plate toward the clutch. .
  • FIG. 1 is a graph showing an example of hysteresis in the cam mechanism.
  • FIG. 2A is a schematic longitudinal sectional view of a cam mechanism for explaining a force applied to the taper roller.
  • FIG. 2B is a schematic cross-sectional view of the cam mechanism on a plane orthogonal to the radial direction.
  • FIG. 2C is a schematic cross-sectional view of the cam mechanism showing a state in which the tapered roller rolls on the rolling surface.
  • FIG. 3 is a longitudinal sectional view of a clutch device including a cam mechanism according to an embodiment.
  • FIG. 4 is a partially cut perspective view of the cam mechanism.
  • FIG. 1 is a graph showing an example of hysteresis in the cam mechanism.
  • FIG. 2A is a schematic longitudinal sectional view of a cam mechanism for explaining a force applied to the taper roller.
  • FIG. 2B is a schematic cross-sectional view of the cam mechanism on a plane orthogonal to the radial direction
  • FIG. 5A is a cross-sectional view of a pressure plate, a taper roller, and a cam plate cut along a cross section including a radial axis passing through the shaft and the center of the taper roller.
  • FIG. 5B is a partial plan view of the tapered roller and the support when viewed in the axial direction.
  • FIG. 6A is a schematic cross-sectional view showing a relationship between a crowned roller or a chamfered taper roller and a rolling surface.
  • FIG. 6B is a schematic cross-sectional view showing the relationship between the crowned or chamfered rolling surface and the tapered roller.
  • FIG. 7A is a partial plan view of a tapered roller and a support based on an example in which the outer peripheral surface of the tapered roller is a curved surface.
  • FIG. 7B is a partial plan view of the tapered roller and support based on an example in which the partition between the tapered rollers is separate from the support.
  • FIG. 7C is a partial plan view of a tapered roller and support based on the example of a support without partitions.
  • FIG. 8A is a partial plan view of a tapered roller and a support based on an example of a support provided with a protrusion protruding to make point contact with the outer peripheral surface.
  • FIG. 8B is a longitudinal sectional view of a taper roller and a support based on an example of a support having a longitudinal section sharpened so as to be in line contact or point contact with the outer peripheral surface.
  • FIG. 8C is a partial plan view of a tapered roller and support based on an example of a support having a pivot that pivotally supports the tapered roller.
  • FIG. 9A is a cross-sectional view of a pressure plate, a tapered roller, and a cam plate based on an example in which the outer peripheral surface is exposed outward in the radial direction.
  • FIG. 9B is a cross-sectional view of the pressure plate, the taper roller, and the cam plate based on an example in which the pressure plate and the cam plate protrude so as to cover the outer peripheral surface of the taper roller.
  • the axis means the rotating shaft of the cam mechanism
  • the axial direction means a direction parallel to this
  • the radial direction means a direction perpendicular thereto. is there.
  • the rotating shaft of the clutch device usually coincides with the rotating shaft of the cam mechanism, but is not necessarily limited thereto.
  • FIG. 2A a reference to 2B, when the cam mechanism comprises a cam plate 5 and the pressure plate 9, and a tapered roller 11 interposed between the cam surface 5c and the line of the rolling surface 11 R cam plate 5 of the tapered roller 11 They come into contact with the cam surface 9c of the pressure plate 9, and these contact lines are inclined with respect to the radial direction.
  • the axial force F is applied to the cam mechanism in such a state, the radial reaction force F R is generated toward the radially outwardly in tapered roller 11 based on the inclination of the contact line.
  • Radial reaction force F R is pressed against the outer peripheral surface 11f of the tapered roller 11 on the inner peripheral surface 9f of the inner circumferential surface 5f and the pressure plate 9 of the cam plate 5. This causes a frictional force that prevents the taper roller 11 from rolling.
  • the cam plate 5 causes the differential M D about the axis relative to the pressure plate 9 and (the process of trying to connect the clutch), the tapered roller 11 in a contact surface pressed against A twisting force is generated.
  • Tapered roller 11, the cam surface 5c climb the sloped surface causing the rolling M R on 9c, the pressure plate 9 I than the cause axial driving Mx, but such movement under the influence of the frictional force and twisting force is there.
  • the axial force F ′ has increased from the beginning due to the cam action, so that the radial reaction force that presses the outer peripheral surface 11f against the inner peripheral surfaces 5f and 9f also increases.
  • the contact area between the outer peripheral surface 11f and the inner peripheral surfaces 5f, 9f decreases.
  • an increase in the radial reaction force prevents rolling, but a decrease in the contact area is an element that promotes rolling.
  • the cam mechanism 3 can be applied to the clutch device 1 illustrated in FIG. 3, for example, but is not necessarily limited thereto.
  • the clutch device 1 is a device that intermittently controls torque transmission between a first rotating body and a second rotating body that rotate about an axis X.
  • the first rotating body is a clutch.
  • the case 21 and the second rotating body is the shaft 23.
  • the clutch 25 is interposed between the clutch case 21 and the shaft 23 to mediate torque transmission.
  • the clutch 25 is a multi-plate clutch, but other types of friction clutches may be used.
  • a plurality of outer plates of the clutch 25 are coupled to the clutch case 21 by lugs or the like, and a plurality of inner plates arranged alternately with the outer plates are coupled to the shaft 23 by lugs or the like.
  • the cam mechanism 3 exerts an axial force on the clutch 25, the outer plate and the inner plate are frictionally connected, and torque is transmitted between the clutch case 21 and the shaft 23. Further, the torque transmitted by increasing / decreasing the axial force increases / decreases.
  • the clutch device 1 is also provided with a means 27 for generating a differential in order to operate the cam mechanism 3, and the means 27 generally includes a pilot clutch 29 and a solenoid 31 for operating the clutch.
  • the means 27 is a mechanism that brakes the cam plate 35 to cause a differential with respect to the pressure plate 39.
  • the means 27 rotates the cam plate 35 around the axis X relative to the pressure plate 39. It may be a motor or gear mechanism.
  • the pilot clutch 29 is also a multi-plate clutch in this example, but may be another type of friction clutch.
  • a plurality of outer plates of the pilot clutch 29 are coupled to the clutch case 21 by lugs or the like, and a plurality of inner plates arranged alternately with the outer plates are coupled to the cam plate 35 by lugs or the like.
  • the solenoid 31 further includes a core 32 that guides the magnetic flux but includes a gap, and an armature 33 that is disposed so as to straddle the gap.
  • the core 32 and the armature 33 are disposed so as to sandwich the pilot clutch 29. Yes.
  • the solenoid 31 When the solenoid 31 is excited, the magnetic flux attracts the armature 33 toward the core 32, and friction is generated between the outer plate and the inner plate to brake the cam plate 35. That is, when there is an angular velocity difference between the clutch case 21 and the shaft 23, a differential is generated in the cam plate 35 with respect to the pressure plate 39 accordingly.
  • the cam mechanism 3 generally includes a cam plate 35, a pressure plate 39, a plurality of tapered rollers 41 interposed therebetween, and an outer peripheral surface 41f of each of the tapered rollers 41. And an annular support 37 for supporting the.
  • the cam plate 35 is rotatable about the axis X and is connected to the inner plate of the means 27 by a lug or the like so as to receive the differential as described above.
  • the cam plate 35 is also in the same manner as in FIG. 2B, 2C, comprises a cam surface 35c in contact with the rolling surface 41 R of the tapered roller 41.
  • the cam surface 35c is slightly inclined in the circumferential direction with respect to the circumferential surface orthogonal to the axis X so that the taper roller 41 rolls and moves in the axial direction.
  • the pressure plate 39 is also rotatable about the axis X, is opposed to the cam plate 35 in the axial direction, and is also opposed to the clutch 25 in the axial direction so as to press the clutch 25 and is movable in the axial direction. Moreover, it is engaged with the shaft 23 so as to rotate together with the shaft 23. Accordingly, the cam plate 35 is differential with respect to the pressure plate 39 when braked.
  • the pressure plate 39 as well, as in FIG. 2B, 2C, comprises a cam surface 39c in contact with the rolling surface 41 R of the tapered roller 41.
  • the cam surface 39c is also slightly inclined in the circumferential direction with respect to the circumferential surface orthogonal to the axis X so that the pressure plate 39 can be moved in the axial direction by the rolling of the taper roller 41.
  • the inclination may be given to only one of the cam surface 35c and the cam surface 39c.
  • the plurality of taper rollers 41 are arranged symmetrically with respect to the axis X.
  • the number of taper rollers 41 is three in the illustrated example, but is not limited to this. Although 3 or more is preferable from the viewpoint of keeping the parallelism between the plates 35 and 39, too many usually do not contribute to the burden of the axial force.
  • each taper roller 41 is directed along a radial axis X R orthogonal to the axis X, and its side surface is in contact with the cam surfaces 35c and 39c as shown in FIG. 5A. It is a rolling surface 41 R rolling on it.
  • Such rolling surface 41 R is rotationally symmetrical with respect to the radiation axis X R, also forms a tapered such conical surface towards the axis X.
  • the outer peripheral surface 41f facing outward in the radial direction is separated from the cam plate 35 and the pressure plate 39 and contacts only the support 37.
  • the inner peripheral surface 41 i may be separated from any of the plates 35 and 39, the support 37, and the shaft 23, or may be in contact with the shaft 23.
  • the support 37 is generally annular, and the inner peripheral surface 37f contacts the outer peripheral surface 41f of the taper roller 41, respectively.
  • the support 37 moves in the circumferential direction and the axial direction as the taper roller 41 rolls up and down on the cam surfaces 35c and 39c, and continues to support the outer peripheral surface 41f in a rotatable manner. Since the support 37 is relatively immovable with respect to the taper roller 41 both in the circumferential direction and in the axial direction, this structure reduces the frictional force acting on the outer peripheral surface 41f and prevents the generation of a force for twisting the taper roller 41. To help.
  • the rolling surface 41 R and the cam surface 35c is dimensioned and 39c. This helps to prevent the rolling surface 41 R and the cam surface 35c, the sliding between the 39c occurs.
  • Rolling surface 41 R and the cam surface 35c, contact with 39c may be substantially its entire length across line contact. This is useful for the cam mechanism 3 to bear a large axial force.
  • Rolling surface 41 R is as shown in FIG. 6A, slightly rounded towards the outer peripheral surface 41f and the inner peripheral surface 41i may be (called crowning or chamfering in some technical fields). This strengthens the contact with the cam surfaces 35c and 39c at the center and weakens the contact toward both ends.
  • the cam surfaces 35c and 39c may be slightly rounded instead of or in addition to this. While these maintain the line contact, they help to prevent the stress from increasing towards the end of the contact, thus preventing the generation of forces that twist the taper roller 41.
  • the roundness is emphasized, but if the roundness is too large, the cam mechanism 3 may be prevented from bearing a large axial force. Therefore, the inclination due to roundness is limited to, for example, 1/100, more preferably, 1/10000 with respect to the bus.
  • the inner peripheral surface 37f and the outer circumferential surface 41f together but plane parallel to the plane perpendicular to the radial axis X R, even the outer peripheral surface 41f as shown in FIG. 7A is a curved surface or spherical surface Good. This limits the contact between the two contact points around the radiation axis X R, reduces friction I hereinafter, also helps to prevent twisting.
  • the inner peripheral surface 37f may also be a curved surface.
  • Support 37 includes a plurality of partitions 37w extending inwardly respectively radial direction between the tapered roller 41, the partition 37w may also be sized to respectively slide on the rolling surface 41 R. This is useful for preventing the taper roller 41 from being eccentric or precessing.
  • the plurality of partitions 37w of the support 37 may be slidably fitted to the shaft 23 at the radially inner end. This serves to align the taper roller 41 and the support 37 with respect to the axis X.
  • Such fitting requires a certain amount of play so that the lubricating oil can enter between the partition 37w and the shaft 23 and hold the oil film, but is tightened to such an extent that the support 37 is restricted from moving in the axial direction. Also good. Since this prevents the actuation of the cam in its initial (to significantly stagnant process P L described later), to prevent operation of unintended cam helps to reduce consequently the drag torque.
  • a structure, member or coating that increases friction in the axial direction may be interposed, one example being extending the fitting surface in the axial direction.
  • a means for reducing friction in the circumferential direction may be applied, and for example, a groove for holding lubricating oil may be interposed.
  • the plurality of partitions 37w may be integrated with the support 37, but may be separate as shown in FIG. 7B.
  • the partitions 37w may be connected to each other on the inner peripheral side, and such portions may be slidably fitted to the shaft 23 as described above.
  • the inner peripheral surface 41 i of the taper roller 41 can be separated from the support 37.
  • the inner peripheral surface 41i may be in contact with the support 37, but does not need to be actively supported.
  • the support 37 may be a simple ring without the partition 37w.
  • the support 37 may include a protrusion 37p that makes point contact with the outer peripheral surface 41f.
  • the outer peripheral surface 41f in about the radiation axis X R, may be provided with a recess receiving the protrusion 37 p.
  • the outer peripheral surface 41f may be provided with a protrusion.
  • the support 37 has a V-shape in its cross section, and may form a protrusion 37p that makes point contact.
  • support 37 is provided with arbor 37a, may be rotatably supports the tapered roller 41 around the radial axis X R Te Tsu.
  • the arbor 37a may be separate from the support 37 or may be integrated. In the case of a separate body, the arbor 37a may be fixed by being press-fitted into a through hole opened in the support 37, or may be by other fixing means.
  • the structure supported by the arbor 37a is useful for preventing the taper roller 41 from being eccentric or precessing.
  • the inner peripheral surface 41 i of the taper roller 41 can be separated from the shaft 23.
  • the outer peripheral surface 41 f faces outward in the radial direction and is separated from the cam plate 35 and the pressure plate 39. As shown in FIG. 5A, the outer peripheral surface 41f may not be partially covered and may be exposed outward in the radial direction as shown in FIG. 9A. This facilitates the circulation of the lubricating oil and helps to reduce the rolling resistance of the taper roller 41. Further, the taper roller 41 may partially protrude outward from the cam plate 35. Of course, as shown in FIG. 9B, either or both of the cam plate 35 and the pressure plate 39 may cover the outer peripheral surface 41f. If the outer peripheral surface 41f is not in contact with the cam plate 35 and the pressure plate 39, friction and / or twist will not increase.
  • FIG. 1 current I- torque T curve according to the embodiment shown in 5B is, as shown in broken lines in FIG. 1, shows a hysteresis C I, which is reduced than the prior art.
  • the degree of hysteresis is not inferior to that of the ball cam example and is sufficiently practical. This is considered to be because the support that moves both in the axial direction and in the circumferential direction supports the tapered roller instead of the cam plate and the pressure plate that perform complicated movement with respect to the tapered roller.
  • each disclosed embodiment provides a cam mechanism or a power transmission mechanism with good controllability while suppressing hysteresis.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

A cam mechanism which generates an axial force in combination with a means for producing a differential around a shaft is provided with: a cam plate which is rotatable around the shaft and coupled with the means to receive the differential; a pressure plate which is opposed to the cam plate in a shaft direction and moveable in the shaft direction; a plurality of tapered rollers which are interposed between the cam plate and the pressure plate and each of which is rotationally symmetric with respect to a radial axis orthogonal to the shaft, the tapered rollers having a rolling surface forming a conical surface tapering toward the shaft and an outer peripheral surface facing radially outward; and an annular support which contacts the outer peripheral surface so as to support each of the plurality of tapered rollers rotatably around the radial axis and so as to move axially together with the plurality of tapered rollers. Each of the cam plate and the pressure plate includes a cam surface contacting the rolling surface. The cam surfaces are inclined circumferentially with respect to a circumferential surface orthogonal to the shaft so as to generate the axial force in the pressure plate by causing the tapered rollers to roll in accordance with the differential.

Description

テーパローラを備えた低ヒステリシスのカム機構Low hysteresis cam mechanism with taper roller
 以下の開示は、テーパローラを利用して軸力を発生するカム機構、およびかかるカム機構を備えたクラッチ装置のごとき動力伝達装置に関する。 The following disclosure relates to a cam mechanism that generates an axial force using a taper roller, and a power transmission device such as a clutch device including the cam mechanism.
 一般に車両は幾つかのクラッチを利用する。例えば二輪駆動(2WD)モードと四輪駆動(4WD)モードとを切り替える目的で、2つのシャフトの間にクラッチが介在し、その連結-脱連結をアクチュエータが制御することがある。クラッチを連結するに十分な軸力を単独の手段によって発生することは難しいので、その出力を増大するために、カム機構を組み合わせることがある。 Generally, vehicles use several clutches. For example, a clutch may be interposed between two shafts for the purpose of switching between a two-wheel drive (2WD) mode and a four-wheel drive (4WD) mode, and an actuator may control connection / disconnection of the clutch. Since it is difficult to generate an axial force sufficient to connect the clutch by a single means, a cam mechanism may be combined to increase the output.
 カム機構を滑らかに作動させる目的で、カム部材の間にボールを介在させることがある。相対的に回転するカム面の間でボールが転動することにより、ボールは摺動抵抗を著しく減ずる。これはアクチュエータの負担を軽減するが、カム面とボールとは点接触するに過ぎないので、大きな軸力をカム機構に負担させるには問題がある。ボールに代えて線接触が可能なローラを利用することは、かかる問題を解決する手段の一であろう。特許文献1は、関連する技術を開示する。 ∙ Balls may be interposed between cam members for the purpose of smoothly operating the cam mechanism. As the ball rolls between the relatively rotating cam surfaces, the ball significantly reduces sliding resistance. This reduces the burden on the actuator, but the cam surface and the ball are only in point contact, and there is a problem in placing a large axial force on the cam mechanism. Using a roller capable of line contact instead of a ball would be one of the means for solving such a problem. Patent Document 1 discloses a related technique.
国際特許出願公開WO2017/149829A1International Patent Application Publication WO2017 / 149829A1
 線接触するローラによればより大きな軸力を発生することができるが、本発明者らは他の新たな問題を見出した。上述の関連技術によれば、アクチュエータに印加する電流に応じてカム機構はプレッシャリングをクラッチに押圧し、以ってクラッチを連結してこれにトルクを伝達させる。トルク伝達の制御性の観点からは、印加した電流に対して伝達されるトルクが一意的であることが理想である。ところが本願図1に例示するごとく、印加した電流Iに対して伝達されるトルクTの曲線Cは、電流増大の過程(クラッチを連結させようとする過程)Pと電流減少の過程(脱連結させようとする過程)Pとで乖離し、無視しえないヒステリシスを呈する。いうまでもなくヒステリシスは制御性を損なう要因である。本発明者らは、ヒステリシスを低減することを目的としてカム機構の構造を検討し、以下の機構ないし装置に想到した。 Although a larger axial force can be generated by a roller in line contact, the present inventors have found another new problem. According to the related art described above, the cam mechanism presses the pressure ring against the clutch in accordance with the current applied to the actuator, thereby connecting the clutch and transmitting torque thereto. From the viewpoint of controllability of torque transmission, it is ideal that the torque transmitted for the applied current is unique. However, as illustrated in FIG. 1, the curve C p of the torque T transmitted with respect to the applied current I has a current increasing process (process for engaging the clutch) P I and a current decreasing process (demounting). deviate in an attempt linked to the process) and P D, exhibit not be ignored hysteresis. Needless to say, hysteresis is a factor that impairs controllability. The present inventors have studied the structure of a cam mechanism for the purpose of reducing hysteresis, and have come up with the following mechanism or apparatus.
 以下の開示は、テーパローラを利用しながらヒステリシスの低減を可能にするカム機構およびこれを備えたクラッチ装置のごとき動力伝達装置に関する。 The following disclosure relates to a cam mechanism that can reduce hysteresis while using a tapered roller, and a power transmission device such as a clutch device including the cam mechanism.
 一局面によれば、軸の周りに差動を生じる手段と組み合わせて軸力を発生するカム機構は、前記軸の周りに回転可能であって、前記差動を受容するべく前記手段と結合したカムプレートと、前記カムプレートに軸方向に対向し、軸方向に可動なプレッシャプレートと、前記カムプレートと前記プレッシャプレートとの間に介在し、それぞれ前記軸に直交する放射軸に関して回転対称であって前記軸に向かって先細な円錐面をなす転動面と、径方向に外方に面した外周面と、を備えた複数のテーパローラと、前記複数のテーパローラをそれぞれ前記放射軸の周りに回転可能に支持するように且つ前記複数のテーパローラと共に軸方向に移動するように前記外周面に接する円環状のサポートと、を備え、前記カムプレートと前記プレッシャプレートとは前記転動面にそれぞれ接するカム面をそれぞれ備え、各カム面は前記差動に応じて前記テーパローラを転動せしめて前記軸力を前記プレッシャプレートに発生させるよう前記軸に直交する周面に対して周方向に傾斜している。 According to one aspect, a cam mechanism for generating an axial force in combination with a means for generating a differential around an axis is rotatable about the axis and coupled to the means for receiving the differential A cam plate, a pressure plate facing the cam plate in the axial direction and movable in the axial direction, and interposed between the cam plate and the pressure plate, each of which is rotationally symmetric with respect to a radial axis perpendicular to the axis. A plurality of tapered rollers each having a rolling surface having a conical surface tapered toward the shaft and an outer circumferential surface facing radially outward, and each of the plurality of tapered rollers is rotated around the radial axis. An annular support that is in contact with the outer peripheral surface so as to be supported and move in the axial direction together with the plurality of taper rollers, and the cam plate and the pressure pressure Each cam surface is in contact with the rolling surface, and each cam surface rolls the taper roller in accordance with the differential to generate the axial force on the pressure plate. It is inclined in the circumferential direction with respect to the surface.
 他の局面によれば、軸の周りにそれぞれ回転可能な第1の回転体と第2の回転体との間でトルクの伝達を制御するためのクラッチ装置は、前記軸の周りに回転可能なカムプレートと、前記カムプレートを前記第1の回転体に対して制御可能に制動するべく前記カムプレートと結合した制動装置と、前記カムプレートに軸方向に対向し、前記第2の回転体と共に回転し軸方向に可動なプレッシャプレートと、前記カムプレートと前記プレッシャプレートとの間に介在し、それぞれ前記軸に直交する放射軸に関して回転対称であって前記軸に向かって先細な円錐面をなす転動面と、径方向に外方に面した外周面と、を備えた複数のテーパローラと、前記複数のテーパローラをそれぞれ前記放射軸の周りに回転可能に支持するように且つ前記テーパローラと共に軸方向に移動するように前記外周面に接する円環状のサポートと、前記プレッシャプレートに軸方向に押圧されると前記第1の回転体と前記第2の回転体との間で前記トルクを伝達するクラッチと、を備え、前記カムプレートと前記プレッシャプレートとは前記転動面にそれぞれ接するカム面をそれぞれ備え、前記カムプレートが制動されて前記プレッシャプレートに対して差動を生ずると各カム面は前記差動に応じて前記テーパローラを転動せしめて前記プレッシャプレートを前記クラッチに向けて押圧する軸力を発生するよう前記軸に直交する周面に対して周方向に傾斜している。 According to another aspect, a clutch device for controlling transmission of torque between a first rotating body and a second rotating body, each rotatable around an axis, is rotatable around the axis A cam plate, a braking device coupled to the cam plate to controllably brake the cam plate with respect to the first rotating body, an axially opposed to the cam plate, together with the second rotating body A pressure plate that is rotated and movable in the axial direction, and is interposed between the cam plate and the pressure plate, each of which is rotationally symmetric with respect to a radial axis orthogonal to the axis, and forms a conical surface tapered toward the axis. A plurality of taper rollers each having a rolling surface and an outer circumferential surface facing radially outward; and each of the plurality of taper rollers rotatably supported around the radial axis and the tape. An annular support that contacts the outer peripheral surface so as to move in the axial direction together with the roller, and the torque between the first rotating body and the second rotating body when pressed in the axial direction by the pressure plate. Each of the cam plate and the pressure plate includes cam surfaces that are in contact with the rolling surfaces, respectively, and the cam plate is braked to generate a differential with respect to the pressure plate. The cam surface is inclined in the circumferential direction with respect to the circumferential surface orthogonal to the shaft so as to generate an axial force that rolls the taper roller according to the differential and presses the pressure plate toward the clutch. .
図1は、カム機構におけるヒステリシスの例を示すグラフである。FIG. 1 is a graph showing an example of hysteresis in the cam mechanism. 図2Aは、テーパローラにかかる力を説明するカム機構の模式的な縦断面図である。FIG. 2A is a schematic longitudinal sectional view of a cam mechanism for explaining a force applied to the taper roller. 図2Bは、径方向に直交する面におけるカム機構の模式的な断面図である。FIG. 2B is a schematic cross-sectional view of the cam mechanism on a plane orthogonal to the radial direction. 図2Cは、テーパローラが転動面を転動した状態を表すカム機構の模式的な断面図である。FIG. 2C is a schematic cross-sectional view of the cam mechanism showing a state in which the tapered roller rolls on the rolling surface. 図3は、一実施形態によるカム機構を含むクラッチ装置の縦断面図である。FIG. 3 is a longitudinal sectional view of a clutch device including a cam mechanism according to an embodiment. 図4は、カム機構の部分切断斜視図である。FIG. 4 is a partially cut perspective view of the cam mechanism. 図5Aは、軸およびテーパローラの中心を通る放射軸を含む断面で切断したプレッシャプレート、テーパローラおよびカムプレートの断面図である。FIG. 5A is a cross-sectional view of a pressure plate, a taper roller, and a cam plate cut along a cross section including a radial axis passing through the shaft and the center of the taper roller. 図5Bは、テーパローラおよびサポートを軸方向に見た部分平面図である。FIG. 5B is a partial plan view of the tapered roller and the support when viewed in the axial direction. 図6Aは、クラウニングないしチャンファリングされたテーパローラと転動面との関係を表す模式的な断面図である。FIG. 6A is a schematic cross-sectional view showing a relationship between a crowned roller or a chamfered taper roller and a rolling surface. 図6Bは、クラウニングないしチャンファリングされた転動面とテーパローラとの関係を表す模式的な断面図である。FIG. 6B is a schematic cross-sectional view showing the relationship between the crowned or chamfered rolling surface and the tapered roller. 図7Aは、テーパローラの外周面が曲面である例に基づくテーパローラおよびサポートの部分平面図である。FIG. 7A is a partial plan view of a tapered roller and a support based on an example in which the outer peripheral surface of the tapered roller is a curved surface. 図7Bは、テーパローラ間のパーティションがサポートと別体である例に基づくテーパローラおよびサポートの部分平面図である。FIG. 7B is a partial plan view of the tapered roller and support based on an example in which the partition between the tapered rollers is separate from the support. 図7Cは、パーティションがないサポートの例に基づくテーパローラおよびサポートの部分平面図である。FIG. 7C is a partial plan view of a tapered roller and support based on the example of a support without partitions. 図8Aは、外周面に点接触するべく突出した突起を備えたサポートの例に基づくテーパローラおよびサポートの部分平面図である。FIG. 8A is a partial plan view of a tapered roller and a support based on an example of a support provided with a protrusion protruding to make point contact with the outer peripheral surface. 図8Bは、外周面に線接触ないし点接触するべく尖った縦断面を有するサポートの例に基づくテーパローラおよびサポートの縦断面図である。FIG. 8B is a longitudinal sectional view of a taper roller and a support based on an example of a support having a longitudinal section sharpened so as to be in line contact or point contact with the outer peripheral surface. 図8Cは、テーパローラを軸支する枢軸を備えたサポートの例に基づくテーパローラおよびサポートの部分平面図である。FIG. 8C is a partial plan view of a tapered roller and support based on an example of a support having a pivot that pivotally supports the tapered roller. 図9Aは、外周面を径方向に外方に露出する例に基づくプレッシャプレート、テーパローラおよびカムプレートの断面図である。FIG. 9A is a cross-sectional view of a pressure plate, a tapered roller, and a cam plate based on an example in which the outer peripheral surface is exposed outward in the radial direction. 図9Bは、プレッシャプレートおよびカムプレートがテーパローラの外周面を覆うように張り出した例に基づくプレッシャプレート、テーパローラおよびカムプレートの断面図である。FIG. 9B is a cross-sectional view of the pressure plate, the taper roller, and the cam plate based on an example in which the pressure plate and the cam plate protrude so as to cover the outer peripheral surface of the taper roller.
 添付の図面を参照して以下に幾つかの例示的な実施形態を説明する。以下の説明および請求の範囲を通じて、特段の説明がなければ、軸はカム機構の回転軸の意味であり、また軸方向はこれに平行な方向であり径方向はこれに直交する方向を意味である。クラッチ装置の回転軸はカム機構の回転軸と通常は一致するが、必ずしもこれに限られない。 Several exemplary embodiments are described below with reference to the accompanying drawings. Throughout the following description and claims, unless otherwise specified, the axis means the rotating shaft of the cam mechanism, the axial direction means a direction parallel to this, and the radial direction means a direction perpendicular thereto. is there. The rotating shaft of the clutch device usually coincides with the rotating shaft of the cam mechanism, but is not necessarily limited thereto.
 図2A,2Bを参照するに、カム機構がカムプレート5とプレッシャプレート9と、その間に介在したテーパローラ11とを備えるとき、テーパローラ11の転動面11はカムプレート5のカム面5cと線接触し、プレッシャプレート9のカム面9cとも線接触し、なおかつこれらの接触線は径方向に対して傾斜している。かかる状態において軸力Fがカム機構に印加されると、接触線の傾斜に基づきテーパローラ11には径方向に外向きに向かうラジアル反力Fが生ずる。ラジアル反力Fは、テーパローラ11の外周面11fをカムプレート5の内周面5fおよびプレッシャプレート9の内周面9fに押し付ける。これはテーパローラ11の転動を妨げる摩擦力の原因となる。 Figure 2A, a reference to 2B, when the cam mechanism comprises a cam plate 5 and the pressure plate 9, and a tapered roller 11 interposed between the cam surface 5c and the line of the rolling surface 11 R cam plate 5 of the tapered roller 11 They come into contact with the cam surface 9c of the pressure plate 9, and these contact lines are inclined with respect to the radial direction. When the axial force F is applied to the cam mechanism in such a state, the radial reaction force F R is generated toward the radially outwardly in tapered roller 11 based on the inclination of the contact line. Radial reaction force F R is pressed against the outer peripheral surface 11f of the tapered roller 11 on the inner peripheral surface 9f of the inner circumferential surface 5f and the pressure plate 9 of the cam plate 5. This causes a frictional force that prevents the taper roller 11 from rolling.
 かかる状態で、図2Cに示すごとく、カムプレート5がプレッシャプレート9に対して軸周りに差動Mを起こす(クラッチを連結させようとする過程)と、押し付けられた接触面においてテーパローラ11を捻る力が生ずる。テーパローラ11は、カム面5c,9c上において転動Mを起こしてその傾斜面を登り、以ってプレッシャプレート9は軸動Mxを起こすが、かかる運動は摩擦力および捻る力の影響下である。 In this state, as shown in Figure 2C, the cam plate 5 causes the differential M D about the axis relative to the pressure plate 9 and (the process of trying to connect the clutch), the tapered roller 11 in a contact surface pressed against A twisting force is generated. Tapered roller 11, the cam surface 5c, climb the sloped surface causing the rolling M R on 9c, the pressure plate 9 I than the cause axial driving Mx, but such movement under the influence of the frictional force and twisting force is there.
 このときカム作用により軸力F’は当初より増大しており、従って外周面11fを内周面5f,9fに押し付けるラジアル反力も増大し、一方、軸動Mxはカムプレート5とプレッシャプレート9とを引き離すので、外周面11fと内周面5f,9fとの接触面積は減少する。ここでラジアル反力の増大は転動を妨げるが、接触面積の減少は転動を促す要素である。 At this time, the axial force F ′ has increased from the beginning due to the cam action, so that the radial reaction force that presses the outer peripheral surface 11f against the inner peripheral surfaces 5f and 9f also increases. Are separated, the contact area between the outer peripheral surface 11f and the inner peripheral surfaces 5f, 9f decreases. Here, an increase in the radial reaction force prevents rolling, but a decrease in the contact area is an element that promotes rolling.
 一方、図2Cに示す状態から図2Bに示す状態に戻そうとする(クラッチを脱連結させようとする過程)と、差動が逆向きであるからテーパローラ11を捻る力も逆向きに作用し、軸力F’は減少するが外周面11fと内周面5f,9fとの接触面積は増大する。 On the other hand, when trying to return from the state shown in FIG. 2C to the state shown in FIG. 2B (the process of trying to disengage the clutch), the differential is in the reverse direction, so the force to twist the taper roller 11 also acts in the reverse direction, Although the axial force F ′ decreases, the contact area between the outer peripheral surface 11f and the inner peripheral surfaces 5f and 9f increases.
 印加した電流Iに対して伝達されるトルクTの曲線Cに現れるヒステリシスは、これらの作用の複合がもたらすものと見られる。本発明者らは、かかる考察に基づいて以下の各実施形態に想到した。 Hysteresis appearing in the curve C p of the torque T to be transmitted to the applied current I is expected to result in a composite of these effects. Based on this consideration, the inventors have arrived at the following embodiments.
 本実施形態によるカム機構3は、例えば図3に例示するクラッチ装置1に適用することができるが、必ずしもこれに限られない。クラッチ装置1は、それぞれ軸X周りに回転する第1の回転体と第2の回転体との間でトルクの伝達を断続ないし制御する装置であって、この例では第1の回転体はクラッチケース21であり、第2の回転体はシャフト23である。 The cam mechanism 3 according to the present embodiment can be applied to the clutch device 1 illustrated in FIG. 3, for example, but is not necessarily limited thereto. The clutch device 1 is a device that intermittently controls torque transmission between a first rotating body and a second rotating body that rotate about an axis X. In this example, the first rotating body is a clutch. The case 21 and the second rotating body is the shaft 23.
 クラッチケース21とシャフト23との間にはクラッチ25が介在してトルク伝達を仲介する。この例ではクラッチ25は多板クラッチだが、他の形式の摩擦クラッチでもよい。クラッチ25の複数のアウタプレートはクラッチケース21にラグ等により結合しており、アウタプレートと交互に並ぶ複数のインナプレートはシャフト23にラグ等により結合している。カム機構3がクラッチ25に軸力を及ぼすことにより、アウタプレートとインナプレートとが摩擦的に連結し、クラッチケース21とシャフト23との間でトルクが伝達される。また軸力を増減することにより伝達されるトルクが増減する。 The clutch 25 is interposed between the clutch case 21 and the shaft 23 to mediate torque transmission. In this example, the clutch 25 is a multi-plate clutch, but other types of friction clutches may be used. A plurality of outer plates of the clutch 25 are coupled to the clutch case 21 by lugs or the like, and a plurality of inner plates arranged alternately with the outer plates are coupled to the shaft 23 by lugs or the like. When the cam mechanism 3 exerts an axial force on the clutch 25, the outer plate and the inner plate are frictionally connected, and torque is transmitted between the clutch case 21 and the shaft 23. Further, the torque transmitted by increasing / decreasing the axial force increases / decreases.
 クラッチ装置1は、また、カム機構3を作動させるべく、差動を生じる手段27を備え、手段27は概してパイロットクラッチ29とこれを作動させるソレノイド31とを備える。手段27は、この例ではカムプレート35を制動することによりこれにプレッシャプレート39に対して差動を生じさせる機構だが、あるいはカムプレート35をプレッシャプレート39に対して相対的に軸X周りに回転させるモータないしギア機構であってもよい。 The clutch device 1 is also provided with a means 27 for generating a differential in order to operate the cam mechanism 3, and the means 27 generally includes a pilot clutch 29 and a solenoid 31 for operating the clutch. In this example, the means 27 is a mechanism that brakes the cam plate 35 to cause a differential with respect to the pressure plate 39. Alternatively, the means 27 rotates the cam plate 35 around the axis X relative to the pressure plate 39. It may be a motor or gear mechanism.
 パイロットクラッチ29もこの例では多板クラッチだが、他の形式の摩擦クラッチでもよい。パイロットクラッチ29の複数のアウタプレートはクラッチケース21にラグ等により結合しており、アウタプレートと交互に並ぶ複数のインナプレートはカムプレート35にラグ等により結合している。 The pilot clutch 29 is also a multi-plate clutch in this example, but may be another type of friction clutch. A plurality of outer plates of the pilot clutch 29 are coupled to the clutch case 21 by lugs or the like, and a plurality of inner plates arranged alternately with the outer plates are coupled to the cam plate 35 by lugs or the like.
 ソレノイド31は、さらに、その磁束を導くがギャップを備えたコア32と、ギャップを跨ぐように配置されたアーマチャ33とを備え、コア32とアーマチャ33とはパイロットクラッチ29を挟むように配置されている。ソレノイド31が励磁されると磁束はアーマチャ33をコア32に向けて誘引し、以ってアウタプレートとインナプレートとの間に摩擦が生じてカムプレート35を制動する。すなわち、クラッチケース21とシャフト23との間に角速度差があるときには、それに応じてカムプレート35にはプレッシャプレート39に対して差動が生じる。 The solenoid 31 further includes a core 32 that guides the magnetic flux but includes a gap, and an armature 33 that is disposed so as to straddle the gap. The core 32 and the armature 33 are disposed so as to sandwich the pilot clutch 29. Yes. When the solenoid 31 is excited, the magnetic flux attracts the armature 33 toward the core 32, and friction is generated between the outer plate and the inner plate to brake the cam plate 35. That is, when there is an angular velocity difference between the clutch case 21 and the shaft 23, a differential is generated in the cam plate 35 with respect to the pressure plate 39 accordingly.
 図3に組み合わせて図4を参照するに、カム機構3は、概して、カムプレート35と、プレッシャプレート39と、その間に介在した複数のテーパローラ41と、テーパローラ41のそれぞれ外周面41fに接してこれを支持する円環状のサポート37と、を備える。 Referring to FIG. 4 in combination with FIG. 3, the cam mechanism 3 generally includes a cam plate 35, a pressure plate 39, a plurality of tapered rollers 41 interposed therebetween, and an outer peripheral surface 41f of each of the tapered rollers 41. And an annular support 37 for supporting the.
 カムプレート35は軸X周りに回転可能であって、既に述べた通り差動を受容するべく、手段27のインナプレートとラグ等により結合している。カムプレート35は、また図2B,2Cにおけるのと同様に、テーパローラ41の転動面41に接するカム面35cを備える。カム面35cはテーパローラ41を転動せしめて軸方向に移動せしめるよう、軸Xに直交する周面に対して周方向に僅かに傾斜している。 The cam plate 35 is rotatable about the axis X and is connected to the inner plate of the means 27 by a lug or the like so as to receive the differential as described above. The cam plate 35 is also in the same manner as in FIG. 2B, 2C, comprises a cam surface 35c in contact with the rolling surface 41 R of the tapered roller 41. The cam surface 35c is slightly inclined in the circumferential direction with respect to the circumferential surface orthogonal to the axis X so that the taper roller 41 rolls and moves in the axial direction.
 プレッシャプレート39も軸X周りに回転可能であって、カムプレート35に軸方向に対向しており、かつクラッチ25を押圧するよう、クラッチ25にも軸方向に対向し軸方向に可動である。またシャフト23と共に回転するよう、シャフト23に係合している。従ってカムプレート35は、制動されればプレッシャプレート39に対して差動を生じる。プレッシャプレート39も、図2B,2Cにおけるのと同様に、テーパローラ41の転動面41に接するカム面39cを備える。カム面39cも、テーパローラ41の転動によりプレッシャプレート39を軸方向に移動せしめるよう、軸Xに直交する周面に対して周方向に僅かに傾斜している。あるいは、傾斜はカム面35cとカム面39cとの何れか一方にのみ与えられていてもよい。 The pressure plate 39 is also rotatable about the axis X, is opposed to the cam plate 35 in the axial direction, and is also opposed to the clutch 25 in the axial direction so as to press the clutch 25 and is movable in the axial direction. Moreover, it is engaged with the shaft 23 so as to rotate together with the shaft 23. Accordingly, the cam plate 35 is differential with respect to the pressure plate 39 when braked. The pressure plate 39 as well, as in FIG. 2B, 2C, comprises a cam surface 39c in contact with the rolling surface 41 R of the tapered roller 41. The cam surface 39c is also slightly inclined in the circumferential direction with respect to the circumferential surface orthogonal to the axis X so that the pressure plate 39 can be moved in the axial direction by the rolling of the taper roller 41. Alternatively, the inclination may be given to only one of the cam surface 35c and the cam surface 39c.
 複数のテーパローラ41は軸Xに対して対称的に配置されている。テーパローラ41の数は図示の例では3だが、もちろんこれに限らない。プレート35,39間の平行を保つ点からは3以上が好ましいが、あまりに多数でも通常その多くは軸力の負担に寄与しない。 The plurality of taper rollers 41 are arranged symmetrically with respect to the axis X. The number of taper rollers 41 is three in the illustrated example, but is not limited to this. Although 3 or more is preferable from the viewpoint of keeping the parallelism between the plates 35 and 39, too many usually do not contribute to the burden of the axial force.
 図4に組み合わせて図5Aを参照するに、各テーパローラ41は、軸Xに直交する放射軸Xに沿うよう向けられており、その側面は図5Aに示すごとくカム面35c,39cに接してその上を転動する転動面41である。かかる転動面41は、放射軸Xに関して回転対称であり、また軸Xに向かって先細な円錐面をなす。 Referring to FIG. 5A in combination with FIG. 4, each taper roller 41 is directed along a radial axis X R orthogonal to the axis X, and its side surface is in contact with the cam surfaces 35c and 39c as shown in FIG. 5A. It is a rolling surface 41 R rolling on it. Such rolling surface 41 R is rotationally symmetrical with respect to the radiation axis X R, also forms a tapered such conical surface towards the axis X.
 各テーパローラ41において、径方向に外方に面した外周面41fは、カムプレート35およびプレッシャプレート39から離れており、サポート37にのみ接する。内周面41iはプレート35,39、サポート37、シャフト23の何れからも離れていてもよく、あるいはシャフト23に接していてもよい。 In each taper roller 41, the outer peripheral surface 41f facing outward in the radial direction is separated from the cam plate 35 and the pressure plate 39 and contacts only the support 37. The inner peripheral surface 41 i may be separated from any of the plates 35 and 39, the support 37, and the shaft 23, or may be in contact with the shaft 23.
 図5Aに組み合わせて図5Bを参照するに、サポート37は概して円環状であって、その内周面37fにおいて、テーパローラ41の外周面41fにそれぞれ接する。サポート37は、テーパローラ41がそれぞれカム面35c、39c上を転動して昇降するのに合わせて共に周方向および軸方向に移動し、以って外周面41fを回転可能に支持し続ける。サポート37はテーパローラ41に対し、周方向にも軸方向にも相対的に不動であるので、かかる構造は外周面41fに働く摩擦力を減じ、またテーパローラ41を捻る力が発生することを防止するのに役立つ。 Referring to FIG. 5B in combination with FIG. 5A, the support 37 is generally annular, and the inner peripheral surface 37f contacts the outer peripheral surface 41f of the taper roller 41, respectively. The support 37 moves in the circumferential direction and the axial direction as the taper roller 41 rolls up and down on the cam surfaces 35c and 39c, and continues to support the outer peripheral surface 41f in a rotatable manner. Since the support 37 is relatively immovable with respect to the taper roller 41 both in the circumferential direction and in the axial direction, this structure reduces the frictional force acting on the outer peripheral surface 41f and prevents the generation of a force for twisting the taper roller 41. To help.
 好ましくは、転動面41の延長が軸X上において頂点を結ぶように、転動面41とカム面35c,39cとは寸法づけられる。これは、転動面41とカム面35c,39cとの間にすべりが生じることを防止するのに役立つ。 Preferably, as the extension of the rolling contact surface 41 R is connecting the vertex on the axis X, the rolling surface 41 R and the cam surface 35c, is dimensioned and 39c. This helps to prevent the rolling surface 41 R and the cam surface 35c, the sliding between the 39c occurs.
 転動面41とカム面35c,39cとの接触は、実質的にその全長にわたる線接触にすることができる。これはカム機構3が大きな軸力を負担するのに役立つ。転動面41は、図6Aに示すごとく、外周面41fおよび内周面41iに向かって僅かに丸められ(一部の技術分野においてクラウニングないしチャンファリングと呼ばれる)ていてもよい。これは、その中央においてカム面35c,39cに対する接触を強く、両端に向かって接触を弱める。あるいは図6Bに示すごとく、これに代えて、あるいは加えて、カム面35c,39cが僅かに丸められていてもよい。これらは線接触を維持するものの、接触の端部に向かって応力が増加するのを防止し、以ってテーパローラ41を捻る力が発生するのを防止するのに役立つ。これらの図においては丸みを強調して示しているが、丸みが大きすぎてはカム機構3が大きな軸力を負担する妨げになりうる。そこで丸みによる傾きは、母線に対して例えば1/100を限度とし、より好ましくは1/10000を限度とする。 Rolling surface 41 R and the cam surface 35c, contact with 39c may be substantially its entire length across line contact. This is useful for the cam mechanism 3 to bear a large axial force. Rolling surface 41 R is as shown in FIG. 6A, slightly rounded towards the outer peripheral surface 41f and the inner peripheral surface 41i may be (called crowning or chamfering in some technical fields). This strengthens the contact with the cam surfaces 35c and 39c at the center and weakens the contact toward both ends. Alternatively, as shown in FIG. 6B, the cam surfaces 35c and 39c may be slightly rounded instead of or in addition to this. While these maintain the line contact, they help to prevent the stress from increasing towards the end of the contact, thus preventing the generation of forces that twist the taper roller 41. In these drawings, the roundness is emphasized, but if the roundness is too large, the cam mechanism 3 may be prevented from bearing a large axial force. Therefore, the inclination due to roundness is limited to, for example, 1/100, more preferably, 1/10000 with respect to the bus.
 図5Bに示した例においては、内周面37fと外周面41fは共に、放射軸Xに直交する面に平行な平面だが、図7Aに示すごとく外周面41fは曲面ないし球面であってもよい。これは両者の接触を放射軸X周りの点接触に限定し、以って摩擦を減じ、また捻れを防止するのに役立つ。これに代えて、あるいは加えて、内周面37fも曲面であってもよい。 In the example shown in FIG. 5B, the inner peripheral surface 37f and the outer circumferential surface 41f together but plane parallel to the plane perpendicular to the radial axis X R, even the outer peripheral surface 41f as shown in FIG. 7A is a curved surface or spherical surface Good. This limits the contact between the two contact points around the radiation axis X R, reduces friction I hereinafter, also helps to prevent twisting. Instead of or in addition to this, the inner peripheral surface 37f may also be a curved surface.
 サポート37は、テーパローラ41の間においてそれぞれ径方向に内方に延びた複数のパーティション37wを備え、パーティション37wはそれぞれ転動面41に摺動するように寸法付けられていてもよい。これはテーパローラ41が偏心ないし歳差運動を起こすことを防止するのに役立つ。 Support 37 includes a plurality of partitions 37w extending inwardly respectively radial direction between the tapered roller 41, the partition 37w may also be sized to respectively slide on the rolling surface 41 R. This is useful for preventing the taper roller 41 from being eccentric or precessing.
 サポート37の複数のパーティション37wは、また、径方向に内方の端においてシャフト23に摺動可能に嵌合していてもよい。これはテーパローラ41およびサポート37を軸Xに対して調心せしめるのに役立つ。かかる嵌合は、パーティション37wとシャフト23との間に潤滑油が侵入してその油膜を保持できるよう、一定の遊びを要するが、サポート37が軸方向に移動するのを規制する程度に締めてもよい。これはカムの作動をその初期において妨げる(後述の停滞過程Pを顕著にする)ので、意図しないカムの作動を防止し、結果的に引き摺りトルクを低減するのに役立つ。特に低温において潤滑油の剪断抵抗が大きいときには、引き摺りトルクが増大しやすいが、カムの初期作動を妨げる効果も大きくなるので、かかる構成は有効な動作温度域の拡大に有利である。遊びを狭めるのに代えて、あるいは加えて、軸方向に摩擦を増大する構造、部材あるいは被膜が介在していてもよく、その一例は嵌合面を軸方向に延長することである。これとは別に、あるいはこれと組み合わせて、周方向に摩擦を減ずる手段を適用してもよく、例えば潤滑油を保持する溝が介在してもよい。 The plurality of partitions 37w of the support 37 may be slidably fitted to the shaft 23 at the radially inner end. This serves to align the taper roller 41 and the support 37 with respect to the axis X. Such fitting requires a certain amount of play so that the lubricating oil can enter between the partition 37w and the shaft 23 and hold the oil film, but is tightened to such an extent that the support 37 is restricted from moving in the axial direction. Also good. Since this prevents the actuation of the cam in its initial (to significantly stagnant process P L described later), to prevent operation of unintended cam helps to reduce consequently the drag torque. In particular, when the shear resistance of the lubricating oil is large at a low temperature, the drag torque is likely to increase, but the effect of hindering the initial operation of the cam is also increased. Therefore, this configuration is advantageous in expanding the effective operating temperature range. Instead of or in addition to reducing play, a structure, member or coating that increases friction in the axial direction may be interposed, one example being extending the fitting surface in the axial direction. Separately or in combination with this, a means for reducing friction in the circumferential direction may be applied, and for example, a groove for holding lubricating oil may be interposed.
 複数のパーティション37wはサポート37と一体であってもよいが、図7Bに示すごとく別体であってもよい。この場合にはパーティション37wは内周側において互いに連結していてもよく、またかかる部分は上述と同様にシャフト23に摺動可能に嵌合していてもよい。またこの場合においてもテーパローラ41の内周面41iはサポート37から離しておくことができる。あるいは内周面41iはサポート37に接していてもよいが、積極的に支持される必要はない。 The plurality of partitions 37w may be integrated with the support 37, but may be separate as shown in FIG. 7B. In this case, the partitions 37w may be connected to each other on the inner peripheral side, and such portions may be slidably fitted to the shaft 23 as described above. Also in this case, the inner peripheral surface 41 i of the taper roller 41 can be separated from the support 37. Alternatively, the inner peripheral surface 41i may be in contact with the support 37, but does not need to be actively supported.
 あるいは図7Cに示すごとく、パーティション37wなしに、サポート37は単純な輪環であってもよい。 Alternatively, as shown in FIG. 7C, the support 37 may be a simple ring without the partition 37w.
 あるいは、図8Aを参照するに、サポート37は外周面41fに点接触する突起37pを備えてもよい。これに対応して、外周面41fは、放射軸X周りにおいて、突起37pを受ける窪みを備えてもよい。あるいは反対に、外周面41fが突起を備えてもよい。さらにあるいは、図8Bに示すごとく、サポート37はその断面においてV字形状になっており、以って点接触する突起37pを成していてもよい。これらの構造は摩擦を減じ、また捻れを防止するのに役立つ。 Alternatively, referring to FIG. 8A, the support 37 may include a protrusion 37p that makes point contact with the outer peripheral surface 41f. Correspondingly, the outer peripheral surface 41f, in about the radiation axis X R, may be provided with a recess receiving the protrusion 37 p. Or conversely, the outer peripheral surface 41f may be provided with a protrusion. Furthermore, as shown in FIG. 8B, the support 37 has a V-shape in its cross section, and may form a protrusion 37p that makes point contact. These structures help reduce friction and prevent twisting.
 あるいは、図8Cを参照するに、サポート37はアーバー37aを備え、以ってテーパローラ41を放射軸X周りに回転可能に支持してもよい。アーバー37aはサポート37とは別体であってもよく、あるいは一体であってもよい。別体の場合、アーバー37aはサポート37に開けられた貫通孔に圧入されることにより固定されていてもよく、あるいは他の固定手段によってもよい。アーバー37aにより支持する構造は、テーパローラ41の偏心ないし歳差運動を防止するのに役立つ。 Alternatively, referring to FIG. 8C, support 37 is provided with arbor 37a, may be rotatably supports the tapered roller 41 around the radial axis X R Te Tsu. The arbor 37a may be separate from the support 37 or may be integrated. In the case of a separate body, the arbor 37a may be fixed by being press-fitted into a through hole opened in the support 37, or may be by other fixing means. The structure supported by the arbor 37a is useful for preventing the taper roller 41 from being eccentric or precessing.
 何れの場合においても、テーパローラ41の内周面41iは、シャフト23から離しておくことができる。 In any case, the inner peripheral surface 41 i of the taper roller 41 can be separated from the shaft 23.
 既に述べた通り、外周面41fは径方向に外方に面しており、カムプレート35およびプレッシャプレート39から離れている。図5Aに示すごとく外周面41fは部分的に覆われていなくてもよく、図9Aに示す通り径方向に外方に露出していてもよい。これは潤滑油の循環を促し、テーパローラ41の転がり抵抗を減ずるに役立つ。さらに進んでテーパローラ41はカムプレート35より外方に部分的に突出していてもよい。もちろん図9Bに示す通り、カムプレート35とプレッシャプレート39の何れかまたは両方が外周面41fに覆いかぶさっていてもよい。外周面41fがカムプレート35およびプレッシャプレート39に接していなければ、摩擦および/または捻れを増大することがない。 As already described, the outer peripheral surface 41 f faces outward in the radial direction and is separated from the cam plate 35 and the pressure plate 39. As shown in FIG. 5A, the outer peripheral surface 41f may not be partially covered and may be exposed outward in the radial direction as shown in FIG. 9A. This facilitates the circulation of the lubricating oil and helps to reduce the rolling resistance of the taper roller 41. Further, the taper roller 41 may partially protrude outward from the cam plate 35. Of course, as shown in FIG. 9B, either or both of the cam plate 35 and the pressure plate 39 may cover the outer peripheral surface 41f. If the outer peripheral surface 41f is not in contact with the cam plate 35 and the pressure plate 39, friction and / or twist will not increase.
 図3,4,5A,5Bに示す実施形態による電流I-トルクT曲線は、図1の破線に示すごとく、従来技術よりも縮小されたヒステリシスCを示す。ヒステリシスの程度はボールカムによる例と比較しても遜色はなく、十分に実用的である。これはテーパローラに対して複雑な動きをするカムプレートやプレッシャプレートに代わり、軸方向にも周方向にも共に動くサポートがテーパローラを支持することによると考えられる。 Figure 3,4,5A, current I- torque T curve according to the embodiment shown in 5B is, as shown in broken lines in FIG. 1, shows a hysteresis C I, which is reduced than the prior art. The degree of hysteresis is not inferior to that of the ball cam example and is sufficiently practical. This is considered to be because the support that moves both in the axial direction and in the circumferential direction supports the tapered roller instead of the cam plate and the pressure plate that perform complicated movement with respect to the tapered roller.
 またボールカムによる例と比較すると、始点Oから電流Iを増加する過程PにおいてトルクTの上昇が相対的に停滞することが認められ、また終点Eの付近から電流Iを減少する過程PにおいてトルクTの減少が相対的に停滞することが認められ、すなわち曲線はS字形状である。しかし前者の停滞過程Pがあることは、即座にトルク伝達が増大しないことにつながるので、むしろ所謂引き摺りトルクの低減に役立つ。また後者の停滞過程Pがあることは、意図しないクラッチの脱連結を防止するのに役立つ。 Also when compared with examples according to the ball cam, it is permitted to rise relatively stagnant torque T in the process P L to increase the current I from the starting point O, also in the process P R to reduce the current I from the vicinity of the end point E It can be seen that the decrease in torque T is relatively stagnant, ie the curve is S-shaped. But there is the former stagnation processes P L because immediately torque transmission lead to no increase, help reduce rather so-called drag torque. Also it is the latter stagnation process P R serves to prevent decoupling of unintended clutch.
 総合すると、開示した各実施形態は、ヒステリシスを抑えて制御性のよいカム機構ないし動力伝達機構を提供している。 In summary, each disclosed embodiment provides a cam mechanism or a power transmission mechanism with good controllability while suppressing hysteresis.
 幾つかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正ないし変形をすることが可能である。 Although several embodiments have been described, the embodiments can be modified or modified based on the above disclosure.

Claims (6)

  1.  軸の周りに差動を生じる手段と組み合わせて軸力を発生するカム機構であって、
     前記軸の周りに回転可能であって、前記差動を受容するべく前記手段と結合したカムプレートと、
     前記カムプレートに軸方向に対向し、軸方向に可動なプレッシャプレートと、
     前記カムプレートと前記プレッシャプレートとの間に介在し、それぞれ前記軸に直交する放射軸に関して回転対称であって前記軸に向かって先細な円錐面をなす転動面と、径方向に外方に面した外周面と、を備えた複数のテーパローラと、
     前記複数のテーパローラをそれぞれ前記放射軸の周りに回転可能に支持するように且つ前記複数のテーパローラと共に軸方向に移動するように前記外周面に接する円環状のサポートと、を備え、
     前記カムプレートと前記プレッシャプレートとは前記転動面にそれぞれ接するカム面をそれぞれ備え、各カム面は前記差動に応じて前記テーパローラを転動せしめて前記軸力を前記プレッシャプレートに発生させるよう前記軸に直交する周面に対して周方向に傾斜している、カム機構。
    A cam mechanism for generating an axial force in combination with a means for generating a differential around an axis,
    A cam plate rotatable about the axis and coupled to the means for receiving the differential;
    A pressure plate facing the cam plate in the axial direction and movable in the axial direction;
    A rolling surface that is interposed between the cam plate and the pressure plate and is rotationally symmetric with respect to a radial axis orthogonal to the axis and having a tapered conical surface toward the axis; and radially outward A plurality of taper rollers having an outer peripheral surface facing;
    An annular support that contacts the outer peripheral surface so as to rotatably support the plurality of taper rollers around the radial axis and to move in the axial direction together with the plurality of taper rollers, and
    The cam plate and the pressure plate each have a cam surface in contact with the rolling surface, and each cam surface rolls the tapered roller according to the differential to generate the axial force on the pressure plate. A cam mechanism that is inclined in a circumferential direction with respect to a circumferential surface orthogonal to the axis.
  2.  前記カムプレートおよび前記プレッシャプレートは前記外周面から離れている、請求項1のカム機構。 The cam mechanism according to claim 1, wherein the cam plate and the pressure plate are separated from the outer peripheral surface.
  3.  前記外周面が径方向に外方に露出するべく、前記カムプレートおよび前記プレッシャプレートは寸法付けられている、請求項1のカム機構。 The cam mechanism according to claim 1, wherein the cam plate and the pressure plate are dimensioned so that the outer peripheral surface is exposed outward in a radial direction.
  4.  前記サポートは、前記複数のテーパローラの間においてそれぞれ径方向に内方に延びた一以上のパーティションを備え、各前記パーティションは、前記転動面に摺動して各前記テーパローラが各前記放射軸から偏心することを防止するように寸法付けられている、請求項1のカム機構。 The support includes one or more partitions extending radially inward between the plurality of taper rollers, and each partition slides on the rolling surface so that each taper roller is separated from each radial axis. The cam mechanism of claim 1, dimensioned to prevent eccentricity.
  5.  前記サポートは、前記外周面にそれぞれ線接触または点接触する突起、または前記テーパローラをそれぞれ前記放射軸の周りに回転可能に軸支する枢軸を備えた、請求項1のカム機構。 The cam mechanism according to claim 1, wherein the support includes a protrusion that makes line contact or point contact with the outer peripheral surface, or a pivot that rotatably supports the taper roller around the radial axis.
  6.  軸の周りにそれぞれ回転可能な第1の回転体と第2の回転体との間でトルクの伝達を制御するためのクラッチ装置であって、
     前記軸の周りに回転可能なカムプレートと、
     前記カムプレートを前記第1の回転体に対して制御可能に制動するべく前記カムプレートと結合した制動装置と、
     前記カムプレートに軸方向に対向し、前記第2の回転体と共に回転し軸方向に可動なプレッシャプレートと、
     前記カムプレートと前記プレッシャプレートとの間に介在し、それぞれ前記軸に直交する放射軸に関して回転対称であって前記軸に向かって先細な円錐面をなす転動面と、径方向に外方に面した外周面と、を備えた複数のテーパローラと、
     前記複数のテーパローラをそれぞれ前記放射軸の周りに回転可能に支持するように且つ前記テーパローラと共に軸方向に移動するように前記外周面に接する円環状のサポートと、
     前記プレッシャプレートに軸方向に押圧されると前記第1の回転体と前記第2の回転体との間で前記トルクを伝達するクラッチと、を備え、
     前記カムプレートと前記プレッシャプレートとは前記転動面にそれぞれ接するカム面をそれぞれ備え、前記カムプレートが制動されて前記プレッシャプレートに対して差動を生ずると各カム面は前記差動に応じて前記テーパローラを転動せしめて前記プレッシャプレートを前記クラッチに向けて押圧する軸力を発生するよう前記軸に直交する周面に対して周方向に傾斜している、クラッチ装置。
    A clutch device for controlling transmission of torque between a first rotating body and a second rotating body, each of which can rotate around an axis,
    A cam plate rotatable about the axis;
    A braking device coupled to the cam plate to controllably brake the cam plate relative to the first rotating body;
    A pressure plate facing the cam plate in the axial direction, rotating with the second rotating body and movable in the axial direction;
    A rolling surface that is interposed between the cam plate and the pressure plate and is rotationally symmetric with respect to a radial axis orthogonal to the axis and having a tapered conical surface toward the axis; and radially outward A plurality of taper rollers having an outer peripheral surface facing;
    An annular support in contact with the outer peripheral surface so as to rotatably support the plurality of tapered rollers around the radial axis and to move in the axial direction together with the tapered rollers;
    A clutch that transmits the torque between the first rotating body and the second rotating body when pressed against the pressure plate in the axial direction;
    The cam plate and the pressure plate are respectively provided with cam surfaces that are in contact with the rolling surfaces, and when the cam plate is braked to generate a differential with respect to the pressure plate, each cam surface corresponds to the differential. A clutch device that is inclined in a circumferential direction with respect to a circumferential surface orthogonal to the shaft so as to generate an axial force that rolls the taper roller and presses the pressure plate toward the clutch.
PCT/JP2018/008518 2018-03-06 2018-03-06 Low-hysteresis cam mechanism provided with tapered rollers WO2019171459A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008518 WO2019171459A1 (en) 2018-03-06 2018-03-06 Low-hysteresis cam mechanism provided with tapered rollers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008518 WO2019171459A1 (en) 2018-03-06 2018-03-06 Low-hysteresis cam mechanism provided with tapered rollers

Publications (1)

Publication Number Publication Date
WO2019171459A1 true WO2019171459A1 (en) 2019-09-12

Family

ID=67846546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008518 WO2019171459A1 (en) 2018-03-06 2018-03-06 Low-hysteresis cam mechanism provided with tapered rollers

Country Status (1)

Country Link
WO (1) WO2019171459A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199139A1 (en) 2022-04-12 2023-10-19 Dh Technologies Development Pte. Ltd. Optimization of processing parameters for top/middle down ms/ms

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041230A (en) * 1999-07-29 2001-02-13 Nsk Ltd Thrust conical roller bearing
JP2008538400A (en) * 2005-02-09 2008-10-23 ティムケン ユーエス コーポレーション Roller thrust assembly
JP2016061350A (en) * 2014-09-17 2016-04-25 Ntn株式会社 Roller cam mechanism, rotation transmission device and steer-by-wire type steering device for vehicle
WO2017149829A1 (en) * 2016-03-04 2017-09-08 Gkn ドライブライン ジャパン株式会社 Cam mechanism and clutch device using said cam mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041230A (en) * 1999-07-29 2001-02-13 Nsk Ltd Thrust conical roller bearing
JP2008538400A (en) * 2005-02-09 2008-10-23 ティムケン ユーエス コーポレーション Roller thrust assembly
JP2016061350A (en) * 2014-09-17 2016-04-25 Ntn株式会社 Roller cam mechanism, rotation transmission device and steer-by-wire type steering device for vehicle
WO2017149829A1 (en) * 2016-03-04 2017-09-08 Gkn ドライブライン ジャパン株式会社 Cam mechanism and clutch device using said cam mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199139A1 (en) 2022-04-12 2023-10-19 Dh Technologies Development Pte. Ltd. Optimization of processing parameters for top/middle down ms/ms

Similar Documents

Publication Publication Date Title
US8276725B2 (en) Selectable one-way clutch
JP6622191B2 (en) Group comprising a friction device
US6766888B2 (en) Rotation transmission device
US6082504A (en) Friction brake device utilizing dual ball ramp devices
CN108138922B (en) Cam mechanism and clutch device using the same
WO2017149829A1 (en) Cam mechanism and clutch device using said cam mechanism
JP2008082397A (en) Power transmission device
JP4880947B2 (en) Driving force transmission device
WO2019171459A1 (en) Low-hysteresis cam mechanism provided with tapered rollers
JP2005325908A (en) Rotation transmitting device
WO2019244268A1 (en) Low hysteresis cam mechanism equipped with tapered roller
JP4525046B2 (en) Electromagnetic ball clutch
JP7065189B2 (en) Friction clutch device
US11519468B2 (en) Rotating e-clutch assembly providing four operating modes
JP6206019B2 (en) Electromagnetic clutch device
US11655862B2 (en) Rotation transmission state switching device
WO2023195203A1 (en) Reverse-input blocking clutch
JP2006057804A (en) Reverse input shut-off device
KR102731557B1 (en) Cone clutch for vehicle
WO2007033041A1 (en) Bi-directional overrunning clutch
JP2022047107A (en) clutch
JPH10181376A (en) Rotation transmission device
JP5141804B2 (en) Driving force transmission device
JPWO2022124234A5 (en)
JP2012122563A (en) Engagement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908431

Country of ref document: EP

Kind code of ref document: A1