WO2019170106A1 - 一种功率控制方法及设备 - Google Patents
一种功率控制方法及设备 Download PDFInfo
- Publication number
- WO2019170106A1 WO2019170106A1 PCT/CN2019/077181 CN2019077181W WO2019170106A1 WO 2019170106 A1 WO2019170106 A1 WO 2019170106A1 CN 2019077181 W CN2019077181 W CN 2019077181W WO 2019170106 A1 WO2019170106 A1 WO 2019170106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power control
- control parameter
- parameter information
- uplink transmission
- resource
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 194
- 230000005540 biological transmission Effects 0.000 claims abstract description 282
- 238000004891 communication Methods 0.000 claims abstract description 37
- 230000008569 process Effects 0.000 claims description 118
- 230000011664 signaling Effects 0.000 claims description 35
- 230000001186 cumulative effect Effects 0.000 claims description 10
- 238000013461 design Methods 0.000 description 32
- 230000006870 function Effects 0.000 description 16
- 238000009825 accumulation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000006855 networking Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/54—Circuits using the same frequency for two directions of communication
- H04B1/56—Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0226—Channel estimation using sounding signals sounding signals per se
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0092—Indication of how the channel is divided
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/08—Closed loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/143—Downlink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/53—Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/10—Open loop power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/286—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
- H04W52/325—Power control of control or pilot channels
Definitions
- the present application relates to the field of communications technologies, and in particular, to a power control method and device.
- the uplink and downlink data transmission modes can be classified into a Time Division Duplex (TDD), a Frequency Division Duplex (FDD), and a Full Duplex (FD) mode.
- TDD mode that is, receiving and transmitting data, occurs at different times.
- FDD mode a part of time slots are used for downlink transmission, and a part of time slots is used for uplink transmission.
- the FDD mode is to receive and transmit data in different frequency bands.
- uplink data is transmitted on the uplink frequency band
- downlink data is transmitted on the downlink frequency band.
- Full-duplex mode allows devices to use the same frequency band for upstream and downstream transmissions at the same time.
- a typical scenario is that a network device has full-duplex capability and can simultaneously send and receive data at the same frequency.
- the terminal device does not have full-duplex capability and uses TDD to communicate with the network device.
- the prior art Long Term Evolution (LTE) system and the Next Radio (NR) system have power control schemes, but the existing power control scheme is not considered based on the full duplex mode.
- the full-duplex networking mode is widely used.
- the network device operating in the full-duplex mode receives data of one group of terminal devices in the uplink direction and transmits data to another group of terminal devices in the downlink direction. Faced with the problem of self-interference cancellation. Different from the normal uplink transmission, the network equipment in full-duplex mode requires more receiving power to cope with residual self-interference when receiving data, which has new requirements for the transmission power control of the uplink transmission of the terminal equipment. Therefore, the power on a specific resource in the full-duplex mode needs to be correctly set. Inaccurate power control may cause erroneous reception of a network device operating in full-duplex mode, and cannot effectively cope with self-interference.
- the embodiment of the present application provides a power control method and device, which can implement uplink transmission power control in a full-duplex system, so that a network device operating in a full-duplex mode can correctly receive data while transmitting data.
- the present application provides a power control method and user equipment.
- the method may include: the user equipment UE receives the power control parameter information of the uplink transmission power sent by the network device, where the power control parameter information includes the first power control parameter information and the second power control parameter information;
- the first power control parameter information is used to calculate the uplink transmission power transmitted on the non-full-duplex resource, and the second power control parameter information includes a parameter used to calculate the uplink transmission power transmitted on the full-duplex resource;
- the power control parameter information and the resource type used for the uplink transmission determine the uplink transmission power.
- different power control parameters are configured to different power types, and separate power control parameters are configured for the full-duplex resources, so that the UE can use different uplink powers to transmit data when using different resource types, so that the operation is performed in full-duplex.
- the network device in the work mode overcomes self-interference and correctly receives data while transmitting data.
- the second power control parameter information includes at least one second power control parameter, and the second power control parameter is respectively associated with the channel type of the uplink transmission, the service type of the uplink transmission, the transmission content of the uplink transmission, and the uplink. Transmitting a corresponding beam, a carrier corresponding to the uplink transmission, and at least one of the bandwidth portions BWP corresponding to the uplink transmission are related. With this method, the power control parameters of different granularity configurations can be distinguished, and the uplink transmission power control can be more accurate.
- the channel type includes at least one of a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, a physical random access channel PRACH, and a sounding reference signal SRS;
- the service type includes enhanced mobile broadband eMBB, ultra low delay communication At least one of URLLC, enhanced machine communication eMTC.
- the present application does not limit the channel type and the service type.
- the manners listed in the possible design are only examples, and the specific implementation is not limited thereto.
- the second power control parameter information is at least one of the third power control parameter information and the fourth power control parameter information; wherein the third power control parameter information is according to the first interference of the network device If the cancellation capability is determined, the fourth power control parameter information is determined according to the second interference cancellation capability of the network device.
- the full-duplex resource includes at least one of a time domain resource, a frequency domain resource, and a spatial domain resource.
- Time domain resources include superframes, frames, time slots, subframes, micro subframes, minislots, orthogonal frequency division multiplexing OFDM symbols, mini-slots or mini-subframes, or include superframes, frames, time slots, Sub-frame, micro-subframe, mini-slot, orthogonal frequency division multiplexing OFDM symbol, mini-slot and mini-subframe combination; frequency domain resources include control channel unit CCE, control resource set CORSET, physical resource block PRB, partial band BWP or carrier; spatial domain resources include beams, beam pairs, beam groups or antenna ports.
- the method for dividing the full-duplex resource is not limited in this application. The manners listed in the possible design are only examples, and the specific implementation is not limited thereto.
- the UE receives the power control parameter information of the uplink transmission power sent by the network device by using at least one of radio resource control RRC signaling, medium access control MAC layer signaling, or physical layer signaling.
- the first power control parameter information includes fifth power control parameter information and sixth power control parameter information; wherein the fifth power control parameter information is used to calculate transmission on the uplink non-full duplex resource
- the uplink power transmission parameter, the sixth power control parameter information is used to calculate the uplink transmission power transmitted on the flexible duplex resource.
- the UE receives the first indication information sent by the network device, where the first indication information includes closed loop power control process indication information, where the closed loop power control process indication information is used to indicate that the closed loop power control process is included for all Duplex closed loop power control process.
- the closed-loop power control parameters can be separately accumulated in different closed-loop power control processes in the cumulative mode, so that the uplink power control process is more accurate.
- the first indication information further includes power control adjustment state indication information, where the power control adjustment state indication information is used to indicate a value range of the closed loop power control process indication information.
- the UE re-determines the power control parameter according to the power control parameter information and/or re-determines the type of the closed-loop power control process according to the first indication information. With this method, the uplink power control process is made more accurate.
- the closed loop power control parameter is accumulated based on the value of the closed loop power control parameter corresponding to the previous resource unit of the current resource unit, wherein the closed loop power control parameter
- the power control parameter is used to determine the uplink transmission power. This method makes the closed loop power control process more accurate.
- the present application also provides a power control device that can implement the power control method of the first aspect.
- the device may be a user device, which may implement the above method by software, hardware, or by executing corresponding software by hardware.
- the apparatus can include a processor and a memory.
- the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
- a memory is coupled to the processor that holds the program instructions and data necessary for the device.
- the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
- the communication interface can be a transceiver.
- the apparatus can include: a receiving module and a determining module.
- the receiving module is configured to receive power control parameter information of the uplink transmission power sent by the network device, where the power control parameter information includes parameter information used to calculate uplink transmission power transmitted on the non-full duplex resource, and is used for calculating Parameter information of the uplink transmission power transmitted on the duplex resource.
- the determining module is configured to determine the uplink transmission power according to the power control parameter information and the resource type used for the uplink transmission.
- the present application provides another power control method and apparatus.
- the method may include: the network device sends the power control parameter information of the uplink transmission power to the user equipment UE, where the power control parameter information includes the first power control parameter information and the second power control parameter information;
- the first power control parameter information is used to calculate an uplink transmission power transmitted on the non-full duplex resource
- the second power control parameter information includes a parameter used to calculate an uplink transmission power transmitted on the full duplex resource.
- the second power control parameter information includes at least one second power control parameter, and the second power control parameter is respectively associated with the channel type of the uplink transmission, the service type of the uplink transmission, the transmission content of the uplink transmission, and the uplink. Transmitting a corresponding beam, a carrier corresponding to the uplink transmission, and at least one of the bandwidth portions BWP corresponding to the uplink transmission are related. With this method, the power control parameters of different granularity configurations can be distinguished, and the uplink transmission power control can be more accurate.
- the channel type includes at least one of a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, a physical random access channel PRACH, and a sounding reference signal SRS;
- the service type includes enhanced mobile broadband eMBB, ultra low delay communication At least one of URLLC, enhanced machine communication eMTC.
- the present application does not limit the channel type and the service type.
- the manners listed in the possible design are only examples, and the specific implementation is not limited thereto.
- the second power control parameter information is at least one of the third power control parameter information and the fourth power control parameter information; wherein the third power control parameter information is according to the first interference of the network device If the cancellation capability is determined, the fourth power control parameter information is determined according to the second interference cancellation capability of the network device.
- the full-duplex resource includes at least one of a time domain resource, a frequency domain resource, and a spatial domain resource.
- Time domain resources include superframes, frames, time slots, subframes, micro subframes, minislots, orthogonal frequency division multiplexing OFDM symbols, mini-slots or mini-subframes, or include superframes, frames, time slots, Sub-frame, micro-subframe, mini-slot, orthogonal frequency division multiplexing OFDM symbol, mini-slot and mini-subframe combination; frequency domain resources include control channel unit CCE, control resource set CORSET, physical resource block PRB, partial band BWP or carrier; spatial domain resources include beams, beam pairs, beam groups or antenna ports.
- the method for dividing the full-duplex resource is not limited in this application. The manners listed in the possible design are only examples, and the specific implementation is not limited thereto.
- the network device sends the power control parameter information of the uplink transmission power to the user equipment UE by using at least one of radio resource control RRC signaling, medium access control MAC layer signaling, or physical layer signaling.
- the first power control parameter information includes fifth power control parameter information and sixth power control parameter information; wherein the fifth power control parameter information is used to calculate transmission on the uplink non-full duplex resource
- the uplink power transmission parameter, the sixth power control parameter information is used to calculate the uplink transmission power transmitted on the flexible duplex resource.
- the network device sends first indication information to the UE, where the first indication information includes closed loop power control process indication information, where the closed loop power control process indication information is used to indicate that the closed loop power control process is included for the full double The closed loop power control process.
- the closed-loop power control parameters can be separately accumulated in different closed-loop power control processes in the cumulative mode, so that the uplink power control process is more accurate.
- the first indication information further includes power control adjustment state indication information, where the power control adjustment state indication information is used to indicate a value range of the closed loop power control process indication information.
- the present application also provides a power control device that can implement the power control method of the second aspect.
- the device may be a network device, which may implement the above method by software, hardware, or by executing corresponding software through hardware.
- the apparatus can include a processor and a memory.
- the processor is configured to support the apparatus to perform the corresponding functions of the first aspect method described above.
- a memory is coupled to the processor that holds the program instructions and data necessary for the device.
- the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
- the communication interface can be a transceiver.
- the apparatus can include: a transmitting module.
- the sending module is configured to send, to the user equipment UE, the power control parameter information of the uplink transmission power, where the power control parameter information includes parameter information used for calculating the uplink transmission power transmitted on the non-full duplex resource, and is used for calculating Parameter information of the uplink transmission power transmitted on the full duplex resource.
- the application also provides a computer storage medium having stored thereon computer program instructions that, when executed on a computer, cause the computer to perform the method of any of the above aspects.
- the application also provides a computer program product, when run on a computer, causing the computer to perform the method of any of the above aspects.
- FIG. 1 is a schematic diagram of a system architecture applicable to a technical solution provided by an embodiment of the present disclosure
- FIG. 2 is a schematic diagram of interaction of a power control method according to an embodiment of the present application.
- FIG. 3 is a schematic diagram 2 of interaction of a power control method according to an embodiment of the present disclosure
- FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of a power control apparatus according to an embodiment of the present application.
- the data transmission direction is divided into an uplink transmission direction and a downlink transmission direction.
- the direction in which the terminal device sends data to the network device is the uplink transmission direction, and the power control in the uplink transmission direction is the uplink power control.
- the uplink power control is very important. Through the uplink power control, the terminal device can ensure the quality of the uplink data, minimize the interference to other terminal devices in the system, and extend the battery life of the terminal device.
- the uplink power control in the LTE system and the NR system mainly includes a physical uplink shared channel (PUSCH) channel, a physical uplink control channel (PUCCH) channel, and a physical random access channel (Packet Random Access Channel, PRACH) Power control and configuration of uplink transmission channels such as channel and Sounding Reference Signal (SRS) channel.
- PUSCH physical uplink shared channel
- PUCCH physical uplink control channel
- PRACH physical random access channel
- SRS Sounding Reference Signal
- the network device can configure the PUSCH power control parameter by radio resource control (RRC) signaling and downlink control information (DCI).
- RRC radio resource control
- DCI downlink control information
- the 3rd Generation Partnership Project (3GPP) defines the formula for the power control of various channel types in the NR system in the TS 38.213 protocol.
- the power control formula of the PUSCH channel is defined in section 7.1.1 of TS38.213.
- the user equipment User Equipment, UE
- the power is:
- n is the configured power control adjustment state index, corresponding to different closed loop power control processes, n can be 1 or 2; q d a reference signal (RS) resource index; ⁇ is a parameter indicating a subcarrier spacing; P CMAX,f,c (i) is a maximum available transmit power of the UE; It is the bandwidth occupied by the time-frequency resource corresponding to the PUSCH in the subframe i of the carrier f, and the time-frequency resource may be in the number of resource blocks (RBs).
- RS reference signal
- P O_PUSCH,f,c (j) are semi-statically configured power control parameters, which are composed of cell level parameters P O_NOMINAL_PUSCH, f, c (j) and UE level parameters P O_UE_PUSCH, f, c (j).
- P O_NOMINAL_PUSCH, f, c (j) is a common value of all UEs in the cell, indicating a cell-level semi-static transmit power reference
- P O_UE_PUSCH, f, c (j) is a value unique to each UE, indicating The power offset of each UE at the cell reference level.
- ⁇ f,c (j) is a semi-static configuration parameter, indicating the degree of path loss compensation
- PL f,c (q d ) is the estimated path loss value of the UE
- ⁇ TF,f,c (i) is for different modulation and coding Incremental value of the Modulation and Coding Scheme (MCS) index.
- MCS Modulation and Coding Scheme
- f f,c (i,n) are UE-specific closed-loop power control parameters.
- the network device can adjust f f,c (i,n) in a predefined range by using a Transmit Power Control (TPC) command, thereby adjusting the uplink transmission power of the UE.
- TPC Transmit Power Control
- the closed loop power control mode can be divided into absolute mode and cumulative mode.
- f f,c (i,n) ⁇ PUSCH,f,c (iK PUSCH ), ie f f,c (i,n) is the TPC command received on the iK PUSCH subframe
- f f,c (i,n) f f,c (i-1,n)+ ⁇ PUSCH,f,c (iK PUSCH )
- f f,c (i,n) is the cumulative value of the closed-loop power control parameter in the i-1th subframe and the TPC parameter ⁇ PUSCH,f,c carried in the TPC command received on the iK PUSCH subframe
- the adjustment range of one TPC command is small, but the adjusted transmission power can be accumulated, and the final adjustment range may be large; using the cumulative mode TPC command to change the transmission power is a slow process.
- the transmit mode power can be adjusted in a larger range at a time using the absolute mode TPC command, but the transmit power of each adjustment cannot be accumulated; according to the configuration in the prior art, the maximum range of the adjusted transmit power in the absolute mode is 4 dB.
- some channel types, such as PUCCH there is no absolute mode for the closed loop power control process.
- a full-duplex networking scenario is widely used in the NR system. It is different from the TDD and FDD transmission modes in the prior art.
- the network device operating in the full-duplex mode receives data of a group of terminal devices in the uplink direction and is in the downlink. The direction sends data to another group of terminal devices, facing the problem of self-interference cancellation.
- the power control parameter P o of the semi-static configuration is a power control parameter designed in the normal uplink transmission mode, and the uplink transmission power of the UE satisfies the requirements of the TDD, FDD, and other transmission modes in the prior art.
- the UE transmits data according to the uplink transmission power in the prior art, and the network device may not correctly receive the uplink data due to insufficient self-interference cancellation of the network device.
- the closed-loop power control parameter f f,c (i,n) that is, the current value of the closed-loop power control parameter
- the resource types of the i-th subframe and the i-th subframe may be different.
- the i-th subframe is a full-duplex resource for full-duplex multiplexing transmission
- the i-th subframe is a non-full-duplex resource for uplink transmission
- the uplink data is for full-duplex resources and non-full duplex.
- the uplink transmission power transmitted on the resource needs to be set differently; then, based on the uplink transmission power of the subframe i-1, the uplink transmission power of the obtained subframe i is inaccurate, which may cause the network device to fail to receive the sub-frame correctly.
- Upstream data of frame i is a full-duplex resource for full-duplex multiplexing transmission
- the i-th subframe is a non-full-duplex resource for uplink transmission
- the uplink transmission power transmitted on the resource needs to be set differently; then, based on the uplink transmission power of the subframe i-1, the uplink transmission power of the obtained sub
- the foregoing is a description of the PUSCH channel.
- other types of uplink transmission channels such as the PUCCH channel, the PRACH channel, and the SRS channel, have the same problem in the uplink power control process, and are not described here.
- the solution described in this application is not limited to the PUSCH channel.
- the solution in this application is applicable to the uplink power control of all types of uplink transmission channels in a full-duplex networking scenario.
- the present application provides a power control method and device.
- the basic principle is to allocate different power control parameters for uplink transmission on full-duplex resources and non-full-duplex resources, and design different closed-loop power control.
- the process implements uplink transmission power control in a full-duplex networking scenario.
- the technical solution provided by the present application can be applied to various communication systems including a full-duplex networking scenario, for example, a full-duplex networking, a 5G NR system, a future evolution system, or multiple communication convergence systems based on an existing communication system. and many more.
- M2M machine to machine
- eMBB enhanced mobile broadband
- URLLC ultra high reliability and ultra low latency communication
- mMTC massive machine type communication
- the technical solution provided by the embodiment of the present application can also be applied to a scenario between a
- the technical solution provided by the embodiment of the present application may be applied to the system architecture shown in FIG. 1 , where the network architecture 100 and the UEs 201 - 205 connected to the network device 100 may be included in the system architecture.
- the network device 100 is configured to provide wireless access services for the UEs 201-205.
- the network device 100 corresponds to a service coverage area (as shown by the ellipse area in FIG. 1), and the UE entering the area can communicate with the network device 100 by using a wireless signal, thereby accepting the wireless access provided by the network device 100. service.
- Network device 100 can be a device that can communicate with UEs 201-205.
- Network device 100 can be a relay station or an access point or the like.
- the network device 100 may be a global system for mobile communication (GSM) or a network transceiver transceiver (BTS) in a code division multiple access (CDMA) network, or may be
- GSM global system for mobile communication
- BTS network transceiver transceiver
- CDMA code division multiple access
- the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
- the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
- the network device 100 may also be a network device in a future 5G network, such as a transmission point (TRP), or a network device in a future evolved PLMN network; or may be a wearable device or an in-veh
- the UEs 201-205 may be access terminals, UE units, UE stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices, UE terminals, terminals, wireless communication devices, UE agents, or UE devices.
- the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
- FIG. 1 is for example only and is not intended to limit the technical solutions of the present application. It should be understood by those skilled in the art that in a specific implementation process, other devices may be included in the system architecture, and the number of network devices and UEs may also be configured according to specific needs.
- the system architecture shown in FIG. 1 may be a full-duplex networking scenario.
- the network device 100 has full-duplex capability and can simultaneously send and receive data at the same frequency.
- the UE 201-205 does not have full-duplex capability, and uses TDD, FDD, or other non- The duplex mode communicates with the network device 100.
- the UE communicates with the network device 100 by using the TDD method, and the network device 100 can group the UEs that use the same-frequency resources in the coverage, and the UEs in the same group use the same transmission direction to reduce inter-UE interference, in different groups.
- the UE can transmit in different directions; for example, the UE in one group sends data for uplink transmission, and the UE in one group receives data for downlink transmission, forming a full-duplex mode in which the network device 100 simultaneously transmits and receives data.
- the network device 100 may group the UEs according to the interference information between the UEs, and the UEs that do not interfere with each other are matched in different groups, and the UEs with large mutual interference are allocated to one group;
- the UEs are grouped according to the service direction, and the UEs with heavier downlink services are grouped into one group, and the UEs with heavier uplink services are grouped into another group.
- the network device 100 may also group the UEs in other manners, which is not limited in this application.
- the network device 100 divides the UEs 201-205 into two groups, the UEs 201-203 are the first group, and the UEs 204-205 are the second group.
- the network device 100 transmits data to the UE 201 and receives uplink data of the UE 204.
- the radio resources may include time domain resources, frequency domain resources, and spatial domain resources.
- the time domain resource may include at least one of a superframe, a frame, a time slot, a subframe, a micro subframe, a minislot, an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a minislot, or a mini subframe.
- the frequency domain resource may include a control channel element (CCE), a control resource set (CORSET), a physical resource block (PRB), and a partial frequency band ( At least one of a Band width partial (BWP) or a carrier
- the spatial domain resource may include at least one of a beam, a beam pair, a beam group, or an antenna port.
- the resources used for data transmission include at least one of a time domain resource, a frequency domain resource, and a spatial domain resource.
- a time domain resource For example, in the time domain, one subframe, one time slot, one symbol or one mini time slot may be used as a resource unit; in the frequency domain, one CCE, one BWP or one carrier may be used as a resource unit; in the spatial domain, Use one beam or one antenna port as the resource unit.
- one beam, one time slot on one carrier can be used as one resource unit; one beam and one symbol on one carrier can be used as one resource unit; one antenna port and one BWP symbol can be used as one resource unit.
- At least one of the time domain resource, the frequency domain resource, and the spatial domain resource needs to be considered when dividing the resource unit.
- only one time domain, one subframe, one time slot, one symbol or one mini time slot can be considered as a resource unit; when there is only one space domain
- one subframe, one time slot, one symbol or one mini time slot using the same carrier resource may be used as one resource unit; when there are multiple beams and frequency domains in the spatial domain
- the same carrier resource can be used as one resource unit.
- the resource unit division manner only as an example.
- the resource unit granularity may be divided according to the radio resource configuration and the time domain resource, the frequency domain resource, and the spatial domain resource, and the specific manner of the resource unit division is not performed in this application. limited.
- the division of resource units may be combined in multiple ways; for example, one slot of the same beam and the same carrier resource may be used as one resource unit, and one slot of the same beam and another slot of the same carrier resource may be used.
- the symbol is used as another resource unit; this embodiment of the present application does not limit this.
- the semi-static format configuration means that the base station notifies the UE of the transmission format of each time slot through a semi-static signaling indication (such as by RRC signaling).
- the transmission format may include three states: UL, DL, and X; UL indicates uplink, DL indicates downlink, and X indicates flexible state, and the UE neither receives nor transmits on the flexible time slot.
- the semi-static format configuration is cell-level, that is, all UEs in the cell receive the same slot configuration.
- the dynamic format configuration means that the base station notifies the UE of the transmission format of one or several time slots through DCI signaling.
- the DCI signaling is carried on the group common-PDCCH (GC-PDCCH), and the UE detects the GC-PDCCH channel according to the listening period configured by the base station, and receives the DCI signaling.
- the transport format notified by the DCI signaling may cover the transport format of the time slot configured as a flexible state in the semi-static signaling indication.
- the base station configures a transmission format of each specific beam, a specific carrier, and each time slot as an example.
- the base station firstly configures the transmission formats of the 10 time slots of the UE 201 and the UE 204 by semi-static signaling, where the time slot 0 is DL and the time slots 1-9 are X.
- the transmission format of the 10 time slots of the UE 201 and the UE 204 is as shown in Table 1. Further, the base station indicates the transmission format of the 10 time slots of the UE 201 and the UE 204 by DCI signaling, for example, the DCI signaling indicates that the transmission format of the 10 time slots of the UE 201 is DDDDDUUUUD, and the 10 times of the UE 204 are indicated by DCI signaling.
- the transport format of the slot is DDUUUUDDDD.
- the transmission format of the 10 slots of the UE 201 and the UE 204 is as shown in Table 2.
- Time slot 0 1 2 3 4 5 6 7 8 9 UE201 DL X X X X X X X X UE204 DL X X X X X X X X X X X X X X
- Time slot 0 1 2 3 4 5 6 7 8 9 UE201 DL DL DL DL DL UL UL UL UL DL UE204 DL DL UL UL UL UL DL DL DL DL DL DL DL DL
- the base station side performs uplink and downlink transmission simultaneously, that is, full duplex mode.
- full-duplex mode the transmission of UEs on different time slots can be divided into different types.
- the time slots of two UEs in the above example can be divided into four types.
- the first type is a semi-statically configured time slot. All UEs in the cell have the same transmission format in this time slot (on a specific beam and carrier), for example, time slot 0.
- the second type is a downlink co-directional transmission time slot in a dynamic configuration, for example, time slot 1 and time slot 9, and UE 201 and UE 204 are both downlink transmissions in this time slot.
- the third type is an uplink co-transmission time slot in a dynamic configuration. For example, time slot 5, UE 201 and UE 204 are uplink transmissions in this time slot.
- the fourth type is a full-duplex time slot in a dynamic configuration, for example, time slots 2, 3, 4, 6, 7, 8 in which the UE 201 and the UE 204 have different transmission directions.
- the third type of time slot and the fourth type of time slot are resources used for uplink transmission, the third type of time slot is an uplink non-full duplex resource, and the fourth type of resource is a full duplex resource.
- the demand for downlink traffic varies greatly between different service types at different network devices. Some services require more uplink transmission resources, and some services need to allocate more downlink transmission resources.
- the flexible duplex technology can adaptively allocate uplink and downlink transmission resources according to the distribution of uplink and downlink services; for example, the flexible frequency band technology configures some uplink frequency bands in the FDD system as “flexible frequency bands”.
- the “flexible frequency band” is allocated as an uplink transmission or a downlink transmission, so that the uplink and downlink spectrum resources are matched with the uplink and downlink service requirements, thereby improving spectrum utilization.
- the allocation mode may cause adjacent network devices to use different transmission directions on the same time domain resource/frequency domain resource, so that the uplink transmission of the UE under a certain network device faces interference caused by downlink transmission of the surrounding network device.
- the flexible duplex resource in the present application refers to an uplink transmission resource in a flexible duplex technology, and the uplink transmission resource faces interference of downlink transmission of surrounding network devices.
- the interference level is different according to the number of resources that the surrounding network device is configured to transmit in the downlink, and the flexible duplex resource can be further divided into flexible duplex resources with different interference levels.
- the uplink non-duplex resources and the flexible duplex resources are all non-full-duplex resources, and the resource types used for uplink transmission include full-duplex resources and non-full-duplex resources. It should be noted that, in an actual application, according to the specific implementation of the transmission mode, the uplink transmission resource may also be classified according to other standards, and the non-full-duplex resource may also include other types.
- the classification manner in the embodiment of the present application is only exemplary. It is not a limitation on the classification method.
- the power control parameter is a related parameter used by the UE to calculate the uplink transmission power, and the network device can configure the power control parameter to configure the uplink transmission power of the UE.
- the term "plurality” as used herein refers to two or more.
- the terms “first” and “second” are used herein to distinguish different objects, rather than to describe a particular order of the objects.
- the first power control parameter information and the second power control parameter information are only used to distinguish different power control parameter information, and the sequence thereof is not limited.
- the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
- the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
- the embodiment of the present application provides a power control method, which is applied to the communication system shown in FIG. 1. As shown in FIG. 2, the method may include S201-S204:
- the network device sends power control parameter information of the uplink transmission power to the UE.
- the network device may configure the power control parameter information to the UE by using semi-static signaling, for example, sending the power control parameter information to the UE by using RRC signaling, MAC signaling, or physical layer signaling.
- the power control parameter information includes first power control parameter information and second power control parameter information; the first power control parameter information is used to calculate uplink transmission power transmitted on the non-full duplex resource, and the second power control parameter information includes A parameter used to calculate the uplink transmission power transmitted on a full-duplex resource.
- the power control parameters of the uplink transmission power for transmitting data on the PUSCH will be described as an example.
- the PUSCH uplink transmission power described in the following may be considered as the uplink transmission power of the PUSCH data transmission by the UE in the resource unit i to the cell c, where the resource unit i may be any resource unit, and the cell c may be a network.
- a device such as a base station, served by any cell.
- c is not involved in the formula of the PUSCH uplink transmission power calculated hereinafter.
- the uplink transmission power of the UE in the resource unit i for PUSCH data transmission is:
- n is the configured power control adjustment state index, corresponding to different closed-loop power control processes, n may be 1 or 2;
- q d is a reference signal (Reference signal, RS) resource index;
- P CMAX (i) is the maximum available transmit power of the UE;
- M RB (i) is the bandwidth occupied by the time-frequency resource corresponding to the PUSCH in the resource unit i, and the time-frequency resource can be a resource block (resource block) , RB) is the number of units.
- P O (j) is a semi-statically configured power control parameter indicating the target power of the UE; and is composed of a cell level parameter P O_NOMINAL_PUSCH (j) and a UE level parameter P O_UE_PUSCH (j).
- ⁇ (j) is a semi-static configuration parameter indicating the degree of road loss compensation.
- PL f,c (q d ) is the estimated path loss value of the UE;
- ⁇ TF (i) is the incremental value for different Modulation and Coding Scheme (MCS) indexes.
- MCS Modulation and Coding Scheme
- f(i,n) is a UE-specific closed loop power control parameter.
- the network device can configure the uplink transmission power P by configuring the power control parameter P O and the closed loop power control parameter f.
- the network device can also configure the uplink transmission power P by configuring other parameters.
- P O and f are taken as an example in the present application.
- the uplink transmission power is P
- the power control parameter is P O
- the network device sends configuration information of the P O to the UE, so that the UE calculates the uplink transmission power P according to the P O.
- the configuration information when the network device configures the power control parameter information through the RRC IE, the configuration information may be as shown in Table 3:
- P O_1 is the first power control parameter
- P O_2 is the second power control parameter.
- the P O_1 may be a UE-specific first power control parameter
- the P O_2 may be a UE-specific second power control parameter.
- P O_1 may be a cell-specific first power control parameter
- P O_2 may be a cell-specific second power control parameter.
- the second power control parameter may be further subdivided according to characteristics of the uplink transmission of the UE.
- the second power control may be configured according to at least one of a channel type of the uplink transmission, a service type of the uplink transmission, a transmission content of the uplink transmission, a beam corresponding to the uplink transmission, a carrier corresponding to the uplink transmission, and a BWP corresponding to the uplink transmission. parameter.
- a corresponding second power control parameter may be configured for each channel type according to the channel type of the uplink transmission.
- the configuration information when the network device configures the power control parameter information through the RRC IE, the configuration information may be as shown in Table 4:
- P O_1 For non-full duplex resources P O_2_PUSCH Used for PUSCH channel full-duplex resources P O_2_PUCCH Used for PUCCH channel full-duplex resources P O_2_PRACH For PRACH channel full-duplex resources P O_2_SRS For SRS full-duplex resources
- the second power control parameter information includes four second power control parameters: P O_2_PUSCH , P O_2_PUCCH , P O_2_PRACH , and P O_2_SRS .
- the corresponding second power control parameter may be configured for each service type according to the service type of the uplink transmission.
- the configuration information when the network device configures the power control parameter information through the RRC IE, the configuration information may be as shown in Table 5:
- P O_1 For non-full duplex resources P O_2_eMBB Used for eMBB service full-duplex resources P O_2_URLLC Full-duplex resource for URLLC service P O_2_eMTC Used for eMTC service full-duplex resources
- the second power control parameter information includes three second power control parameters: P O_2_eMBB , P O_2_URLLC , and P O_2_eMTC .
- the corresponding second power control parameter may be configured for each channel type and service type according to the channel type and the service type of the uplink transmission.
- the configuration information when the network device configures the power control parameter information through the RRC IE, the configuration information may be as shown in Table 6:
- P O_1 For non-full duplex resources P O_2_PUSCH_eMBB Full-duplex resource for PUSCH channel eMBB service P O_2_PUSCH_URLLC Full-duplex resource for PUSCH channel URLLC service P O_2_PUSCH_eMTC Full-duplex resource for PUSCH channel eMTC service P O_2_PUCCH_eMBB Full-duplex resource for PUCCH channel eMBB service P O_2_PUCCH_URLLC Full-duplex resource for PULCCH channel URLLC service P O_2_PUCCH_eMTC Full-duplex resource for PUCCH channel eMTC service P O_2_PRACH_eMBB Full-duplex resource for PRACH channel eMBB service P O_2_PRACH_URLLC Full-duplex resource for PRACH channel URLLC service P O_2_PRACH_eMTC Full-duplex resource for PRACH channel eMTC service P O_2_SRS_eMBB Full-duplex resource
- the foregoing manner of configuring the second power control parameter is only used to provide some possible examples.
- another second power control parameter may also be included, such as a method for distinguishing different channels.
- the second power control parameter may also be configured for other channel types.
- the second power control parameter may also be divided in other combinations. For example, different second service functions are configured for different service types of the PUSCH channel.
- the control parameter only one second power control parameter is configured for the PUCCH channel.
- the specific configuration mode of the second power control parameter is not limited in this embodiment.
- the second function may be configured according to at least one of a channel type of the uplink transmission, a service type of the uplink transmission, a transmission content of the uplink transmission, a beam corresponding to the uplink transmission, a carrier corresponding to the uplink transmission, and a BWP corresponding to the uplink transmission.
- the control parameters are not limited in this embodiment of the present application.
- different second power control parameters may be configured for different baseband parameters. It is also possible to set different second power control parameter information for different UEs and different UE groups in different levels. This embodiment of the present application does not limit this.
- the network device may determine, according to the self-interference cancellation capability of the network device, multiple sets of power control parameter information used for the full-duplex resource. For example, the network device determines the third power control parameter information according to the maximum interference cancellation capability of the network device, and determines the fourth power control parameter information according to the minimum interference cancellation capability of the network device.
- the maximum interference cancellation capability may be determined based on a better self-interference cancellation capability, and the minimum interference cancellation capability may be determined based on a poor self-interference cancellation capability.
- the network device may determine the interference cancellation capability of the network device according to at least one of a path loss size, an average received power value of the UE, and a received signal strength value.
- the network device sends one of the third power control parameter information and the fourth power control parameter information to the UE as the second power control parameter information.
- the network device may send the third power control parameter information and the fourth power control parameter information to the UE as the second power control parameter information, and the UE selects the third power control parameter information from the second power control parameter information.
- the fourth power control parameter information calculates the uplink transmission power.
- the UE selects the third power control parameter information or the fourth power control parameter information from the second power control parameter information, and may indicate that the UE uses the third power control parameter information or the fourth power based on the network device further indication information.
- Control parameter information or based on the UE's own autonomous choice.
- the UE autonomous selection may be based on its own power considerations, for example, when the power is limited, the third power control parameter information is selected to be used; when the power is sufficient, the fourth power control parameter information is selected to be used.
- the configuration information when the network device configures the power control parameter information through the RRC IE, the configuration information may be as shown in Table 7:
- the third power control parameter information includes three third power control parameters: P O_2_eMBB , P O_2_URLLC , and P O_2_eMTC
- the fourth power control parameter information includes three fourth power control parameters: P O_2_eMBB ′, P O_2_URLLC ′, and P O_2_eMTC ′.
- the network device may separately configure corresponding power control parameters for the uplink non-full duplex resource and the flexible duplex resource.
- the power control parameter for calculating the uplink transmission power transmitted on the uplink non-full duplex resource is the fifth power control parameter information
- the power control parameter for calculating the uplink transmission power transmitted on the flexible duplex resource is the sixth Power control parameter information.
- the uplink non-full-duplex resource refers to a non-full-duplex resource that is usually uplink transmission, that is, there is no flexible duplex, and the surrounding network devices are consistently uplink transmissions on the same time-frequency resource.
- the configuration information when the network device configures the power control parameter information through the RRC IE, the configuration information may be as shown in Table 8:
- P O_1_1 Non-full duplex resources for uplink P O_1_2 For flexible duplex resources P O_2_PUSCH Used for PUSCH channel full-duplex resources P O_2_PUCCH Used for PUCCH channel full-duplex resources P O_2_PRACH For PRACH channel full-duplex resources P O_2_SRS For SRS full-duplex resources
- the UE receives power control parameter information of uplink transmission power sent by the network device.
- the UE may save the power control parameter information.
- the UE determines a resource type used by the uplink transmission.
- the UE determines the resource unit used for the uplink transmission. Exemplarily, according to the scheduling of the network device, the UE performs uplink transmission on the cell c, the carrier f, and the time slot i.
- the UE may determine, according to the indication information of the network device, the resource type of the resource unit used for the uplink transmission.
- the network device sends slot format indication (SFI) information to the UE, where the cell c, the carrier f, the time slot i, the UE, and the UE are paired with the UE.
- SFI slot format indication
- the transmission format of the UE For example, in the cell c, the carrier f, and the time slot i, the transmission format of the UE is uplink, and the transmission format of the UE paired with the UE is downlink; the UE can determine the cell c, the carrier f, according to the SFI information.
- the resource type of slot i is a full-duplex resource.
- the UE may determine, according to the SFI information, the resource type of the cell c, the carrier f, and the time slot i is an uplink non-full duplex resource.
- the transmission format of the UE is uplink, and the transmission format of the surrounding network device is downlink, and the UE can determine the resources of the cell c, the carrier f, and the time slot i according to the SFI information.
- Type is a flexible duplex resource.
- the UE determines uplink transmission power, and then uses the uplink transmission power to transmit data.
- the UE determines the uplink transmission power according to the power control parameter information and the resource type used for the uplink transmission.
- the UE determines that the resource type used for the uplink transmission is a full-duplex resource, and calculates the uplink transmission power according to the second power control parameter in the second power control parameter information in the power control parameter information; further, the UE may The uplink transmission power is calculated according to the channel type of the uplink transmission, the service type of the uplink transmission, the transmission content of the uplink transmission, the beam corresponding to the uplink transmission, the carrier corresponding to the uplink transmission, and the second power control parameter corresponding to the BWP corresponding to the uplink transmission.
- the UE determines that the resource type used for the uplink transmission is a non-full-duplex resource that is consistent with the uplink (that is, is not a flexible duplex resource, is not a full-duplex resource, and is a normal uplink transmission resource), and is based on the power control parameter information.
- the fifth power control parameter in the five power control parameter information calculates the uplink transmission power.
- the UE determines that the resource type used for the uplink transmission is a flexible duplex resource, and calculates the uplink transmission power according to the sixth power control parameter in the sixth power control parameter information in the power control parameter information.
- the power control parameter information is as shown in Table 5.
- the uplink transmission power is calculated by using P O_1 ; If the resource type used is a full-duplex resource, the service type of the uplink transmission is further determined. If it is determined that the service type of the uplink transmission is a URLLC service, the uplink transmission power is calculated by using P O_2_URLLC .
- the power control parameter information is as shown in Table 8.
- the uplink transmission power if it is determined that the resource type used for the uplink transmission is an uplink non-full duplex resource, the uplink transmission power is calculated by using P O_1_1 ; If the resource type used for the uplink transmission is a flexible duplex resource, the uplink transmission power is calculated by using P O_1_2 ; if it is determined that the resource type used for the uplink transmission is a full-duplex resource and is a PUSCH channel, the uplink transmission power is calculated by using P O_2_PUSCH . .
- the UE After determining the uplink transmission power, the UE uses the uplink transmission power to send data to the network device.
- the uplink transmission power control process of the UE is divided into an open loop power control process and a closed loop power control process.
- the open loop power control process estimates the downlink based on the interference situation of the uplink, or estimates the uplink according to the interference situation of the downlink, and the one-way does not close.
- the closed loop power control process controls the uplink transmission power according to the feedback information of the received network device. If it is a closed loop power control process, when the UE calculates the uplink transmission power, it also needs to determine the closed loop power control parameter f according to the TPC parameters configured by the network device.
- the power control method provided by the embodiment of the present application may further include S205-S206:
- the network device sends the first indication information to the UE.
- the network device may send the first indication information to the UE by using semi-static signaling, such as by using RRC signaling.
- the first indication information may include closed loop power control process indication information.
- the closed loop power control process indication information in this application may also be referred to as closed loop power control process indication information.
- the first indication information may further include power control adjustment status indication information.
- the closed loop power control process indication information takes different values to represent different closed loop power control processes.
- the closed-loop power control process indication information is 0 for indicating that the closed-loop power control process is a closed-loop power control process for full-duplex, and the closed-loop power control process indication information is 1 for indicating that the closed-loop power control process is for non-full-double The closed loop power control process.
- the closed-loop power control process indication information is 1 for indicating that the closed-loop power control process is a closed-loop power control process for full-duplex, and the closed-loop power control process indication information is 0 for indicating that the closed-loop power control process is for non-full-double The closed loop power control process.
- the closed loop power control process described in the present invention can also be replaced by a closed loop power control process.
- the closed loop power control process indication information is PUSCH-closed-loop-index
- different closed loop power control processes may be indicated by setting PUSCH-closed-loop-index to different values.
- the PUSCH-closed-loop-index value may be ⁇ 0, 1 ⁇ , where 0 is used to indicate that the closed-loop power control process is a closed-loop power control process for non-full duplex, and 1 is used to indicate a closed-loop power control process.
- the value of PUSCH-closed-loop-index can be ⁇ 0, 1, 2 ⁇ , where 0 is used to indicate that the closed-loop power control process is a closed-loop power control process for full-duplex, and 1 is used to indicate closed-loop power control.
- the process is a closed-loop power control process for uplink non-full duplex, and 2 is used to indicate that the closed-loop power control process is a closed-loop power control process for flexible duplex; for example, the PUSCH-closed-loop-index value may also include A value greater than or equal to 3 is used to indicate that the closed loop power control process is for other types of closed loop power control processes.
- the power control adjustment status indication information may indicate two states, where the two states respectively represent a closed loop power control process for full duplex and a non-full duplex Closed loop power control process.
- the power control adjustment state indication information may also indicate three states, wherein the three states respectively represent a closed-loop power control process for full-duplex, an closed-loop non-full-duplex closed-loop power control process, and a closed loop of flexible duplexing. Power control process.
- the power control adjustment status indication information is num-pusch-pcadjustment-states.
- the num-pusch-pcadjustment-states parameter can be used to indicate the PUSCH-closed-loop-index value range. For example, if num-pusch-pcadjustment-states is 2, the value of PUSCH-closed-loop-index is ⁇ 0, 1 ⁇ ; if num-pusch-pcadjustment-states is 3, it means PUSCH-closed-loop-index The value range is ⁇ 0, 1, 2 ⁇ . Num-pusch-pcadjustment-states can be an integer greater than or equal to 1.
- the UE receives the first indication information sent by the network device.
- the UE may save the first indication information.
- the power control process of the uplink transmission power includes an open loop power control process and a closed loop power control process.
- the process of determining, by the UE, the uplink transmission power in S204 further includes: adjusting, by the UE, the closed loop power control parameter f(i, n) according to the TPC command sent by the network device, where f(i, n) is a closed loop. The value of the power control parameter on resource unit i.
- the range of the first indication information may be determined first. For example, if the PUSCH-closed-loop-index value ranges from ⁇ 0 ⁇ , When the UE adjusts f(i,n), it does not distinguish the closed-loop power control process; the PUSCH-closed-loop-index takes the range of ⁇ 0,1 ⁇ , and the UE adjusts f(i,n) to distinguish the full-duplex.
- PUSCH-closed-loop-index takes the range of ⁇ 0,1,2 ⁇ , and the UE adjusts f(i,n) to distinguish the incomplete Duplex closed-loop power control process, full-duplex closed-loop power control process and flexible duplex closed-loop power control process.
- the value f(i,n) of the closed-loop power control parameter on the resource unit i is a closed-loop power control parameter.
- the resource type of the resource unit is the same, and the value of s is determined according to the resource type of the uplink transmission.
- time slots 2, 4, 7, and 8 are full-duplex resources
- a closed-loop power control process Types may include closed loop power control procedures for full duplex and closed loop power control procedures for non-full duplex.
- the UE determines the uplink transmission power on the full-duplex resource resource unit 4, and determines the power control parameter for the full-duplex resource according to the power control parameter information; if the UE determines the uplink non-full-duplex resource resource unit 5
- the uplink transmission power is used to determine the power control parameters of the non-full-duplex resources for uplink according to the power control parameter information.
- the UE calculates the uplink transmission power on the resource unit 4 (the channel type of the resource unit 4 is the PUSCH) according to the P O_2_PUSCH .
- the uplink transmission power is calculated according to P O_1_1 from the power control parameter information. If it is the closed-loop power control process of the accumulation mode, and the resource type used by the uplink transmission of the UE changes, the value of the PUSCH-closed-loop-index is re-determined.
- the sequence of the power control parameter information and the first indication information sent by the network device to the UE is not limited in this embodiment, and the network device may first send the power control parameter information to the UE, or may first send the power control parameter information to the UE.
- the first indication information that is, the embodiment of the present application does not limit the order of S201-S202 and S205-S206.
- the power control method provided by the embodiment of the present application in the process of determining the uplink transmission power by the user equipment, different power resource types are used corresponding to different resource types, and separate power control parameters are configured for the full-duplex resource;
- the power control method provided by the embodiment of the present application can perform power control separately when the user equipment uplink uses full-duplex resources or non-full-duplex resources. Determining different uplink transmission powers; enabling network devices operating in full-duplex mode to correctly receive data while transmitting data.
- the closed-loop power control parameter is accumulated based on the value of the closed-loop power control parameter corresponding to the previous resource unit of the current resource unit, and the uplink transmission in the full-duplex mode is improved.
- the accuracy of the power is improved.
- the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the network device and the user device.
- the network device and the user device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
- the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
- the embodiments of the present application may divide the function modules of the network device and the user equipment according to the foregoing method.
- each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions.
- FIG. 4 is a schematic diagram of a logical structure of the network device 400 provided by the embodiment of the present application.
- the network device 400 includes a transmitting module 401.
- the sending module 401 can be used to execute S201 in FIG. 2, can also be used to execute S205 in FIG. 3, and/or perform other steps described in this application.
- FIG. 5 is a schematic diagram of a logical structure of the user equipment 500 provided by the embodiment of the present application.
- the user equipment 500 includes a receiving module 501 and a determining module 502.
- the receiving module 501 can be configured to perform S202 in FIG. 2, can also be used to perform S206 in FIG. 3, and/or perform other steps described in this application.
- the determination module 502 can be used to perform S203 and S204 in Figures 2 and 3, and/or perform other steps described in this application.
- the network device 400 and the user device 500 may be presented in a form that divides each functional module in an integrated manner.
- a “module” herein may refer to a particular ASIC, circuitry, processor and storage device that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
- any of network device 400 and user device 500 may take the form shown in FIG.
- device 600 can include a memory 601, a processor 602, and a communication interface 603.
- the memory 602 is used to store the computer execution instructions.
- the processor 601 executes the computer execution instructions stored in the memory 602 to enable the device 600 to execute the power control method provided by the embodiment of the present application.
- Memory 601, processor 602, and communication interface 603 are communicatively coupled by bus 604.
- bus 604. For specific power control methods, refer to the related descriptions in the above and the drawings, and details are not described herein again. It should be noted that, in a specific implementation process, the device 600 may also include other hardware devices, which are not enumerated herein.
- the transmitting module 401 of FIG. 4 can be implemented by the communication interface 603.
- the determining module 502 in FIG. 5 may be implemented by the processor 601, and the receiving module 501 may be implemented by the communication interface 603.
- the communication interface 603 can be a transceiver or a transceiver circuit.
- the processor 601 can be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (central processor unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), programmable logic device (PLD) Or other integrated chips.
- FPGA field-programmable gate array
- ASIC application specific integrated circuit
- SoC system on chip
- CPU central processor unit
- NP network processor
- DSP digital signal processor
- MCU microcontroller
- PLD programmable logic device
- the device provided by the embodiment of the present application can be used to perform the foregoing power control method. Therefore, the technical effects that can be obtained by reference to the foregoing method embodiments are not described herein.
- the embodiment of the present application further provides a storage medium, which may include a memory 601.
- the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- a software program it may be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
- the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
- the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
- a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
- an optical medium eg, a DVD
- a semiconductor medium such as a solid state disk (SSD)
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种功率控制方法及设备,涉及通信技术领域。能够使得操作于全双工模式下的网络设备在发送数据的同时正确接收数据。该方法可以包括:用户设备接收网络设备发送的上行传输功率的功控参数信息,所述功控参数信息包括第一功控参数信息和第二功控参数信息;第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数;用户设备根据功控参数信息以及上行传输使用的资源类型确定上行传输功率;所述资源类型包括全双工资源和非全双工资源。
Description
本申请要求于2018年03月09日提交中国专利局、申请号为201810196479.9、申请名称为“一种功率控制方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种功率控制方法及设备。
移动通信系统中,上下行数据传输方式可分为时分双工(Time Division Duplex,TDD),频分双工(Frequency division duplex,FDD),全双工(Full duplex,FD)等模式。TDD模式即接收和发送数据在不同的时间上发生,比如TDD模式下,一部分时隙用作下行传输,一部分时隙用作上行传输。FDD模式即接收和发送数据在不同的频带上,比如FDD模式下,上行频带上传输上行数据,下行频带上传输下行数据。全双工模式为设备可以在同一时间使用相同的频带进行上行和下行传输。全双工组网场景下,一个典型的场景是网络设备具有全双工能力,可以同时同频收发数据。终端设备不具有全双工能力,使用TDD的方式与网络设备进行通信。
现有技术中长期演进(Long Term Evolution,LTE)系统和下一代无线电(Next radio,NR)系统都有功率控制的方案,但是现有的功率控制方案没有基于全双工模式考虑。在NR系统中,全双工组网方式被广泛应用,操作于全双工模式下的网络设备在上行方向接收一组终端设备的数据的同时,在下行方向给另一组终端设备发送数据,面临着自干扰取消问题。区别于普通的上行传输,全双工模式下的网络设备接收数据时要求更大的接收功率以应对残留的自干扰,这对终端设备上行传输的发射功率控制产生了新的要求。因此,全双工模式下特定的资源上的功率需要被正确设置,不精确的功率控制或许导致操作于全双工模式的网络设备的错误接收,不能有效应对自干扰。
发明内容
本申请实施例提供一种功率控制方法及设备,能够实现全双工系统中上行传输功率控制,使得操作于全双工模式下的网络设备在发送数据的同时能正确接收数据。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供了一种功率控制方法及用户设备。
在一种可能的设计中,该方法可以包括:用户设备UE接收网络设备发送的上行传输功率的功控参数信息,功控参数信息中包括第一功控参数信息和第二功控参数信息;其中,第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数;UE根据所述功控参数信息以及上行传输使用的资源类型确定上行传输功率。这样,区分不同的资源类型配置不同的功控参数,为全双工资源配置了单独的功控参数,可以使得UE使用不同的资源类型时以不同的上行传输功率发送数据,使操作于全双工模式下的网络设备克服自干扰,在发送数据的同 时正确接收数据。
在一种可能的设计中,第二功控参数信息包含至少一个第二功控参数,一个第二功控参数分别与上行传输的信道类型、上行传输的业务类型、上行传输的传输内容、上行传输对应的波束、上行传输对应的载波和上行传输对应的带宽部分BWP中至少一项相关。采用这种方法,可以区分不同粒度配置功控参数,可以使上行传输功率控制更精确。
在一种可能的设计中,信道类型包括物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH和探测参考信号SRS中至少一个;业务类型包括增强移动宽带eMBB、超低延迟通信URLLC、增强机器通信eMTC中至少一个。本申请对信道类型和业务类型不进行限定,该可能的设计中所列列举的方式仅为示例,具体实现时不限于此。
在一种可能的设计中,第二功控参数信息是第三功控参数信息与第四功控参数信息中至少一个;其中,第三功控参数信息是根据所述网络设备的第一干扰取消能力确定的,第四功控参数信息是根据所述网络设备的第二干扰取消能力确定的。采用这种方法,针对一个UE可以配置多套功控参数,可以根据网络设备自干扰取消能力或其他限制条件,在不同的情况下使用不同的功控参数调整上行传输功率,满足全双工组网场景下的上行功率控制要求。
在一种可能的设计中,全双工资源包括时域资源、频域资源和空间域资源中至少一项。时域资源包括超帧、帧、时隙、子帧、微子帧、微时隙、正交频分复用OFDM符号、迷你时隙或迷你子帧,或包括超帧、帧、时隙、子帧、微子帧、微时隙、正交频分复用OFDM符号、迷你时隙和迷你子帧中任意一种组合;频域资源包括控制信道单元CCE、控制资源集CORSET、物理资源块PRB、部分频带BWP或载波;空间域资源包括波束、波束对、波束组或天线端口。本申请对全双工资源的划分方式不进行限定,该可能的设计中所列列举的方式仅为示例,具体实现时不限于此。
在一种可能的设计中,UE通过无线资源控制RRC信令、媒介接入控制MAC层信令或物理层信令中至少一种接收网络设备发送的上行传输功率的功控参数信息。
在一种可能的设计中,第一功控参数信息包括第五功控参数信息和第六功控参数信息;其中,第五功控参数信息用于计算在上行的非全双工资源上传输的上行传输功率,第六功控参数信息用于计算在灵活双工资源上传输的上行传输功率。采用这种方法,对于非全双工资源,进行进一步的区分,分为上行的非全双工资源和灵活双工资源。可以针对上行的非全双工资源和灵活双工资源分别配置不同的功控参数。
在一种可能的设计中,UE接收网络设备发送的第一指示信息,第一指示信息包括闭环功率控制过程指示信息,其中,闭环功率控制过程指示信息用于指示闭环功率控制过程包括用于全双工的闭环功率控制过程。采用这种方法,当UE确定配置了多套闭环功率控制过程后,可以在累积模式的闭环功率控制过程中,区分不同的资源类型分别累积对应的闭环功率控制参数,使得上行功率控制过程更准确。
在一种可能的设计中,第一指示信息还包括功率控制调整状态指示信息,功率控制调整状态指示信息用于指示闭环功率控制过程指示信息的取值范围。
在一种可能的设计中,如果UE上行传输使用的资源类型改变,则UE根据功控参数信息重新确定功控参数和/或根据第一指示信息重新确定闭环功率控制过程的类型。采用这种方法,使得上行功率控制过程更准确。
在一种可能的设计中,如果闭环功率控制过程为累积模式,则闭环功率控制参数基于与当前资源单位的资源类型相同的前一资源单位对应的闭环功率控制参数的值进行累积,其中,闭环功率控制参数用于确定所述上行传输功率。采用这种方法,使得闭环功率控制过程更准确。
相应的,本申请还提供了一种功率控制装置,该装置可以实现第一方面所述的功率控制方法。例如,该装置可以是用户设备,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:接收模块和确定模块。其中,接收模块用于接收网络设备发送的上行传输功率的功控参数信息,其中功控参数信息包括用于计算在非全双工资源上传输的上行传输功率的参数信息和用于计算在全双工资源上传输的上行传输功率的参数信息。确定模块用于根据功控参数信息以及上行传输使用的资源类型确定上行传输功率。
第二方面,本申请提供了另一种功率控制方法和装置。
在一种可能的设计中,该方法可以包括:网络设备向用户设备UE发送上行传输功率的功控参数信息,功控参数信息包括第一功控参数信息和第二功控参数信息;其中,第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数。这样,网络设备区分不同的资源类型配置不同的功控参数,为全双工资源配置了单独的功控参数,可以使得操作于全双工模式下的网络设备克服自干扰,在发送数据的同时正确接收数据。
在一种可能的设计中,第二功控参数信息包含至少一个第二功控参数,一个第二功控参数分别与上行传输的信道类型、上行传输的业务类型、上行传输的传输内容、上行传输对应的波束、上行传输对应的载波和上行传输对应的带宽部分BWP中至少一项相关。采用这种方法,可以区分不同粒度配置功控参数,可以使上行传输功率控制更精确。
在一种可能的设计中,信道类型包括物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH和探测参考信号SRS中至少一个;业务类型包括增强移动宽带eMBB、超低延迟通信URLLC、增强机器通信eMTC中至少一个。本申请对信道类型和业务类型不进行限定,该可能的设计中所列列举的方式仅为示例,具体实现时不限于此。
在一种可能的设计中,第二功控参数信息是第三功控参数信息与第四功控参数信息中至少一个;其中,第三功控参数信息是根据所述网络设备的第一干扰取消能力确定的,第四功控参数信息是根据所述网络设备的第二干扰取消能力确定的。采用这种方法,针对一个UE可以配置多套功控参数,可以根据网络设备自干扰取消能力或其他限制条件,在不同的情况下使用不同的功控参数调整上行传输功率,满足全双工组网场景下的上行功率控制要求。
在一种可能的设计中,全双工资源包括时域资源、频域资源和空间域资源中至少一项。时域资源包括超帧、帧、时隙、子帧、微子帧、微时隙、正交频分复用OFDM符号、迷你 时隙或迷你子帧,或包括超帧、帧、时隙、子帧、微子帧、微时隙、正交频分复用OFDM符号、迷你时隙和迷你子帧中任意一种组合;频域资源包括控制信道单元CCE、控制资源集CORSET、物理资源块PRB、部分频带BWP或载波;空间域资源包括波束、波束对、波束组或天线端口。本申请对全双工资源的划分方式不进行限定,该可能的设计中所列列举的方式仅为示例,具体实现时不限于此。
在一种可能的设计中,网络设备通过无线资源控制RRC信令、媒介接入控制MAC层信令或物理层信令中至少一种向用户设备UE发送上行传输功率的功控参数信息。
在一种可能的设计中,第一功控参数信息包括第五功控参数信息和第六功控参数信息;其中,第五功控参数信息用于计算在上行的非全双工资源上传输的上行传输功率,第六功控参数信息用于计算在灵活双工资源上传输的上行传输功率。采用这种方法,对于非全双工资源,进行进一步的区分,分为上行的非全双工资源和灵活双工资源。可以针对上行的非全双工资源和灵活双工资源分别配置不同的功控参数。
在一种可能的设计中,网络设备向UE发送第一指示信息,第一指示信息包括闭环功率控制过程指示信息,其中,闭环功率控制过程指示信息用于指示闭环功率控制过程包括用于全双工的闭环功率控制过程。采用这种方法,当UE确定配置了多套闭环功率控制过程后,可以在累积模式的闭环功率控制过程中,区分不同的资源类型分别累积对应的闭环功率控制参数,使得上行功率控制过程更准确。
在一种可能的设计中,第一指示信息还包括功率控制调整状态指示信息,功率控制调整状态指示信息用于指示闭环功率控制过程指示信息的取值范围。
相应的,本申请还提供了一种功率控制装置,该装置可以实现第二方面所述的功率控制方法。例如,该装置可以是网络设备,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
在一种可能的设计中,该装置可以包括:发送模块。其中,发送模块,用于向用户设备UE发送上行传输功率的功控参数信息,其中功控参数信息包括用于计算在非全双工资源上传输的上行传输功率的参数信息和用于计算在全双工资源上传输的上行传输功率的参数信息。
本申请还提供了一种计算机存储介质,其上储存有计算机程序指令,当该程序指令在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
上述提供的任一种计算机存储介质或计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文提供的对应的方法中对应方案的有益效果,此处不再赘述。
图1为本申请实施例提供的技术方案所适用的一种系统架构的示意图;
图2为本申请实施例提供的一种功率控制方法的交互示意图;
图3为本申请实施例提供的一种功率控制方法的交互示意图二;
图4为本申请实施例提供的一种网络设备的结构示意图;
图5为本申请实施例提供的一种用户设备的结构示意图;
图6为本申请实施例提供的一种功率控制装置的结构示意图。
下面结合附图对本申请实施例提供的功率控制方法及设备进行详细描述。
无线通信系统中数据传输方向分为上行传输方向和下行传输方向,终端设备向网络设备发送数据的方向为上行传输方向,上行传输方向的功率控制为上行功率控制。上行功率控制是非常重要的,通过上行功率控制,可以使得终端设备既保证上行发送数据的质量,又尽可能减少对系统中其他终端设备的干扰,延长终端设备电池的使用时间。
LTE系统和NR系统中上行功率控制主要包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)信道、物理上行控制信道(Physical Uplink Control Channel,PUCCH)信道、物理随机接入信道(Packet Random Access Channel,PRACH)信道、探测参考信号(Sounding Reference Signal,SRS)信道等上行传输信道的功率控制及配置。
以PUSCH信道为例,网络设备可通过无线资源控制(radio resource control,RRC)信令和下行控制信息(downlink control information,DCI)配置PUSCH功控参数。
第三代合作伙伴计划(the 3rd Generation Partnership Project,3GPP)在TS 38.213协议中定义了NR系统中各种信道类型功率控制的公式。例如,TS38.213第7.1.1节中定义了PUSCH信道的功率控制公式;在终端侧,用户设备(User Equipment,UE)在小区c,载波f,子帧i中进行PUSCH信息传输的上行传输功率为:
其中,j为配置{P
O_PUSCH,f,c,α
f,c}参数集的索引;n为配置的功率控制调整状态索引,对应不同的闭环功率控制进程,n可以为1或2;q
d为参考信号(Reference signal,RS)资源索引;μ是指示子载波间隔的参数;P
CMAX,f,c(i)为UE的最大可用发射功率;
是小区c,载波f的子帧i内PUSCH对应的时频资源所占的带宽,该时频资源可以以资源块(resource block,RB)数目为单位。
P
O_PUSCH,f,c(j)为半静态配置的功控参数,由小区级参数P
O_NOMINAL_PUSCH,f,c(j)和UE级参数P
O_UE_PUSCH,f,c(j)组成。其中,P
O_NOMINAL_PUSCH,f,c(j)为小区内所有UE的一个公共值,表示一个小区级别的半静态发射功率基准;P
O_UE_PUSCH,f,c(j)为每个UE特有的值,表示每个UE在小区基准水平上的功率偏移。
α
f,c(j)为半静态配置参数,表示路损补偿程度;PL
f,c(q
d)为UE估计的路损值;Δ
TF,f,c(i)为针对不同调制与编码策略(Modulation and Coding Scheme,MCS)索引的增量值。
f
f,c(i,n)为UE特定的闭环功率控制参数。网络设备通过发射功率控制(Transmit Power Control,TPC)命令可以在预定义的范围中调节f
f,c(i,n),从而调节UE的上行传输功率。根据配置,闭环功率控制模式可以分为绝对模式和累积模式两种。在绝对模 式下,f
f,c(i,n)=δ
PUSCH,f,c(i-K
PUSCH),即f
f,c(i,n)为在第i-K
PUSCH子帧上接收到的TPC命令中携带的TPC参数δ
PUSCH,f,c的值;在累积模式下,则f
f,c(i,n)=f
f,c(i-1,n)+δ
PUSCH,f,c(i-K
PUSCH),即f
f,c(i,n)为在第i-1子帧的闭环功率控制参数累积值与第i-K
PUSCH子帧上接收到TPC命令中携带的TPC参数δ
PUSCH,f,c的值之和。累积模式下,一个TPC命令的调节范围较小,但调节后的发射功率可以被累积,最终调节的范围可能较大;采用累积模式的TPC命令来改变发射功率是一个慢速的过程。采用绝对模式的TPC命令可以一次在更大范围中调节发射功率,但是每次调节的发射功率不能被累积;根据现有技术中的配置,绝对模式下调节发射功率的最大范围是4dB。而且对于一些信道类型,比如PUCCH,闭环功率控制过程没有绝对模式。
NR系统中广泛存在全双工组网场景,区别于现有技术中TDD、FDD等传输模式,操作于全双工模式下的网络设备在上行方向接收一组终端设备的数据的同时,在下行方向给另一组终端设备发送数据,面临着自干扰取消问题。这使得现有技术中上行功率控制方法不能适用于NR系统中的全双工组网场景,其具体可以体现但不限于以下几个方面:
第一,半静态配置的功控参数P
o为普通上行传输模式下设计的功控参数,UE的上行传输功率满足现有技术中TDD、FDD等传输模式的要求。在存在全双工传输模式的情况下,UE按照现有技术中的上行传输功率传输数据,有可能由于网络设备的自干扰取消不足导致网络设备无法正确接收上行数据。
第二,现有技术中,闭环功率控制过程中的累积模式下,闭环功率控制参数f
f,c(i,n),即闭环功率控制参数当前值,为在第i-1子帧的闭环功率控制参数累积值与第i-K
PUSCH子帧上接收到TPC命令中携带的TPC参数δ
PUSCH,f,c的值之和。也就是说,子帧i中进行PUSCH信息传输的上行传输功率是相对于子帧i-1中进行PUSCH信息传输的上行传输功率来进行调整的。当引入全双工模式后,第i子帧与第i-1子帧的资源类型可能是不同的。比如,第i子帧是全双工资源,用于全双工复用传输,第i-1子帧是非全双工资源,用于上行传输;上行数据在全双工资源和非全双工资源上传输的上行传输功率是需要区别设置的;那么基于子帧i-1的上行传输功率来调整,获得的子帧i的上行传输功率是不准确的,有可能导致网络设备无法正确接收子帧i的上行数据。
需要说明的是,以上是以PUSCH信道为例进行说明,实际上,其他类型的上行传输信道,比如PUCCH信道、PRACH信道、SRS信道等上行功率控制过程存在同样的问题,此处不再赘述;但是并不是说明本申请所述方案仅限制于PUSCH信道,本申请所述方案适用于全双工组网场景下所有类型的上行传输信道的上行功率控制。
基于以上问题,本申请提供了一种功率控制方法及设备,其基本原理为对于在全双工资源和非全双工资源上的上行传输,分配不同的功控参数,设计不同的闭环功率控制过程,实现全双工组网场景下的上行传输功率控制。
本申请提供的技术方案可以应用于包括全双工组网场景的各种通信系统,例如,现有通信系统基础上采用全双工组网,5G NR系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(machine to machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,URLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景,这些场景可以包括但不限于:UE与UE之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与UE之间的通信场景等。 本申请实施例提供的技术方案也可以应用于5G通信系统中的UE与UE之间的通信,或网络设备与网络设备之间的通信等场景中。
本申请实施例提供的技术方案可以应用于如图1所示的系统架构中,该系统架构中可以包括网络设备100以及与网络设备100连接的UE201-205。网络设备100用于为UE201-205提供无线接入服务。具体来说,网络设备100对应一个服务覆盖区域(如图1中椭圆区域所示),进入该区域的UE可通过无线信号与网络设备100通信,以此来接受网络设备100提供的无线接入服务。
网络设备100可以是能和UE201-205通信的设备。网络设备100可以是中继站或接入点等。网络设备100可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的网络设备收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是未来5G网络中的网络设备,比如传输点(transmission point,TRP),或未来演进的PLMN网络中的网络设备;还可以是可穿戴设备或车载设备等。
UE201-205可以是接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或未来演进的PLMN网络中的终端等。
应注意,图1所示的系统架构仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,系统架构中还可以包括其他设备,同时也可根据具体需要来配置网络设备和UE的数量。
如图1所示的系统架构可以是全双工组网场景,网络设备100具有全双工能力,可以同时同频收发数据;UE201-205不具有全双工能力,使用TDD、FDD或其他非双工方式与网络设备100进行通信。比如,UE使用TDD方式与网络设备100进行通信,网络设备100可以对覆盖范围内使用同频资源的UE进行分组,同一个组里的UE使用相同的传输方向,减少UE间干扰,不同组里的UE可以进行不同方向的传输;比如,一个组里的UE发送数据,进行上行传输,一个组里的UE接收数据,进行下行传输,形成网络设备100同时发送和接收数据的全双工模式。网络设备100可以根据UE相互间的干扰信息对UE进行分组,将相互间干扰不严重的UE作为匹配对分在不同的组里,将相互间干扰较大的UE分配到一个组里;也可以根据业务方向对UE进行分组,将下行业务较重的UE分到一个组里,将上行业务较重的UE分到另一个组里。当然,网络设备100也可以以其他方式对UE进行分组,本申请对此不进行限定。示例性的,网络设备100将UE201-205分为两组,UE201-203为第一组,UE204-205为第二组。在同一时间单位内,网络设备100向UE201发送数据,并接收UE204的上行数据。
下面对本申请中涉及的部分术语进行解释说明,以方便读者理解:
以网络设备100为NR系统中的基站为例。
1、资源单位
NR系统中,无线资源可以包括时域资源、频域资源和空间域资源。时域资源可以包括超帧、帧、时隙、子帧、微子帧、微时隙、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、迷你时隙或迷你子帧中的至少一项或任意多项的组合;频域资源可以包括控制信道单元(control channel element,CCE),控制资源集(control resource set,CORSET),物理资源块(Physical resource block,PRB),部分频带(Band width partial,BWP)或载波中的至少一项;空间域资源可以包括波束、波束对、波束组或者天线端口中的至少一项。
数据传输使用的资源包括了时域资源、频域资源和空间域资源中至少一项。比如,时域上,可以将一个子帧、一个时隙、一个符号或一个迷你时隙作为资源单位;频域上,可以将一个CCE、一个BWP或一个载波作为资源单位;空间域上,可以将一个波束或一个天线端口作为资源单位。比如,可以将一个波束、一个载波上一个时隙作为一个资源单位;也可以将一个波束、一个载波上一个符号作为一个资源单位;也可以将一个天线端口、一个BWP上一个符号作为一个资源单位。需要说明的是,在划分资源单位时,需要考虑时域资源、频域资源和空间域资源中至少一项。比如,当空间域上只有一个波束、频域上只有一个载波时,可以只考虑时域,将一个子帧、一个时隙、一个符号或一个迷你时隙作为资源单位;当空间域上只有一个波束、频域上有多个载波时,可以将使用同一个载波资源的一个子帧、一个时隙、一个符号或一个迷你时隙作为一个资源单位;当空间域上有多个波束、频域上有多个载波时,可以将使用同一个波束、同一个载波资源的一个子帧、一个时隙、一个符号或一个迷你时隙作为一个资源单位。以上仅作为示例对资源单位划分方式进行说明,在实际应用中,可以根据无线资源配置结合时域资源、频域资源和空间域资源划分资源单位粒度,本申请对资源单位划分的具体方式不做限定。另外,对于资源单位的划分可以结合多种方式;比如,可以将同一个波束、同一个载波资源的一个时隙作为一个资源单位,将同一个波束、同一个载波资源的另一个时隙的一个符号作为另一个资源单位;本申请实施例对此不进行限定。
2、资源类型
对于无线资源,NR系统中支持半静态和动态的格式配置。下面以一个时隙为一个资源单位为例进行说明。
半静态的格式配置是指,基站通过半静态的信令指示(比如通过RRC信令)通知UE各个时隙的传输格式。传输格式可以包括UL、DL、X三种状态;UL表示上行,DL表示下行,X表示灵活状态,UE在灵活状态的时隙上既不接收也不发送。半静态的格式配置是小区级的,也就是小区中所有UE接收相同的时隙配置。
动态的格式配置是指,基站通过DCI信令通知UE某一个或几个时隙的传输格式。DCI信令是承载在组下行控制信道(Group common–PDCCH,GC-PDCCH)上的,UE根据基站配置的监听周期检测GC-PDCCH信道,接收DCI信令。通过DCI信令通知的传输格式可以覆盖半静态的信令指示中配置为灵活状态的时隙的传输格式。
以在图1所示的系统架构中,基站对一个特定波束、一个特定载波上,各个时隙的传输格式进行配置为例进行说明。
基站先通过半静态的信令指示分别配置UE201和UE204的10个时隙的传输格式,时隙0为DL,时隙1-9为X。UE201和UE204的10个时隙的传输格式如表1所示。进一步的,基站分别通过DCI信令指示UE201和UE204的10个时隙的传输格式,比如通过DCI信令指示UE201的10个时隙的传输格式为DDDDDUUUUD,通过DCI信令指示UE204的10个时隙的传输格式为DDUUUUDDDD。UE201和UE204的10个时隙的传输格式如表2所示。
表1
时隙 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
UE201 | DL | X | X | X | X | X | X | X | X | X |
UE204 | DL | X | X | X | X | X | X | X | X | X |
表2
时隙 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
UE201 | DL | DL | DL | DL | DL | UL | UL | UL | UL | DL |
UE204 | DL | DL | UL | UL | UL | UL | DL | DL | DL | DL |
如表2所示,在时隙2、3、4、6、7、8上,基站侧同时进行上行和下行传输,即为全双工模式。全双工模式下,UE在不同时隙上的传输可以分成不同的类型,比如上面例子中两个UE的时隙可以分成4种类型。第一类为半静态配置的时隙,小区中所有UE在这一时隙(特定波束和载波上)的传输格式相同,比如,时隙0。第二类为动态配置下的下行同向传输时隙,比如,时隙1和时隙9,UE201和UE204在这一时隙都是下行传输。第三类为动态配置下的上行同向传输时隙,比如,时隙5,UE201和UE204在这一时隙都是上行传输。第四类为动态配置下的全双工时隙,比如,时隙2、3、4、6、7、8,UE201和UE204在这一时隙传输方向不同。第三类时隙和第四类时隙是上行传输使用的资源,第三类时隙是上行的非全双工资源,第四类资源是全双工资源。
进一步的,在移动通信系统中,在不同网络设备处,不同业务类型上下行流量的需求差别很大,有的业务需要更多的上行传输资源,有的业务需要分配更多的下行传输资源。灵活双工技术能够根据上下行业务的分布自适应地分配上下行传输资源;比如,灵活频带技术将FDD系统中部分上行频带配置为“灵活频带”。在实际应用中,根据网络中上下行业务的分布,将“灵活频带”分配为上行传输或下行传输,使得上下行频谱资源和上下行业务需求相匹配,从而提高频谱利用率。这种分配方式会导致相邻的网络设备在同一时域资源/频域资源上使用不同的传输方向,因而使得某一网络设备下UE的上行传输面临着周围网络设备的下行传输产生的干扰,本申请中的灵活双工资源指灵活双工技术中的上行传输资源,该上行传输资源面临着周围网络设备的下行传输的干扰。根据周围网络设备被配置为下行传输的资源的数目不同,干扰等级也会不同,灵活双工资源可以进一步划分为不同干扰级别的灵活双工资源。
综上,上行的非双工资源和灵活双工资源都是非全双工资源,上行传输使用的资源类型包括全双工资源和非全双工资源。需要说明的是,在实际应用中,根据传输模式的具体实现,上行传输资源还可以按照其他标准分类,非全双工资源还可以包括其他类型,本申请实施例中的分类方式仅是示例性的,并不是对分类方式的限定。
3、功控参数
功控参数是UE计算上行传输功率使用的相关参数,网络设备可以配置功控参数从而 配置UE的上行传输功率。
4、本文中的术语“多个”是指两个或两个以上。本文中的术语“第一”和“第二”是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一功控参数信息和第二功控参数信息仅仅是为了区分不同的功控参数信息,并不对其先后顺序进行限定。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供一种功率控制方法,应用于图1所示的通信系统。如图2所示,该方法可以包括S201-S204:
S201、网络设备向UE发送上行传输功率的功控参数信息。
可选的,网络设备可以通过半静态的信令向UE配置功控参数信息,例如通过RRC信令、MAC信令或物理层信令等向UE发送功控参数信息。
其中,功控参数信息包括第一功控参数信息和第二功控参数信息;第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数。
下文中以配置在PUSCH上传输数据的上行传输功率的功控参数为例进行说明。
需要说明的是,下文中描述的PUSCH上行传输功率可以认为是UE在资源单位i对小区c进行PUSCH数据传输的上行传输功率,其中,资源单位i可以是任一个资源单位,小区c可以是网络设备,例如基站,所服务的任一个小区。为了便于描述,下文中计算的PUSCH上行传输功率的公式中均未涉及c。
如前所述,UE在资源单位i进行PUSCH数据传输的上行传输功率为:
其中,j为配置{P
O,α}参数集的索引;n为配置的功率控制调整状态索引,对应不同的闭环功率控制进程,n可以为1或2;q
d为参考信号(Reference signal,RS)资源索引;P
CMAX(i)为UE的最大可用发射功率;M
RB(i)是资源单位i内PUSCH对应的时频资源所占的带宽,该时频资源可以以资源块(resource block,RB)数目为单位。
P
O(j)为半静态配置的功控参数,表示UE的目标功率;由小区级参数P
O_NOMINAL_PUSCH(j)和UE级参数P
O_UE_PUSCH(j)组成。α(j)为半静态配置参数,表示路损补偿程度。
PL
f,c(q
d)为UE估计的路损值;Δ
TF(i)为针对不同调制与编码策略(Modulation and Coding Scheme,MCS)索引的增量值。
f(i,n)为UE特定的闭环功率控制参数。
网络设备可以通过配置功控参数P
O和闭环功率控制参数f,来配置上行传输功率P。当然,网络设备也可以通过配置其他参数来配置上行传输功率P。为了方便描述,本申请中仅以P
O和f为例进行说明。
在一种实现方式中,上行传输功率为P,功控参数为P
O,网络设备向UE发送P
O的配置信息,以使得UE根据P
O计算上行传输功率P。
在本申请的一个示例中,网络设备通过RRC IE配置功控参数信息时,配置信息可以如表3所示:
表3
P O_1 | 用于非全双工资源 |
P O_2 | 用于全双工资源 |
P
O_1为第一功控参数,P
O_2为第二功控参数。其中P
O_1可以为UE特定的第一功控参数,P
O_2可以为UE特定的第二功控参数。或者,P
O_1可以为小区特定的第一功控参数,P
O_2可以为小区特定的第二功控参数。
可选的,对于第二功控参数,可以根据UE上行传输的特点进一步细分。可选的,可以根据上行传输的信道类型、上行传输的业务类型、上行传输的传输内容、上行传输对应的波束、上行传输对应的载波和上行传输对应的BWP中至少一项配置第二功控参数。
在一种实现方式中,可以根据上行传输的信道类型,为每一种信道类型配置对应的第二功控参数。
在本申请的一个示例中,网络设备通过RRC IE配置功控参数信息时,配置信息可以如表4所示:
表4
P O_1 | 用于非全双工资源 |
P O_2_PUSCH | 用于PUSCH信道全双工资源 |
P O_2_PUCCH | 用于PUCCH信道全双工资源 |
P O_2_PRACH | 用于PRACH信道全双工资源 |
P O_2_SRS | 用于SRS全双工资源 |
区分不同的信道类型,配置不同的第二功控参数。第二功控参数信息中包括P
O_2_PUSCH、P
O_2_PUCCH、P
O_2_PRACH和P
O_2_SRS四个第二功控参数。
在一种实现方式中,可以根据上行传输的业务类型,为每一种业务类型配置对应的第二功控参数。
在本申请的一个示例中,网络设备通过RRC IE配置功控参数信息时,配置信息可以如表5所示:
表5
P O_1 | 用于非全双工资源 |
P O_2_eMBB | 用于eMBB业务全双工资源 |
P O_2_URLLC | 用于URLLC业务全双工资源 |
P O_2_eMTC | 用于eMTC业务全双工资源 |
区分不同的业务类型,配置不同的第二功控参数。第二功控参数信息中包括P
O_2_eMBB、P
O_2_URLLC和P
O_2_eMTC三个第二功控参数。
在一种实现方式中,可以根据上行传输的信道类型和业务类型,为每一种信道类型和业务类型配置对应的第二功控参数。
在本申请的一个示例中,网络设备通过RRC IE配置功控参数信息时,配置信息可以如表6所示:
表6
P O_1 | 用于非全双工资源 |
P O_2_PUSCH_eMBB | 用于PUSCH信道eMBB业务全双工资源 |
P O_2_PUSCH_URLLC | 用于PUSCH信道URLLC业务全双工资源 |
P O_2_PUSCH_eMTC | 用于PUSCH信道eMTC业务全双工资源 |
P O_2_PUCCH_eMBB | 用于PUCCH信道eMBB业务全双工资源 |
P O_2_PUCCH_URLLC | 用于PUCCH信道URLLC业务全双工资源 |
P O_2_PUCCH_eMTC | 用于PUCCH信道eMTC业务全双工资源 |
P O_2_PRACH_eMBB | 用于PRACH信道eMBB业务全双工资源 |
P O_2_PRACH_URLLC | 用于PRACH信道URLLC业务全双工资源 |
P O_2_PRACH_eMTC | 用于PRACH信道eMTC业务全双工资源 |
P O_2_SRS_eMBB | 用于SRS信道eMBB业务全双工资源 |
P O_2_SRS_URLLC | 用于SRS信道URLLC业务全双工资源 |
P O_2_SRS_eMTC | 用于SRS信道eMTC业务全双工资源 |
区分不同的信道类型和业务类型,配置不同的第二功控参数。第二功控参数信息中包括P
O_2_PUSCH_eMBB、P
O_2_PUSCH_URLLC、P
O_2_PUSCH_eMTC、P
O_2_PUCCH_eMBB、P
O_2_PUCCH_URLLC、P
O_2_PUCCH_eMTC、P
O_2_PRACH_eMBB、P
O_2_PRACH_URLLC、P
O_2_PRACH_eMTC、P
O_2_SRS_eMBB、P
O_2_SRS_URLLC、和P
O_2_SRS_eMTC12个第二功控参数。
需要说明的是,上述配置第二功控参数的方式仅用于给出一些可能的示例,在每种配置方式中,还可以包括别的第二功控参数,比如区分不同信道的方式中,还可以针对其他的信道类型配置第二功控参数;在每种配置方式中,也可以以其他组合方式划分第二功控参数,比如,对于PUSCH信道区分不同的业务类型配置不同的第二功控参数,对于PUCCH信道不区分业务类型,只配置一个第二功控参数;本申请实施例对第二功控参数的具体配置方式不进行限定。在具体实现中,可以根据上行传输的信道类型、上行传输的业务类型、上行传输的传输内容、上行传输对应的波束、上行传输对应的载波和上行传输对应的BWP中至少一项配置第二功控参数,本申请实施例对此不进行限定。
可选的,在考虑载波空间等因素时,还可以针对不同的基带参数numerology配置不同的第二功控参数。还可以分层次的,针对不同的小区,不同的UE分组设置不同的第二功控参数信息。本申请实施例对此不进行限定。
可选的,网络设备可以根据网络设备的自干扰取消能力来确定出多组用于全双工资源的功控参数信息。比如,网络设备根据网络设备的最大干扰取消能力确定出第三功控参数信息,根据网络设备的最小干扰取消能力确定出第四功控参数信息。其中,最大干扰取消能力可以是基于较好的自干扰取消能力而确定的,最小干扰取消能力可以是基于较差的自干扰取消能力而确定的。示例性的,网络设备可以联合路径损耗大小、UE的平均接收功率值和接收信号强度值中至少一项确定网络设备的干扰取消能力。
可选的,网络设备从第三功控参数信息和第四功控参数信息中选择一个作为第二功控 参数信息发送给UE。
可选的,网络设备也可以将第三功控参数信息和第四功控参数信息作为第二功控参数信息发送给UE,UE从第二功控参数信息中选择使用第三功控参数信息或第四功控参数信息计算上行传输功率。其中,UE从第二功控参数信息中选择使用第三功控参数信息或第四功控参数信息,可以是基于网络设备进一步的指示信息来指示UE使用第三功控参数信息或第四功控参数信息,或者基于UE自身的自主选择。UE自主选择可以是基于自身功率的考虑,例如,当功率受限时,选择使用第三功控参数信息;当功率较充分时,选择使用第四功控参数信息。
在本申请的一个示例中,网络设备通过RRC IE配置功控参数信息时,配置信息可以如表7所示:
表7
其中,第三功控参数信息包括P
O_2_eMBB、P
O_2_URLLC和P
O_2_eMTC三个第三功控参数,第四功控参数信息包括P
O_2_eMBB′、P
O_2_URLLC′和P
O_2_eMTC′三个第四功控参数。
在一种实现方式中,网络设备可以为上行的非全双工资源和灵活双工资源分别配置对应的功控参数。用于计算在上行的非全双工资源上传输的上行传输功率的功控参数是第五功控参数信息,用于计算在灵活双工资源上传输的上行传输功率的功控参数是第六功控参数信息。其中,上行的非全双工资源指的是通常的都是上行传输的非全双工资源,即不存在灵活双工,周围的网络设备在同一时频资源上都一致是上行传输。
在本申请的一个示例中,网络设备通过RRC IE配置功控参数信息时,配置信息可以如表8所示:
表8
P O_1_1 | 用于上行的非全双工资源 |
P O_1_2 | 用于灵活双工资源 |
P O_2_PUSCH | 用于PUSCH信道全双工资源 |
P O_2_PUCCH | 用于PUCCH信道全双工资源 |
P O_2_PRACH | 用于PRACH信道全双工资源 |
P O_2_SRS | 用于SRS全双工资源 |
S202、UE接收网络设备发送的上行传输功率的功控参数信息。
可选的,UE接收到上行传输功率的功控参数信息时,可以保存该功控参数信息。
S203、UE确定上行传输使用的资源类型。
UE确定上行传输使用的资源单位。示例性的,根据网络设备的调度,UE在小区c,载波f,时隙i上进行上行传输。
UE可以根据网络设备的指示信息判断上行传输使用的资源单位的资源类型。在一种实现方式中,网络设备向UE发送时隙格式指示(Slot format indication,SFI)信息,其中,包括了小区c,载波f,时隙i上,所述UE以及与所述UE配对的UE的传输格式。比如,在小区c,载波f,时隙i上,所述UE的传输格式是上行,与所述UE配对的UE的传输格式是下行;UE根据SFI信息可以确定出小区c,载波f,时隙i的资源类型是全双工资源。比如,在小区c,载波f,时隙i上,所述UE的传输格式是上行;UE根据SFI信息可以确定出小区c,载波f,时隙i的资源类型是上行的非全双工资源。比如,在小区c,载波f,时隙i上,所述UE的传输格式是上行,周围网络设备的传输格式有下行,UE根据SFI信息可以确定出小区c,载波f,时隙i的资源类型是灵活双工资源。
S204、UE确定上行传输功率,然后利用该上行传输功率发送数据。
UE根据功控参数信息以及上行传输使用的资源类型确定上行传输功率。示例性的,UE确定出上行传输使用的资源类型是全双工资源,则根据功控参数信息中的第二功控参数信息中的第二功控参数计算上行传输功率;进一步的,UE可以根据上行传输的信道类型、上行传输的业务类型、上行传输的传输内容、上行传输对应的波束、上行传输对应的载波和上行传输对应的BWP选择对应的第二功控参数计算上行传输功率。UE确定出上行传输使用的资源类型是一致为上行的非全双工资源(即不是灵活双工资源,不是全双工资源,是通常的上行传输资源),则根据功控参数信息中的第五功控参数信息中的第五功控参数计算上行传输功率。UE确定出上行传输使用的资源类型是灵活双工资源,则根据功控参数信息中的第六功控参数信息中的第六功控参数计算上行传输功率。
示例性的,功控参数信息如表5所示,UE确定上行传输功率时,若确定出上行传输使用的资源类型是非全双工资源,则使用P
O_1计算上行传输功率;若确定出上行传输使用的资源类型是全双工资源,则进一步确定上行传输的业务类型,若确定出上行传输的业务类型是URLLC业务,则使用P
O_2_URLLC计算上行传输功率。
示例性的,功控参数信息如表8所示,UE确定上行传输功率时,若确定出上行传输使用的资源类型是上行的非全双工资源,则使用P
O_1_1计算上行传输功率;若确定出上行传输使用的资源类型是灵活双工资源,则使用P
O_1_2计算上行传输功率;若确定出上行传输使用的资源类型是全双工资源,且是PUSCH信道,则使用P
O_2_PUSCH计算上行传输功率。
UE确定出上行传输功率后,利用该上行传输功率向网络设备发送数据。
进一步的,UE的上行传输功率控制过程分为开环功率控制过程和闭环功率控制过程。开环功率控制过程是根据上行链路的干扰情况估算下行链路,或根据下行链路的干扰情况估算上行链路,单向不闭合。闭环功率控制过程是根据接收到的网络设备的反馈信息对上行传输功率进行控制。如果是闭环功率控制过程,UE计算上行传输功率时,还需要根据网络设备配置的TPC参数确定闭环功率控制参数f。
结合图2,如图3所示,在S204之前,本申请实施例提供的功率控制方法还可以包括S205-S206:
S205、网络设备向UE发送第一指示信息。
可选的,网络设备可以通过半静态的信令(比如通过RRC信令)向UE发送第一指示信息。示例性的,第一指示信息可以包括闭环功率控制过程指示信息。本申请中闭环功率控制过程指示信息也可以称之为闭环功率控制进程指示信息。第一指示信息还可以包括功 率控制调整状态指示信息。
如果第一指示信息中包括闭环功率控制过程指示信息,闭环功率控制过程指示信息取不同的值可以表示不同的闭环功率控制过程。例如,闭环功率控制过程指示信息为0用于指示闭环功率控制过程是用于全双工的闭环功率控制过程,闭环功率控制过程指示信息为1用于指示闭环功率控制过程是用于非全双工的闭环功率控制过程。或者,闭环功率控制过程指示信息为1用于指示闭环功率控制过程是用于全双工的闭环功率控制过程,闭环功率控制过程指示信息为0用于指示闭环功率控制过程是用于非全双工的闭环功率控制过程。本发明中所述闭环功率控制过程也可以替换为闭环功率控制进程。
在一种实现方式中,闭环功率控制过程指示信息为PUSCH-closed-loop-index,通过将PUSCH-closed-loop-index设置为不同的值,可以指示不同的闭环功率控制过程。比如,PUSCH-closed-loop-index取值可以为{0,1},其中,0用于指示闭环功率控制过程是用于非全双工的闭环功率控制过程,1用于指示闭环功率控制过程是用于全双工的闭环功率控制过程;当然,也可以设置为0用于指示闭环功率控制过程是用于全双工的闭环功率控制过程,1用于指示闭环功率控制过程是用于非全双工的闭环功率控制过程;本申请实施例对此不进行限定。比如,PUSCH-closed-loop-index取值可以为{0,1,2},其中,0用于指示闭环功率控制过程是用于全双工的闭环功率控制过程,1用于指示闭环功率控制过程是用于上行的非全双工的闭环功率控制过程,2用于指示闭环功率控制过程是用于灵活双工的闭环功率控制过程;比如,PUSCH-closed-loop-index取值也可以包括大于等于3的值,用于指示闭环功率控制过程是用于其他类型的闭环功率控制过程。
如果第一指示信息中包括功率控制调整状态指示信息,所述功率控制调整状态指示信息可以指示两个状态,其中两个状态分别表示用于全双工的闭环功率控制过程和非全双工的闭环功率控制过程。所述功率控制调整状态指示信息也可以指示三个状态,其中三个状态分别表示用于全双工的闭环功率控制过程,上行的非全双工的闭环功率控制过程,以及灵活双工的闭环功率控制过程。
示例性的,功率控制调整状态指示信息为num-pusch-pcadjustment-states。num-pusch-pcadjustment-states参数可以用于指示PUSCH-closed-loop-index取值范围。比如,num-pusch-pcadjustment-states为2,则表示PUSCH-closed-loop-index取值范围为{0,1};num-pusch-pcadjustment-states为3,则表示PUSCH-closed-loop-index取值范围为{0,1,2}。num-pusch-pcadjustment-states可以是一个大于等于1的整数。
S206、UE接收网络设备发送的第一指示信息。
可选的,UE可以保存第一指示信息。
进一步的,上行传输功率的功率控制过程包括开环功率控制过程和闭环功率控制过程。可选的,如果是闭环功率控制过程,S204中UE确定上行传输功率的过程还包括UE根据网络设备发送的TPC命令调节闭环功率控制参数f(i,n),f(i,n)为闭环功率控制参数在资源单位i上的值。以资源单位i为一个子帧为例,在累积模式下,f(i,n)为闭环功率控制参数累积值与第i-K
PUSCH子帧上接收到TPC命令中携带的TPC参数δ
PUSCH的值之和,即f(i,n)=f(i-s,n)+δ
PUSCH(i-K
PUSCH);其中,f(i-s,n)为闭环功率控制参数在i-s子帧上的累积值。
在UE根据网络设备发送的TPC命令调节闭环功率控制参数f(i,n)时,可以先确定第一指示信息的范围,比如,PUSCH-closed-loop-index取值范围为{0},则UE调节f(i,n) 时,不区分闭环功率控制过程;PUSCH-closed-loop-index取值范围为{0,1},则UE调节f(i,n)时,区分全双工的闭环功率控制过程和非全双工的闭环功率控制过程;PUSCH-closed-loop-index取值范围为{0,1,2},则UE调节f(i,n)时,区分上行的非全双工的闭环功率控制过程、全双工的闭环功率控制过程和灵活双工的闭环功率控制过程。
示例性的,累积模式下,UE如果确定PUSCH-closed-loop-index取值范围为{0},则闭环功率控制参数在资源单位i上的值f(i,n)为闭环功率控制参数在资源单位i-1上的累积值f(i-1,n)与第i-K
PUSCH子帧上接收到δ
PUSCH的值之和,即f(i,n)=f(i-1,n)+δ
PUSCH(i-K
PUSCH),其中,s=1。
UE如果确定PUSCH-closed-loop-index取值范围为{0,1},则闭环功率控制参数在资源单位i上的值f(i,n)为闭环功率控制参数在资源单位i-s上的累积值f(i-s,n)与第i-K
PUSCH子帧上接收到δ
PUSCH的值之和,即f(i,n)=f(i-s,n)+δ
PUSCH(i-K
PUSCH),其中,资源单位i与资源单位i-s的资源类型相同,s的取值根据上行传输的资源类型确定。比如,时隙2、4、7、8是全双工资源,时隙1、5是上行的非全双工资源;那么如果i=7,则i-s=4,s=3;如果i=5,则i-s=1,s=4。
需要说明的是,如果UE上行传输使用的资源类型改变,则UE根据功控参数信息重新确定功控参数和/或根据第一指示信息重新确定闭环功率控制过程的类型;比如,闭环功率控制过程的类型可以包括用于全双工的闭环功率控制过程和用于非全双工的闭环功率控制过程。比如,UE确定在全双工资源资源单位4上的上行传输功率,是根据功控参数信息确定用于全双工资源的功控参数;如果UE确定在上行的非全双工资源资源单位5上的上行传输功率,则根据功控参数信息确定用于上行的非全双工资源的功控参数。以功控参数信息如表8所示为例,UE根据P
O_2_PUSCH计算资源单位4(资源单位4的信道类型是PUSCH)上的上行传输功率,当UE计算资源单位5上的上行传输功率时,重新从功控参数信息中确定根据P
O_1_1计算上行传输功率。如果是累积模式的闭环功率控制过程,UE上行传输使用的资源类型改变,则重新确定PUSCH-closed-loop-index取值。
需要说明的是,对于网络设备向UE发送功控参数信息和第一指示信息的先后顺序,本申请实施例不进行限定,网络设备可以先向UE发送功控参数信息,也可以先向UE发送第一指示信息;即本申请实施例不限定S201-S202和S205-S206的先后顺序。
本申请实施例提供的功率控制方法,在用户设备确定上行传输功率的过程中,区分不同的资源类型对应使用不同的功控参数,为全双工资源配置了单独的功控参数;相比现有技术中,不区分资源类型配置功控参数的方法,本申请实施例提供的功率控制方法,能够在用户设备上行传输使用全双工资源或非全双工资源的情况下,分别进行功率控制,确定不同的上行传输功率;使得操作于全双工模式下的网络设备在发送数据的同时正确接收数据。并且,在累积模式的闭环功率控制过程中,闭环功率控制参数基于与当前资源单位的资源类型相同的前一资源单位对应的闭环功率控制参数的值进行累积,提高了全双工模式下上行传输功率的精确度。
上述主要从网络设备和用户设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,网络设备和用户设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实 现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和用户设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
本申请实施例还提供一种网络设备,图4是本申请实施例提供的网络设备400的逻辑结构示意图。如图4所示,网络设备400包括发送模块401。发送模块401可以用于执行图2中的S201,还可以用于执行图3中的S205,和/或执行本申请中描述的其他步骤。
本申请实施例还提供一种用户设备,图5是本申请实施例提供的用户设备500的逻辑结构示意图。如图5所示,用户设备500包括接收模块501和确定模块502。接收模块501可以用于执行图2中的S202,还可以用于执行图3中的S206,和/或执行本申请中描述的其他步骤。确定模块502可以用于执行图2和图3中的S203和S204,和/或执行本申请中描述的其他步骤。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,网络设备400和用户设备500可以以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储设备,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到网络设备400和用户设备500中任一个可以采用图6所示的形式。
如图6所示,装置600可以包括:存储器601、处理器602、以及通信接口603。其中存储器602用于存储计算机执行指令,当装置600运行时,处理器601执行存储器602存储的计算机执行指令,以使装置600执行本申请实施例提供的功率控制方法。存储器601、处理器602、以及通信接口603通过总线604通信连接。具体的功率控制方法可参考上文及附图中的相关描述,此处不再赘述。应注意,在具体实现过程中,装置600还可以包括其他硬件器件,本文不再一一列举。
在本申请的一个示例中,图4中的发送模块401可以通过通信接口603实现。
在本申请的另一个示例中,图5中的确定模块502可以通过处理器601实现,接收模块501可以通过通信接口603实现。
其中,通信接口603可以是收发器或收发电路。处理器601可以是现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
由于本申请实施例提供的装置可用于执行上述功率控制方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本领域普通技术人员可知,上述方法中的全部或部分步骤可以通过程序指令相关的硬件完成,该程序可以存储于一计算机可读存储介质中,该计算机可读存储介质如ROM、RAM和光盘等。
本申请实施例还提供一种存储介质,该存储介质可以包括存储器601。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (38)
- 一种功率控制方法,其特征在于,包括:用户设备UE接收网络设备发送的上行传输功率的功控参数信息,所述功控参数信息包括第一功控参数信息和第二功控参数信息;所述第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,所述第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数;所述UE根据所述功控参数信息以及上行传输使用的资源类型确定所述上行传输功率;所述资源类型包括全双工资源和非全双工资源。
- 根据权利要求1所述的方法,其特征在于,所述第二功控参数信息包含至少一个第二功控参数,一个第二功控参数分别与以下信息中至少一项相关:上行传输的信道类型;上行传输的业务类型;上行传输的传输内容;上行传输对应的波束;上行传输对应的载波;上行传输对应的带宽部分BWP。
- 根据权利要求2所述的方法,其特征在于,所述信道类型包括物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH和探测参考信号SRS中至少一个;所述业务类型包括增强移动宽带eMBB、超低延迟通信URLLC、增强机器通信eMTC中至少一个。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述第二功控参数信息是第三功控参数信息与第四功控参数信息中至少一个;所述第三功控参数信息是根据所述网络设备的第一干扰取消能力确定的,所述第四功控参数信息是根据所述网络设备的第二干扰取消能力确定的。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述全双工资源包括时域资源、频域资源和空间域资源中至少一项。
- 根据权利要求5所述的方法,其特征在于,所述时域资源包括超帧、帧、时隙、子帧、微子帧、微时隙、正交频分复用OFDM符号、迷你时隙或迷你子帧,所述频域资源包括控制信道单元CCE、控制资源集CORSET、物理资源块PRB、部分频带BWP或载波,所述空间域资源包括波束、波束对、波束组或天线端口。
- 根据权利要求1-6任一项所述的方法,其特征在于,所述用户设备UE接收网络设备发送的上行传输功率的功控参数信息,包括:所述UE通过无线资源控制RRC信令、媒介接入控制MAC层信令或物理层信令中至少一种接收所述网络设备发送的上行传输功率的功控参数信息。
- 根据权利要求1-7任一项所述的方法,其特征在于,所述第一功控参数信息包括第五功控参数信息和第六功控参数信息;所述第五功控参数信息用于计算在上行的非全双工资源上传输的上行传输功率,所述第六功控参数信息用于计算在灵活双工资源上传输的上行传输功率。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述UE接收所述网络设备发送的第一指示信息,所述第一指示信息包括闭环功率控制过程指示信息,所述闭环功率控制过程指示信息用于指示闭环功率控制过程包括用于全双工的闭环功率控制过程。
- 根据权利要求9所述的方法,其特征在于,所述第一指示信息还包括功率控制调整状态指示信息,所述功率控制调整状态指示信息用于指示所述闭环功率控制过程指示信息的取值范围。
- 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:如果所述UE上行传输使用的资源类型改变,则所述UE根据功控参数信息重新确定功控参数和/或根据第一指示信息重新确定闭环功率控制过程的类型。
- 根据权利要求9-11任一项所述的方法,其特征在于,如果闭环功率控制过程为累积模式,则闭环功率控制参数基于与当前资源单位的资源类型相同的前一资源单位对应的闭环功率控制参数的值进行累积,其中,所述闭环功率控制参数用于确定所述上行传输功率。
- 一种功率控制方法,其特征在于,包括:网络设备向用户设备UE发送上行传输功率的功控参数信息,所述功控参数信息包括第一功控参数信息和第二功控参数信息;所述第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,所述第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数。
- 根据权利要求13所述的方法,其特征在于,所述第二功控参数信息包含至少一个第二功控参数,一个第二功控参数分别与以下信息中至少一项相关:上行传输的信道类型;上行传输的业务类型;上行传输的传输内容;上行传输对应的波束;上行传输对应的载波;上行传输对应的带宽部分BWP。
- 根据权利要求14所述的方法,其特征在于,所述信道类型包括物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH和探测参考信号SRS中至少一个;所述业务类型包括增强移动宽带eMBB、超低延迟通信URLLC、增强机器通信eMTC中至少一个。
- 根据权利要求13-15任一项所述的方法,其特征在于,所述第二功控参数信息是第三功控参数信息与第四功控参数信息中至少一个;所述第三功控参数信息是根据所述网络设备的第一干扰取消能力确定的,所述第四功控参数信息是根据所述网络设备的第二干扰取消能力确定的。
- 根据权利要求13-16任一项所述的方法,其特征在于,所述全双工资源包括时域资源、频域资源和空间域资源中至少一项。
- 根据权利要求13-17任一项所述的方法,其特征在于,所述网络设备向用户设备UE发送上行传输功率的功控参数信息,包括:所述网络设备通过无线资源控制RRC信令、 媒介接入控制MAC层信令或物理层信令中至少一种向用户设备UE发送上行传输功率的功控参数信息。
- 根据权利要求13-18任一项所述的方法,其特征在于,所述第一功控参数信息包括第五功控参数信息和第六功控参数信息;所述第五功控参数信息用于计算在上行的非全双工资源上传输的上行传输功率,所述第六功控参数信息用于计算在灵活双工资源上传输的上行传输功率。
- 根据权利要求13所述的方法,其特征在于,所述方法还包括:所述网络设备向所述UE发送第一指示信息,所述第一指示信息包括闭环功率控制过程指示信息,所述闭环功率控制过程指示信息用于指示闭环功率控制过程包括用于全双工的闭环功率控制过程。
- 根据权利要求20所述的方法,其特征在于,所述第一指示信息还包括功率控制调整状态指示信息,所述功率控制调整状态指示信息用于指示所述闭环功率控制过程指示信息的取值范围。
- 一种用户设备UE,其特征在于,包括:接收模块,用于接收网络设备发送的上行传输功率的功控参数信息,所述功控参数信息包括第一功控参数信息和第二功控参数信息;所述第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,所述第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数;确定模块,用于根据所述功控参数信息以及上行传输使用的资源类型确定所述上行传输功率;所述资源类型包括全双工资源和非全双工资源。
- 根据权利要求22所述的UE,其特征在于,所述第二功控参数信息包含至少一个第二功控参数,一个第二功控参数分别与以下信息中至少一项相关:上行传输的信道类型;上行传输的业务类型;上行传输的传输内容;上行传输对应的波束;上行传输对应的载波;上行传输对应的带宽部分BWP。
- 根据权利要求22或23所述的UE,其特征在于,所述全双工资源包括时域资源、频域资源和空间域资源中至少一项。
- 根据权利要求22-24任一项所述的UE,其特征在于,所述接收模块接收网络设备发送的上行传输功率的功控参数信息,具体包括:所述接收模块通过无线资源控制RRC信令、媒介接入控制MAC层信令或物理层信令中至少一种接收所述网络设备发送的上行传输功率的功控参数信息。
- 根据权利要求22-25任一项所述的UE,其特征在于,所述第一功控参数信息包括第五功控参数信息和第六功控参数信息;所述第五功控参数信息用于计算在上行的非全双工资源上传输的上行传输功率,所述第六功控参数信息用于计算在灵活双工资源上传输的上行传输功率。
- 根据权利要求22所述的UE,其特征在于,所述接收模块,还用于接收所述网络设备发送的第一指示信息,所述第一指示信息包括闭环功率控制过程指示信息,所述闭环功率控制过程指示信息用于指示闭环功率控制过程包括用于全双工的闭环功率控制过程。
- 根据权利要求27所述的UE,其特征在于,所述第一指示信息还包括功率控制调整状态指示信息,所述功率控制调整状态指示信息用于指示所述闭环功率控制过程指示信息的取值范围。
- 根据权利要求27或28所述的UE,其特征在于,所述确定模块,还用于确定所述UE上行传输使用的资源类型是否改变;所述确定模块还用于,如果确定所述UE上行传输使用的资源类型改变,则根据功控参数信息重新确定功控参数和/或根据第一指示信息重新确定闭环功率控制过程的类型。
- 根据权利要求27-29任一项所述的UE,其特征在于,所述确定模块,还用于如果确定闭环功率控制过程为累积模式,则闭环功率控制参数基于与当前资源单位的资源类型相同的前一资源单位对应的闭环功率控制参数的值进行累积,其中,所述闭环功率控制参数用于确定所述上行传输功率。
- 一种网络设备,其特征在于,包括:发送模块,用于向用户设备UE发送上行传输功率的功控参数信息,所述功控参数信息包括第一功控参数信息和第二功控参数信息;所述第一功控参数信息用于计算在非全双工资源上传输的上行传输功率,所述第二功控参数信息包括用于计算在全双工资源上传输的上行传输功率的参数。
- 根据权利要求31所述的网络设备,其特征在于,所述第二功控参数信息包含至少一个第二功控参数,一个第二功控参数分别与以下信息中至少一项相关:上行传输的信道类型;上行传输的业务类型;上行传输的传输内容;上行传输对应的波束;上行传输对应的载波;上行传输对应的带宽部分BWP。
- 根据权利要求31或32所述的网络设备,其特征在于,所述第二功控参数信息是第三功控参数信息与第四功控参数信息中至少一个;所述第三功控参数信息是根据所述网络设备的第一干扰取消能力确定的,所述第四功控参数信息是根据所述网络设备的第二干扰取消能力确定的。
- 根据权利要求31-33任一项所述的网络设备,其特征在于,所述全双工资源包括时域资源、频域资源和空间域资源中至少一项。
- 根据权利要求31-34任一项所述的网络设备,其特征在于,所述发送模块向用户设备UE发送上行传输功率的功控参数信息,具体包括:所述发送模块通过无线资源控制RRC信令、媒介接入控制MAC层信令或物理层信令中至少一种向用户设备UE发送上行传输功率的功控参数信息。
- 根据权利要求31-35任一项所述的网络设备,其特征在于,所述第一功控参数信息包括第五功控参数信息和第六功控参数信息;所述第五功控参数信息用于计算在上行的 非全双工资源上传输的上行传输功率,所述第六功控参数信息用于计算在灵活双工资源上传输的上行传输功率。
- 根据权利要求31所述的网络设备,其特征在于,所述发送模块,还用于向所述UE发送第一指示信息,所述第一指示信息包括闭环功率控制过程指示信息,所述闭环功率控制过程指示信息用于指示闭环功率控制过程包括用于全双工的闭环功率控制过程。
- 根据权利要求37所述的网络设备,其特征在于,所述第一指示信息还包括功率控制调整状态指示信息,所述功率控制调整状态指示信息用于指示所述闭环功率控制过程指示信息的取值范围。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19763517.0A EP3739970B1 (en) | 2018-03-09 | 2019-03-06 | Power control method and device |
US16/990,751 US11297577B2 (en) | 2018-03-09 | 2020-08-11 | Power control method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810196479.9 | 2018-03-09 | ||
CN201810196479.9A CN110248402B (zh) | 2018-03-09 | 2018-03-09 | 一种功率控制方法及设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/990,751 Continuation US11297577B2 (en) | 2018-03-09 | 2020-08-11 | Power control method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019170106A1 true WO2019170106A1 (zh) | 2019-09-12 |
Family
ID=67846924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/077181 WO2019170106A1 (zh) | 2018-03-09 | 2019-03-06 | 一种功率控制方法及设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11297577B2 (zh) |
EP (1) | EP3739970B1 (zh) |
CN (1) | CN110248402B (zh) |
WO (1) | WO2019170106A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021263253A1 (en) * | 2020-06-24 | 2021-12-30 | Qualcomm Incorporated | Power control for uplink communications in full duplex mode |
CN115053576A (zh) * | 2020-02-21 | 2022-09-13 | 高通股份有限公司 | 用于资源特定的发射功率控制配置的技术 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018126403A1 (en) * | 2017-01-05 | 2018-07-12 | Motorola Mobility Llc | Resource reservation |
WO2020206572A1 (en) * | 2019-04-06 | 2020-10-15 | Qualcomm Incorporated | Communicating multiple transport formats in a slot with full-duplex |
EP4005306A4 (en) * | 2019-07-22 | 2023-04-19 | QUALCOMM Incorporated | FULL DUPLEX SLOT CONFIGURATION |
CN113678514B (zh) * | 2019-09-30 | 2023-11-07 | Oppo广东移动通信有限公司 | 上行功率控制方法、装置及存储介质 |
CN115226192A (zh) * | 2020-01-31 | 2022-10-21 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
US11974309B2 (en) * | 2020-06-18 | 2024-04-30 | Qualcomm Incorporated | Downlink control information for frequency domain slot format indication |
CN112383954B (zh) * | 2020-11-16 | 2022-06-24 | 杭州电子科技大学上虞科学与工程研究院有限公司 | 一种同时同频全双工系统功率控制方法及装置 |
CN115208526B (zh) * | 2021-04-09 | 2024-01-30 | 维沃移动通信有限公司 | 信号传输方法、装置及终端 |
CN113225794B (zh) * | 2021-04-29 | 2022-09-27 | 成都中科微信息技术研究院有限公司 | 一种基于深度强化学习的全双工认知通信功率控制方法 |
CN116391398A (zh) * | 2021-07-22 | 2023-07-04 | 上海推络通信科技合伙企业(有限合伙) | 一种用于无线通信的节点中的方法和装置 |
US11778570B2 (en) * | 2021-07-23 | 2023-10-03 | Qualcomm Incorporated | Transmit power adjustment for synchronization signal block (SSB) |
US11979877B2 (en) * | 2021-10-04 | 2024-05-07 | Qualcomm Incorporated | Techniques for indicating downlink power adjustments |
US20230164701A1 (en) * | 2021-11-24 | 2023-05-25 | Apple Inc. | Power control for signal interference management |
US20230328656A1 (en) * | 2022-04-08 | 2023-10-12 | Samsung Electronics Co., Ltd. | Transmission and reception power in full-duplex systems |
CN117581598A (zh) * | 2022-04-27 | 2024-02-20 | 北京小米移动软件有限公司 | 一种功率控制方法、装置、设备及存储介质 |
WO2023212834A1 (en) * | 2022-04-28 | 2023-11-09 | Zte Corporation | Power control and indication for wireless communications |
CN115052355B (zh) * | 2022-06-09 | 2024-07-05 | 东南大学 | 海量终端urllc下网络辅助全双工模式优化方法 |
CN115843446A (zh) * | 2022-09-26 | 2023-03-24 | 北京小米移动软件有限公司 | 一种上行功率控制方法及其装置 |
CN118118987A (zh) * | 2022-11-30 | 2024-05-31 | 维沃移动通信有限公司 | 上行传输的发射功率确定方法、装置、终端及网络侧设备 |
US20240214943A1 (en) * | 2022-12-22 | 2024-06-27 | Samsung Electronics Co., Ltd. | Ul power control in full-duplex systems |
CN118250780A (zh) * | 2022-12-23 | 2024-06-25 | 维沃移动通信有限公司 | 发送功率确定方法、装置、用户设备及存储介质 |
CN118785338A (zh) * | 2023-04-07 | 2024-10-15 | 中国移动通信有限公司研究院 | 上行功率控制方法、装置、终端及网络侧设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012136081A1 (zh) * | 2011-04-02 | 2012-10-11 | 中兴通讯股份有限公司 | 一种物理上行控制信道的功率控制方法和装置 |
CN102917436A (zh) * | 2011-08-02 | 2013-02-06 | 上海贝尔股份有限公司 | 在共小区标识的异构网络中进行上行功率控制的方法 |
CN105191448A (zh) * | 2013-04-19 | 2015-12-23 | Lg电子株式会社 | 在无线接入系统中的功率控制方法和设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103379604B (zh) * | 2012-04-20 | 2018-04-27 | 北京三星通信技术研究有限公司 | 动态tdd小区中的上行功率控制方法 |
CN103582099B (zh) * | 2012-07-25 | 2018-06-19 | 中兴通讯股份有限公司 | 一种上行功率控制方法、终端及基站 |
US8861443B2 (en) * | 2012-09-20 | 2014-10-14 | Intel Corporation | Method and apparatus for power control in full-duplex wireless systems with simultaneous transmission reception |
CN105099632B (zh) * | 2014-04-23 | 2019-12-13 | 北京三星通信技术研究有限公司 | 一种上行探测参考信号传输的方法和设备 |
WO2015174733A1 (ko) * | 2014-05-13 | 2015-11-19 | 엘지전자 주식회사 | Fdr 전송을 지원하는 무선접속시스템에서 신호 수신 방법 및 장치 |
US10028228B2 (en) * | 2015-08-07 | 2018-07-17 | Lg Electronics Inc. | Method for transmitting and receiving for power control factor related to considering self-interference cancellation in wireless communication system using FDR mode and devices therefor |
CN107026689B (zh) | 2016-01-29 | 2019-08-16 | 华为技术有限公司 | 一种帧格式配置方法、装置和系统 |
CN107295620A (zh) * | 2016-03-30 | 2017-10-24 | 中兴通讯股份有限公司 | 上行功率的控制方法及装置 |
CN107277908B (zh) * | 2016-04-06 | 2021-06-15 | 华为技术有限公司 | 一种功率控制方法及设备 |
WO2017181321A1 (zh) * | 2016-04-18 | 2017-10-26 | 华为技术有限公司 | 一种功率控制方法和网络侧设备以及用户设备 |
KR20190099285A (ko) * | 2017-01-26 | 2019-08-26 | 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) | 무선 통신 시스템에서의 전력 제어를 위한 방법들 및 장치들 |
US20200396691A1 (en) * | 2017-09-11 | 2020-12-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Transmit Power Control in a Wireless Communications Network |
-
2018
- 2018-03-09 CN CN201810196479.9A patent/CN110248402B/zh active Active
-
2019
- 2019-03-06 WO PCT/CN2019/077181 patent/WO2019170106A1/zh unknown
- 2019-03-06 EP EP19763517.0A patent/EP3739970B1/en active Active
-
2020
- 2020-08-11 US US16/990,751 patent/US11297577B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012136081A1 (zh) * | 2011-04-02 | 2012-10-11 | 中兴通讯股份有限公司 | 一种物理上行控制信道的功率控制方法和装置 |
CN102917436A (zh) * | 2011-08-02 | 2013-02-06 | 上海贝尔股份有限公司 | 在共小区标识的异构网络中进行上行功率控制的方法 |
CN105191448A (zh) * | 2013-04-19 | 2015-12-23 | Lg电子株式会社 | 在无线接入系统中的功率控制方法和设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3739970A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115053576A (zh) * | 2020-02-21 | 2022-09-13 | 高通股份有限公司 | 用于资源特定的发射功率控制配置的技术 |
WO2021263253A1 (en) * | 2020-06-24 | 2021-12-30 | Qualcomm Incorporated | Power control for uplink communications in full duplex mode |
US11792736B2 (en) | 2020-06-24 | 2023-10-17 | Qualcomm Incorporated | Power control for uplink communications in full duplex mode |
Also Published As
Publication number | Publication date |
---|---|
CN110248402A (zh) | 2019-09-17 |
CN110248402B (zh) | 2022-02-25 |
US20200374807A1 (en) | 2020-11-26 |
EP3739970B1 (en) | 2023-05-24 |
US11297577B2 (en) | 2022-04-05 |
EP3739970A4 (en) | 2021-02-24 |
EP3739970A1 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019170106A1 (zh) | 一种功率控制方法及设备 | |
TWI726141B (zh) | 於5g新無線電中用於經增強頻道及干擾減輕之頻寬群組 | |
TWI757402B (zh) | 用於多鏈路發送功率控制的技術和裝置 | |
TWI594649B (zh) | 用於上行鏈路功率控制之方法及配置 | |
CN108702711B (zh) | 用户终端、无线基站以及无线通信方法 | |
CN107005980B (zh) | 用于传输和接收时频资源的方法和设备 | |
JP2022521690A (ja) | 複数の送受信ポイントにわたってpdsch送信スケジューリングされたマルチpdcch用のharq ack | |
CN106068634B (zh) | 以高阶调制方案设置下行链路功率的方法及其终端 | |
EP3910844A1 (en) | User terminal, radio base station, and radio communication method | |
WO2016188374A1 (en) | Device, network, and method for wideband lte with virtual (baseband) carrier aggregation | |
US20200322925A1 (en) | User terminal, radio base station and radio communication method | |
WO2017173920A1 (zh) | 一种功率控制方法及设备 | |
WO2016017705A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
US11930501B2 (en) | Terminal, communication method, base station, and system for receiving synchronization and/or broadcast signals in a given transmission time interval | |
CN107113740A (zh) | 双连接性中的上行链路功率共享 | |
JP6865501B2 (ja) | 端末、無線基地局及び無線通信方法 | |
JP2013506386A (ja) | 送信ダイバーシティのためのアップリンク制御チャネルリソース割振り | |
WO2013183491A1 (ja) | 無線基地局、ユーザ端末、無線通信システム及び干渉推定方法 | |
WO2017033779A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2018202188A1 (zh) | 一种通信方法、系统及相关设备 | |
JP2023526813A (ja) | 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ | |
CN112514303B (zh) | 用数据子载波内正交覆盖码的物理上行链路控制信道频分复用 | |
WO2021062689A1 (zh) | 一种上行传输的方法及装置 | |
US10390349B2 (en) | 256 QAM-based resource allocation method and base station thereof | |
WO2021203275A1 (en) | Method and apparatus for parameter setting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19763517 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019763517 Country of ref document: EP Effective date: 20200812 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |