[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019168249A1 - Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst - Google Patents

Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst Download PDF

Info

Publication number
WO2019168249A1
WO2019168249A1 PCT/KR2018/012025 KR2018012025W WO2019168249A1 WO 2019168249 A1 WO2019168249 A1 WO 2019168249A1 KR 2018012025 W KR2018012025 W KR 2018012025W WO 2019168249 A1 WO2019168249 A1 WO 2019168249A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
ethylene
formula
catalyst
oligomerization catalyst
Prior art date
Application number
PCT/KR2018/012025
Other languages
French (fr)
Korean (ko)
Other versions
WO2019168249A8 (en
Inventor
이호성
조용남
Original Assignee
에스케이이노베이션 주식회사
에스케이종합화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180119906A external-priority patent/KR102605188B1/en
Application filed by 에스케이이노베이션 주식회사, 에스케이종합화학 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to US16/771,857 priority Critical patent/US11224870B2/en
Priority to JP2020512872A priority patent/JP7210552B2/en
Priority to CN201880057196.4A priority patent/CN111094308B/en
Priority to EP18907972.6A priority patent/EP3760634A4/en
Publication of WO2019168249A1 publication Critical patent/WO2019168249A1/en
Publication of WO2019168249A8 publication Critical patent/WO2019168249A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention is a ligand for preparing a highly active and highly selective ethylene oligomerization catalyst for use in oligomerization reactions such as trimerization or tetramerization of ethylene, oligomerization catalyst comprising the same and 1-hexene or 1 using the same It relates to a production method of octene.
  • Oligomers in particular 1-hexene and 1-octene, are important commercial raw materials widely used in the polymerization process as monomers or comonomers for the production of linear low density polyethylene, obtained by purifying products produced by oligomerization of ethylene. .
  • the existing ethylene oligomerization reaction has been an inefficient aspect of producing a considerable amount of butenes, higher oligomers and polyethylene together with 1-hexene and 1-octene.
  • This conventional oligomerization technique of ethylene generally produces a variety of ⁇ -olefins depending on the Schulze-Flory or Poisson product distribution, thus limiting the yield of the desired product.
  • WO 02/04119 discloses a chromium-based catalyst using a ligand of the general formula (R 1 ) (R 2 ) XYX (R 3 ) (R 4 ) as an ethylene trimerization catalyst, wherein X is phosphorus, arsenic, or antimony, Y is a linking group such as -N (R 5 )-, and at least one of R 1 , R 2 , R 3 and R 4 has a polar or electron-donating substituent.
  • Korean Patent Publication No. 2006-0002741 uses a PNP ligand containing a nonpolar substituent on the ortho position of a phenyl ring attached to phosphorus such as (o-ethylphenyl) 2 PN (Me) P (o-ethylphenyl) 2. It is known that excellent ethylene trimerization activity and selectivity are indeed possible.
  • WO 04/056479 discloses that the selectivity is improved by tetramerization of ethylene by a chromium-based catalyst containing a PNP ligand in which a phenyl ring attached to phosphorus is omitted. It is known, and (phenyl) 2 PN (isopropyl) P (phenyl) 2 and the like are disclosed as examples of the hetero atom ligands used in the tetramerization catalyst for these ethylene tetramerization.
  • This prior art has a selectivity of greater than 70% by mass of chromium-based catalysts containing heteroatom ligands having nitrogen and phosphorus as heteroatoms, tetramers of ethylene without polar substituents to hydrocarbyl or heterohydrocarbyl groups bonded to the phosphorus atom. It was disclosed that 1-octene can be produced.
  • the prior art is specifically related to the structure of a ligand containing a hetero atom in which form can be highly selectively tetramerized ethylene to produce 1-octene or ethylene trimerized to produce 1-hexene.
  • PNPs such as (R 1 ) (R 2 ) P- (R 5 ) NP (R 3 ) (R 4 ) as ligands with 1-octene selectivity of about 70% by mass. Only the structure of the type skeleton is given, and the types of substituents that can be substituted in the heteroatom ligands are also limited.
  • the tetramerization catalyst system is inevitably interrupted due to a decrease in catalytic activity resulting in a decrease in the production and selectivity of olefins, especially 1-octene, and the formation of by-products resulting in clogging and fouling. This causes serious problems in the olefin polymerization process.
  • an oligomerization catalyst having a structure capable of producing 1-hexene or 1-octene by oligomerizing high activity and high selectivity without degrading the olefin oligomerization catalytic activity at high temperature.
  • the present invention provides a novel ligand capable of oligomerizing ethylene at high temperatures and at high temperatures for use in oligomerization of olefins, specifically trimerization or tetramerization of ethylene. It is represented by Formula (1).
  • R 1 is hydrocarbyl
  • R 2 and R 3 are each independently hydrocarbyl
  • p and q are each independently integers of 0 to 5;
  • n and n are each independently integers of 0 to 5, where 1 ⁇ m + n ⁇ 10.
  • the ligand may be represented by the following formula (2).
  • R 1 , m and n are the same as defined in Formula 1.
  • the ligand may be represented by the following formula (3), (4) or (5).
  • R 1 , R 2 , R 3 , p, and q are the same as defined in Formula 1 above.
  • R 1 may be C1-C7 alkyl or C6-C12 aryl.
  • the present invention also provides an ethylene oligomerization catalyst comprising the ligand of Formula 1 and a transition metal.
  • the oligomerization catalyst may be mononuclear or dinuclear.
  • the transition metal is not particularly limited, but may be a Group 4, Group 5 or Group 6 transition metal.
  • the transition metal may be chromium, molybdenum, tungsten, titanium, tantalum, vanadium or zirconium.
  • the transition metal may be chromium.
  • the present invention provides a method for producing an ethylene oligomer using a catalyst composition comprising the ethylene oligomerization catalyst, it is possible to prepare an ethylene oligomer by contacting the ethylene oligomerization catalyst composition with ethylene.
  • the catalyst composition may further include a promoter.
  • the promoter may be an organoaluminum compound, an organic boron compound, an organic salt, or a mixture thereof, but is not limited thereto.
  • the organoaluminum compound is an aluminoxane compound, AlR 3 (wherein R is independently C 1 -C 12 alkyl, C 6 -C 20 aryl, C 2 -C 10 al Kenyl, C 2 -C 10 alkynyl, C 1 -C 12 alkoxy or halogen) or LiAlH 4 , and the like, and the promoter may specifically be methylaluminoxane (MAO), modified methylaluminoxane (mMAO), Ethylaluminoxane (EAO), tetraisobutylaluminoxane (TIBAO), isobutylaluminoxane (IBAO), trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octyl It may be aluminum, methylaluminum dich
  • the ethylene oligomer may be 1-hexene, 1-octene or a mixture thereof.
  • an aliphatic hydrocarbon may be used as a reaction solvent.
  • the aliphatic hydrocarbon is hexane, heptane, octane, nonene, decane, undecane, dodecane, tetradecane, 2,2-dimethylpentane, 2,3 -Dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2,2,4-trimethylpentane, 2,3,4-trimethylpentane, 2-methylhexane, 3-methylhexane, 2,2- Dimethylhexane, 2,4-dimethylhexane, 2,5-dimethylhexane, 3,4-dimethylhexane, 2-methylheptane, 4-methylheptane, cyclohexane, methylcyclohexane, ethylcyclohexane, isopropylcyclohexane, It may be one or
  • At least one fluorine is substituted for phenyl bonded to a phosphorus atom in bis (diphenylphosphino) ethene, and one carbon atom is substituted with a substituted or unsubstituted hydrocarbyl group other than hydrogen.
  • It contains the ligand of the formula (1) of the asymmetric form is excellent in catalytic activity and selectivity even at high temperature during ethylene oligomerization.
  • the oligomerization catalyst of the present invention is excellent in catalytic activity even at high temperatures, and does not require fouling and clogging caused by polymers, which are by-products during mass production of oligomers.
  • the oligomer manufacturing method of the present invention can produce the oligomer with high activity and high selectivity even at high temperature, and does not occur fouling and clogging, thereby making it possible to prepare the olefin in a very efficient process.
  • hydrocarbyl or “heterohydrocarbyl” refers to a radical having one bonding position derived from a hydrocarbon or heterohydrocarbon, and “hetero” means that the carbon is selected from O, S and N atoms. It means substituted by one or more atoms.
  • substituted refers to a group or moiety having one or more substituents attached to the structural backbone of the group or moiety.
  • Alkyl as used herein is a monovalent straight or pulverized saturated hydrocarbon radical consisting solely of carbon and hydrogen atoms and is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, nonyl and the like. It includes, but is not limited to.
  • the alkyl radicals described in this invention have 1 to 10 carbon atoms, preferably 1 to 7, more preferably 1 to 5 carbon atoms.
  • aryl described herein is a monovalent organic radical derived from an aromatic hydrocarbon by one hydrogen removal, each ring containing, for example, 4 to 7, preferably 5 or 6 ring atoms It includes a single or fused ring system, and includes a form in which a plurality of aryls are connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like.
  • the aryl radicals described herein also have 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms.
  • ethylene oligomerization refers to small polymerization of ethylene and is called trimerization and tetramerization depending on the number of ethylene polymerized.
  • trimerization and tetramerization depending on the number of ethylene polymerized.
  • LLDPE linear low density polyethylene
  • oligomerization catalyst is defined to include both the form of the ligand and the transition metal complex and the form of the ligand and the transition metal composition.
  • oligomerization catalyst composition is defined as further comprising a cocatalyst or an additive in the above “oligomerization catalyst”.
  • the present invention provides a ligand for preparing an oligomerization catalyst that maintains high activity even at a high temperature unlike a conventional catalyst, the ligand of the present invention is represented by the following formula (1).
  • R 1 is substituted or unsubstituted hydrocarbyl
  • R 2 and R 3 are each independently hydrocarbyl
  • p and q are each independently integers of 0 to 5;
  • n and n are each independently integers of 0 to 5, where 1 ⁇ m + n ⁇ 10.
  • the ligand of the present invention is substituted with at least one fluorine in phenyl bonded to a phosphorus atom in bis (diphenylphosphino) ethene, and substituted in one carbon atom other than hydrogen or Asymmetrically substituted ligand of Formula 1 in which an unsubstituted hydrocarbyl group is substituted. Due to the ligand of Formula 1 including at least one fluorine-substituted phenyl, it has excellent catalytic activity and selectivity even at high temperature during ethylene oligomerization. Has an advantage.
  • the ligand may be represented by the following formula (2).
  • R 1 , m and n are the same as defined in Formula 1.
  • the ligand may be represented by the following formula (3), (4) or (5).
  • R 1 , R 2 , R 3 , p, and q are the same as defined in Formula 1 above.
  • n and n are each independently an integer of 0 to 1, may be 1 ⁇ m + n ⁇ 2, fluorine is substituted in the ortho-position Can be.
  • n may be 1.
  • n may be 0.
  • n may be 1.
  • R 2 and R 3 may be each independently C1-C10 alkyl, C6-C20 aryl, C6-C20 arylC1-C10 alkyl or C1-C10 alkylC6-C20 aryl, p and q may each independently be an integer of 0 to 2.
  • p and q may be each independently an integer of zero.
  • R 1 may be C1-C10 alkyl, C6-C20 aryl, C6-C20 arylC1-C10 alkyl or C1-C10 alkylC6-C20 aryl, more preferably R 1 may be C 1 -C 7 alkyl or C 6 -C 12 aryl.
  • the ligand according to an embodiment of the present invention may be exemplified by the following structure, but is not limited thereto.
  • the present invention also provides an ethylene oligomerization catalyst comprising the ligand of Formula 1 and a transition metal.
  • the transition metal is not particularly limited, but may be a Group 4, 5 or 6 transition metal, preferably selected from chromium, molybdenum, tungsten, titanium, tantalum, vanadium or zirconium, more preferably chromium to be.
  • the transition metal may be derived from a transition metal precursor.
  • the transition metal precursor is specifically a Group 4, Group 5 or Group 6 transition metal precursor, preferably may be selected from chromium, molybdenum, tungsten, titanium, tantalum, vanadium or zirconium precursors. More preferred.
  • the chromium precursor is not particularly limited, but is preferably selected from the group consisting of chromium (III) acetylacetonate, chromium trichloride tristetrahytrofuran and chromium (III) 2-ethylhexanoate.
  • the oligomerization catalyst according to the present invention may be a mononuclear or heteronuclear oligomerization catalyst in which a heteroatom ligand of Formula 1 is coordinated to a transition metal or transition metal precursor, and specifically ML 1 (L) a (X) b or M It may be represented by 2 X 1 2 L 1 2 (L) y (X) z , wherein M is a transition metal, L 1 is a ligand of Formula 1, X and X 1 are each independently from a transition metal precursor
  • the functional group to be derived is, for example, halogen, L is an organic ligand, a is an integer of 0 or more, b is an integer of (oxidation number of a-M), y is an integer of 0 or more, and z is (2 x M May be an integer of) -2-y.
  • the oligomerization catalyst according to the present invention coordinates a ligand having p and q 0 in chromium or chromium precursor in Chemical Formula 3, Chemical Formula 4 or Chemical Formula 5 so as to stably maintain the oligomerization activity, It is possible to prepare 1-hexene and 1-octene in high activity, high selectivity.
  • the oligomerization catalyst according to the present invention may be specifically exemplified by the following structure, but is not limited thereto.
  • R 1 is C1-C7 alkyl or C6-C12 aryl
  • X is halogen
  • L is organic ligand
  • a is an integer from 0 to 3
  • c and d are each independently 0 to 2 Is an integer.
  • organic ligand L may be selected from the following structural formula, but is not limited thereto.
  • R 41 and R 42 are each independently hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl, and R 43 is hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or Substituted heterohydrocarbyl;
  • R 44 and R 45 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl.
  • Ligands constituting the oligomerization catalyst according to the present invention can be prepared using various methods known to those skilled in the art.
  • the oligomerization catalyst according to an embodiment of the present invention has excellent catalytic activity, very high selectivity upon oligomerization of olefins, control of catalyst input amount, and excellent activity is maintained even at high temperature, thus preventing clogging of the olefin manufacturing process and No fouling occurs, very economical and efficient.
  • the present invention provides a method for producing a high activity and highly selective 1-hexene or 1-octene from ethylene using a catalyst composition comprising the oligomerization catalyst, the ethylene oligomerization catalyst composition Contact may be made to the ethylene oligomer.
  • the ethylene oligomerization catalyst composition according to one embodiment of the present invention may further include a promoter for more effective activity and high selectivity.
  • the ethylene oligomerization catalyst composition may be an oligomerization catalyst system including an oligomerization catalyst and a promoter comprising a transition metal or a transition metal precursor and a ligand of Formula 1.
  • the cocatalyst may in principle be any compound that activates the transition metal complex to which the ligand of Formula 1 is coordinated. Cocatalysts can also be used in mixtures. Suitable compounds as cocatalysts include organoaluminum compounds, organic aluminoxanes, organoboron compounds, organic salts and the like.
  • Organoaluminum compounds suitable for use as activators in the ethylene oligomerization catalyst composition according to one embodiment of the present invention are AlR 3 (wherein R is independently C 1 -C 12 alkyl, C 6 -C 20 aryl, C 2 -C 10 alkenyl , C 2 -C 10 alkynyl, C 1 -C 12 alkoxy or halogen) or LiAlH 4 or the like.
  • the organoaluminum compound is trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum One, two or more mixtures selected from chloride, aluminum isopropoxide, ethylaluminum sesquichloride, methylaluminum sesquichloride, and aluminoxanes.
  • Organic aluminoxanes suitable for use as activators in the ethylene oligomerization catalyst composition according to one embodiment of the present invention are oligomeric compounds which can be prepared by adding water to water and alkylaluminum compounds, for example trimethylaluminum.
  • the aluminoxane oligomeric compounds can be linear, cyclic, cages or mixtures thereof.
  • the organic aluminoxanes are alkylaluminoxanes such as methylaluminoxane (MAO), ethylaluminoxane (EAO), tetraisobutylaluminoxane (TIBAO) and isobutyl aluminoxane (IBAO) as well as modified alkyl aluminoxanes, such as For example, it may be selected from modified methylaluminoxane (MMAO).
  • Modified methyl aluminoxanes (manufactured by Akzo Nobel) contain, in addition to methyl groups, mixed alkyl groups such as isobutyl or n-octyl groups.
  • methyl aluminoxane MAO
  • modified methyl aluminoxane MMAO
  • EAO ethyl aluminoxane
  • TIBAO tetraisobutyl aluminoxane
  • IBAO isobutyl aluminoxane
  • Organic boron compounds suitable for use as activators in the ethylene oligomerization catalyst composition according to one embodiment of the present invention are boroxine, NaBH 4 , triethyl borane, triphenylborane, triphenylborane ammonia complex, tributylborate, triiso Propylborate, tris (pentafluorophenyl) borane, trityl (tetrapentafluorophenyl) borate, dimethylphenylammonium (tetrapentafluorophenyl) borate, diethylphenylammonium (tetrapentafluorophenyl) borate, methyldi Phenylammonium (tetrapentafluorophenyl) borate, ethyldiphenylammonium (tetrapentafluorophenyl) borate, or mixtures thereof, and the organoboron compounds thereof may be used in a mixture with the organo
  • the promoter is methylaluminoxane (MAO), modified methylaluminoxane (mMAO), ethylaluminoxane (EAO), tetraisobutylaluminoxane (TIBAO), isobutyl aluminoxane (IBAO), trimethylaluminum (TMA) , Triethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminum isopropoxide, ethylaluminum It may be one or two or more mixtures selected from the group consisting of sesquichloride and methylaluminum sesquichloride, preferably methylaluminoxane (MAO) or modified methylaluminoxane (mMAO).
  • MAO
  • the ratio of the oligomerization catalyst and the promoter is 1: 1 to 10,000: 1 based on the molar ratio of metal to transition metal of the promoter, and more preferably 1: 1 to 2,000: 1.
  • the ratio of the oligomerization catalyst and the aluminoxane cocatalyst may be 1: 1 to 10,000: 1 based on the molar ratio of aluminum to transition metal, and more preferably 1: 1 to 1,000: 1. .
  • the ethylene oligomerization catalyst composition may further comprise other components possible as long as the ethylene oligomerization catalyst and promoter are not detrimental to the nature of the present invention.
  • the individual components of the ethylene oligomerization catalyst composition, the oligomerization catalyst and the promoter can be combined simultaneously or sequentially in any order in the presence of a solvent to provide the active catalyst.
  • the mixing of each component of the catalyst composition can be carried out at a temperature of -20 to 250 ° C., and the presence of the olefins during the mixing of each component can generally exhibit a protective effect to provide improved catalyst performance.
  • the range of more preferable temperature is 20-160 degreeC.
  • reaction products disclosed herein in other words ethylene oligomers, in particular 1-hexene or 1-octene, are homogeneous in the presence of an inert solvent using conventional apparatus and contacting techniques with the oligomerization catalyst or oligomerization catalyst composition according to the invention.
  • Liquid phase reactions or two-phase liquid / liquid reactions or product olefins may be prepared in bulk phase or gas phase reactions serving as the main medium, but homogeneous liquid phase reactions are preferred in the presence of an inert solvent.
  • the oligomer preparation method according to one embodiment according to the present invention may be performed in an inert solvent. That is, any inert solvent which does not react with the oligomerization catalyst and the promoter of the present invention may be used, and the inert solvent may be an aliphatic hydrocarbon in terms of improving the catalytic activity.
  • the oligomerization catalyst system according to the present invention not only easily adjusts the amount of catalyst in the continuous dosing of the catalyst solution but also shows excellent catalytic activity.
  • the aliphatic hydrocarbon is preferably a saturated aliphatic hydrocarbon, Linear saturated aliphatic hydrocarbons represented by C n H 2n +2 (wherein n is an integer from 1 to 15), alicyclic saturated aliphatic hydrocarbons represented by C m H 2m (wherein m is an integer from 3 to 8), and
  • the lower alkyl group having 1 to 3 carbon atoms may include a linear or cyclic saturated aliphatic hydrocarbon substituted with one or more carbon atoms.
  • the oligomerization reaction according to one embodiment of the present invention may be carried out at a temperature of -20 to 250 °C, preferably at a temperature of 20 to 160 °C, more preferably at a temperature of 60 to 160 °C, the reaction pressure is atmospheric pressure It can be carried out at a pressure of from 100 bar, preferably at a pressure of 10 to 70 bar.
  • the oligomer may be 1-hexene, 1-octene or a mixture thereof.
  • 1-octene is preferably at least 60% by weight, preferably at least 70% by weight, and more preferably, based on the total weight of the C8 product formed from ethylene through the oligomerization reaction. Can be obtained in an amount of at least 80 wt%. Yield in this case means the weight percent of 1-octene formed relative to the total weight of the C8 product formed.
  • 1-hexene is 50 wt% or more, preferably 70 wt% or more, more preferably 1 to hexene relative to the total weight of the C6 product formed from ethylene through the oligomerization reaction. Can be obtained in more than 90% by weight. Yield in this case means the weight percent of 1-hexene formed relative to the total weight of the C6 product formed.
  • the oligomer preparation method according to one embodiment of the present invention can be carried out in a plant comprising any type of reactor.
  • reactors include, but are not limited to, batch reactors, semi-batch reactors and continuous reactors.
  • the plant may comprise a reactor, an inlet of an olefin reactor and an oligomerization catalyst composition therein, a combination of the oligomerization reaction product from the reactor and a line for effluent and at least one separator for separating the oligomerization reaction product,
  • the catalyst composition may include an oligomerization catalyst and a promoter disclosed in the present invention, or may include a transition metal or a transition metal precursor, a ligand of Formula 1, and a promoter.
  • the oligomerization catalyst or oligomerization catalyst composition according to the invention can be used to maintain the activity of the catalyst even at high temperatures during ethylene oligomerization to produce 1-hexene, 1-octene or mixtures thereof in high activity and high selectivity.
  • N, N-diethylaminochloro (phenyl) phosphine was prepared with reference to known literature (M. Oliana et. Al., J. Org. Chem., 2006, p. 2472-2479).
  • reaction temperature of the mixture was raised to room temperature, the volatiles were removed under reduced pressure, diluted with a hexane: dichloromethane (1: 1 v / v) solution, and filtered through silica to obtain the title compound as a colorless transparent liquid (8.967 g, 85.7%). .
  • N, N-diethyl-1- (2-fluorophenyl) -1-phenylphosphinamine (8.967 g, 32.6 mmol) obtained above was added to anhydrous diethyl ether (70 mL). After dilution 1 M hydrogen chloride / diethyl ether (68.4 mL) was added slowly. After the mixture was reacted for at least 1 hour, activated alumina was filtered to obtain the title compound as a colorless transparent liquid (7.377 g, 94.9%).
  • chloro (2-fluorophenyl) phenylphosphine (2.3863 g, 10 mmol) obtained in Preparation Example A was diluted in n-hexane (20 mL), followed by trimethyltin hydride (4.0163 g). , 11 mmol) was added slowly. The mixture was reacted for 30 minutes, and then filtered through celite to remove the volatiles under reduced pressure to obtain the title compound as a liquid (2.0418 g, 100%).
  • ligand (1) was purified by silica column with a solution of n-hexane: ethyl acetate (9: 1 v / v) to give ligand (1) as a colorless transparent oil (0.2236 g, 95.1%).
  • the mixture was purified by silica column with a solution of n-hexane: ethyl acetate (9: 1 v / v) to give ligand (3) as a colorless transparent oil (0.2282 g, 100.0%).
  • Ligand (1) except that (2-fluorophenyl) (1-hexynyl) (phenyl) phosphine was used instead of (3,3-dimethyl-1-butynyl) (2-fluorophenyl) phenylphosphine as starting material
  • the reaction was carried out in the same manner as in the preparation of, to obtain the ligand (5) (51.01%).
  • Ligand (1) except for using (2-fluorophenyl) (phenyl) (phenylethynyl) phosphine in place of (3,3-dimethyl-1-butynyl) (2-fluorophenyl) phenylphosphine as starting material
  • the reaction was carried out in the same manner as in the preparation of, to obtain the ligand (7) (97.13%).
  • the title compound was obtained in the same manner as in the preparation of the ligand (3), except that ethynylbenzene was used instead of 3-methyl-1-butyne as the starting material (7.865 g, 92.29%).
  • the 2.1 L autoclave reactor was washed with nitrogen and vacuum, 1.0 L of methylcyclohexane was added, and 1.0 mL (1.87 mmol) of mMAO-3A (7 wt% -Al) sold by Akzo Nobel was added, followed by 500 Stirred at a stirring speed of rpm.
  • 1.9 mg (3 ⁇ mol) of the oligomerization catalyst I prepared above was added to 10 mL of methylcyclohexane in 20 mL of vial, and dispersed, and then charged into the autoclave reactor.
  • the temperature in the autoclave reactor was raised to 100 ° C., and ethylene was charged to 30 bar to start the oligomerization reaction.
  • the reactor was cooled with a cooling coil inside the reactor to maintain a constant temperature of 100 ° C. throughout the operation. After 60 minutes, the ethylene feed to the reactor was stopped, the stirring was stopped to stop the reaction, and after the excess ethylene was discharged in the reactor, the reactor was cooled to 10 ° C. or less. After the reaction was discharged into a discharge vessel containing 1.5 mL of 2-ethylhexanol, a small amount of the organic layer sample was passed through a micron syringe filter and analyzed by GC-FID. The remaining organic layer was filtered to separate the solid wax / polymer product. After drying these solid products overnight in an oven at 100 ° C., the obtained product was recorded.
  • Table 1 The product distribution of this example by GC analysis is summarized in Table 1 below.
  • the catalyst II was prepared in the same manner as in Example 1 using the ligand (2) instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1.
  • the product distribution of this example is summarized in Table 1 below.
  • Catalyst III was prepared in the same manner as in Example 1, and oligomerization was carried out in the same manner as in Example 1.
  • the product distribution of this example is summarized in Table 1 below.
  • the catalyst V was prepared in the same manner as in Example 1 using the ligand (5) instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1.
  • the product distribution of this example is summarized in Table 1 below.
  • catalyst (VII) was prepared using ligand (7) in the same manner as in Example 1, and then oligomerization reaction was performed in the same manner as in Example 1.
  • the product distribution of this example is summarized in Table 1 below.
  • catalyst (VIII) was prepared using ligand (8) in the same manner as in Example 1, followed by oligomerization reaction in the same manner as in Example 1.
  • the product distribution of this example is summarized in Table 1 below.
  • Catalyst IX was prepared in the same manner as in Example 1, followed by an oligomerization reaction in the same manner as in Example 1.
  • the product distribution of this example is summarized in Table 1 below.
  • the catalyst A was prepared in the same manner as in Example 1 using the ligand (A) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1.
  • the product distribution of this comparative example is summarized in Table 1 below.
  • the catalyst B was prepared in the same manner as in Example 1 using the ligand (B) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1.
  • the product distribution of this comparative example is summarized in Table 1 below.
  • the catalyst C was prepared in the same manner as in Example 1 using the ligand (C) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1.
  • the product distribution of this comparative example is summarized in Table 1 below.
  • the catalyst D was prepared in the same manner as in Example 1 using the ligand (D) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1.
  • the product distribution of this comparative example is summarized in Table 1 below.
  • the oligomerization catalyst of the present invention is substituted with fluorine at the ortho-position of phenyl bonded to phosphorus atom in bis (diphenylphosphino) ethene, and at one carbon atom.
  • fluorine at the ortho-position of phenyl bonded to phosphorus atom in bis (diphenylphosphino) ethene, and at one carbon atom.
  • it contains a ligand of the asymmetric form substituted with a hydrocarbyl group, it can be seen that it has a very good activity at high temperatures in comparison with the comparative example.
  • the oligomerization catalyst of the present invention exhibited at least 3.04 times more catalytic activity at a higher temperature than the catalyst of Comparative Example 4 containing a PNP ligand bonded to a phosphorus atom of phenyl substituted with fluorine at the ortho-position.
  • the oligomerization catalyst of the present invention remains catalytically active even at high temperatures, there are few by-products and there is no clogging and fouling, and thus it is very economical because the operation of the polymerization process for removing them is not necessary.
  • the oligomerization catalyst of the present invention is very excellent in catalytic activity even at high temperature, and has the advantage of preparing oligomers even when using a small amount of catalyst and a small amount of promoter in the oligomerization process of the olefin, but also active at high temperatures. This does not decrease and excellent selectivity, it is possible to manufacture 1-hexene or 1-octene from ethylene with high selectivity.
  • At least one fluorine is substituted for phenyl bonded to a phosphorus atom in bis (diphenylphosphino) ethene, and one carbon atom is substituted with a substituted or unsubstituted hydrocarbyl group other than hydrogen.
  • It contains the ligand of the formula (1) of the asymmetric form is excellent in catalytic activity and selectivity even at high temperature during ethylene oligomerization.
  • the oligomerization catalyst of the present invention is excellent in catalytic activity even at high temperatures, and does not require fouling and clogging caused by polymers, which are by-products during mass production of oligomers.
  • the oligomer manufacturing method of the present invention can produce the oligomer with high activity and high selectivity even at high temperature, and does not occur fouling and clogging, thereby making it possible to prepare the olefin in a very efficient process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a ligand, an ethylene oligomerization catalyst comprising same, and a method for selectively producing 1-hexene or 1-octene from ethylene by using the catalyst. The ligand according to the present invention is a bis (diphenylphosphino) ethane with a phosphorus atom substituted with a fluoro-substituted phenyl, and when the ligand is used for ethylene oligomerization, the high temperature activity of the catalyst can be increased.

Description

리간드, 이를 포함하는 올리고머화 촉매 및 이를 이용한 에틸렌 올리고머의 제조방법Ligand, oligomerization catalyst comprising the same and method for producing ethylene oligomer using same
본 발명은 에틸렌의 삼량체화나 사량체화와 같은 올리고머화 반응에 사용하기 위한 고활성과 고선택적인 에틸렌 올리머고화 촉매를 제조하기 위한 리간드, 이를 포함하는 올리고머화 촉매 및 이를 이용한 1-헥센 또는 1-옥텐의 제조방법에 관한 것이다.The present invention is a ligand for preparing a highly active and highly selective ethylene oligomerization catalyst for use in oligomerization reactions such as trimerization or tetramerization of ethylene, oligomerization catalyst comprising the same and 1-hexene or 1 using the same It relates to a production method of octene.
올리고머, 구체적으로 1-헥센 및 1-옥텐은 선형저밀도 폴리에틸렌을 만들기 위한 모노머 또는 코모노머로서 중합공정에 광범위하게 사용되는 중요한 상업적 원료로서, 에틸렌의 올리고머화 반응에 의해 생성된 제품을 정제하여 얻어진다. 그러나 기존의 에틸렌 올리고머화 반응은 1-헥센 및 1-옥텐과 함께 상당한 양의 부텐, 고급 올리고머와 폴리에틸렌을 함께 생성하는 비효율적인 측면이 있었다. 이러한 종래 에틸렌의 올리고머화 기술은 일반적으로 슐쯔-플로리(Schulze-Flory) 또는 포이즌(Poisson) 생성물 분포에 따라 다양한 α-올레핀을 생성하게 되므로, 원하는 생성물의 수율을 제한한다.Oligomers, in particular 1-hexene and 1-octene, are important commercial raw materials widely used in the polymerization process as monomers or comonomers for the production of linear low density polyethylene, obtained by purifying products produced by oligomerization of ethylene. . However, the existing ethylene oligomerization reaction has been an inefficient aspect of producing a considerable amount of butenes, higher oligomers and polyethylene together with 1-hexene and 1-octene. This conventional oligomerization technique of ethylene generally produces a variety of α-olefins depending on the Schulze-Flory or Poisson product distribution, thus limiting the yield of the desired product.
최근에 에틸렌을 전이금속 촉매작용을 통해 선택적으로 삼량체화하여 1-헥센을 생산하거나 또는 선택적으로 사량체화시켜 1-옥텐을 생산하는 것에 대한 연구가 진행되고 있는데, 공지된 대부분의 전이금속 촉매는 크롬계 촉매이다. Recently, research has been conducted on the production of 1-hexene by selectively trimerization of ethylene through transition metal catalysis or selectively tetramerization to produce 1-octene. Most known transition metal catalysts are chromium. System catalyst.
국제공개특허 제WO 02/04119호는 에틸렌 삼량체화 촉매로서 일반식 (R1)(R2)X-Y-X(R3)(R4)의 리간드를 사용한 크롬계 촉매를 개시하고 있는바, 여기에서, X는 인, 비소, 또는 안티몬이고, Y는 -N(R5)-와 같은 연결그룹이며, R1, R2, R3 및 R4 중 적어도 하나가 극성 또는 전자 수여 치환체를 가진다.WO 02/04119 discloses a chromium-based catalyst using a ligand of the general formula (R 1 ) (R 2 ) XYX (R 3 ) (R 4 ) as an ethylene trimerization catalyst, wherein X is phosphorus, arsenic, or antimony, Y is a linking group such as -N (R 5 )-, and at least one of R 1 , R 2 , R 3 and R 4 has a polar or electron-donating substituent.
또 다른 공지 문헌에서는 촉매 조건하에 1-헥센에 대해 촉매 활성을 나타내는 리간드로서 (o-메톡시페닐)2PN(Me)P(o-메톡시페닐)2과 같이 인에 결합된 페닐환의 오르토 위치에 극성 치환체인 메톡시가 결합된 PNP 리간드에 대해 공지되어 있다(Antea Carter et al., Chem. Commun., 2002, p. 858 - 859).In another known document, the ortho position of a phenyl ring bonded to phosphorus, such as (o-methoxyphenyl) 2 PN (Me) P (o-methoxyphenyl) 2 , as a ligand exhibiting catalytic activity for 1-hexene under catalytic conditions It is known for PNP ligands to which methoxy, which is a polar substituent, is bound (Antea Carter et al., Chem. Commun., 2002, p. 858-859).
또한 한국공개특허 제2006-0002741호에는 (o-에틸페닐)2PN(Me)P(o-에틸페닐)2 과 같이 인에 부착된 페닐환의 오르토 위치상에 비극성 치환체를 함유하는 PNP 리간드를 사용하여 우수한 에틸렌 삼량체화 활성 및 선택성이 실제로 가능하다는 것이 공지되어있다.In addition, Korean Patent Publication No. 2006-0002741 uses a PNP ligand containing a nonpolar substituent on the ortho position of a phenyl ring attached to phosphorus such as (o-ethylphenyl) 2 PN (Me) P (o-ethylphenyl) 2. It is known that excellent ethylene trimerization activity and selectivity are indeed possible.
한편, 국제공개특허 제WO 04/056479호에는 인에 부착된 페닐환에 치환체가 생략된 PNP 리간드를 함유하는 크롬계 촉매에 의해 에틸렌을 사량체화하여 1-옥텐을 생성함에 있어서 선택도를 향상시킨다는 것이 공지되었으며, 이들 에틸렌 사량체화를 위한 사량체화 촉매에 사용되는 헤테로 원자 리간드의 예로서 (페닐)2PN(아이소프로필)P(페닐)2 등을 개시하고 있다.On the other hand, WO 04/056479 discloses that the selectivity is improved by tetramerization of ethylene by a chromium-based catalyst containing a PNP ligand in which a phenyl ring attached to phosphorus is omitted. It is known, and (phenyl) 2 PN (isopropyl) P (phenyl) 2 and the like are disclosed as examples of the hetero atom ligands used in the tetramerization catalyst for these ethylene tetramerization.
상기 선행 기술은 질소 및 인을 헤테로 원자로 가지는 헤테로 원자 리간드를 함유하는 크롬계 촉매가 인 원자에 결합된 하이드로카빌 또는 헤테로하이드로카빌 그룹에 대한 극성치환체 없이도 에틸렌을 사량체하여 70 질량%를 초과하는 선택성으로 1-옥텐을 생산할 수 있음을 개시하였다.This prior art has a selectivity of greater than 70% by mass of chromium-based catalysts containing heteroatom ligands having nitrogen and phosphorus as heteroatoms, tetramers of ethylene without polar substituents to hydrocarbyl or heterohydrocarbyl groups bonded to the phosphorus atom. It was disclosed that 1-octene can be produced.
그러나 종래의 선행기술들은 헤테로 원자를 포함하는 리간드의 구조와 관련하여 구체적으로 어떠한 형태가 고선택적으로 에틸렌을 사량체화하여 1-옥텐을 생성하거나 에틸렌을 삼량체화하여 1-헥센을 생성할 수 있는지에 관한 명확한 예를 제시하지 못 하였을 뿐 아니라, 70 질량% 정도의 1-옥텐 선택성을 가지는 리간드로서 (R1)(R2)P-(R5)N-P(R3)(R4)와 같은 PNP형 골격의 구조 밖에 제시하지 못하였으며, 헤테로 원자 리간드 중 치환 가능한 치환체의 형태도 제한적으로 개시하고 있을 뿐이다. However, the prior art is specifically related to the structure of a ligand containing a hetero atom in which form can be highly selectively tetramerized ethylene to produce 1-octene or ethylene trimerized to produce 1-hexene. Not only did we give a clear example, but PNPs such as (R 1 ) (R 2 ) P- (R 5 ) NP (R 3 ) (R 4 ) as ligands with 1-octene selectivity of about 70% by mass. Only the structure of the type skeleton is given, and the types of substituents that can be substituted in the heteroatom ligands are also limited.
한편 에틸렌의 사량체화를 위한 촉매 시스템에서 높은 반응온도에서 촉매활성이 저하되며, 상당한 중합체 부산물이 형성됨으로써 선택성이 낮아지며, 중합공정에 심각한 문제를 유발한다.On the other hand, in the catalyst system for tetramerization of ethylene, the catalytic activity is deteriorated at high reaction temperatures, and significant polymer by-products are formed, resulting in low selectivity and serious problems in the polymerization process.
구체적으로, 높은 온도에서 사량체화 촉매 시스템은 촉매활성이 저하되어 올레핀, 특히 1-옥텐의 생산량 및 선택성이 저하되고, 부산물의 생성이 높아짐에 따라 관막힘 및 파울링이 발생됨에 따라 공정중단이 불가피하게 발생하게 됨으로써 올레핀 중합 공정에 있어 심각한 문제를 발생시킨다.Specifically, at high temperatures, the tetramerization catalyst system is inevitably interrupted due to a decrease in catalytic activity resulting in a decrease in the production and selectivity of olefins, especially 1-octene, and the formation of by-products resulting in clogging and fouling. This causes serious problems in the olefin polymerization process.
따라서, 높은 온도에서 올레핀 올리고머화 촉매활성을 저하시키지 않으면서 고활성 및 고선택적으로 에틸렌을 올리고머화하여 1-헥센이나 1-옥텐을 생성할 수 있는 구조의 올리고머화 촉매의 개발이 시급한 실정이다.Therefore, there is an urgent need to develop an oligomerization catalyst having a structure capable of producing 1-hexene or 1-octene by oligomerizing high activity and high selectivity without degrading the olefin oligomerization catalytic activity at high temperature.
본 발명의 목적은 에틸렌의 삼량체화나 사량체화와 같은 올리고머화 반응 시 고온에서도 활성이 유지됨으로써 고활성 및 고선택적으로 올리고머를 제조할 수 있는 신규의 리간드, 이를 포함하는 에틸렌 올리고머화 촉매 및 이를 이용한 에틸렌 올리고머를 제조하는 방법을 제공하는 것이다.It is an object of the present invention to maintain a high activity in the oligomerization reaction such as trimerization or tetramerization of ethylene at high temperature, a novel ligand capable of producing high activity and high selective oligomer, ethylene oligomerization catalyst comprising the same and using the same It is to provide a method for producing an ethylene oligomer.
본 발명은 올레핀의 올리고머화, 구체적으로 에틸렌의 삼량체화나 사량체화 반응에 사용하기 위해 높은 온도에서도 고활성 및 고선택적으로 에틸렌을 올리머고화 할 수 있는 신규의 리간드를 제공하는 것으로, 리간드는 하기 화학식 1로 표시된다.The present invention provides a novel ligand capable of oligomerizing ethylene at high temperatures and at high temperatures for use in oligomerization of olefins, specifically trimerization or tetramerization of ethylene. It is represented by Formula (1).
[화학식 1][Formula 1]
Figure PCTKR2018012025-appb-I000001
Figure PCTKR2018012025-appb-I000001
상기 화학식 1에서, In Chemical Formula 1,
R1은 하이드로카빌이고;R 1 is hydrocarbyl;
R2 및 R3는 각각 독립적으로 하이드로카빌이고;R 2 and R 3 are each independently hydrocarbyl;
p 및 q는 각각 독립적으로 0 내지 5의 정수이고;p and q are each independently integers of 0 to 5;
m 및 n은 각각 독립적으로 0 내지 5의 정수로, 1≤m+n≤10이다.m and n are each independently integers of 0 to 5, where 1 ≦ m + n ≦ 10.
본 발명의 일 실시예에 있어서, 상기 리간드는 하기 화학식 2로 표시될 수 있다.In one embodiment of the present invention, the ligand may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2018012025-appb-I000002
Figure PCTKR2018012025-appb-I000002
상기 화학식 2에서, R1, m 및 n은 상기 화학식 1에서의 정의와 동일하다.In Formula 2, R 1 , m and n are the same as defined in Formula 1.
본 발명의 일 실시예에 있어서, 상기 리간드는 하기 화학식 3, 화학식 4 또는 화학식 5로 표시될 수 있다.In one embodiment of the present invention, the ligand may be represented by the following formula (3), (4) or (5).
[화학식 3][Formula 3]
Figure PCTKR2018012025-appb-I000003
Figure PCTKR2018012025-appb-I000003
[화학식 4][Formula 4]
Figure PCTKR2018012025-appb-I000004
Figure PCTKR2018012025-appb-I000004
[화학식 5][Formula 5]
Figure PCTKR2018012025-appb-I000005
Figure PCTKR2018012025-appb-I000005
상기 화학식 3 내지 5에서, R1, R2, R3, p 및 q는 상기 화학식 1에서의 정의와 동일하다.In Formulas 3 to 5, R 1 , R 2 , R 3 , p, and q are the same as defined in Formula 1 above.
보다 바람직하게는 상기 화학식 3 내지 5에서, 상기 R1은 C1-C7알킬 또는 C6-C12아릴일 수 있다.More preferably, in Chemical Formulas 3 to 5, R 1 may be C1-C7 alkyl or C6-C12 aryl.
또한, 본 발명은 상기 화학식 1의 리간드 및 전이금속을 포함하는 에틸렌 올리고머화 촉매를 제공한다.The present invention also provides an ethylene oligomerization catalyst comprising the ligand of Formula 1 and a transition metal.
본 발명의 일실시예에 따른 올리고머화 촉매에서, 상기 올리고머화 촉매는 단핵 또는 이핵성일 수 있다.In the oligomerization catalyst according to an embodiment of the present invention, the oligomerization catalyst may be mononuclear or dinuclear.
본 발명의 일실시예에 따른 올리고머화 촉매에서, 상기 전이금속은 특별히 제한되지는 않으나, 4족, 5족 또는 6족 전이금속일 수 있다.In the oligomerization catalyst according to an embodiment of the present invention, the transition metal is not particularly limited, but may be a Group 4, Group 5 or Group 6 transition metal.
본 발명의 일실시예에 따른 올리고머화 촉매에서, 상기 전이금속은 크롬, 몰리브덴, 텅스텐, 티탄, 탄탈륨, 바나듐 또는 지르코늄일 수 있다.In the oligomerization catalyst according to an embodiment of the present invention, the transition metal may be chromium, molybdenum, tungsten, titanium, tantalum, vanadium or zirconium.
본 발명의 일실시예에 따른 올리고머화 촉매에서, 상기 전이금속은 크롬일 수 있다.In the oligomerization catalyst according to an embodiment of the present invention, the transition metal may be chromium.
또한, 본 발명은 상기 에틸렌 올리고머화 촉매를 포함하는 촉매 조성물을 이용한 에틸렌 올리고머의 제조방법을 제공하는 것으로, 상기 에틸렌 올리고머화 촉매 조성물을 에틸렌과 접촉시켜 에틸렌 올리고머를 제조할 수 있다.In another aspect, the present invention provides a method for producing an ethylene oligomer using a catalyst composition comprising the ethylene oligomerization catalyst, it is possible to prepare an ethylene oligomer by contacting the ethylene oligomerization catalyst composition with ethylene.
본 발명의 일실시예에 따른 에틸렌 올리고머의 제조방법에서, 상기 촉매 조성물은 조촉매를 더 포함할 수 있다.In the method for preparing an ethylene oligomer according to an embodiment of the present invention, the catalyst composition may further include a promoter.
본 발명의 일실시예에 따른 에틸렌 올리고머의 제조방법에서, 상기 조촉매는 유기 알루미늄 화합물, 유기 붕소 화합물, 유기염 또는 이들의 혼합물일 수 있으나, 이에 한정되지는 않는다.In the method for preparing an ethylene oligomer according to an embodiment of the present invention, the promoter may be an organoaluminum compound, an organic boron compound, an organic salt, or a mixture thereof, but is not limited thereto.
본 발명의 일실시예에 따른 에틸렌 올리고머의 제조방법에서, 상기 유기 알루미늄 화합물은 알루미녹산계 화합물, AlR3 (여기에서, R은 각각 독립적으로 C1-C12알킬, C6-C20아릴, C2-C10알케닐, C2-C10알키닐, C1-C12알콕시 또는 할로겐이다.)의 화합물 또는 LiAlH4 등을 포함할 수 있으며, 상기 조촉매는 구체적으로 메틸알루미녹산(MAO), 변형 메틸알루미녹산 (mMAO), 에틸알루미녹산(EAO), 테트라이소부틸알루미녹산(TIBAO), 이소부틸알루미녹산(IBAO), 트리메틸알루미늄(TMA), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리-n-옥틸알루미늄, 메틸알루미늄디클로라이드, 에틸알루미늄 디클로라이드, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 알루미늄이소프로폭사이드, 에틸알루미늄 세스퀴클로라이드 또는 메틸알루미늄 세스퀴클로라이드일 수 있으나, 이에 한정되지는 않는다.In the method for preparing an ethylene oligomer according to an embodiment of the present invention, the organoaluminum compound is an aluminoxane compound, AlR 3 (wherein R is independently C 1 -C 12 alkyl, C 6 -C 20 aryl, C 2 -C 10 al Kenyl, C 2 -C 10 alkynyl, C 1 -C 12 alkoxy or halogen) or LiAlH 4 , and the like, and the promoter may specifically be methylaluminoxane (MAO), modified methylaluminoxane (mMAO), Ethylaluminoxane (EAO), tetraisobutylaluminoxane (TIBAO), isobutylaluminoxane (IBAO), trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octyl It may be aluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminum isopropoxide, ethylaluminum sesquichloride or methylaluminum sesquichloride But, it is not limited.
본 발명의 일실시예에 따른 상기 에틸렌 올리고머의 제조방법에 있어서, 상기 에틸렌 올리고머는 1-헥센, 1-옥텐 또는 이들의 혼합물일 수 있다.In the method for preparing the ethylene oligomer according to an embodiment of the present invention, the ethylene oligomer may be 1-hexene, 1-octene or a mixture thereof.
본 발명의 일실시예에 따른 상기 에틸렌 올리고머의 제조방법에 있어서, 지방족 탄화수소를 반응용매로 사용할 수 있다.In the method for producing the ethylene oligomer according to an embodiment of the present invention, an aliphatic hydrocarbon may be used as a reaction solvent.
본 발명의 일실시예에 따른 상기 에틸렌 올리고머의 제조방법에 있어서, 상기 지방족 탄화수소는 헥산, 헵탄, 옥탄, 노넨, 데칸, 언데칸, 도데칸, 테트라데칸, 2,2-디메틸펜탄, 2,3-디메틸펜탄, 2,4-디메틸펜탄, 3,3-디메틸펜탄, 2,2,4-트리메틸펜탄, 2,3,4-트리메틸펜탄, 2-메틸헥산, 3-메틸헥산, 2,2-디메틸헥산, 2,4-디메틸헥산, 2,5-디메틸헥산, 3,4-디메틸헥산, 2-메틸헵탄, 4-메틸헵탄, 사이클로헥산, 메틸사이클로헥산, 에틸사이클로헥산, 이소프로필사이클로헥산, 1,4-디메틸사이클로헥산 및 1,2,4-트리메틸사이클로헥산 중에서 선택된 1종 이상일 수 있으나, 이에 한정되지는 않는다.In the method for preparing the ethylene oligomer according to an embodiment of the present invention, the aliphatic hydrocarbon is hexane, heptane, octane, nonene, decane, undecane, dodecane, tetradecane, 2,2-dimethylpentane, 2,3 -Dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2,2,4-trimethylpentane, 2,3,4-trimethylpentane, 2-methylhexane, 3-methylhexane, 2,2- Dimethylhexane, 2,4-dimethylhexane, 2,5-dimethylhexane, 3,4-dimethylhexane, 2-methylheptane, 4-methylheptane, cyclohexane, methylcyclohexane, ethylcyclohexane, isopropylcyclohexane, It may be one or more selected from 1,4-dimethylcyclohexane and 1,2,4-trimethylcyclohexane, but is not limited thereto.
본 발명에 따른 올리고머화 촉매는 비스(디페닐포스피노)에텐에서 인 원자와 결합된 페닐에 적어도 하나의 불소가 치환되고, 하나의 탄소 원자에 수소 이외 치환되거나 치환되지 않은 하이드로카빌기가 치환된 비대칭 형태의 상기 화학식 1의 리간드를 포함하고 있어 에틸렌 올리고머화 시 높은 온도에서도 촉매활성 및 선택성이 우수하다.In the oligomerization catalyst according to the present invention, at least one fluorine is substituted for phenyl bonded to a phosphorus atom in bis (diphenylphosphino) ethene, and one carbon atom is substituted with a substituted or unsubstituted hydrocarbyl group other than hydrogen. It contains the ligand of the formula (1) of the asymmetric form is excellent in catalytic activity and selectivity even at high temperature during ethylene oligomerization.
특히, 화학식 1의 리간드에서 불소가 페닐의 오쏘- 위치에 결합되는 경우 에틸렌 올리고머화 시 고온에서 촉매활성 및 선택성이 우수하다.In particular, when the fluorine is bonded to the ortho-position of phenyl in the ligand of Formula 1, it has excellent catalytic activity and selectivity at high temperature during ethylene oligomerization.
또한, 본 발명의 올리고머화 촉매는 고온에서도 촉매활성이 우수하며, 올리고머의 대량생산시 부산물인 폴리머의 의해 발생하는 파울링 및 관막힘이 일어나지 않아 공정중단(shut down)이 필요치 않아 매우 경제적이다.In addition, the oligomerization catalyst of the present invention is excellent in catalytic activity even at high temperatures, and does not require fouling and clogging caused by polymers, which are by-products during mass production of oligomers.
또한 본 발명의 올리고머 제조방법은 고온에서도 고활성 및 높은 선택성으로 올리고머를 제조할 수 있을 뿐만 아니라 파울링 및 관막힘이 일어나지 않아 매우 효율적인 공정으로 올레핀의 제조가 가능하다.In addition, the oligomer manufacturing method of the present invention can produce the oligomer with high activity and high selectivity even at high temperature, and does not occur fouling and clogging, thereby making it possible to prepare the olefin in a very efficient process.
본 명세서에 기재된 "하이드로카빌" 또는 "헤테로하이드로카빌"은 하이드로카본 또는 헤테로하이드로카본으로부터 유도되는 1개의 결합위치를 갖는 라디칼을 의미하며, "헤테로"는 탄소가 O, S 및 N 원자로부터 선택되는 하나 이상의 원자로 치환된 것을 의미한다.As used herein, "hydrocarbyl" or "heterohydrocarbyl" refers to a radical having one bonding position derived from a hydrocarbon or heterohydrocarbon, and "hetero" means that the carbon is selected from O, S and N atoms. It means substituted by one or more atoms.
본 명세서에 기재된 "치환된"은 기 또는 부분의 구조적 골격에 부착된 하나 이상의 치환기를 갖는 기 또는 부위를 지칭한다. 비제한적으로 언급된 기 또는 구조적 골격에 중수소, 히드록시, 할로겐, 카르복실, 시아노, 니트로, 옥소(=0), 티오(=S), 알킬, 할로알콕시, 알켄일, 알킨일, 아릴, 아릴옥시, 알콕시카보닐, 알킬카보닐옥시, 알케닐카보닐옥시, 아키닐카보닐옥시, 아미노카보닐, 알킬카보닐아미노, 알케닐카보닐아미노, 알키닐카보닐아미노, 티오알킬, 티오알케닐, 티오알키닐, 알킬실릴, 아케닐실릴, 알키닐실릴, 아릴실릴, 아릴알킬, 아릴알케닐, 아릴알키닐, 시클로알킬, 시클로알킬알킬, 시클로알켄일, 아미노, 알킬아미노, 디알킬아미노, 헤테로아릴, 헤테로시클릴알킬 고리, 헤테로아릴알킬 및 헤테로시클로알킬에서 선택되는 어느 하나 이상으로 치환되는 것을 의미한다. As used herein, “substituted” refers to a group or moiety having one or more substituents attached to the structural backbone of the group or moiety. Non-limiting mentioned groups or structural skeletons include deuterium, hydroxy, halogen, carboxyl, cyano, nitro, oxo (= 0), thio (= S), alkyl, haloalkoxy, alkenyl, alkynyl, aryl, Aryloxy, alkoxycarbonyl, alkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, aminocarbonyl, alkylcarbonylamino, alkenylcarbonylamino, alkynylcarbonylamino, thioalkyl, thioal Kenyl, thioalkynyl, alkylsilyl, akenylsilyl, alkynylsilyl, arylsilyl, arylalkyl, arylalkenyl, arylalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, amino, alkylamino, dialkylamino It means substituted by any one or more selected from heteroaryl, heterocyclylalkyl ring, heteroarylalkyl and heterocycloalkyl.
상기 "치환된"은 구체적으로 중수소, 히드록시, 할로겐, 카르복실, 시아노, 니트로, 옥소(=0), 티오(=S), C1-C10알킬, 할로C1-C10알콕시, C2-C10알켄일, C2-C10알킨일, C6-C20아릴, C6-C20아릴옥시, C1-C10알콕시카보닐, C1-C10알킬카보닐옥시, C2-C10알케닐카보닐옥시, C2-C10알키닐카보닐옥시, 아미노카보닐, C1-C10알킬카보닐아미노, C2-C10알케닐카보닐아미노, C2-C10알키닐카보닐아미노, 티오C1-C10알킬, 티오C2-C10알케닐, 티오C2-C10알키닐, C1-C10알킬실릴, C2-C10알케닐실릴, C2-C10알키닐실릴, C6-C20아릴실릴, C6-C20아릴C1-C10알킬, C6-C20아릴C2-C10알케닐, C6-C20아릴C2-C10알키닐, C3-C10시클로알킬, C3-C10시클로알킬C1-C10알킬, C2-C10시클로알켄일, 아미노, C1-C10알킬아미노, 디C1-C10알킬아미노, C6-C20헤테로아릴, C3-C20헤테로시클로알킬 고리, C3-C10헤테로아릴C1-C10알킬 및 C3-C10헤테로시클로알킬에서 선택되는 어느 하나 이상으로 치환되는 것을 의미한다.The "substituted" specifically refers to deuterium, hydroxy, halogen, carboxyl, cyano, nitro, oxo (= 0), thio (= S), C1-C10 alkyl, haloC1-C10 alkoxy, C2-C10 al. Kenyl, C2-C10 alkynyl, C6-C20 aryl, C6-C20 aryloxy, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyloxy, C2-C10 alkenylcarbonyloxy, C2-C10 alkynylcarbonyl Oxy, aminocarbonyl, C1-C10 alkylcarbonylamino, C2-C10 alkenylcarbonylamino, C2-C10 alkynylcarbonylamino, thioC1-C10 alkyl, thioC2-C10 alkenyl, thioC2-C10 alky Nyl, C1-C10 Alkylsilyl, C2-C10 Alkenylsilyl, C2-C10 Alkynylsilyl, C6-C20 Arylsilyl, C6-C20 Aryl C1-C10 Alkyl, C6-C20 Aryl C2-C10 Alkenyl, C6-C20 Aryl C2-C10 alkynyl, C3-C10 cycloalkyl, C3-C10 cycloalkyl C1-C10 alkyl, C2-C10 cycloalkenyl, amino, C1-C10 alkylamino, diC1-C10 alkylamino, C6-C20 heteroaryl , C3-C20 heterocycloalkyl ring, C3-C10 heteroarylC1-C10 alkyl and C3-C10 heterocycloalkyl It means to be substituted with any one or more of the selected.
본 명세서에 기재된 "알킬"은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼로, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 노닐 등을 포함하지만 이에 한정되지는 않는다. 또한, 본 발명에 기재되어 있는 알킬 라디칼은 1 내지 10개의 탄소 원자 바람직하게는 1 내지 7개, 보다 바람직하게는 1 내지 5개의 탄소 원자를 갖는다"Alkyl" as used herein is a monovalent straight or pulverized saturated hydrocarbon radical consisting solely of carbon and hydrogen atoms and is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, nonyl and the like. It includes, but is not limited to. In addition, the alkyl radicals described in this invention have 1 to 10 carbon atoms, preferably 1 to 7, more preferably 1 to 5 carbon atoms.
또한, 본 명세서에 기재된 "아릴"은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 1가의 유기 라디칼로, 각 고리에 일례로, 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수 개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐(indenyl), 플루오레닐 등을 포함하지만, 이에 한정되지 않는다. 또한, 본 발명에 기재되어 있는 아릴 라디칼은 6 내지 20개의 탄소 원자 바람직하게는 6 내지 12개의 탄소 원자를 갖는다.In addition, "aryl" described herein is a monovalent organic radical derived from an aromatic hydrocarbon by one hydrogen removal, each ring containing, for example, 4 to 7, preferably 5 or 6 ring atoms It includes a single or fused ring system, and includes a form in which a plurality of aryls are connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like. The aryl radicals described herein also have 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms.
본 명세서에서 "에틸렌 올리고머화"는 에틸렌이 소중합되는 것으로, 중합되는 에틸렌의 개수에 따라 삼량화(trimerization), 사량화(tetramerization)라고 한다. 특히 본 명세서에서는 에틸렌으로부터 LLDPE(linear low density polyethylene)의 주요 공단량체인 1-헥센, 1-옥텐 또는 이의 혼합물을 제조하는 것을 의미한다.In the present specification, "ethylene oligomerization" refers to small polymerization of ethylene and is called trimerization and tetramerization depending on the number of ethylene polymerized. In particular, it is meant herein to prepare 1-hexene, 1-octene or mixtures thereof which are the main comonomers of linear low density polyethylene (LLDPE) from ethylene.
본 명세서에서 "올리고머화 촉매"는 리간드 및 전이금속으로 제조된 전이금속착체 형태 및 리간드와 전이금속 조성물 형태를 모두 포함하는 것으로 정의한다.As used herein, "oligomerization catalyst" is defined to include both the form of the ligand and the transition metal complex and the form of the ligand and the transition metal composition.
본 명세서에서 "올리고머화 촉매 조성물"은 상기한 "올리고머화 촉매"에 조촉매 또는 첨가제를 더 포함하는 것으로 정의한다.As used herein, "oligomerization catalyst composition" is defined as further comprising a cocatalyst or an additive in the above "oligomerization catalyst".
본 발명은 종래의 촉매와 달리 높은 온도에서도 고활성을 유지하는 올리고머화 촉매를 제조하기 위한 리간드를 제공하는 것으로, 본 발명의 리간드는 하기 화학식 1로 표시된다.The present invention provides a ligand for preparing an oligomerization catalyst that maintains high activity even at a high temperature unlike a conventional catalyst, the ligand of the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2018012025-appb-I000006
Figure PCTKR2018012025-appb-I000006
상기 화학식 1에서, In Chemical Formula 1,
R1은 치환되거나 치환되지 않은 하이드로카빌이고;R 1 is substituted or unsubstituted hydrocarbyl;
R2 및 R3는 각각 독립적으로 하이드로카빌이고;R 2 and R 3 are each independently hydrocarbyl;
p 및 q는 각각 독립적으로 0 내지 5의 정수이고;p and q are each independently integers of 0 to 5;
m 및 n은 각각 독립적으로 0 내지 5의 정수로, 1≤m+n≤10이다.m and n are each independently integers of 0 to 5, where 1 ≦ m + n ≦ 10.
본 발명의 리간드는 종래 선행 문헌들과는 달리 비스(디페닐포스피노)에텐(bis(diphenylphosphino)ethene)에서 인 원자와 결합된 페닐에 적어도 하나의 불소가 치환되고, 하나의 탄소 원자에 수소 이외 치환되거나 치환되지 않은 하이드로카빌기가 치환된 비대칭 형태의 상기 화학식 1의 리간드로, 적어도 하나의 불소가 치환된 페닐을 포함하는 상기 화학식 1의 리간드로 인하여 에틸렌 올리고머화 시 높은 온도에서도 촉매활성 및 선택성이 우수한 장점을 갖는다. Unlike the prior art literatures, the ligand of the present invention is substituted with at least one fluorine in phenyl bonded to a phosphorus atom in bis (diphenylphosphino) ethene, and substituted in one carbon atom other than hydrogen or Asymmetrically substituted ligand of Formula 1 in which an unsubstituted hydrocarbyl group is substituted. Due to the ligand of Formula 1 including at least one fluorine-substituted phenyl, it has excellent catalytic activity and selectivity even at high temperature during ethylene oligomerization. Has an advantage.
본 발명의 일실시예에 있어서, 바람직하게 상기 리간드는 하기 화학식 2로 표시될 수 있다.In one embodiment of the present invention, preferably, the ligand may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2018012025-appb-I000007
Figure PCTKR2018012025-appb-I000007
상기 화학식 2에서, R1, m 및 n은 상기 화학식 1에서의 정의와 동일하다.In Formula 2, R 1 , m and n are the same as defined in Formula 1.
본 발명의 일실시예에 있어서, 바람직하게 상기 리간드는 하기 화학식 3, 화학식 4 또는 화학식 5로 표시될 수 있다.In one embodiment of the present invention, preferably the ligand may be represented by the following formula (3), (4) or (5).
[화학식 3][Formula 3]
Figure PCTKR2018012025-appb-I000008
Figure PCTKR2018012025-appb-I000008
[화학식 4][Formula 4]
Figure PCTKR2018012025-appb-I000009
Figure PCTKR2018012025-appb-I000009
[화학식 5][Formula 5]
Figure PCTKR2018012025-appb-I000010
Figure PCTKR2018012025-appb-I000010
상기 화학식 3 내지 5에서, R1, R2, R3, p 및 q는 상기 화학식 1에서의 정의와 동일하다.In Formulas 3 to 5, R 1 , R 2 , R 3 , p, and q are the same as defined in Formula 1 above.
보다 바람직하게 본 발명의 일 실시예에 있어서, 상기 화학식 1 또는 2에서 m 및 n은 각각 독립적으로 0 내지 1의 정수로, 1≤m+n≤2일 수 있으며, 불소는 오쏘-위치에 치환될 수 있다.More preferably, in one embodiment of the present invention, in Formula 1 or 2 m and n are each independently an integer of 0 to 1, may be 1≤m + n≤2, fluorine is substituted in the ortho-position Can be.
구체적으로, 상기 화학식 1 또는 2에서 m은 0이고 n은 1일 수 있다.Specifically, in Formula 1 or 2, m may be 0 and n may be 1.
구체적으로, 상기 화학식 1 또는 2에서 m은 1이고 n은 0일 수 있다.Specifically, in Formula 1 or 2, m may be 1 and n may be 0.
구체적으로, 상기 화학식 1 또는 2에서 m은 1이고 n은 1일 수 있다.Specifically, in Formula 1 or 2, m may be 1 and n may be 1.
본 발명의 일 실시예에 있어서, 상기 R2 및 R3는 각각 독립적으로 C1-C10알킬, C6-C20아릴, C6-C20아릴C1-C10알킬 또는 C1-C10알킬C6-C20아릴일 수 있으며, p 및 q는 각각 독립적으로 0 내지 2의 정수일 수 있다.In one embodiment of the present invention, R 2 and R 3 may be each independently C1-C10 alkyl, C6-C20 aryl, C6-C20 arylC1-C10 alkyl or C1-C10 alkylC6-C20 aryl, p and q may each independently be an integer of 0 to 2.
보다 바람직하게 본 발명의 일 실시예에 있어서, 상기 p 및 q는 각각 독립적으로 0의 정수일 수 있다.More preferably, in one embodiment of the present invention, p and q may be each independently an integer of zero.
바람직하게 본 발명의 일 실시예에 있어서, 상기 R1은 C1-C10알킬, C6-C20아릴, C6-C20아릴C1-C10알킬 또는 C1-C10알킬C6-C20아릴일 수 있으며, 더욱 바람직하게 R1은 C1-C7알킬 또는 C6-C12아릴일 수 있다.Preferably in one embodiment of the present invention, R 1 may be C1-C10 alkyl, C6-C20 aryl, C6-C20 arylC1-C10 alkyl or C1-C10 alkylC6-C20 aryl, more preferably R 1 may be C 1 -C 7 alkyl or C 6 -C 12 aryl.
본 발명의 일실시예에 따른 상기 리간드는 하기 구조로 예시될 수 있으나, 이에 한정되는 것은 아니다.The ligand according to an embodiment of the present invention may be exemplified by the following structure, but is not limited thereto.
Figure PCTKR2018012025-appb-I000011
Figure PCTKR2018012025-appb-I000011
또한, 본 발명은 상기 화학식 1의 리간드 및 전이금속을 포함하는 에틸렌 올리고머화 촉매를 제공한다.The present invention also provides an ethylene oligomerization catalyst comprising the ligand of Formula 1 and a transition metal.
상기 전이금속은 특별히 제한되지는 않으나, 4족, 5족 또는 6족 전이금속일 수 있으며, 바람직하게 크롬, 몰리브덴, 텅스텐, 티탄, 탄탈륨, 바나듐 또는 지르코늄으로부터 선택될 수 있으며, 더욱 바람직하게는 크롬이다.The transition metal is not particularly limited, but may be a Group 4, 5 or 6 transition metal, preferably selected from chromium, molybdenum, tungsten, titanium, tantalum, vanadium or zirconium, more preferably chromium to be.
상기 전이금속은 전이금속 전구체로부터 유도될 수 있다. The transition metal may be derived from a transition metal precursor.
상기 전이금속 전구체는 구체적으로 4족, 5족 또는 6족 전이금속 전구체로, 바람직하게는 크롬, 몰리브덴, 텅스텐, 티탄, 탄탈륨, 바나듐 또는 지르코늄 전구체들로부터 선택될 수 있으며, 크롬 전구체를 사용하는 것이 보다 바람직할 수 있다. The transition metal precursor is specifically a Group 4, Group 5 or Group 6 transition metal precursor, preferably may be selected from chromium, molybdenum, tungsten, titanium, tantalum, vanadium or zirconium precursors. More preferred.
상기 크롬 전구체는 특별히 제한되지는 않으나, 크롬(Ⅲ)아세틸아세토네이트, 삼염화크롬 트리스테트라하이트로퓨란 및 크롬(Ⅲ)2-에틸헥사노에이트로 이루어진 군으로부터 선택되는 것이 바람직하다.The chromium precursor is not particularly limited, but is preferably selected from the group consisting of chromium (III) acetylacetonate, chromium trichloride tristetrahytrofuran and chromium (III) 2-ethylhexanoate.
본 발명에 따른 올리고머화 촉매는 전이금속 또는 전이금속 전구체에 화학식 1의 헤테로원자 리간드가 배위 결합된 단핵 또는 이핵성의 올리고머화 촉매일 수 있으며, 구체적으로 ML1(L)a(X)b 또는 M2X1 2L1 2(L)y(X)z로 표시될 수 있으며, 상기 M은 전이금속이고, L1은 상기 화학식 1의 리간드이고, X 및 X1는 각각 독립적으로 전이금속 전구체로부터 기인되는 작용기로, 예를 들면 할로겐이고, L은 유기리간드이고, a는 0 이상의 정수이고, b는 (M의 산화수-a)의 정수이고, y는 0 이상의 정수이고, z는 (2 × M의 산화수)-2-y의 정수일 수 있다.The oligomerization catalyst according to the present invention may be a mononuclear or heteronuclear oligomerization catalyst in which a heteroatom ligand of Formula 1 is coordinated to a transition metal or transition metal precursor, and specifically ML 1 (L) a (X) b or M It may be represented by 2 X 1 2 L 1 2 (L) y (X) z , wherein M is a transition metal, L 1 is a ligand of Formula 1, X and X 1 are each independently from a transition metal precursor The functional group to be derived is, for example, halogen, L is an organic ligand, a is an integer of 0 or more, b is an integer of (oxidation number of a-M), y is an integer of 0 or more, and z is (2 x M May be an integer of) -2-y.
본 발명에 따른 올리고머화 촉매는 더욱 더 바람직하게 상기 화학식 3, 화학식 4 또는 화학식 5에서 p 및 q가 0인 리간드를 크롬 또는 크롬 전구체에 배위결합시킴으로서, 올리고머화 반응 활성을 안정적으로 유지하면서, 고온에서 고활성, 고선택적으로 1-헥센 및 1-옥텐을 제조할 수 있게 한다.Even more preferably, the oligomerization catalyst according to the present invention coordinates a ligand having p and q 0 in chromium or chromium precursor in Chemical Formula 3, Chemical Formula 4 or Chemical Formula 5 so as to stably maintain the oligomerization activity, It is possible to prepare 1-hexene and 1-octene in high activity, high selectivity.
본 발명에 따른 올리고머화 촉매는 구체적으로는 하기 구조로 예시될 수 있으나, 이에 한정되지는 않는다.The oligomerization catalyst according to the present invention may be specifically exemplified by the following structure, but is not limited thereto.
Figure PCTKR2018012025-appb-I000012
Figure PCTKR2018012025-appb-I000012
(상기 구조에서, R1은 C1-C7알킬 또는 C6-C12아릴이고, X는 할로겐이고, L은 유기리간드이며, a는 0 내지 3의 정수이고, c 및 d는 각각 독립적으로 0 내지 2의 정수이다.)(In the above structure, R 1 is C1-C7 alkyl or C6-C12 aryl, X is halogen, L is organic ligand, a is an integer from 0 to 3, c and d are each independently 0 to 2 Is an integer.)
구체적으로 본 발명의 일 실시예에 따른 유기 리간드 L은 하기 구조식에서 선택될 수 있으나, 이에 한정이 있는 것은 아니다.Specifically, the organic ligand L according to an embodiment of the present invention may be selected from the following structural formula, but is not limited thereto.
Figure PCTKR2018012025-appb-I000013
Figure PCTKR2018012025-appb-I000013
상기 구조식에서 R41 및 R42는 각각 독립적으로 하이드로카빌, 치환된 하이드로카빌, 헤테로하이드로카빌 또는 치환된 헤테로하이드로카빌이고, R43은 수소, 할로겐, 하이드로카빌, 치환된 하이드로카빌, 헤테로하이드로카빌 또는 치환된 헤테로하이드로카빌이며;Wherein R 41 and R 42 are each independently hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl, and R 43 is hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or Substituted heterohydrocarbyl;
R44 및 R45는 각각 독립적으로 수소, 하이드로카빌, 치환된 하이드로카빌, 헤테로하이드로카빌 또는 치환된 헤테로하이드로카빌이다.R 44 and R 45 are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl.
본 발명에 따른 올리고머화 촉매를 구성하는 리간드는 당업자들에게 공지된 다양한 방법을 이용하여 제조될 수 있다.Ligands constituting the oligomerization catalyst according to the present invention can be prepared using various methods known to those skilled in the art.
본 발명의 일 실시예에 따른 올리고머화 촉매는 촉매활성이 우수하며, 올레핀의 올리고머화 시 선택성이 매우 높고 촉매 투입량의 조절이 가능하며, 나아가 고온에서도 우수한 활성이 유지되어 올레핀 제조공정의 관막힘 및 파울링이 일어나지 않아 매우 경제적이며 효율적이다.The oligomerization catalyst according to an embodiment of the present invention has excellent catalytic activity, very high selectivity upon oligomerization of olefins, control of catalyst input amount, and excellent activity is maintained even at high temperature, thus preventing clogging of the olefin manufacturing process and No fouling occurs, very economical and efficient.
또한, 본 발명은 상기 올리고머화 촉매를 포함하는 촉매 조성물을 이용하여 에틸렌으로부터 고활성 및 고선택적으로 1-헥센 또는 1-옥텐을 제조하는 방법을 제공하는 것으로, 상기 에틸렌 올리고머화 촉매 조성물을 에틸렌과 접촉시켜 에틸렌 올리고머를 제조할 수 있다.In addition, the present invention provides a method for producing a high activity and highly selective 1-hexene or 1-octene from ethylene using a catalyst composition comprising the oligomerization catalyst, the ethylene oligomerization catalyst composition Contact may be made to the ethylene oligomer.
본 발명의 일실시예에 따른 상기 에틸렌 올리고머화 촉매 조성물은 보다 효과적인 활성 및 고선택도를 위하여 조촉매를 더 포함할 수 있다.The ethylene oligomerization catalyst composition according to one embodiment of the present invention may further include a promoter for more effective activity and high selectivity.
상기 에틸렌 올리고머화 촉매 조성물은 전이금속 또는 전이금속 전구체 및 화학식 1의 리간드를 포함하는 올리고머화 촉매 및 조촉매를 포함하는 올리고머화 촉매계일 수 있다.The ethylene oligomerization catalyst composition may be an oligomerization catalyst system including an oligomerization catalyst and a promoter comprising a transition metal or a transition metal precursor and a ligand of Formula 1.
상기 조촉매는 원칙적으로 화학식 1의 리간드가 배위된 전이금속 착체를 활성화하는 임의의 화합물일 수 있다. 조촉매는 또한 혼합물로도 사용될 수 있다. 조촉매로 적합한 화합물에는 유기 알루미늄 화합물, 유기 알루미녹산, 유기 붕소 화합물, 유기염 등이 포함된다.The cocatalyst may in principle be any compound that activates the transition metal complex to which the ligand of Formula 1 is coordinated. Cocatalysts can also be used in mixtures. Suitable compounds as cocatalysts include organoaluminum compounds, organic aluminoxanes, organoboron compounds, organic salts and the like.
본 발명의 일실시예에 따른 에틸렌 올리고머화 촉매 조성물에 활성제로 사용되기에 적합한 유기 알루미늄 화합물은 AlR3 (여기에서, R은 각각 독립적으로 C1-C12알킬, C6-C20아릴, C2-C10알케닐, C2-C10알키닐, C1-C12알콕시 또는 할로겐이다.)의 화합물 또는 LiAlH4 등을 포함할 수 있다.Organoaluminum compounds suitable for use as activators in the ethylene oligomerization catalyst composition according to one embodiment of the present invention are AlR 3 (wherein R is independently C 1 -C 12 alkyl, C 6 -C 20 aryl, C 2 -C 10 alkenyl , C 2 -C 10 alkynyl, C 1 -C 12 alkoxy or halogen) or LiAlH 4 or the like.
상기 유기 알루미늄 화합물은 트리메틸알루미늄(TMA), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리-n-옥틸알루미늄, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 알루미늄 이소프로폭사이드, 에틸알루미늄 세스퀴클로라이드, 메틸알루미늄 세스퀴클로라이드 및 알루미녹산로부터 선택되는 하나 또는 둘 이상의 혼합물을 포함할 수 있다.The organoaluminum compound is trimethylaluminum (TMA), triethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum One, two or more mixtures selected from chloride, aluminum isopropoxide, ethylaluminum sesquichloride, methylaluminum sesquichloride, and aluminoxanes.
본 발명의 일실시예에 따른 에틸렌 올리고머화 촉매 조성물에 활성제로 사용되기에 적합한 유기 알루미녹산은 물과 알킬알루미늄 화합물, 예를 들어 트리메틸알루미늄에 물을 첨가하여 제조될 수 있는 올리고머 화합물로서, 생성된 알루미녹산 올리고머 화합물은 선형, 사이클릭, 케이지(cage) 또는 이들의 혼합물일 수 있다.Organic aluminoxanes suitable for use as activators in the ethylene oligomerization catalyst composition according to one embodiment of the present invention are oligomeric compounds which can be prepared by adding water to water and alkylaluminum compounds, for example trimethylaluminum. The aluminoxane oligomeric compounds can be linear, cyclic, cages or mixtures thereof.
상기 유기 알루미녹산은 알킬알루미녹산, 예를 들어 메틸알루미녹산(MAO), 에틸알루미녹산(EAO), 테트라이소부틸알루미녹산(TIBAO) 및 이소부틸알루미녹산(IBAO) 뿐 아니라 변형 알킬 알루미녹산, 예를 들어 변형 메틸알루미녹산(MMAO) 중에서 선택될 수 있다. 변형 메틸 알루미녹산(Akzo Nobel 제조)은 메틸 그룹 이외에 이소부틸 또는 n-옥틸 그룹과 같은 혼성 알킬 그룹을 함유한다. 구체적인 일례로 메틸알루미녹산(MAO), 변형 메틸알루미녹산 (MMAO), 에틸알루미녹산(EAO) 및 테트라이소부틸알루미녹산(TIBAO), 이소부틸알루미녹산(IBAO)에서 선택되는 하나 또는 둘 이상의 혼합물일 수 있다.The organic aluminoxanes are alkylaluminoxanes such as methylaluminoxane (MAO), ethylaluminoxane (EAO), tetraisobutylaluminoxane (TIBAO) and isobutyl aluminoxane (IBAO) as well as modified alkyl aluminoxanes, such as For example, it may be selected from modified methylaluminoxane (MMAO). Modified methyl aluminoxanes (manufactured by Akzo Nobel) contain, in addition to methyl groups, mixed alkyl groups such as isobutyl or n-octyl groups. Specific examples include one or more mixtures selected from methyl aluminoxane (MAO), modified methyl aluminoxane (MMAO), ethyl aluminoxane (EAO) and tetraisobutyl aluminoxane (TIBAO), isobutyl aluminoxane (IBAO). Can be.
본 발명의 일실시예에 따른 에틸렌 올리고머화 촉매 조성물에 활성제로 사용되기에 적합한 유기 붕소 화합물은 보록신, NaBH4, 트리에틸 보란, 트라이페닐보란, 트라이페닐보란 암모니아 착화합물, 트라이부틸보레이트, 트라이아이소프로필보레이트, 트리스(펜타플로로페닐)보란, 트라이틸(테트라펜타플로로페닐)보레이트, 다이메틸페닐암모늄(테트라펜타플로로페닐)보레이트, 다이에틸페닐암모늄(테트라펜타플로로페닐)보레이트, 메틸다이페닐암모늄(테트라펜타플로로페닐)보레이트, 에틸다이페닐암모늄(테트라펜타플로로페닐)보레이트 또는 이들의 혼합물일 수 있으며, 이들의 유기 붕소 화합물은 상기의 유기 알루미늄 화합물과 혼합물로 사용할 수 있다.Organic boron compounds suitable for use as activators in the ethylene oligomerization catalyst composition according to one embodiment of the present invention are boroxine, NaBH 4 , triethyl borane, triphenylborane, triphenylborane ammonia complex, tributylborate, triiso Propylborate, tris (pentafluorophenyl) borane, trityl (tetrapentafluorophenyl) borate, dimethylphenylammonium (tetrapentafluorophenyl) borate, diethylphenylammonium (tetrapentafluorophenyl) borate, methyldi Phenylammonium (tetrapentafluorophenyl) borate, ethyldiphenylammonium (tetrapentafluorophenyl) borate, or mixtures thereof, and the organoboron compounds thereof may be used in a mixture with the organoaluminum compounds.
바람직하게 상기 조촉매는 메틸알루미녹산(MAO), 변형 메틸알루미녹산 (mMAO), 에틸알루미녹산(EAO), 테트라이소부틸알루미녹산(TIBAO), 이소부틸알루미녹산(IBAO), 트리메틸알루미늄(TMA), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리-n-옥틸알루미늄, 메틸알루미늄디클로라이드, 에틸알루미늄 디클로라이드, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 알루미늄이소프로폭사이드, 에틸알루미늄 세스퀴클로라이드 및 메틸알루미늄 세스퀴클로라이드로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 혼합물일 수 있으며, 바람직하게 메틸알루미녹산(MAO) 또는 변형 메틸알루미녹산(mMAO)일 수 있다.Preferably the promoter is methylaluminoxane (MAO), modified methylaluminoxane (mMAO), ethylaluminoxane (EAO), tetraisobutylaluminoxane (TIBAO), isobutyl aluminoxane (IBAO), trimethylaluminum (TMA) , Triethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminum isopropoxide, ethylaluminum It may be one or two or more mixtures selected from the group consisting of sesquichloride and methylaluminum sesquichloride, preferably methylaluminoxane (MAO) or modified methylaluminoxane (mMAO).
본 발명의 일실시예에 있어서, 올리고머화 촉매와 조촉매의 비율은 조촉매의 금속 : 전이금속의 몰비로 기준으로 1 : 1 내지 10,000 : 1이며, 더욱 바람직하게는 1 : 1 내지 2,000 : 1일 수 있으며, 보다 좋게는 올리고머화 촉매와 알루미녹산 조촉매의 비율은 알루미늄 : 전이금속의 몰비로 기준으로 1 : 1 내지 10,000 : 1이며, 더욱 바람직하게는 1 : 1 내지 1,000 : 1일 수 있다.In one embodiment of the present invention, the ratio of the oligomerization catalyst and the promoter is 1: 1 to 10,000: 1 based on the molar ratio of metal to transition metal of the promoter, and more preferably 1: 1 to 2,000: 1. Preferably, the ratio of the oligomerization catalyst and the aluminoxane cocatalyst may be 1: 1 to 10,000: 1 based on the molar ratio of aluminum to transition metal, and more preferably 1: 1 to 1,000: 1. .
상기 에틸렌 올리고머화 촉매 조성물은 올리고머화 촉매 및 조촉매 외에 본 발명의 본질을 해치는 것이 아니라면 가능한 다른 성분을 더 포함할 수 있다.The ethylene oligomerization catalyst composition may further comprise other components possible as long as the ethylene oligomerization catalyst and promoter are not detrimental to the nature of the present invention.
상기 에틸렌 올리고머화 촉매 조성물의 개별 성분들인 올리고머화 촉매와 조촉매는 용매의 존재 하에 동시에 또는 임의의 순서로 순차적으로 배합되어 활성 촉매를 제공할 수 있다. 촉매 조성물의 각 성분들의 혼합은 -20 내지 250 ℃의 온도에서 수행될 수 있으며, 각 성분들이 혼합되는 동안 올레핀의 존재는 일반적으로 보호 효과를 나타내어 향상된 촉매 성능을 제공할 수 있다. 보다 바람직한 온도의 범위는 20 내지 160 ℃이다.The individual components of the ethylene oligomerization catalyst composition, the oligomerization catalyst and the promoter, can be combined simultaneously or sequentially in any order in the presence of a solvent to provide the active catalyst. The mixing of each component of the catalyst composition can be carried out at a temperature of -20 to 250 ° C., and the presence of the olefins during the mixing of each component can generally exhibit a protective effect to provide improved catalyst performance. The range of more preferable temperature is 20-160 degreeC.
본 발명에 개시된 반응 생성물, 달리 표현하면 에틸렌 올리고머, 특히 1-헥센 또는 1-옥텐은 본 발명에 따른 올리고머화 촉매 또는 올리고머화 촉매 조성물과 통상적인 장치 및 접촉 기술을 이용하여 불활성 용매의 존재 하에서 균질 액상 반응 또는 2상 액체/액체 반응 또는 생성물 올레핀이 주 매질로 작용하는 벌크상 반응 또는 가스상 반응으로 제조될 수 있으나, 불활성 용매의 존재 하에서 균질 액상 반응이 바람직하다.The reaction products disclosed herein, in other words ethylene oligomers, in particular 1-hexene or 1-octene, are homogeneous in the presence of an inert solvent using conventional apparatus and contacting techniques with the oligomerization catalyst or oligomerization catalyst composition according to the invention. Liquid phase reactions or two-phase liquid / liquid reactions or product olefins may be prepared in bulk phase or gas phase reactions serving as the main medium, but homogeneous liquid phase reactions are preferred in the presence of an inert solvent.
본 발명에 따른 일 실시예에 따른 올리고머 제조 방법은 불활성 용매 중에 수행될 수 있다. 즉, 본 발명의 올리고머화 촉매 및 조촉매와 반응하지 않는 임의의 불활성 용매가 사용될 수 있으며, 촉매 활성을 향상시키기 위한 측면에서 상기 불활성 용매는 지방족 탄화수소일 수 있다. 본 발명에 따른 올리고머화 촉매계는 촉매 용액의 연속적인 투입시 촉매량 조절이 용이할 뿐만 아니라 우수한 촉매활성을 나타낸다.The oligomer preparation method according to one embodiment according to the present invention may be performed in an inert solvent. That is, any inert solvent which does not react with the oligomerization catalyst and the promoter of the present invention may be used, and the inert solvent may be an aliphatic hydrocarbon in terms of improving the catalytic activity. The oligomerization catalyst system according to the present invention not only easily adjusts the amount of catalyst in the continuous dosing of the catalyst solution but also shows excellent catalytic activity.
상기 지방족 탄화수소는 바람직하게는 포화지방족 탄화수소로, CnH2n +2 (이때, n은 1 ~ 15의 정수)로 표시되는 선형의 포화지방족 탄화수소, CmH2m (이때, m은 3 ~ 8의 정수)으로 표시되는 지환족 포화지방족 탄화수소 및 탄소원자수 1 ~ 3의 저급알킬기가 하나 또는 둘 이상 치환된 선형 또는 환형의 포화지방족 탄화수소를 포함할 수 있다. 이들을 구체적으로 나열하면, 헥산, 헵탄, 옥탄, 노넨, 데칸, 언데칸, 도데칸, 테트라데칸, 2,2-디메틸펜탄, 2,3-디메틸펜탄, 2,4-디메틸펜탄, 3,3-디메틸펜탄, 2,2,4-트리메틸펜탄, 2,3,4-트리메틸펜탄, 2-메틸헥산, 3-메틸헥산, 2,2-디메틸헥산, 2,4-디메틸헥산, 2,5-디메틸헥산, 3,4-디메틸헥산, 2-메틸헵탄, 4-메틸헵탄, 사이클로헥산, 메틸사이클로헥산, 에틸사이클로헥산, 이소프로필사이클로헥산, 1,4-디메틸사이클로헥산 및 1,2,4-트리메틸사이클로헥산 중에서 선택된 1종 이상으로, 이에 한정되는 것은 아니다. 상기 포화지방족 탄화수소로 메틸사이클로헥산, 시클로헥산, 헥산 또는 헵탄을 사용하는 것이 보다 바람직하다.The aliphatic hydrocarbon is preferably a saturated aliphatic hydrocarbon, Linear saturated aliphatic hydrocarbons represented by C n H 2n +2 (wherein n is an integer from 1 to 15), alicyclic saturated aliphatic hydrocarbons represented by C m H 2m (wherein m is an integer from 3 to 8), and The lower alkyl group having 1 to 3 carbon atoms may include a linear or cyclic saturated aliphatic hydrocarbon substituted with one or more carbon atoms. Specifically listed, hexane, heptane, octane, nonene, decane, undecane, dodecane, tetradecane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3- Dimethylpentane, 2,2,4-trimethylpentane, 2,3,4-trimethylpentane, 2-methylhexane, 3-methylhexane, 2,2-dimethylhexane, 2,4-dimethylhexane, 2,5-dimethyl Hexane, 3,4-dimethylhexane, 2-methylheptane, 4-methylheptane, cyclohexane, methylcyclohexane, ethylcyclohexane, isopropylcyclohexane, 1,4-dimethylcyclohexane and 1,2,4-trimethyl At least one selected from cyclohexane is not limited thereto. More preferably, methylcyclohexane, cyclohexane, hexane or heptane is used as the saturated aliphatic hydrocarbon.
본 발명의 일 실시예에 따른 올리고머화 반응은 -20 내지 250 ℃의 온도, 바람직하게는 20 내지 160 ℃의 온도, 보다 바람직하게는 60 내지 160 ℃의 온도에서 수행될 수 있으며, 반응압력은 대기압 내지 100 bar의 압력에서, 바람직하게는 10 내지 70 bar의 압력에서 수행될 수 있다.The oligomerization reaction according to one embodiment of the present invention may be carried out at a temperature of -20 to 250 ℃, preferably at a temperature of 20 to 160 ℃, more preferably at a temperature of 60 to 160 ℃, the reaction pressure is atmospheric pressure It can be carried out at a pressure of from 100 bar, preferably at a pressure of 10 to 70 bar.
본 발명의 일 실시예에 따른 올리고머의 제조방법에서, 올리고머는 1-헥센, 1-옥텐 또는 이들의 혼합물일 수 있다.In the method for preparing an oligomer according to an embodiment of the present invention, the oligomer may be 1-hexene, 1-octene or a mixture thereof.
본 발명의 일 실시예에 따른 올리고머의 제조방법에서, 상기 올리고머화 반응을 통해 에틸렌으로부터의 형성된 C8 생성물의 총 중량 대비 1-옥텐이 60 중량% 이상, 바람직하게는 70 중량% 이상, 보다 바람직하게는 80 중량% 이상으로 수득될 수 있다. 이 경우 수율은 형성된 C8 생성물의 총 중량에 대하여 형성된 1-옥텐의 중량%를 의미한다.In the method for preparing an oligomer according to an embodiment of the present invention, 1-octene is preferably at least 60% by weight, preferably at least 70% by weight, and more preferably, based on the total weight of the C8 product formed from ethylene through the oligomerization reaction. Can be obtained in an amount of at least 80 wt%. Yield in this case means the weight percent of 1-octene formed relative to the total weight of the C8 product formed.
본 발명의 일 실시예에 따른 올리고머의 제조방법에서, 상기 올리고머화 반응을 통해 에틸렌으로부터의 형성된 C6 생성물의 총 중량 대비 1-헥센이 50 중량% 이상, 바람직하게는 70 중량% 이상, 보다 바람직하게는 90 중량% 이상으로 수득될 수 있다. 이 경우 수율은 형성된 C6 생성물의 총 중량에 대하여 형성된 1-헥센의 중량%를 의미한다.In the method for preparing an oligomer according to an embodiment of the present invention, 1-hexene is 50 wt% or more, preferably 70 wt% or more, more preferably 1 to hexene relative to the total weight of the C6 product formed from ethylene through the oligomerization reaction. Can be obtained in more than 90% by weight. Yield in this case means the weight percent of 1-hexene formed relative to the total weight of the C6 product formed.
본 발명의 일 실시예에 따른 올리고머의 제조방법에서, 올리고머화 촉매 및 반응 조건에 따라 1-헥센 또는 1-옥텐 이외에 상이한 양의 1-부텐, 2-헥센, 1-데센, 메틸사이클로펜탄, 메틸렌사이클로펜탄, 프로필사이클로펜탄 및 다수의 고급 올리고머 및 폴리에틸렌을 제공할 수 있다.In the method for preparing an oligomer according to an embodiment of the present invention, different amounts of 1-butene, 2-hexene, 1-decene, methylcyclopentane, methylene in addition to 1-hexene or 1-octene depending on the oligomerization catalyst and reaction conditions Cyclopentane, propylcyclopentane and many higher oligomers and polyethylenes can be provided.
본 발명의 일 실시예에 따른 올리고머 제조방법은 임의 유형의 반응기를 포함하는 플랜트로 수행될 수 있다. 이러한 반응기의 예는 배치식 반응기, 반배치식 반응기 및 연속식 반응기를 포함하나 이들에만 한정하지 않는다. 플랜트는 반응기, 이 반응기 내에 올레핀 반응기 및 올리고머화 촉매 조성물의 주입구, 이 반응기로부터 올리고머화 반응 생성물을 유출을 위한 라인 및 올리고머화 반응 생성물을 분리하기 위한 적어도 하나의 분리기를 조합하여 포함할 수 있으며, 이때 촉매 조성물은 본 발명에 개시된 올리고머화 촉매 및 조촉매를 포함하거나, 전이금속 또는 전이금속 전구체, 화학식 1의 리간드 및 조촉매를 포함할 수 있다.The oligomer preparation method according to one embodiment of the present invention can be carried out in a plant comprising any type of reactor. Examples of such reactors include, but are not limited to, batch reactors, semi-batch reactors and continuous reactors. The plant may comprise a reactor, an inlet of an olefin reactor and an oligomerization catalyst composition therein, a combination of the oligomerization reaction product from the reactor and a line for effluent and at least one separator for separating the oligomerization reaction product, In this case, the catalyst composition may include an oligomerization catalyst and a promoter disclosed in the present invention, or may include a transition metal or a transition metal precursor, a ligand of Formula 1, and a promoter.
본 발명에 따른 올리고머화 촉매 또는 올리고머화 촉매 조성물을 사용하여 에틸렌 올리고머화시 높은 온도에서도 촉매의 활성이 유지되어 1-헥센, 1-옥텐 또는 이들의 혼합물을 고활성, 고선택적으로 생산할 수 있다.The oligomerization catalyst or oligomerization catalyst composition according to the invention can be used to maintain the activity of the catalyst even at high temperatures during ethylene oligomerization to produce 1-hexene, 1-octene or mixtures thereof in high activity and high selectivity.
하기 실시예는 본 발명의 효과를 구체적으로 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하려는 것이 아니다.The following examples specifically illustrate the effects of the present invention. However, the following examples are only for illustrating the present invention and are not intended to limit the scope of the present invention.
리간드의 제조Preparation of Ligands
[제조예 A] 클로로(2-플루오르페닐)페닐포스핀의 제조Preparation Example A Preparation of Chloro (2-Fluorophenyl) phenylphosphine
Figure PCTKR2018012025-appb-I000014
Figure PCTKR2018012025-appb-I000014
N,NN, N -- 디에틸아미노클로로(페닐)포스핀의Of diethylaminochloro (phenyl) phosphine 제조 Produce
N,N-디에틸아미노클로로(페닐)포스핀은 공지된 문헌(M. Oliana et. al., J. Org. Chem., 2006, p. 2472-2479)을 참고하여 제조하였다. N, N-diethylaminochloro (phenyl) phosphine was prepared with reference to known literature (M. Oliana et. Al., J. Org. Chem., 2006, p. 2472-2479).
질소 분위기하에서 건조된 플라스크에 디클로로(페닐)포스핀 (8.949 g, 50 mmol)을 n-헥산 (400 mL)에 희석시킨 후 상온에서 디에틸아민 (7.314 g, 100 mmol)을 천천히 첨가하였다. 혼합물을 1 시간 이상 반응시킨 후 셀라이트 여과를 거쳐 휘발성 물질을 감압제거하여 무색투명의 액체로 표제화합물을 수득하였다(10.2 g, 94.6 %).Dichloro (phenyl) phosphine (8.949 g, 50 mmol) was diluted in n-hexane (400 mL) in a flask dried under a nitrogen atmosphere, and diethylamine (7.314 g, 100 mmol) was slowly added at room temperature. The mixture was allowed to react for at least 1 hour and then filtered through celite to remove the volatiles under reduced pressure to obtain the title compound as a colorless transparent liquid (10.2 g, 94.6%).
1H NMR (500 MHz, C6D6) δ 7.74 (m, 2H, aromatics), 7.10 (m, 2H, aromatics), 7.03 (m, 1H, aromatics), 2.85 (m, 4H, -CH2-), 0.79 (m, 6H, -CH3). 1 H NMR (500 MHz, C 6 D 6 ) δ 7.74 (m, 2H, aromatics), 7.10 (m, 2H, aromatics), 7.03 (m, 1H, aromatics), 2.85 (m, 4H, -CH 2- ), 0.79 (m, 6H, -CH 3 ).
N,NN, N -- 디에틸Diethyl -1-(2--1- (2- 플루오르페닐Fluorophenyl )-1-)-One- 페닐포스핀아민의Of phenylphosphineamine 제조 Produce
질소 분위기하에서 건조된 플라스크에 1-브로로-2-플루오르벤젠 (7.0 g, 40 mmol)을 무수 THF (30 mL)에 희석시킨 후 -78 ℃로 온도를 낮추고 1.6M의 n-부틸리튬 (25.0 mL, 40 mmol, 알드리치)을 천천히 첨가하였다. 저온을 유지시키며 혼합물을 1시간 이상 반응시킨 후, 상기에서 수득한 N,N-디에틸아미노클로로(페닐)포스핀 (8.195 g, 38 mmol)을 천천히 첨가한 후 2시간 이상 반응시켰다. 혼합물의 반응온도를 상온으로 올리고 휘발성 물질을 감압제거한 후 헥산:디클로로메탄 (1:1 v/v)용액으로 희석 후 실리카 여과하여 무색투명의 액체로 표제화합물을 수득하였다(8.967 g, 85.7 %).In a flask dried under a nitrogen atmosphere, 1-broro-2-fluorobenzene (7.0 g, 40 mmol) was diluted in anhydrous THF (30 mL), the temperature was lowered to -78 ° C, and 1.6M n-butyllithium (25.0 mL, 40 mmol, Aldrich) was added slowly. After the mixture was reacted for at least 1 hour while maintaining a low temperature, N, N-diethylaminochloro (phenyl) phosphine (8.195 g, 38 mmol) obtained above was added slowly, followed by at least 2 hours. The reaction temperature of the mixture was raised to room temperature, the volatiles were removed under reduced pressure, diluted with a hexane: dichloromethane (1: 1 v / v) solution, and filtered through silica to obtain the title compound as a colorless transparent liquid (8.967 g, 85.7%). .
1H NMR (500 MHz, C6D6) δ 7.45 (m, 2H, aromatics), 7.34 (m, 1H, aromatics), 7.14 (m, 3H, aromatics), 6.94 (m, 3H, aromatics), 3.00 (m, 4H, -CH2N), 0.83 (t, 6H, -CH3); 13C NMR (600 MHz, CDCl3) δ 164.3, 138.8, 132.6, 131.2, 130.3, 128.0, 123.9, 115.0, 44.6, 14.4; 19F NMR (500 MHz, C6D6) δ -103.7; 31P NMR (500 MHz, C6D6) δ 49.7. 1 H NMR (500 MHz, C 6 D 6 ) δ 7.45 (m, 2H, aromatics), 7.34 (m, 1H, aromatics), 7.14 (m, 3H, aromatics), 6.94 (m, 3H, aromatics), 3.00 (m, 4H, -CH 2 N), 0.83 (t, 6H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 164.3, 138.8, 132.6, 131.2, 130.3, 128.0, 123.9, 115.0, 44.6, 14.4; 19 F NMR (500 MHz, C 6 D 6 ) δ −103.7; 31 P NMR (500 MHz, C 6 D 6 ) δ 49.7.
클로로(2-플루오르페닐)페닐포스핀의Of chloro (2-fluorophenyl) phenylphosphine 제조 Produce
질소 분위기하에서 건조된 플라스크에 상기에서 수득한 N,N-디에틸-1-(2-플루오르페닐)-1-페닐포스핀아민 (8.967 g, 32.6 mmol)을 무수 다이에틸 에터 (70 mL)에 희석시킨 후 1 M의 염화수소/ 다이에틸 에터 (68.4 mL)을 천천히 첨가하였다. 혼합물을 1시간 이상 반응시킨 후 활성 알루미나 여과하여 무색투명의 액체로 표제화합물을 수득하였다(7.377 g, 94.9 %).In a flask dried under a nitrogen atmosphere, N, N-diethyl-1- (2-fluorophenyl) -1-phenylphosphinamine (8.967 g, 32.6 mmol) obtained above was added to anhydrous diethyl ether (70 mL). After dilution 1 M hydrogen chloride / diethyl ether (68.4 mL) was added slowly. After the mixture was reacted for at least 1 hour, activated alumina was filtered to obtain the title compound as a colorless transparent liquid (7.377 g, 94.9%).
1H NMR (500 MHz, C6D6) δ 7.51 (m, 3H, aromatics), 6.97 (m, 3H, aromatics), 6.80 (m, 1H, aromatics), 6.73 (m, 1H, aromatics), 6.58 (m, 1H, aromatics); 13C NMR (600 MHz, CDCl3) δ 164.4, 137.3, 132.5-128.9, 124.6, 115.4; 19F NMR (500 MHz, C6D6) δ -104.8; 31P NMR (500 MHz, C6D6) δ 71.4. 1 H NMR (500 MHz, C 6 D 6 ) δ 7.51 (m, 3H, aromatics), 6.97 (m, 3H, aromatics), 6.80 (m, 1H, aromatics), 6.73 (m, 1H, aromatics), 6.58 (m, 1H, aromatics); 13 C NMR (600 MHz, CDCl 3 ) δ 164.4, 137.3, 132.5-128.9, 124.6, 115.4; 19 F NMR (500 MHz, C 6 D 6 ) δ −104.8; 31 P NMR (500 MHz, C 6 D 6 ) δ 71.4.
[제조예 B] (2-플루오르페닐)(페닐)포스핀의 제조Preparation Example B Preparation of (2-Fluorophenyl) (phenyl) phosphine
Figure PCTKR2018012025-appb-I000015
Figure PCTKR2018012025-appb-I000015
질소 분위기하에서 건조된 플라스크에 상기 제조예 A에서 수득한 클로로(2-플루오르페닐)페닐포스핀 (2.3863 g, 10 mmol)을 n-헥산 (20 mL)에 희석시킨 후 트리메틸틴하이드라이드 (4.0163 g, 11 mmol)을 천천히 첨가하였다. 혼합물을 30분간 반응시킨 후, 셀라이트 여과 후 휘발성 물질을 감압제거하여 액체로 표제화합물을 수득하였다(2.0418 g, 100 %).In a flask dried under a nitrogen atmosphere, chloro (2-fluorophenyl) phenylphosphine (2.3863 g, 10 mmol) obtained in Preparation Example A was diluted in n-hexane (20 mL), followed by trimethyltin hydride (4.0163 g). , 11 mmol) was added slowly. The mixture was reacted for 30 minutes, and then filtered through celite to remove the volatiles under reduced pressure to obtain the title compound as a liquid (2.0418 g, 100%).
1H NMR (500 MHz, C6D6) δ 7.37 (m, 2H, aromatics), 7.11 (m, 1H, aromatics), 6.97 (m, 3H, aromatics), 6.80 (m, 1H, aromatics), 6.68 (m, 1H, aromatics), 5.51-5.07 (d, 1H, -P). 1 H NMR (500 MHz, C 6 D 6 ) δ 7.37 (m, 2H, aromatics), 7.11 (m, 1H, aromatics), 6.97 (m, 3H, aromatics), 6.80 (m, 1H, aromatics), 6.68 (m, 1H, aromatics), 5.51-5.07 (d, 1H, -P).
[제조예 1] 리간드 (1)의 제조Preparation Example 1 Preparation of Ligand (1)
Figure PCTKR2018012025-appb-I000016
Figure PCTKR2018012025-appb-I000016
(3,3-디메틸-1-(3,3-dimethyl-1- 부타이닐Butinyl )(2-)(2- 플루오르페닐Fluorophenyl )) 페닐포스핀의Of phenylphosphine 제조 Produce
질소 분위기하에서 건조된 플라스크에 3,3-디메틸-1-부타인 (0.2875 g, 3.5 mmol, 알드리치)을 무수 THF (6 mL)에 희석시킨 후 -78 ℃로 온도를 낮추고 1.6M의 n-부틸리튬 (1.75 mL, 2.8 mmol, 알드리치)을 천천히 첨가하였다. 저온을 유지시키며 혼합물을 1시간 이상 반응시킨 후, 상기 제조예 A에서 수득한 클로로(2-플루오르페닐)페닐포스핀 (0.5345 g, 2.24 mmol)을 천천히 첨가한 후 2시간 이상 반응시켰다. 혼합물의 반응온도를 상온으로 올리고 휘발성 물질을 감압제거한 후 헥산용액으로 희석 후 셀라이트 여과한 후 건조하여 노란색의 고체로 표제화합물을 수득하였다(0.6214 g, 97.6 %).In a flask dried under a nitrogen atmosphere, 3,3-dimethyl-1-butyne (0.2875 g, 3.5 mmol, Aldrich) was diluted in anhydrous THF (6 mL), the temperature was lowered to -78 ° C, and 1.6M n-butyl Lithium (1.75 mL, 2.8 mmol, Aldrich) was added slowly. After the mixture was reacted for at least 1 hour while maintaining a low temperature, chloro (2-fluorophenyl) phenylphosphine (0.5345 g, 2.24 mmol) obtained in Preparation Example A was added slowly, followed by reaction for 2 hours or more. The reaction temperature of the mixture was raised to room temperature, the volatiles were removed under reduced pressure, diluted with hexane solution, filtered through celite and dried to give the title compound as a yellow solid (0.6214 g, 97.6%).
1H NMR (500 MHz, CDCl3) δ 7.68 (m, 3H, aromatics), 7.27 (m, 4H, aromatics), 7.13 (m, 1H, aromatics), 6.96 (m, 1H, aromatics); 13C NMR (600 MHz, CDCl3) δ 165.1, 135.6, 133.1, 132.4, 130.9, 128.4, 124.4, 119.5, 115.2, 72.3, 30.8, 28.8; 19F NMR (500 MHz, CDCl3) δ -105.5; 31P NMR (500 MHz, CDCl3) δ -47.0; FT-ICR MS: m/z [M+H]+ calcd for C18H19FP+: 285.1208; found: 285.1206. 1 H NMR (500 MHz, CDCl 3 ) δ 7.68 (m, 3H, aromatics), 7.27 (m, 4H, aromatics), 7.13 (m, 1H, aromatics), 6.96 (m, 1H, aromatics); 13 C NMR (600 MHz, CDCl 3 ) δ 165.1, 135.6, 133.1, 132.4, 130.9, 128.4, 124.4, 119.5, 115.2, 72.3, 30.8, 28.8; 19 F NMR (500 MHz, CDCl 3 ) δ −105.5; 31 P NMR (500 MHz, CDCl 3 ) δ −47.0; FT-ICR MS: m / z [M + H] + calcd for C 18 H 19 FP + : 285.1208; found: 285.1206.
리간드 (Ligand ( 1)의1) of 제조 Produce
질소분위기에서 건조된 플라스크에 상기에서 제조된 (3,3-디메틸-1-부타이닐)(2-플루오르페닐)페닐포스핀 (0.1422 g, 0.5 mmol), 요오드화제일구리 (0.0048 g, 5 mol%)와 세슘카보네이트 (0.0163 g, 10 mol%)를 디메틸포름아마이드 (1 mL)에 희석시킨 후 디페닐포스핀 (0.1117 g, 0.6 mmol)을 천천히 첨가한 후 온도를 90℃로 승온시키고 3 시간 동안 반응시켰다. 혼합물을 n-헥산:아세트산에틸 (9:1 v/v) 용액으로 실리카 컬럼 정제하여 무색투명한 오일로 리간드 (1)을 수득하였다(0.2236 g, 95.1 %).(3,3-dimethyl-l-butynyl) (2-fluorophenyl) phenylphosphine (0.1422 g, 0.5 mmol), copper iodide (0.0048 g, 5 mol%) prepared above in a flask dried in a nitrogen atmosphere. ) And cesium carbonate (0.0163 g, 10 mol%) in dilute dimethylformamide (1 mL), then slowly add diphenylphosphine (0.1117 g, 0.6 mmol), then warm the temperature to 90 ° C. for 3 hours. Reacted. The mixture was purified by silica column with a solution of n-hexane: ethyl acetate (9: 1 v / v) to give ligand (1) as a colorless transparent oil (0.2236 g, 95.1%).
1H NMR (500 MHz, CDCl3) δ 7.70 (m, 1H, aromatics), 7.65 (m, 1H, aromatics), 7.46 (m, 4H, aromatics), 7.29 (m, 4H, aromatics), 7.21 (m, 4H, aromatics), 7.21-6.99 (m, 4H, aromatics), 6.85 (m, 1H, aromatics), 1.28 (s, 9H, -CH3); 13C NMR (600 MHz, CDCl3) δ 165.2, 163.1, 138.9, 135.8, 134.1, 133.0, 128.6, 126.2, 123.8, 119.6, 115.2; 31P NMR (500 MHz, CDCl3) δ -11.0, -39.0; FT-ICR MS: m/z [Mㆍ]+ calcd for C30H29FP2: 470.1729; found: 470.1718. 1 H NMR (500 MHz, CDCl 3 ) δ 7.70 (m, 1H, aromatics), 7.65 (m, 1H, aromatics), 7.46 (m, 4H, aromatics), 7.29 (m, 4H, aromatics), 7.21 (m , 4H, aromatics), 7.21-6.99 (m, 4H, aromatics), 6.85 (m, 1H, aromatics), 1.28 (s, 9H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 165.2, 163.1, 138.9, 135.8, 134.1, 133.0, 128.6, 126.2, 123.8, 119.6, 115.2; 31 P NMR (500 MHz, CDCl 3 ) δ −11.0, −39.0; FT-ICR MS: m / z [M.] + calcd for C 30 H 29 FP 2 : 470.1729; found: 470.1718.
[제조예 2] 리간드 (2)의 제조Preparation Example 2 Preparation of Ligand (2)
Figure PCTKR2018012025-appb-I000017
Figure PCTKR2018012025-appb-I000017
(2-(2- 플루오르페닐Fluorophenyl )(3-) (3- 메틸methyl -1--One- 부타인Butine )(페닐)포스핀의 제조Preparation of (phenyl) phosphine
출발 물질로3,3-디메틸-1-부타인 대신 3-메틸-1-부타인을 사용한 것 이외에는 리간드 (1)의 제조방법과 동일하게 반응을 진행하여, 표제 화합물을 수득하였다(80.93 %).The reaction was carried out in the same manner as the preparation of the ligand (1), except that 3-methyl-1-butane was used instead of 3,3-dimethyl-1-butane as a starting material, to obtain the title compound (80.93%). .
1H NMR (500 MHz, CDCl3) δ 7.62 (m, 3H, aromatics), 7.28 (m, 4H, aromatics), 7.09 (m, 1H, aromatics), 6.93 (m, 1H, aromatics), 2.77 (q, 1H, -CH-), 1.26 (d, 2H, -CH3); 13C NMR (600 MHz, CDCl3) δ 165.1, 135.4, 133.2, 131.1, 128.9, 124.3, 116.8, 115.2, 73.2, 22.7, 22.0; 19F NMR (500 MHz, CDCl3) δ -105.5; 31P NMR (500 MHz, CDCl3) δ -46.5; FT-ICR MS: m/z [M+H]+ calcd for C17H17FP+: 271.1052; found: 271.1049. 1 H NMR (500 MHz, CDCl 3 ) δ 7.62 (m, 3H, aromatics), 7.28 (m, 4H, aromatics), 7.09 (m, 1H, aromatics), 6.93 (m, 1H, aromatics), 2.77 (q , 1H, -CH-), 1.26 (d, 2H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 165.1, 135.4, 133.2, 131.1, 128.9, 124.3, 116.8, 115.2, 73.2, 22.7, 22.0; 19 F NMR (500 MHz, CDCl 3 ) δ −105.5; 31 P NMR (500 MHz, CDCl 3 ) δ −46.5; FT-ICR MS: m / z [M + H] + calcd for C 17 H 17 FP + : 271.1052; found: 271.1049.
리간드 (Ligand ( 2)의2) 제조 Produce
출발 물질로 (3,3-디메틸-1-부타이닐)(2-플루오르페닐)페닐포스핀 대신 상기에서 수득한 (2-플루오르페닐)(3-메틸-1-부타인)(페닐)포스핀을 사용한 것 이외에는 리간드 (1)의 제조방법과 동일하게 반응을 진행하여, 리간드 (2)를 수득하였다(90.54 %).(2-Fluorophenyl) (3-methyl-1-butyne) (phenyl) phosphine obtained above instead of (3,3-dimethyl-1-butynyl) (2-fluorophenyl) phenylphosphine as starting material The reaction was carried out in the same manner as in the preparation of the ligand (1), except that the ligand (2) was obtained (90.54%).
1H NMR (500 MHz, CDCl3) δ 7.30 (m, 18H, aromatics), 7.05 (m, 1H, aromatics), 6.98 (m, 1H, =CH-), 2.50 (m, 1H, -CH-), 0.88 (t, 6H, -CH3); 13C NMR (600 MHz, CDCl3) δ 165.3, 162.2, 138.9, 136.3, 134.8, 133.6, 132.2, 130.7, 128.4, 127.8, 126.3, 124.1, 115.6, 33.5, 24.1; 19F NMR (500 MHz, CDCl3) δ -102.6; 31P NMR (500 MHz, CDCl3) δ -4.9, -35.3; FT-ICR MS: m/z [Mㆍ]+ calcd for C29H27FP2: 456.1572; found: 456.1567. 1 H NMR (500 MHz, CDCl 3 ) δ 7.30 (m, 18H, aromatics), 7.05 (m, 1H, aromatics), 6.98 (m, 1H, = CH-), 2.50 (m, 1H, -CH-) , 0.88 (t, 6H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 165.3, 162.2, 138.9, 136.3, 134.8, 133.6, 132.2, 130.7, 128.4, 127.8, 126.3, 124.1, 115.6, 33.5, 24.1; 19 F NMR (500 MHz, CDCl 3 ) δ −102.6; 31 P NMR (500 MHz, CDCl 3 ) δ −4.9, −35.3; FT-ICR MS: m / z [M.] + calcd for C 29 H 27 FP 2 : 456.1572; found: 456.1567.
[제조예 3] 리간드 (3)의 제조Preparation Example 3 Preparation of Ligand (3)
Figure PCTKR2018012025-appb-I000018
Figure PCTKR2018012025-appb-I000018
(3-(3- 메틸methyl -1--One- 부타이닐Butinyl )) 디페닐포스핀의Diphenylphosphine 제조 Produce
질소 분위기하에서 건조된 플라스크에 3-메틸-1-부타인 (3.406 g, 50 mmol)을 무수 다이에틸 에터 (40 mL)에 희석시킨 후 -78 ℃로 온도를 낮추고 1.6M의 n-부틸리튬 (26.5 mL, 42.5 mmol, 알드리치)을 천천히 첨가하였다. 저온을 유지시키며 혼합물을 1시간 이상 반응시킨 후, 클로로디페닐포스핀 (8.44 g, 38.2 mmol)을 천천히 첨가한 후 2시간 이상 반응시켰다. 혼합물의 반응온도를 상온으로 올리고 휘발성 물질을 감압제거한 후 헥산용액으로 희석 후 셀라이트 여과한 후 건조하여 무색액체의 표제화합물을 수득하였다(8.9 g, 92.23 %).In a flask dried under a nitrogen atmosphere, 3-methyl-1-butyne (3.406 g, 50 mmol) was diluted in anhydrous diethyl ether (40 mL), the temperature was lowered to -78 ° C, and 1.6M n-butyllithium ( 26.5 mL, 42.5 mmol, Aldrich) was added slowly. The mixture was reacted for at least 1 hour while maintaining a low temperature, and then chlorodiphenylphosphine (8.44 g, 38.2 mmol) was added slowly, followed by at least 2 hours. The reaction temperature of the mixture was raised to room temperature, the volatiles were removed under reduced pressure, diluted with hexane solution, filtered through Celite and dried to give the title compound as a colorless liquid (8.9 g, 92.23%).
1H NMR (500 MHz, CDCl3) δ 7.59 (m, 4H, aromatics), 7.30 (m, 6H, aromatics), 2.77 (m, 1H, -CH-), 1.26 (d, 6H, -CH3); 13C NMR (600 MHz, CDCl3) δ 137.1, 132.3, 128.6, 115.6, 74.7, 22.7, 21.9; 31P NMR (500 MHz, CDCl3) δ -33.8; FT-ICR MS: m/z [M+H]+ calcd for C17H18P+: 253.1146; found: 253.1143. 1 H NMR (500 MHz, CDCl 3 ) δ 7.59 (m, 4H, aromatics), 7.30 (m, 6H, aromatics), 2.77 (m, 1H, -CH-), 1.26 (d, 6H, -CH 3 ) ; 13 C NMR (600 MHz, CDCl 3 ) δ 137.1, 132.3, 128.6, 115.6, 74.7, 22.7, 21.9; 31 P NMR (500 MHz, CDCl 3 ) δ −33.8; FT-ICR MS: m / z [M + H] + calcd for C 17 H 18 P + : 253.1146; found: 253.1143.
리간드 (Ligand ( 3)의3) 제조 Produce
질소분위기에서 건조된 플라스크에 상기에서 제조된 (3-메틸-1-부타이닐)디페닐포스핀 (0.1261 g, 0.5 mmol), 요오드화제일구리 (0.0048 g, 5 mol%)와 세슘카보네이트 (0.0163 g, 10 mol%)를 디메틸포름아마이드 (1 mL)에 희석시킨 후 상기 제조예 B에서 제조된 (2-플루오르페닐)(페닐)포스핀 (0.1225 g, 0.6 mmol)을 천천히 첨가한 후 온도를 90 ℃로 승온시키고 3 시간 동안 반응시켰다. 혼합물을 n-헥산: 아세트산에틸 (9:1 v/v) 용액으로 실리카 컬럼 정제하여 무색투명한 오일로 리간드 (3)을 수득하였다(0.2282 g, 100.0 %).In a flask dried in a nitrogen atmosphere, (3-methyl-1-butynyl) diphenylphosphine (0.1261 g, 0.5 mmol) prepared above, cuprous iodide (0.0048 g, 5 mol%) and cesium carbonate (0.0163 g , 10 mol%) was diluted in dimethylformamide (1 mL), and then slowly added (2-fluorophenyl) (phenyl) phosphine (0.1225 g, 0.6 mmol) prepared in Preparation Example B. It heated up to ° C and reacted for 3 hours. The mixture was purified by silica column with a solution of n-hexane: ethyl acetate (9: 1 v / v) to give ligand (3) as a colorless transparent oil (0.2282 g, 100.0%).
1H NMR (500 MHz, CDCl3) δ 7.24 (m, 17H, aromatics), 7.05 (m, 2H, aromatics), 6.95 (s, 1H, =CH-), 2.45 (s, 1H, -CH-), 0.99 (t, 3H, -CH3), 0.83 (t, 3H, -CH3); 13C NMR (600 MHz, CDCl3) δ 165.3, 161.6, 139.5, 134.3, 133.4, 132.8, 130.5, 128.3, 124.0, 115.2, 33.8, 24.1, 23.6; 19F NMR (500 MHz, CDCl3) δ -101.6; 31P NMR (500 MHz, CDCl3) δ -16.4, -26.9; FT-ICR MS: m/z [Mㆍ]+ calcd for C29H27FP2: 456.1572; found: 456.1570. 1 H NMR (500 MHz, CDCl 3 ) δ 7.24 (m, 17H, aromatics), 7.05 (m, 2H, aromatics), 6.95 (s, 1H, = CH-), 2.45 (s, 1H, -CH-) , 0.99 (t, 3H, -CH 3 ), 0.83 (t, 3H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 165.3, 161.6, 139.5, 134.3, 133.4, 132.8, 130.5, 128.3, 124.0, 115.2, 33.8, 24.1, 23.6; 19 F NMR (500 MHz, CDCl 3 ) δ −101.6; 31 P NMR (500 MHz, CDCl 3 ) δ −16.4, −26.9; FT-ICR MS: m / z [M.] + calcd for C 29 H 27 FP 2 : 456.1572; found: 456.1570.
[제조예 4] 리간드 (4)의 제조Preparation Example 4 Preparation of Ligand (4)
Figure PCTKR2018012025-appb-I000019
Figure PCTKR2018012025-appb-I000019
출발 물질로 (3-메틸-1-부타이닐)디페닐포스핀 대신 (2-플루오르페닐)(3-메틸-1-부타인)(페닐)포스핀을 사용한 것 이외에는 리간드 (3)의 제조방법과 동일하게 반응을 진행하여, 리간드 (4)를 수득하였다(63.99 %).Method for preparing Ligand (3) except for using (2-fluorophenyl) (3-methyl-1-butyne) (phenyl) phosphine instead of (3-methyl-1-butynyl) diphenylphosphine as starting material The reaction was carried out in the same manner as to obtain the ligand (4) (63.99%).
1H NMR (500 MHz, CDCl3) δ 7.30-6.99 (m, 15H, aromatics), 7.10 (m, 3H, aromatics), 6.99 (s, 1H, =CH-), 2.47 (s, 1H, -CH-), 1.02 (t, 3H, -CH3), 0.86 (t, 3H, -CH3); 13C NMR (600 MHz, CDCl3) δ 165.3, 163.4, 161.5, 138.6, 134.8, 133.5, 132.2, 130.8, 128.5, 125.8, 115.3, 33.9, 24.1; 19F NMR (500 MHz, CDCl3) δ -101.6, -102.6; 31P NMR (500 MHz, CDCl3) δ -17.0, -36.0; FT-ICR MS: m/z [Mㆍ]+ calcd for C29H26F2P2: 474.1478; found: 474.1471. 1 H NMR (500 MHz, CDCl 3 ) δ 7.30-6.99 (m, 15H, aromatics), 7.10 (m, 3H, aromatics), 6.99 (s, 1H, = CH-), 2.47 (s, 1H, -CH -), 1.02 (t, 3H, -CH 3 ), 0.86 (t, 3H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 165.3, 163.4, 161.5, 138.6, 134.8, 133.5, 132.2, 130.8, 128.5, 125.8, 115.3, 33.9, 24.1; 19 F NMR (500 MHz, CDCl 3 ) δ −101.6, −102.6; 31 P NMR (500 MHz, CDCl 3 ) δ −17.0, −36.0; FT-ICR MS: m / z [M.] + calcd for C 29 H 26 F 2 P 2 : 474.1478; found: 474.1471.
[제조예 5] 리간드 (5)의 제조Preparation Example 5 Preparation of Ligand (5)
Figure PCTKR2018012025-appb-I000020
Figure PCTKR2018012025-appb-I000020
(2-(2- 플루오르페닐Fluorophenyl )(1-)(One- 헥사이닐Hexanyl )(페닐)포스핀의 제조Preparation of (phenyl) phosphine
출발 물질로 3,3-디메틸-1-부타인 대신 1-헥사인을 사용한 것 이외에는 리간드 (1)의 제조방법과 동일하게 반응을 진행하여, 표제 화합물을 수득하였다(79.45 %).The reaction was carried out in the same manner as the preparation of the ligand (1), except that 1-hexane was used instead of 3,3-dimethyl-1-butane as the starting material, to obtain the title compound (79.45%).
1H NMR (500 MHz, CDCl3) δ 7.69-7.62 (m, 3H, aromatics), 7.32 (m, 4H, aromatics), 7.15 (t, 1H, aromatics), 6.97 (m, 1H, aromatics), 2.43 (t, 2H, -CH2-), 1.62 (q, 2H, -CH2-), 1.45 (q, 2H, -CH2-), 0.93 (t, 3H, -CH3); 13C NMR (600 MHz, CDCl3) δ 165.1, 135.4, 133.3, 132.5, 131.1, 129.0, 124.1, 115.1, 111.6, 74.1, 30.5, 21.9, 20.0, 13.5; 19F NMR (500 MHz, CDCl3) δ -105.5; 31P NMR (500 MHz, CDCl3) δ -45.7; FT-ICR MS: m/z [M+H]+ calcd for C18H19FP+: 285.1208; found: 285.1206. 1 H NMR (500 MHz, CDCl 3 ) δ 7.69-7.62 (m, 3H, aromatics), 7.32 (m, 4H, aromatics), 7.15 (t, 1H, aromatics), 6.97 (m, 1H, aromatics), 2.43 (t, 2H, -CH 2- ), 1.62 (q, 2H, -CH 2- ), 1.45 (q, 2H, -CH 2- ), 0.93 (t, 3H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 165.1, 135.4, 133.3, 132.5, 131.1, 129.0, 124.1, 115.1, 111.6, 74.1, 30.5, 21.9, 20.0, 13.5; 19 F NMR (500 MHz, CDCl 3 ) δ −105.5; 31 P NMR (500 MHz, CDCl 3 ) δ −45.7; FT-ICR MS: m / z [M + H] + calcd for C 18 H 19 FP + : 285.1208; found: 285.1206.
리간드 (Ligand ( 5)의5) 제조 Produce
출발 물질로 (3,3-디메틸-1-부타이닐)(2-플루오르페닐)페닐포스핀 대신 (2-플루오르페닐)(1-헥사이닐)(페닐)포스핀을 사용한 것 이외에는 리간드 (1)의 제조방법과 동일하게 반응을 진행하여, 리간드 (5)를 수득하였다(51.01 %).Ligand (1) except that (2-fluorophenyl) (1-hexynyl) (phenyl) phosphine was used instead of (3,3-dimethyl-1-butynyl) (2-fluorophenyl) phenylphosphine as starting material The reaction was carried out in the same manner as in the preparation of, to obtain the ligand (5) (51.01%).
1H NMR (500 MHz, CDCl3) δ 7.29-7.18 (m, 16H, aromatics), 7.10 (s, 1H, =CH-), 7.02 (m, 1H, aromatics), 6.95 (m, 1H, aromatics), 2.12 (t, 2H, -CH2-), 1.24 (m, 2H, -CH2-), 1.10 (m, 2H, -CH2-), 0.69 (t, 3H, -CH3); 13C NMR (600 MHz, CDCl3) δ 163.5, 156.5, 138.5, 136.3, 134.6, 133.2, 132.1, 130.6, 128.5, 127.9, 125.9, 115.5, 36.5, 30.9, 22.3, 13.7; 19F NMR (500 MHz, CDCl3) δ -102.5; 31P NMR (500 MHz, CDCl3) δ -7.9, -35.1; FT-ICR MS: m/z [Mㆍ]+ calcd for C30H29FP2: 470.1729; found: 470.1729. 1 H NMR (500 MHz, CDCl 3 ) δ 7.29-7.18 (m, 16H, aromatics), 7.10 (s, 1H, = CH-), 7.02 (m, 1H, aromatics), 6.95 (m, 1H, aromatics) , 2.12 (t, 2H, -CH 2- ), 1.24 (m, 2H, -CH 2- ), 1.10 (m, 2H, -CH 2- ), 0.69 (t, 3H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 163.5, 156.5, 138.5, 136.3, 134.6, 133.2, 132.1, 130.6, 128.5, 127.9, 125.9, 115.5, 36.5, 30.9, 22.3, 13.7; 19 F NMR (500 MHz, CDCl 3 ) δ −102.5; 31 P NMR (500 MHz, CDCl 3 ) δ -7.9, -35.1; FT-ICR MS: m / z [M.] + calcd for C 30 H 29 FP 2 : 470.1729; found: 470.1729.
[제조예 6] 리간드 (6)의 제조Production Example 6 Preparation of Ligand (6)
Figure PCTKR2018012025-appb-I000021
Figure PCTKR2018012025-appb-I000021
1-One- 헥사이닐디페닐포스핀의Of hexynyldiphenylphosphine 제조 Produce
출발 물질로 3-메틸-1-부타인 대신 1-헥사인을 사용한 것 이외에는 리간드 (3)의 제조방법과 동일하게 반응을 진행하여, 표제 화합물을 수득하였다(8.6 g, 84.42 %).The reaction was carried out in the same manner as the preparation of the ligand (3), except that 1-hexane was used instead of 3-methyl-1-butane as the starting material, to obtain the title compound (8.6 g, 84.42%).
1H NMR (500 MHz, CDCl3) δ 7.60 (t, 4H, aromatics), 7.30 (m, 6H, aromatics), 2.44 (t, 2H, -CH2-), 1.60 (q, 2H, -CH2-), 1.46 (m, 2H, -CH2-), 0.90 (t, 3H, -CH3); 13C NMR (600 MHz, CDCl3) δ 137.0, 132.2, 128.4, 110.4, 75.6, 30.5, 21.9, 20.0, 13.5; 31P NMR (500 MHz, CDCl3) δ -33.0; FT-ICR MS: m/z [M+H]+ calcd for C18H20P+: 267.1303; found: 267.1300. 1 H NMR (500 MHz, CDCl 3 ) δ 7.60 (t, 4H, aromatics), 7.30 (m, 6H, aromatics), 2.44 (t, 2H, -CH 2- ), 1.60 (q, 2H, -CH 2 -), 1.46 (m, 2H, -CH 2- ), 0.90 (t, 3H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 137.0, 132.2, 128.4, 110.4, 75.6, 30.5, 21.9, 20.0, 13.5; 31 P NMR (500 MHz, CDCl 3 ) δ −33.0; FT-ICR MS: m / z [M + H] + calcd for C 18 H 20 P + : 267.1303; found: 267.1300.
리간드 (Ligand ( 6)의6) 제조 Produce
출발물질로 (3-메틸-1-부타이닐)디페닐포스핀 대신 상기에서 제조된 1-헥사이닐디페닐포스핀을 사용한 것 이외에는 리간드 (3)의 제조방법과 동일하게 반응을 진행하여, 리간드 (6)을 수득하였다(0.1469 g, 62.43 %).The reaction proceeded in the same manner as in the preparation of the ligand (3), except that 1-hexynyldiphenylphosphine prepared above was used instead of (3-methyl-1-butynyl) diphenylphosphine as a starting material. 6) was obtained (0.1469 g, 62.43%).
1H NMR (500 MHz, CDCl3) δ 7.25 (m, 16H, aromatics), 6.99 (m, 4H, aromatics, =CH-), 2.13 (m, 2H, -CH2-), 1.26 (m, 2H, -CH2-), 1.10 (m, 2H, -CH2-), 0.70 (t, 3H, -CH3); 13C NMR (600 MHz, CDCl3) δ 165.2, 155.5, 140.1, 139.3, 134.9, 134.0, 133.3, 130.5, 128.2, 124.0, 115.3, 37.0, 30.9, 22.4, 13.7; 19F NMR (500 MHz, CDCl3) δ -102.3; 31P NMR (500 MHz, CDCl3) δ -19.2, -26.2; FT-ICR MS: m/z [Mㆍ]+ calcd for C30H29FP2: 470.1729; found: 470.1721. 1 H NMR (500 MHz, CDCl 3 ) δ 7.25 (m, 16H, aromatics), 6.99 (m, 4H, aromatics, = CH-), 2.13 (m, 2H, -CH 2- ), 1.26 (m, 2H , -CH 2- ), 1.10 (m, 2H, -CH 2- ), 0.70 (t, 3H, -CH 3 ); 13 C NMR (600 MHz, CDCl 3 ) δ 165.2, 155.5, 140.1, 139.3, 134.9, 134.0, 133.3, 130.5, 128.2, 124.0, 115.3, 37.0, 30.9, 22.4, 13.7; 19 F NMR (500 MHz, CDCl 3 ) δ −102.3; 31 P NMR (500 MHz, CDCl 3 ) δ −19.2, −26.2; FT-ICR MS: m / z [M.] + calcd for C 30 H 29 FP 2 : 470.1729; found: 470.1721.
[제조예 7] 리간드 (7)의 제조Preparation Example 7 Preparation of Ligand (7)
Figure PCTKR2018012025-appb-I000022
Figure PCTKR2018012025-appb-I000022
(2-(2- 플루오르페닐Fluorophenyl )(페닐)() (Phenyl) ( 페닐에타이닐Phenylethynyl )포스핀의 제조Preparation of phosphine
출발 물질로 3,3-디메틸-1-부타인 대신 에타이닐벤젠을 사용한 것 이외에는 리간드 (1)의 제조방법과 동일하게 반응을 진행하여, 표제 화합물을 수득하였다(70.95 %).The reaction was carried out in the same manner as the preparation of the ligand (1), except that ethynylbenzene was used instead of 3,3-dimethyl-1-butane as the starting material, to obtain the title compound (70.95%).
1H NMR (500 MHz, CDCl3) δ 7.72 (m, 3H, aromatics), 7.54 (m, 2H, aromatic), 7.36 (m, 7H, aromatics), 7.17 (m, 1H, aromatics), 7.00 (m, 1H, aromatics); 13C NMR (600 MHz, CDCl3) δ 165.1, 134.6, 132.8, 131.8, 129.2, 128.2, 124.5, 122.5, 115.4, 108.6, 84.2; 19F NMR (500 MHz, CDCl3) δ -105.1; 31P NMR (500 MHz, CDCl3) δ -45.9; FT-ICR MS: m/z [M+H]+ calcd for C20H15FP+: 305.0895; found: 305.0894. 1 H NMR (500 MHz, CDCl 3 ) δ 7.72 (m, 3H, aromatics), 7.54 (m, 2H, aromatics), 7.36 (m, 7H, aromatics), 7.17 (m, 1H, aromatics), 7.00 (m , 1H, aromatics); 13 C NMR (600 MHz, CDCl 3 ) δ 165.1, 134.6, 132.8, 131.8, 129.2, 128.2, 124.5, 122.5, 115.4, 108.6, 84.2; 19 F NMR (500 MHz, CDCl 3 ) δ −105.1; 31 P NMR (500 MHz, CDCl 3 ) δ −45.9; FT-ICR MS: m / z [M + H] + calcd for C 20 H 15 FP + : 305.0895; found: 305.0894.
리간드 (Ligand ( 7)의7) 제조 Produce
출발 물질로 (3,3-디메틸-1-부타이닐)(2-플루오르페닐)페닐포스핀 대신 (2-플루오르페닐)(페닐)(페닐에타이닐)포스핀을 사용한 것 이외에는 리간드 (1)의 제조방법과 동일하게 반응을 진행하여, 리간드 (7)을 수득하였다(97.13 %).Ligand (1) except for using (2-fluorophenyl) (phenyl) (phenylethynyl) phosphine in place of (3,3-dimethyl-1-butynyl) (2-fluorophenyl) phenylphosphine as starting material The reaction was carried out in the same manner as in the preparation of, to obtain the ligand (7) (97.13%).
1H NMR (500 MHz, CDCl3) δ 7.40-6.90 (m, 25H, aromatics, =CH-); 13C NMR (600 MHz, CDCl3) δ 165.2, 155.7, 145.9, 142.3, 139.1, 135.8, 133.3, 128.3, 126.8, 115.6; 19F NMR (500 MHz, CDCl3) δ -102.3; 31P NMR (500 MHz, CDCl3) δ -4.9, -25.9; FT-ICR MS: m/z [Mㆍ]+ calcd for C32H25FP2: 490.1416; found: 490.1418. 1 H NMR (500 MHz, CDCl 3 ) δ 7.40-6.90 (m, 25H, aromatics, ═CH—); 13 C NMR (600 MHz, CDCl 3 ) δ 165.2, 155.7, 145.9, 142.3, 139.1, 135.8, 133.3, 128.3, 126.8, 115.6; 19 F NMR (500 MHz, CDCl 3 ) δ −102.3; 31 P NMR (500 MHz, CDCl 3 ) δ −4.9, −25.9; FT-ICR MS: m / z [M.] + calcd for C 32 H 25 FP 2 : 490.1416; found: 490.1418.
[제조예 8] 리간드 (8)의 제조Preparation Example 8 Preparation of Ligand (8)
Figure PCTKR2018012025-appb-I000023
Figure PCTKR2018012025-appb-I000023
디페닐(페닐에타이닐)포스핀의Of diphenyl (phenylethynyl) phosphine 제조 Produce
출발 물질로 3-메틸-1-부타인 대신 에타이닐벤젠을 사용한 것 이외에는 리간드 (3)의 제조방법과 동일하게 반응을 진행하여, 표제 화합물을 수득하였다(7.865 g, 92.29 %).The title compound was obtained in the same manner as in the preparation of the ligand (3), except that ethynylbenzene was used instead of 3-methyl-1-butyne as the starting material (7.865 g, 92.29%).
1H NMR (500 MHz, CDCl3) δ 7.68 (m, 4H, aromatics), 7.54 (m, 2H, aromatic), 7.35 (m, 9H, aromatics); 13C NMR (600 MHz, CDCl3) δ 136.3, 132.6, 131.8, 128.9, 128.5, 122.7, 107.7, 85.8; 31P NMR (500 MHz, CDCl3) δ -33.4; FT-ICR MS: m/z [M+H]+ calcd for C20H16P+: 287.0990; found: 287.0987. 1 H NMR (500 MHz, CDCl 3 ) δ 7.68 (m, 4H, aromatics), 7.54 (m, 2H, aromatic), 7.35 (m, 9H, aromatics); 13 C NMR (600 MHz, CDCl 3 ) δ 136.3, 132.6, 131.8, 128.9, 128.5, 122.7, 107.7, 85.8; 31 P NMR (500 MHz, CDCl 3 ) δ −33.4; FT-ICR MS: m / z [M + H] + calcd for C 20 H 16 P + : 287.0990; found: 287.0987.
리간드 (Ligand ( 8)의8) 제조 Produce
출발물질로 (3-메틸-1-부타이닐)디페닐포스핀 대신 상기에서 제조된 디페닐(페닐에타이닐)포스핀을 사용한 것 이외에는 리간드 (3)의 제조방법과 동일하게 반응을 진행하여, 리간드 (8)를 수득하였다(0.2113g, 86.16 %).The reaction was carried out in the same manner as in the preparation of the ligand (3), except that diphenyl (phenylethynyl) phosphine prepared above was used instead of (3-methyl-1-butynyl) diphenylphosphine as a starting material. , Ligand (8) was obtained (0.2113 g, 86.16%).
1H NMR (500 MHz, CDCl3) δ 7.40-6.79 (m, 25H, aromatics, =CH-); 13C NMR (600 MHz, CDCl3) δ 165.3, 154.8, 145.3, 142.1, 138.5, 133.4, 132.5, 128.3, 123.8, 114.9; 19F NMR (500 MHz, CDCl3) δ -102.2; 31P NMR (500 MHz, CDCl3) δ -25.9; FT-ICR MS: m/z [Mㆍ]+ calcd for C32H25FP2: 490.1416; found: 490.1415. 1 H NMR (500 MHz, CDCl 3 ) δ 7.40-6.79 (m, 25H, aromatics, ═CH—); 13 C NMR (600 MHz, CDCl 3 ) δ 165.3, 154.8, 145.3, 142.1, 138.5, 133.4, 132.5, 128.3, 123.8, 114.9; 19 F NMR (500 MHz, CDCl 3 ) δ −102.2; 31 P NMR (500 MHz, CDCl 3 ) δ −25.9; FT-ICR MS: m / z [M.] + calcd for C 32 H 25 FP 2 : 490.1416; found: 490.1415.
[제조예 9] 리간드 (9)의 제조Preparation Example 9 Preparation of Ligand (9)
Figure PCTKR2018012025-appb-I000024
Figure PCTKR2018012025-appb-I000024
출발물질로 (3-메틸-1-부타이닐)디페닐포스핀 대신 (2-플루오르페닐)(페닐)(페닐에타이닐)포스핀을 사용한 것 이외에는 리간드 (3)의 제조방법과 동일하게 반응을 진행하여, 리간드 (9)을 수득하였다(0.244g, 99.9 %).The reaction was carried out in the same manner as in the preparation of the ligand (3), except that (2-fluorophenyl) (phenyl) (phenylethynyl) phosphine was used instead of (3-methyl-1-butynyl) diphenylphosphine as a starting material. Proceeded to yield ligand (9) (0.244 g, 99.9%).
1H NMR (500 MHz, CDCl3) δ 7.42-6.77 (m, 24H, aromatics); 13C NMR (600 MHz, CDCl3) δ 165.4, 154.9, 143.9, 142.1, 137.9, 133.5, 132.5, 130.5, 128.5, 127.9, 125.1, 124.2, 115.7, 124.2, 115.7, 114.8; 19F NMR (500 MHz, CDCl3) δ -102.2; 31P NMR (500 MHz, CDCl3) δ -16.8, -35.0; FT-ICR MS: m/z [Mㆍ]+ calcd for C32H24F2P2: 508.1321; found: 508.1322. 1 H NMR (500 MHz, CDCl 3 ) δ 7.42-6.77 (m, 24H, aromatics); 13 C NMR (600 MHz, CDCl 3 ) δ 165.4, 154.9, 143.9, 142.1, 137.9, 133.5, 132.5, 130.5, 128.5, 127.9, 125.1, 124.2, 115.7, 124.2, 115.7, 114.8; 19 F NMR (500 MHz, CDCl 3 ) δ −102.2; 31 P NMR (500 MHz, CDCl 3 ) δ −16.8, −35.0; FT-ICR MS: m / z [M.] + calcd for C 32 H 24 F 2 P 2 : 508.1321; found: 508.1322.
촉매의 제조 및 에틸렌 Preparation of Catalysts and Ethylene 올리고머화Oligomerization 반응 reaction
[실시예1] Example 1
삼테트라하이드로퓨란 삼염화 크롬(CrCl3(THF)3) (237 mg, 0.63 μmol)을 디클로로메탄 (2.0 mL)에 녹인 후 리간드 (1) (제조예 1) (298 mg, 0.63 μmol)을 디클로로메탄 (1.0 mL)에 녹여서 서서히 가하였다. 반응물을 1시간 더 교반 후 0.45 μm 실린지 필터(syringe filter)를 사용하여 여과하였다. 여과된 액체를 진공으로 휘발물을 제거하여 건조된 파란색 고체 (390 mg, 97.9 %)를 수득하였으며, 이를 올리고머화 촉매 I으로 명명하였다. Tritetrahydrofuran chromium trichloride (CrCl 3 (THF) 3 ) (237 mg, 0.63 μmol) was dissolved in dichloromethane (2.0 mL), followed by ligand (1) (Preparation Example 1) (298 mg, 0.63 μmol). (1.0 mL) was added slowly. The reaction was stirred for an additional hour and then filtered using a 0.45 μm syringe filter. The filtered liquid was removed in vacuo to give a dried blue solid (390 mg, 97.9%), which was named oligomerization catalyst I.
한편, 2.1 L 오토클레이브 반응기를 질소, 진공으로 세척한 후, 메틸시클로헥산 1.0 L를 가하고 Akzo Nobel사에서 시판 중인 mMAO-3A (7 wt%-Al) 1.0 mL (1.87 mmol)을 첨가한 후 500 rpm의 교반 속도로 교반시켰다. 글로브 상자에서 20 mL vial에 메틸시클로헥산 10 mL에 상기에서 제조된 올리고머화 촉매 I 1.9 mg (3 μmol)를 넣어 분산시킨 후 상기 오토클레이브 반응기에 투입하였다. 상기 오토클레이브 반응기 내의 온도를 100 ℃로 승온시킨 후 에틸렌을 30 bar로 충진하여 올리고머화 반응을 시작하였고 반응열을 제어하기 위하여 반응기 내부 냉각 코일로 냉각하여 가동 내내 100 ℃의 일정한 온도를 유지시켰다. 60분 경과 후, 반응기에 에틸렌 공급을 중단하고, 교반을 멈추어 반응을 중단하였으며, 반응기 내 과량의 에틸렌을 배출한 후, 반응기를 10 ℃ 이하로 냉각시켰다. 2-에틸헥산올 1.5 mL가 담긴 배출용기로 반응물을 배출한 후 소량의 유기층 샘플을 마이크론 실린지 필터를 통과시킨 후, GC-FID로 분석하였다. 나머지 유기층을 여과하여 고체 왁스/폴리머 생성물을 분리하였다. 이들 고체 생성물을 100 ℃ 오븐에서 밤새 건조한 후 수득물을 기록하였다. GC 분석하여 본 실시예의 생성물 분포를 하기 표 1에 요약하였다. Meanwhile, the 2.1 L autoclave reactor was washed with nitrogen and vacuum, 1.0 L of methylcyclohexane was added, and 1.0 mL (1.87 mmol) of mMAO-3A (7 wt% -Al) sold by Akzo Nobel was added, followed by 500 Stirred at a stirring speed of rpm. In a glove box, 1.9 mg (3 μmol) of the oligomerization catalyst I prepared above was added to 10 mL of methylcyclohexane in 20 mL of vial, and dispersed, and then charged into the autoclave reactor. The temperature in the autoclave reactor was raised to 100 ° C., and ethylene was charged to 30 bar to start the oligomerization reaction. The reactor was cooled with a cooling coil inside the reactor to maintain a constant temperature of 100 ° C. throughout the operation. After 60 minutes, the ethylene feed to the reactor was stopped, the stirring was stopped to stop the reaction, and after the excess ethylene was discharged in the reactor, the reactor was cooled to 10 ° C. or less. After the reaction was discharged into a discharge vessel containing 1.5 mL of 2-ethylhexanol, a small amount of the organic layer sample was passed through a micron syringe filter and analyzed by GC-FID. The remaining organic layer was filtered to separate the solid wax / polymer product. After drying these solid products overnight in an oven at 100 ° C., the obtained product was recorded. The product distribution of this example by GC analysis is summarized in Table 1 below.
[실시예 2] Example 2
리간드 (1) 대신 리간드 (2)를 사용하여 상기 실시예 1과 동일한 방법으로 촉매 II를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.The catalyst II was prepared in the same manner as in Example 1 using the ligand (2) instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[실시예 3] Example 3
리간드 (1) 대신 리간드 (3)을 사용하여 상기 실시예 1과 동일한 방법으로 촉매 III을 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.Using Ligand (3) instead of Ligand (1), Catalyst III was prepared in the same manner as in Example 1, and oligomerization was carried out in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[실시예 4] Example 4
리간드 (1) 대신 리간드 (4)를 사용하여 상기 실시예 1과 동일한 방법으로 촉매 IV를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.Using the ligand (4) instead of the ligand (1) to prepare a catalyst IV in the same manner as in Example 1, the oligomerization reaction was carried out in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[실시예 5] Example 5
리간드 (1) 대신 리간드 (5)를 사용하여 상기 실시예 1과 동일한 방법으로 촉매 V를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.The catalyst V was prepared in the same manner as in Example 1 using the ligand (5) instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[실시예 6] Example 6
리간드 (1) 대신 리간드 (6)을 사용하여 상기 실시예 1과 동일한 방법으로 촉매 VI을 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.Using the ligand (6) instead of the ligand (1) to prepare a catalyst VI in the same manner as in Example 1, oligomerization reaction was carried out in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[실시예 7] Example 7
리간드 (1) 대신 리간드 (7)을 상기 실시예 1과 동일한 방법으로 사용하여 촉매 VII를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.Instead of ligand (1), catalyst (VII) was prepared using ligand (7) in the same manner as in Example 1, and then oligomerization reaction was performed in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[실시예 8] Example 8
리간드 (1) 대신 리간드 (8)을 상기 실시예 1과 동일한 방법으로 사용하여 촉매 VIII을 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.Instead of ligand (1), catalyst (VIII) was prepared using ligand (8) in the same manner as in Example 1, followed by oligomerization reaction in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[실시예 9] Example 9
리간드 (1) 대신 리간드 (9)을 사용하여 상기 실시예 1과 동일한 방법으로 촉매 IX를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 실시예의 생성물 분포를 하기 표 1에 요약하였다.Using Ligand (9) instead of Ligand (1), Catalyst IX was prepared in the same manner as in Example 1, followed by an oligomerization reaction in the same manner as in Example 1. The product distribution of this example is summarized in Table 1 below.
[비교예 1] Comparative Example 1
리간드 (1) 대신 하기 구조의 리간드 (A)를 사용하여 상기 실시예 1과 동일한 방법으로 촉매 A를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 비교예의 생성물 분포를 하기 표 1에 요약하였다.The catalyst A was prepared in the same manner as in Example 1 using the ligand (A) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1. The product distribution of this comparative example is summarized in Table 1 below.
[비교예 2] Comparative Example 2
리간드 (1) 대신 하기 구조의 리간드 (B)를 사용하여 상기 실시예 1과 동일한 방법으로 촉매 B를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 비교예의 생성물 분포를 하기 표 1에 요약하였다.The catalyst B was prepared in the same manner as in Example 1 using the ligand (B) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1. The product distribution of this comparative example is summarized in Table 1 below.
[비교예 3] Comparative Example 3
리간드 (1) 대신 하기 구조의 리간드 (C)를 사용하여 상기 실시예 1과 동일한 방법으로 촉매 C를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 비교예의 생성물 분포를 하기 표 1에 요약하였다.The catalyst C was prepared in the same manner as in Example 1 using the ligand (C) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1. The product distribution of this comparative example is summarized in Table 1 below.
[비교예 4] [Comparative Example 4]
리간드 (1) 대신 하기 구조의 리간드 (D)를 사용하여 상기 실시예 1과 동일한 방법으로 촉매 D를 제조한 후 상기 실시예 1과 동일한 방법으로 올리고머화 반응을 수행하였다. 본 비교예의 생성물 분포를 하기 표 1에 요약하였다.The catalyst D was prepared in the same manner as in Example 1 using the ligand (D) having the following structure instead of the ligand (1), and then the oligomerization reaction was performed in the same manner as in Example 1. The product distribution of this comparative example is summarized in Table 1 below.
Figure PCTKR2018012025-appb-I000025
Figure PCTKR2018012025-appb-I000025
전체 활성(kg/g-Cr/h)Total activity (kg / g-Cr / h) 생성물product
C6(중량%)C6 (% by weight) C6 중 1-헥센(중량%)1-hexene (wt%) in C6 C8(중량%)C8 (wt%) C8 중 1-옥텐(중량%)1-octene in weight percent C8 C10-C14(중량%)C10-C14 (% by weight) 폴리머(중량%)Polymer (% by weight)
실시예1Example 1 16631663 80.380.3 98.098.0 15.915.9 93.293.2 3.73.7 0.10.1
실시예2Example 2 12781278 74.474.4 95.895.8 21.721.7 94.594.5 3.53.5 0.40.4
실시예3Example 3 32463246 75.475.4 97.697.6 19.419.4 97.397.3 4.74.7 0.50.5
실시예4Example 4 29142914 84.184.1 98.698.6 11.811.8 98.098.0 3.53.5 0.60.6
실시예5Example 5 11421142 71.571.5 95.695.6 21.921.9 97.297.2 4.54.5 2.12.1
실시예6Example 6 21402140 70.270.2 96.896.8 24.924.9 83.783.7 4.04.0 0.90.9
실시예7Example 7 10081008 72.272.2 94.994.9 23.323.3 93.693.6 3.83.8 0.70.7
실시예8Example 8 20682068 75.975.9 96.796.7 19.619.6 95.595.5 4.14.1 0.40.4
실시예9Example 9 18751875 82.282.2 98.398.3 11.411.4 94.594.5 4.24.2 2.22.2
비교예1Comparative Example 1 11561156 57.757.7 88.888.8 37.937.9 96.796.7 3.93.9 0.50.5
비교예2Comparative Example 2 523523 54.954.9 91.191.1 37.137.1 95.195.1 4.34.3 3.73.7
비교예3Comparative Example 3 386386 57.057.0 86.086.0 39.639.6 96.896.8 2.52.5 0.90.9
비교예4Comparative Example 4 335335 48.948.9 92.292.2 47.647.6 95.695.6 2.32.3 1.21.2
상기 표 1의 결과로부터, 에틸렌의 올리고머화 반응에서 본 발명의 올리고머화 촉매는 비스(디페닐포스피노)에텐에서 인 원자와 결합된 페닐의 오쏘-위치에 불소가 치환되고, 하나의 탄소 원자에 수소 이외 하이드로카빌기가 치환된 비대칭 형태의 리간드를 포함하고 있어 비교예와 대비하여 고온에서 매우 우수한 활성을 가짐을 알 수 있다. From the results of Table 1, in the oligomerization reaction of ethylene, the oligomerization catalyst of the present invention is substituted with fluorine at the ortho-position of phenyl bonded to phosphorus atom in bis (diphenylphosphino) ethene, and at one carbon atom. In addition to hydrogen, it contains a ligand of the asymmetric form substituted with a hydrocarbyl group, it can be seen that it has a very good activity at high temperatures in comparison with the comparative example.
특히, 본 발명의 올리고머화 촉매는 오쏘-위치에 불소가 치환된 페닐이 인 원자에 결합된 PNP리간드를 포함하는 비교예 4의 촉매 대비 고온에서 3.04배 이상의 촉매활성을 나타내었다.In particular, the oligomerization catalyst of the present invention exhibited at least 3.04 times more catalytic activity at a higher temperature than the catalyst of Comparative Example 4 containing a PNP ligand bonded to a phosphorus atom of phenyl substituted with fluorine at the ortho-position.
본 발명의 올리고머화 촉매는 높은 온도에서도 촉매활성 유지되며, 부산물의 생성이 적어 관막힘 및 파울링 없고, 이를 제거하기 위한 중합공정의 운전중단이 필요치 않아 매우 경제적이다.The oligomerization catalyst of the present invention remains catalytically active even at high temperatures, there are few by-products and there is no clogging and fouling, and thus it is very economical because the operation of the polymerization process for removing them is not necessary.
나아가 본 발명의 올리고머화 촉매는 높은 온도에서도 촉매활성이 매우 우수하여 올레핀의 올리고머화 공정시 소량의 촉매 및 소량의 조촉매를 사용하여도 올리고머를 제조할 수 있는 장점을 가질 뿐만 아니라, 고온에서도 활성이 저하되지 않으며 선택성도 우수하여 에틸렌으로부터 1-헥센 또는 1-옥텐을 고선택성으로 제조가 가능하다.Furthermore, the oligomerization catalyst of the present invention is very excellent in catalytic activity even at high temperature, and has the advantage of preparing oligomers even when using a small amount of catalyst and a small amount of promoter in the oligomerization process of the olefin, but also active at high temperatures. This does not decrease and excellent selectivity, it is possible to manufacture 1-hexene or 1-octene from ethylene with high selectivity.
이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although described in detail with respect to embodiments of the present invention as described above, those of ordinary skill in the art, without departing from the spirit and scope of the invention as defined in the appended claims Various modifications may be made to the invention. Therefore, changes in the future embodiments of the present invention will not be able to escape the technology of the present invention.
본 발명에 따른 올리고머화 촉매는 비스(디페닐포스피노)에텐에서 인 원자와 결합된 페닐에 적어도 하나의 불소가 치환되고, 하나의 탄소 원자에 수소 이외 치환되거나 치환되지 않은 하이드로카빌기가 치환된 비대칭 형태의 상기 화학식 1의 리간드를 포함하고 있어 에틸렌 올리고머화 시 높은 온도에서도 촉매활성 및 선택성이 우수하다.In the oligomerization catalyst according to the present invention, at least one fluorine is substituted for phenyl bonded to a phosphorus atom in bis (diphenylphosphino) ethene, and one carbon atom is substituted with a substituted or unsubstituted hydrocarbyl group other than hydrogen. It contains the ligand of the formula (1) of the asymmetric form is excellent in catalytic activity and selectivity even at high temperature during ethylene oligomerization.
특히, 화학식 1의 리간드에서 불소가 페닐의 오쏘- 위치에 결합되는 경우 에틸렌 올리고머화 시 고온에서 촉매활성 및 선택성이 우수하다.In particular, when the fluorine is bonded to the ortho-position of phenyl in the ligand of Formula 1, it has excellent catalytic activity and selectivity at high temperature during ethylene oligomerization.
또한, 본 발명의 올리고머화 촉매는 고온에서도 촉매활성이 우수하며, 올리고머의 대량생산시 부산물인 폴리머의 의해 발생하는 파울링 및 관막힘이 일어나지 않아 공정중단(shut down)이 필요치 않아 매우 경제적이다.In addition, the oligomerization catalyst of the present invention is excellent in catalytic activity even at high temperatures, and does not require fouling and clogging caused by polymers, which are by-products during mass production of oligomers.
또한 본 발명의 올리고머 제조방법은 고온에서도 고활성 및 높은 선택성으로 올리고머를 제조할 수 있을 뿐만 아니라 파울링 및 관막힘이 일어나지 않아 매우 효율적인 공정으로 올레핀의 제조가 가능하다.In addition, the oligomer manufacturing method of the present invention can produce the oligomer with high activity and high selectivity even at high temperature, and does not occur fouling and clogging, thereby making it possible to prepare the olefin in a very efficient process.

Claims (16)

  1. 하기 화학식 1로 표시되는 리간드.Ligand represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2018012025-appb-I000026
    Figure PCTKR2018012025-appb-I000026
    상기 화학식 1에서, In Chemical Formula 1,
    R1은 치환되거나 치환되지 않은 하이드로카빌이고;R 1 is substituted or unsubstituted hydrocarbyl;
    R2 및 R3는 각각 독립적으로 하이드로카빌이고;R 2 and R 3 are each independently hydrocarbyl;
    p 및 q는 각각 독립적으로 0 내지 5의 정수이고;p and q are each independently integers of 0 to 5;
    m 및 n은 각각 독립적으로 0 내지 5의 정수로, 1≤m+n≤10이다.m and n are each independently integers of 0 to 5, where 1 ≦ m + n ≦ 10.
  2. 제 1항에 있어서,The method of claim 1,
    하기 화학식 2로 표시되는 리간드.Ligand represented by the following formula (2).
    [화학식 2][Formula 2]
    Figure PCTKR2018012025-appb-I000027
    Figure PCTKR2018012025-appb-I000027
    상기 화학식 2에서, R1, m 및 n은 청구항 제1항의 화학식 1에서의 정의와 동일하다.In Formula 2, R 1 , m and n are the same as defined in Formula 1 of claim 1.
  3. 제 1항에 있어서,The method of claim 1,
    하기 화학식 3, 화학식 4 또는 화학식 5로 표시되는 리간드.Ligands represented by the following formula (3), (4) or (5).
    [화학식 3][Formula 3]
    Figure PCTKR2018012025-appb-I000028
    Figure PCTKR2018012025-appb-I000028
    [화학식 4][Formula 4]
    Figure PCTKR2018012025-appb-I000029
    Figure PCTKR2018012025-appb-I000029
    [화학식 5][Formula 5]
    Figure PCTKR2018012025-appb-I000030
    Figure PCTKR2018012025-appb-I000030
    상기 화학식 3 내지 5에서, R1, R2, R3, p 및 q는 청구항 제1항의 화학식 1에서의 정의와 동일하다.In Formulas 3 to 5, R 1 , R 2 , R 3 , p and q are the same as defined in Formula 1 of claim 1.
  4. 제 3항에 있어서,The method of claim 3,
    상기 R1은 C1-C7알킬 또는 C6-C12아릴인 리간드.R 1 is C 1 -C 7 alkyl or C 6 -C 12 aryl.
  5. 제 1항 내지 제 4항에서 선택되는 어느 한 항에 따른 리간드; 및A ligand according to any one of claims 1 to 4; And
    전이금속;Transition metals;
    을 포함하는 에틸렌 올리고머화 촉매.Ethylene oligomerization catalyst comprising a.
  6. 제 5항에 있어서,The method of claim 5,
    단핵 또는 이핵성인 에틸렌 올리고머화 촉매.Ethylene oligomerization catalysts that are mononuclear or dinuclear.
  7. 제 5항에 있어서,The method of claim 5,
    상기 전이금속은 4족, 5족 또는 6족 전이금속인 에틸렌 올리고머화 촉매.The transition metal is an ethylene oligomerization catalyst of a Group 4, Group 5 or Group 6 transition metal.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 전이금속은 크롬, 몰리브덴, 텅스텐, 티탄, 탄탈륨, 바나듐 또는 지르코늄인 에틸렌 올리고머화 촉매.The transition metal is chromium, molybdenum, tungsten, titanium, tantalum, vanadium or zirconium.
  9. 제 8항에 있어서,The method of claim 8,
    상기 전이금속은 크롬인 에틸렌 올리고머화 촉매.The transition metal is chromium ethylene oligomerization catalyst.
  10. 제 5항의 에틸렌 올리고머화 촉매를 포함하는 촉매 조성물과 에틸렌을 접촉시키는 단계를 포함하는 에틸렌 올리고머의 제조방법.A method for preparing an ethylene oligomer comprising contacting ethylene with a catalyst composition comprising the ethylene oligomerization catalyst of claim 5.
  11. 제 10항에 있어서,The method of claim 10,
    상기 촉매 조성물은 조촉매를 더 포함하는 에틸렌 올리고머의 제조방법.The catalyst composition is a method for producing an ethylene oligomer further comprises a promoter.
  12. 제 11항에 있어서, The method of claim 11,
    상기 조촉매는 유기 알루미늄 화합물, 유기 알루미녹산, 유기 붕소 화합물, 유기염 또는 이들의 혼합물인 에틸렌 올리고머의 제조방법.The cocatalyst is an organic aluminum compound, an organic aluminoxane, an organic boron compound, an organic salt, or a mixture thereof.
  13. 제 12항에 있어서, The method of claim 12,
    상기 조촉매는 메틸알루미녹산(MAO), 변형 메틸알루미녹산 (mMAO), 에틸알루미녹산(EAO), 테트라이소부틸알루미녹산(TIBAO), 이소부틸알루미녹산(IBAO), 트리메틸알루미늄(TMA), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리-n-옥틸알루미늄, 메틸알루미늄디클로라이드, 에틸알루미늄 디클로라이드, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 알루미늄이소프로폭사이드, 에틸알루미늄 세스퀴클로라이드 및 메틸알루미늄 세스퀴클로라이드로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 혼합물인 에틸렌 올리고머의 제조방법.The promoter is methylaluminoxane (MAO), modified methylaluminoxane (mMAO), ethylaluminoxane (EAO), tetraisobutylaluminoxane (TIBAO), isobutyl aluminoxane (IBAO), trimethylaluminum (TMA), tri Ethylaluminum (TEA), triisobutylaluminum (TIBA), tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminum isopropoxide, ethylaluminum sesqui A process for preparing an ethylene oligomer, which is one or two or more mixtures selected from the group consisting of chloride and methylaluminum sesquichloride.
  14. 제 13항에 있어서,The method of claim 13,
    상기 에틸렌 올리고머는 1-헥센 또는 1-옥텐인 에틸렌 올리고머의 제조방법.The ethylene oligomer is 1-hexene or 1-octene.
  15. 제 10항에 있어서,The method of claim 10,
    지방족 탄화수소를 반응용매로 사용하는 에틸렌 올리고머의 제조방법.Process for producing ethylene oligomer using aliphatic hydrocarbon as reaction solvent.
  16. 제 15항에 있어서,The method of claim 15,
    상기 지방족 탄화수소는 헥산, 헵탄, 옥탄, 노넨, 데칸, 언데칸, 도데칸, 테트라데칸, 2,2-디메틸펜탄, 2,3-디메틸펜탄, 2,4-디메틸펜탄, 3,3-디메틸펜탄, 2,2,4-트리메틸펜탄, 2,3,4-트리메틸펜탄, 2-메틸헥산, 3-메틸헥산, 2,2-디메틸헥산, 2,4-디메틸헥산, 2,5-디메틸헥산, 3,4-디메틸헥산, 2-메틸헵탄, 4-메틸헵탄, 사이클로헥산, 메틸사이클로헥산, 에틸사이클로헥산, 이소프로필사이클로헥산, 1,4-디메틸사이클로헥산 및 1,2,4-트리메틸사이클로헥산 중에서 선택된 1종 이상인 에틸렌 올리고머의 제조방법. The aliphatic hydrocarbons are hexane, heptane, octane, nonene, decane, undecane, dodecane, tetradecane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane , 2,2,4-trimethylpentane, 2,3,4-trimethylpentane, 2-methylhexane, 3-methylhexane, 2,2-dimethylhexane, 2,4-dimethylhexane, 2,5-dimethylhexane, 3,4-dimethylhexane, 2-methylheptane, 4-methylheptane, cyclohexane, methylcyclohexane, ethylcyclohexane, isopropylcyclohexane, 1,4-dimethylcyclohexane and 1,2,4-trimethylcyclohexane Method for producing an ethylene oligomer is at least one selected from.
PCT/KR2018/012025 2018-02-27 2018-10-12 Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst WO2019168249A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/771,857 US11224870B2 (en) 2018-02-27 2018-10-12 Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst
JP2020512872A JP7210552B2 (en) 2018-02-27 2018-10-12 Ligand, oligomerization catalyst containing the same, and method for producing ethylene oligomer using the same
CN201880057196.4A CN111094308B (en) 2018-02-27 2018-10-12 Ligand, oligomerization catalyst comprising the same, and method for preparing ethylene oligomer using the oligomerization catalyst
EP18907972.6A EP3760634A4 (en) 2018-02-27 2018-10-12 Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0023819 2018-02-27
KR20180023819 2018-02-27
KR10-2018-0119906 2018-10-08
KR1020180119906A KR102605188B1 (en) 2018-02-27 2018-10-08 Ligand, Oligomerization Catalyst And Process For Preparing Ethylene Oligomer Using Thereof

Publications (2)

Publication Number Publication Date
WO2019168249A1 true WO2019168249A1 (en) 2019-09-06
WO2019168249A8 WO2019168249A8 (en) 2020-02-27

Family

ID=67805425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012025 WO2019168249A1 (en) 2018-02-27 2018-10-12 Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst

Country Status (1)

Country Link
WO (1) WO2019168249A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905832A (en) * 2020-07-23 2020-11-10 天津科技大学 Catalyst system for selective oligomerization of ethylene, reaction method and application thereof
CN114163475A (en) * 2021-12-01 2022-03-11 浙江智英石化技术有限公司 Catalyst system containing pyrrole-based rigid structure multi-site ligand, preparation method and application
CN116328832A (en) * 2021-12-24 2023-06-27 中国石油化工股份有限公司 Organic polymer carrier, main catalyst, ethylene polymerization catalyst composition and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004119A1 (en) 2000-07-11 2002-01-17 Bp Chemicals Limited Olefin trimerisation using a catalyst comprising a source of chromium, molybdenum or tungsten and a ligand containing at least one phosphorous, arsenic or antimony atom bound to at least one (hetero)hydrocarbyl group
WO2004056479A1 (en) 2002-12-20 2004-07-08 Sasol Technology (Pty) Ltd Tetramerization of olefins
CN1566041A (en) * 2003-06-13 2005-01-19 中国科学院化学研究所 Ethylene oligomerization catalysis system and preparation method and application thereof
US20070185360A1 (en) * 2006-02-03 2007-08-09 John Scott Buchanan Process for generating linear apha olefin comonomers
KR20130105126A (en) * 2012-03-16 2013-09-25 에스케이이노베이션 주식회사 Catalyst systems for preparing 1-hexene and/or 1-octene from ethylene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004119A1 (en) 2000-07-11 2002-01-17 Bp Chemicals Limited Olefin trimerisation using a catalyst comprising a source of chromium, molybdenum or tungsten and a ligand containing at least one phosphorous, arsenic or antimony atom bound to at least one (hetero)hydrocarbyl group
WO2004056479A1 (en) 2002-12-20 2004-07-08 Sasol Technology (Pty) Ltd Tetramerization of olefins
KR20060002741A (en) 2002-12-20 2006-01-09 사솔 테크날러지 (프로프라이어터리) 리미티드 Trimerisation of olefins
CN1566041A (en) * 2003-06-13 2005-01-19 中国科学院化学研究所 Ethylene oligomerization catalysis system and preparation method and application thereof
US20070185360A1 (en) * 2006-02-03 2007-08-09 John Scott Buchanan Process for generating linear apha olefin comonomers
KR20130105126A (en) * 2012-03-16 2013-09-25 에스케이이노베이션 주식회사 Catalyst systems for preparing 1-hexene and/or 1-octene from ethylene

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANTEA CARTER ET AL., CHEM. COMMUN., 2002, pages 858 - 859
KULANGARA, S. V. ET AL.: "Synthesis and Catalytic Oligomerization Activity of Chromium Catalysts of Ligand Systems with Switchable Connectivity", ORGANOMETALLICS, vol. 31, 2012, pages 6438 - 6449, XP055719908 *
M. OLIANA, J. ORG. CHEM., 2006, pages 2472 - 2479
See also references of EP3760634A4 *
YANG, Y. ET AL.: "Selective Ethylene Oligomerization with Chromium Complexes Bearing Pyridine-Phosphine Ligands: Influence of Ligand Structure on Catalytic Behavior", ORGANOMETALLICS, vol. 33, no. 20, 2014, pages 5749 - 5757, XP055385132, DOI: 10.1021/om5003683 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905832A (en) * 2020-07-23 2020-11-10 天津科技大学 Catalyst system for selective oligomerization of ethylene, reaction method and application thereof
CN114163475A (en) * 2021-12-01 2022-03-11 浙江智英石化技术有限公司 Catalyst system containing pyrrole-based rigid structure multi-site ligand, preparation method and application
CN116328832A (en) * 2021-12-24 2023-06-27 中国石油化工股份有限公司 Organic polymer carrier, main catalyst, ethylene polymerization catalyst composition and application thereof

Also Published As

Publication number Publication date
WO2019168249A8 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2011108772A1 (en) Highly active and highly selective ethylene oligomerization catalyst, and preparation method of hexene or octene using same
WO2017204476A1 (en) Oligomerizing catalyst and method for preparing ethylene oligomer using same
WO2013137676A1 (en) Catalyst systems for preparing 1-hexene and/or 1-octene from ethylene
WO2017010648A1 (en) Metallocene compound and preparation method therefor
WO2019168249A1 (en) Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst
WO2016200052A1 (en) Separation method and separation process system for recovering ethylene
US11224870B2 (en) Ligand, oligomerization catalyst comprising same, and method for producing ethylene oligomer by using oligomerization catalyst
WO2020105922A1 (en) Transition metal compound for olefin polymerization catalyst, and olefin polymerization catalyst comprising same
WO2017003261A1 (en) Transition metal compound and catalyst composition containing same
WO2018230846A1 (en) Heteroatom ligand, oligomerization catalyst containing same, and method for preparing oligomer
WO2019107713A1 (en) Method for oligomerizing olefins
WO2016200053A1 (en) Separation method and separation process system for recovering ethylene
EP3484929A1 (en) Oligomerization of ethylene
WO2021111282A1 (en) Transition metal compound, catalyst composition comprising same, and method for producing olefin polymer using catalyst composition
WO2018127772A1 (en) NOVEL TRANSITION METAL COMPOUND, CATALYST COMPOSITION COMPRISING SAME, METHOD FOR PRODUCING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN USING SAME
WO2023191519A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2017003262A1 (en) Transition metal compound and catalyst composition containing same
WO2018106029A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2017111553A1 (en) Catalyst composition comprising novel transition metal compound
WO2016129848A1 (en) Olefin oligomerization method
WO2024010176A1 (en) Ethylene oligomerization catalyst containing ligand compound, catalyst composition employing same, and method for producing ethylene oligomer by using same
WO2016129901A1 (en) Method for oligomerizing olefins
WO2018122693A1 (en) NOVEL CYCLOPENTA[B]THIOPHENYL TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING SAME
WO2021020778A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst including same, and polyolefin polymerized using same
WO2018012793A1 (en) Oligomerization of ethylene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907972

Country of ref document: EP

Effective date: 20200928