[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019168028A1 - 霧化装置および調湿装置 - Google Patents

霧化装置および調湿装置 Download PDF

Info

Publication number
WO2019168028A1
WO2019168028A1 PCT/JP2019/007556 JP2019007556W WO2019168028A1 WO 2019168028 A1 WO2019168028 A1 WO 2019168028A1 JP 2019007556 W JP2019007556 W JP 2019007556W WO 2019168028 A1 WO2019168028 A1 WO 2019168028A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ultrasonic wave
liquid material
atomization
ultrasonic
Prior art date
Application number
PCT/JP2019/007556
Other languages
English (en)
French (fr)
Inventor
惇 佐久間
奨 越智
井出 哲也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201980011202.7A priority Critical patent/CN111741818A/zh
Priority to JP2020503566A priority patent/JP6932237B2/ja
Priority to US16/966,773 priority patent/US20200360957A1/en
Publication of WO2019168028A1 publication Critical patent/WO2019168028A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators

Definitions

  • the present invention relates to an atomization device and a humidity control device.
  • an ultrasonic atomizer that generates a mist by irradiating a liquid with ultrasonic waves is conventionally known.
  • the following Patent Document 1 includes an ultrasonic transducer with a built-in ultrasonic transducer and a working tank that stores the working fluid, and a chemical bath that is immersed in the working fluid and stores the chemical solution.
  • An ultrasonic nebulizer that can be attached to and detached from is disclosed.
  • Patent Document 1 describes that in the present invention, since the chemical tank can be easily detached from the working tank, the working tank can be easily cleaned and disinfected.
  • atomization efficiency atomization amount / energy required for atomization.
  • the ultrasonic transducer may become empty and break.
  • the amount of the liquid is small, so that the ultrasonic wave reflected from the liquid surface may return with high intensity, and the ultrasonic transducer may be damaged.
  • One aspect of the present invention is made in order to solve the above-described problem, and does not depend on the viscosity of the liquid to be atomized.
  • One of the objects is to provide an atomizing device that can obtain the above.
  • an atomization apparatus includes a housing having an internal space for storing a first liquid material to be mist droplets and an exhaust port, and the housing.
  • An ultrasonic generator for generating the mist droplets by irradiating the first liquid with ultrasonic waves, and at least a part of the mist droplets through the exhaust port.
  • An airflow generating section for generating an airflow to be sent out from the space; and an ultrasonic wave propagation path between the ultrasonic generating section and the first liquid material in the internal space.
  • An ultrasonic wave propagation member having an attenuation coefficient smaller than that of the liquid material.
  • the ultrasonic wave propagation member includes a partition member that partitions the internal space, and at least a part of the partition member is based on an attenuation coefficient of the first liquid material. May be made of a material having a small attenuation coefficient.
  • the ultrasonic wave propagation member includes a second liquid material having a viscosity lower than that of the first liquid material, and the second liquid material includes the second liquid material.
  • the first liquid material is stored in a space near the ultrasonic wave generation unit, and the first liquid material is stored in a space far from the ultrasonic wave generation unit. Good.
  • the casing includes a first container and a second container that is detachable from the internal space of the first container, In a state in which the second container is mounted in the internal space of the first container, at least a part of the second container functions as the partition member, and the second liquid material is separated from the first container. It is stored in a space between the second container, and the first liquid material may be stored in an internal space of the second container.
  • the ultrasonic wave generator includes a plurality of ultrasonic transducers, and the partition member defines an upper space of each of the ultrasonic transducers. It may be provided.
  • the partition member may be thicker than the layer thickness of the second liquid material.
  • the partition member may include an acoustic lens unit that focuses ultrasonic waves toward a specific region of the first liquid material.
  • the partition member may include a cylindrical portion that focuses ultrasonic waves toward a specific region of the first liquid material.
  • the cylindrical portion may have an inlet that allows the first liquid material to flow into the cylindrical portion.
  • the humidity control apparatus includes a moisture absorption unit that causes the liquid moisture absorbent to absorb at least a portion of moisture contained in the air by bringing the liquid moisture absorbent including the hygroscopic substance into contact with air.
  • An atomization regenerator that regenerates the liquid hygroscopic material by atomizing and removing at least part of the water contained in the liquid hygroscopic material supplied from the hygroscopic unit, The atomization device according to one aspect of the present invention is provided.
  • the atomization apparatus of one aspect of the present invention high atomization efficiency can be ensured without lowering the reliability of the ultrasonic wave generation unit regardless of the type of liquid to be atomized.
  • the humidity control apparatus provided with said atomization apparatus can be provided.
  • FIG. 1 is a cross-sectional view showing the atomizing device of the first embodiment.
  • the scale of the size may be varied depending on the component.
  • the atomization device 50 includes a casing 51, an ultrasonic wave generation unit 52, an airflow generation unit 53, and an ultrasonic wave propagation member 54.
  • the housing 51 has an internal space 51a for storing the first liquid material F that becomes the mist droplets W3, an air supply port 51b, and an exhaust port 51c.
  • the casing 51 is a container formed of a material such as metal or resin, and the constituent material is not particularly limited.
  • An air supply pipe 55 is connected to the air supply port 51b, and an exhaust pipe 56 is connected to the exhaust port 51c.
  • the first liquid F has a viscosity of 3 ⁇ 10 ⁇ 3 Pa ⁇ s or more, for example.
  • the 1st liquid F is comprised by the liquid which has comparatively high viscosity.
  • Specific examples of the first liquid F include glycerin, ethylene glycol, sodium polyacrylate aqueous solution, polyethylene glycol, triethylene glycol, calcium chloride aqueous solution, lithium chloride aqueous solution, or a mixture thereof.
  • the acoustic characteristics (attenuation coefficient, acoustic impedance, viscosity, sound velocity) of each of the above materials are summarized in [Table 1] below.
  • Each characteristic value is a value when the ultrasonic frequency is 1 MHz and the liquid temperature is 20 ° C.
  • the attenuation coefficient ⁇ is It is represented by the following formula (2).
  • A A 0 ⁇ exp ( ⁇ / x) (2)
  • the attenuation coefficient represents how many tenths of the amplitude of the propagating ultrasonic wave becomes while propagating by a unit length.
  • a pulse method As a method for measuring the attenuation coefficient, a pulse method, a correlation method, a reverberation method, and the like are known, and an ultrasonic attenuation sound velocity measuring device, for example, is used as a measuring device.
  • the ultrasonic wave generation unit 52 is provided in the casing 51 and generates a mist droplet W3 from the first liquid material F by irradiating the first liquid material F with ultrasonic waves.
  • the ultrasonic generator 52 includes a plurality of ultrasonic transducers 521 provided on the bottom plate of the casing 51.
  • the number of the plurality of ultrasonic transducers 521 is not particularly limited.
  • the ultrasonic generator 52 does not necessarily include a plurality of ultrasonic transducers 521 and may include a single ultrasonic transducer 521.
  • the ultrasonic waves When irradiating ultrasonic waves from the ultrasonic transducer 521 to the first liquid F, the ultrasonic waves are concentrated on a specific portion of the liquid surface of the first liquid F by adjusting the generation conditions of the ultrasonic waves.
  • the liquid column C of the first liquid material F can be generated.
  • the mist-like droplets W3 are generated from arbitrary locations on the liquid surface, but are particularly generated from the liquid column C and the vicinity thereof.
  • the airflow generation unit 53 generates an airflow for sending at least a part of the mist droplet W3 from the internal space 51a to the outside through the exhaust port 51c of the housing 51.
  • the airflow generation unit 53 is configured by a blower provided in the air supply pipe 55.
  • the airflow generation unit 53 is not limited to the air supply pipe 55, and may be configured by a blower provided in the exhaust pipe 56.
  • the ultrasonic wave propagation member 54 is provided on an ultrasonic wave propagation path between the ultrasonic wave generation unit 52 and the first liquid material F in the internal space 51 a of the housing 51.
  • the ultrasonic wave propagation member 54 has an attenuation coefficient smaller than the attenuation coefficient of the first liquid material F. Due to the provision of the ultrasonic wave propagation member 54, the ultrasonic wave generated by the ultrasonic wave generation unit 52 is generated via the ultrasonic wave propagation member 54 as compared with the case where the ultrasonic wave propagation member 54 is not provided. Propagates to the liquid surface of the liquid F with high strength.
  • the ultrasonic wave propagation member 54 includes a partition member 541 that partitions the internal space 51 a of the casing 51, and a second liquid material 542 having a viscosity lower than that of the first liquid material F.
  • the second liquid material 542 is stored in a space close to the ultrasonic wave generation unit 52 (a space below the partition member 541) among the plurality of spaces partitioned by the partition member 541, and the first liquid material F is stored in a space far from the ultrasonic wave generator 52 (a space above the partition member 541). Therefore, the first liquid material F and the second liquid material 542 do not mix in the internal space 51 a of the housing 51.
  • the partition member 541 is configured by a plate-like member disposed in the horizontal direction inside the casing 51, and divides the internal space 51a into two spaces.
  • the partition member 541 is made of a material having an attenuation coefficient smaller than that of the first liquid material F.
  • Specific examples of the constituent material of the partition member 541 include rubber, polyethylene, and polystyrene.
  • the whole partition member 541 is preferably made of the above material, but at least a part (for example, immediately above the ultrasonic transducer 521) may be made of the above material.
  • the acoustic characteristics (attenuation coefficient, acoustic impedance, sound velocity) of each material are summarized in [Table 2] below.
  • Each characteristic value is a value when the ultrasonic frequency is 1 MHz and the temperature is 20 ° C.
  • the second liquid material 542 has a viscosity of, for example, less than 3 ⁇ 10 ⁇ 3 Pa ⁇ s.
  • the second liquid material 542 has a viscosity lower than that of the first liquid material F, and is configured by a liquid having an attenuation coefficient smaller than that of the first liquid material F.
  • Specific examples of the second liquid material 542 include water, ethanol, acetone, or a mixture thereof.
  • acoustic characteristics (attenuation coefficient, acoustic impedance, viscosity, sound velocity) of each material are summarized in [Table 3] below.
  • Each characteristic value is a value when the ultrasonic frequency is 1 MHz and the liquid temperature is 20 ° C.
  • the ultrasonic propagation member 54 is composed of the partition member 541 the second liquid material 542, the acoustic impedance of the first liquid material F and Z 1, second liquid material 542 an acoustic impedance as Z 2, and when the acoustic impedance of the partition member 541 and the Z S, it is desirable to satisfy the following equation (3).
  • Z S ⁇ (Z 1 ⁇ Z 2 ) (3)
  • the second liquid material 542 is selected desirably, be equal to the geometric mean of the acoustic impedance Z 1 and the acoustic impedance Z 2 is selected more preferably. In this case, reflection of ultrasonic waves at the interface between the second liquid material 542 and the partition member 541 and the interface between the partition member 541 and the first liquid material F can be minimized.
  • the attenuation coefficient of the second liquid material 542 is ⁇ 2
  • the thickness of the second liquid material 542 (ultrasonic travel distance) is d 2
  • the attenuation coefficient of the partition member 541 is ⁇ S.
  • the attenuation coefficient of one of the partition member 541 and the second liquid material 542 is larger than the attenuation coefficient of the first liquid material F, the attenuation coefficient as a whole of the ultrasonic wave propagation member 54 is increased. If the condition that it is smaller than the attenuation coefficient of the first liquid F is satisfied, the effect of the atomization device of the present embodiment to be described later can be obtained.
  • a conventional general atomization apparatus has a configuration in which a first liquid material to be atomized is stored in an internal space of a housing, and ultrasonic waves are applied to the first liquid material by an ultrasonic vibrator. . Further, the atomizing device concentrates the ultrasonic wave at a specific location on the liquid surface of the first liquid material to generate a liquid column of the first liquid material, thereby generating atomized droplets. Therefore, in order to obtain high atomization efficiency, it is important to propagate the ultrasonic wave generated by the ultrasonic transducer from the bottom surface of the housing to the liquid level without being attenuated as much as possible.
  • the attenuation coefficient is proportional to the viscosity (viscosity and volume viscosity) of the substance, and inversely proportional to the power of density and sound speed. . Viscosity changes on the order of several tens to several thousand times depending on the type and temperature of the material, while density and sound speed change only on the order of several times, so that the damping coefficient becomes dominant. That is, the higher the viscosity of the substance, the larger the attenuation coefficient, and the easier the ultrasonic wave is attenuated.
  • the amount of attenuation of the ultrasonic wave is larger than when the viscosity of the first liquid material is low, so that the atomization efficiency is lowered.
  • the ultrasonic waves generated by the ultrasonic wave generation unit 52 propagate to the liquid surface of the first liquid material F via the ultrasonic wave propagation member 54.
  • the viscosity of the second liquid material 542 constituting the ultrasonic wave propagation member 54 is lower than the viscosity of the first liquid material F
  • the attenuation coefficient of the second liquid material 542 is the attenuation of the first liquid material F. Smaller than the coefficient.
  • the attenuation coefficient of the partition member 541 is smaller than the attenuation coefficient of the first liquid material F.
  • the ultrasonic waves generated by the ultrasonic wave generation unit 52 are attenuated with a smaller attenuation than in the prior art. Propagates to the liquid level of the first liquid F.
  • the second liquid material 542 and the partition member 541 always exist above the ultrasonic transducer 52, there is no possibility that the ultrasonic transducer 52 becomes empty.
  • the atomization apparatus 50 of the present embodiment high mist is obtained without reducing the reliability of the ultrasonic wave generation unit 52 regardless of the viscosity (type) of the first liquid material F to be atomized. Efficiency can be ensured.
  • FIG. 2 is a cross-sectional view of the atomization device of the second embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultrasonic wave propagation member 64 has the partition member 641 and the 2nd liquid material 542 similarly to 1st Embodiment. .
  • the ultrasonic wave propagation member 64 is provided on an ultrasonic wave propagation path between the ultrasonic wave generation unit 52 and the first liquid material F in the internal space 51 a of the housing 51.
  • the ultrasonic wave propagation member 64 has an acoustic transmittance higher than that of the first liquid F.
  • the partition member 641 is made of, for example, a material such as rubber, polyethylene, or polystyrene having an acoustic transmittance larger than that of the first liquid F.
  • the thickness of the partition member 641 of the present embodiment is thicker than the thickness of the partition member 541 of the first embodiment and thicker than the layer thickness of the second liquid material 542.
  • the other structure of the atomization apparatus 60 is the same as that of the atomization apparatus 50 of 1st Embodiment.
  • the quantity of the 2nd liquid material 542 can be reduced by having thickened the partition member 641 compared with 1st Embodiment, when the housing
  • FIG. 3 is a cross-sectional view of the atomization device of the third embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the atomization apparatus 70 of the present embodiment includes a casing 71, an ultrasonic wave generation unit 52, an airflow generation unit 53, and an ultrasonic wave propagation member 74.
  • the housing 71 includes a first container 711 and a second container 712.
  • the ultrasonic generator 52 is provided on the bottom plate of the first container 711.
  • the air supply port 712 b and the exhaust port 712 c are provided in the second container 712.
  • the constituent material of the first container 711 is not particularly limited, but the second container 712 is made of a material such as polyethylene or polystyrene having an acoustic transmittance larger than that of the first liquid F. ing.
  • the first container 711 has a size capable of accommodating the second container 712 in the internal space 711a.
  • the second container 712 can be attached to and detached from the internal space 711 a of the first container 711.
  • the internal space 711 a of the first container 711 so that there is no gap between the first container 711 and the second container 712. It is desirable that the structure be sealed.
  • a sealing material may be provided at a contact portion between the first container 711 and the second container 712.
  • the ultrasonic propagation member 74 includes a partition member 741 and a second liquid material 542.
  • the ultrasonic wave propagation member 74 has an acoustic transmittance higher than that of the first liquid F.
  • the first liquid F is stored in the internal space 712a of the second container 712.
  • the second liquid material 542 is stored in a space between the first container 711 and the second container 712.
  • the other structure of the atomization apparatus 70 is the same as that of 1st Embodiment.
  • FIG. 4 is a cross-sectional view of the atomization device of the fourth embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultrasonic wave propagation member 84 includes a partition member 841 and a second liquid material 542.
  • the partition member 841 is provided for each ultrasonic transducer 521 so as to partition the upper space of each of the plurality of ultrasonic transducers 521.
  • a second liquid material 542 is stored in the internal space of each partition member 841.
  • Each partition member 841 has a side plate 841c and a top plate 841t, and is formed in a rectangular parallelepiped or cylindrical box shape.
  • Each partition member 841 is made of, for example, a material such as polyethylene or polystyrene having an acoustic transmittance larger than that of the first liquid F.
  • the other structure of the atomization apparatus 80 is the same as that of 1st Embodiment.
  • the design of the partition member 541 and the driving conditions of the ultrasonic vibrator 521 are determined on the assumption that all of the plurality of ultrasonic vibrators 521 operate normally. Therefore, if the partition member 541 is lost or deteriorated and ultrasonic waves cannot be transmitted, the liquid column C is hardly generated even if the ultrasonic vibrator 521 is operating normally, and the first liquid F is sufficient. May not be atomized.
  • the atomization apparatus 80 of this embodiment even if any of the plurality of partition members 841 is lost or deteriorated, the other partition members 841 and the corresponding ultrasonic transducers 521 are normal.
  • the first liquid material F is sufficiently atomized.
  • the concentration of the first liquid material F does not change greatly, the first liquid material F can be appropriately atomized.
  • FIG. 5 is a cross-sectional view of the atomization device of the fifth embodiment.
  • symbol is attached
  • the ultrasonic wave propagation member 87 includes a partition member 871 and a second liquid material 542.
  • the partition member 871 is provided for each ultrasonic transducer 521 so as to partition the upper space of each of the plurality of ultrasonic transducers 521.
  • a second liquid material 542 is stored in the internal space of each partition member 871.
  • Each partition member 871 has a side plate 871c and a top plate 871t, and is formed in a box shape.
  • Each partition member 871 is made of, for example, a material such as polyethylene or polystyrene having an acoustic transmittance larger than that of the first liquid F.
  • the top plate 871t has a curved surface that is recessed downward. That is, the top plate 871t of the partition member 871 functions as an acoustic lens unit that focuses ultrasonic waves on a specific region of the liquid surface of the first liquid material F.
  • the top plate 871t constituting the acoustic lens portion may have a curved surface protruding upward depending on the magnitude relationship between the sound speeds of the constituent materials of the respective portions.
  • the other structure of the atomization apparatus 86 is the same as that of 1st Embodiment.
  • the partition member 871 is provided for each ultrasonic transducer 521, even if some ultrasonic transducers 521 break down, the first liquid F The effect similar to that of the fourth embodiment can be obtained.
  • the partition member 871 since the partition member 871 has the top plate 871t that functions as an acoustic lens unit, the ultrasonic wave is focused on a specific region of the liquid surface of the first liquid F. It's easy to do. Thereby, the atomization efficiency can be further improved.
  • FIG. 6 is a cross-sectional view of the atomization device of the sixth embodiment.
  • the same components as those in FIG. 1 used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultrasonic wave propagation member 94 includes a partition member 941 and a second liquid material 542.
  • the ultrasonic propagation member 94 has an acoustic transmittance higher than that of the first liquid F.
  • the partition member 941 includes a flat portion 942, a plurality of nozzles 943 (tubular portions) that focus the ultrasonic waves toward a specific region of the first liquid F, and a plurality of lid portions 944. .
  • the plurality of nozzles 943 are provided so as to protrude upward from the flat portion 942 above each of the plurality of ultrasonic transducers 521.
  • Each nozzle 943 is open at the top and bottom, and has a tapered truncated cone shape whose internal space is narrowed from below to above, that is, away from the ultrasonic transducer 521.
  • the plurality of nozzles 943 are formed integrally with the flat portion 942 of the partition member 941, for example, aluminum (acoustic impedance: 1.7 ⁇ 10 7 kg / m 2 ⁇ s), brass (acoustic impedance: 4.0 ⁇ 10 7 kg / m 2 ⁇ s), copper (acoustic impedance: 4.5 ⁇ 10 7 kg / m 2 ⁇ s), iron (acoustic impedance: 4.7 ⁇ 10 7 kg / m 2 ⁇ s), stainless steel ( Acoustic impedance: 4.6 ⁇ 10 7 kg / m 2 ⁇ s).
  • the acoustic impedance of the material and the acoustic impedance of the second liquid material 542 (for example, the acoustic impedance of water: 1.5 ⁇ 10 6 kg / m 2 ⁇ s) Therefore, the ultrasonic wave reflectance at the inner surface of the nozzle 943 is increased, the loss of ultrasonic waves is reduced, and the atomization efficiency can be increased.
  • each nozzle 943 On the top of each nozzle 943, a lid portion 944 that closes the opening of each nozzle 943 is provided.
  • the lid 944 is made of a material having an acoustic transmittance larger than the acoustic transmittance of the first liquid F, such as rubber, polyethylene, polystyrene, or the like used for the partition member 541 of the first embodiment.
  • the other structure of the atomization apparatus 90 is the same as that of 1st Embodiment.
  • the partition member 941 is provided with the nozzle 943 arrange
  • FIG. 7 is a cross-sectional view of the atomization device of the seventh embodiment.
  • the same components as those in FIG. 6 used in the sixth embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultrasonic wave propagation member 97 includes a partition member 971 and a second liquid material 542.
  • the ultrasonic wave propagation member 97 has an acoustic transmittance higher than that of the first liquid F.
  • the partition member 971 does not have the flat portion 942 in the sixth embodiment, and a plurality of nozzles 943 (cylindrical portions) that focus the ultrasonic waves toward a specific region of the liquid surface of the first liquid F. And a plurality of lids 944.
  • the nozzle 943 is provided in contact with the upper surface of each of the plurality of ultrasonic transducers 521.
  • a lid portion 944 is provided above each nozzle 943.
  • the second liquid material 542 is stored in the internal space of the nozzle 943.
  • the other structure of the atomization apparatus 96 is the same as that of 6th Embodiment.
  • the ultrasonic vibration since the space above the ultrasonic transducer 521 is a space sealed by the nozzle 943 and the lid portion 944, compared with the sixth embodiment, the ultrasonic vibration. Is more effectively amplified, and the atomization efficiency can be further improved.
  • FIG. 8 is a cross-sectional view of the atomization device of the eighth embodiment.
  • FIG. 9 is a perspective view of a nozzle in the atomization device of the eighth embodiment.
  • symbol is attached
  • the ultrasonic wave propagation member 67 includes a partition member 671 and a second liquid material 542.
  • the ultrasonic wave propagation member 67 has an acoustic transmittance higher than that of the first liquid F.
  • the partition member 671 includes a flat portion 672, a plurality of nozzles 673 (tubular portions), and a plurality of lid portions 674.
  • the plurality of nozzles 673 are provided so as to protrude upward from the flat portion 672 above each of the plurality of ultrasonic transducers 521.
  • the nozzle 673 has a tapered truncated cone shape with the upper and lower portions opened, as in the sixth embodiment.
  • the nozzle 673 has a plurality of inflow ports 673 h that allow the first liquid F to flow into the nozzle 673.
  • the number and position of the plurality of inlets 673h are not particularly limited.
  • the lid 674 is provided inside the nozzle 673. Thereby, the inside of the nozzle 673 is partitioned by the lid portion 674 into a first space 673e in which the first liquid material F is stored and a second space 673f in which the second liquid material 542 is stored. .
  • the plurality of inflow ports 673h are provided above the lid portion 674. Thereby, the external space of the nozzle 673 and the first space 673e communicate with each other via the inflow port 673h.
  • the other structure of the atomization apparatus 66 is the same as that of 6th Embodiment.
  • the nozzle 673 is provided with a plurality of inlets 673h, the first liquid F is stored in the first space 673e of the nozzle 673.
  • the upper part (tip side) of the nozzle 673 extends to above the liquid level of the first liquid F. Accordingly, the ultrasonic wave is guided to the liquid level of the first liquid material F by the nozzle 673 and is efficiently focused on a specific region of the liquid level of the first liquid material F. As a result, the atomization efficiency can be further improved.
  • FIG. 10 is a schematic configuration diagram of a humidity control apparatus according to the ninth embodiment.
  • the humidity control apparatus 20 of the present embodiment includes a moisture absorption unit 21, an atomization regeneration unit 24, a first liquid moisture absorbent transport channel 22, and a second liquid moisture absorbent transport channel 25.
  • the first air introduction flow path 30, the second air introduction flow path 26, and the control unit 42 are provided.
  • the humidity control apparatus 20 includes an outer shell casing 201, and the moisture absorption unit 21 and the atomization reproduction unit 24 are accommodated in the inner space 201 c of the outer shell casing 201.
  • the moisture absorption part 21 includes a first storage tank 211, a blower 212, and a moisture absorption part nozzle 213.
  • the hygroscopic part 21 causes the liquid hygroscopic material W to absorb at least a part of the moisture contained in the air A1 by bringing the liquid hygroscopic material W containing a hygroscopic substance into contact with the air A1 existing in the external space.
  • the moisture absorption part 21 it is desirable for the moisture absorption part 21 to absorb as much water as possible into the liquid moisture absorbent W, it is sufficient that the liquid absorbent material W absorbs at least part of the moisture contained in the air A1.
  • a liquid hygroscopic material W is stored inside the first storage tank 211. The liquid hygroscopic material W will be described later.
  • a first air introduction channel 30, a first air discharge channel 23, and a first liquid hygroscopic material transport channel 22 are connected to the first storage tank 211.
  • the air A ⁇ b> 1 is supplied to the internal space of the first storage tank 211 through the first air introduction flow path 30 by the blower 212.
  • the moisture absorption nozzle 213 is disposed in the upper part of the internal space of the first storage tank 211. After being regenerated by the atomization regenerating unit 24 described later, the liquid hygroscopic material W1 returned to the hygroscopic unit 21 via the second liquid hygroscopic material transport channel 25 is transferred from the hygroscopic unit nozzle 213 to the inside of the first storage tank 211. It flows down into the space, and at this time, the liquid hygroscopic material W1 and the air A1 come into contact with each other. This type of contact between the liquid hygroscopic material W1 and the air A1 is generally referred to as a “flow-down method”.
  • the contact form of the liquid hygroscopic material W1 and the air A1 is not limited to the flow-down method, and other methods can be used.
  • a so-called bubbling method in which air A1 is supplied in the form of foam into the liquid hygroscopic material W stored in the first storage tank 211 can also be used.
  • the air A1 existing in the external space forms an air flow from the blower 202 toward the discharge port 23a of the first air discharge passage 23, and comes into contact with the liquid hygroscopic material W flowing down from the hygroscopic section nozzle 213. At this time, at least a part of the moisture contained in the air A1 is removed by being absorbed by the liquid moisture absorbent W. In the moisture absorption unit 21, air from which moisture has been removed from the original indoor air is obtained, so this air is drier than the air in the external space of the humidity control device 20. In this way, the dried air is discharged into the room through the first air discharge channel 23.
  • the liquid hygroscopic material W is a liquid exhibiting a property of absorbing moisture (hygroscopicity). For example, a liquid that exhibits hygroscopicity under conditions of a temperature of 25 ° C., a relative humidity of 50%, and atmospheric pressure is preferable.
  • the liquid hygroscopic material W contains a hygroscopic substance to be described later.
  • the liquid hygroscopic material W may contain a hygroscopic substance and a solvent. Examples of this type of solvent include a solvent that dissolves the hygroscopic substance or is miscible with the hygroscopic substance, for example, water.
  • the hygroscopic substance may be an organic material or an inorganic material.
  • Examples of the organic material used as the hygroscopic substance include known materials used as raw materials for dihydric or higher alcohols, ketones, organic solvents having an amide group, sugars, moisturizing cosmetics, and the like. Among them, known organic materials that are used as raw materials for dihydric or higher alcohols, organic solvents having an amide group, saccharides, moisturizing cosmetics, and the like because of their high hydrophilicity. Is mentioned.
  • divalent or higher alcohol examples include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, and triethylene glycol.
  • organic solvent having an amide group examples include formamide and acetamide.
  • saccharide examples include sucrose, pullulan, glucose, xylol, fructose, mannitol, sorbitol and the like.
  • Examples of known materials used as raw materials for moisturizing cosmetics include 2-methacryloyloxyethyl phosphorylcholine (MPC), betaine, hyaluronic acid, collagen, and the like.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • betaine betaine
  • hyaluronic acid collagen, and the like.
  • inorganic materials used as hygroscopic substances include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, pyrrolidone.
  • examples thereof include sodium carboxylate.
  • the hygroscopic substance has high hydrophilicity, for example, when the material of the hygroscopic substance and water are mixed, the ratio of water molecules near the surface (liquid surface) of the liquid hygroscopic material W increases.
  • mist droplets are generated from the vicinity of the surface of the liquid moisture absorbent W and water is separated from the liquid moisture absorbent W. Therefore, it is preferable that the ratio of water molecules in the vicinity of the surface of the liquid hygroscopic material W is large in that water can be efficiently separated.
  • the ratio of the hygroscopic substance in the vicinity of the surface of the liquid hygroscopic material W is relatively small, it is preferable in that the loss of the hygroscopic substance in the atomization reproduction unit 24 can be suppressed.
  • the concentration of the hygroscopic substance contained in the liquid hygroscopic material W1 used for the treatment in the hygroscopic portion 21 is not particularly limited, but is preferably 40% by mass or more.
  • the concentration of the hygroscopic substance is 40% by mass or more, the liquid hygroscopic material W1 can efficiently absorb moisture.
  • the viscosity of the liquid hygroscopic material W is preferably 25 mPa ⁇ s or less.
  • the atomization regeneration unit 24 includes the atomization device according to the first to eighth embodiments that can obtain high atomization efficiency regardless of the viscosity of the liquid to be atomized. Even if the hygroscopic material W has a high viscosity, water can be separated more efficiently than in the past.
  • the atomization regeneration unit 24 includes a second storage tank 241, a blower 242, an ultrasonic vibrator 521, and a guide tube 244.
  • the atomization regeneration unit 24 atomizes at least a part of the moisture contained in the liquid absorbent material W2 supplied from the moisture absorbent unit 21 via the first liquid absorbent material transport channel 22, and at least part of the moisture from the liquid absorbent material W2
  • the liquid hygroscopic material W2 is regenerated by removing a part thereof.
  • the liquid moisture absorbent W2 to be regenerated is stored.
  • the second storage tank 241 is connected to the first liquid hygroscopic material transport channel 22, the second liquid hygroscopic material transport channel 25, the second air introduction channel 26, and the second air discharge channel 28.
  • the second storage tank 241 corresponds to a housing in the atomization apparatus of the first to eighth embodiments.
  • the blower 242 sends air A ⁇ b> 1 from the outer space of the outer shell casing 201 into the second storage tank 241 through the second air introduction channel 26, and discharges the second air from the second storage tank 241. An airflow that flows to the outside of the outer shell casing 201 through the flow path 28 is generated.
  • the ultrasonic transducer 521 generates a mist-like droplet W3 containing moisture from the liquid hygroscopic material W2 by irradiating the liquid hygroscopic material W2 with ultrasonic waves.
  • the ultrasonic transducer 521 is provided in contact with the bottom plate of the second storage tank 241.
  • the ultrasonic wave is applied to the liquid moisture absorbent W2 from the ultrasonic vibrator 521, the liquid column C of the liquid absorbent material W2 is generated on the liquid surface of the liquid absorbent material W2 by adjusting the generation conditions of the ultrasonic wave. Can do.
  • Most of the mist droplets W3 are generated from the liquid column C of the liquid hygroscopic material W2 and the vicinity thereof.
  • the guide tube 244 guides the mist droplet W3 generated from the liquid hygroscopic material W2 to the exhaust port 28a of the second air discharge channel 28.
  • the guide pipe 244 is provided so as to surround the periphery of the exhaust port 28a.
  • the second air discharge channel 28 releases the air A4 containing the mist droplets W3 into the outer space of the outer shell casing 201 and removes it from the inside of the humidity control apparatus 20. Thereby, moisture can be separated from the liquid hygroscopic material W2. Thereby, the hygroscopic performance of the liquid hygroscopic material W2 is increased again, and the liquid hygroscopic material W2 can be returned to the hygroscopic portion 21 and reused. Since the air A4 includes the mist-like droplets W3 generated inside the second storage tank 241, it is wetter than the air A2 in the external space of the outer shell casing 201. In this way, the humidified air A4 is discharged into the room through the second air discharge channel 28.
  • the atomization regeneration unit 24 When the atomization regeneration unit 24 is viewed from above, since the exhaust port 28a overlaps with the ultrasonic vibrator 521 in a plane, the liquid column C of the liquid hygroscopic material W2 is generated below the exhaust port 28a. Therefore, in the atomization reproduction
  • the hygroscopic part 21 and the atomization regeneration part 24 are connected by a first liquid hygroscopic material transport channel 22 and a second liquid hygroscopic material transport channel 25 that constitute a circulation channel of the liquid hygroscopic material W.
  • a pump 252 for circulating the liquid hygroscopic material W is provided in the middle of the second liquid hygroscopic material transport channel 25.
  • the first liquid hygroscopic material transport channel 22 transports the liquid hygroscopic material W in which at least a part of moisture has been absorbed from the hygroscopic unit 21 to the atomization regeneration unit 24.
  • One end of the first liquid hygroscopic material transport channel 22 is connected to the lower portion of the first storage tank 211.
  • the connection location of the first liquid hygroscopic material transport channel 22 in the first storage tank 211 is located below the liquid level of the liquid hygroscopic material W1 in the first storage tank 211.
  • the other end of the first liquid hygroscopic material transport channel 22 is connected to the lower part of the second storage tank 241.
  • the connection location of the first liquid hygroscopic material transport channel 22 in the second storage tank 241 is located below the liquid level of the liquid hygroscopic material W2 in the second storage tank 241.
  • the second liquid hygroscopic material transport channel 25 transports the liquid hygroscopic material W regenerated by removing moisture from the atomization regenerating unit 24 to the hygroscopic unit 21.
  • One end of the second liquid hygroscopic material transport channel 25 is connected to the lower part of the second storage tank 241.
  • the connection location of the second liquid hygroscopic material transport channel 25 in the second storage tank 241 is located below the liquid level of the liquid hygroscopic material W2 in the second storage tank 241.
  • the other end of the second liquid hygroscopic material transport channel 25 is connected to the upper part of the first storage tank 211.
  • connection location of the second liquid hygroscopic material transport channel 25 in the first storage tank 211 is located above the liquid surface of the liquid hygroscopic material W1 in the first storage tank 211, and is connected to the above-described hygroscopic nozzle 213. ing.
  • the dehumidified air is discharged from the hygroscopic unit 21 via the first air discharge channel 23, and the humidified air passes through the second air discharge channel 28 from the atomization regeneration unit 24. It was explained that it was discharged through.
  • the humidity adjustment function when the humidity controller 20 of the present embodiment is an air conditioner having only a dehumidifying function, for example, the air outlet of the first air discharge passage 23 is arranged indoors, What is necessary is just to set it as the structure which has arrange
  • the air discharge port of the second air discharge channel 28 is arranged facing the room, while the air discharge port of the first air discharge channel 23 is arranged outdoors. What is necessary is just to set it as the structure arrange
  • the location for allowing the first liquid material or the second liquid material to flow in or out is not provided in the casing, but this type of location is provided. Also good.
  • the atomization device may include a mechanism and a control system for keeping the liquid level of the first liquid material low. Furthermore, the atomizing device detects this when the liquid level of the first liquid material is kept low, and the first liquid material disappears above the ultrasonic vibrator due to the inclination of the housing, etc. A means for temporarily stopping and a means for notifying the user may be provided. Similarly, when the second liquid material disappears above the ultrasonic transducer, a means for detecting this and temporarily stopping the apparatus or a means for informing the user may be provided.
  • a structure that suppresses reflection of ultrasonic waves such as a quarter-wave film, a fine concavo-convex structure, or the like, at an interface between two kinds of substances having different acoustic transmittances, such as an interface between the partition member and the second liquid material May be given.
  • the reflection loss of an ultrasonic wave can be suppressed and the atomization efficiency can be improved.
  • the ultrasonic propagation member was comprised from the partition member and the 2nd liquid material was illustrated, it replaced with this structure and the whole ultrasonic propagation member is like a gel, for example You may be comprised with solid.
  • the absorption rate of ultrasonic waves increases in the order of solid ⁇ low viscosity liquid ⁇ high viscosity liquid. Therefore, by using a solid material as the ultrasonic wave propagation member, the ultrasonic wave with higher strength is propagated to the liquid surface of the first liquid substance as compared with the case where a high viscosity liquid is used. be able to.
  • the atomization device of the present invention can be used for various devices such as a nebulizer, a separation device, a coating device, and a liquid concentration device in addition to the humidity control device described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Special Spraying Apparatus (AREA)
  • Air Humidification (AREA)
  • Spray Control Apparatus (AREA)

Abstract

霧化させる液体の種類に依らず、超音波発生部の信頼性低下を抑えつつ、高い霧化効率が得られる霧化装置を提供する。本発明の一つの態様の霧化装置は、霧状液滴となる第1の液状物を貯留する内部空間と排気口とを有する筐体と、筐体に設けられ、第1の液状物に超音波を照射することにより霧状液滴を発生させる超音波発生部と、排気口を介して霧状液滴の少なくとも一部を内部空間から外部に送出するための気流を発生させる気流発生部と、内部空間における超音波発生部と第1の液状物との間の超音波の伝播経路上に設けられ、第1の液状物の減衰係数よりも小さい減衰係数を有する超音波伝播部材と、を備えている。

Description

霧化装置および調湿装置
 本発明は、霧化装置および調湿装置に関する。
 本願は、2018年2月27日に、日本に出願された特願2018-033239に優先権を主張し、その内容をここに援用する。
 例えば加湿器、ネブライザー、分離装置等の様々な技術分野において、液体に超音波を照射して霧を発生させる超音波霧化装置が従来から知られている。例えば下記の特許文献1には、超音波振動子が内蔵され、作用液を貯留する作用槽と、作用液中に浸漬され、薬液を貯留する薬剤槽と、を備え、薬剤槽が作用槽に対して着脱可能とされた超音波式ネブライザーが開示されている。特許文献1には、本発明では、作用槽から薬剤槽を容易に取り外すことができるため、作用槽の洗浄や消毒を容易に行うことができる、と記載されている。
特開2016-182192号公報
 この種の霧化装置においては、用途によって高粘度の液体を霧化させる必要がある。ところが、高粘度の液体に超音波を照射した場合、低粘度の液体に超音波を照射した場合に比べて、超音波が液体中を伝播する際の減衰量が多い。そのため、多くの超音波が槽の底部から液面に到達するまでの間に減衰し、霧化効率が低下するという問題があった。なお、本明細書において、霧化効率は、霧化効率=霧化量/霧化に要するエネルギー、として定義する。
 また、超音波の減衰を少なくする手段として、槽に貯留する液体の量を減らして槽の底面から液面までの距離を短くすることが考えられる。ところが、この場合、槽の傾きや振動等に起因して超音波振動子の上方に液体が存在しなくなると、超音波振動子が空焚き状態となって破損するおそれがある。あるいは、超音波振動子の上方に液体が存在していたとしても、液体の量が少ないために液面で反射した超音波が高い強度で戻り、超音波振動子が破損するおそれがある。
 本発明の一つの態様は、上記の課題を解決するためになされたものであって、霧化させる液体の粘度に依らず、超音波発生部の信頼性の低下を抑えつつ、高い霧化効率が得られる霧化装置を提供することを目的の一つとする。また、本発明の一つの態様は、上記の霧化装置を備えた調湿装置を提供することを目的の一つとする。
 上記の目的を達成するために、本発明の一つの態様の霧化装置は、霧状液滴となる第1の液状物を貯留する内部空間と排気口とを有する筐体と、前記筐体に設けられ、前記第1の液状物に超音波を照射することにより前記霧状液滴を発生させる超音波発生部と、前記排気口を介して前記霧状液滴の少なくとも一部を前記内部空間から外部に送出するための気流を発生させる気流発生部と、前記内部空間における前記超音波発生部と前記第1の液状物との間の超音波の伝播経路上に設けられ、前記第1の液状物の減衰係数よりも小さい減衰係数を有する超音波伝播部材と、を備える。
 本発明の一つの態様の霧化装置において、前記超音波伝播部材は、前記内部空間を区画する仕切り部材を有し、前記仕切り部材の少なくとも一部は、前記第1の液状物の減衰係数よりも小さい減衰係数を有する材料から構成されていてもよい。
 本発明の一つの態様の霧化装置において、前記超音波伝播部材は、前記第1の液状物の粘度よりも低い粘度を有する第2の液状物を含み、前記第2の液状物は、前記仕切り部材によって区画された複数の空間のうち、前記超音波発生部に近い側の空間に貯留され、前記第1の液状物は、前記超音波発生部から遠い側の空間に貯留されていてもよい。
 本発明の一つの態様の霧化装置において、前記筐体は、第1の容器と、前記第1の容器の内部空間に対して着脱可能とされた第2の容器と、を備え、前記第2の容器が前記第1の容器の内部空間に装着された状態において、前記第2の容器の少なくとも一部が前記仕切り部材として機能し、前記第2の液状物は、前記第1の容器と前記第2の容器との間の空間に貯留され、前記第1の液状物は、前記第2の容器の内部空間に貯留されていてもよい。
 本発明の一つの態様の霧化装置において、前記超音波発生部は、複数の超音波振動子を備え、前記仕切り部材は、前記複数の超音波振動子の各々の上方空間を区画するように設けられていてもよい。
 本発明の一つの態様の霧化装置において、前記仕切り部材の厚さは、前記第2の液状物の層厚よりも厚くてもよい。
 本発明の一つの態様の霧化装置において、前記仕切り部材は、超音波を前記第1の液状物の特定の領域に向けて集束させる音響レンズ部を備えていてもよい。
 本発明の一つの態様の霧化装置において、前記仕切り部材は、超音波を前記第1の液状物の特定の領域に向けて集束させる筒状部を備えていてもよい。
 本発明の一つの態様の霧化装置において、前記筒状部は、前記筒状部の内部に前記第1の液状物を流入可能とする流入口を有していてもよい。
 本発明の一つの態様の調湿装置は、吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化し、除去することによって前記液体吸湿材を再生する霧化再生部と、を備え、前記霧化再生部は、本発明の一つの態様の霧化装置を備える。
 本発明の一つの態様の霧化装置によれば、霧化させる液体の種類に依らず、超音波発生部の信頼性を低下させることなく、高い霧化効率を確保することができる。また、本発明の一つの態様によれば、上記の霧化装置を備えた調湿装置を提供することができる。
第1実施形態の霧化装置を示す断面図である。 第2実施形態の霧化装置を示す断面図である。 第3実施形態の霧化装置を示す断面図である。 第4実施形態の霧化装置を示す断面図である。 第5実施形態の霧化装置を示す断面図である。 第6実施形態の霧化装置を示す断面図である。 第7実施形態の霧化装置を示す断面図である。 第8実施形態の霧化装置を示す断面図である。 第8実施形態の霧化装置におけるノズルの斜視図である。 第9実施形態の調湿装置を示す概略構成図である。
[第1実施形態]
 以下、本発明の第1実施形態について、図1を用いて説明する。
 図1は、第1実施形態の霧化装置を示す断面図である。
 なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
 図1に示すように、霧化装置50は、筐体51と、超音波発生部52と、気流発生部53と、超音波伝播部材54と、を備えている。
 筐体51は、霧状液滴W3となる第1の液状物Fを貯留する内部空間51aと、給気口51bと、排気口51cと、を有している。筐体51は、例えば金属、樹脂等の材料から形成された容器であって、構成材料は特に限定されない。給気口51bには給気管55が接続され、排気口51cには排気管56が接続されている。
 第1の液状物Fは、例えば3×10-3Pa・s以上の粘度を有している。このように、第1の液状物Fは、比較的高い粘度を有する液体によって構成されている。第1の液状物Fの具体例として、グリセリン、エチレングリコール、ポリアクリル酸ナトリウム水溶液、ポリエチレングリコール、トリエチレングリコール、塩化カルシウム水溶液、塩化リチウム水溶液、もしくはこれらの混合液が挙げられる。
 上記の各材料の音響特性(減衰係数、音響インピーダンス、粘度、音速)を下記の[表1]にまとめて示す。なお、各特性値は、超音波の周波数が1MHz、液温が20℃のときの値である。
Figure JPOXMLDOC01-appb-T000001
 材料の粘度をηとし、体積粘度をμとし、密度をρとし、音速をcとし、超音波の周波数をωとしたとき、材料中での超音波の減衰のしやすさを示す減衰係数αは、下記の(1)式で定義される。
α=(2η/3+μ/2)ω/ρc …(1)
 また、超音波振動子で生成された超音波の振幅をAとし、超音波の伝搬距離をxとし、超音波が距離xだけ伝搬したときの振幅をAとしたとき、減衰係数αは、下記の(2)式で表される。
A=A×exp(-α/x) …(2)
 すなわち、減衰係数は、伝搬する超音波の振幅が、単位長さだけ伝搬する間に、十の何乗分の一になるかを表している。
 減衰係数を測定する手法として、パルス法、相関法、残響法等が知られており、測定装置として、例えば超音波減衰音速測定装置が用いられる。
 超音波発生部52は、筐体51に設けられ、第1の液状物Fに超音波を照射することにより第1の液状物Fから霧状液滴W3を発生させる。本実施形態において、超音波発生部52は、筐体51の底板に設けられた複数の超音波振動子521を備えている。複数の超音波振動子521の個数は、特に限定されない。ただし、超音波発生部52は、必ずしも複数の超音波振動子521を備えていなくてもよく、1個の超音波振動子521を備えていてもよい。超音波振動子521から第1の液状物Fに超音波を照射する際、超音波の発生条件を調整することによって、第1の液状物Fの液面の特定の個所に超音波を集中させ、第1の液状物Fの液柱Cを生じさせることができる。霧状液滴W3は、液面の任意の個所から発生するが、液柱Cおよびその近傍から特に多く発生する。
 気流発生部53は、筐体51の排気口51cを介して霧状液滴W3の少なくとも一部を内部空間51aから外部に送出するための気流を発生させる。本実施形態において、気流発生部53は、給気管55に設けられたブロアから構成されている。なお、気流発生部53は、給気管55に限らず、排気管56に設けられたブロアから構成されていてもよい。
 超音波伝播部材54は、筐体51の内部空間51aにおける超音波発生部52と第1の液状物Fとの間の超音波の伝播経路上に設けられている。超音波伝播部材54は、第1の液状物Fの減衰係数よりも小さい減衰係数を有している。超音波伝播部材54が設けられたことにより、超音波発生部52で発生した超音波は、超音波伝播部材54が設けられていない場合と比べて、超音波伝播部材54を介して第1の液状物Fの液面に高い強度で伝播する。
 超音波伝播部材54は、筐体51の内部空間51aを区画する仕切り部材541と、第1の液状物Fの粘度よりも低い粘度を有する第2の液状物542と、を有している。第2の液状物542は、仕切り部材541によって区画された複数の空間のうち、超音波発生部52に近い側の空間(仕切り部材541の下側の空間)に貯留され、第1の液状物Fは、超音波発生部52から遠い側の空間(仕切り部材541の上側の空間)に貯留されている。したがって、筐体51の内部空間51aにおいて第1の液状物Fと第2の液状物542とが混ざり合うことはない。
 仕切り部材541は、筐体51の内部に水平方向に配置された板状の部材で構成され、内部空間51aを2つの空間に区画する。仕切り部材541は、第1の液状物Fの減衰係数よりも小さい減衰係数を有する材料で構成されている。仕切り部材541の構成材料の具体例として、ゴム、ポリエチレン、ポリスチレン等が挙げられる。なお、仕切り部材541は、全体が上記の材料で構成されていることが好ましいが、少なくとも一部(例えば超音波振動子521の直上)が上記の材料で構成されていればよい。
 上記の各材料の音響特性(減衰係数、音響インピーダンス、音速)を下記の[表2]にまとめて示す。なお、各特性値は、超音波の周波数が1MHz、温度が20℃のときの値である。
Figure JPOXMLDOC01-appb-T000002
 第2の液状物542は、例えば3×10-3Pa・s未満の粘度を有している。このように、第2の液状物542は、第1の液状物Fの粘度よりも低い粘度を有し、第1の液状物Fの減衰係数よりも小さい減衰係数を有する液体によって構成されている。第2の液状物542の具体例として、水、エタノール、アセトン、もしくはこれらの混合液が挙げられる。
 上記の各材料の音響特性(減衰係数、音響インピーダンス、粘度、音速)を下記の[表3]にまとめて示す。なお、各特性値は、超音波の周波数が1MHz、液温が20℃のときの値である。
Figure JPOXMLDOC01-appb-T000003
 本実施形態のように、超音波伝播部材54が仕切り部材541と第2の液状物542とから構成されている場合、第1の液状物Fの音響インピーダンスをZとし、第2の液状物542の音響インピーダンスをZとし、仕切り部材541の音響インピーダンスをZとしたとき、下記の(3)式を満たすことが望ましい。
=√(Z・Z) …(3)
 すなわち、仕切り部材541の材料として、音響インピーダンスZが第1の液状物Fの音響インピーダンスZと第2の液状物542の音響インピーダンスZとの相乗平均に近いものが選択されることが望ましく、音響インピーダンスZと音響インピーダンスZとの相乗平均に等しいものが選択されることがさらに望ましい。この場合、第2の液状物542と仕切り部材541との界面、および仕切り部材541と第1の液状物Fとの界面における超音波の反射を最小にすることができる。
 上記のように、第2の液状物542と仕切り部材541との界面、および仕切り部材541と第1の液状物Fとの界面における超音波の反射が十分に小さく、反射の影響を無視できるとすれば、第2の液状物542の減衰係数をαとし、第2の液状物542の厚さ(超音波の進行距離)をdとし、仕切り部材541の減衰係数をαとし、仕切り部材541の厚さ(超音波の進行距離)をdとしたとき、超音波伝播部材54全体としての減衰係数αtotalは、下記の(4)式で表される。
αtotal=(α・d+α・d)/(d+d) …(4)
 したがって、仮に仕切り部材541と第2の液状物542とのいずれか一方の減衰係数が第1の液状物Fの減衰係数よりも大きかったとしても、超音波伝播部材54の全体としての減衰係数が第1の液状物Fの減衰係数よりも小さいという条件を満たせば、後述する本実施形態の霧化装置の効果が得られる。
 従来一般の霧化装置は、筐体の内部空間に霧化対象である第1の液状物を貯留し、超音波振動子によって第1の液状物に超音波を照射する構成を有している。また、霧化装置は、第1の液状物の液面の特定の個所に超音波を集中させ、第1の液状物の液柱を生じさせることによって霧状液滴を発生させる。そのため、高い霧化効率を得るためには、超音波振動子で発生した超音波をできるだけ減衰させることなく筐体の底面から液面まで伝播させることが重要である。
 減衰係数の定義式である(1)式より、超音波の周波数ωが一定であったとすると、減衰係数は、物質の粘性(粘度および体積粘度)に比例し、密度および音速のべき乗に反比例する。粘性は物質の種類や温度によって数十~数千倍のオーダーで変化する一方、密度および音速は数倍のオーダーでしか変化しないため、減衰係数は粘性が支配的となる。すなわち、物質の粘性が高い程、減衰係数が大きくなり、超音波が減衰しやすい。したがって、従来一般の霧化装置において、第1の液状物の粘度が高い場合、第1の液状物の粘度が低い場合に比べて超音波の減衰量が多いため、霧化効率が低下する。
 これに対して、本実施形態の霧化装置50において、超音波発生部52で発生した超音波は、超音波伝播部材54を介して第1の液状物Fの液面に伝播する。ここで、超音波伝播部材54を構成する第2の液状物542の粘度は第1の液状物Fの粘度よりも低く、第2の液状物542の減衰係数は第1の液状物Fの減衰係数よりも小さい。また、仕切り部材541の減衰係数は第1の液状物Fの減衰係数よりも小さい。すなわち、超音波伝播部材54の全体が第1の液状物Fの減衰係数よりも小さい減衰係数を有しているため、超音波発生部52で発生した超音波は、従来よりも小さい減衰量で第1の液状物Fの液面まで伝播する。
 また、本実施形態の構成では、超音波振動子52の上方に常に第2の液状物542と仕切り部材541とが存在しているため、超音波振動子52が空焚きになるおそれもない。このように、本実施形態の霧化装置50によれば、霧化させる第1の液状物Fの粘度(種類)に依らず、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる。
[第2実施形態]
 以下、第2実施形態の霧化装置について、図2を用いて説明する。
 第2実施形態の霧化装置の基本構成は第1実施形態と同一であり、超音波伝播部材の構成が第1実施形態と異なる。
 図2は、第2実施形態の霧化装置の断面図である。
 図2において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図2に示すように、本実施形態の霧化装置60においても、第1実施形態と同様、超音波伝播部材64は、仕切り部材641と、第2の液状物542と、を有している。超音波伝播部材64は、筐体51の内部空間51aにおける超音波発生部52と第1の液状物Fとの間の超音波の伝播経路上に設けられている。超音波伝播部材64は、第1の液状物Fの音響透過率よりも高い音響透過率を有している。
 仕切り部材641は、第1の液状物Fの音響透過率よりも大きい音響透過率を有する、例えばゴム、ポリエチレン、ポリスチレン等の材料で構成されている。本実施形態の仕切り部材641の厚さは、第1実施形態の仕切り部材541の厚さよりも厚く、第2の液状物542の層厚よりも厚い。霧化装置60のその他の構成は、第1実施形態の霧化装置50と同様である。
 本実施形態の霧化装置60においても、霧化させる液体の粘度(種類)に依らずに、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる、といった第1実施形態と同様の効果が得られる。
 また、本実施形態の霧化装置60においては、第1実施形態に比べて、仕切り部材641を厚くしたことで第2の液状物542の量を減らせるため、筐体51の破損時に第2の液状物542の漏れ量が少なくて済む、等の効果が得られる。
[第3実施形態]
 以下、第3実施形態の霧化装置について、図3を用いて説明する。
 第3実施形態の霧化装置の基本構成は第1実施形態と同一であり、超音波伝播部材の構成が第1実施形態と異なる。
 図3は、第3実施形態の霧化装置の断面図である。
 図3において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図3に示すように、本実施形態の霧化装置70は、筐体71と、超音波発生部52と、気流発生部53と、超音波伝播部材74と、を備えている。
 筐体71は、第1の容器711と、第2の容器712と、を備えている。超音波発生部52は、第1の容器711の底板に設けられている。給気口712bおよび排気口712cは、第2の容器712に設けられている。第1の容器711の構成材料は特に限定されないが、第2の容器712は、第1の液状物Fの音響透過率よりも大きい音響透過率を有する、例えばポリエチレン、ポリスチレン等の材料で構成されている。
 第1の容器711は、第2の容器712を内部空間711aに収容可能な大きさを有している。第2の容器712は、第1の容器711の内部空間711aに対して着脱可能とされている。また、第2の容器712が第1の容器711に装着された状態において、第1の容器711と第2の容器712との間に隙間ができないように、第1の容器711の内部空間711aが密閉される構成となっていることが望ましい。例えば第1の容器711と第2の容器712との接触部分にシール材が設けられていてもよい。
 超音波伝播部材74は、仕切り部材741と、第2の液状物542と、を有している。超音波伝播部材74は、第1の液状物Fの音響透過率よりも高い音響透過率を有している。本実施形態の場合、第2の容器712が第1の容器711に装着された状態において、第2の容器712の少なくとも一部(底板および側板の一部)は、仕切り部材741として機能する。第1の液状物Fは、第2の容器712の内部空間712aに貯留されている。第2の液状物542は、第1の容器711と第2の容器712との間の空間に貯留されている。
 霧化装置70のその他の構成は、第1実施形態と同様である。
 本実施形態の霧化装置70においても、霧化させる液体の粘度(種類)に依らずに、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる、といった第1実施形態と同様の効果が得られる。
 また、本実施形態の霧化装置70においては、使用者が第2の容器712を第1の容器711から取り外すことができるため、各容器711,712を洗浄しやすく、メンテナンス作業を容易に行うことができる、といった効果が得られる。
[第4実施形態]
 以下、第4実施形態の霧化装置について、図4を用いて説明する。
 第4実施形態の霧化装置の基本構成は第1実施形態と同一であり、超音波伝播部材の構成が第1実施形態と異なる。
 図4は、第4実施形態の霧化装置の断面図である。
 図4において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図4に示すように、本実施形態の霧化装置80において、超音波伝播部材84は、仕切り部材841と、第2の液状物542と、を有している。仕切り部材841は、複数の超音波振動子521の各々の上方空間を区画するように、超音波振動子521毎に設けられている。各仕切り部材841の内部空間に第2の液状物542が貯留されている。各仕切り部材841は、側板841cと頂板841tとを有し、直方体もしくは円筒の箱状に形成されている。各仕切り部材841は、第1の液状物Fの音響透過率よりも大きい音響透過率を有する、例えばポリエチレン、ポリスチレン等の材料で構成されている。
 霧化装置80のその他の構成は、第1実施形態と同様である。
 本実施形態の霧化装置80においても、霧化させる液体の粘度(種類)に依らずに、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる、といった第1実施形態と同様の効果が得られる。
 第1実施形態の霧化装置50では、複数の超音波振動子521が全て正常に動作することを前提として仕切り部材541の設計や超音波振動子521の駆動条件が決められている。そのため、仮に仕切り部材541が欠損もしくは劣化し、超音波が伝達できなくなると、超音波振動子521が正常に動作していても液柱Cが発生しにくくなり、第1の液状物Fが十分に霧化されないおそれがある。
 これに対して、本実施形態の霧化装置80によれば、複数の仕切り部材841のうちのいずれかが欠損もしくは劣化したとしても、他の仕切り部材841および対応する超音波振動子521が正常に動作し、第1の液状物Fが十分に霧化される。また、例えば複数の仕切り部材841のうちの一つが欠損し、第2の液状物542が第1の液状物Fに漏れ出したとしても、第2の液状物542の漏出量は第1実施形態に比べて少なくなる。その結果、第1の液状物Fの濃度が大きく変化しないため、第1の液状物Fを適切に霧化することができる。
[第5実施形態]
 以下、第5実施形態の霧化装置について、図5を用いて説明する。
 第5実施形態の霧化装置の基本構成は第4実施形態と同一であり、仕切り部材の構成が第4実施形態と異なる。
 図5は、第5実施形態の霧化装置の断面図である。
 図5において、第4実施形態で用いた図4と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図5に示すように、本実施形態の霧化装置86において、超音波伝播部材87は、仕切り部材871と、第2の液状物542と、を有している。第4実施形態と同様、仕切り部材871は、複数の超音波振動子521の各々の上方空間を区画するように、超音波振動子521毎に設けられている。各仕切り部材871の内部空間に第2の液状物542が貯留されている。
 各仕切り部材871は、側板871cと頂板871tとを有し、箱状に形成されている。各仕切り部材871は、第1の液状物Fの音響透過率よりも大きい音響透過率を有する、例えばポリエチレン、ポリスチレン等の材料で構成されている。頂板871tは、下方に窪んだ湾曲面を有している。すなわち、仕切り部材871の頂板871tは、超音波を第1の液状物Fの液面の特定の領域に集束させる音響レンズ部として機能する。なお、各部の構成材料の音速の大小関係によっては、音響レンズ部を構成する頂板871tは、上方に突出した湾曲面を有していてもよい。
 霧化装置86のその他の構成は、第1実施形態と同様である。
 本実施形態の霧化装置86においても、霧化させる液体の粘度(種類)に依らずに、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる、といった第1実施形態と同様の効果が得られる。
 また、本実施形態の霧化装置86においては、仕切り部材871が超音波振動子521毎に設けられているため、一部の超音波振動子521が故障したとしても、第1の液状物Fを十分に霧化することができる、といった第4実施形態と同様の効果が得られる。
 さらに、本実施形態の霧化装置86においては、仕切り部材871が音響レンズ部として機能する頂板871tを有しているため、超音波が第1の液状物Fの液面の特定の領域に集束しやすい。これにより、霧化効率をさらに向上させることができる。
[第6実施形態]
 以下、第6実施形態の霧化装置について、図6を用いて説明する。
 第6実施形態の霧化装置の基本構成は第1実施形態と同一であり、仕切り部材の構成が第1実施形態と異なる。
 図6は、第6実施形態の霧化装置の断面図である。
 図6において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図6に示すように、本実施形態の霧化装置90において、超音波伝播部材94は、仕切り部材941と、第2の液状物542と、を有している。超音波伝播部材94は、第1の液状物Fの音響透過率よりも高い音響透過率を有している。
 仕切り部材941は、平坦部942と、超音波を第1の液状物Fの特定の領域に向けて集束させる複数のノズル943(筒状部)と、複数の蓋部944と、を備えている。複数のノズル943は、複数の超音波振動子521の各々の上方に、平坦部942から上方に突出して設けられている。各ノズル943は、上部および下部が開口しており、下方から上方、すなわち超音波振動子521から遠ざかる方向に向けて内部空間が狭まった先細りの円錐台状の形状を有している。
 複数のノズル943は、仕切り部材941の平坦部942と一体に形成されており、例えばアルミニウム(音響インピーダンス:1.7×10kg/m・s)、真鍮(音響インピーダンス:4.0×10kg/m・s)、銅(音響インピーダンス:4.5×10kg/m・s)、鉄(音響インピーダンス:4.7×10kg/m・s)、ステンレス(音響インピーダンス:4.6×10kg/m・s)等の材料で構成されている。ノズル943が上記の材料で構成されている場合、上記の材料の音響インピーダンスと第2の液状物542の音響インピーダンス(例えば水の音響インピーダンス:1.5×10kg/m・s)との差が十分に大きくなるため、ノズル943の内面での超音波の反射率が高くなって超音波の損失が低減し、霧化効率を高めることができる。
 各ノズル943の上部には、各ノズル943の開口を閉塞する蓋部944がそれぞれ設けられている。蓋部944は、第1実施形態の仕切り部材541に用いられたゴム、ポリエチレン、ポリスチレン等、第1の液状物Fの音響透過率よりも大きい音響透過率を有する材料で構成されている。
 霧化装置90のその他の構成は、第1実施形態と同様である。
 本実施形態の霧化装置90においても、霧化させる液体の粘度(種類)に依らずに、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる、といった第1実施形態と同様の効果が得られる。
 また、本実施形態の霧化装置90においては、仕切り部材941が各超音波振動子521に対応して配置されたノズル943を備えているため、超音波がノズル943の内部で反射を繰り返し、液面の特定の領域に集束される。その結果、霧化効率をさらに向上させることができる。
[第7実施形態]
 以下、第7実施形態の霧化装置について、図7を用いて説明する。
 第7実施形態の霧化装置の基本構成は第6実施形態と同一であり、ノズルの構成が第6実施形態と異なる。
 図7は、第7実施形態の霧化装置の断面図である。
 図7において、第6実施形態で用いた図6と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図7に示すように、本実施形態の霧化装置96において、超音波伝播部材97は、仕切り部材971と、第2の液状物542と、を有している。超音波伝播部材97は、第1の液状物Fの音響透過率よりも高い音響透過率を有している。
 仕切り部材971は、第6実施形態における平坦部942を有しておらず、超音波を第1の液状物Fの液面の特定の領域に向けて集束させる複数のノズル943(筒状部)と、複数の蓋部944と、を備えている。ノズル943は、複数の超音波振動子521の各々の上面に接触するように設けられている。各ノズル943の上部には、蓋部944がそれぞれ設けられている。第2の液状物542は、ノズル943の内部空間に貯留されている。
 霧化装置96のその他の構成は、第6実施形態と同様である。
 本実施形態の霧化装置96においても、霧化させる液体の粘度(種類)に依らずに、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる、といった第1実施形態と同様の効果が得られる。
 また、本実施形態の霧化装置96においては、超音波振動子521の上方がノズル943と蓋部944とによって密閉された空間となっているため、第6実施形態に比べて、超音波振動がより効果的に増幅され、霧化効率をさらに向上させることができる。
[第8実施形態]
 以下、第8実施形態の霧化装置について、図8および図9を用いて説明する。
 第8実施形態の霧化装置の基本構成は第6実施形態と同一であり、ノズルの構成が第6実施形態と異なる。
 図8は、第8実施形態の霧化装置の断面図である。図9は、第8実施形態の霧化装置におけるノズルの斜視図である。
 図8および図9において、第6実施形態で用いた図6と共通の構成要素には同一の符号を付し、詳細な説明を省略する。
 図8に示すように、本実施形態の霧化装置66において、超音波伝播部材67は、仕切り部材671と、第2の液状物542と、を有している。超音波伝播部材67は、第1の液状物Fの音響透過率よりも高い音響透過率を有している。
 仕切り部材671は、平坦部672と、複数のノズル673(筒状部)と、複数の蓋部674と、を備えている。複数のノズル673は、複数の超音波振動子521の各々の上方において、平坦部672から上方に突出して設けられている。
 図9に示すように、ノズル673は、第6実施形態と同様、上部および下部が開口した先細りの円錐台状の形状を有している。ただし、第6実施形態と異なり、ノズル673は、ノズル673の内部に第1の液状物Fを流入可能とする複数の流入口673hを有している。複数の流入口673hの個数や位置は、特に限定されない。
 蓋部674は、第6実施形態と異なり、ノズル673の内部に設けられている。これにより、ノズル673の内部は、蓋部674によって、第1の液状物Fが貯留される第1空間673eと、第2の液状物542が貯留される第2空間673fと、に区画される。また、複数の流入口673hは蓋部674よりも上方に設けられている。これにより、ノズル673の外部空間と第1空間673eとは、流入口673hを介して連通している。
 霧化装置66のその他の構成は、第6実施形態と同様である。
 本実施形態の霧化装置66においても、霧化させる液体の粘度(種類)に依らずに、超音波発生部52の信頼性を低下させることなく、高い霧化効率を確保することができる、といった第1実施形態と同様の効果が得られる。
 また、本実施形態の霧化装置66においては、ノズル673に複数の流入口673hが設けられているため、ノズル673の第1空間673eに第1の液状物Fが貯留される。言い換えると、ノズル673の上部(先端側)は、第1の液状物Fの液面の上方にまで延在する。これにより、超音波は、ノズル673によって第1の液状物Fの液面にまで誘導され、第1の液状物Fの液面の特定の領域に効率良く集束される。その結果、霧化効率をさらに向上させることができる。
[第9実施形態]
 以下、本発明の第9実施形態について、図10を用いて説明する。
 本実施形態では、第1~第8実施形態で例示した霧化装置を備えた調湿装置について説明する。
 図10は、第9実施形態の調湿装置の概略構成図である。
 図10に示すように、本実施形態の調湿装置20は、吸湿部21と、霧化再生部24と、第1液体吸湿材輸送流路22と、第2液体吸湿材輸送流路25と、第1空気導入流路30と、第2空気導入流路26と、制御部42と、を備える。また、調湿装置20は、外殻筐体201を備えており、吸湿部21および霧化再生部24は、外殻筐体201の内部空間201cに収容されている。
 吸湿部21は、第1貯留槽211と、ブロア212と、吸湿部ノズル213と、を備えている。吸湿部21は、吸湿性物質を含む液体吸湿材Wと外部空間に存在する空気A1とを接触させることにより、空気A1に含まれる水分の少なくとも一部を液体吸湿材Wに吸収させる。吸湿部21は、できるだけ多くの水分を液体吸湿材Wに吸収させることが望ましいが、空気A1に含まれる水分のうちの少なくとも一部の水分を液体吸湿材Wに吸収させればよい。第1貯留槽211の内部には、液体吸湿材Wが貯留されている。液体吸湿材Wについては後述する。第1貯留槽211には、第1空気導入流路30、第1空気排出流路23、および第1液体吸湿材輸送流路22が接続されている。空気A1は、ブロア212によって第1空気導入流路30を介して第1貯留槽211の内部空間に供給される。
 吸湿部ノズル213は、第1貯留槽211の内部空間の上部に配置されている。後述する霧化再生部24によって再生された後、第2液体吸湿材輸送流路25を介して吸湿部21に戻された液体吸湿材W1は、吸湿部ノズル213から第1貯留槽211の内部空間に流下し、この際に液体吸湿材W1と空気A1とが接触する。この種の液体吸湿材W1と空気A1との接触の形態は、一般に「流下方式」と呼ばれる。なお、液体吸湿材W1と空気A1との接触形態は、流下方式に限らず、他の方式を用いることができる。例えば第1貯留槽211に貯留された液体吸湿材Wの中に空気A1を泡状にして供給する方式、いわゆるバブリング方式を用いることもできる。
 外部空間に存在する空気A1は、ブロア202から第1空気排出流路23の排出口23aに向かう気流を形成し、吸湿部ノズル213から流れ落ちる液体吸湿材Wと接触する。このとき、空気A1中に含まれる水分の少なくとも一部は、液体吸湿材Wに吸収されることによって除去される。吸湿部21では、元々の室内の空気から水分が除去された空気が得られるため、この空気は調湿装置20の外部空間の空気よりも乾燥している。このように、乾燥した空気が第1空気排出流路23を介して室内に排出される。
 液体吸湿材Wは、水分を吸収する性質(吸湿性)を示す液体であり、例えば温度が25℃、相対湿度が50%、大気圧下の条件で吸湿性を示す液体が好ましい。液体吸湿材Wは、後述する吸湿性物質を含んでいる。また、液体吸湿材Wは、吸湿性物質と溶媒とを含んでいてもよい。この種の溶媒としては、吸湿性物質を溶解させる、または吸湿性物質と混和する溶媒が挙げられ、例えば水が挙げられる。吸湿性物質は、有機材料であってもよいし、無機材料であってもよい。
 吸湿性物質として用いられる有機材料としては、例えば2価以上のアルコール、ケトン、アミド基を有する有機溶媒、糖類、保湿化粧品などの原料として用いられる公知の材料などが挙げられる。それらの中でも、親水性が高いことから、吸湿性物質として好適に用いられる有機材料としては、2価以上のアルコール、アミド基を有する有機溶媒、糖類、保湿化粧品等の原料として用いられる公知の材料が挙げられる。
 2価以上のアルコールとしては、例えばグリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどが挙げられる。
 アミド基を有する有機溶媒としては、例えばホルムアミド、アセトアミドなどが挙げられる。
 糖類としては、例えばスクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトールなどが挙げられる。
 保湿化粧品などの原料として用いられる公知の材料としては、例えば2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ベタイン、ヒアルロン酸、コラーゲンなどが挙げられる。
 吸湿性物質として用いられる無機材料としては、例えば塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウムなどが挙げられる。
 吸湿性物質の親水性が高いと、例えば吸湿性物質の材料と水とを混合させたときに、液体吸湿材Wの表面(液面)近傍における水分子の割合が多くなる。後述する霧化再生部24では、液体吸湿材Wの表面近傍から霧状液滴を発生させて、液体吸湿材Wから水分を分離する。そのため、液体吸湿材Wの表面近傍における水分子の割合が多いと、水分を効率的に分離できる点で好ましい。また、液体吸湿材Wの表面近傍における吸湿性物質の割合が相対的に少なくなるため、霧化再生部24での吸湿性物質の損失を抑えられる点で好ましい。
 液体吸湿材Wのうち、吸湿部21での処理に用いられる液体吸湿材W1に含まれる吸湿性物質の濃度は、特に限定されないが、40質量%以上であることが好ましい。吸湿性物質の濃度が40質量%以上である場合、液体吸湿材W1は、効率良く水分を吸収することができる。
 液体吸湿材Wの粘度は、25mPa・s以下であることが好ましい。これにより、後述する霧化再生部24において、液体吸湿材Wの液面に液体吸湿材Wの液柱Cを生じさせやすい。そのため、液体吸湿材Wから効率良く水分を分離することができる。ただし、本実施形態では、霧化再生部24として、霧化させる液体の粘度に依らずに高い霧化効率が得られる第1~第8実施形態の霧化装置を備えているため、たとえ液体吸湿材Wの粘度が高くても、従来に比べて効率良く水分を分離することができる。
 霧化再生部24は、第2貯留槽241と、ブロア242と、超音波振動子521と、誘導管244と、を備えている。霧化再生部24は、第1液体吸湿材輸送流路22を介して吸湿部21から供給された液体吸湿材W2に含まれる水分の少なくとも一部を霧化し、液体吸湿材W2から水分の少なくとも一部を除去することにより液体吸湿材W2を再生する。第2貯留槽241の内部には、再生すべき液体吸湿材W2が貯留されている。第2貯留槽241には、第1液体吸湿材輸送流路22、第2液体吸湿材輸送流路25、第2空気導入流路26、および第2空気排出流路28が接続されている。第2貯留槽241は、第1~第8実施形態の霧化装置における筐体に相当する。
 ブロア242は、外殻筐体201の外部空間から、第2空気導入流路26を介して第2貯留槽241の内部に空気A1を送り込み、第2貯留槽241の内部から、第2空気排出流路28を介して外殻筐体201の外部に流れる気流を発生させる。
 超音波振動子521は、液体吸湿材W2に超音波を照射することにより、液体吸湿材W2から水分を含む霧状液滴W3を発生させる。超音波振動子521は、第2貯留槽241の底板に接して設けられている。超音波振動子521から液体吸湿材W2に超音波が照射される際、超音波の発生条件を調整することによって、液体吸湿材W2の液面に液体吸湿材W2の液柱Cを生じさせることができる。霧状液滴W3の多くは、液体吸湿材W2の液柱Cおよびその近傍から発生する。
 誘導管244は、液体吸湿材W2から発生した霧状液滴W3を第2空気排出流路28の排気口28aに誘導する。調湿装置20を上方から見たとき、誘導管244は、排気口28aの周囲を囲むように設けられている。
 第2空気排出流路28は、霧状液滴W3を含む空気A4を外殻筐体201の外部空間に放出し、調湿装置20の内部から除去する。これにより、液体吸湿材W2から水分を分離することができる。これにより、液体吸湿材W2の吸湿性能が再び高まり、液体吸湿材W2を吸湿部21に戻して再利用することができる。空気A4は、第2貯留槽241の内部で発生した霧状液滴W3を含んでいるため、外殻筐体201の外部空間の空気A2よりも湿っている。このように、加湿された空気A4が第2空気排出流路28を介して室内に排出される。
 霧化再生部24を上方から見たとき、排気口28aが超音波振動子521と平面的に重なっていることから、排気口28aの下方に液体吸湿材W2の液柱Cが生じる。そのため、霧化再生部24においては、液体吸湿材W2に生じる液柱Cの周囲を誘導管244が囲む設計とされている。排気口28aと誘導管244と液柱Cとがこのような位置関係にあることで、液体吸湿材W2の液面から上方に向かう気流によって、液体吸湿材W2の液柱Cから発生した霧状液滴W3が排気口28aへと誘導される。
 吸湿部21と霧化再生部24とは、液体吸湿材Wの循環流路を構成する第1液体吸湿材輸送流路22と第2液体吸湿材輸送流路25とによって接続されている。第2液体吸湿材輸送流路25の途中には、液体吸湿材Wを循環させるためのポンプ252が設けられている。
 第1液体吸湿材輸送流路22は、水分の少なくとも一部が吸収された液体吸湿材Wを吸湿部21から霧化再生部24に輸送する。第1液体吸湿材輸送流路22の一端は、第1貯留槽211の下部に接続されている。第1貯留槽211における第1液体吸湿材輸送流路22の接続箇所は、第1貯留槽211内の液体吸湿材W1の液面よりも下方に位置している。一方、第1液体吸湿材輸送流路22の他端は、第2貯留槽241の下部に接続されている。第2貯留槽241における第1液体吸湿材輸送流路22の接続箇所は、第2貯留槽241内の液体吸湿材W2の液面よりも下方に位置している。
 第2液体吸湿材輸送流路25は、水分が除去されて再生された液体吸湿材Wを霧化再生部24から吸湿部21に輸送する。第2液体吸湿材輸送流路25の一端は、第2貯留槽241の下部に接続されている。第2貯留槽241における第2液体吸湿材輸送流路25の接続箇所は、第2貯留槽241内の液体吸湿材W2の液面よりも下方に位置している。一方、第2液体吸湿材輸送流路25の他端は、第1貯留槽211の上部に接続されている。第1貯留槽211における第2液体吸湿材輸送流路25の接続箇所は、第1貯留槽211内の液体吸湿材W1の液面よりも上方に位置し、上述の吸湿部ノズル213に接続されている。
 上記では、調湿装置20において、除湿された空気が吸湿部21から第1空気排出流路23を介して排出され、加湿された空気が霧化再生部24から第2空気排出流路28を介して排出される、と説明した。湿度調整機能について、本実施形態の調湿装置20を除湿機能のみを備えた空調装置とする場合には、例えば第1空気排出流路23の空気排出口を室内に向けて配置する一方、第2空気排出流路28の空気排出口を室外に向けて配置した構成とすればよい。もしくは、加湿機能のみを備えた空調装置とする場合には、例えば第2空気排出流路28の空気排出口を室内に向けて配置する一方、第1空気排出流路23の空気排出口を室外に向けて配置した構成とすればよい。また、除湿機能と加湿機能の双方を備えた空調装置とする場合には、第1空気排出流路23および第2空気排出流路28の双方の空気排出口を室内に向けて配置し、制御部42がいずれの空気排出口から空気を排出するかを制御する構成とすればよい。
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態の霧化装置においては、筐体に第1の液状物もしくは第2の液状物を流入もしくは流出させるための個所が設けられていなかったが、この種の個所が設けられていてもよい。
 また、霧化装置は、第1の液状物の液位を低く保つための機構や制御系を備えていてもよい。さらに、霧化装置は、第1の液状物の液位を低く保ちつつ、筐体の傾き等によって第1の液状物が超音波振動子の上方に無くなった場合にこれを検出し、装置を一時停止する手段や使用者に知らせる手段を備えていてもよい。同様に、第2の液状物が超音波振動子の上方に無くなった場合にこれを検出し、装置を一時停止する手段や使用者に知らせる手段を備えていてもよい。
 また、仕切り部材と第2の液状物との界面等、音響透過率が互いに異なる2種の物質の界面に、超音波の反射を抑制する構造物、例えば1/4波長膜、微細凹凸構造等が付与されていてもよい。これにより、超音波の反射損失を抑制し、霧化効率を向上させることができる。
 また、上記実施形態では、超音波伝播部材が仕切り部材と第2の液状物とから構成されている構成を例示したが、この構成に代えて、超音波伝播部材の全体が例えばゲルのような固体で構成されていてもよい。一般に、超音波の吸収率は、固体→低粘度液体→高粘度液体の順に高くなる。したがって、超音波伝播部材として固体材料を用いることにより、高粘度液体を用いた場合と比べて、より強度の高い超音波が第1の液状物の液面に伝播する結果、霧化効率を高めることができる。
 本発明の霧化装置は、上記の調湿装置の他、例えばネブライザー、分離装置、塗布装置、液体濃縮装置等の各種装置に利用が可能である。

Claims (10)

  1.  霧状液滴となる第1の液状物を貯留する内部空間と排気口とを有する筐体と、
     前記筐体に設けられ、前記第1の液状物に超音波を照射することにより前記霧状液滴を発生させる超音波発生部と、
     前記排気口を介して前記霧状液滴の少なくとも一部を前記内部空間から外部に送出するための気流を発生させる気流発生部と、
     前記内部空間における前記超音波発生部と前記第1の液状物との間の超音波の伝播経路上に設けられ、前記第1の液状物の減衰係数よりも小さい減衰係数を有する超音波伝播部材と、を備えた、霧化装置。
  2.  前記超音波伝播部材は、前記内部空間を区画する仕切り部材を有し、
     前記仕切り部材の少なくとも一部は、前記第1の液状物の減衰係数よりも小さい減衰係数を有する材料から構成されている、請求項1に記載の霧化装置。
  3.  前記超音波伝播部材は、前記第1の液状物の粘度よりも低い粘度を有する第2の液状物を含み、
     前記第2の液状物は、前記仕切り部材によって区画された複数の空間のうち、前記超音波発生部に近い側の空間に貯留され、
     前記第1の液状物は、前記超音波発生部から遠い側の空間に貯留されている、請求項2に記載の霧化装置。
  4.  前記筐体は、第1の容器と、前記第1の容器の内部空間に対して着脱可能とされた第2の容器と、を備え、
     前記第2の容器が前記第1の容器の内部空間に装着された状態において、前記第2の容器の少なくとも一部が前記仕切り部材として機能し、
     前記第2の液状物は、前記第1の容器と前記第2の容器との間の空間に貯留され、
     前記第1の液状物は、前記第2の容器の内部空間に貯留されている、請求項3に記載の霧化装置。
  5.  前記超音波発生部は、複数の超音波振動子を備え、
     前記仕切り部材は、前記複数の超音波振動子の各々の上方空間を区画するように設けられた、請求項3に記載の霧化装置。
  6.  前記仕切り部材の厚さは、前記第2の液状物の層厚よりも厚い、請求項3に記載の霧化装置。
  7.  前記仕切り部材は、超音波を前記第1の液状物の特定の領域に向けて集束させる音響レンズ部を備えた、請求項2に記載の霧化装置。
  8.  前記仕切り部材は、超音波を前記第1の液状物の特定の領域に向けて集束させる筒状部を備えた、請求項2に記載の霧化装置。
  9.  前記筒状部は、前記筒状部の内部に前記第1の液状物を流入可能とする流入口を有する、請求項8に記載の霧化装置。
  10.  吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、
     前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化し、除去することによって前記液体吸湿材を再生する霧化再生部と、を備え、
     前記霧化再生部は、請求項1に記載の霧化装置を備える、調湿装置。
PCT/JP2019/007556 2018-02-27 2019-02-27 霧化装置および調湿装置 WO2019168028A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980011202.7A CN111741818A (zh) 2018-02-27 2019-02-27 雾化装置以及调湿装置
JP2020503566A JP6932237B2 (ja) 2018-02-27 2019-02-27 霧化装置および調湿装置
US16/966,773 US20200360957A1 (en) 2018-02-27 2019-02-27 Atomizing device and humidity regulating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018033239 2018-02-27
JP2018-033239 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019168028A1 true WO2019168028A1 (ja) 2019-09-06

Family

ID=67808907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007556 WO2019168028A1 (ja) 2018-02-27 2019-02-27 霧化装置および調湿装置

Country Status (4)

Country Link
US (1) US20200360957A1 (ja)
JP (1) JP6932237B2 (ja)
CN (1) CN111741818A (ja)
WO (1) WO2019168028A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220111412A1 (en) * 2020-01-17 2022-04-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic atomization apparatus
WO2023112707A1 (ja) * 2021-12-17 2023-06-22 ナノミストテクノロジーズ株式会社 超音波霧化装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135396A1 (ja) * 2018-01-04 2019-07-11 シャープ株式会社 調湿装置および調湿方法
CN113503619A (zh) * 2021-06-11 2021-10-15 珠海格力电器股份有限公司 空调的控制方法、装置、一种控制器和空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568576U (ja) * 1978-11-01 1980-05-12
JPS61285327A (ja) * 1985-06-13 1986-12-16 Matsushita Seiko Co Ltd 除・加湿装置
US4905479A (en) * 1989-01-27 1990-03-06 Gas Research Institute Hybrid air conditioning system
JPH0365264A (ja) * 1989-08-03 1991-03-20 Sanko Denki Seisakusho:Kk 霧化装置
JP2000171056A (ja) * 1998-12-04 2000-06-23 Daikin Ind Ltd 除湿加湿ユニット
JP3547132B2 (ja) * 1992-04-29 2004-07-28 クロノテック エスエーアールエル 超音波によるマイクロスプレー用ポータブル装置
JP2005233435A (ja) * 2004-02-17 2005-09-02 Miyazaki Prefecture 吸収式除湿空調システム
JP2007181808A (ja) * 2005-10-12 2007-07-19 Akira Tomono 霧発生装置
JP2011131140A (ja) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk 超音波霧化方法と霧化装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE256847T1 (de) * 1995-11-07 2004-01-15 Seibu Giken Kk Verfahren und vorrichtung zum kühlen eines fluidstromes und trocknende gaskühlung
US6622720B2 (en) * 2000-12-18 2003-09-23 Xerox Corporation Using capillary wave driven droplets to deliver a pharmaceutical product
US6827287B2 (en) * 2002-12-24 2004-12-07 Palo Alto Research Center, Incorporated High throughput method and apparatus for introducing biological samples into analytical instruments
JP5327371B2 (ja) * 2011-09-16 2013-10-30 ダイキン工業株式会社 調湿用モジュールおよび調湿装置
FR2985919B1 (fr) * 2012-01-25 2014-08-29 Gil Ching Dispositif de nebulisation d'un liquide
JP2013230429A (ja) * 2012-04-27 2013-11-14 Sumitomo Chemical Co Ltd 超音波霧化装置
KR20200009148A (ko) * 2013-03-01 2020-01-29 7에이씨 테크놀로지스, 아이엔씨. 흡습제 공기 조화 방법 및 시스템
US10900680B2 (en) * 2013-07-19 2021-01-26 Ademco Inc. Humidifier system
US10782038B2 (en) * 2016-12-16 2020-09-22 Omachron Intellectual Property Inc. Fan coil apparatus including a humidification unit and a humidification unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568576U (ja) * 1978-11-01 1980-05-12
JPS61285327A (ja) * 1985-06-13 1986-12-16 Matsushita Seiko Co Ltd 除・加湿装置
US4905479A (en) * 1989-01-27 1990-03-06 Gas Research Institute Hybrid air conditioning system
JPH0365264A (ja) * 1989-08-03 1991-03-20 Sanko Denki Seisakusho:Kk 霧化装置
JP3547132B2 (ja) * 1992-04-29 2004-07-28 クロノテック エスエーアールエル 超音波によるマイクロスプレー用ポータブル装置
JP2000171056A (ja) * 1998-12-04 2000-06-23 Daikin Ind Ltd 除湿加湿ユニット
JP2005233435A (ja) * 2004-02-17 2005-09-02 Miyazaki Prefecture 吸収式除湿空調システム
JP2007181808A (ja) * 2005-10-12 2007-07-19 Akira Tomono 霧発生装置
JP2011131140A (ja) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk 超音波霧化方法と霧化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220111412A1 (en) * 2020-01-17 2022-04-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ultrasonic atomization apparatus
EP3912732A4 (en) * 2020-01-17 2022-08-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation ULTRASONIC ATOMIZER
WO2023112707A1 (ja) * 2021-12-17 2023-06-22 ナノミストテクノロジーズ株式会社 超音波霧化装置

Also Published As

Publication number Publication date
CN111741818A (zh) 2020-10-02
JPWO2019168028A1 (ja) 2021-01-14
JP6932237B2 (ja) 2021-09-08
US20200360957A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019168028A1 (ja) 霧化装置および調湿装置
JP6272188B2 (ja) 超音波式加湿器
CN115076810A (zh) 一种静音低湿气激式负氧离子发生设备
KR102128788B1 (ko) 하이브리드 방식의 가습기
JP6994109B2 (ja) 霧化装置および調湿装置
JP4289968B2 (ja) 携帯用超音波霧化装置
JP2014202428A (ja) 超音波式加湿器
WO2020241150A1 (ja) 超音波霧化装置および調湿装置
JPS5951352B2 (ja) 超音波霧化装置
CN101229418B (zh) 超声雾化灭火器
WO2019202940A1 (ja) 超音波霧化分離装置および調湿装置
WO2019235411A1 (ja) 調湿装置
JPWO2019138794A1 (ja) 調湿装置および分離装置
CN201179291Y (zh) 超声雾化灭火器
WO2019097961A1 (ja) 空調装置
WO2020059284A1 (ja) 調湿システム
JP6573958B2 (ja) 超音波式加湿器
JP2021028050A (ja) 調湿装置および調湿方法
WO2022190670A1 (ja) 超音波霧化分離装置及び調湿システム
WO2022059428A1 (ja) 調湿装置
WO2020049878A1 (ja) 調湿システム
CN217490095U (zh) 离心式除冷凝水装置及气激式负氧离子发生器
CN217357313U (zh) 静音低湿气激式负氧离子发生设备
KR20060108350A (ko) 진동자를 이용한 습식 공기청정기
KR200388417Y1 (ko) 진동자를 이용한 습식 공기청정기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761613

Country of ref document: EP

Kind code of ref document: A1