WO2019167932A1 - Wave spring - Google Patents
Wave spring Download PDFInfo
- Publication number
- WO2019167932A1 WO2019167932A1 PCT/JP2019/007275 JP2019007275W WO2019167932A1 WO 2019167932 A1 WO2019167932 A1 WO 2019167932A1 JP 2019007275 W JP2019007275 W JP 2019007275W WO 2019167932 A1 WO2019167932 A1 WO 2019167932A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wave spring
- radial direction
- peak
- valley
- axial direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/32—Belleville-type springs
Definitions
- the present invention relates to a wave spring.
- This application claims priority based on Japanese Patent Application No. 2018-034659 filed in Japan on February 28, 2018, the contents of which are incorporated herein by reference.
- a wave spring formed by alternately connecting peaks and valleys in the circumferential direction as shown in Patent Document 1 is known.
- This type of wave spring is attached to, for example, a clutch device and is deformed in the axial direction so as to be flat when an axial load is applied, and is restored and deformed when the load is released. It is used in this way.
- the wave spring includes a portion close to the inner peripheral edge (inner peripheral portion) and a portion close to the outer peripheral edge (outer peripheral portion), and the inner peripheral portion and the outer peripheral portion have different peripheral lengths.
- the inner peripheral portion and the outer peripheral portion have different peripheral lengths.
- the inner circumference in each of the crest and trough The portion began to expand and deform in the circumferential direction, and surface pressure was generated in the inner circumferential portion. Therefore, immediately before the wave spring is flattened, there is a problem in that a surface pressure is generated over a wide range in the inner peripheral portion in each of the peak portion and the valley portion, and the spring constant of the wave spring is increased.
- the present invention has been made in consideration of such circumstances, and the wave that can suppress the change of the spring constant from the beginning when the axial load is applied to the wave spring to just before the wave spring becomes flat.
- the purpose is to provide a spring.
- a wave spring according to an aspect of the present invention is a wave spring formed by alternately connecting peaks and valleys in a circumferential direction.
- the direction perpendicular to the central axis of the wave spring is the radial direction and the direction in which the central axis extends is the axial direction
- one of the peak and the valley is from the inside of the radial direction.
- it gradually extends toward the first side in the axial direction, and either one of the peak portion and the valley portion gradually increases in the axial direction from the inside to the outside in the radial direction.
- one of the crest and the trough extends in the radial direction, in the axial direction between the crest and the trough adjacent to each other.
- the interval is It has become gradually larger as it goes from the inside to the outside of the direction.
- the outer peripheral part in at least one of a peak part and a trough part protrudes toward the outer side of the said axial direction. For this reason, a load is applied to the wave spring in the axial direction, and in the process of deforming in the axial direction so that the wave spring becomes flat, an inner peripheral portion (hereinafter, referred to as a peak portion or a valley portion).
- an inner peripheral portion hereinafter, referred to as a peak portion or a valley portion.
- the outer peripheral portion is pushed in the axial direction before the inner circumferential portion) is pushed in the axial direction. Therefore, compared with the case where the inner peripheral portion is pushed in the axial direction from the beginning when the axial load is applied to the wave spring, the inner peripheral portion in the stage immediately before the wave spring becomes flat.
- the expansion deformation in the circumferential direction can be reduced, and the surface pressure generated in the inner peripheral portion can be kept within a narrow range. Thereby, even immediately before the wave spring becomes flat, at least one of the peak portion and the valley portion can be easily expanded and deformed in the circumferential direction over the entire radial direction including the inner peripheral portion. It becomes possible to suppress an increase in the spring constant of the wave spring immediately before the wave spring becomes flat. From the above, it is possible to suppress the change in the spring constant from the beginning when the axial load is applied to the wave spring until just before the wave spring becomes flat.
- any one of the peak portion and the valley portion gradually extends toward the first side in the axial direction from the inner side to the outer side in the radial direction, and the peak portion and the valley portion. Any one of the above gradually extends toward the second side in the axial direction as it goes from the inner side to the outer side in the radial direction, the inclination angle of the peak portion with respect to the radial direction, and the valley portion
- the inclination angle with respect to the radial direction may be substantially equal to each other.
- the wave spring can be easily attached to the apparatus, and the occurrence of unevenness in the surface pressure applied to the peaks and valleys can be suppressed.
- any one of the peak and the valley gradually extends toward the first side in the axial direction from the inner side to the outer side in the radial direction, and the peak and the valley Either one of them gradually extends toward the second side in the axial direction as it goes from the inner side to the outer side in the radial direction, and the intermediate portion located between the peak and the valley,
- the inclination angle with respect to the radial direction may gradually decrease from the peak portion and the valley portion toward the central portion in the circumferential direction of the intermediate portion.
- the wave spring since the inclination angle of the intermediate part located between the peak part and the valley part gradually decreases toward the circumferential central part of the intermediate part, when attaching the wave spring to the apparatus, It is not necessary to match the axial direction of the spring. Accordingly, the wave spring can be easily attached to the apparatus, and it is possible to prevent the applied load from being biased between the portion near the peak and the portion near the valley in the intermediate portion.
- the wave spring according to the above aspect of the present invention it is possible to suppress the change of the spring constant from the beginning when the axial load is applied to the wave spring until just before the wave spring becomes flat.
- the wave spring 1 of this embodiment is formed by alternately connecting a plurality of peak portions 11 and a plurality of valley portions 12 in the circumferential direction.
- the central axis of the wave spring 1 is referred to as a central axis O.
- a direction along the central axis O is referred to as an axial direction, and viewing from the axial direction is referred to as a plan view.
- a direction around the central axis O is referred to as a circumferential direction
- a direction orthogonal to the central axis O is referred to as a radial direction.
- one side (first side) in the axial direction is referred to as + Z side, and the other side (second side) is referred to as -Z side.
- the side away from the wave spring 1 is referred to as the axially outer side, and the side approaching the wave spring 1 is referred to as the axially inner side.
- the wave spring 1 is formed in an annular shape having an inner peripheral edge 1a and an outer peripheral edge 1b.
- the peak portion 11 is formed in a curved surface shape protruding toward the + Z side
- the valley portion 12 is formed in a curved surface shape protruding toward the ⁇ Z side.
- the peaks 11 and the valleys 12 are the same size and the same shape.
- the peak part 11 and the trough part 12 may be formed in planar shape.
- the wave spring 1 may be attached to, for example, a clutch device or may be attached to another device.
- the number of peaks 11 and valleys 12 included in the wave spring 1 is the same.
- six peaks 11 and valleys 12 are formed.
- the plurality of peak portions 11 are formed in the same shape with the same size, and the plurality of valley portions 12 are formed in the same size with the same size.
- the heights of the plurality of peak portions 11 are the same as each other, the pitches of the plurality of peak portions 11 are the same as each other, and the depths of the plurality of valley portions 12 are the same as each other,
- the 12 pitches are the same.
- the number of the peak parts 11 and the trough parts 12 may mutually differ.
- the plurality of peak portions 11 may be formed in different shapes with different sizes, and the plurality of valley portions 12 may be formed with different sizes and different shapes.
- the peak portion 11 and the valley portion 12 are gradually separated from each other in the axial direction from the inner side to the outer side in the radial direction.
- the interval in the axial direction between the adjacent peak portion 11 and valley portion 12 is gradually increased from the inner side to the outer side in the radial direction.
- the peak portion 11 gradually extends toward the + Z side as it goes from the inner side to the outer side in the radial direction
- the valley portion 12 extends toward the ⁇ Z side as it goes from the inner side to the outer side in the radial direction.
- the peak portion 11 and the valley portion 12 gradually extend outward in the axial direction from the inner side to the outer side in the radial direction.
- the peak part 11 or the trough part 12 may extend along a radial direction. That is, one of the inclination angles ⁇ 1 and ⁇ 2 described later may be 0 °.
- the inclination angle of the peak portion 11 with respect to the radial direction is represented as ⁇ 1.
- the inclination angle of the valley 12 with respect to the radial direction is represented as ⁇ 2.
- the inclination angles ⁇ 1 and ⁇ 2 are substantially equal to each other.
- the inclination angles ⁇ 1 and ⁇ 2 are shown as angles formed by the two-dot chain line and the thin line in FIG.
- the thin line in FIG. 2 is a straight line along the top surface of the peak part 11 or the valley part 12, and the two-dot chain line is a straight line extending in the radial direction.
- the inclination angles ⁇ 1 and ⁇ 2 are, for example, larger than 0 ° and not larger than 1 °. That is, 0 ° ⁇ 1 ⁇ 2 ⁇ 1 ° may be satisfied.
- a portion located between the peak portion 11 and the valley portion 12 is referred to as an intermediate portion 13.
- the intermediate portion 13 gradually decreases in inclination angle with respect to the radial direction from the peak portion 11 side and the valley portion 12 side toward the center portion in the circumferential direction.
- the central portion in the circumferential direction of the intermediate portion 13 extends along the radial direction.
- the plate thickness of the wave spring 1 is, for example, about 0.4 mm to 3.0 mm.
- the outer diameter of the wave spring 1 is, for example, about 20 mm to 300 mm.
- the inner diameter of the wave spring 1 is, for example, about 10 mm to 290 mm.
- the width of the wave spring 1 is, for example, about 1 mm to 100 mm.
- the axial size of the wave spring 1 is, for example, about 0.5 mm to 20 mm.
- the wave spring 1 has an outer diameter of about 120 mm, an inner diameter of about 100 mm, an axial size of about 2.0 mm, and a plate thickness of about 1.0 mm.
- the outer peripheral portion of each of the peak portion 11 and the valley portion 12 projects outward in the axial direction of the wave spring 1. For this reason, in the process in which the load is applied to the wave spring 1 in the axial direction and the wave spring 1 is deformed in the axial direction so that the wave spring 1 becomes flat, the inner peripheral portions of the peak portions 11 and the valley portions 12 are pushed in the axial direction. First, the outer peripheral portion is pushed in the axial direction before being pushed. Therefore, compared with the case where the inner peripheral portion is pushed in the axial direction from the beginning when the axial load is applied to the wave spring 1, the inner peripheral portion in the stage immediately before the wave spring 1 becomes flat. The expansion deformation in the circumferential direction can be reduced, and the surface pressure generated in the inner peripheral portion can be kept within a narrow range.
- the spring constant of the wave spring 1 can be suppressed from increasing immediately before the wave spring 1 becomes flat.
- the spring constant can be kept equal by suppressing the change of the spring constant from the beginning of the axial load applied to the wave spring 1 until just before the wave spring 1 becomes flat.
- the inclination angles ⁇ 1 and ⁇ 2 of the peak portion 11 and the valley portion 12 with respect to the radial direction are substantially equal to each other. For this reason, when attaching the wave spring 1 to the apparatus, it is not necessary to match the axial direction of the wave spring 1, and the wave spring 1 can be easily attached to the apparatus. It is possible to suppress the occurrence of bias in the surface pressure applied to.
- the inclination angle of the intermediate portion 13 located between the mountain portion 11 and the valley portion 12 gradually decreases from the mountain portion 11 and the valley portion 12 toward the circumferential central portion of the intermediate portion 13.
- the above-described wave spring 1 is employed, and as a conventional example, a wave spring is formed in which crests and troughs are alternately connected in the circumferential direction, and the crests and troughs extend along the radial direction. did. Then, the load and displacement when each wave spring was pressed in the axial direction until just before being flattened, and the surface pressure generated in the wave spring were calculated by numerical analysis.
- the spring constant of the wave spring 1 is suppressed from increasing immediately before the wave spring 1 becomes flat. It was confirmed that the spring constant could be maintained equivalently from the beginning when the directional load was applied until just before the wave spring 1 became flat.
- the wave spring 2 extending toward the ⁇ Z side in the axial direction may be employed.
- a wave spring 3 may be employed.
- the inclination angles ⁇ 1 and ⁇ 2 of the peak portion 11 and the valley portion 12 with respect to the radial direction may be different from each other.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Springs (AREA)
Abstract
A wave spring (1) wherein crests (11) and troughs (12) are alternately formed in the circumferential direction in a linked manner. One group, that is, the crests (11) or the troughs (12), extends gradually toward a first side in the axial direction, from the inside toward the outside in the radial direction. The other group, that is, the troughs (12) or the crests (11), extends gradually toward a second, that is, the other side in the axial direction, from the inside toward the outside in the radial direction, or extend along the radial direction. The axial interval between adjacent crests (11) and troughs (12) increases gradually from the inside toward the outside in the radial direction.
Description
本発明は、ウェーブスプリングに関する。
本願は、2018年2月28日に、日本に出願された特願2018-034659号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a wave spring.
This application claims priority based on Japanese Patent Application No. 2018-034659 filed in Japan on February 28, 2018, the contents of which are incorporated herein by reference.
本願は、2018年2月28日に、日本に出願された特願2018-034659号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a wave spring.
This application claims priority based on Japanese Patent Application No. 2018-034659 filed in Japan on February 28, 2018, the contents of which are incorporated herein by reference.
従来から、例えば特許文献1に示されるような、山部および谷部が周方向に交互に連ねられて形成されたウェーブスプリングが知られている。この種のウェーブスプリングは、例えばクラッチ装置等に装着され、軸方向の荷重が加えられたときに、平坦になるように軸方向に変形させられ、この荷重が解除されたときに、復元変形するようにして用いられる。
2. Description of the Related Art Conventionally, a wave spring formed by alternately connecting peaks and valleys in the circumferential direction as shown in Patent Document 1, for example, is known. This type of wave spring is attached to, for example, a clutch device and is deformed in the axial direction so as to be flat when an axial load is applied, and is restored and deformed when the load is released. It is used in this way.
ここで、ウェーブスプリングには、内周縁に近い部分(内周部分)と外周縁に近い部分(外周部分)とが含まれており、内周部分と外周部分とでは周長が異なっている。前記従来のウェーブスプリングでは、軸方向の荷重が加えられ、平坦になるように軸方向に変形する過程において、前記周長差に起因して、変形当初から、山部および谷部それぞれにおける内周部分が周方向に拡開変形しはじめ、この内周部分に面圧が生じていた。したがって、ウェーブスプリングが平坦になる直前になると、山部および谷部それぞれにおける内周部分に広範囲にわたって面圧が生じ、ウェーブスプリングのばね定数が高くなるという問題があった。
Here, the wave spring includes a portion close to the inner peripheral edge (inner peripheral portion) and a portion close to the outer peripheral edge (outer peripheral portion), and the inner peripheral portion and the outer peripheral portion have different peripheral lengths. In the conventional wave spring, in the process of axial deformation so that an axial load is applied and flattened, due to the difference in circumferential length, from the beginning of deformation, the inner circumference in each of the crest and trough The portion began to expand and deform in the circumferential direction, and surface pressure was generated in the inner circumferential portion. Therefore, immediately before the wave spring is flattened, there is a problem in that a surface pressure is generated over a wide range in the inner peripheral portion in each of the peak portion and the valley portion, and the spring constant of the wave spring is increased.
この発明は、このような事情を考慮してなされたもので、ウェーブスプリングに軸方向の荷重が加えられた当初から、ウェーブスプリングが平坦になる直前まで、ばね定数が変化することを抑制できるウェーブスプリングを提供することを目的とする。
The present invention has been made in consideration of such circumstances, and the wave that can suppress the change of the spring constant from the beginning when the axial load is applied to the wave spring to just before the wave spring becomes flat. The purpose is to provide a spring.
前記課題を解決して、このような目的を達成するために、本発明の一態様に係るウェーブスプリングは、山部および谷部が周方向に交互に連ねられて形成されたウェーブスプリングであって、前記ウェーブスプリングの中心軸線に直交する方向を径方向とし、前記中心軸線が延びる方向を軸方向とするとき、前記山部および前記谷部のうちのいずれか一方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第1の側に向けて延び、前記山部および前記谷部のうちのいずれか他方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第2の側に向けて延び、または、前記山部および前記谷部のうちのいずれか他方は前記径方向に沿って延び、隣り合う前記山部と前記谷部との間の前記軸方向における間隔は、前記径方向の内側から外側に向かうに従い漸次大きくなっている。
In order to solve the above problems and achieve such an object, a wave spring according to an aspect of the present invention is a wave spring formed by alternately connecting peaks and valleys in a circumferential direction. When the direction perpendicular to the central axis of the wave spring is the radial direction and the direction in which the central axis extends is the axial direction, one of the peak and the valley is from the inside of the radial direction. As it goes to the outside, it gradually extends toward the first side in the axial direction, and either one of the peak portion and the valley portion gradually increases in the axial direction from the inside to the outside in the radial direction. Extending toward the second side, or one of the crest and the trough extends in the radial direction, in the axial direction between the crest and the trough adjacent to each other. The interval is It has become gradually larger as it goes from the inside to the outside of the direction.
上記態様によれば、山部および谷部のうちの少なくとも一方における外周部分(以下、外周部分という)が、前記軸方向の外側に向けて張り出している。このため、ウェーブスプリングに前記軸方向に荷重が加えられて、ウェーブスプリングが平坦になるように前記軸方向に変形する過程において、山部および谷部のうちの少なくとも一方における内周部分(以下、内周部分という)が前記軸方向に押し込まれる前に、まず、外周部分が前記軸方向に押し込まれる。したがって、ウェーブスプリングに前記軸方向の荷重が加えられた当初から、前記内周部分が前記軸方向に押し込まれる場合と比べて、ウェーブスプリングが平坦になる直前の段階での、前記内周部分における周方向の拡開変形を小さくすることが可能になり、前記内周部分に生ずる面圧を狭い範囲に留めることができる。
これにより、ウェーブスプリングが平坦になる直前になっても、山部および谷部のうちの少なくとも一方を、内周部分を含めた径方向の全域にわたって、周方向に拡開変形させやすくすることが可能になり、ウェーブスプリングが平坦になる直前に、ウェーブスプリングのばね定数が高くなるのを抑制することができる。
以上より、ウェーブスプリングに前記軸方向の荷重が加えられた当初から、ウェーブスプリングが平坦になる直前まで、ばね定数が変化することを抑制できる。 According to the said aspect, the outer peripheral part (henceforth outer peripheral part) in at least one of a peak part and a trough part protrudes toward the outer side of the said axial direction. For this reason, a load is applied to the wave spring in the axial direction, and in the process of deforming in the axial direction so that the wave spring becomes flat, an inner peripheral portion (hereinafter, referred to as a peak portion or a valley portion). First, the outer peripheral portion is pushed in the axial direction before the inner circumferential portion) is pushed in the axial direction. Therefore, compared with the case where the inner peripheral portion is pushed in the axial direction from the beginning when the axial load is applied to the wave spring, the inner peripheral portion in the stage immediately before the wave spring becomes flat. The expansion deformation in the circumferential direction can be reduced, and the surface pressure generated in the inner peripheral portion can be kept within a narrow range.
Thereby, even immediately before the wave spring becomes flat, at least one of the peak portion and the valley portion can be easily expanded and deformed in the circumferential direction over the entire radial direction including the inner peripheral portion. It becomes possible to suppress an increase in the spring constant of the wave spring immediately before the wave spring becomes flat.
From the above, it is possible to suppress the change in the spring constant from the beginning when the axial load is applied to the wave spring until just before the wave spring becomes flat.
これにより、ウェーブスプリングが平坦になる直前になっても、山部および谷部のうちの少なくとも一方を、内周部分を含めた径方向の全域にわたって、周方向に拡開変形させやすくすることが可能になり、ウェーブスプリングが平坦になる直前に、ウェーブスプリングのばね定数が高くなるのを抑制することができる。
以上より、ウェーブスプリングに前記軸方向の荷重が加えられた当初から、ウェーブスプリングが平坦になる直前まで、ばね定数が変化することを抑制できる。 According to the said aspect, the outer peripheral part (henceforth outer peripheral part) in at least one of a peak part and a trough part protrudes toward the outer side of the said axial direction. For this reason, a load is applied to the wave spring in the axial direction, and in the process of deforming in the axial direction so that the wave spring becomes flat, an inner peripheral portion (hereinafter, referred to as a peak portion or a valley portion). First, the outer peripheral portion is pushed in the axial direction before the inner circumferential portion) is pushed in the axial direction. Therefore, compared with the case where the inner peripheral portion is pushed in the axial direction from the beginning when the axial load is applied to the wave spring, the inner peripheral portion in the stage immediately before the wave spring becomes flat. The expansion deformation in the circumferential direction can be reduced, and the surface pressure generated in the inner peripheral portion can be kept within a narrow range.
Thereby, even immediately before the wave spring becomes flat, at least one of the peak portion and the valley portion can be easily expanded and deformed in the circumferential direction over the entire radial direction including the inner peripheral portion. It becomes possible to suppress an increase in the spring constant of the wave spring immediately before the wave spring becomes flat.
From the above, it is possible to suppress the change in the spring constant from the beginning when the axial load is applied to the wave spring until just before the wave spring becomes flat.
ここで、前記山部および前記谷部のうちのいずれか一方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第1の側に向けて延び、前記山部および前記谷部のうちのいずれか他方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第2の側に向けて延び、前記山部の前記径方向に対する傾斜角度と、前記谷部の前記径方向に対する傾斜角度と、は互いに実質的に同等であってもよい。
Here, any one of the peak portion and the valley portion gradually extends toward the first side in the axial direction from the inner side to the outer side in the radial direction, and the peak portion and the valley portion. Any one of the above gradually extends toward the second side in the axial direction as it goes from the inner side to the outer side in the radial direction, the inclination angle of the peak portion with respect to the radial direction, and the valley portion The inclination angle with respect to the radial direction may be substantially equal to each other.
この場合、山部および谷部の、前記径方向に対する傾斜角度が互いに実質的に同等になっているので、ウェーブスプリングを装置に装着する際に、ウェーブスプリングの前記軸方向の向きを合わせる必要がない。従って、ウェーブスプリングを装置に容易に装着することができるとともに、山部および谷部に加えられる面圧に偏りが生ずるのを抑制することができる。
In this case, since the inclination angles of the crest and trough with respect to the radial direction are substantially equal to each other, it is necessary to match the axial direction of the wave spring when the wave spring is attached to the apparatus. Absent. Therefore, the wave spring can be easily attached to the apparatus, and the occurrence of unevenness in the surface pressure applied to the peaks and valleys can be suppressed.
また、前記山部および前記谷部のうちのいずれか一方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第1の側に向けて延び、前記山部および前記谷部のうちのいずれか他方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第2の側に向けて延び、前記山部と前記谷部との間に位置する中間部分の、前記径方向に対する傾斜角度は、前記山部および前記谷部から前記中間部分の周方向中央部に向かうに従い漸次小さくなってもよい。
Further, any one of the peak and the valley gradually extends toward the first side in the axial direction from the inner side to the outer side in the radial direction, and the peak and the valley Either one of them gradually extends toward the second side in the axial direction as it goes from the inner side to the outer side in the radial direction, and the intermediate portion located between the peak and the valley, The inclination angle with respect to the radial direction may gradually decrease from the peak portion and the valley portion toward the central portion in the circumferential direction of the intermediate portion.
この場合、山部と谷部との間に位置する中間部分の傾斜角度が、当該中間部分の周方向中央部に向かうに従い漸次小さくなっているので、ウェーブスプリングを装置に装着する際に、ウェーブスプリングの前記軸方向の向きを合わせる必要がない。従って、ウェーブスプリングを装置に容易に装着することができるとともに、前記中間部分における山部に近い部分と谷部に近い部分とで、加えられる負荷に偏りが生ずるのを抑制することができる。
In this case, since the inclination angle of the intermediate part located between the peak part and the valley part gradually decreases toward the circumferential central part of the intermediate part, when attaching the wave spring to the apparatus, It is not necessary to match the axial direction of the spring. Accordingly, the wave spring can be easily attached to the apparatus, and it is possible to prevent the applied load from being biased between the portion near the peak and the portion near the valley in the intermediate portion.
この発明の上記態様に係るウェーブスプリングによれば、ウェーブスプリングに軸方向の荷重が加えられた当初から、ウェーブスプリングが平坦になる直前まで、ばね定数が変化することを抑制することができる。
According to the wave spring according to the above aspect of the present invention, it is possible to suppress the change of the spring constant from the beginning when the axial load is applied to the wave spring until just before the wave spring becomes flat.
以下、ウェーブスプリングの一実施形態を、図1および図2を参照しながら説明する。
図1に示すように、本実施形態のウェーブスプリング1は、複数の山部11および複数の谷部12が、周方向に交互に連ねられて形成されている。
(方向定義)
本実施形態では、ウェーブスプリング1の中心軸線を中心軸線Oという。中心軸線Oに沿う方向を軸方向といい、軸方向から見ることを平面視という。平面視において、中心軸線O回りに周回する方向を周方向といい、中心軸線Oに直交する方向を径方向という。図2に示すように、軸方向における一方側(第1の側)を+Z側といい、他方側(第2の側)を-Z側という。軸方向において、ウェーブスプリング1から遠ざかる側を軸方向外側といい、ウェーブスプリング1に近づく側を軸方向内側という。 Hereinafter, an embodiment of a wave spring will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, thewave spring 1 of this embodiment is formed by alternately connecting a plurality of peak portions 11 and a plurality of valley portions 12 in the circumferential direction.
(Direction definition)
In the present embodiment, the central axis of thewave spring 1 is referred to as a central axis O. A direction along the central axis O is referred to as an axial direction, and viewing from the axial direction is referred to as a plan view. In a plan view, a direction around the central axis O is referred to as a circumferential direction, and a direction orthogonal to the central axis O is referred to as a radial direction. As shown in FIG. 2, one side (first side) in the axial direction is referred to as + Z side, and the other side (second side) is referred to as -Z side. In the axial direction, the side away from the wave spring 1 is referred to as the axially outer side, and the side approaching the wave spring 1 is referred to as the axially inner side.
図1に示すように、本実施形態のウェーブスプリング1は、複数の山部11および複数の谷部12が、周方向に交互に連ねられて形成されている。
(方向定義)
本実施形態では、ウェーブスプリング1の中心軸線を中心軸線Oという。中心軸線Oに沿う方向を軸方向といい、軸方向から見ることを平面視という。平面視において、中心軸線O回りに周回する方向を周方向といい、中心軸線Oに直交する方向を径方向という。図2に示すように、軸方向における一方側(第1の側)を+Z側といい、他方側(第2の側)を-Z側という。軸方向において、ウェーブスプリング1から遠ざかる側を軸方向外側といい、ウェーブスプリング1に近づく側を軸方向内側という。 Hereinafter, an embodiment of a wave spring will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the
(Direction definition)
In the present embodiment, the central axis of the
ウェーブスプリング1は、内周縁1aと外周縁1bとを有する環状に形成されている。山部11は、+Z側に向けて突の曲面状に形成され、谷部12は、-Z側に向けて突の曲面状に形成されている。山部11および谷部12は、互いに同じ大きさで同じ形状に形成されている。
なお、山部11および谷部12は、平面状に形成されてもよい。また、ウェーブスプリング1は、例えばクラッチ装置に装着されてもよいし、他の装置に装着されてもよい。また、山部11および谷部12を、互いに異なる大きさで異なる形状に形成してもよい。 Thewave spring 1 is formed in an annular shape having an inner peripheral edge 1a and an outer peripheral edge 1b. The peak portion 11 is formed in a curved surface shape protruding toward the + Z side, and the valley portion 12 is formed in a curved surface shape protruding toward the −Z side. The peaks 11 and the valleys 12 are the same size and the same shape.
In addition, thepeak part 11 and the trough part 12 may be formed in planar shape. Further, the wave spring 1 may be attached to, for example, a clutch device or may be attached to another device. Moreover, you may form the peak part 11 and the trough part 12 in a different shape with a mutually different magnitude | size.
なお、山部11および谷部12は、平面状に形成されてもよい。また、ウェーブスプリング1は、例えばクラッチ装置に装着されてもよいし、他の装置に装着されてもよい。また、山部11および谷部12を、互いに異なる大きさで異なる形状に形成してもよい。 The
In addition, the
ウェーブスプリング1が有する山部11および谷部12の数は互いに同じである。山部11および谷部12は、例えば6個ずつ形成されている。複数の山部11は、互いに同じ大きさで同じ形状に形成され、複数の谷部12は、互いに同じ大きさで同じ形状に形成されている。例えば、複数の山部11の各高さは互いに同じとされ、複数の山部11の各ピッチは互いに同じとされ、複数の谷部12の各深さは互いに同じとされ、複数の谷部12の各ピッチは互いに同じとなっている。
なお、山部11および谷部12の数は互いに異なってもよい。複数の山部11を互いに異なる大きさで異なる形状に形成し、複数の谷部12を互いに異なる大きさで異なる形状に形成してもよい。 The number ofpeaks 11 and valleys 12 included in the wave spring 1 is the same. For example, six peaks 11 and valleys 12 are formed. The plurality of peak portions 11 are formed in the same shape with the same size, and the plurality of valley portions 12 are formed in the same size with the same size. For example, the heights of the plurality of peak portions 11 are the same as each other, the pitches of the plurality of peak portions 11 are the same as each other, and the depths of the plurality of valley portions 12 are the same as each other, The 12 pitches are the same.
In addition, the number of thepeak parts 11 and the trough parts 12 may mutually differ. The plurality of peak portions 11 may be formed in different shapes with different sizes, and the plurality of valley portions 12 may be formed with different sizes and different shapes.
なお、山部11および谷部12の数は互いに異なってもよい。複数の山部11を互いに異なる大きさで異なる形状に形成し、複数の谷部12を互いに異なる大きさで異なる形状に形成してもよい。 The number of
In addition, the number of the
山部11および谷部12は、径方向の内側から外側に向かうに従い漸次、軸方向に互いに離間している。換言すると、隣り合う山部11と谷部12との間の軸方向における間隔は、径方向の内側から外側に向かうに従い、漸次大きくなっている。図示の例では、山部11は、径方向の内側から外側に向かうに従い漸次+Z側に向けて延び、谷部12は、径方向の内側から外側に向かうに従い漸次-Z側に向けて延びている。山部11および谷部12は、径方向の内側から外側に向かうに従い漸次、軸方向外側に向けて延びている。なお、山部11または谷部12は、径方向に沿って延びてもよい。すなわち、後述の傾斜角度θ1、θ2のうち、一方は0°であってもよい。
The peak portion 11 and the valley portion 12 are gradually separated from each other in the axial direction from the inner side to the outer side in the radial direction. In other words, the interval in the axial direction between the adjacent peak portion 11 and valley portion 12 is gradually increased from the inner side to the outer side in the radial direction. In the illustrated example, the peak portion 11 gradually extends toward the + Z side as it goes from the inner side to the outer side in the radial direction, and the valley portion 12 extends toward the −Z side as it goes from the inner side to the outer side in the radial direction. Yes. The peak portion 11 and the valley portion 12 gradually extend outward in the axial direction from the inner side to the outer side in the radial direction. In addition, the peak part 11 or the trough part 12 may extend along a radial direction. That is, one of the inclination angles θ1 and θ2 described later may be 0 °.
図2に示すように、本明細書では、径方向に対する山部11の傾斜角度をθ1と表す。また、径方向に対する谷部12の傾斜角度をθ2と表す。各傾斜角度θ1、θ2は、互いに実質的に同等になっている。傾斜角度θ1、θ2は、図2において、二点鎖線と細線とがなす角度として示している。図2の細線は、山部11若しくは谷部12の頂部の表面に沿った直線であり、二点鎖線は径方向に延びる直線である。
前記各傾斜角度θ1、θ2は、例えば0°より大きく1°以下となっている。すなわち、0°<θ1≒θ2<1°であってもよい。 As shown in FIG. 2, in this specification, the inclination angle of thepeak portion 11 with respect to the radial direction is represented as θ1. In addition, the inclination angle of the valley 12 with respect to the radial direction is represented as θ2. The inclination angles θ1 and θ2 are substantially equal to each other. The inclination angles θ1 and θ2 are shown as angles formed by the two-dot chain line and the thin line in FIG. The thin line in FIG. 2 is a straight line along the top surface of the peak part 11 or the valley part 12, and the two-dot chain line is a straight line extending in the radial direction.
The inclination angles θ1 and θ2 are, for example, larger than 0 ° and not larger than 1 °. That is, 0 ° <θ1≈θ2 <1 ° may be satisfied.
前記各傾斜角度θ1、θ2は、例えば0°より大きく1°以下となっている。すなわち、0°<θ1≒θ2<1°であってもよい。 As shown in FIG. 2, in this specification, the inclination angle of the
The inclination angles θ1 and θ2 are, for example, larger than 0 ° and not larger than 1 °. That is, 0 ° <θ1≈θ2 <1 ° may be satisfied.
本明細書では、山部11と谷部12との間に位置する部分を中間部分13という。中間部分13は、山部11側および谷部12側から周方向の中央部に向かうに従い漸次、径方向に対する傾斜角度が小さくなっている。図示の例では、中間部分13における周方向の中央部は、径方向に沿って延びている。
ウェーブスプリング1の板厚は、例えば約0.4mm~3.0mmとなっている。ウェーブスプリング1の外径は、例えば約20mm~300mmとなっている。ウェーブスプリング1の内径は、例えば約10mm~290mmとなっている。ウェーブスプリング1の幅は、例えば約1mm~100mmとなっている。ウェーブスプリング1の軸方向の大きさは、例えば約0.5mm~20mmとなっている。本実施形態では、ウェーブスプリング1の外径は約120mm、内径は約100mm、軸方向の大きさは約2.0mm、板厚は約1.0mmとなっている。 In this specification, a portion located between thepeak portion 11 and the valley portion 12 is referred to as an intermediate portion 13. The intermediate portion 13 gradually decreases in inclination angle with respect to the radial direction from the peak portion 11 side and the valley portion 12 side toward the center portion in the circumferential direction. In the illustrated example, the central portion in the circumferential direction of the intermediate portion 13 extends along the radial direction.
The plate thickness of thewave spring 1 is, for example, about 0.4 mm to 3.0 mm. The outer diameter of the wave spring 1 is, for example, about 20 mm to 300 mm. The inner diameter of the wave spring 1 is, for example, about 10 mm to 290 mm. The width of the wave spring 1 is, for example, about 1 mm to 100 mm. The axial size of the wave spring 1 is, for example, about 0.5 mm to 20 mm. In the present embodiment, the wave spring 1 has an outer diameter of about 120 mm, an inner diameter of about 100 mm, an axial size of about 2.0 mm, and a plate thickness of about 1.0 mm.
ウェーブスプリング1の板厚は、例えば約0.4mm~3.0mmとなっている。ウェーブスプリング1の外径は、例えば約20mm~300mmとなっている。ウェーブスプリング1の内径は、例えば約10mm~290mmとなっている。ウェーブスプリング1の幅は、例えば約1mm~100mmとなっている。ウェーブスプリング1の軸方向の大きさは、例えば約0.5mm~20mmとなっている。本実施形態では、ウェーブスプリング1の外径は約120mm、内径は約100mm、軸方向の大きさは約2.0mm、板厚は約1.0mmとなっている。 In this specification, a portion located between the
The plate thickness of the
以上説明したように、本実施形態によるウェーブスプリング1によれば、山部11および谷部12それぞれにおける外周部分が、このウェーブスプリング1における軸方向の外側に張り出している。このため、ウェーブスプリング1に軸方向に荷重が加えられて、ウェーブスプリング1が平坦になるように軸方向に変形する過程において、山部11および谷部12それぞれにおける内周部分が軸方向に押し込まれる前に、まず、外周部分が軸方向に押し込まれる。したがって、ウェーブスプリング1に軸方向の荷重が加えられた当初から、前記内周部分が軸方向に押し込まれる場合と比べて、ウェーブスプリング1が平坦になる直前の段階での、前記内周部分における周方向の拡開変形を小さくすることが可能になり、前記内周部分に生ずる面圧を狭い範囲に留めることができる。
As described above, according to the wave spring 1 according to the present embodiment, the outer peripheral portion of each of the peak portion 11 and the valley portion 12 projects outward in the axial direction of the wave spring 1. For this reason, in the process in which the load is applied to the wave spring 1 in the axial direction and the wave spring 1 is deformed in the axial direction so that the wave spring 1 becomes flat, the inner peripheral portions of the peak portions 11 and the valley portions 12 are pushed in the axial direction. First, the outer peripheral portion is pushed in the axial direction before being pushed. Therefore, compared with the case where the inner peripheral portion is pushed in the axial direction from the beginning when the axial load is applied to the wave spring 1, the inner peripheral portion in the stage immediately before the wave spring 1 becomes flat. The expansion deformation in the circumferential direction can be reduced, and the surface pressure generated in the inner peripheral portion can be kept within a narrow range.
これにより、ウェーブスプリング1が平坦になる直前になっても、山部11および谷部12を、内周部分を含めた径方向の全域にわたって、周方向に拡開変形させやすくすることが可能になり、ウェーブスプリング1が平坦になる直前に、ウェーブスプリング1のばね定数が高くなるのを抑制することができる。
以上より、ウェーブスプリング1に軸方向の荷重が加えられた当初から、ウェーブスプリング1が平坦になる直前まで、ばね定数の変化を抑制して、ばね定数を同等に維持することができる。 Thereby, even immediately before thewave spring 1 becomes flat, it is possible to easily expand and deform the crest 11 and the trough 12 in the circumferential direction over the entire radial direction including the inner circumferential portion. Thus, the spring constant of the wave spring 1 can be suppressed from increasing immediately before the wave spring 1 becomes flat.
As described above, the spring constant can be kept equal by suppressing the change of the spring constant from the beginning of the axial load applied to thewave spring 1 until just before the wave spring 1 becomes flat.
以上より、ウェーブスプリング1に軸方向の荷重が加えられた当初から、ウェーブスプリング1が平坦になる直前まで、ばね定数の変化を抑制して、ばね定数を同等に維持することができる。 Thereby, even immediately before the
As described above, the spring constant can be kept equal by suppressing the change of the spring constant from the beginning of the axial load applied to the
また、山部11および谷部12の、径方向に対する傾斜角度θ1、θ2が互いに実質的に同等になっている。このため、ウェーブスプリング1を装置に装着する際に、ウェーブスプリング1の軸方向の向きを合わせる必要がなく、ウェーブスプリング1を装置に容易に装着することができるとともに、山部11および谷部12に加えられる面圧に偏りが生ずるのを抑制することができる。
In addition, the inclination angles θ1 and θ2 of the peak portion 11 and the valley portion 12 with respect to the radial direction are substantially equal to each other. For this reason, when attaching the wave spring 1 to the apparatus, it is not necessary to match the axial direction of the wave spring 1, and the wave spring 1 can be easily attached to the apparatus. It is possible to suppress the occurrence of bias in the surface pressure applied to.
また、山部11と谷部12との間に位置する中間部分13の傾斜角度が、山部11および谷部12から中間部分13の周方向中央部に向かうに従い漸次小さくなっている。この構成により、ウェーブスプリング1を装置に装着する際に、ウェーブスプリング1の軸方向の向きを合わせる必要がなく、ウェーブスプリング1を装置に容易に装着することができる。さらに、中間部分13における山部11に近い部分と谷部12に近い部分とで加えられる負荷に偏りが生ずるのを抑制することができる。
Further, the inclination angle of the intermediate portion 13 located between the mountain portion 11 and the valley portion 12 gradually decreases from the mountain portion 11 and the valley portion 12 toward the circumferential central portion of the intermediate portion 13. With this configuration, when the wave spring 1 is attached to the apparatus, it is not necessary to match the axial direction of the wave spring 1, and the wave spring 1 can be easily attached to the apparatus. Furthermore, it is possible to suppress the occurrence of bias in the load applied between the portion near the peak portion 11 and the portion close to the valley portion 12 in the intermediate portion 13.
次に、以上説明した作用効果の検証試験について説明する。
Next, the verification test for the effects explained above will be explained.
実施例として、前述したウェーブスプリング1を採用し、従来例として、山部および谷部が周方向に交互に連ねられて形成され、山部および谷部が径方向に沿って延びるウェーブスプリングを採用した。そして、それぞれのウェーブスプリングを、平坦になる直前まで軸方向に押圧したときの荷重および変位、並びに、ウェーブスプリングに生ずる面圧を数値解析により算出した。
As an example, the above-described wave spring 1 is employed, and as a conventional example, a wave spring is formed in which crests and troughs are alternately connected in the circumferential direction, and the crests and troughs extend along the radial direction. did. Then, the load and displacement when each wave spring was pressed in the axial direction until just before being flattened, and the surface pressure generated in the wave spring were calculated by numerical analysis.
その結果、図3に示されるように、実施例では、従来例と比べて、ウェーブスプリング1が平坦になる直前に、ウェーブスプリング1のばね定数が高くなることが抑えられ、ウェーブスプリング1に軸方向の荷重が加えられた当初から、ウェーブスプリング1が平坦になる直前まで、ばね定数を同等に維持できることが確認された。
As a result, as shown in FIG. 3, in the embodiment, compared with the conventional example, the spring constant of the wave spring 1 is suppressed from increasing immediately before the wave spring 1 becomes flat. It was confirmed that the spring constant could be maintained equivalently from the beginning when the directional load was applied until just before the wave spring 1 became flat.
また、ウェーブスプリングに軸方向の荷重を加え、ウェーブスプリングが平坦になるように軸方向に変形する過程において、従来例では、ウェーブスプリングに軸方向の荷重を加えた当初から、ウェーブスプリングの内周部分に面圧が生じ、その後、面圧の生ずる範囲が徐々に拡大したことが確認された。実施例では、ウェーブスプリング1が平坦になるように軸方向に変形する過程において、当初は、ウェーブスプリング1の外周部分に面圧が生じた。しかしながら、変形の進行に伴い、この面圧が徐々に低減する一方、ウェーブスプリング1の内周部分に面圧が生じはじめ、その後の変形の進行に伴い、内周部分の面圧の範囲が拡大したことが確認された。
そして、ウェーブスプリングが平坦になる直前において、面圧が発生する領域の面積が、実施例では従来例の約65%であり、実施例では、面圧の生ずる領域を狭い範囲に留めることができることが確認された。 In addition, in the process of applying an axial load to the wave spring and deforming in the axial direction so that the wave spring becomes flat, in the conventional example, from the beginning of applying the axial load to the wave spring, the inner periphery of the wave spring is applied. It was confirmed that the surface pressure was generated in the portion, and thereafter the range in which the surface pressure was generated gradually expanded. In the embodiment, in the process of deforming thewave spring 1 in the axial direction so as to be flat, a surface pressure was initially generated in the outer peripheral portion of the wave spring 1. However, the surface pressure gradually decreases with the progress of deformation, while surface pressure begins to be generated at the inner peripheral portion of the wave spring 1, and the range of the surface pressure at the inner peripheral portion increases with the subsequent progress of the deformation. It was confirmed that
And just before the wave spring becomes flat, the area of the area where the surface pressure is generated is about 65% of the conventional example in the embodiment, and in the embodiment, the area where the surface pressure is generated can be kept in a narrow range. Was confirmed.
そして、ウェーブスプリングが平坦になる直前において、面圧が発生する領域の面積が、実施例では従来例の約65%であり、実施例では、面圧の生ずる領域を狭い範囲に留めることができることが確認された。 In addition, in the process of applying an axial load to the wave spring and deforming in the axial direction so that the wave spring becomes flat, in the conventional example, from the beginning of applying the axial load to the wave spring, the inner periphery of the wave spring is applied. It was confirmed that the surface pressure was generated in the portion, and thereafter the range in which the surface pressure was generated gradually expanded. In the embodiment, in the process of deforming the
And just before the wave spring becomes flat, the area of the area where the surface pressure is generated is about 65% of the conventional example in the embodiment, and in the embodiment, the area where the surface pressure is generated can be kept in a narrow range. Was confirmed.
なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
例えば前記実施形態に代えて、図4に示されるように、山部11が、径方向に沿って延び(すなわちθ1=0°)、谷部12が、径方向の内側から外側に向かうに従い漸次、軸方向の-Z側に向けて延びるウェーブスプリング2を採用してもよい。また、図5に示されるように、山部11が、径方向の内側から外側に向かうに従い漸次、軸方向の+Z側に向けて延び、谷部12が、径方向に沿って延びる(すなわちθ2=0°)ウェーブスプリング3を採用してもよい。
また、山部11および谷部12の、径方向に対する各傾斜角度θ1、θ2を互いに異ならせてもよい。 For example, instead of the embodiment, as shown in FIG. 4, thepeak portion 11 extends along the radial direction (that is, θ1 = 0 °), and the valley portion 12 gradually increases from the inner side to the outer side in the radial direction. The wave spring 2 extending toward the −Z side in the axial direction may be employed. Further, as shown in FIG. 5, the peak portion 11 gradually extends toward the + Z side in the axial direction and the valley portion 12 extends along the radial direction (that is, θ2) as it goes from the inner side to the outer side in the radial direction. = 0 °) A wave spring 3 may be employed.
Further, the inclination angles θ1 and θ2 of thepeak portion 11 and the valley portion 12 with respect to the radial direction may be different from each other.
また、山部11および谷部12の、径方向に対する各傾斜角度θ1、θ2を互いに異ならせてもよい。 For example, instead of the embodiment, as shown in FIG. 4, the
Further, the inclination angles θ1 and θ2 of the
その他、本発明の趣旨を逸脱しない範囲で、前記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.
1、2、3 ウェーブスプリング
11 山部
12 谷部
13 中間部分
O 中心軸線
θ1、θ2 傾斜角度 1, 2, 3Wave spring 11 Mountain 12 Tani 13 Intermediate part O Center axis θ1, θ2 Inclination angle
11 山部
12 谷部
13 中間部分
O 中心軸線
θ1、θ2 傾斜角度 1, 2, 3
Claims (3)
- 山部および谷部が周方向に交互に連ねられて形成されたウェーブスプリングであって、
前記ウェーブスプリングの中心軸線に直交する方向を径方向とし、前記中心軸線が延びる方向を軸方向とするとき、
前記山部および前記谷部のうちのいずれか一方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第1の側に向けて延び、
前記山部および前記谷部のうちのいずれか他方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第2の側に向けて延び、または、前記山部および前記谷部のうちのいずれか他方は前記径方向に沿って延び、
隣り合う前記山部と前記谷部との間の前記軸方向における間隔は、前記径方向の内側から外側に向かうに従い漸次大きくなっている、ウェーブスプリング。 A wave spring formed by alternately connecting peaks and valleys in the circumferential direction,
When the direction perpendicular to the central axis of the wave spring is the radial direction, and the direction in which the central axis extends is the axial direction,
Either one of the peak portion and the valley portion gradually extends toward the first side in the axial direction as it goes from the inside in the radial direction to the outside,
Either the peak portion or the valley portion gradually extends toward the second side in the axial direction from the inner side to the outer side in the radial direction, or the peak portion and the valley portion. One of them extends along the radial direction,
The wave spring in which the interval in the axial direction between the adjacent peak and valley is gradually increased from the inner side to the outer side in the radial direction. - 前記山部および前記谷部のうちのいずれか一方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第1の側に向けて延び、
前記山部および前記谷部のうちのいずれか他方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第2の側に向けて延び、
前記山部の前記径方向に対する傾斜角度と、前記谷部の前記径方向に対する傾斜角度と、は互いに実質的に同等である、請求項1に記載のウェーブスプリング。 Either one of the peak portion and the valley portion gradually extends toward the first side in the axial direction as it goes from the inside in the radial direction to the outside,
Either one of the peak and the valley gradually extends toward the second side in the axial direction as it goes from the inside in the radial direction to the outside,
The wave spring according to claim 1, wherein an inclination angle of the peak portion with respect to the radial direction and an inclination angle of the valley portion with respect to the radial direction are substantially equal to each other. - 前記山部および前記谷部のうちのいずれか一方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第1の側に向けて延び、
前記山部および前記谷部のうちのいずれか他方は、前記径方向の内側から外側に向かうに従い漸次、前記軸方向の第2の側に向けて延び、
前記山部と前記谷部との間に位置する中間部分の、前記径方向に対する傾斜角度は、前記山部および前記谷部から前記中間部分の周方向中央部に向かうに従い漸次小さくなっている、請求項1または2に記載のウェーブスプリング。 Either one of the peak portion and the valley portion gradually extends toward the first side in the axial direction as it goes from the inside in the radial direction to the outside,
Either one of the peak and the valley gradually extends toward the second side in the axial direction as it goes from the inside in the radial direction to the outside,
The inclination angle with respect to the radial direction of the intermediate portion located between the peak portion and the valley portion gradually decreases from the peak portion and the valley portion toward the circumferential central portion of the intermediate portion. The wave spring according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019533130A JPWO2019167932A1 (en) | 2018-02-28 | 2019-02-26 | Wave spring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-034659 | 2018-02-28 | ||
JP2018034659 | 2018-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167932A1 true WO2019167932A1 (en) | 2019-09-06 |
Family
ID=67805026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007275 WO2019167932A1 (en) | 2018-02-28 | 2019-02-26 | Wave spring |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019167932A1 (en) |
WO (1) | WO2019167932A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS603327U (en) * | 1983-06-20 | 1985-01-11 | 株式会社 大金製作所 | wave spring |
JPS6335814U (en) * | 1986-08-21 | 1988-03-08 | ||
JPH0932874A (en) * | 1995-07-18 | 1997-02-04 | Nhk Spring Co Ltd | Waved spring device |
US6186486B1 (en) * | 1999-07-30 | 2001-02-13 | Delphi Technologies, Inc. | Jounce bumper plate |
US20150176670A1 (en) * | 2012-07-16 | 2015-06-25 | Thyssenkrupp Presta Ag | Wave spring having a linear characteristic in some regions |
-
2019
- 2019-02-26 JP JP2019533130A patent/JPWO2019167932A1/en active Pending
- 2019-02-26 WO PCT/JP2019/007275 patent/WO2019167932A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS603327U (en) * | 1983-06-20 | 1985-01-11 | 株式会社 大金製作所 | wave spring |
JPS6335814U (en) * | 1986-08-21 | 1988-03-08 | ||
JPH0932874A (en) * | 1995-07-18 | 1997-02-04 | Nhk Spring Co Ltd | Waved spring device |
US6186486B1 (en) * | 1999-07-30 | 2001-02-13 | Delphi Technologies, Inc. | Jounce bumper plate |
US20150176670A1 (en) * | 2012-07-16 | 2015-06-25 | Thyssenkrupp Presta Ag | Wave spring having a linear characteristic in some regions |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019167932A1 (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8684624B2 (en) | Tolerance ring | |
RU2618981C2 (en) | Clamp ring | |
JP3710481B2 (en) | Pipe wrap joint with improved crushable sealing area | |
US10041620B2 (en) | Line assembly | |
US11226007B2 (en) | Tolerance ring | |
US20190211953A1 (en) | Profiled Clamp | |
WO2015156099A1 (en) | Electromagnetic shield member | |
EP2758701B1 (en) | Hose clamp | |
US20150176627A1 (en) | Method for captive application of a support washer on the shaft of a screw | |
WO2019167932A1 (en) | Wave spring | |
JP5892392B2 (en) | Fastening fixture | |
WO2020241285A1 (en) | Tire | |
US8172691B2 (en) | Boot | |
JP6207310B2 (en) | Dust cover | |
JP2022522647A (en) | Hose clamp | |
JP2017133550A (en) | Dust cover | |
US10975920B2 (en) | Synchronizer ring | |
JP2010007752A (en) | Boot band | |
JP6373142B2 (en) | Wire harness | |
JP6812150B2 (en) | Fastener | |
JP6397230B2 (en) | Leaf spring | |
RU2776832C1 (en) | Coupling ring | |
JP7157697B2 (en) | tire | |
US11920712B2 (en) | Shrink-fit collar | |
JPH0722558Y2 (en) | Piping elbow reinforcement structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019533130 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19760566 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19760566 Country of ref document: EP Kind code of ref document: A1 |