WO2019167396A1 - Method for producing conductive film - Google Patents
Method for producing conductive film Download PDFInfo
- Publication number
- WO2019167396A1 WO2019167396A1 PCT/JP2018/046744 JP2018046744W WO2019167396A1 WO 2019167396 A1 WO2019167396 A1 WO 2019167396A1 JP 2018046744 W JP2018046744 W JP 2018046744W WO 2019167396 A1 WO2019167396 A1 WO 2019167396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive film
- insulating coating
- mass
- coating film
- producing
- Prior art date
Links
- 0 *OCC(C(C(O)=C1O)OC1=O)O* Chemical compound *OCC(C(C(O)=C1O)OC1=O)O* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
Definitions
- the present invention relates to a method for manufacturing a conductive film.
- the wiring board is also called a printed wiring board or the like, and has become a major component for fixing and wiring electronic components in the field of electronic equipment.
- a patterned metal film is formed on the substrate to constitute wiring, electrodes, terminals, and the like.
- a patterned metal film is formed on a board, and those used as wirings include a touch panel, a liquid crystal display element, an organic EL element, and the like.
- Patent Document 1 discloses copper fine particles having an average particle diameter of 1 to 100 nm coated with an azole compound, copper coarse particles having an average particle diameter of 0.3 to 20 ⁇ m, a resin, a chlorine compound, and a glycol solvent.
- a method for producing a conductive film comprising: applying a conductive paste to a substrate and pre-baking the conductive paste, and forming the conductive film on the substrate by irradiating and baking the light. (Claim 9).
- an object of the present invention is to provide a method for producing a conductive film, in which the conductive film can be formed at a low temperature, and the formed conductive film has excellent conductivity.
- the present inventor includes a conductive film forming step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for copper particles.
- a conductive film can be formed at a low temperature and that the formed conductive film has excellent conductivity, and the present invention has been completed.
- a method for producing a conductive film comprising a conductive film forming step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for the copper particles.
- a conductive film forming step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for the copper particles.
- the conductive film according to [1] wherein in the conductive film forming step, the temperature at the time of contact between the insulating coating film and the fusion accelerator is in the range of 0 ° C. to 150 ° C. Production method.
- the content of the copper particles in the conductive film forming composition is 80% by mass or more and less than 100% by mass with respect to the total mass of the solid content in the conductive film forming composition. 8].
- the manufacturing method of the electrically conductive film as described in 8]. [10] The method for producing a conductive film according to the above [8] or [9], wherein the composition for forming a conductive film does not contain a binder. [11] After the conductive film forming step, The method for producing a conductive film according to any one of [1] to [10], further comprising a conductive film cleaning step for cleaning the surface of the conductive film.
- a method for producing a conductive film in which a conductive film can be formed at a low temperature and the formed conductive film has excellent conductivity.
- a range expressed using “to” means a range including both ends before and after “to” in the range.
- the conductive film forming step is a step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for copper particles.
- the insulating coating film is a coating film containing copper particles.
- insulation means that the volume resistance value of the coating film measured by the four-terminal method in accordance with JIS C 2525: 1999 “Testing method of conductor resistance and volume resistance value of metal resistance material” is 1.0 ⁇ 10 4 ⁇ . ⁇ It means cm or more.
- the said copper particle becomes a metal conductor in the electrically conductive film obtained at an electrically conductive film formation process.
- the copper particles are fused together to form a metal conductor in the conductive film.
- the conventionally well-known copper particle generally used for the composition for electrically conductive film formation can be used.
- the copper particles may be primary particles or secondary particles.
- the shape of the said copper particle is not specifically limited, A spherical shape may be sufficient and a plate shape may be sufficient.
- the average particle size of the copper particles is not particularly limited. In the case of primary particles, it is the average particle size of primary particles, and in the case of secondary particles, it is the average particle size of secondary particles, preferably 25 nm. It is in the range of ⁇ 6000 nm, more preferably in the range of 30 nm to 1000 nm, and still more preferably in the range of 50 nm to 500 nm.
- the average particle diameter of the copper particles (A) is the particle diameter (median diameter, 50% particle diameter, D50) at the point where the distribution curve of the cumulative% of the particle size distribution measured by the particle size distribution measuring device intersects the 50% axis. ).
- the content of the copper particles in the insulating coating is not particularly limited, but is preferably 80% by mass to 100% by mass, and more preferably 90% by mass with respect to the total mass of the insulating coating. -100% by mass, more preferably 95% by mass to 100% by mass, and still more preferably 99% by mass to 100% by mass.
- the content of the copper particles in the insulating coating is within this range, the content of copper functioning as a conductor in the obtained conductive film also increases, and a conductive film having more excellent conductivity is obtained. Can be obtained.
- the content of the copper particles in the insulating coating film can be measured as the copper content in the insulating coating film using a fluorescent X-ray analyzer (Axios, manufactured by PANalytical) under the following measurement conditions. it can.
- the insulating coating film may contain an additive in addition to the copper particles.
- the content of the additive in the insulating coating is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, based on the total mass of the insulating coating. More preferably, it is 5 mass% or less, More preferably, it is 1 mass% or less. Since the said insulating coating film does not necessarily need to contain the said additive, the minimum of content is 0 mass%.
- the additive is preferably at least one selected from the group consisting of reductons.
- the reductone means an organic compound represented by the following formula (I) or the following formula (II) and having a structure in which a carbonyl group is bonded next to the enediol structure (hereinafter referred to as “reductone structure”).
- Reductone is an organic acid having reducibility and high acidity.
- Typical examples of the reductone are glucic acid represented by the following formula (Ia), reductic acid represented by the following formula (Ib), and ascorbic acid and ascorbic acid derivatives described later, but are not limited thereto. is not.
- the additive is preferably at least one selected from the group consisting of ascorbic acid, ascorbic acid derivatives and citric acid, more preferably at least one selected from the group consisting of ascorbic acid and ascorbic acid derivatives More preferably, it is ascorbic acid.
- the ascorbic acid is (2R) -2-[(1S) -1,2-dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one (a compound represented by the following formula (A-1))
- This compound may be referred to as “ascorbic acid in the narrow sense” or “L-ascorbic acid”))
- (2S) -2-[(1R) -1,2-dihydroxyethyl] -3,4-dihydroxy- 2H-furan-5-one compound represented by the following formula (A-2); this compound may be referred to as “D-ascorbic acid”)
- (2S) -2-[(1S) -1 , 2-Dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one compound represented by the following formula (A-3); this compound may be referred to as “L-isoascorbic acid”.
- the ascorbic acid derivative is preferably a compound represented by the following general formula (B-1) (sometimes referred to as “ascorbic acid derivative (B-1)”) or represented by the following general formula (B-2). (Sometimes referred to as “ascorbic acid derivative (B-1)”).
- B-1 The reducing power for copper oxide is attributed to the enediol structure in the ascorbic acid derivative. Therefore, it is also possible to synthesize a derivative of ascorbic acid in such a way that the structure remains, and to use it with the solubility and polarity adjusted appropriately.
- R 1 and R 2 each independently represents a hydrogen atom or an acyl group which may have a substituent. However, R 1 and R 2 do not represent hydrogen atoms at the same time.
- the acyl group for R 1 and R 2 in the general formula (B-1) is not particularly limited, but is preferably a linear, branched, monocyclic or condensed polycyclic fatty acid having 1 to 18 carbon atoms. Or a carbonyl group to which a monocyclic or condensed polycyclic aryl group having 6 to 10 carbon atoms is bonded.
- acyl group examples include formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, lauroyl, myristoyl, palmitoyl, stearoyl, cyclopentylcarbonyl, cyclohexylcarbonyl Group, acryloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group, but one type is limited thereto It is not a thing.
- a hydrogen atom in the acyl group may be substituted with a substituent, whereby the solubility and polarity can be further adjusted.
- substituents are one or more substituents selected from the group consisting of a hydroxyl group and a halogen atom, but are not limited thereto.
- a representative example of the ascorbic acid derivative (B-1) is represented by the following formula (B-1-X).
- the ascorbic acid derivative (B-1) in the present invention is not limited to these representative examples.
- X represents any one selected from the group consisting of the following chemical structures.
- “*” in each chemical structure indicates a position at which X binds to the five-membered ring site of ascorbic acid.
- R 3 and R 4 each independently represent a hydrogen atom or an alkyl group which may have a substituent.
- the compound represented by the general formula (B-2) is an ascorbic acid derivative in which an acetal structure or a ketal structure is formed by reacting two hydroxyl groups present in the side chain of ascorbic acid with an aldehyde or a ketone.
- the alkyl group for R 3 and R 4 in the general formula (B-2) is not particularly limited, but is preferably a linear, branched, monocyclic or condensed polycyclic alkyl group having 1 to 18 carbon atoms. is there.
- alkyl group examples include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, octadecyl, isopropyl, isobutyl, Isopentyl, sec-butyl, tert-butyl, sec-pentyl, tert-pentyl, tert-octyl, neopentyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, norbornyl and Any one selected from the group consisting of 4-decylcyclohexyl groups is not limited thereto.
- a hydrogen atom in the alkyl group may be substituted with a substituent, whereby the solubility and polarity can be further adjusted.
- substituents are one or more substituents selected from the group consisting of a hydroxyl group and a halogen atom, but are not limited thereto.
- R 3 and R 4 may be integrated to form a ring structure.
- a representative example of the ascorbic acid derivative (B-2) is represented by the following formula (B-2-Y).
- the ascorbic acid derivative (B-2) in the present invention is not limited to these representative examples.
- Y represents any one selected from the group consisting of the following chemical structures.
- “*” in each chemical structure indicates a position where Y binds to the five-membered ring site of ascorbic acid.
- the insulating coating film may or may not contain a binder in addition to the copper particles.
- the content thereof is preferably 0.10% by mass to 5.0% by mass, more preferably 0.10% with respect to the total mass of the insulating coating film.
- the content is from mass% to 3.0 mass%, more preferably from 0.10 mass% to 1.0 mass%.
- the binder include a resin and an organic compound having a molecular weight of 1000 or more.
- the resin examples include a thermosetting resin and a thermoplastic resin.
- the thermosetting resin include phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane, Melamine resin, silicon resin, acrylic resin, oxetane resin, oxazine resin, and the like can be mentioned.
- the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin, and thermoplastic polyester resin. However, it is not limited to these.
- the organic compound having a molecular weight of 1000 or more is not particularly limited, and examples thereof include organic acids having a molecular weight of 1000 or more, polyalkylene glycols having a molecular weight of 1000 or more, sugar alcohols having a molecular weight of 1000 or more, oligosaccharides and polysaccharides.
- the fusion promoter promotes fusion / fusion of the copper particles.
- the mechanism by which the fusion promoter promotes fusion / fusion of the copper particles is not clarified in detail, but the surface energy of the copper particles is significantly increased. Therefore, it is considered that the particles are easily agglomerated and fused with each other.
- the destabilizing energy is insufficient to promote fusion at a low temperature for a short time, and physical stimulation is required as disclosed in JP-A-2016-1331078 (Patent Document 1). Although it is conceivable to design single nano copper particles for destabilization, it is considered difficult to promote fusion in an oxidative environment because the oxidation resistance decreases as the active surface increases.
- atoms that act on copper and destabilize its crystal structure act on the surface of the copper particles, thereby increasing the destabilization energy, thereby promoting the fusion and fusion of the copper particles. It is considered a thing.
- the copper particles are fused and fused to form a conductor. By proceeding at a low temperature and in a short time, apparent stability against oxygen is ensured, and a conductor is formed in an oxidative environment.
- the fusion accelerator is, for example, at least one selected from the group consisting of amino alcohols, betaine organic acid salts, halogen compounds, sulfur-containing compounds and phosphoric acid and salts thereof, preferably halogen compounds, It is at least one selected from the group consisting of sulfur-containing compounds and phosphoric acid and salts thereof.
- amino alcohols The amino alcohol is not particularly limited as long as it is a compound containing both an amino group and a hydroxy group.
- the amino group can be a primary amino group, a secondary amino group, or a tertiary amino group. Further, the number of amino groups and hydroxy groups in one molecule is not limited.
- Examples of amino alcohols include methanolamine, ethanolamine, propanolamine, N-methylethanolamine, dimethylethanolamine, heptaminol, isoethalin, sphingosine and 3- (dimethylamino) -1,2-propanediol. .
- aminoalcohol salts such as hydrohalides such as aminoalcohol hydrochlorides are not included in the aminoalcohols.
- betaine organic acid salt examples include carnitine, trimethylglycine, and proline betaine.
- organic acid examples include formic acid, acetic acid, citric acid, and oxalic acid.
- betaine organic acid salts include, for example, trimethylglycine citrate and trimethylglycine acetate.
- the halogen compound is not particularly limited as long as it is a compound containing halogen, but preferably at least one selected from the group consisting of an ionic compound containing a halide ion, an organic compound containing a halogen in a covalent bond, and a hydrogen halide. More preferably, it is an ionic compound containing a halide ion.
- halogen means fluorine (element symbol: F), chlorine (element symbol: Cl), bromine (element symbol) among Group 17 elements of the IUPAC (International Union of Pure and Applied Chemistry) periodic table. : Br) and iodine (element symbol: I), preferably chlorine, bromine and iodine, more preferably chlorine and bromine, still more preferably chlorine.
- astatine (element symbol: At) and tennessine (element symbol: Ts) are not included in the halogen.
- the ionic compound containing a halide ion is, for example, at least one selected from the group consisting of an alkali metal halide, an alkaline earth metal halide, an organic amine hydrogen halide salt, and an ammonium halide. , Preferably at least one selected from the group consisting of alkali metal halides and alkaline earth metal halides, more preferably alkali metal halides.
- Examples of the compound containing a halogen covalently include acetyl chloride (also known as acetic acid chloride or acetyl chloride), acetyl bromide (also known as acetic acid bromide or acetyl chloride), acetyl iodide (also known as acetic acid iodide or acetyl iodide).
- acetyl chloride also known as acetic acid chloride or acetyl chloride
- acetyl bromide also known as acetic acid bromide or acetyl chloride
- acetyl iodide also known as acetic acid iodide or acetyl iodide.
- Propionyl chloride also known as propionyl chloride or propionyl chloride
- propionyl bromide also known as propionate bromide or propionyl bromide
- propionyl iodide also known as propionate iodide or propionyl iodide
- benzoyl chloride also known as benzoic acid Chloride or benzoyl chloride
- benzoyl bromide also known as benzoic acid bromide or benzoyl bromide
- benzoyl iodide also known as benzoic acid iodide or benzoyl iodide
- preferably a salt At least one selected from the group consisting of acetyl, acetyl bromide, acetyl iodide, propionyl chloride, propionyl bromide and propionyl iodide, more preferably acetyl chloride, acetyl bromid
- alkali metal halide examples include chlorides such as lithium chloride, sodium chloride and potassium chloride, bromides such as lithium bromide, sodium bromide and potassium bromide, lithium iodide, sodium iodide and potassium iodide. And iodides such as lithium fluoride, sodium fluoride and potassium fluoride.
- the alkali metal halide is preferably selected from the group consisting of sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, lithium chloride, lithium bromide and lithium iodide.
- the alkali metal refers to lithium (element symbol: Li), sodium (element symbol: Na), potassium (element symbol: K), rubidium (element symbol) among Group 1 elements of the IUPAC periodic table. : Rb) and cesium (element symbol: Cs), preferably lithium, sodium, potassium and rubidium, more preferably lithium, sodium and potassium, still more preferably sodium and potassium.
- francium (element symbol: Fr) is not included in the alkali metal.
- alkaline earth metal halide examples include chlorides such as calcium chloride, strontium chloride, barium chloride, beryllium chloride and magnesium chloride, calcium bromide, strontium bromide, barium bromide, beryllium bromide and magnesium bromide.
- iodides such as calcium iodide, strontium iodide, barium iodide, beryllium iodide and magnesium iodide.
- the alkaline earth metal halide is preferably selected from the group consisting of calcium chloride, strontium chloride, barium chloride, calcium bromide, strontium bromide, barium bromide, calcium iodide, strontium iodide and barium iodide. At least one selected from the group consisting of calcium chloride, strontium chloride, barium chloride, calcium bromide, strontium bromide and barium bromide, more preferably chloride It is at least one selected from the group consisting of calcium, strontium chloride and barium chloride, and more preferably calcium chloride.
- the alkaline earth metal means beryllium (element symbol: Be), magnesium (element symbol: Mg), calcium (element symbol: Ca), strontium (group 2 elements in the IUPAC periodic table) Elemental symbol: Sr) and barium (elemental symbol: Ba), preferably calcium, strontium and barium, more preferably calcium.
- radium (element symbol: Ra) is not included in the alkaline earth metal.
- organic amine hydrohalides are triethylamine hydrochloride, triethylamine hydrobromide, triethylamine hydroiodide, triethylamine hydrofluoride, pyridine hydrochloride, pyridine hydrobromide, pyridine iodide.
- examples thereof include hydrogenate, pyridine hydrofluoride, betaine hydrochloride, betaine hydrobromide, betaine hydroiodide, and betaine hydrofluoride.
- the organic amine hydrogen halide salt is preferably N, N, N-trimethylglycine hydrochloride.
- ammonium halide examples include ammonium chloride, ammonium bromide, ammonium iodide, and ammonium fluoride.
- the ammonium halide is preferably ammonium chloride.
- Examples of the hydrogen halide include hydrogen chloride, hydrogen bromide, hydrogen iodide and hydrogen fluoride.
- the hydrogen halide is preferably at least one selected from the group consisting of hydrogen chloride, hydrogen bromide and hydrogen iodide, more preferably at least selected from the group consisting of hydrogen chloride and hydrogen bromide.
- the hydrogen halide can be used by diluting with water and / or alcohol.
- examples of the alcohol include methanol, ethanol, propanol, 2-propanol, ethylene glycol, propylene glycol, and diethylene glycol.
- the sulfur-containing compound is not particularly limited as long as it has a sulfur atom.
- Examples thereof include methanethiol, ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 2- Methyl-1-propanethiol, 2-methyl-2-propanethiol, thiophenol, cysteine, glutathione, thioglycolic acid, pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) ) Butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, hydrogen sulfide, sulfuric acid, sulfuric acid Sodium hydrogen, sodium sulfate, sulfurous acid, sodium hydrogensulfite,
- the sulfur-containing compound is preferably ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, It is at least one selected from the group consisting of thioglycolic acid, sulfuric acid, sodium hydrogen sulfate, sodium sulfate, sulfurous acid, sodium hydrogensulfite, sodium sulfite, and magnesium sulfate, and more preferably 1-propanethiol, 2-propane At least selected from the group consisting of thiol, 1-butanethiol, 2-butanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, sulfuric acid, sodium hydrogen sulfate, sodium sulfate, and magnesium sulfate
- the alkali metal salt of phosphoric acid and phosphoric acid is mentioned.
- the alkali metal is as described above.
- alkali metal salts of phosphoric acid include trilithium phosphate (Li 3 PO 4 ), dilithium hydrogen phosphate (Li 2 HPO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), trisodium phosphate ( Na 3 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), tripotassium phosphate (K 3 PO 4 ), dipotassium hydrogen phosphate (K 2 HPO) 4 ) and potassium dihydrogen phosphate (KH 2 PO 4 ).
- the alkali metal salt of phosphoric acid is preferably selected from the group consisting of trisodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, tripotassium phosphate, dipotassium hydrogen phosphate and potassium dihydrogen phosphate. At least one selected from the group consisting of trisodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate.
- the temperature at the time of contact between the insulating coating film and the fusion accelerator is not particularly limited, but is preferably in the range of 0 ° C. to 150 ° C., more preferably 70 ° C. Within the range of ⁇ 150 ° C., more preferably within the range of 100 ° C. to 150 ° C.
- a fusion accelerator as a solution, it is desirable to carry out in the range of the boiling point of the solvent ⁇ 20 ° C.
- the insulating coating film and the fusion accelerator may be contacted in an oxidizing atmosphere, or in an inert atmosphere or a reducing atmosphere. Although it is good, it is one of the effects of the present invention that a conductive film having excellent conductivity can be formed even in an oxidizing atmosphere.
- the oxidative atmosphere include air or air, or a mixed gas of air or air and an inert gas, or a mixed gas of air or air and a gas state or a vaporized fusion accelerator, and oxygen is 5.0. % (V / v) or more, preferably 5.0% (v / v) or more and less than 21.0% (v / v).
- Examples of the inert atmosphere or the reducing atmosphere include an inert gas, and the oxygen content is preferably 0.005% (v / v) or less, and more preferably inevitable.
- Examples of the inert gas include nitrogen gas, argon gas, neon gas, and xenon gas.
- Examples of the reducing gas include hydrogen gas and formic acid gas.
- the time for contacting the insulating coating film and the fusion accelerator is not particularly limited, but is preferably 5 seconds to 24 hours, more preferably 5 seconds to 10 minutes. More preferably, it is 30 seconds to 2 minutes.
- the insulating coating film and the fusion accelerator are in contact, preferably, the insulating coating film and the fusion accelerator in a gaseous state are contacted, or The insulating coating film is brought into contact with a liquid containing the fusion accelerator.
- the fusion promoter in the gaseous state may be either a single gas of the fusion promoter in the gaseous state or a mixed gas of the fusion accelerator gas and the carrier gas.
- the liquid containing the fusion accelerator may be either a liquid fusion accelerator or a liquid or solid fusion accelerator solution.
- the liquid containing the fusion accelerator may contain a solvent separately from the fusion accelerator.
- the solvent examples include the compounds exemplified as the dispersion medium, and two or more solvents may be used in combination.
- the solvent water, alcohol, or a water-alcohol mixed solvent is preferable, and a water-alcohol mixed solvent is more preferable.
- the content of the fusion accelerator is not particularly limited, but is preferably 5% by mass to 30% by mass and more preferably 10% by mass with respect to the total mass of the solution. % To 30 mass. Note that the contact with the mist corresponds to the contact in the liquid state.
- the manufacturing method of the electrically conductive film of this invention is the coating film which provides the composition for electrically conductive film formation containing a copper particle and a dispersion medium on a base material before the said electrically conductive film formation process, and forms an insulating coating film. You may provide a formation process.
- the copper particles are the same as those described in the conductive film forming step.
- the content of the copper particles in the conductive film forming composition is preferably 80% by mass or more and less than 100% by mass, and more preferably, based on the total mass of the solid content in the conductive film forming composition. Is 90% by mass or more and less than 100% by mass, more preferably 95% by mass or more and less than 100% by mass, and still more preferably 99% by mass or more and less than 100% by mass.
- the content of the copper particles in the conductive film-forming composition is within this range, the content of copper functioning as a conductor in the obtained conductive film also increases, and the conductive material has better conductivity.
- a membrane can be obtained.
- the dispersion medium is not particularly limited as long as it can disperse the copper particles.
- Specific examples of the dispersion medium include water, methanol, ethanol, propanol, 2-propanol, cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol.
- the water is preferably ion-exchanged water, RO (Reverse Osmosis) water, distilled water or other pure water, or ASTM D 1193-06 type 1 grade or other ultrapure water.
- the conductive film forming composition may contain an additive in addition to the copper particles and the solvent.
- the content of the additive in the conductive film-forming composition is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. More preferably, it is 1% by mass or less. Since the said composition for electrically conductive film formation does not necessarily need to contain the said additive, the minimum of content is 0 mass%.
- the additive is the same as that described in the conductive film forming step.
- the conductive film forming composition may or may not contain a binder.
- the binder is the same as that described in the conductive film formation step.
- the content thereof is preferably 0.10 to 5.0% by mass with respect to the total mass of the solid content of the conductive film-forming composition, and more The amount is preferably 0.10 to 3.0% by mass, and more preferably 0.10 to 1.0% by mass.
- Base material A conventionally well-known thing can be used for the said base material.
- Specific examples of the material used for the base material are resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal, metal oxide, metal nitride, wood, or a composite thereof. It is not limited to.
- the resin examples include low density polyethylene resin, high density polyethylene resin, ABS (Acrylonitrile Butadiene Styrene) resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate (PET)), polyacetal resin, polysulfone resin. , Polyetherimide resin, polyetherketone resin, polyimide resin, and cellulose derivative, but are not limited thereto.
- the paper include coated printing paper, finely coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unexposed packaging paper (both heavy bags) Modified kraft paper, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated ball, chip ball, and corrugated cardboard, but are not limited thereto.
- Specific examples of the glass include soda glass, borosilicate glass, silica glass, and quartz glass, but are not limited thereto.
- Specific examples of the silicon-based semiconductor are amorphous silicon and polysilicon, but are not limited thereto.
- Specific examples of the compound semiconductor include CdS, CdTe, and GaAs, but are not limited thereto.
- the metal include copper, iron, and aluminum, but are not limited thereto.
- Specific examples of the metal oxide include alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc oxide), nesa (tin oxide), and ATO (antimony-doped oxide). Tin), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), and gallium-doped zinc oxide, but are not limited thereto.
- a specific example of the metal nitride is aluminum nitride, but is not limited thereto.
- the composite include paper-phenol composite, paper-epoxy resin, paper-polyester resin, and other paper-resin composites, glass cloth-epoxy resin (glass epoxy resin), glass cloth-polyimide resin, And glass cloth-fluorine resin, but is not limited thereto.
- the base material which forms the electrically conductive film of this invention is not specifically limited, Preferably it is a glass base material, a polyimide base material, or a polyethylene terephthalate (PET) base material.
- the method for applying the composition for forming a conductive film on a substrate is not particularly limited, and a known method can be adopted. For example, a screen printing method, a dip coating method, a spray coating method, a spin coating method, and a coating method such as an inkjet method can be used.
- the shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
- the coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film.
- the film thickness (thickness) of the coating film is preferably 2 to It is 600 ⁇ m, more preferably 10 to 300 ⁇ m, still more preferably 10 to 200 ⁇ m.
- composition for forming conductive film is not specifically limited, For example, after adding a copper particle to a dispersion medium, an ultrasonic method (for example, the process by an ultrasonic homogenizer), a mixer method, a 3 roll method And a composition can be obtained by disperse
- an ultrasonic method for example, the process by an ultrasonic homogenizer
- a mixer method for example, a mixer method, a 3 roll method
- a composition can be obtained by disperse
- the manufacturing method of the electrically conductive film of this invention may be equipped with the electrically conductive film washing
- the adhesion promoter remaining at least on the surface of the conductive film is cleaned and removed by bringing the conductive film into contact with the cleaning agent.
- the cleaning agent is not particularly limited as long as it has little influence on the conductive film and can clean and remove the adhesion promoter.
- the above-described dispersion medium can also be used.
- an effect of the cleaning it can be mentioned that the content of copper in the conductive film is increased by removing the remaining adhesion promoter. Although cleaning cannot be expected to improve conductivity, it does not adversely affect the cleaning.
- Conductive film forming compositions 1 to 7 were prepared or prepared. Table 1 shows the composition of the conductive film forming composition.
- composition 1 for electrically conductive film formation>
- a copper particle ink (copper particle-containing ethylene glycol ink having an average particle diameter of copper particles of 80 nm and a solid content concentration of 50.0% by mass; manufactured by Prothean Particles) was prepared.
- this copper particle ink is referred to as “conductive film forming composition 1”.
- ⁇ Composition 2 for electrically conductive film formation > 50.0 parts by mass of copper particles (average particle diameter 810 nm, Mitsui Kinzoku 1050Y) are mixed with 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.), and Shintaro Awatori Netaro (ARE-250 type). ) was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink.
- this copper particle ink is referred to as “copper conductive film forming composition 2”.
- ⁇ Composition 3 for forming conductive film > 50.0 parts by mass of copper particles (average particle size 420 nm, Mitsui Kinzoku 1030Y) are mixed with 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.), and Shintaro Awatori Netaro (ARE-250 type). ) was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink.
- this copper particle ink is referred to as “copper conductive film forming composition 3”.
- ⁇ Composition 4 for forming conductive film > 50.0 parts by mass of copper particles (average particle size 1100 nm, 1100Y manufactured by Mitsui Kinzoku Co., Ltd.) and 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, and Narotaro Awatori (ARE-250 type) manufactured by Sinky Corporation. ) was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink.
- this copper particle ink is referred to as “copper conductive film forming composition 4”.
- this copper particle ink is referred to as “copper conductive film forming composition 5”.
- ⁇ Composition 6 for forming conductive film > 33.3 parts by mass of copper particles (average particle size 810 nm, 1050Y manufactured by Mitsui Kinzoku Co., Ltd.) and 6.0 parts by mass of ascorbic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed with 60.7 parts by mass of ion-exchanged water, and manufactured by Sinky.
- a copper particle ink was prepared by stirring for 5 minutes at 2000 rpm using Awatori Netaro (ARE-250 type).
- this copper particle ink is referred to as “conductive film forming composition 6”.
- ⁇ Composition 7 for forming conductive film > 33.3 parts by mass of copper particles (average particle size 5700 nm, 1400Y manufactured by Mitsui Kinzoku Co., Ltd.) and 6.0 parts by mass of ascorbic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed with 60.7 parts by mass of ion-exchanged water, and manufactured by Sinky Corporation.
- a copper particle ink was prepared by stirring for 5 minutes at 2000 rpm using Awatori Netaro (ARE-250 type).
- this copper particle ink is referred to as “conductive film forming composition 7”.
- the average particle diameter of the copper particles is a median diameter (D50) measured using a nanoparticle analyzer (nano Partica SZ-100, manufactured by Horiba, Ltd.).
- Example 1 ⁇ Manufacture of insulating coating film> ⁇ Application> A glass substrate (length 76 mm ⁇ width 26 mm ⁇ thickness 0.9 mm; manufactured by Matsunami Glass Co., Ltd.) was prepared. On this glass substrate, the conductive film-forming composition 1 was applied by a coil bar to a length of 61 mm ⁇ width of 26 mm ⁇ wet thickness of 40 ⁇ m to form a coating film on the surface of the glass substrate.
- the coating film formed on the glass substrate was dried at 25 ° C. for 1 week in the air to form an insulating coating film on the glass substrate.
- volume resistance value of the obtained film was measured by the four probe method.
- the measurement result of the volume resistance value is shown in the corresponding column of Table 2.
- Example 2 to 20 Same as Example 1 except that the fusion accelerator solution or liquid fusion accelerator shown in Table 2 was used and the conductive film was formed at the temperature, time and atmosphere shown in Table 2. I made it.
- Example 21 to 42 After dip coating the insulating coating film formed on the glass substrate to the solution containing the fusion accelerator shown in Table 2, except that the conductive film was formed at the temperature, time and atmosphere shown in Table 2, Same as Example 1.
- Example 1 The same procedure as in Example 1 was carried out except that the fusion accelerator shown in Table 3 was used and that the fusion accelerator was brought into contact with the insulating coating film at the temperature, time and atmosphere shown in Table 3.
- Example 15 The same procedure as in Example 1 was performed except that the insulating coating film formed on the glass substrate was contacted with the vapor of the fusion accelerator shown in Table 3 at the temperature, time, and atmosphere shown in Table 3.
- Solution A, Solution B, Solution C, Solution D, Solution E, Solution F, Solution G, Solution H, Solution J, and Solution K mean those shown in Table 4 below.
- the mass% in each solution represents content of the fusion promoter used by each Example and a comparative example.
- Example 1 indicates that an aqueous solution having a hydrogen chloride concentration of 35% by mass was used.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Paints Or Removers (AREA)
- Manufacturing Of Electric Cables (AREA)
- Conductive Materials (AREA)
Abstract
Provided is a method for producing a conductive film which is provided with a conductive film-forming step for forming a conductive film by contacting an insulative coating film which contains copper particles and a copper particle fusion promoter with one another, wherein it is possible to form a conductive film at a low temperature, and the formed conductive film exhibits excellent conductivity.
Description
本発明は、導電膜の製造方法に関する。
The present invention relates to a method for manufacturing a conductive film.
配線基板は、プリント配線基板等とも称され、電子機器の分野において、電子部品を固定して配線するための主要な部品となっている。この配線基板は、パターニングされた金属膜が基板上に形成され、配線、電極および端子等を構成している。電子機器の分野において、プリント配線基板と同様に、パターニングされた金属膜を基板上に形成して有し、それらを配線等として用いるものとしては、タッチパネル、液晶表示素子および有機EL素子等がある。
The wiring board is also called a printed wiring board or the like, and has become a major component for fixing and wiring electronic components in the field of electronic equipment. In this wiring substrate, a patterned metal film is formed on the substrate to constitute wiring, electrodes, terminals, and the like. In the field of electronic equipment, similarly to a printed wiring board, a patterned metal film is formed on a board, and those used as wirings include a touch panel, a liquid crystal display element, an organic EL element, and the like. .
例えば、特許文献1には、アゾール化合物で被覆された平均粒径1~100nmの銅微粒子と、平均粒径0.3~20μmの銅粗粒子と、樹脂と、塩素化合物と、グリコール系溶剤とを含むことを特徴とする導電性ペーストを基板に塗布して予備焼成した後、光を照射して焼成することにより基板上に導電膜を形成することを特徴とする、導電膜の製造方法が記載されている(請求項9)。
For example, Patent Document 1 discloses copper fine particles having an average particle diameter of 1 to 100 nm coated with an azole compound, copper coarse particles having an average particle diameter of 0.3 to 20 μm, a resin, a chlorine compound, and a glycol solvent. A method for producing a conductive film, comprising: applying a conductive paste to a substrate and pre-baking the conductive paste, and forming the conductive film on the substrate by irradiating and baking the light. (Claim 9).
一方、近年では、低温で導電膜を形成することができ、かつ、形成された導電膜が優れた導電性を有する、導電膜の製造方法が求められている。
On the other hand, in recent years, there has been a demand for a method for producing a conductive film in which the conductive film can be formed at a low temperature and the formed conductive film has excellent conductivity.
本発明者が検討したところ、特許文献1に記載の導電性ペーストを用いて導電膜を形成するには、光照射等の手段により高温で焼成することが必須であり、低温で焼成したのでは、優れた導電性を有する導電膜を形成できなかった。
As a result of studies by the present inventor, in order to form a conductive film using the conductive paste described in Patent Document 1, it is essential to fire at a high temperature by means such as light irradiation. A conductive film having excellent conductivity could not be formed.
そこで、本発明は、低温で導電膜を形成することができ、かつ、形成された導電膜が優れた導電性を有する、導電膜の製造方法を提供することを課題とする。
Therefore, an object of the present invention is to provide a method for producing a conductive film, in which the conductive film can be formed at a low temperature, and the formed conductive film has excellent conductivity.
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、銅粒子を含む絶縁性塗膜と銅粒子の融着促進剤とを接触させて導電膜を形成する導電膜形成工程を備える、導電膜の製造方法によれば、低温で導電膜を形成することができ、かつ、形成された導電膜が優れた導電性を有することを知得し、本発明を完成させた。
As a result of intensive studies to solve the above problems, the present inventor includes a conductive film forming step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for copper particles. According to the method for producing a conductive film, it was found that a conductive film can be formed at a low temperature and that the formed conductive film has excellent conductivity, and the present invention has been completed.
すなわち、本発明は、次の[1]~[14]を提供する。
[1] 銅粒子を含む絶縁性塗膜と上記銅粒子の融着促進剤とを接触させて導電膜を形成する導電膜形成工程を備える、導電膜の製造方法。
[2] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の温度が0℃~150℃の範囲内である、上記[1]に記載の導電膜の製造方法。
[3] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の雰囲気が酸化的雰囲気である、上記[1]または[2]に記載の導電膜の製造方法。
[4] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の時間が5秒~24時間である、上記[1]~[3]のいずれか1つに記載の導電膜の製造方法。
[5] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際に、上記絶縁性塗膜と気体状態の上記融着促進剤とを接触させるか、または、上記絶縁性塗膜と上記融着促進剤を含む液体とを接触させる、上記[1]~[4]のいずれか1つに記載の導電膜の製造方法。
[6] 上記銅粒子の上記絶縁性塗膜中の含有量が、上記絶縁性塗膜の全質量に対して80質量%~100質量%である、上記[1]~[5]のいずれか1つに記載の導電膜の製造方法。
[7] 上記絶縁性塗膜がバインダーを含まない、上記[1]~[6]のいずれか1つに記載の導電膜の製造方法。
[8] 上記導電膜形成工程の前に、
銅粒子と分散媒とを含む導電膜形成用組成物を基材上に付与して絶縁性塗膜を形成する塗膜形成工程を備える、上記[1]~[7]のいずれか1つに記載の導電膜の製造方法。
[9] 上記銅粒子の上記導電膜形成用組成物中の含有量が、上記導電膜形成用組成物中の固形分の全質量に対して80質量%以上100質量%未満である、上記[8]に記載の導電膜の製造方法。
[10] 上記導電膜形成用組成物がバインダーを含まない、上記[8]または[9]に記載の導電膜の製造方法。
[11] 上記導電膜形成工程の後に、
上記導電膜の表面を洗浄する導電膜洗浄工程を備える、上記[1]~[10]のいずれか1つに記載の導電膜の製造方法。
[12] 上記融着促進剤が、ハロゲン化合物、含硫黄化合物ならびにリン酸およびその塩からなる群から選択される少なくとも1つである、上記[1]~[11]のいずれか1つに記載の導電膜の製造方法。
[13] 上記融着促進剤がハロゲン化物イオンを含むイオン性化合物、ハロゲンを共有結合で含む有機化合物およびハロゲン化水素からなる群から選択される少なくとも1つである、上記[12]に記載の導電膜の製造方法。
[14] 上記融着促進剤がハロゲン化水素である、上記[13]に記載の導電膜の製造方法。 That is, the present invention provides the following [1] to [14].
[1] A method for producing a conductive film, comprising a conductive film forming step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for the copper particles.
[2] The conductive film according to [1], wherein in the conductive film forming step, the temperature at the time of contact between the insulating coating film and the fusion accelerator is in the range of 0 ° C. to 150 ° C. Production method.
[3] Production of the conductive film according to [1] or [2], wherein in the conductive film formation step, the atmosphere in contact with the insulating coating film and the fusion accelerator is an oxidative atmosphere. Method.
[4] Any one of the above [1] to [3], wherein, in the conductive film forming step, the time for contacting the insulating coating film and the fusion promoter is 5 seconds to 24 hours. The manufacturing method of the electrically conductive film of description.
[5] In the conductive film forming step, when the insulating coating film and the fusion accelerator are in contact with each other, the insulating coating film and the fusion accelerator in a gaseous state are contacted, or The method for producing a conductive film according to any one of the above [1] to [4], wherein the insulating coating film is contacted with a liquid containing the fusion accelerator.
[6] Any of the above [1] to [5], wherein the content of the copper particles in the insulating coating is 80% by mass to 100% by mass with respect to the total mass of the insulating coating. The manufacturing method of the electrically conductive film as described in one.
[7] The method for producing a conductive film according to any one of [1] to [6], wherein the insulating coating film does not contain a binder.
[8] Before the conductive film forming step,
In any one of the above [1] to [7], comprising a coating film forming step of forming an insulating coating film by applying a composition for forming a conductive film containing copper particles and a dispersion medium on a base material The manufacturing method of the electrically conductive film of description.
[9] The content of the copper particles in the conductive film forming composition is 80% by mass or more and less than 100% by mass with respect to the total mass of the solid content in the conductive film forming composition. 8]. The manufacturing method of the electrically conductive film as described in 8].
[10] The method for producing a conductive film according to the above [8] or [9], wherein the composition for forming a conductive film does not contain a binder.
[11] After the conductive film forming step,
The method for producing a conductive film according to any one of [1] to [10], further comprising a conductive film cleaning step for cleaning the surface of the conductive film.
[12] The fusion promoter according to any one of [1] to [11], wherein the fusion accelerator is at least one selected from the group consisting of a halogen compound, a sulfur-containing compound, phosphoric acid and a salt thereof. Of manufacturing the conductive film.
[13] The above-mentioned [12], wherein the fusion accelerator is at least one selected from the group consisting of an ionic compound containing a halide ion, an organic compound containing a halogen in a covalent bond, and a hydrogen halide. Manufacturing method of electrically conductive film.
[14] The method for producing a conductive film according to [13], wherein the fusion accelerator is hydrogen halide.
[1] 銅粒子を含む絶縁性塗膜と上記銅粒子の融着促進剤とを接触させて導電膜を形成する導電膜形成工程を備える、導電膜の製造方法。
[2] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の温度が0℃~150℃の範囲内である、上記[1]に記載の導電膜の製造方法。
[3] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の雰囲気が酸化的雰囲気である、上記[1]または[2]に記載の導電膜の製造方法。
[4] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の時間が5秒~24時間である、上記[1]~[3]のいずれか1つに記載の導電膜の製造方法。
[5] 上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際に、上記絶縁性塗膜と気体状態の上記融着促進剤とを接触させるか、または、上記絶縁性塗膜と上記融着促進剤を含む液体とを接触させる、上記[1]~[4]のいずれか1つに記載の導電膜の製造方法。
[6] 上記銅粒子の上記絶縁性塗膜中の含有量が、上記絶縁性塗膜の全質量に対して80質量%~100質量%である、上記[1]~[5]のいずれか1つに記載の導電膜の製造方法。
[7] 上記絶縁性塗膜がバインダーを含まない、上記[1]~[6]のいずれか1つに記載の導電膜の製造方法。
[8] 上記導電膜形成工程の前に、
銅粒子と分散媒とを含む導電膜形成用組成物を基材上に付与して絶縁性塗膜を形成する塗膜形成工程を備える、上記[1]~[7]のいずれか1つに記載の導電膜の製造方法。
[9] 上記銅粒子の上記導電膜形成用組成物中の含有量が、上記導電膜形成用組成物中の固形分の全質量に対して80質量%以上100質量%未満である、上記[8]に記載の導電膜の製造方法。
[10] 上記導電膜形成用組成物がバインダーを含まない、上記[8]または[9]に記載の導電膜の製造方法。
[11] 上記導電膜形成工程の後に、
上記導電膜の表面を洗浄する導電膜洗浄工程を備える、上記[1]~[10]のいずれか1つに記載の導電膜の製造方法。
[12] 上記融着促進剤が、ハロゲン化合物、含硫黄化合物ならびにリン酸およびその塩からなる群から選択される少なくとも1つである、上記[1]~[11]のいずれか1つに記載の導電膜の製造方法。
[13] 上記融着促進剤がハロゲン化物イオンを含むイオン性化合物、ハロゲンを共有結合で含む有機化合物およびハロゲン化水素からなる群から選択される少なくとも1つである、上記[12]に記載の導電膜の製造方法。
[14] 上記融着促進剤がハロゲン化水素である、上記[13]に記載の導電膜の製造方法。 That is, the present invention provides the following [1] to [14].
[1] A method for producing a conductive film, comprising a conductive film forming step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for the copper particles.
[2] The conductive film according to [1], wherein in the conductive film forming step, the temperature at the time of contact between the insulating coating film and the fusion accelerator is in the range of 0 ° C. to 150 ° C. Production method.
[3] Production of the conductive film according to [1] or [2], wherein in the conductive film formation step, the atmosphere in contact with the insulating coating film and the fusion accelerator is an oxidative atmosphere. Method.
[4] Any one of the above [1] to [3], wherein, in the conductive film forming step, the time for contacting the insulating coating film and the fusion promoter is 5 seconds to 24 hours. The manufacturing method of the electrically conductive film of description.
[5] In the conductive film forming step, when the insulating coating film and the fusion accelerator are in contact with each other, the insulating coating film and the fusion accelerator in a gaseous state are contacted, or The method for producing a conductive film according to any one of the above [1] to [4], wherein the insulating coating film is contacted with a liquid containing the fusion accelerator.
[6] Any of the above [1] to [5], wherein the content of the copper particles in the insulating coating is 80% by mass to 100% by mass with respect to the total mass of the insulating coating. The manufacturing method of the electrically conductive film as described in one.
[7] The method for producing a conductive film according to any one of [1] to [6], wherein the insulating coating film does not contain a binder.
[8] Before the conductive film forming step,
In any one of the above [1] to [7], comprising a coating film forming step of forming an insulating coating film by applying a composition for forming a conductive film containing copper particles and a dispersion medium on a base material The manufacturing method of the electrically conductive film of description.
[9] The content of the copper particles in the conductive film forming composition is 80% by mass or more and less than 100% by mass with respect to the total mass of the solid content in the conductive film forming composition. 8]. The manufacturing method of the electrically conductive film as described in 8].
[10] The method for producing a conductive film according to the above [8] or [9], wherein the composition for forming a conductive film does not contain a binder.
[11] After the conductive film forming step,
The method for producing a conductive film according to any one of [1] to [10], further comprising a conductive film cleaning step for cleaning the surface of the conductive film.
[12] The fusion promoter according to any one of [1] to [11], wherein the fusion accelerator is at least one selected from the group consisting of a halogen compound, a sulfur-containing compound, phosphoric acid and a salt thereof. Of manufacturing the conductive film.
[13] The above-mentioned [12], wherein the fusion accelerator is at least one selected from the group consisting of an ionic compound containing a halide ion, an organic compound containing a halogen in a covalent bond, and a hydrogen halide. Manufacturing method of electrically conductive film.
[14] The method for producing a conductive film according to [13], wherein the fusion accelerator is hydrogen halide.
本発明によれば、低温で導電膜を形成することができ、かつ、形成された導電膜が優れた導電性を有する、導電膜の製造方法を提供することができる。
According to the present invention, it is possible to provide a method for producing a conductive film, in which a conductive film can be formed at a low temperature and the formed conductive film has excellent conductivity.
以下に、本発明の導電膜の製造方法について詳細に説明する。
なお、本明細書において「~」を用いて表される範囲は、その範囲に「~」の前後に記載された両端を含む範囲を意味する。 Below, the manufacturing method of the electrically conductive film of this invention is demonstrated in detail.
In the present specification, a range expressed using “to” means a range including both ends before and after “to” in the range.
なお、本明細書において「~」を用いて表される範囲は、その範囲に「~」の前後に記載された両端を含む範囲を意味する。 Below, the manufacturing method of the electrically conductive film of this invention is demonstrated in detail.
In the present specification, a range expressed using “to” means a range including both ends before and after “to” in the range.
[導電膜の製造方法]
本発明の導電膜の製造方法は、後述する導電膜形成工程を備える。 [Method for producing conductive film]
The manufacturing method of the electrically conductive film of this invention is equipped with the electrically conductive film formation process mentioned later.
本発明の導電膜の製造方法は、後述する導電膜形成工程を備える。 [Method for producing conductive film]
The manufacturing method of the electrically conductive film of this invention is equipped with the electrically conductive film formation process mentioned later.
〈導電膜形成工程〉
上記導電膜形成工程は、銅粒子を含む絶縁性塗膜と銅粒子の融着促進剤とを接触させて導電膜を形成する工程である。 <Conductive film formation process>
The conductive film forming step is a step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for copper particles.
上記導電膜形成工程は、銅粒子を含む絶縁性塗膜と銅粒子の融着促進剤とを接触させて導電膜を形成する工程である。 <Conductive film formation process>
The conductive film forming step is a step of forming a conductive film by bringing an insulating coating film containing copper particles into contact with a fusion promoter for copper particles.
《絶縁性塗膜》
上記絶縁性塗膜は、銅粒子を含む塗膜である。 <Insulating coating film>
The insulating coating film is a coating film containing copper particles.
上記絶縁性塗膜は、銅粒子を含む塗膜である。 <Insulating coating film>
The insulating coating film is a coating film containing copper particles.
(絶縁)
本発明において、「絶縁」とは、JIS C 2525:1999「金属抵抗材料の導体抵抗及び体積抵抗値試験方法」に従い四端子法によって測定した塗膜の体積抵抗値が1.0×104Ω・cm以上であることをいう。 (Insulation)
In the present invention, “insulation” means that the volume resistance value of the coating film measured by the four-terminal method in accordance with JIS C 2525: 1999 “Testing method of conductor resistance and volume resistance value of metal resistance material” is 1.0 × 10 4 Ω.・ It means cm or more.
本発明において、「絶縁」とは、JIS C 2525:1999「金属抵抗材料の導体抵抗及び体積抵抗値試験方法」に従い四端子法によって測定した塗膜の体積抵抗値が1.0×104Ω・cm以上であることをいう。 (Insulation)
In the present invention, “insulation” means that the volume resistance value of the coating film measured by the four-terminal method in accordance with JIS C 2525: 1999 “Testing method of conductor resistance and volume resistance value of metal resistance material” is 1.0 × 10 4 Ω.・ It means cm or more.
(銅粒子)
上記銅粒子は、導電膜形成工程で得られる導電膜中の金属導体となるものである。絶縁性塗膜と銅粒子の融着促進剤とを接触させることにより、銅粒子どうしが融着し、導電膜中の金属導体を構成する。
上記銅粒子としては、導電膜形成用組成物に一般的に用いられる従来公知の銅粒子を用いることができる。上記銅粒子は、一次粒子であってもよいし、二次粒子であってもよい。また、上記銅粒子の形状は、特に限定されず、球状であってもよいし、板状であってもよい。 (Copper particles)
The said copper particle becomes a metal conductor in the electrically conductive film obtained at an electrically conductive film formation process. By bringing the insulating coating film into contact with the adhesion promoter for copper particles, the copper particles are fused together to form a metal conductor in the conductive film.
As said copper particle, the conventionally well-known copper particle generally used for the composition for electrically conductive film formation can be used. The copper particles may be primary particles or secondary particles. Moreover, the shape of the said copper particle is not specifically limited, A spherical shape may be sufficient and a plate shape may be sufficient.
上記銅粒子は、導電膜形成工程で得られる導電膜中の金属導体となるものである。絶縁性塗膜と銅粒子の融着促進剤とを接触させることにより、銅粒子どうしが融着し、導電膜中の金属導体を構成する。
上記銅粒子としては、導電膜形成用組成物に一般的に用いられる従来公知の銅粒子を用いることができる。上記銅粒子は、一次粒子であってもよいし、二次粒子であってもよい。また、上記銅粒子の形状は、特に限定されず、球状であってもよいし、板状であってもよい。 (Copper particles)
The said copper particle becomes a metal conductor in the electrically conductive film obtained at an electrically conductive film formation process. By bringing the insulating coating film into contact with the adhesion promoter for copper particles, the copper particles are fused together to form a metal conductor in the conductive film.
As said copper particle, the conventionally well-known copper particle generally used for the composition for electrically conductive film formation can be used. The copper particles may be primary particles or secondary particles. Moreover, the shape of the said copper particle is not specifically limited, A spherical shape may be sufficient and a plate shape may be sufficient.
上記銅粒子の平均粒子径は、特に限定されず、一次粒子の場合には一次粒子の平均粒子径であり、二次粒子の場合には二次粒子の平均粒子径であるが、好ましくは25nm~6000nmの範囲内であり、より好ましくは30nm~1000nmの範囲内であり、さらに好ましくは50nm~500nmの範囲内である。
なお、銅粒子(A)の平均粒子径は、粒度分布測定装置によって測定した粒度分布の積算%の分布曲線が50%の軸と交差するポイントの粒子径(メジアン径、50%粒子径、D50)である。 The average particle size of the copper particles is not particularly limited. In the case of primary particles, it is the average particle size of primary particles, and in the case of secondary particles, it is the average particle size of secondary particles, preferably 25 nm. It is in the range of ˜6000 nm, more preferably in the range of 30 nm to 1000 nm, and still more preferably in the range of 50 nm to 500 nm.
The average particle diameter of the copper particles (A) is the particle diameter (median diameter, 50% particle diameter, D50) at the point where the distribution curve of the cumulative% of the particle size distribution measured by the particle size distribution measuring device intersects the 50% axis. ).
なお、銅粒子(A)の平均粒子径は、粒度分布測定装置によって測定した粒度分布の積算%の分布曲線が50%の軸と交差するポイントの粒子径(メジアン径、50%粒子径、D50)である。 The average particle size of the copper particles is not particularly limited. In the case of primary particles, it is the average particle size of primary particles, and in the case of secondary particles, it is the average particle size of secondary particles, preferably 25 nm. It is in the range of ˜6000 nm, more preferably in the range of 30 nm to 1000 nm, and still more preferably in the range of 50 nm to 500 nm.
The average particle diameter of the copper particles (A) is the particle diameter (median diameter, 50% particle diameter, D50) at the point where the distribution curve of the cumulative% of the particle size distribution measured by the particle size distribution measuring device intersects the 50% axis. ).
(絶縁性塗膜の銅粒子含有量)
上記銅粒子の上記絶縁性塗膜中の含有量は、特に限定されないが、上記絶縁性塗膜の全質量に対して、好ましくは80質量%~100質量%であり、より好ましくは90質量%~100質量%であり、さらに好ましくは95質量%~100質量%であり、いっそう好ましくは99質量%~100質量%である。
上記銅粒子の上記絶縁性塗膜中の含有量がこの範囲内であると、得られる導電膜中の導電体として機能する銅の含有量も多くなり、より優れた導電性を有する導電膜を得ることができる。 (Copper particle content of insulating coating)
The content of the copper particles in the insulating coating is not particularly limited, but is preferably 80% by mass to 100% by mass, and more preferably 90% by mass with respect to the total mass of the insulating coating. -100% by mass, more preferably 95% by mass to 100% by mass, and still more preferably 99% by mass to 100% by mass.
When the content of the copper particles in the insulating coating is within this range, the content of copper functioning as a conductor in the obtained conductive film also increases, and a conductive film having more excellent conductivity is obtained. Can be obtained.
上記銅粒子の上記絶縁性塗膜中の含有量は、特に限定されないが、上記絶縁性塗膜の全質量に対して、好ましくは80質量%~100質量%であり、より好ましくは90質量%~100質量%であり、さらに好ましくは95質量%~100質量%であり、いっそう好ましくは99質量%~100質量%である。
上記銅粒子の上記絶縁性塗膜中の含有量がこの範囲内であると、得られる導電膜中の導電体として機能する銅の含有量も多くなり、より優れた導電性を有する導電膜を得ることができる。 (Copper particle content of insulating coating)
The content of the copper particles in the insulating coating is not particularly limited, but is preferably 80% by mass to 100% by mass, and more preferably 90% by mass with respect to the total mass of the insulating coating. -100% by mass, more preferably 95% by mass to 100% by mass, and still more preferably 99% by mass to 100% by mass.
When the content of the copper particles in the insulating coating is within this range, the content of copper functioning as a conductor in the obtained conductive film also increases, and a conductive film having more excellent conductivity is obtained. Can be obtained.
銅粒子の絶縁性塗膜中の含有量は、絶縁性塗膜中の銅の含有量として、蛍光X線分析装置(Axios,PANalytical社製)を用いて、以下の測定条件により測定することができる。
ライン:Kα線
結晶:LIF200
コリメーター:150um
検出器:Duplex
管球フィルタ:なし
電圧:60kV
電流:60mA
測定時間:40秒
照射面積:20φ The content of the copper particles in the insulating coating film can be measured as the copper content in the insulating coating film using a fluorescent X-ray analyzer (Axios, manufactured by PANalytical) under the following measurement conditions. it can.
Line: Kα ray Crystal: LIF200
Collimator: 150um
Detector: Duplex
Tube filter: None Voltage: 60 kV
Current: 60 mA
Measurement time: 40 seconds Irradiation area: 20φ
ライン:Kα線
結晶:LIF200
コリメーター:150um
検出器:Duplex
管球フィルタ:なし
電圧:60kV
電流:60mA
測定時間:40秒
照射面積:20φ The content of the copper particles in the insulating coating film can be measured as the copper content in the insulating coating film using a fluorescent X-ray analyzer (Axios, manufactured by PANalytical) under the following measurement conditions. it can.
Line: Kα ray Crystal: LIF200
Collimator: 150um
Detector: Duplex
Tube filter: None Voltage: 60 kV
Current: 60 mA
Measurement time: 40 seconds Irradiation area: 20φ
《添加剤》
上記絶縁性塗膜は、銅粒子に加えて、添加剤を含んでもよい。
上記絶縁性塗膜中の上記添加剤の含有量は、特に限定されないが、上記絶縁性塗膜の全質量に対して、好ましくは15質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、いっそう好ましくは1質量%以下である。上記絶縁性塗膜は上記添加剤を必ずしも含む必要がないため、含有量の下限は0質量%である。 "Additive"
The insulating coating film may contain an additive in addition to the copper particles.
The content of the additive in the insulating coating is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, based on the total mass of the insulating coating. More preferably, it is 5 mass% or less, More preferably, it is 1 mass% or less. Since the said insulating coating film does not necessarily need to contain the said additive, the minimum of content is 0 mass%.
上記絶縁性塗膜は、銅粒子に加えて、添加剤を含んでもよい。
上記絶縁性塗膜中の上記添加剤の含有量は、特に限定されないが、上記絶縁性塗膜の全質量に対して、好ましくは15質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、いっそう好ましくは1質量%以下である。上記絶縁性塗膜は上記添加剤を必ずしも含む必要がないため、含有量の下限は0質量%である。 "Additive"
The insulating coating film may contain an additive in addition to the copper particles.
The content of the additive in the insulating coating is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, based on the total mass of the insulating coating. More preferably, it is 5 mass% or less, More preferably, it is 1 mass% or less. Since the said insulating coating film does not necessarily need to contain the said additive, the minimum of content is 0 mass%.
上記添加剤は、好ましくは、レダクトンからなる群から選択される少なくとも1種である。
The additive is preferably at least one selected from the group consisting of reductons.
レダクトンとは、下記式(I)または下記式(II)で表される、エンジオール構造の隣にカルボニル基が結合した形態の構造(以下「レダクトン構造」という。)を有する有機化合物を意味する。レダクトンは還元性および高い酸性を有する有機酸である。
The reductone means an organic compound represented by the following formula (I) or the following formula (II) and having a structure in which a carbonyl group is bonded next to the enediol structure (hereinafter referred to as “reductone structure”). . Reductone is an organic acid having reducibility and high acidity.
上記レダクトンの代表例は、下記式(Ia)で表されるグルシン酸、下記式(Ib)で表されるレダクチン酸、ならびに後述するアスコルビン酸およびアスコルビン酸誘導体であるが、これらに限定されるものではない。
Typical examples of the reductone are glucic acid represented by the following formula (Ia), reductic acid represented by the following formula (Ib), and ascorbic acid and ascorbic acid derivatives described later, but are not limited thereto. is not.
上記添加剤は、好ましくはアスコルビン酸、アスコルビン酸誘導体およびクエン酸からなる群から選択される少なくとも1種であり、より好ましくはアスコルビン酸およびアスコルビン酸誘導体からなる群から選択される少なくとも1種であり、さらに好ましくはアスコルビン酸である。
The additive is preferably at least one selected from the group consisting of ascorbic acid, ascorbic acid derivatives and citric acid, more preferably at least one selected from the group consisting of ascorbic acid and ascorbic acid derivatives More preferably, it is ascorbic acid.
上記アスコルビン酸は、(2R)-2-[(1S)-1,2-ジヒドロキシエチル]-3,4-ジヒドロキシ-2H-フラン-5-オン(下記式(A-1)で表される化合物;本化合物を「狭義のアスコルビン酸」または「L-アスコルビン酸」と称する場合がある。)、(2S)-2-[(1R)-1,2-ジヒドロキシエチル]-3,4-ジヒドロキシ-2H-フラン-5-オン(下記式(A-2)で表される化合物;本化合物を「D-アスコルビン酸」と称する場合がある。)、(2S)-2-[(1S)-1,2-ジヒドロキシエチル]-3,4-ジヒドロキシ-2H-フラン-5-オン(下記式(A-3)で表される化合物;本化合物を「L-イソアスコルビン酸」と称する場合がある。)および(2R)-2-[(1R)-1,2-ジヒドロキシエチル]-2,3-ジヒドロキシ-2H-フラン-5-オン(下記式(A-4)で表される化合物;本化合物を「エリソルビン酸」または「D-イソアスコルビン酸」と称する場合がある。)からなる群から選択される少なくとも1種類の化合物である。
The ascorbic acid is (2R) -2-[(1S) -1,2-dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one (a compound represented by the following formula (A-1)) This compound may be referred to as “ascorbic acid in the narrow sense” or “L-ascorbic acid”)), (2S) -2-[(1R) -1,2-dihydroxyethyl] -3,4-dihydroxy- 2H-furan-5-one (compound represented by the following formula (A-2); this compound may be referred to as “D-ascorbic acid”), (2S) -2-[(1S) -1 , 2-Dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one (compound represented by the following formula (A-3); this compound may be referred to as “L-isoascorbic acid”. ) And (2R) -2-[(1R) -1,2-dihydroxyethyl] -2,3-dihydroxy-2H-furan-5-one (compound represented by the following formula (A-4); this compound "Erythorbic acid" or "D-isoascorbi" It is at least one compound selected from the group consisting of may be referred to as acid ".).
上記アスコルビン酸誘導体は、好ましくは、下記一般式(B-1)で表される化合物(「アスコルビン酸誘導体(B-1)」という場合がある。)または下記一般式(B-2)で表される化合物(「アスコルビン酸誘導体(B-1)」という場合がある。)である。
銅酸化物に対する還元力は、アスコルビン酸誘導体中のエンジオール構造に起因する。したがって、その構造を残す形でアスコルビン酸の誘導体を合成し、溶解度および極性を適宜調整して用いることも可能である。 The ascorbic acid derivative is preferably a compound represented by the following general formula (B-1) (sometimes referred to as “ascorbic acid derivative (B-1)”) or represented by the following general formula (B-2). (Sometimes referred to as “ascorbic acid derivative (B-1)”).
The reducing power for copper oxide is attributed to the enediol structure in the ascorbic acid derivative. Therefore, it is also possible to synthesize a derivative of ascorbic acid in such a way that the structure remains, and to use it with the solubility and polarity adjusted appropriately.
銅酸化物に対する還元力は、アスコルビン酸誘導体中のエンジオール構造に起因する。したがって、その構造を残す形でアスコルビン酸の誘導体を合成し、溶解度および極性を適宜調整して用いることも可能である。 The ascorbic acid derivative is preferably a compound represented by the following general formula (B-1) (sometimes referred to as “ascorbic acid derivative (B-1)”) or represented by the following general formula (B-2). (Sometimes referred to as “ascorbic acid derivative (B-1)”).
The reducing power for copper oxide is attributed to the enediol structure in the ascorbic acid derivative. Therefore, it is also possible to synthesize a derivative of ascorbic acid in such a way that the structure remains, and to use it with the solubility and polarity adjusted appropriately.
・一般式(B-1)で表されるアスコルビン酸誘導体
一般式(B-1)中、R1およびR2は、それぞれ独立に、水素原子または置換基を有してよいアシル基を表す。ただし、R1およびR2は同時に水素原子を表さない。 .Ascorbic acid derivatives represented by the general formula (B-1)
In general formula (B-1), R 1 and R 2 each independently represents a hydrogen atom or an acyl group which may have a substituent. However, R 1 and R 2 do not represent hydrogen atoms at the same time.
一般式(B-1)中、R1およびR2は、それぞれ独立に、水素原子または置換基を有してよいアシル基を表す。ただし、R1およびR2は同時に水素原子を表さない。 .Ascorbic acid derivatives represented by the general formula (B-1)
In general formula (B-1), R 1 and R 2 each independently represents a hydrogen atom or an acyl group which may have a substituent. However, R 1 and R 2 do not represent hydrogen atoms at the same time.
上記一般式(B-1)中のR1およびR2におけるアシル基は、特に限定されないが、好ましくは、炭素数1から18の直鎖状、分岐鎖状、単環状もしくは縮合多環状の脂肪族が結合したカルボニル基または炭素数6から10の単環状もしくは縮合多環状アリール基が結合したカルボニル基である。
The acyl group for R 1 and R 2 in the general formula (B-1) is not particularly limited, but is preferably a linear, branched, monocyclic or condensed polycyclic fatty acid having 1 to 18 carbon atoms. Or a carbonyl group to which a monocyclic or condensed polycyclic aryl group having 6 to 10 carbon atoms is bonded.
上記アシル基の具体例は、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基、アクリロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、ベンゾイル基、1-ナフトイル基および2-ナフトイル基からなる群から選択されるいずれか1種類であるが、これらに限定されるものではない。
Specific examples of the acyl group include formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, lauroyl, myristoyl, palmitoyl, stearoyl, cyclopentylcarbonyl, cyclohexylcarbonyl Group, acryloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group, benzoyl group, 1-naphthoyl group, and 2-naphthoyl group, but one type is limited thereto It is not a thing.
上記アシル基は、それぞれ、アシル基内の水素原子が置換基で置換されていてもよく、これにより、さらに溶解性および極性を調節することも可能である。
上記置換基の具体例は、ヒドロキシル基およびハロゲン原子からなる群から選択される1種類以上の置換基であるが、これらに限定されるものではない。 In each of the acyl groups, a hydrogen atom in the acyl group may be substituted with a substituent, whereby the solubility and polarity can be further adjusted.
Specific examples of the substituent are one or more substituents selected from the group consisting of a hydroxyl group and a halogen atom, but are not limited thereto.
上記置換基の具体例は、ヒドロキシル基およびハロゲン原子からなる群から選択される1種類以上の置換基であるが、これらに限定されるものではない。 In each of the acyl groups, a hydrogen atom in the acyl group may be substituted with a substituent, whereby the solubility and polarity can be further adjusted.
Specific examples of the substituent are one or more substituents selected from the group consisting of a hydroxyl group and a halogen atom, but are not limited thereto.
上記アスコルビン酸誘導体(B-1)の代表例は、下記式(B-1-X)で表されるものである。ただし、本発明におけるアスコルビン酸誘導体(B-1)は、これらの代表例に限定されるものではない。
ただし、上記式(B-1-X)中、Xは以下に示す化学構造からなる群から選択されるいずれか1つを表す。なお、各化学構造中の「*」は、Xがアスコルビン酸の五員環部位に結合する位置を示す。
A representative example of the ascorbic acid derivative (B-1) is represented by the following formula (B-1-X). However, the ascorbic acid derivative (B-1) in the present invention is not limited to these representative examples.
In the formula (B-1-X), X represents any one selected from the group consisting of the following chemical structures. In addition, “*” in each chemical structure indicates a position at which X binds to the five-membered ring site of ascorbic acid.
ただし、上記式(B-1-X)中、Xは以下に示す化学構造からなる群から選択されるいずれか1つを表す。なお、各化学構造中の「*」は、Xがアスコルビン酸の五員環部位に結合する位置を示す。
In the formula (B-1-X), X represents any one selected from the group consisting of the following chemical structures. In addition, “*” in each chemical structure indicates a position at which X binds to the five-membered ring site of ascorbic acid.
・一般式(B-2)
一般式(B-2)中、R3およびR4は、それぞれ独立に、水素原子または置換基を有してよいアルキル基を表す。 ・ General formula (B-2)
In general formula (B-2), R 3 and R 4 each independently represent a hydrogen atom or an alkyl group which may have a substituent.
一般式(B-2)中、R3およびR4は、それぞれ独立に、水素原子または置換基を有してよいアルキル基を表す。 ・ General formula (B-2)
In general formula (B-2), R 3 and R 4 each independently represent a hydrogen atom or an alkyl group which may have a substituent.
一般式(B-2)で表される化合物は、アスコルビン酸の側鎖に存在する2つの水酸基をアルデヒドまたはケトンと反応させることで、アセタール構造またはケタール構造が形成されたアスコルビン酸誘導体である。
The compound represented by the general formula (B-2) is an ascorbic acid derivative in which an acetal structure or a ketal structure is formed by reacting two hydroxyl groups present in the side chain of ascorbic acid with an aldehyde or a ketone.
上記一般式(B-2)中のR3およびR4におけるアルキル基は、特に限定されないが、好ましくは炭素数1から18の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基である。
The alkyl group for R 3 and R 4 in the general formula (B-2) is not particularly limited, but is preferably a linear, branched, monocyclic or condensed polycyclic alkyl group having 1 to 18 carbon atoms. is there.
上記アルキル基の具体例は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec-ブチル基、tert-ブチル基、sec-ペンチル基、tert-ペンチル基、tert-オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基および4-デシルシクロヘキシル基からなる群から選択されるいずれか1種類であるが、これらに限定されるものではない。
Specific examples of the alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, octadecyl, isopropyl, isobutyl, Isopentyl, sec-butyl, tert-butyl, sec-pentyl, tert-pentyl, tert-octyl, neopentyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, norbornyl and Any one selected from the group consisting of 4-decylcyclohexyl groups is not limited thereto.
上記アルキル基は、それぞれ、アルキル基内の水素原子が置換基で置換されていてもよく、これにより、さらに溶解性や極性を調節することも可能である。
上記置換基の具体例は、ヒドロキシル基およびハロゲン原子からなる群から選択される1種類以上の置換基であるが、これらに限定されるものではない。 In each of the above alkyl groups, a hydrogen atom in the alkyl group may be substituted with a substituent, whereby the solubility and polarity can be further adjusted.
Specific examples of the substituent are one or more substituents selected from the group consisting of a hydroxyl group and a halogen atom, but are not limited thereto.
上記置換基の具体例は、ヒドロキシル基およびハロゲン原子からなる群から選択される1種類以上の置換基であるが、これらに限定されるものではない。 In each of the above alkyl groups, a hydrogen atom in the alkyl group may be substituted with a substituent, whereby the solubility and polarity can be further adjusted.
Specific examples of the substituent are one or more substituents selected from the group consisting of a hydroxyl group and a halogen atom, but are not limited thereto.
上記R3と上記R4とは、一体となって環構造を形成してもよい。
R 3 and R 4 may be integrated to form a ring structure.
上記アスコルビン酸誘導体(B-2)の代表例は、下記式(B-2-Y)で表されるものである。ただし、本発明におけるアスコルビン酸誘導体(B-2)は、これらの代表例に限定されるものではない。
ただし、上記式(B-2-Y)中、Yは以下に示す化学構造からなる群から選択されるいずれか1つを表す。なお、各化学構造中の「*」は、Yがアスコルビン酸の五員環部位に結合する位置を示す。 A representative example of the ascorbic acid derivative (B-2) is represented by the following formula (B-2-Y). However, the ascorbic acid derivative (B-2) in the present invention is not limited to these representative examples.
In the above formula (B-2-Y), Y represents any one selected from the group consisting of the following chemical structures. In addition, “*” in each chemical structure indicates a position where Y binds to the five-membered ring site of ascorbic acid.
ただし、上記式(B-2-Y)中、Yは以下に示す化学構造からなる群から選択されるいずれか1つを表す。なお、各化学構造中の「*」は、Yがアスコルビン酸の五員環部位に結合する位置を示す。 A representative example of the ascorbic acid derivative (B-2) is represented by the following formula (B-2-Y). However, the ascorbic acid derivative (B-2) in the present invention is not limited to these representative examples.
In the above formula (B-2-Y), Y represents any one selected from the group consisting of the following chemical structures. In addition, “*” in each chemical structure indicates a position where Y binds to the five-membered ring site of ascorbic acid.
《バインダー》
上記絶縁性塗膜は、銅粒子に加えて、バインダーを含んでもよいし、含まなくてもよい。
上記絶縁性塗膜がバインダーを含む場合、その含有量は、上記絶縁性塗膜の全質量に対して、好ましくは0.10質量%~5.0質量%であり、より好ましくは0.10質量%~3.0質量%であり、さらに好ましくは0.10質量%~1.0質量%である。
ここで、バインダーとしては、樹脂および分子量1000以上の有機化合物が挙げられる。 "binder"
The insulating coating film may or may not contain a binder in addition to the copper particles.
When the insulating coating film contains a binder, the content thereof is preferably 0.10% by mass to 5.0% by mass, more preferably 0.10% with respect to the total mass of the insulating coating film. The content is from mass% to 3.0 mass%, more preferably from 0.10 mass% to 1.0 mass%.
Here, examples of the binder include a resin and an organic compound having a molecular weight of 1000 or more.
上記絶縁性塗膜は、銅粒子に加えて、バインダーを含んでもよいし、含まなくてもよい。
上記絶縁性塗膜がバインダーを含む場合、その含有量は、上記絶縁性塗膜の全質量に対して、好ましくは0.10質量%~5.0質量%であり、より好ましくは0.10質量%~3.0質量%であり、さらに好ましくは0.10質量%~1.0質量%である。
ここで、バインダーとしては、樹脂および分子量1000以上の有機化合物が挙げられる。 "binder"
The insulating coating film may or may not contain a binder in addition to the copper particles.
When the insulating coating film contains a binder, the content thereof is preferably 0.10% by mass to 5.0% by mass, more preferably 0.10% with respect to the total mass of the insulating coating film. The content is from mass% to 3.0 mass%, more preferably from 0.10 mass% to 1.0 mass%.
Here, examples of the binder include a resin and an organic compound having a molecular weight of 1000 or more.
上記樹脂としては、熱硬化性樹脂および熱可塑性樹脂が挙げられる。
上記熱硬化性樹脂の具体例は、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイドトリアジン樹脂、フラン樹脂、尿素樹脂、ポリウレタン、メラミン樹脂、シリコン樹脂、アクリル樹脂、オキセタン樹脂およびオキサジン樹脂等が挙げられ、上記熱可塑性樹脂の具体例は、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、ケトン樹脂、ポリスチレン樹脂および熱可塑性ポリエステル樹脂等が挙げられ、これらに限定されるものではない。 Examples of the resin include a thermosetting resin and a thermoplastic resin.
Specific examples of the thermosetting resin include phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane, Melamine resin, silicon resin, acrylic resin, oxetane resin, oxazine resin, and the like can be mentioned. Specific examples of the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin, and thermoplastic polyester resin. However, it is not limited to these.
上記熱硬化性樹脂の具体例は、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイドトリアジン樹脂、フラン樹脂、尿素樹脂、ポリウレタン、メラミン樹脂、シリコン樹脂、アクリル樹脂、オキセタン樹脂およびオキサジン樹脂等が挙げられ、上記熱可塑性樹脂の具体例は、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、ケトン樹脂、ポリスチレン樹脂および熱可塑性ポリエステル樹脂等が挙げられ、これらに限定されるものではない。 Examples of the resin include a thermosetting resin and a thermoplastic resin.
Specific examples of the thermosetting resin include phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleidotriazine resin, furan resin, urea resin, polyurethane, Melamine resin, silicon resin, acrylic resin, oxetane resin, oxazine resin, and the like can be mentioned. Specific examples of the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin, and thermoplastic polyester resin. However, it is not limited to these.
上記分子量1000以上の有機化合物は、特に限定されないが、例えば、分子量1000以上の有機酸、分子量1000以上のポリアルキレングリコール、分子量1000以上の糖アルコール、オリゴ糖および多糖が挙げられる。
The organic compound having a molecular weight of 1000 or more is not particularly limited, and examples thereof include organic acids having a molecular weight of 1000 or more, polyalkylene glycols having a molecular weight of 1000 or more, sugar alcohols having a molecular weight of 1000 or more, oligosaccharides and polysaccharides.
《融着促進剤》
上記融着促進剤は、上記銅粒子どうしの融合・融着を促進するものである。
本発明において上記融着促進剤が上記銅粒子どうしの融合・融着を促進するメカニズムは、その詳細が明らかになっているわけではないが、上記銅粒子では、その表面エネルギーが著しく増大しているため、互いに凝集して粒子間で融合・融着しやすくなっていると考えられる。しかしながら、低温かつ短時間で融着を促進するには、不安定化エネルギーは不十分であり、特開2016-131078号公報(特許文献1)のように物理的な刺激が必要であった。不安定化のためにシングルナノの銅粒子を設計することも考えられるが、活性表面の増加に伴い酸化耐性が低下するために酸化的環境下で融着を促進することは難しいと考えられる。本発明は、銅に作用してその結晶構造を不安定させる原子が、銅粒子の表面に作用することにより、不安定化エネルギーを増加させた結果、銅粒子の融合・融着が促進されるものと考えられる。そして、銅粒子が融合・融着することにより、導電体が形成される。これらが低温かつ短時間で進行することで、酸素に対する見かけの安定性が確保され、酸化的環境下で導電体が形成される。 《Fusing promoter》
The fusion promoter promotes fusion / fusion of the copper particles.
In the present invention, the mechanism by which the fusion promoter promotes fusion / fusion of the copper particles is not clarified in detail, but the surface energy of the copper particles is significantly increased. Therefore, it is considered that the particles are easily agglomerated and fused with each other. However, the destabilizing energy is insufficient to promote fusion at a low temperature for a short time, and physical stimulation is required as disclosed in JP-A-2016-1331078 (Patent Document 1). Although it is conceivable to design single nano copper particles for destabilization, it is considered difficult to promote fusion in an oxidative environment because the oxidation resistance decreases as the active surface increases. In the present invention, atoms that act on copper and destabilize its crystal structure act on the surface of the copper particles, thereby increasing the destabilization energy, thereby promoting the fusion and fusion of the copper particles. It is considered a thing. The copper particles are fused and fused to form a conductor. By proceeding at a low temperature and in a short time, apparent stability against oxygen is ensured, and a conductor is formed in an oxidative environment.
上記融着促進剤は、上記銅粒子どうしの融合・融着を促進するものである。
本発明において上記融着促進剤が上記銅粒子どうしの融合・融着を促進するメカニズムは、その詳細が明らかになっているわけではないが、上記銅粒子では、その表面エネルギーが著しく増大しているため、互いに凝集して粒子間で融合・融着しやすくなっていると考えられる。しかしながら、低温かつ短時間で融着を促進するには、不安定化エネルギーは不十分であり、特開2016-131078号公報(特許文献1)のように物理的な刺激が必要であった。不安定化のためにシングルナノの銅粒子を設計することも考えられるが、活性表面の増加に伴い酸化耐性が低下するために酸化的環境下で融着を促進することは難しいと考えられる。本発明は、銅に作用してその結晶構造を不安定させる原子が、銅粒子の表面に作用することにより、不安定化エネルギーを増加させた結果、銅粒子の融合・融着が促進されるものと考えられる。そして、銅粒子が融合・融着することにより、導電体が形成される。これらが低温かつ短時間で進行することで、酸素に対する見かけの安定性が確保され、酸化的環境下で導電体が形成される。 《Fusing promoter》
The fusion promoter promotes fusion / fusion of the copper particles.
In the present invention, the mechanism by which the fusion promoter promotes fusion / fusion of the copper particles is not clarified in detail, but the surface energy of the copper particles is significantly increased. Therefore, it is considered that the particles are easily agglomerated and fused with each other. However, the destabilizing energy is insufficient to promote fusion at a low temperature for a short time, and physical stimulation is required as disclosed in JP-A-2016-1331078 (Patent Document 1). Although it is conceivable to design single nano copper particles for destabilization, it is considered difficult to promote fusion in an oxidative environment because the oxidation resistance decreases as the active surface increases. In the present invention, atoms that act on copper and destabilize its crystal structure act on the surface of the copper particles, thereby increasing the destabilization energy, thereby promoting the fusion and fusion of the copper particles. It is considered a thing. The copper particles are fused and fused to form a conductor. By proceeding at a low temperature and in a short time, apparent stability against oxygen is ensured, and a conductor is formed in an oxidative environment.
上記融着促進剤は、例えば、アミノアルコール類、ベタインの有機酸塩、ハロゲン化合物、含硫黄化合物ならびにリン酸およびその塩からなる群から選択される少なくとも1つであり、好ましくは、ハロゲン化合物、含硫黄化合物ならびにリン酸およびその塩からなる群から選択される少なくとも1つである。
The fusion accelerator is, for example, at least one selected from the group consisting of amino alcohols, betaine organic acid salts, halogen compounds, sulfur-containing compounds and phosphoric acid and salts thereof, preferably halogen compounds, It is at least one selected from the group consisting of sulfur-containing compounds and phosphoric acid and salts thereof.
(アミノアルコール類)
アミノアルコール類は、アミノ基とヒドロキシ基を両方含む化合物であれば特に限定されない。アミノ基は1級アミノ基、2級アミノ基または3級アミノ基であり得る。また、1分子中のアミノ基およびヒドロキシ基の個数は、それぞれ、限定されない。
アミノアルコール類としては、例えば、メタノールアミン、エタノールアミン、プロパノールアミン、N-メチルエタノールアミン、ジメチルエタノールアミン、ヘプタミノール、イソエタリン、スフィンゴシンおよび3-(ジメチルアミノ)-1,2-プロパンジオール等が挙げられる。なお、アミノアルコールの塩酸塩等のハロゲン化水素酸塩など、アミノアルコールの塩は、上記アミノアルコール類に含まないものとする。 (Amino alcohols)
The amino alcohol is not particularly limited as long as it is a compound containing both an amino group and a hydroxy group. The amino group can be a primary amino group, a secondary amino group, or a tertiary amino group. Further, the number of amino groups and hydroxy groups in one molecule is not limited.
Examples of amino alcohols include methanolamine, ethanolamine, propanolamine, N-methylethanolamine, dimethylethanolamine, heptaminol, isoethalin, sphingosine and 3- (dimethylamino) -1,2-propanediol. . It should be noted that aminoalcohol salts such as hydrohalides such as aminoalcohol hydrochlorides are not included in the aminoalcohols.
アミノアルコール類は、アミノ基とヒドロキシ基を両方含む化合物であれば特に限定されない。アミノ基は1級アミノ基、2級アミノ基または3級アミノ基であり得る。また、1分子中のアミノ基およびヒドロキシ基の個数は、それぞれ、限定されない。
アミノアルコール類としては、例えば、メタノールアミン、エタノールアミン、プロパノールアミン、N-メチルエタノールアミン、ジメチルエタノールアミン、ヘプタミノール、イソエタリン、スフィンゴシンおよび3-(ジメチルアミノ)-1,2-プロパンジオール等が挙げられる。なお、アミノアルコールの塩酸塩等のハロゲン化水素酸塩など、アミノアルコールの塩は、上記アミノアルコール類に含まないものとする。 (Amino alcohols)
The amino alcohol is not particularly limited as long as it is a compound containing both an amino group and a hydroxy group. The amino group can be a primary amino group, a secondary amino group, or a tertiary amino group. Further, the number of amino groups and hydroxy groups in one molecule is not limited.
Examples of amino alcohols include methanolamine, ethanolamine, propanolamine, N-methylethanolamine, dimethylethanolamine, heptaminol, isoethalin, sphingosine and 3- (dimethylamino) -1,2-propanediol. . It should be noted that aminoalcohol salts such as hydrohalides such as aminoalcohol hydrochlorides are not included in the aminoalcohols.
(ベタインの有機酸塩)
ベタインとしては、例えば、カルニチン、トリメチルグリシンおよびプロリンベタイン等が挙げられる。
有機酸としては、例えば、ギ酸、酢酸、クエン酸およびシュウ酸等が挙げられる。
ベタインの有機酸塩の具体例としては、例えば、トリメチルグリシンのクエン酸塩およびトリメチルグリシンの酢酸塩等が挙げられる。 (Betaine organic acid salt)
Examples of betaine include carnitine, trimethylglycine, and proline betaine.
Examples of the organic acid include formic acid, acetic acid, citric acid, and oxalic acid.
Specific examples of betaine organic acid salts include, for example, trimethylglycine citrate and trimethylglycine acetate.
ベタインとしては、例えば、カルニチン、トリメチルグリシンおよびプロリンベタイン等が挙げられる。
有機酸としては、例えば、ギ酸、酢酸、クエン酸およびシュウ酸等が挙げられる。
ベタインの有機酸塩の具体例としては、例えば、トリメチルグリシンのクエン酸塩およびトリメチルグリシンの酢酸塩等が挙げられる。 (Betaine organic acid salt)
Examples of betaine include carnitine, trimethylglycine, and proline betaine.
Examples of the organic acid include formic acid, acetic acid, citric acid, and oxalic acid.
Specific examples of betaine organic acid salts include, for example, trimethylglycine citrate and trimethylglycine acetate.
(ハロゲン化合物)
ハロゲン化合物は、ハロゲンを含む化合物であれば特に限定されないが、好ましくは、ハロゲン化物イオンを含むイオン性化合物、ハロゲンを共有結合で含む有機化合物およびハロゲン化水素からなる群から選択される少なくとも1つであり、より好ましくは、ハロゲン化物イオンを含むイオン性化合物である。 (Halogen compounds)
The halogen compound is not particularly limited as long as it is a compound containing halogen, but preferably at least one selected from the group consisting of an ionic compound containing a halide ion, an organic compound containing a halogen in a covalent bond, and a hydrogen halide. More preferably, it is an ionic compound containing a halide ion.
ハロゲン化合物は、ハロゲンを含む化合物であれば特に限定されないが、好ましくは、ハロゲン化物イオンを含むイオン性化合物、ハロゲンを共有結合で含む有機化合物およびハロゲン化水素からなる群から選択される少なくとも1つであり、より好ましくは、ハロゲン化物イオンを含むイオン性化合物である。 (Halogen compounds)
The halogen compound is not particularly limited as long as it is a compound containing halogen, but preferably at least one selected from the group consisting of an ionic compound containing a halide ion, an organic compound containing a halogen in a covalent bond, and a hydrogen halide. More preferably, it is an ionic compound containing a halide ion.
なお、本発明において、ハロゲンとは、IUPAC(International Union of Pure and Applied Chemistry)周期表の第17族元素のうち、フッ素(元素記号:F)、塩素(元素記号:Cl)、臭素(元素記号:Br)およびヨウ素(元素記号:I)をいい、好ましくは塩素、臭素およびヨウ素をいい、より好ましくは塩素および臭素をいい、さらに好ましくは塩素をいう。また、本発明において、アスタチン(元素記号:At)およびテネシン(元素記号:Ts)は、ハロゲンに含めないものとする。
In the present invention, halogen means fluorine (element symbol: F), chlorine (element symbol: Cl), bromine (element symbol) among Group 17 elements of the IUPAC (International Union of Pure and Applied Chemistry) periodic table. : Br) and iodine (element symbol: I), preferably chlorine, bromine and iodine, more preferably chlorine and bromine, still more preferably chlorine. In the present invention, astatine (element symbol: At) and tennessine (element symbol: Ts) are not included in the halogen.
(ハロゲン化物イオンを含むイオン性化合物)
上記ハロゲン化物イオンを含むイオン性化合物は、例えば、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物、有機アミンのハロゲン化水素塩およびハロゲン化アンモニウムからなる群から選択される少なくとも1つであり、好ましくは、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも1つであり、より好ましくはアルカリ金属のハロゲン化物である。 (Ionic compounds including halide ions)
The ionic compound containing a halide ion is, for example, at least one selected from the group consisting of an alkali metal halide, an alkaline earth metal halide, an organic amine hydrogen halide salt, and an ammonium halide. , Preferably at least one selected from the group consisting of alkali metal halides and alkaline earth metal halides, more preferably alkali metal halides.
上記ハロゲン化物イオンを含むイオン性化合物は、例えば、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物、有機アミンのハロゲン化水素塩およびハロゲン化アンモニウムからなる群から選択される少なくとも1つであり、好ましくは、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも1つであり、より好ましくはアルカリ金属のハロゲン化物である。 (Ionic compounds including halide ions)
The ionic compound containing a halide ion is, for example, at least one selected from the group consisting of an alkali metal halide, an alkaline earth metal halide, an organic amine hydrogen halide salt, and an ammonium halide. , Preferably at least one selected from the group consisting of alkali metal halides and alkaline earth metal halides, more preferably alkali metal halides.
(ハロゲンを共有結合で含む化合物(ハロゲンを共有結合を介して含む化合物))
上記ハロゲンを共有結合で含む化合物の例は、塩化アセチル(別名:酢酸クロリドまたはアセチルクロリド)、臭化アセチル(別名:酢酸ブロミドまたはアセチルクロリド)、ヨウ化アセチル(別名:酢酸ヨージドまたはアセチルヨージド)、塩化プロピオニル(別名:プロピオン酸クロリドまたはプロピオニルクロリド)、臭化プロピオニル(別名:プロピオン酸ブロミドまたはプロピオニルブロミド)、ヨウ化プロピオニル(別名:プロピオン酸ヨージドまたはプロピオニルヨージド)、塩化ベンゾイル(別名:安息香酸クロリドまたはベンゾイルクロリド)、臭化ベンゾイル(別名:安息香酸ブロミドまたはベンゾイルブロミド)およびヨウ化ベンゾイル(別名:安息香酸ヨージドまたはベンゾイルヨージド)であり、好ましくは、塩化アセチル、臭化アセチル、ヨウ化アセチル、塩化プロピオニル、臭化プロピオニルおよびヨウ化プロピオニルからなる群から選択される少なくとも1つであり、より好ましくは、塩化アセチル、臭化アセチル、塩化プロピオニルおよび臭化プロピオニルからなる群から選択される少なくとも1つである。
本発明の導電膜の製造方法において、絶縁性塗膜と融着促進剤としてのカルボン酸ハロゲン化物との接触を大気中で行うと、カルボン酸ハロゲン化物の分解によりハロゲン化水素が発生し、ハロゲン化水素が実質的な融着促進剤として機能するものと考えられる。 (Compounds containing a halogen in a covalent bond (compounds containing a halogen via a covalent bond))
Examples of the compound containing a halogen covalently include acetyl chloride (also known as acetic acid chloride or acetyl chloride), acetyl bromide (also known as acetic acid bromide or acetyl chloride), acetyl iodide (also known as acetic acid iodide or acetyl iodide). , Propionyl chloride (also known as propionyl chloride or propionyl chloride), propionyl bromide (also known as propionate bromide or propionyl bromide), propionyl iodide (also known as propionate iodide or propionyl iodide), benzoyl chloride (also known as benzoic acid) Chloride or benzoyl chloride), benzoyl bromide (also known as benzoic acid bromide or benzoyl bromide) and benzoyl iodide (also known as benzoic acid iodide or benzoyl iodide), preferably a salt At least one selected from the group consisting of acetyl, acetyl bromide, acetyl iodide, propionyl chloride, propionyl bromide and propionyl iodide, more preferably acetyl chloride, acetyl bromide, propionyl chloride and propionyl bromide At least one selected from the group consisting of:
In the method for producing a conductive film of the present invention, when the insulating coating film is contacted with the carboxylic acid halide as the fusion accelerator in the atmosphere, hydrogen halide is generated by decomposition of the carboxylic acid halide, Hydrogen fluoride is considered to function as a substantial fusion promoter.
上記ハロゲンを共有結合で含む化合物の例は、塩化アセチル(別名:酢酸クロリドまたはアセチルクロリド)、臭化アセチル(別名:酢酸ブロミドまたはアセチルクロリド)、ヨウ化アセチル(別名:酢酸ヨージドまたはアセチルヨージド)、塩化プロピオニル(別名:プロピオン酸クロリドまたはプロピオニルクロリド)、臭化プロピオニル(別名:プロピオン酸ブロミドまたはプロピオニルブロミド)、ヨウ化プロピオニル(別名:プロピオン酸ヨージドまたはプロピオニルヨージド)、塩化ベンゾイル(別名:安息香酸クロリドまたはベンゾイルクロリド)、臭化ベンゾイル(別名:安息香酸ブロミドまたはベンゾイルブロミド)およびヨウ化ベンゾイル(別名:安息香酸ヨージドまたはベンゾイルヨージド)であり、好ましくは、塩化アセチル、臭化アセチル、ヨウ化アセチル、塩化プロピオニル、臭化プロピオニルおよびヨウ化プロピオニルからなる群から選択される少なくとも1つであり、より好ましくは、塩化アセチル、臭化アセチル、塩化プロピオニルおよび臭化プロピオニルからなる群から選択される少なくとも1つである。
本発明の導電膜の製造方法において、絶縁性塗膜と融着促進剤としてのカルボン酸ハロゲン化物との接触を大気中で行うと、カルボン酸ハロゲン化物の分解によりハロゲン化水素が発生し、ハロゲン化水素が実質的な融着促進剤として機能するものと考えられる。 (Compounds containing a halogen in a covalent bond (compounds containing a halogen via a covalent bond))
Examples of the compound containing a halogen covalently include acetyl chloride (also known as acetic acid chloride or acetyl chloride), acetyl bromide (also known as acetic acid bromide or acetyl chloride), acetyl iodide (also known as acetic acid iodide or acetyl iodide). , Propionyl chloride (also known as propionyl chloride or propionyl chloride), propionyl bromide (also known as propionate bromide or propionyl bromide), propionyl iodide (also known as propionate iodide or propionyl iodide), benzoyl chloride (also known as benzoic acid) Chloride or benzoyl chloride), benzoyl bromide (also known as benzoic acid bromide or benzoyl bromide) and benzoyl iodide (also known as benzoic acid iodide or benzoyl iodide), preferably a salt At least one selected from the group consisting of acetyl, acetyl bromide, acetyl iodide, propionyl chloride, propionyl bromide and propionyl iodide, more preferably acetyl chloride, acetyl bromide, propionyl chloride and propionyl bromide At least one selected from the group consisting of:
In the method for producing a conductive film of the present invention, when the insulating coating film is contacted with the carboxylic acid halide as the fusion accelerator in the atmosphere, hydrogen halide is generated by decomposition of the carboxylic acid halide, Hydrogen fluoride is considered to function as a substantial fusion promoter.
(アルカリ金属のハロゲン化物)
上記アルカリ金属のハロゲン化物の例は、塩化リチウム、塩化ナトリウムおよび塩化カリウム等の塩化物、臭化リチウム、臭化ナトリウムおよび臭化カリウム等の臭化物、ヨウ化リチウム、ヨウ化ナトリウムおよびヨウ化カリウム等のヨウ化物、ならびにフッ化リチウム、フッ化ナトリウムおよびフッ化カリウム等のフッ化物などである。
上記アルカリ金属のハロゲン化物は、好ましくは、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化リチウム、臭化リチウムおよびヨウ化リチウムからなる群から選択される少なくとも1つであり、より好ましくは、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウムおよびヨウ化カリウムからなる群から選択される少なくとも1つであり、さらに好ましくは、塩化ナトリウム、臭化ナトリウムおよびヨウ化ナトリウムからなる群から選択される少なくとも1つであり、いっそう好ましくは、塩化ナトリウムである。 (Alkali metal halide)
Examples of the alkali metal halides include chlorides such as lithium chloride, sodium chloride and potassium chloride, bromides such as lithium bromide, sodium bromide and potassium bromide, lithium iodide, sodium iodide and potassium iodide. And iodides such as lithium fluoride, sodium fluoride and potassium fluoride.
The alkali metal halide is preferably selected from the group consisting of sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, lithium chloride, lithium bromide and lithium iodide. At least one, more preferably at least one selected from the group consisting of sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide and potassium iodide, and more preferably sodium chloride At least one selected from the group consisting of sodium bromide and sodium iodide, more preferably sodium chloride.
上記アルカリ金属のハロゲン化物の例は、塩化リチウム、塩化ナトリウムおよび塩化カリウム等の塩化物、臭化リチウム、臭化ナトリウムおよび臭化カリウム等の臭化物、ヨウ化リチウム、ヨウ化ナトリウムおよびヨウ化カリウム等のヨウ化物、ならびにフッ化リチウム、フッ化ナトリウムおよびフッ化カリウム等のフッ化物などである。
上記アルカリ金属のハロゲン化物は、好ましくは、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化リチウム、臭化リチウムおよびヨウ化リチウムからなる群から選択される少なくとも1つであり、より好ましくは、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウムおよびヨウ化カリウムからなる群から選択される少なくとも1つであり、さらに好ましくは、塩化ナトリウム、臭化ナトリウムおよびヨウ化ナトリウムからなる群から選択される少なくとも1つであり、いっそう好ましくは、塩化ナトリウムである。 (Alkali metal halide)
Examples of the alkali metal halides include chlorides such as lithium chloride, sodium chloride and potassium chloride, bromides such as lithium bromide, sodium bromide and potassium bromide, lithium iodide, sodium iodide and potassium iodide. And iodides such as lithium fluoride, sodium fluoride and potassium fluoride.
The alkali metal halide is preferably selected from the group consisting of sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, lithium chloride, lithium bromide and lithium iodide. At least one, more preferably at least one selected from the group consisting of sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide and potassium iodide, and more preferably sodium chloride At least one selected from the group consisting of sodium bromide and sodium iodide, more preferably sodium chloride.
なお、本発明において、アルカリ金属とは、IUPAC周期表の第1族元素のうち、リチウム(元素記号:Li)、ナトリウム(元素記号:Na)、カリウム(元素記号:K)、ルビジウム(元素記号:Rb)およびセシウム(元素記号:Cs)をいい、好ましくはリチウム、ナトリウム、カリウムおよびルビジウムをいい、より好ましくはリチウム、ナトリウムおよびカリウムをいい、さらに好ましくはナトリウムおよびカリウムをいう。本発明において、フランシウム(元素記号:Fr)は、アルカリ金属に含めないものとする。
In the present invention, the alkali metal refers to lithium (element symbol: Li), sodium (element symbol: Na), potassium (element symbol: K), rubidium (element symbol) among Group 1 elements of the IUPAC periodic table. : Rb) and cesium (element symbol: Cs), preferably lithium, sodium, potassium and rubidium, more preferably lithium, sodium and potassium, still more preferably sodium and potassium. In the present invention, francium (element symbol: Fr) is not included in the alkali metal.
(アルカリ土類金属のハロゲン化物)
上記アルカリ土類金属のハロゲン化物の例は、塩化カルシウム、塩化ストロンチウム、塩化バリウム、塩化ベリリウムおよび塩化マグネシウム等の塩化物、臭化カルシウム、臭化ストロンチウム、臭化バリウム、臭化ベリリウムおよび臭化マグネシウム等の臭化物、ならびにヨウ化カルシウム、ヨウ化ストロンチウム、ヨウ化バリウム、ヨウ化ベリリウムおよびヨウ化マグネシウム等のヨウ化物などである。
上記アルカリ土類金属のハロゲン化物は、好ましくは、塩化カルシウム、塩化ストロンチウム、塩化バリウム、臭化カルシウム、臭化ストロンチウム、臭化バリウム、ヨウ化カルシウム、ヨウ化ストロンチウムおよびヨウ化バリウムからなる群から選択される少なくとも1つであり、より好ましくは、塩化カルシウム、塩化ストロンチウム、塩化バリウム、臭化カルシウム、臭化ストロンチウムおよび臭化バリウムからなる群から選択される少なくとも1つであり、さらに好ましくは、塩化カルシウム、塩化ストロンチウムおよび塩化バリウムからなる群から選択される少なくとも1つであり、いっそう好ましくは、塩化カルシウムである。 (Alkaline earth metal halide)
Examples of the alkaline earth metal halides are chlorides such as calcium chloride, strontium chloride, barium chloride, beryllium chloride and magnesium chloride, calcium bromide, strontium bromide, barium bromide, beryllium bromide and magnesium bromide. And iodides such as calcium iodide, strontium iodide, barium iodide, beryllium iodide and magnesium iodide.
The alkaline earth metal halide is preferably selected from the group consisting of calcium chloride, strontium chloride, barium chloride, calcium bromide, strontium bromide, barium bromide, calcium iodide, strontium iodide and barium iodide. At least one selected from the group consisting of calcium chloride, strontium chloride, barium chloride, calcium bromide, strontium bromide and barium bromide, more preferably chloride It is at least one selected from the group consisting of calcium, strontium chloride and barium chloride, and more preferably calcium chloride.
上記アルカリ土類金属のハロゲン化物の例は、塩化カルシウム、塩化ストロンチウム、塩化バリウム、塩化ベリリウムおよび塩化マグネシウム等の塩化物、臭化カルシウム、臭化ストロンチウム、臭化バリウム、臭化ベリリウムおよび臭化マグネシウム等の臭化物、ならびにヨウ化カルシウム、ヨウ化ストロンチウム、ヨウ化バリウム、ヨウ化ベリリウムおよびヨウ化マグネシウム等のヨウ化物などである。
上記アルカリ土類金属のハロゲン化物は、好ましくは、塩化カルシウム、塩化ストロンチウム、塩化バリウム、臭化カルシウム、臭化ストロンチウム、臭化バリウム、ヨウ化カルシウム、ヨウ化ストロンチウムおよびヨウ化バリウムからなる群から選択される少なくとも1つであり、より好ましくは、塩化カルシウム、塩化ストロンチウム、塩化バリウム、臭化カルシウム、臭化ストロンチウムおよび臭化バリウムからなる群から選択される少なくとも1つであり、さらに好ましくは、塩化カルシウム、塩化ストロンチウムおよび塩化バリウムからなる群から選択される少なくとも1つであり、いっそう好ましくは、塩化カルシウムである。 (Alkaline earth metal halide)
Examples of the alkaline earth metal halides are chlorides such as calcium chloride, strontium chloride, barium chloride, beryllium chloride and magnesium chloride, calcium bromide, strontium bromide, barium bromide, beryllium bromide and magnesium bromide. And iodides such as calcium iodide, strontium iodide, barium iodide, beryllium iodide and magnesium iodide.
The alkaline earth metal halide is preferably selected from the group consisting of calcium chloride, strontium chloride, barium chloride, calcium bromide, strontium bromide, barium bromide, calcium iodide, strontium iodide and barium iodide. At least one selected from the group consisting of calcium chloride, strontium chloride, barium chloride, calcium bromide, strontium bromide and barium bromide, more preferably chloride It is at least one selected from the group consisting of calcium, strontium chloride and barium chloride, and more preferably calcium chloride.
なお、本発明において、アルカリ土類金属とは、IUPAC周期表の第2族元素のうち、ベリリウム(元素記号:Be)、マグネシウム(元素記号:Mg)、カルシウム(元素記号:Ca)、ストロンチウム(元素記号:Sr)およびバリウム(元素記号:Ba)をいい、好ましくはカルシウム、ストロンチウムおよびバリウムをいい、より好ましくはカルシウムをいうものとする。本発明において、ラジウム(元素記号:Ra)は、アルカリ土類金属に含めないものとする。
In the present invention, the alkaline earth metal means beryllium (element symbol: Be), magnesium (element symbol: Mg), calcium (element symbol: Ca), strontium (group 2 elements in the IUPAC periodic table) Elemental symbol: Sr) and barium (elemental symbol: Ba), preferably calcium, strontium and barium, more preferably calcium. In the present invention, radium (element symbol: Ra) is not included in the alkaline earth metal.
(有機アミンのハロゲン化水素塩)
上記有機アミンのハロゲン化水素塩の例は、トリエチルアミン塩酸塩、トリエチルアミン臭化水素酸塩、トリエチルアミンヨウ化水素酸塩、トリエチルアミンフッ化水素酸塩、ピリジン塩酸塩、ピリジン臭化水素酸塩、ピリジンヨウ化水素酸塩、ピリジンフッ化水素酸塩、ベタイン塩酸塩、ベタイン臭化水素酸塩、ベタインヨウ化水素酸塩およびベタインフッ化水素酸塩などである。
上記有機アミンのハロゲン化水素塩は、好ましくはN,N,N-トリメチルグリシン塩酸塩である。 (Hydrogen halide of organic amine)
Examples of the above organic amine hydrohalides are triethylamine hydrochloride, triethylamine hydrobromide, triethylamine hydroiodide, triethylamine hydrofluoride, pyridine hydrochloride, pyridine hydrobromide, pyridine iodide. Examples thereof include hydrogenate, pyridine hydrofluoride, betaine hydrochloride, betaine hydrobromide, betaine hydroiodide, and betaine hydrofluoride.
The organic amine hydrogen halide salt is preferably N, N, N-trimethylglycine hydrochloride.
上記有機アミンのハロゲン化水素塩の例は、トリエチルアミン塩酸塩、トリエチルアミン臭化水素酸塩、トリエチルアミンヨウ化水素酸塩、トリエチルアミンフッ化水素酸塩、ピリジン塩酸塩、ピリジン臭化水素酸塩、ピリジンヨウ化水素酸塩、ピリジンフッ化水素酸塩、ベタイン塩酸塩、ベタイン臭化水素酸塩、ベタインヨウ化水素酸塩およびベタインフッ化水素酸塩などである。
上記有機アミンのハロゲン化水素塩は、好ましくはN,N,N-トリメチルグリシン塩酸塩である。 (Hydrogen halide of organic amine)
Examples of the above organic amine hydrohalides are triethylamine hydrochloride, triethylamine hydrobromide, triethylamine hydroiodide, triethylamine hydrofluoride, pyridine hydrochloride, pyridine hydrobromide, pyridine iodide. Examples thereof include hydrogenate, pyridine hydrofluoride, betaine hydrochloride, betaine hydrobromide, betaine hydroiodide, and betaine hydrofluoride.
The organic amine hydrogen halide salt is preferably N, N, N-trimethylglycine hydrochloride.
(ハロゲン化アンモニウム)
上記ハロゲン化アンモニウムの例は、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウムおよびフッ化アンモニウムなどである。
上記ハロゲン化アンモニウムは、好ましくは塩化アンモニウムである。 (Ammonium halide)
Examples of the ammonium halide include ammonium chloride, ammonium bromide, ammonium iodide, and ammonium fluoride.
The ammonium halide is preferably ammonium chloride.
上記ハロゲン化アンモニウムの例は、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウムおよびフッ化アンモニウムなどである。
上記ハロゲン化アンモニウムは、好ましくは塩化アンモニウムである。 (Ammonium halide)
Examples of the ammonium halide include ammonium chloride, ammonium bromide, ammonium iodide, and ammonium fluoride.
The ammonium halide is preferably ammonium chloride.
(ハロゲン化水素)
上記ハロゲン化水素の例は、塩化水素、臭化水素、ヨウ化水素およびフッ化水素などである。
上記ハロゲン化水素は、好ましくは、塩化水素、臭化水素およびヨウ化水素からなる群から選択される少なくとも1つであり、より好ましくは、塩化水素および臭化水素からなる群から選択される少なくとも1つであり、さらに好ましくは塩化水素または臭化水素である。ハロゲン化水素は水および/またはアルコールに希釈して使用することができる。ここで、アルコールとしては、メタノール、エタノール、プロパノール、2-プロパノール、エチレングリコール、プロピレングリコールおよびジエチレングリコール等が挙げられる。 (Hydrogen halide)
Examples of the hydrogen halide include hydrogen chloride, hydrogen bromide, hydrogen iodide and hydrogen fluoride.
The hydrogen halide is preferably at least one selected from the group consisting of hydrogen chloride, hydrogen bromide and hydrogen iodide, more preferably at least selected from the group consisting of hydrogen chloride and hydrogen bromide. One, more preferably hydrogen chloride or hydrogen bromide. The hydrogen halide can be used by diluting with water and / or alcohol. Here, examples of the alcohol include methanol, ethanol, propanol, 2-propanol, ethylene glycol, propylene glycol, and diethylene glycol.
上記ハロゲン化水素の例は、塩化水素、臭化水素、ヨウ化水素およびフッ化水素などである。
上記ハロゲン化水素は、好ましくは、塩化水素、臭化水素およびヨウ化水素からなる群から選択される少なくとも1つであり、より好ましくは、塩化水素および臭化水素からなる群から選択される少なくとも1つであり、さらに好ましくは塩化水素または臭化水素である。ハロゲン化水素は水および/またはアルコールに希釈して使用することができる。ここで、アルコールとしては、メタノール、エタノール、プロパノール、2-プロパノール、エチレングリコール、プロピレングリコールおよびジエチレングリコール等が挙げられる。 (Hydrogen halide)
Examples of the hydrogen halide include hydrogen chloride, hydrogen bromide, hydrogen iodide and hydrogen fluoride.
The hydrogen halide is preferably at least one selected from the group consisting of hydrogen chloride, hydrogen bromide and hydrogen iodide, more preferably at least selected from the group consisting of hydrogen chloride and hydrogen bromide. One, more preferably hydrogen chloride or hydrogen bromide. The hydrogen halide can be used by diluting with water and / or alcohol. Here, examples of the alcohol include methanol, ethanol, propanol, 2-propanol, ethylene glycol, propylene glycol, and diethylene glycol.
(含硫黄化合物)
上記含硫黄化合物は、イオウ原子を有する化合物であれば特に限定されないが、例として、メタンチオール、エタンチオール、1-プロパンチオール、2-プロパンチオール、1-ブタンチオール、2-ブタンチオール、2-メチル-1-プロパンチオール、2-メチル-2-プロパンチオール、チオフェノール、システイン、グルタチオン、チオグリコール酸、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン―2,4,6-(1H,3H,5H)-トリオン、硫化水素、硫酸、硫酸水素ナトリウム、硫酸ナトリウム、亜硫酸、亜硫酸水素ナトリウム、亜硫酸ナトリウムおよび硫酸マグネシウム等が挙げられる。 (Sulfur-containing compounds)
The sulfur-containing compound is not particularly limited as long as it has a sulfur atom. Examples thereof include methanethiol, ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 2- Methyl-1-propanethiol, 2-methyl-2-propanethiol, thiophenol, cysteine, glutathione, thioglycolic acid, pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) ) Butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, hydrogen sulfide, sulfuric acid, sulfuric acid Sodium hydrogen, sodium sulfate, sulfurous acid, sodium hydrogensulfite, sodium sulfite and Magnesium sulfate, and the like.
上記含硫黄化合物は、イオウ原子を有する化合物であれば特に限定されないが、例として、メタンチオール、エタンチオール、1-プロパンチオール、2-プロパンチオール、1-ブタンチオール、2-ブタンチオール、2-メチル-1-プロパンチオール、2-メチル-2-プロパンチオール、チオフェノール、システイン、グルタチオン、チオグリコール酸、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン―2,4,6-(1H,3H,5H)-トリオン、硫化水素、硫酸、硫酸水素ナトリウム、硫酸ナトリウム、亜硫酸、亜硫酸水素ナトリウム、亜硫酸ナトリウムおよび硫酸マグネシウム等が挙げられる。 (Sulfur-containing compounds)
The sulfur-containing compound is not particularly limited as long as it has a sulfur atom. Examples thereof include methanethiol, ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 2- Methyl-1-propanethiol, 2-methyl-2-propanethiol, thiophenol, cysteine, glutathione, thioglycolic acid, pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) ) Butane, 1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, hydrogen sulfide, sulfuric acid, sulfuric acid Sodium hydrogen, sodium sulfate, sulfurous acid, sodium hydrogensulfite, sodium sulfite and Magnesium sulfate, and the like.
上記含硫黄化合物は、好ましくは、エタンチオール、1-プロパンチオール、2-プロパンチオール、1-ブタンチオール、2-ブタンチオール、2-メチル-1-プロパンチオール、2-メチル-2-プロパンチオール、チオグリコール酸、硫酸、硫酸水素ナトリウム、硫酸ナトリウム、亜硫酸、亜硫酸水素ナトリウム、亜硫酸ナトリウム、および硫酸マグネシウムからなる群から選択される少なくとも1つであり、より好ましくは、1-プロパンチオール、2-プロパンチオール、1-ブタンチオール、2-ブタンチオール、2-メチル-1-プロパンチオール、2-メチル-2-プロパンチオール、硫酸、硫酸水素ナトリウム、硫酸ナトリウム、および硫酸マグネシウムからなる群から選択される少なくとも1つであり、さらに好ましくは、1-ブタンチオール、2-ブタンチオール、2-メチル-1-プロパンチオール、2-メチル-2-プロパンチオール、硫酸、硫酸水素ナトリウム、硫酸ナトリウム、および硫酸マグネシウムからなる群から選択される少なくとも1つであり、いっそう好ましくは、硫酸である。
The sulfur-containing compound is preferably ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, It is at least one selected from the group consisting of thioglycolic acid, sulfuric acid, sodium hydrogen sulfate, sodium sulfate, sulfurous acid, sodium hydrogensulfite, sodium sulfite, and magnesium sulfate, and more preferably 1-propanethiol, 2-propane At least selected from the group consisting of thiol, 1-butanethiol, 2-butanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, sulfuric acid, sodium hydrogen sulfate, sodium sulfate, and magnesium sulfate One and more preferred Or selected from the group consisting of 1-butanethiol, 2-butanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, sulfuric acid, sodium hydrogen sulfate, sodium sulfate, and magnesium sulfate At least one, and more preferably sulfuric acid.
(リン酸およびその塩)
上記リン酸およびその塩は、特に限定されないが、例として、リン酸およびリン酸のアルカリ金属塩が挙げられる。ここで、アルカリ金属は上記したものである。
リン酸のアルカリ金属塩の例は、リン酸三リチウム(Li3PO4)、リン酸水素二リチウム(Li2HPO4)、リン酸二水素リチウム(LiH2PO4)、リン酸三ナトリウム(Na3PO4)、リン酸水素二ナトリウム(Na2HPO4)、リン酸二水素ナトリウム(NaH2PO4)、リン酸三カリウム(K3PO4)、リン酸水素二カリウム(K2HPO4)およびリン酸二水素カリウム(KH2PO4)である。
上記リン酸のアルカリ金属塩は、好ましくは、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸三カリウム、リン酸水素二カリウムおよびリン酸二水素カリウムからなる群から選択される少なくとも1つであり、より好ましくは、リン酸三ナトリウム、リン酸水素二ナトリウムおよびリン酸二水素ナトリウムからなる群から選択される少なくとも1つである。 (Phosphoric acid and its salts)
Although the said phosphoric acid and its salt are not specifically limited, As an example, the alkali metal salt of phosphoric acid and phosphoric acid is mentioned. Here, the alkali metal is as described above.
Examples of alkali metal salts of phosphoric acid include trilithium phosphate (Li 3 PO 4 ), dilithium hydrogen phosphate (Li 2 HPO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), trisodium phosphate ( Na 3 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), tripotassium phosphate (K 3 PO 4 ), dipotassium hydrogen phosphate (K 2 HPO) 4 ) and potassium dihydrogen phosphate (KH 2 PO 4 ).
The alkali metal salt of phosphoric acid is preferably selected from the group consisting of trisodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, tripotassium phosphate, dipotassium hydrogen phosphate and potassium dihydrogen phosphate. At least one selected from the group consisting of trisodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate.
上記リン酸およびその塩は、特に限定されないが、例として、リン酸およびリン酸のアルカリ金属塩が挙げられる。ここで、アルカリ金属は上記したものである。
リン酸のアルカリ金属塩の例は、リン酸三リチウム(Li3PO4)、リン酸水素二リチウム(Li2HPO4)、リン酸二水素リチウム(LiH2PO4)、リン酸三ナトリウム(Na3PO4)、リン酸水素二ナトリウム(Na2HPO4)、リン酸二水素ナトリウム(NaH2PO4)、リン酸三カリウム(K3PO4)、リン酸水素二カリウム(K2HPO4)およびリン酸二水素カリウム(KH2PO4)である。
上記リン酸のアルカリ金属塩は、好ましくは、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸三カリウム、リン酸水素二カリウムおよびリン酸二水素カリウムからなる群から選択される少なくとも1つであり、より好ましくは、リン酸三ナトリウム、リン酸水素二ナトリウムおよびリン酸二水素ナトリウムからなる群から選択される少なくとも1つである。 (Phosphoric acid and its salts)
Although the said phosphoric acid and its salt are not specifically limited, As an example, the alkali metal salt of phosphoric acid and phosphoric acid is mentioned. Here, the alkali metal is as described above.
Examples of alkali metal salts of phosphoric acid include trilithium phosphate (Li 3 PO 4 ), dilithium hydrogen phosphate (Li 2 HPO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), trisodium phosphate ( Na 3 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), tripotassium phosphate (K 3 PO 4 ), dipotassium hydrogen phosphate (K 2 HPO) 4 ) and potassium dihydrogen phosphate (KH 2 PO 4 ).
The alkali metal salt of phosphoric acid is preferably selected from the group consisting of trisodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, tripotassium phosphate, dipotassium hydrogen phosphate and potassium dihydrogen phosphate. At least one selected from the group consisting of trisodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate.
《接触の際の条件》
(接触の際の温度)
上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の温度は、特に限定されないが、好ましくは0℃~150℃の範囲内であり、より好ましくは70℃~150℃の範囲内であり、さらに好ましくは100℃~150℃の範囲内である。融着促進剤を溶液として用いる場合は溶媒の沸点±20℃の範囲で行うことが望ましい。 《Conditions for contact》
(Temperature at the time of contact)
In the conductive film forming step, the temperature at the time of contact between the insulating coating film and the fusion accelerator is not particularly limited, but is preferably in the range of 0 ° C. to 150 ° C., more preferably 70 ° C. Within the range of ˜150 ° C., more preferably within the range of 100 ° C. to 150 ° C. When using a fusion accelerator as a solution, it is desirable to carry out in the range of the boiling point of the solvent ± 20 ° C.
(接触の際の温度)
上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の温度は、特に限定されないが、好ましくは0℃~150℃の範囲内であり、より好ましくは70℃~150℃の範囲内であり、さらに好ましくは100℃~150℃の範囲内である。融着促進剤を溶液として用いる場合は溶媒の沸点±20℃の範囲で行うことが望ましい。 《Conditions for contact》
(Temperature at the time of contact)
In the conductive film forming step, the temperature at the time of contact between the insulating coating film and the fusion accelerator is not particularly limited, but is preferably in the range of 0 ° C. to 150 ° C., more preferably 70 ° C. Within the range of ˜150 ° C., more preferably within the range of 100 ° C. to 150 ° C. When using a fusion accelerator as a solution, it is desirable to carry out in the range of the boiling point of the solvent ± 20 ° C.
(接触の際の雰囲気)
上記導電膜形成工程においては、上記絶縁性塗膜と上記融着促進剤との接触は、酸化的雰囲気下で行われてもよいし、不活性雰囲気下または還元的雰囲気下で行われてもよいが、酸化的雰囲気下であっても、優れた導電性を有する導電膜を形成できることが、本発明の効果のひとつである。
酸化的雰囲気としては、例えば、大気もしくは空気、または大気もしくは空気と不活性ガスの混合ガスもしくは大気もしくは空気と気体状態もしくは気化した融着促進剤との混合ガスであって、酸素を5.0%(v/v)以上、好ましくは5.0%(v/v)以上21.0%(v/v)未満含むものが挙げられる。
不活性雰囲気または還元的雰囲気としては、例えば、不活性ガスが挙げられ、酸素の含有量が好ましくは0.005%(v/v)以下であり、より好ましくは不可避的微量である。なお、不活性ガスとしては、窒素ガス、アルゴンガス、ネオンガスおよびキセノンガス等が挙げられる。還元性ガスとしては、水素ガス、ギ酸ガス等があげられる。 (Atmosphere for contact)
In the conductive film forming step, the insulating coating film and the fusion accelerator may be contacted in an oxidizing atmosphere, or in an inert atmosphere or a reducing atmosphere. Although it is good, it is one of the effects of the present invention that a conductive film having excellent conductivity can be formed even in an oxidizing atmosphere.
Examples of the oxidative atmosphere include air or air, or a mixed gas of air or air and an inert gas, or a mixed gas of air or air and a gas state or a vaporized fusion accelerator, and oxygen is 5.0. % (V / v) or more, preferably 5.0% (v / v) or more and less than 21.0% (v / v).
Examples of the inert atmosphere or the reducing atmosphere include an inert gas, and the oxygen content is preferably 0.005% (v / v) or less, and more preferably inevitable. Examples of the inert gas include nitrogen gas, argon gas, neon gas, and xenon gas. Examples of the reducing gas include hydrogen gas and formic acid gas.
上記導電膜形成工程においては、上記絶縁性塗膜と上記融着促進剤との接触は、酸化的雰囲気下で行われてもよいし、不活性雰囲気下または還元的雰囲気下で行われてもよいが、酸化的雰囲気下であっても、優れた導電性を有する導電膜を形成できることが、本発明の効果のひとつである。
酸化的雰囲気としては、例えば、大気もしくは空気、または大気もしくは空気と不活性ガスの混合ガスもしくは大気もしくは空気と気体状態もしくは気化した融着促進剤との混合ガスであって、酸素を5.0%(v/v)以上、好ましくは5.0%(v/v)以上21.0%(v/v)未満含むものが挙げられる。
不活性雰囲気または還元的雰囲気としては、例えば、不活性ガスが挙げられ、酸素の含有量が好ましくは0.005%(v/v)以下であり、より好ましくは不可避的微量である。なお、不活性ガスとしては、窒素ガス、アルゴンガス、ネオンガスおよびキセノンガス等が挙げられる。還元性ガスとしては、水素ガス、ギ酸ガス等があげられる。 (Atmosphere for contact)
In the conductive film forming step, the insulating coating film and the fusion accelerator may be contacted in an oxidizing atmosphere, or in an inert atmosphere or a reducing atmosphere. Although it is good, it is one of the effects of the present invention that a conductive film having excellent conductivity can be formed even in an oxidizing atmosphere.
Examples of the oxidative atmosphere include air or air, or a mixed gas of air or air and an inert gas, or a mixed gas of air or air and a gas state or a vaporized fusion accelerator, and oxygen is 5.0. % (V / v) or more, preferably 5.0% (v / v) or more and less than 21.0% (v / v).
Examples of the inert atmosphere or the reducing atmosphere include an inert gas, and the oxygen content is preferably 0.005% (v / v) or less, and more preferably inevitable. Examples of the inert gas include nitrogen gas, argon gas, neon gas, and xenon gas. Examples of the reducing gas include hydrogen gas and formic acid gas.
(接触の際の時間)
上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の時間は、特に限定されないが、好ましくは5秒~24時間であり、より好ましくは5秒~10分であり、さらに好ましくは30秒~2分である。 (Time for contact)
In the conductive film forming step, the time for contacting the insulating coating film and the fusion accelerator is not particularly limited, but is preferably 5 seconds to 24 hours, more preferably 5 seconds to 10 minutes. More preferably, it is 30 seconds to 2 minutes.
上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際の時間は、特に限定されないが、好ましくは5秒~24時間であり、より好ましくは5秒~10分であり、さらに好ましくは30秒~2分である。 (Time for contact)
In the conductive film forming step, the time for contacting the insulating coating film and the fusion accelerator is not particularly limited, but is preferably 5 seconds to 24 hours, more preferably 5 seconds to 10 minutes. More preferably, it is 30 seconds to 2 minutes.
(接触の際の融着促進剤の状態)
上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際に、好ましくは、上記絶縁性塗膜と気体状態の上記融着促進剤とを接触させるか、または、上記絶縁性塗膜と上記融着促進剤を含む液体とを接触させる。
ここで、気体状態の融着促進剤は、気体状態の融着促進剤の単独のガスである場合および融着促進剤の気体とキャリアガスとの混合ガスである場合のいずれであってもよい。
また、融着促進剤を含む液体は、液体状態の融着促進剤である場合、液体状態または固体状態の融着促進剤の溶液である場合のいずれであってもよい。融着促進剤を含む液体は、融着促進剤とは別に、溶媒を含んでいてもよい。溶媒としては、上記分散媒として例示した化合物が挙げられ、溶媒は、2種混合して用いてもよい。溶媒としては、水、アルコール、または水-アルコール混合溶媒が好ましく、水-アルコール混合溶媒がより好ましい。融着促進剤および溶媒を含む溶液において、融着促進剤の含有量は特に制限されないが、溶液全質量に対して、好ましくは、5質量%~30質量%であり、より好ましくは、10質量%~30質量である。
なお、ミストでの接触は、液体状態での接触に該当する。 (State of fusion promoter at the time of contact)
In the conductive film forming step, when the insulating coating film and the fusion accelerator are in contact, preferably, the insulating coating film and the fusion accelerator in a gaseous state are contacted, or The insulating coating film is brought into contact with a liquid containing the fusion accelerator.
Here, the fusion promoter in the gaseous state may be either a single gas of the fusion promoter in the gaseous state or a mixed gas of the fusion accelerator gas and the carrier gas. .
Further, the liquid containing the fusion accelerator may be either a liquid fusion accelerator or a liquid or solid fusion accelerator solution. The liquid containing the fusion accelerator may contain a solvent separately from the fusion accelerator. Examples of the solvent include the compounds exemplified as the dispersion medium, and two or more solvents may be used in combination. As the solvent, water, alcohol, or a water-alcohol mixed solvent is preferable, and a water-alcohol mixed solvent is more preferable. In the solution containing the fusion accelerator and the solvent, the content of the fusion accelerator is not particularly limited, but is preferably 5% by mass to 30% by mass and more preferably 10% by mass with respect to the total mass of the solution. % To 30 mass.
Note that the contact with the mist corresponds to the contact in the liquid state.
上記導電膜形成工程において、上記絶縁性塗膜と上記融着促進剤との接触の際に、好ましくは、上記絶縁性塗膜と気体状態の上記融着促進剤とを接触させるか、または、上記絶縁性塗膜と上記融着促進剤を含む液体とを接触させる。
ここで、気体状態の融着促進剤は、気体状態の融着促進剤の単独のガスである場合および融着促進剤の気体とキャリアガスとの混合ガスである場合のいずれであってもよい。
また、融着促進剤を含む液体は、液体状態の融着促進剤である場合、液体状態または固体状態の融着促進剤の溶液である場合のいずれであってもよい。融着促進剤を含む液体は、融着促進剤とは別に、溶媒を含んでいてもよい。溶媒としては、上記分散媒として例示した化合物が挙げられ、溶媒は、2種混合して用いてもよい。溶媒としては、水、アルコール、または水-アルコール混合溶媒が好ましく、水-アルコール混合溶媒がより好ましい。融着促進剤および溶媒を含む溶液において、融着促進剤の含有量は特に制限されないが、溶液全質量に対して、好ましくは、5質量%~30質量%であり、より好ましくは、10質量%~30質量である。
なお、ミストでの接触は、液体状態での接触に該当する。 (State of fusion promoter at the time of contact)
In the conductive film forming step, when the insulating coating film and the fusion accelerator are in contact, preferably, the insulating coating film and the fusion accelerator in a gaseous state are contacted, or The insulating coating film is brought into contact with a liquid containing the fusion accelerator.
Here, the fusion promoter in the gaseous state may be either a single gas of the fusion promoter in the gaseous state or a mixed gas of the fusion accelerator gas and the carrier gas. .
Further, the liquid containing the fusion accelerator may be either a liquid fusion accelerator or a liquid or solid fusion accelerator solution. The liquid containing the fusion accelerator may contain a solvent separately from the fusion accelerator. Examples of the solvent include the compounds exemplified as the dispersion medium, and two or more solvents may be used in combination. As the solvent, water, alcohol, or a water-alcohol mixed solvent is preferable, and a water-alcohol mixed solvent is more preferable. In the solution containing the fusion accelerator and the solvent, the content of the fusion accelerator is not particularly limited, but is preferably 5% by mass to 30% by mass and more preferably 10% by mass with respect to the total mass of the solution. % To 30 mass.
Note that the contact with the mist corresponds to the contact in the liquid state.
〈塗膜形成工程〉
本発明の導電膜の製造方法は、上記導電膜形成工程の前に、銅粒子と分散媒とを含む導電膜形成用組成物を基材上に付与して絶縁性塗膜を形成する塗膜形成工程を備えてもよい。 <Coating film formation process>
The manufacturing method of the electrically conductive film of this invention is the coating film which provides the composition for electrically conductive film formation containing a copper particle and a dispersion medium on a base material before the said electrically conductive film formation process, and forms an insulating coating film. You may provide a formation process.
本発明の導電膜の製造方法は、上記導電膜形成工程の前に、銅粒子と分散媒とを含む導電膜形成用組成物を基材上に付与して絶縁性塗膜を形成する塗膜形成工程を備えてもよい。 <Coating film formation process>
The manufacturing method of the electrically conductive film of this invention is the coating film which provides the composition for electrically conductive film formation containing a copper particle and a dispersion medium on a base material before the said electrically conductive film formation process, and forms an insulating coating film. You may provide a formation process.
《導電膜形成用組成物》
(銅粒子)
上記銅粒子は、上記導電膜形成工程において説明したものと同様である。
上記銅粒子の上記導電膜形成用組成物中の含有量は、上記導電膜形成用組成物中の固形分の全質量に対して、好ましくは80質量%以上100質量%未満であり、より好ましくは90質量%以上100質量%未満であり、さらに好ましくは95質量%以上100質量%未満であり、いっそう好ましくは99質量%以上100質量%未満である。
上記導電膜形成用組成物中の上記銅粒子の含有量がこの範囲内であると、得られる導電膜中の導電体として機能する銅の含有量も多くなり、より優れた導電性を有する導電膜を得ることができる。 << Composition for conductive film formation >>
(Copper particles)
The copper particles are the same as those described in the conductive film forming step.
The content of the copper particles in the conductive film forming composition is preferably 80% by mass or more and less than 100% by mass, and more preferably, based on the total mass of the solid content in the conductive film forming composition. Is 90% by mass or more and less than 100% by mass, more preferably 95% by mass or more and less than 100% by mass, and still more preferably 99% by mass or more and less than 100% by mass.
When the content of the copper particles in the conductive film-forming composition is within this range, the content of copper functioning as a conductor in the obtained conductive film also increases, and the conductive material has better conductivity. A membrane can be obtained.
(銅粒子)
上記銅粒子は、上記導電膜形成工程において説明したものと同様である。
上記銅粒子の上記導電膜形成用組成物中の含有量は、上記導電膜形成用組成物中の固形分の全質量に対して、好ましくは80質量%以上100質量%未満であり、より好ましくは90質量%以上100質量%未満であり、さらに好ましくは95質量%以上100質量%未満であり、いっそう好ましくは99質量%以上100質量%未満である。
上記導電膜形成用組成物中の上記銅粒子の含有量がこの範囲内であると、得られる導電膜中の導電体として機能する銅の含有量も多くなり、より優れた導電性を有する導電膜を得ることができる。 << Composition for conductive film formation >>
(Copper particles)
The copper particles are the same as those described in the conductive film forming step.
The content of the copper particles in the conductive film forming composition is preferably 80% by mass or more and less than 100% by mass, and more preferably, based on the total mass of the solid content in the conductive film forming composition. Is 90% by mass or more and less than 100% by mass, more preferably 95% by mass or more and less than 100% by mass, and still more preferably 99% by mass or more and less than 100% by mass.
When the content of the copper particles in the conductive film-forming composition is within this range, the content of copper functioning as a conductor in the obtained conductive film also increases, and the conductive material has better conductivity. A membrane can be obtained.
(分散媒)
上記分散媒は、上記銅粒子を分散することができるものであれば特に限定されない。
上記分散媒の具体例は、水、メタノール、エタノール、プロパノール、2-プロパノール、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテートおよびジエチレングリコールモノブチルエーテルアセテートからなる群から選択される少なくとも1種であり、好ましくは水、メタノール、エタノール、プロパノールおよび2プロパノールからなる群から選択される少なくとも1種であり、より好ましくは水、メタノールおよびエタノールからなる群から選択される少なくとも1種であり、さらに好ましくは水である。上記水としては、イオン交換水、RO(Reverse Osmosis:逆浸透)水もしくは蒸留水その他の純水、またはASTM D 1193-06タイプ1グレードその他の超純水が好ましい。 (Dispersion medium)
The dispersion medium is not particularly limited as long as it can disperse the copper particles.
Specific examples of the dispersion medium include water, methanol, ethanol, propanol, 2-propanol, cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol. At least one selected from the group consisting of monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate, preferably water, methanol, ethanol, propanol and 2-propanol Select from the group consisting of Is at least one, more preferably at least one selected from the group consisting of water, methanol and ethanol, more preferably water. The water is preferably ion-exchanged water, RO (Reverse Osmosis) water, distilled water or other pure water, or ASTM D 1193-06 type 1 grade or other ultrapure water.
上記分散媒は、上記銅粒子を分散することができるものであれば特に限定されない。
上記分散媒の具体例は、水、メタノール、エタノール、プロパノール、2-プロパノール、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテートおよびジエチレングリコールモノブチルエーテルアセテートからなる群から選択される少なくとも1種であり、好ましくは水、メタノール、エタノール、プロパノールおよび2プロパノールからなる群から選択される少なくとも1種であり、より好ましくは水、メタノールおよびエタノールからなる群から選択される少なくとも1種であり、さらに好ましくは水である。上記水としては、イオン交換水、RO(Reverse Osmosis:逆浸透)水もしくは蒸留水その他の純水、またはASTM D 1193-06タイプ1グレードその他の超純水が好ましい。 (Dispersion medium)
The dispersion medium is not particularly limited as long as it can disperse the copper particles.
Specific examples of the dispersion medium include water, methanol, ethanol, propanol, 2-propanol, cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol. At least one selected from the group consisting of monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate, preferably water, methanol, ethanol, propanol and 2-propanol Select from the group consisting of Is at least one, more preferably at least one selected from the group consisting of water, methanol and ethanol, more preferably water. The water is preferably ion-exchanged water, RO (Reverse Osmosis) water, distilled water or other pure water, or ASTM D 1193-06 type 1 grade or other ultrapure water.
(添加剤)
上記導電膜形成用組成物は、銅粒子および溶媒に加えて、添加剤を含んでもよい。
上記導電膜形成用組成物中の上記添加剤の含有量は、特に限定されないが、好ましくは15質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、いっそう好ましくは1質量%以下である。上記導電膜形成用組成物は上記添加剤を必ずしも含む必要がないため、含有量の下限は0質量%である。
ここで、上記添加剤は、上記導電膜形成工程において説明したものと同様である。 (Additive)
The conductive film forming composition may contain an additive in addition to the copper particles and the solvent.
The content of the additive in the conductive film-forming composition is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. More preferably, it is 1% by mass or less. Since the said composition for electrically conductive film formation does not necessarily need to contain the said additive, the minimum of content is 0 mass%.
Here, the additive is the same as that described in the conductive film forming step.
上記導電膜形成用組成物は、銅粒子および溶媒に加えて、添加剤を含んでもよい。
上記導電膜形成用組成物中の上記添加剤の含有量は、特に限定されないが、好ましくは15質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、いっそう好ましくは1質量%以下である。上記導電膜形成用組成物は上記添加剤を必ずしも含む必要がないため、含有量の下限は0質量%である。
ここで、上記添加剤は、上記導電膜形成工程において説明したものと同様である。 (Additive)
The conductive film forming composition may contain an additive in addition to the copper particles and the solvent.
The content of the additive in the conductive film-forming composition is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. More preferably, it is 1% by mass or less. Since the said composition for electrically conductive film formation does not necessarily need to contain the said additive, the minimum of content is 0 mass%.
Here, the additive is the same as that described in the conductive film forming step.
(バインダー)
上記導電膜形成用組成物は、バインダーを含まなくてもよいし、含んでもよい。
ここで、上記バインダーは、上記導電膜形成工程において説明したものと同様である。
上記導電膜形成用組成物がバインダーを含む場合、その含有量は、上記導電膜形成用組成物の固形分の全質量に対して、好ましくは0.10~5.0質量%であり、より好ましくは0.10~3.0質量%であり、さらに好ましくは0.10~1.0質量%である。 (binder)
The conductive film forming composition may or may not contain a binder.
Here, the binder is the same as that described in the conductive film formation step.
When the conductive film-forming composition contains a binder, the content thereof is preferably 0.10 to 5.0% by mass with respect to the total mass of the solid content of the conductive film-forming composition, and more The amount is preferably 0.10 to 3.0% by mass, and more preferably 0.10 to 1.0% by mass.
上記導電膜形成用組成物は、バインダーを含まなくてもよいし、含んでもよい。
ここで、上記バインダーは、上記導電膜形成工程において説明したものと同様である。
上記導電膜形成用組成物がバインダーを含む場合、その含有量は、上記導電膜形成用組成物の固形分の全質量に対して、好ましくは0.10~5.0質量%であり、より好ましくは0.10~3.0質量%であり、さらに好ましくは0.10~1.0質量%である。 (binder)
The conductive film forming composition may or may not contain a binder.
Here, the binder is the same as that described in the conductive film formation step.
When the conductive film-forming composition contains a binder, the content thereof is preferably 0.10 to 5.0% by mass with respect to the total mass of the solid content of the conductive film-forming composition, and more The amount is preferably 0.10 to 3.0% by mass, and more preferably 0.10 to 1.0% by mass.
(基材)
上記基材は、従来公知のものを用いることができる。
また、上記基材に使用される材料の具体例は、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属、金属酸化物、金属窒化物、木材、またはこれらの複合物であるが、これらに限定されるものではない。 (Base material)
A conventionally well-known thing can be used for the said base material.
Specific examples of the material used for the base material are resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal, metal oxide, metal nitride, wood, or a composite thereof. It is not limited to.
上記基材は、従来公知のものを用いることができる。
また、上記基材に使用される材料の具体例は、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属、金属酸化物、金属窒化物、木材、またはこれらの複合物であるが、これらに限定されるものではない。 (Base material)
A conventionally well-known thing can be used for the said base material.
Specific examples of the material used for the base material are resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal, metal oxide, metal nitride, wood, or a composite thereof. It is not limited to.
上記樹脂の具体例は、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS(Acrylonitrile Butadiene Styrene)樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート(PET))、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、およびセルロース誘導体であるが、これらに限定されるものではない。
上記紙の具体例は、塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、および段ボールであるが、これらに限定されるものではない。
上記ガラスの具体例は、ソーダガラス、ホウケイ酸ガラス、シリカガラス、および石英ガラスであるが、これらに限定されるものではない。
上記シリコン系半導体の具体例は、アモルファスシリコンおよびポリシリコンであるが、これらに限定されるものではない。
上記化合物半導体の具体例は、CdS、CdTeおよびGaAsであるが、これらに限定されるものではない。
上記金属の具体例は、銅、鉄、およびアルミであるが、これらに限定されるものではない。
上記金属酸化物の具体例は、アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、およびガリウムドープ酸化亜鉛であるが、これらに限定されるものではない。
上記金属窒化物の具体例は、窒化アルミニウムであるが、これに限定されるものではない。
また、上記複合物の具体例は、紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂(ガラスエポキシ樹脂)、ガラス布-ポリイミド系樹脂、およびガラス布-フッ素樹脂であるが、これらに限定されるものではない。
本発明の導電膜を形成する基材は、特に限定されないが、好ましくはガラス基材、ポリイミド基材、またはポリエチレンテレフタレート(PET)基材である。 Specific examples of the resin include low density polyethylene resin, high density polyethylene resin, ABS (Acrylonitrile Butadiene Styrene) resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate (PET)), polyacetal resin, polysulfone resin. , Polyetherimide resin, polyetherketone resin, polyimide resin, and cellulose derivative, but are not limited thereto.
Specific examples of the paper include coated printing paper, finely coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unexposed packaging paper (both heavy bags) Modified kraft paper, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated ball, chip ball, and corrugated cardboard, but are not limited thereto.
Specific examples of the glass include soda glass, borosilicate glass, silica glass, and quartz glass, but are not limited thereto.
Specific examples of the silicon-based semiconductor are amorphous silicon and polysilicon, but are not limited thereto.
Specific examples of the compound semiconductor include CdS, CdTe, and GaAs, but are not limited thereto.
Specific examples of the metal include copper, iron, and aluminum, but are not limited thereto.
Specific examples of the metal oxide include alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc oxide), nesa (tin oxide), and ATO (antimony-doped oxide). Tin), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), and gallium-doped zinc oxide, but are not limited thereto.
A specific example of the metal nitride is aluminum nitride, but is not limited thereto.
Specific examples of the composite include paper-phenol composite, paper-epoxy resin, paper-polyester resin, and other paper-resin composites, glass cloth-epoxy resin (glass epoxy resin), glass cloth-polyimide resin, And glass cloth-fluorine resin, but is not limited thereto.
Although the base material which forms the electrically conductive film of this invention is not specifically limited, Preferably it is a glass base material, a polyimide base material, or a polyethylene terephthalate (PET) base material.
上記紙の具体例は、塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、および段ボールであるが、これらに限定されるものではない。
上記ガラスの具体例は、ソーダガラス、ホウケイ酸ガラス、シリカガラス、および石英ガラスであるが、これらに限定されるものではない。
上記シリコン系半導体の具体例は、アモルファスシリコンおよびポリシリコンであるが、これらに限定されるものではない。
上記化合物半導体の具体例は、CdS、CdTeおよびGaAsであるが、これらに限定されるものではない。
上記金属の具体例は、銅、鉄、およびアルミであるが、これらに限定されるものではない。
上記金属酸化物の具体例は、アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、およびガリウムドープ酸化亜鉛であるが、これらに限定されるものではない。
上記金属窒化物の具体例は、窒化アルミニウムであるが、これに限定されるものではない。
また、上記複合物の具体例は、紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂(ガラスエポキシ樹脂)、ガラス布-ポリイミド系樹脂、およびガラス布-フッ素樹脂であるが、これらに限定されるものではない。
本発明の導電膜を形成する基材は、特に限定されないが、好ましくはガラス基材、ポリイミド基材、またはポリエチレンテレフタレート(PET)基材である。 Specific examples of the resin include low density polyethylene resin, high density polyethylene resin, ABS (Acrylonitrile Butadiene Styrene) resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate (PET)), polyacetal resin, polysulfone resin. , Polyetherimide resin, polyetherketone resin, polyimide resin, and cellulose derivative, but are not limited thereto.
Specific examples of the paper include coated printing paper, finely coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unexposed packaging paper (both heavy bags) Modified kraft paper, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated ball, chip ball, and corrugated cardboard, but are not limited thereto.
Specific examples of the glass include soda glass, borosilicate glass, silica glass, and quartz glass, but are not limited thereto.
Specific examples of the silicon-based semiconductor are amorphous silicon and polysilicon, but are not limited thereto.
Specific examples of the compound semiconductor include CdS, CdTe, and GaAs, but are not limited thereto.
Specific examples of the metal include copper, iron, and aluminum, but are not limited thereto.
Specific examples of the metal oxide include alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc oxide), nesa (tin oxide), and ATO (antimony-doped oxide). Tin), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), and gallium-doped zinc oxide, but are not limited thereto.
A specific example of the metal nitride is aluminum nitride, but is not limited thereto.
Specific examples of the composite include paper-phenol composite, paper-epoxy resin, paper-polyester resin, and other paper-resin composites, glass cloth-epoxy resin (glass epoxy resin), glass cloth-polyimide resin, And glass cloth-fluorine resin, but is not limited thereto.
Although the base material which forms the electrically conductive film of this invention is not specifically limited, Preferably it is a glass base material, a polyimide base material, or a polyethylene terephthalate (PET) base material.
《導電膜形成用組成物を基材上に付与する方法》
上記導電膜形成用組成物を基材上に付与する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、および、インクジェット法などの塗布法が挙げられる。
塗布の形状は特に制限されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。 << Method of Applying Composition for Forming Conductive Film on Substrate >>
The method for applying the composition for forming a conductive film on a substrate is not particularly limited, and a known method can be adopted. For example, a screen printing method, a dip coating method, a spray coating method, a spin coating method, and a coating method such as an inkjet method can be used.
The shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
上記導電膜形成用組成物を基材上に付与する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、および、インクジェット法などの塗布法が挙げられる。
塗布の形状は特に制限されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。 << Method of Applying Composition for Forming Conductive Film on Substrate >>
The method for applying the composition for forming a conductive film on a substrate is not particularly limited, and a known method can be adopted. For example, a screen printing method, a dip coating method, a spray coating method, a spin coating method, and a coating method such as an inkjet method can be used.
The shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚(厚み)は、好ましくは2~600μmであり、より好ましくは10~300μmであり、さらに好ましくは10~200μmである。
The coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film. Usually, the film thickness (thickness) of the coating film is preferably 2 to It is 600 μm, more preferably 10 to 300 μm, still more preferably 10 to 200 μm.
(導電膜形成用組成物の調製方法)
上記導電膜形成用組成物の調製方法は、特に限定されないが、例えば、分散媒に、銅粒子を添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、および、ボールミル法などの公知の手段により成分を分散させることによって、組成物を得ることができる。 (Method for preparing composition for forming conductive film)
Although the preparation method of the said electrically conductive film formation composition is not specifically limited, For example, after adding a copper particle to a dispersion medium, an ultrasonic method (for example, the process by an ultrasonic homogenizer), a mixer method, a 3 roll method And a composition can be obtained by disperse | distributing a component by well-known means, such as a ball mill method.
上記導電膜形成用組成物の調製方法は、特に限定されないが、例えば、分散媒に、銅粒子を添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、および、ボールミル法などの公知の手段により成分を分散させることによって、組成物を得ることができる。 (Method for preparing composition for forming conductive film)
Although the preparation method of the said electrically conductive film formation composition is not specifically limited, For example, after adding a copper particle to a dispersion medium, an ultrasonic method (for example, the process by an ultrasonic homogenizer), a mixer method, a 3 roll method And a composition can be obtained by disperse | distributing a component by well-known means, such as a ball mill method.
〈洗浄工程〉
本発明の導電膜の製造方法は、上記導電膜形成工程の後に、上記導電膜の表面を洗浄する導電膜洗浄工程を備えてもよい。
導電膜洗浄工程では、導電膜と洗浄剤とを接触させることにより、導電膜の少なくとも表面に残留している融着促進剤を洗浄・除去する。
洗浄剤は、導電膜に与える影響が少なく、融着促進剤を洗浄・除去できるものであれば、特に限定されないが、例えば、上記した分散媒を用いることもできる。
洗浄の効果としては、残留している融着促進剤が除去されることによる導電膜中の銅の含有量が増加することが挙げられる。洗浄は、導電性を向上させる効果は期待できないが、悪影響を与えるものではない。 <Washing process>
The manufacturing method of the electrically conductive film of this invention may be equipped with the electrically conductive film washing | cleaning process of wash | cleaning the surface of the said electrically conductive film after the said electrically conductive film formation process.
In the conductive film cleaning step, the adhesion promoter remaining at least on the surface of the conductive film is cleaned and removed by bringing the conductive film into contact with the cleaning agent.
The cleaning agent is not particularly limited as long as it has little influence on the conductive film and can clean and remove the adhesion promoter. For example, the above-described dispersion medium can also be used.
As an effect of the cleaning, it can be mentioned that the content of copper in the conductive film is increased by removing the remaining adhesion promoter. Although cleaning cannot be expected to improve conductivity, it does not adversely affect the cleaning.
本発明の導電膜の製造方法は、上記導電膜形成工程の後に、上記導電膜の表面を洗浄する導電膜洗浄工程を備えてもよい。
導電膜洗浄工程では、導電膜と洗浄剤とを接触させることにより、導電膜の少なくとも表面に残留している融着促進剤を洗浄・除去する。
洗浄剤は、導電膜に与える影響が少なく、融着促進剤を洗浄・除去できるものであれば、特に限定されないが、例えば、上記した分散媒を用いることもできる。
洗浄の効果としては、残留している融着促進剤が除去されることによる導電膜中の銅の含有量が増加することが挙げられる。洗浄は、導電性を向上させる効果は期待できないが、悪影響を与えるものではない。 <Washing process>
The manufacturing method of the electrically conductive film of this invention may be equipped with the electrically conductive film washing | cleaning process of wash | cleaning the surface of the said electrically conductive film after the said electrically conductive film formation process.
In the conductive film cleaning step, the adhesion promoter remaining at least on the surface of the conductive film is cleaned and removed by bringing the conductive film into contact with the cleaning agent.
The cleaning agent is not particularly limited as long as it has little influence on the conductive film and can clean and remove the adhesion promoter. For example, the above-described dispersion medium can also be used.
As an effect of the cleaning, it can be mentioned that the content of copper in the conductive film is increased by removing the remaining adhesion promoter. Although cleaning cannot be expected to improve conductivity, it does not adversely affect the cleaning.
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[導電膜形成用組成物の準備または調製]
導電膜形成用組成物1~7を準備または調製した。導電膜形成用組成物の組成を表1に示す。 [Preparation or Preparation of Composition for Forming Conductive Film]
Conductive film forming compositions 1 to 7 were prepared or prepared. Table 1 shows the composition of the conductive film forming composition.
導電膜形成用組成物1~7を準備または調製した。導電膜形成用組成物の組成を表1に示す。 [Preparation or Preparation of Composition for Forming Conductive Film]
Conductive film forming compositions 1 to 7 were prepared or prepared. Table 1 shows the composition of the conductive film forming composition.
〈導電膜形成用組成物1〉
銅粒子インク(銅粒子の平均粒子径80nm、固形分濃度50.0質量%の銅粒子含有エチレングリコールインク;Promethean Particles社製)を準備した。以下、この銅粒子インクを「導電膜形成用組成物1」という。 <Composition 1 for electrically conductive film formation>
A copper particle ink (copper particle-containing ethylene glycol ink having an average particle diameter of copper particles of 80 nm and a solid content concentration of 50.0% by mass; manufactured by Prothean Particles) was prepared. Hereinafter, this copper particle ink is referred to as “conductive film forming composition 1”.
銅粒子インク(銅粒子の平均粒子径80nm、固形分濃度50.0質量%の銅粒子含有エチレングリコールインク;Promethean Particles社製)を準備した。以下、この銅粒子インクを「導電膜形成用組成物1」という。 <Composition 1 for electrically conductive film formation>
A copper particle ink (copper particle-containing ethylene glycol ink having an average particle diameter of copper particles of 80 nm and a solid content concentration of 50.0% by mass; manufactured by Prothean Particles) was prepared. Hereinafter, this copper particle ink is referred to as “conductive film forming composition 1”.
〈導電膜形成用組成物2〉
銅粒子(平均粒子径810nm、三井金属社製1050Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物2」という。 <Composition 2 for electrically conductive film formation>
50.0 parts by mass of copper particles (average particle diameter 810 nm, Mitsui Kinzoku 1050Y) are mixed with 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.), and Shintaro Awatori Netaro (ARE-250 type). ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 2”.
銅粒子(平均粒子径810nm、三井金属社製1050Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物2」という。 <Composition 2 for electrically conductive film formation>
50.0 parts by mass of copper particles (average particle diameter 810 nm, Mitsui Kinzoku 1050Y) are mixed with 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.), and Shintaro Awatori Netaro (ARE-250 type). ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 2”.
〈導電膜形成用組成物3〉
銅粒子(平均粒子径420nm、三井金属社製1030Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物3」という。 <Composition 3 for forming conductive film>
50.0 parts by mass of copper particles (average particle size 420 nm, Mitsui Kinzoku 1030Y) are mixed with 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.), and Shintaro Awatori Netaro (ARE-250 type). ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 3”.
銅粒子(平均粒子径420nm、三井金属社製1030Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物3」という。 <Composition 3 for forming conductive film>
50.0 parts by mass of copper particles (average particle size 420 nm, Mitsui Kinzoku 1030Y) are mixed with 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.), and Shintaro Awatori Netaro (ARE-250 type). ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 3”.
〈導電膜形成用組成物4〉
銅粒子(平均粒子径1100nm、三井金属社製1100Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物4」という。 <Composition 4 for forming conductive film>
50.0 parts by mass of copper particles (average particle size 1100 nm, 1100Y manufactured by Mitsui Kinzoku Co., Ltd.) and 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, and Narotaro Awatori (ARE-250 type) manufactured by Sinky Corporation. ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 4”.
銅粒子(平均粒子径1100nm、三井金属社製1100Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物4」という。 <Composition 4 for forming conductive film>
50.0 parts by mass of copper particles (average particle size 1100 nm, 1100Y manufactured by Mitsui Kinzoku Co., Ltd.) and 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, and Narotaro Awatori (ARE-250 type) manufactured by Sinky Corporation. ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 4”.
〈導電膜形成用組成物5〉
銅粒子(平均粒子径5700nm、三井金属社製1400Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物5」という。 <Conductive film forming composition 5>
50.0 parts by mass of copper particles (average particle size 5700 nm, 1400Y manufactured by Mitsui Kinzoku Co., Ltd.) and 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed, and Narotaro Awatori (ARE-250 type) manufactured by Sinky Corporation. ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 5”.
銅粒子(平均粒子径5700nm、三井金属社製1400Y)50.0質量部を、エチレングリコール(東京化成社製)50.0質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「銅導電膜形成用組成物5」という。 <Conductive film forming composition 5>
50.0 parts by mass of copper particles (average particle size 5700 nm, 1400Y manufactured by Mitsui Kinzoku Co., Ltd.) and 50.0 parts by mass of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed, and Narotaro Awatori (ARE-250 type) manufactured by Sinky Corporation. ) Was stirred at 2000 rpm for 5 minutes to prepare a copper particle ink. Hereinafter, this copper particle ink is referred to as “copper conductive film forming composition 5”.
〈導電膜形成用組成物6〉
銅粒子(平均粒子径810nm、三井金属社製1050Y)33.3質量部、アスコルビン酸(東京化成社製)6.0質量部を、イオン交換水60.7質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「導電膜形成用組成物6」という。 <Composition 6 for forming conductive film>
33.3 parts by mass of copper particles (average particle size 810 nm, 1050Y manufactured by Mitsui Kinzoku Co., Ltd.) and 6.0 parts by mass of ascorbic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed with 60.7 parts by mass of ion-exchanged water, and manufactured by Sinky. A copper particle ink was prepared by stirring for 5 minutes at 2000 rpm using Awatori Netaro (ARE-250 type). Hereinafter, this copper particle ink is referred to as “conductive film forming composition 6”.
銅粒子(平均粒子径810nm、三井金属社製1050Y)33.3質量部、アスコルビン酸(東京化成社製)6.0質量部を、イオン交換水60.7質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「導電膜形成用組成物6」という。 <Composition 6 for forming conductive film>
33.3 parts by mass of copper particles (average particle size 810 nm, 1050Y manufactured by Mitsui Kinzoku Co., Ltd.) and 6.0 parts by mass of ascorbic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed with 60.7 parts by mass of ion-exchanged water, and manufactured by Sinky. A copper particle ink was prepared by stirring for 5 minutes at 2000 rpm using Awatori Netaro (ARE-250 type). Hereinafter, this copper particle ink is referred to as “conductive film forming composition 6”.
〈導電膜形成用組成物7〉
銅粒子(平均粒子径5700nm、三井金属社製1400Y)33.3質量部、アスコルビン酸(東京化成社製)6.0質量部を、イオン交換水60.7質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「導電膜形成用組成物7」という。 <Composition 7 for forming conductive film>
33.3 parts by mass of copper particles (average particle size 5700 nm, 1400Y manufactured by Mitsui Kinzoku Co., Ltd.) and 6.0 parts by mass of ascorbic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed with 60.7 parts by mass of ion-exchanged water, and manufactured by Sinky Corporation. A copper particle ink was prepared by stirring for 5 minutes at 2000 rpm using Awatori Netaro (ARE-250 type). Hereinafter, this copper particle ink is referred to as “conductive film forming composition 7”.
銅粒子(平均粒子径5700nm、三井金属社製1400Y)33.3質量部、アスコルビン酸(東京化成社製)6.0質量部を、イオン交換水60.7質量部と混合し、シンキー社製泡とり練太郎(ARE-250型)を用いて2000rpmで5分間撹拌して銅粒子インクを調製した。以下、この銅粒子インクを「導電膜形成用組成物7」という。 <Composition 7 for forming conductive film>
33.3 parts by mass of copper particles (average particle size 5700 nm, 1400Y manufactured by Mitsui Kinzoku Co., Ltd.) and 6.0 parts by mass of ascorbic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed with 60.7 parts by mass of ion-exchanged water, and manufactured by Sinky Corporation. A copper particle ink was prepared by stirring for 5 minutes at 2000 rpm using Awatori Netaro (ARE-250 type). Hereinafter, this copper particle ink is referred to as “conductive film forming composition 7”.
なお、銅粒子の平均粒子径は、ナノ粒子解析装置(nano Partica SZ-100、堀場製作所社製)を用いて測定したメジアン径(D50)である。
Note that the average particle diameter of the copper particles is a median diameter (D50) measured using a nanoparticle analyzer (nano Partica SZ-100, manufactured by Horiba, Ltd.).
[実施例1]
〈絶縁性塗膜の製造〉
《塗布》
ガラス基板(縦76mm×横26mm×厚み0.9mm;松波硝子社製)を準備した。
このガラス基板上に、導電膜形成用組成物1をコイルバーによりにより、縦61mm×横26mm×ウェット厚み40μmに塗布して、ガラス基板の表面に塗膜を形成した。 [Example 1]
<Manufacture of insulating coating film>
<Application>
A glass substrate (length 76 mm × width 26 mm × thickness 0.9 mm; manufactured by Matsunami Glass Co., Ltd.) was prepared.
On this glass substrate, the conductive film-forming composition 1 was applied by a coil bar to a length of 61 mm × width of 26 mm × wet thickness of 40 μm to form a coating film on the surface of the glass substrate.
〈絶縁性塗膜の製造〉
《塗布》
ガラス基板(縦76mm×横26mm×厚み0.9mm;松波硝子社製)を準備した。
このガラス基板上に、導電膜形成用組成物1をコイルバーによりにより、縦61mm×横26mm×ウェット厚み40μmに塗布して、ガラス基板の表面に塗膜を形成した。 [Example 1]
<Manufacture of insulating coating film>
<Application>
A glass substrate (length 76 mm × width 26 mm × thickness 0.9 mm; manufactured by Matsunami Glass Co., Ltd.) was prepared.
On this glass substrate, the conductive film-forming composition 1 was applied by a coil bar to a length of 61 mm × width of 26 mm × wet thickness of 40 μm to form a coating film on the surface of the glass substrate.
《乾燥》
ガラス基板上に形成した塗膜を、大気中において、25℃で1週間乾燥させて、ガラス基板上に絶縁性塗膜を形成した。 《Dry》
The coating film formed on the glass substrate was dried at 25 ° C. for 1 week in the air to form an insulating coating film on the glass substrate.
ガラス基板上に形成した塗膜を、大気中において、25℃で1週間乾燥させて、ガラス基板上に絶縁性塗膜を形成した。 《Dry》
The coating film formed on the glass substrate was dried at 25 ° C. for 1 week in the air to form an insulating coating film on the glass substrate.
〈絶縁性塗膜と融着促進剤との接触〉
ガラス基板上に形成した絶縁性塗膜に、表2に示す融着促進剤をセレクトローラーOSP-2(松尾産業社製)を用いてオーバーコートした後、表2に示す温度、時間および雰囲気で導電膜を形成させた。 <Contact between insulating coating and adhesion promoter>
After overcoating the insulating film formed on the glass substrate with a fusion accelerator shown in Table 2 using select roller OSP-2 (manufactured by Matsuo Sangyo Co., Ltd.), the temperature, time and atmosphere shown in Table 2 were used. A conductive film was formed.
ガラス基板上に形成した絶縁性塗膜に、表2に示す融着促進剤をセレクトローラーOSP-2(松尾産業社製)を用いてオーバーコートした後、表2に示す温度、時間および雰囲気で導電膜を形成させた。 <Contact between insulating coating and adhesion promoter>
After overcoating the insulating film formed on the glass substrate with a fusion accelerator shown in Table 2 using select roller OSP-2 (manufactured by Matsuo Sangyo Co., Ltd.), the temperature, time and atmosphere shown in Table 2 were used. A conductive film was formed.
〈導電性の評価〉
得られた膜の体積抵抗値を四端子法により測定した。
体積抵抗値の測定結果は、表2の該当欄に示した。 <Evaluation of conductivity>
The volume resistance value of the obtained film was measured by the four probe method.
The measurement result of the volume resistance value is shown in the corresponding column of Table 2.
得られた膜の体積抵抗値を四端子法により測定した。
体積抵抗値の測定結果は、表2の該当欄に示した。 <Evaluation of conductivity>
The volume resistance value of the obtained film was measured by the four probe method.
The measurement result of the volume resistance value is shown in the corresponding column of Table 2.
[実施例2~20]
表2に示す融着促進剤の溶液または液体状の融着促進剤を用いた点、ならびに表2に示す温度、時間および雰囲気で導電膜を形成させた点を除いて、実施例1と同様にした。 [Examples 2 to 20]
Same as Example 1 except that the fusion accelerator solution or liquid fusion accelerator shown in Table 2 was used and the conductive film was formed at the temperature, time and atmosphere shown in Table 2. I made it.
表2に示す融着促進剤の溶液または液体状の融着促進剤を用いた点、ならびに表2に示す温度、時間および雰囲気で導電膜を形成させた点を除いて、実施例1と同様にした。 [Examples 2 to 20]
Same as Example 1 except that the fusion accelerator solution or liquid fusion accelerator shown in Table 2 was used and the conductive film was formed at the temperature, time and atmosphere shown in Table 2. I made it.
[実施例21~42]
ガラス基板上に形成した絶縁性塗膜を、表2に示す融着促進剤を含む溶液にディップコートした後、表2に示す温度、時間および雰囲気で導電膜を形成させた点を除いて、実施例1と同様にした。 [Examples 21 to 42]
After dip coating the insulating coating film formed on the glass substrate to the solution containing the fusion accelerator shown in Table 2, except that the conductive film was formed at the temperature, time and atmosphere shown in Table 2, Same as Example 1.
ガラス基板上に形成した絶縁性塗膜を、表2に示す融着促進剤を含む溶液にディップコートした後、表2に示す温度、時間および雰囲気で導電膜を形成させた点を除いて、実施例1と同様にした。 [Examples 21 to 42]
After dip coating the insulating coating film formed on the glass substrate to the solution containing the fusion accelerator shown in Table 2, except that the conductive film was formed at the temperature, time and atmosphere shown in Table 2, Same as Example 1.
[比較例1~14、20~25]
表3に示す融着促進剤を用いた点、ならびに表3に示す温度、時間および雰囲気で絶縁性塗膜に融着促進剤を接触させた点を除いて、実施例1と同様にした。 [Comparative Examples 1-14, 20-25]
The same procedure as in Example 1 was carried out except that the fusion accelerator shown in Table 3 was used and that the fusion accelerator was brought into contact with the insulating coating film at the temperature, time and atmosphere shown in Table 3.
表3に示す融着促進剤を用いた点、ならびに表3に示す温度、時間および雰囲気で絶縁性塗膜に融着促進剤を接触させた点を除いて、実施例1と同様にした。 [Comparative Examples 1-14, 20-25]
The same procedure as in Example 1 was carried out except that the fusion accelerator shown in Table 3 was used and that the fusion accelerator was brought into contact with the insulating coating film at the temperature, time and atmosphere shown in Table 3.
[比較例15~19]
ガラス基板上に形成した絶縁性塗膜に、表3に示す融着促進剤の蒸気を、表3に示す温度、時間および雰囲気で接触させた点を除いて、実施例1と同様にした。 [Comparative Examples 15 to 19]
The same procedure as in Example 1 was performed except that the insulating coating film formed on the glass substrate was contacted with the vapor of the fusion accelerator shown in Table 3 at the temperature, time, and atmosphere shown in Table 3.
ガラス基板上に形成した絶縁性塗膜に、表3に示す融着促進剤の蒸気を、表3に示す温度、時間および雰囲気で接触させた点を除いて、実施例1と同様にした。 [Comparative Examples 15 to 19]
The same procedure as in Example 1 was performed except that the insulating coating film formed on the glass substrate was contacted with the vapor of the fusion accelerator shown in Table 3 at the temperature, time, and atmosphere shown in Table 3.
なお、表2中、溶液A、溶液B、溶液C、溶液D、溶液E、溶液F、溶液G、溶液H、溶液Jおよび溶液Kは、以下の表4に示すものを意味する。
なお、各溶液中の質量%は、各実施例および比較例で用いられる融着促進剤の含有量を表す。例えば、実施例1では、塩化水素の濃度が35質量%の水溶液を用いたことを表す。 In Table 2, Solution A, Solution B, Solution C, Solution D, Solution E, Solution F, Solution G, Solution H, Solution J, and Solution K mean those shown in Table 4 below.
In addition, the mass% in each solution represents content of the fusion promoter used by each Example and a comparative example. For example, Example 1 indicates that an aqueous solution having a hydrogen chloride concentration of 35% by mass was used.
なお、各溶液中の質量%は、各実施例および比較例で用いられる融着促進剤の含有量を表す。例えば、実施例1では、塩化水素の濃度が35質量%の水溶液を用いたことを表す。 In Table 2, Solution A, Solution B, Solution C, Solution D, Solution E, Solution F, Solution G, Solution H, Solution J, and Solution K mean those shown in Table 4 below.
In addition, the mass% in each solution represents content of the fusion promoter used by each Example and a comparative example. For example, Example 1 indicates that an aqueous solution having a hydrogen chloride concentration of 35% by mass was used.
実施例1~42では、いずれも、低温(150℃以下)で、優れた導電性を有する導電膜を製造することができた。
一方、比較例1~25では、いずれも、導電性を有する膜を形成することができなかった。これは、銅粒子の融着が促進されず、膜中に導電体が十分に形成されなかったためであると考えられる。
In each of Examples 1 to 42, a conductive film having excellent conductivity could be produced at a low temperature (150 ° C. or lower).
On the other hand, in each of Comparative Examples 1 to 25, a conductive film could not be formed. This is presumably because the fusion of the copper particles was not promoted and the conductor was not sufficiently formed in the film.
一方、比較例1~25では、いずれも、導電性を有する膜を形成することができなかった。これは、銅粒子の融着が促進されず、膜中に導電体が十分に形成されなかったためであると考えられる。
In each of Examples 1 to 42, a conductive film having excellent conductivity could be produced at a low temperature (150 ° C. or lower).
On the other hand, in each of Comparative Examples 1 to 25, a conductive film could not be formed. This is presumably because the fusion of the copper particles was not promoted and the conductor was not sufficiently formed in the film.
Claims (14)
- 銅粒子を含む絶縁性塗膜と前記銅粒子の融着促進剤とを接触させて導電膜を形成する導電膜形成工程を備える、導電膜の製造方法。 The manufacturing method of an electrically conductive film provided with the electrically conductive film formation process which contacts the insulating coating film containing a copper particle, and the fusion promoter of the said copper particle, and forms an electrically conductive film.
- 前記導電膜形成工程において、前記絶縁性塗膜と前記融着促進剤との接触の際の温度が0℃~150℃の範囲内である、請求項1に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1, wherein, in the conductive film forming step, a temperature at the time of contact between the insulating coating film and the fusion accelerator is in a range of 0 ° C to 150 ° C.
- 前記導電膜形成工程において、前記絶縁性塗膜と前記融着促進剤との接触の際の雰囲気が酸化的雰囲気である、請求項1または2に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1 or 2, wherein, in the conductive film forming step, an atmosphere in contact between the insulating coating film and the fusion accelerator is an oxidative atmosphere.
- 前記導電膜形成工程において、前記絶縁性塗膜と前記融着促進剤との接触の際の時間が5秒~24時間である、請求項1~3のいずれか1項に記載の導電膜の製造方法。 The conductive film according to any one of claims 1 to 3, wherein, in the conductive film forming step, a time for contact between the insulating coating film and the fusion accelerator is 5 seconds to 24 hours. Production method.
- 前記導電膜形成工程において、前記絶縁性塗膜と前記融着促進剤との接触の際に、前記絶縁性塗膜と気体状態の前記融着促進剤とを接触させるか、または、前記絶縁性塗膜と前記融着促進剤を含む液体とを接触させる、請求項1~4のいずれか1項に記載の導電膜の製造方法。 In the conductive film forming step, the insulating coating film and the fusion accelerator in a gaseous state are brought into contact with each other when the insulating coating film and the fusion accelerator are in contact with each other, or the insulating property The method for producing a conductive film according to any one of claims 1 to 4, wherein the coating film is brought into contact with a liquid containing the fusion accelerator.
- 前記銅粒子の前記絶縁性塗膜中の含有量が、前記絶縁性塗膜の全質量に対して80質量%~100質量%である、請求項1~5のいずれか1項に記載の導電膜の製造方法。 The conductive film according to any one of claims 1 to 5, wherein a content of the copper particles in the insulating coating film is 80% by mass to 100% by mass with respect to a total mass of the insulating coating film. A method for producing a membrane.
- 前記絶縁性塗膜がバインダーを含まない、請求項1~6のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 6, wherein the insulating coating film does not contain a binder.
- 前記導電膜形成工程の前に、
銅粒子と分散媒とを含む導電膜形成用組成物を基材上に付与して絶縁性塗膜を形成する塗膜形成工程を備える、請求項1~7のいずれか1項に記載の導電膜の製造方法。 Before the conductive film forming step,
The conductive film according to any one of claims 1 to 7, further comprising a coating film forming step of forming an insulating coating film by applying a composition for forming a conductive film containing copper particles and a dispersion medium on a substrate. A method for producing a membrane. - 前記銅粒子の前記導電膜形成用組成物中の含有量が、前記導電膜形成用組成物中の固形分の全質量に対して80質量%以上100質量%未満である、請求項8に記載の導電膜の製造方法。 The content of the copper particles in the conductive film-forming composition is 80% by mass or more and less than 100% by mass with respect to the total mass of the solid content in the conductive film-forming composition. Of manufacturing the conductive film.
- 前記導電膜形成用組成物がバインダーを含まない、請求項8または9に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 8 or 9, wherein the composition for forming a conductive film does not contain a binder.
- 前記導電膜形成工程の後に、
前記導電膜の表面を洗浄する導電膜洗浄工程を備える、請求項1~10のいずれか1項に記載の導電膜の製造方法。 After the conductive film forming step,
The method for producing a conductive film according to any one of claims 1 to 10, further comprising a conductive film cleaning step of cleaning a surface of the conductive film. - 前記融着促進剤が、ハロゲン化合物、含硫黄化合物ならびにリン酸およびその塩からなる群から選択される少なくとも1つである、請求項1~11のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 11, wherein the fusion accelerator is at least one selected from the group consisting of a halogen compound, a sulfur-containing compound, phosphoric acid and a salt thereof. .
- 前記融着促進剤がハロゲン化物イオンを含むイオン性化合物、ハロゲンを共有結合で含む有機化合物およびハロゲン化水素からなる群から選択される少なくとも1つである、請求項12に記載の導電膜の製造方法。 13. The conductive film according to claim 12, wherein the fusion accelerator is at least one selected from the group consisting of an ionic compound containing a halide ion, an organic compound containing a halogen in a covalent bond, and a hydrogen halide. Method.
- 前記融着促進剤がハロゲン化水素である、請求項13に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 13, wherein the fusion promoter is hydrogen halide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020502823A JPWO2019167396A1 (en) | 2018-02-27 | 2018-12-19 | Method for manufacturing conductive film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018032968 | 2018-02-27 | ||
JP2018-032968 | 2018-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167396A1 true WO2019167396A1 (en) | 2019-09-06 |
Family
ID=67804893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/046744 WO2019167396A1 (en) | 2018-02-27 | 2018-12-19 | Method for producing conductive film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2019167396A1 (en) |
TW (1) | TW201938706A (en) |
WO (1) | WO2019167396A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015530693A (en) * | 2012-06-22 | 2015-10-15 | シー3ナノ・インコーポレイテッドC3Nano Inc. | Metal nanostructured network structure and transparent conductive material |
-
2018
- 2018-12-19 WO PCT/JP2018/046744 patent/WO2019167396A1/en active Application Filing
- 2018-12-19 JP JP2020502823A patent/JPWO2019167396A1/en active Pending
- 2018-12-27 TW TW107147295A patent/TW201938706A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015530693A (en) * | 2012-06-22 | 2015-10-15 | シー3ナノ・インコーポレイテッドC3Nano Inc. | Metal nanostructured network structure and transparent conductive material |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019167396A1 (en) | 2021-03-04 |
TW201938706A (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9469773B2 (en) | Ink composition for making a conductive silver structure | |
EP2564954B1 (en) | Collagen peptide-coated copper nanoparticles, collagen peptide-coated copper nanoparticle dispersion, method for preparing collagen peptide-coated copper nanoparticles, conductive ink, method for preparing conductive film | |
US9580818B2 (en) | Etching liquid for film of multilayer structure containing copper layer and molybdenum layer | |
JP2014182913A (en) | Composition for conductive film formation, and method for producing conductive film using the same | |
CN104185880B (en) | Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film | |
WO2014119498A1 (en) | Composition for forming electrically conductive film, and method for producing electrically conductive film | |
TW201343810A (en) | Liquid composition, metallic film and conductor wiring, and fabricating method of metallic film | |
JP6078394B2 (en) | Etching solution composition and etching method | |
WO2019167396A1 (en) | Method for producing conductive film | |
JP2015049988A (en) | Composition for forming conductive film and method for producing conductive film using the same | |
JP2014196427A (en) | Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same | |
WO2014050539A1 (en) | Composition for forming conductive film and method for producing conductive film | |
CN105121705A (en) | Liquid composition used in etching multilayer film containing copper and molybdenum, manufacturing method of substrate using said liquid composition, and substrate manufactured by said manufacturing method | |
WO2014157303A1 (en) | Composition for forming conductive films and method for producing conductive film using same | |
WO2013175965A1 (en) | Electroconductive composition and circuit board having electroconductive film formed from same | |
WO2019167365A1 (en) | Conductive film-forming composition and conductive film production method | |
JP2012126814A (en) | Conductive ink composition, and method for producing electrically conductive site | |
WO2014156345A1 (en) | Composition for forming conductive films and method for producing conductive film using same | |
JP5876749B2 (en) | Conductive substance precursor composition and method for producing conductive substance using the same | |
JP2020004533A (en) | Method for producing conductive film and conductive film | |
JP2007246780A (en) | Carbon fiber-conductive polymer composite film and method for producing the same | |
JP7094205B2 (en) | A composition for forming a conductive film, a precursor film, a method for producing a precursor film, and a method for producing a conductive film. | |
JP6905089B2 (en) | Method of manufacturing conductive film and conductive film | |
WO2015005178A1 (en) | Composition for forming electrically conductive film, and method for producing electrically conductive film using same | |
JP2008208285A (en) | Conductive ink composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18907567 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020502823 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18907567 Country of ref document: EP Kind code of ref document: A1 |