WO2019165852A1 - 激光投射模组、深度相机和电子装置 - Google Patents
激光投射模组、深度相机和电子装置 Download PDFInfo
- Publication number
- WO2019165852A1 WO2019165852A1 PCT/CN2019/070767 CN2019070767W WO2019165852A1 WO 2019165852 A1 WO2019165852 A1 WO 2019165852A1 CN 2019070767 W CN2019070767 W CN 2019070767W WO 2019165852 A1 WO2019165852 A1 WO 2019165852A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- collimating
- diffractive
- diffraction
- collimated
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
- G03B15/02—Illuminating scene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02253—Out-coupling of light using lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4233—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4233—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
- G02B27/425—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/163—Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02257—Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0274—Optical details, e.g. printed circuits comprising integral optical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0233—Mounting configuration of laser chips
- H01S5/02345—Wire-bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/06825—Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
- H05K1/0204—Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
- H05K1/0206—Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10121—Optical component, e.g. opto-electronic component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10151—Sensor
Definitions
- the present application relates to the field of imaging technologies, and in particular, to a laser projection module, a depth camera, and an electronic device.
- Some existing laser emitters (such as vertical cavity laser emitter VSCEL, etc.) will emit lasers with strong focusing signals. After passing through the collimating components and diffractive optical components, the lasers will attenuate the energy to meet the signal strength below The damage threshold of the human body.
- Embodiments of the present application provide a laser projection module, a depth camera, and an electronic device.
- the laser projection module of the embodiment of the present application includes a laser emitter, a collimating element, a diffractive optical element, an electrochromic device, and a processor.
- the laser emitter is used to emit a laser.
- the collimating element is used to collimate the laser.
- the diffractive optical element is for diffracting laser light that is collimated by the collimating element to form a laser pattern.
- the electrochromic device is located on the illuminating light path of the laser emitter.
- the processor is coupled to the electrochromic device, the processor for controlling discoloration of the electrochromic device to block emission of the laser light when the collimating element and/or the diffractive optical element is broken .
- the depth camera of the embodiment of the present application includes the above-described laser projection module, image collector, and processor.
- the image collector is configured to collect a laser pattern projected by the laser projection module into a target space
- the processor is configured to process the laser pattern to obtain a depth image.
- the electronic device of the embodiment of the present application includes a housing and the depth camera described above.
- the depth camera is disposed within the housing and exposed from the housing to capture a depth image.
- 1 to 3 are schematic structural views of a laser projection module according to some embodiments of the present application.
- FIGS. 4 and 5 are schematic diagrams of the wiring of a diffractive conductive electrode in accordance with certain embodiments of the present application.
- 6 to 8 are schematic structural views of a laser projection module according to some embodiments of the present application.
- FIG. 9 is a cross-sectional view of a diffractive optical element of some embodiments of the present application.
- Figure 10 is a schematic illustration of the circuitry of a diffractive conductive electrode in accordance with certain embodiments of the present application.
- Figure 11 is a cross-sectional view of a diffractive optical element of some embodiments of the present application.
- 12 to 17 are schematic structural views of a laser projection module according to some embodiments of the present application.
- FIGS. 18 and 19 are schematic diagrams of circuitry of a collimating conductive electrode in accordance with certain embodiments of the present application.
- 20 to 22 are schematic structural views of a laser projection module according to some embodiments of the present application.
- 23 is a cross-sectional view of a collimating element of some embodiments of the present application.
- 24 is a circuit diagram of a collimating conductive electrode of some embodiments of the present application.
- 25 is a cross-sectional view of a collimating element of some embodiments of the present application.
- 26 to 28 are schematic diagrams showing the structure of a laser projection module according to some embodiments of the present application.
- 29 is a cross-sectional view of a diffractive optical element of some embodiments of the present application.
- 30 to 32 are schematic structural views of a laser projection module according to some embodiments of the present application.
- 33 and 34 are schematic diagrams of the circuitry of a diffractive conductive path in accordance with certain embodiments of the present application.
- 35 and 36 are cross-sectional views of a diffractive optical element of some embodiments of the present application.
- 37 is a circuit diagram of a diffractive conductive path of certain embodiments of the present application.
- 38 is a cross-sectional view of a diffractive optical element of some embodiments of the present application.
- 39 is a cross-sectional view of a collimating element of some embodiments of the present application.
- FIG. 40 to FIG. 42 are schematic diagrams showing the structure of a laser projection module according to some embodiments of the present application.
- 43 and 44 are circuit diagrams of collimating conductive paths of certain embodiments of the present application.
- 45 and 46 are cross-sectional views of a collimating element of certain embodiments of the present application.
- 47 is a circuit diagram of a collimated conductive path of certain embodiments of the present application.
- 49 is a schematic structural diagram of a laser projection module according to some embodiments of the present application.
- 50 to 52 are partial structural diagrams of a laser projection module according to some embodiments of the present application.
- 53 is a schematic structural diagram of a depth camera according to some embodiments of the present application.
- FIG. 54 is a schematic structural diagram of an electronic device according to some embodiments of the present application.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
- the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
- connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
- Connected, or integrally connected may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
- the specific meanings of the above terms in the present application can be understood on a case-by-case basis.
- the present application provides a laser projection module 100 .
- the laser projection module 100 includes a laser emitter 10, a collimating element 20, a diffractive optical element 30, an electrochromic device 40, and a processor 80.
- the laser emitter 10 is used to emit laser light.
- the collimating element 20 is used to collimate the laser light emitted by the laser emitter 10.
- the diffractive optical element 30 is for diffracting the laser light collimated by the collimating element 20 to form a laser pattern.
- the electrochromic device 40 is located on the illuminating light path of the laser emitter 10.
- the processor 80 is coupled to an electrochromic device 40 for controlling the discoloration of the electrochromic device 40 to block the emission of laser light when the collimating element 20 and/or the diffractive optical element 30 are broken.
- the laser projection module 100 also includes a lens barrel 50.
- the lens barrel 50 includes a top portion 502 and a bottom portion 501.
- the lens barrel 50 is formed with a receiving cavity 54 extending through the top portion 502 and the bottom portion 501.
- the laser emitter 10 and the collimating element 20 are received in the receiving cavity 54.
- the side wall 51 of the lens barrel 50 extends to the center of the housing cavity 54 with an annular carrier 52 on which the diffractive optical element 30 is placed.
- the electrochromic device 40 is made of an electrochromic material.
- Electrochromism refers to the optical properties of materials, such as emissivity, transmittance, absorptivity, etc., which occur under the action of an applied electric field, resulting in a stable, reversible color change.
- Electrochromic materials can be divided into two categories, one is inorganic color-changing materials, mainly concentrated in transition metal oxides, which are co-injected and co-extracted by ions and electrons to make their chemical valence or crystal structure. Changes occur to achieve reversible deuteration of coloration and fading, most commonly such as M O O 3 , V 2 O 5 , NiO, WO 3 and the like.
- the other type is an organic electrochromic material, which undergoes an oxidation-reduction reaction by electron gain and loss, thereby achieving reversible decolorization of coloring and fading.
- WO 3 having a higher color change efficiency and a lower price can be used as the material of the electrochromic device 40.
- the laser emitter 10 When the laser emitter 10 is in operation, a laser with a strong focusing signal is emitted.
- the laser projection module 100 encounters a fall or the like, the collimating element 20 and/or the diffractive optical element 30 are broken, and the laser will be directly emitted and irradiated. The user's body or eyes cause serious safety problems. Therefore, when both the collimating element 20 and the diffractive optical element 30 are not broken, the processor 80 applies a certain voltage to the electrochromic device 40 to make the electrochromic device 40 have a higher transmittance so that the laser can be powered.
- the color-changing device 40 is transmissive.
- the processor 80 When the processor 80 detects that the collimating element 20 is broken, the processor 80 changes the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby utilizing the low of the electrochromic device 40.
- the transmittance blocks the emitted laser light to avoid the problem that the collimated element 20 is broken and the emitted laser energy is too large to damage the user's eyes.
- the processor 80 detects that the diffractive optical element 30 is broken, the processor 80 changes the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby utilizing the electrochromic device 40.
- the low transmittance blocks the emitted laser light to avoid the problem that the diffractive optical element 30 is broken and the emitted laser energy is too large to damage the user's eyes.
- the processor 80 detects that when the collimating element 20 and the diffractive optical element 30 are simultaneously broken, the processor 80 also changes the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby utilizing The low transmittance of the electrochromic device 40 blocks the emitted laser light to avoid the problem that the emitted laser energy is too large to harm the user's eyes.
- the laser projection module 100 of the embodiment of the present application is provided with an electrochromic device 40.
- the processor 80 immediately changes the application to electrochromism.
- the voltage on the device 40 reduces the transmittance of the electrochromic device 40, thereby avoiding the problem that the collimated element 20 or the diffractive optical element 30 is broken, causing the emitted laser energy to be too large to damage the user's eyes, and improving the use of laser projection.
- the security of the module 100 is provided with an electrochromic device 40.
- the diffractive optical element 30 is formed with a light-transmitting diffraction conductive film 31, and the light-transmitting diffraction conductive film 31 is provided with a diffraction conductive electrode 32.
- the diffractive conductive electrode 32 is energized to output a diffracted electrical signal.
- the processor 80 is further configured to obtain a diffraction electric signal outputted after the diffractive conductive electrode 32 is energized, determine whether the diffracted electric signal is within a preset diffraction range, and determine that the diffractive optical element 30 is broken when the diffracted electric signal is not within the preset diffraction range. .
- the judgment mechanism of the rupture of the diffractive optical element 30 is as follows: when the diffractive optical element 30 is in an intact state, the electric resistance of the light-transmitting diffraction conductive film 31 is small, and the light-transmitting diffraction conductive film 31 is energized in this state, that is, a certain size is applied. At this time, the current output from the diffraction conductive electrode 32 obtained by the processor 80 is large. When the diffractive optical element 30 is broken, the light-transmitting diffraction conductive film 31 formed on the diffractive optical element 30 is also broken, and the resistance of the light-transmitting diffraction conductive film 31 at the fracture position is close to infinity.
- the diffraction conductive electrode 32 on the light-transmitting diffraction conductive film 31 is energized, and the current output from the diffraction conductive electrode 32 obtained by the processor 80 is small. Therefore, in the first mode, whether or not the light-transmitting diffraction conductive film 31 is broken can be determined based on the difference between the diffraction electric signal (i.e., current) and the diffraction electric signal (i.e., current) detected in the undisrupted state of the diffractive optical element 30, Further, whether or not the diffractive optical element 30 is broken according to the state of the light-transmitting diffraction conductive film 31, that is, if the light-transmitting diffraction conductive film 31 is broken, it indicates that the diffractive optical element 30 is also broken; if the light-transmitting diffraction conductive film 31 is not Cracking indicates that the diffractive optical element 30 is also not broken.
- the diffractive optical element 30 is broken or not is directly determined according to the diffracted electric signal outputted by the diffractive conductive electrode 32 on the diffractive optical element 30. Specifically, the diffracted electric signal output from the diffractive conductive electrode 32 is not within the predetermined diffraction range. When it is determined that the light-transmitting diffraction conductive film 31 is broken, it is judged that the diffractive optical element 30 is also broken. If the diffraction electric signal output from the diffraction conductive electrode 32 is within a predetermined diffraction range, it is determined that the light-transmitting diffraction conductive film 31 is not broken, thereby judging The diffractive optical element 30 is also not broken.
- the light-transmitting diffraction conductive film 31 can be formed on the surface of the diffractive optical element 30 by plating or the like.
- the material of the light-transmitting diffraction conductive film 31 may be any one of indium tin oxide (ITO), nano silver wire, and metal silver wire.
- ITO indium tin oxide
- nano silver wire, and the metal silver wire all have good light transmittance and electrical conductivity, and can realize the output of the diffracted electric signal after being energized, and at the same time, do not block the light path of the diffractive optical element 30.
- the diffractive optical element 30 includes a diffractive incident surface 301 and a diffractive exit surface 302 that are opposite each other.
- the light-transmitting diffraction conductive film 31 is formed on the diffractive optical element 30, the light-transmitting diffraction conductive film 31 has a single-layer structure, and the light-transmitting diffraction conductive film 31 is provided on the diffraction output surface 302.
- the position of the electrochromic device 40 may be: one of the electrochromic devices 40, disposed on the light-transmitting diffraction conductive film 31, that is, diffracted along the light-emitting direction of the laser emitter 10.
- the optical element 30, the light-transmissive diffractive conductive film 31, and the electrochromic device 40 are sequentially arranged (as shown in FIG. 1); or one of the electrochromic devices 40 is disposed on the diffraction incident surface 301, that is, the electrochromic device 40.
- the diffractive optical element 30 and the light-transmitting diffraction conductive film 31 are sequentially arranged in the light-emitting direction (not shown); or, the electrochromic device 40 is plural, one is disposed on the diffraction incident surface 301, and one is disposed on the light-transmitting diffraction conductive
- the film 31, that is, the electrochromic device 40, the diffractive optical element 30, the light-transmitting diffraction conductive film 31, and the electrochromic device 40 are sequentially arranged in the light-emitting direction (not shown); or, the laser projection module 100 is disposed in the laser projection module 100.
- the electrochromic device 40 is disposed on the inner surface of the protective cover 70 (the inner surface is the surface of the protective cover 70 that interferes with the diffractive optical element 30, the same below), that is, Diffractive optical element 30,
- the light diffraction conductive film 31, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (as shown in FIG.
- the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50
- There are a plurality of electrochromic devices 40 one of which is disposed on the inner surface of the protective cover 70, and one disposed on the diffractive incident surface 301, that is, the electrochromic device 40, the diffractive optical element 30, and the light-transmitting diffraction
- the conductive film 31, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (not shown).
- the electrochromic device 40 is a non-film sheet structure, in order to reduce the thickness of the laser projection module 100, only one electrochromic device 40 is provided, and the position of the electrochromic device 40 may be along the laser emitter 10.
- the laser emitter 10, the electrochromic device 40, the collimating element 20, the diffractive optical element 30, and the light transmitting diffraction conductive film 31 are sequentially arranged (as shown in FIG. 3); or, the laser emitter 10, the collimating element 20.
- the electrochromic device 40, the diffractive optical element 30, and the light-transmitting diffraction conductive film 31 are sequentially arranged in the light-emitting direction (not shown); or, the laser emitter 10, the collimating element 20, the diffractive optical element 30, and the light-transmitting diffraction
- the conductive film 31 and the electrochromic device 40 are sequentially arranged in the light emitting direction (not shown).
- the diffraction conductive electrode 32 may be a single strip, and the single diffraction conductive electrode 32 includes a diffraction input end 321 and a diffraction output end 322, a diffraction input end 321 and The diffractive output 322 is coupled to the processor 80 and forms a diffractive conductive loop.
- the diffraction conductive electrode 32 is arranged in various ways.
- the wiring direction of the diffraction input end 321 and the diffraction output end 322 is the longitudinal direction of the light-transmitting diffraction conductive film 31 ( As shown in FIG. 4, the extending direction of the diffractive conductive electrode 32 is the width direction of the light-transmitting diffraction conductive film 31 (not shown), or the extending direction of the diffractive conductive electrode 32 is the diagonal of the light-transmitting diffraction conductive film 31.
- Direction (not shown).
- the diffractive conductive electrodes 32 can span the entire light-transmitting diffraction conductive film 31, and it is possible to more accurately detect whether or not the light-transmitting diffraction conductive film 31 is broken.
- the number of the diffraction conductive electrodes 32 disposed on the light-transmitting diffraction conductive film 31 may be plural, and the plurality of diffraction conductive electrodes 32 do not intersect each other.
- the strip diffraction conductive electrode 32 includes a diffraction input end 321 and a diffraction output end 322. Each of the diffraction input terminals 321 and each of the diffraction output ends 322 and the processor 80 are connected to form a diffraction conductive loop, whereby the diffraction input end 321 and the diffraction output end 322 of the plurality of diffraction conductive electrodes 32 are respectively coupled to the processor 80. Connected to form a plurality of diffractive conductive loops. The plurality of diffractive conductive electrodes 32 are arranged in a plurality of ways.
- each of the diffractive conductive electrodes 32 is the longitudinal direction of the light-transmitting diffractive conductive film 31, and the plurality of diffractive conductive electrodes 32 are arranged in parallel. 5); or, each of the diffraction conductive electrodes 32 extends in the width direction of the light-transmitting diffraction conductive film 31, and a plurality of diffraction conductive electrodes 32 are arranged in parallel (not shown); or, each of the diffraction conductive electrodes 32
- the extending direction is the diagonal direction of the light-transmitting diffraction conductive film 31, and the plurality of diffraction conductive electrodes 32 are arranged in parallel at intervals (not shown).
- the plurality of diffractive conductive electrodes 32 can occupy a larger area of the light-transmitting diffraction conductive film 31 than the single-diffractive conductive electrode 32, correspondingly More diffracted electrical signals can be output. Since only a single diffractive conductive electrode 32 is provided, there is a possibility that the position at which the diffractive optical element 30 is broken is far from the position of the single diffractive conductive electrode 32, but has little effect on the single diffractive conductive electrode 32, and the output of the single diffractive conductive electrode 32 is small. The electrical signal is still within the preset diffraction range, and the detection accuracy is not high.
- the plurality of diffractive conductive electrodes 32 occupy a large area of the light-transmitting diffraction conductive film 31, and correspondingly can output more diffracted electric signals, and the processor 80 can more accurately determine the light-transmitting diffraction according to more diffracted electric signals. Whether or not the conductive film 31 is broken, it is further judged whether or not the diffractive optical element 30 is broken, and the accuracy of the fracture detection of the diffractive optical element 30 is improved. Upon detecting the breakage of the light-transmitting diffraction conductive film 31, it is considered that the diffractive optical element 30 is broken, at which time the processor 80 instantly changes the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40. In addition, since the diffraction incident surface 301 is uneven, the manufacturing process of disposing the light-transmitting diffraction conductive film 31 on the diffraction exit surface 302 is relatively simple.
- the light-transmitting diffraction conductive film 31 of a single-layer structure may also be disposed on the diffraction incident surface 301.
- the position of the electrochromic device 40 may be one of the electrochromic devices 40 disposed on the light-transmitting diffraction conductive film 31, that is, the light emitted along the laser emitter 10.
- the direction, the electrochromic device 40, the light-transmissive diffractive conductive film 31, and the diffractive optical element 30 are sequentially arranged (as shown in FIG. 6); or, the electrochromic device 40 is disposed on the diffraction exit surface 302, that is, the light transmission.
- the diffraction conductive film 31, the diffractive optical element 30, and the electrochromic device 40 are sequentially arranged in the light emitting direction (not shown); or, the electrochromic device 40 is plural, one is disposed on the light transmitting diffraction conductive film 31, and one is disposed.
- the electrochromic device 40 On the diffraction exit surface 302, that is, the electrochromic device 40, the light-transmitting diffraction conductive film 31, the diffractive optical element 30, and the electrochromic device 40 are sequentially arranged in the light-emitting direction (not shown); or, in the laser projection module 100
- the protective cover 70 is disposed on the top 502 of the lens barrel 50
- the electrochromic device 40 is disposed on the inner surface of the protective cover 70, the light-transmitting diffraction conductive film 31, the diffractive optical element 30, the electrochromic device 40, Protective cover 70 along the light Oriented (as shown in FIG.
- the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, there are a plurality of electrochromic devices 40, one of which is disposed on the protective cover 70.
- the inner surface, one disposed on the light-transmitting diffraction conductive film 31, that is, the electrochromic device 40, the light-transmitting diffraction conductive film 31, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light-emitting direction (Fig. Not shown).
- the electrochromic device 40 is a non-film sheet structure, in order to reduce the thickness of the laser projection module 100, only one electrochromic device 40 is provided.
- the position of the electrochromic device 40 may be: laser emitter 10, electricity
- the color-changing device 40, the collimating element 20, the light-transmitting diffraction conductive film 31, and the diffractive optical element 30 are sequentially arranged in the light-emitting direction (as shown in FIG. 8); or, the laser emitter 10, the collimating element 20, and the electrochromic device 40.
- the light-transmitting diffraction conductive film 31 and the diffractive optical element 30 are sequentially arranged in the light-emitting direction (not shown); or, the laser emitter 10, the collimating element 20, the light-transmitting diffraction conductive film 31, the diffractive optical element 30, and the electro-induced The color changing devices 40 are sequentially arranged in the light emitting direction (not shown).
- the diffraction conductive electrodes 32 may be single or plural.
- the arrangement of the single or multiple diffractive conductive electrodes 32 is similar to the arrangement of the diffractive conductive electrodes 32 disposed on the diffraction exit surface 302 of the light-transmitting diffractive conductive film 31, and will not be described herein.
- the processor 80 can determine whether the diffractive optical element 30 is broken according to the diffracted electrical signal output from the diffractive conductive electrode 32, and when the diffractive optical element 30 is broken, the voltage applied to the electrochromic device 40 can be changed to change the electro-induced The transmittance of the color changing device 40 prevents the laser from harming the human eye.
- the diffraction incident surface 301 is a diffraction grating
- the laser light emitted from the laser emitter 10 can form a laser pattern via the diffraction grating. Therefore, the light-transmitting diffraction conductive film 31 is disposed on the diffraction incident surface 301, so that the light-transmitting diffraction conductive film 31 is directly Contact with the diffraction grating can improve the accuracy of the fracture detection of the diffractive optical element 30.
- the light-transmitting diffraction conductive film 31 when the light-transmitting diffraction conductive film 31 is formed on the diffractive optical element 30, the light-transmitting diffraction conductive film 31 has a single-layer bridging structure, and the light-transmitting diffraction conductive film 31 is disposed on the diffraction output surface 302.
- the position of the electrochromic device 40 at this time is similar to the position at which the light-transmitting diffraction conductive film 31 of the single-layer structure is disposed on the diffraction exit surface 302, and details are not described herein again.
- the light-transmitting diffraction conductive film 31 of the single-layer bridge structure includes a plurality of first diffraction conductive electrodes 323 arranged in parallel, a plurality of second diffraction conductive electrodes 324 arranged in parallel, and a plurality of bridge diffraction conductive electrodes 325.
- the plurality of first diffractive conductive electrodes 323 are vertically and horizontally staggered with each of the plurality of second diffractive conductive electrodes 324, and each of the first diffractive conductive electrodes 323 is continuously uninterrupted, and each of the second diffractive conductive electrodes 324 is electrically connected to the corresponding plurality of first diffractive conductive electrodes 324.
- the staggered portion of the electrode 323 is broken and does not conduct with the plurality of first diffractive conductive electrodes 323.
- Each of the bridged diffractive conductive electrodes 325 conducts a break of the corresponding second diffractive conductive electrode 324.
- a diffraction insulator 326 is provided at a staggered position of the bridge diffraction conductive electrode 325 and the first diffraction conductive electrode 323.
- Both ends of each of the first diffractive conductive electrodes 323 are connected to the processor 80 to form a diffractive conductive loop, and both ends of each of the second diffractive conductive electrodes 324 are connected to the processor 80 to form a diffractive conductive loop, thereby Both ends of the first diffraction conductive electrode 323 and the processor 80 are respectively connected to form a plurality of diffraction conductive loops, and both ends of the plurality of second diffraction conductive electrodes 324 are respectively connected with the processor 80 to form a plurality of diffraction conductive loops. .
- the material of the diffraction insulator 326 may be an organic material having good light transmittance and insulation, and the diffraction insulator 326 may be formed by a silk screen or a yellow light process.
- the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 are vertically and horizontally interleaved to mean that the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 are vertically interdigitated, that is, the first diffractive conductive electrodes 323
- the angle with the second diffractive conductive electrode 324 is 90 degrees.
- the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 may be criss-crossed.
- the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 may be obliquely staggered with each other.
- the processor 80 can simultaneously energize the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 to obtain a plurality of diffracted electrical signals, or the processor 80 can sequentially pair the plurality of first diffractive conductive electrodes.
- the processor 80 determines whether the light-transmitting diffractive conductive film 31 is broken according to the diffracted electrical signals. Referring to FIG. 10, when it is detected that the diffracted electric signal outputted by the first diffractive conductive electrode 323 numbered 1 is not within the predetermined diffraction range, the diffracted electric signal outputted by the second diffractive conductive electrode 324 numbered 3 is not in the preset diffraction range. In the meantime, the light-transmitting diffraction conductive film 31 is broken at the intersection of the first diffraction conductive electrode 323 of No.
- the light-transmissive diffractive conductive film 31 of the single-layer bridge structure can more accurately detect whether the diffractive optical element 30 is broken and the specific position of the crack, and when the diffractive optical element 30 is broken, the processor 80 changes the application to the electrochromic.
- the voltage on device 40 is used to reduce the transmittance of electrochromic device 40.
- the light-transmitting diffraction conductive film 31 may further include a first diffraction conductive film 311 disposed on the diffraction incident surface 301 and disposed on the diffraction output surface 302.
- the second diffraction conductive film 312 (abbreviated as the light-transmitting diffraction conductive film 31 of the two-layer structure).
- the position of the electrochromic device 40 may be: one of the electrochromic devices 40 is disposed on the first diffraction conductive film 311, that is, along the light emitting direction of the laser emitter 10,
- the color-changing device 40, the first diffraction conductive film 311, the diffractive optical element 30, and the second diffraction conductive film 312 are sequentially arranged (as shown in FIG. 12); or one of the electrochromic devices 40 is disposed on the second diffraction conductive film.
- the electrochromic device 40 is sequentially arranged in the light emitting direction (not shown); or, the electrochromic device 40 is plural.
- the color-changing devices 40 are sequentially arranged along the light-emitting direction (not shown); or, when the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, the electrochromic device 40 is one, disposed in the protective cover The inner surface of 70, The first diffraction conductive film 311, the diffractive optical element 30, the second diffraction conductive film 312, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (as shown in FIG.
- the laser projection module 100 includes
- the electrochromic device 40 is plural, and one electrochromic device 40 is disposed on the inner surface of the protective cover 70, and one is disposed on the first diffractive conductive film 311. That is, the electrochromic device 40, the first diffraction conductive film 311, the diffractive optical element 30, the second diffraction conductive film 312, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (not shown).
- the electrochromic device 40 is a non-film sheet structure, in order to reduce the thickness of the laser projection module 100, only one electrochromic device 40 is provided.
- the position of the electrochromic device 40 may be: laser emitter 10, electricity
- the color-changing device 40, the collimating element 20, the first diffractive conductive film 311, the diffractive optical element 30, and the second diffractive conductive film 312 are sequentially arranged in the light-emitting direction (as shown in FIG.
- the element 20, the electrochromic device 40, the first diffractive conductive film 311, the diffractive optical element 30, and the second diffractive conductive film 312 are sequentially arranged in the light emitting direction (not shown); or, the laser emitter 10, the collimating element 20,
- the first diffraction conductive film 311, the diffractive optical element 30, the second diffraction conductive film 312, and the electrochromic device 40 are sequentially arranged in the light emission direction (not shown).
- the first diffraction conductive film 311 is provided with a plurality of parallel first diffraction conductive electrodes 323, and the second diffraction conductive film 312 is provided with a plurality of parallel second diffraction conductive electrodes 324.
- the projection of the first diffractive conductive electrode 323 on the diffraction exit surface 302 is criss-crossed with the second diffractive conductive electrode 324, and both ends of each of the first diffractive conductive electrodes 323 are connected to the processor 80 to form a diffractive conductive loop. Both ends of the two-diffractive conductive electrode 324 are connected to the processor 80 to form a diffractive conductive loop. Thereby, both ends of the plurality of first diffractive conductive electrodes 323 and the processor 80 are respectively connected to form a plurality of diffraction conductive loops. Both ends of the strip second diffraction conductive electrode 324 and the processor 80 are respectively connected to form a plurality of diffraction conductive loops.
- the projection of the first diffractive conductive electrode 323 on the diffraction exit surface 302 and the second diffractive conductive electrode 324 are vertically and horizontally interlaced to mean that the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 are spatially perpendicular to each other.
- the staggered, that is, the projection of the first diffractive conductive electrode 323 on the diffraction exit surface 302 and the second diffractive conductive electrode 324 are at an angle of 90 degrees.
- the projection of the plurality of first diffractive conductive electrodes 323 on the diffraction exit surface 302 and the plurality of second diffractive conductive electrodes 324 may be criss-crossed by a plurality of first diffractive conductive electrodes 323 and a plurality of strips.
- the two-diffractive conductive electrodes 324 are spatially obliquely staggered with each other.
- the processor 80 can simultaneously energize the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 to obtain a plurality of diffracted electrical signals, or the processor 80 can sequentially pair the plurality of first diffractive conductive electrodes.
- the processor 80 determines whether the light-transmitting diffractive conductive film 31 is broken according to the diffracted electrical signals, and further determines whether the diffractive optical element 30 is broken.
- the diffraction optical signals output from the plurality of first diffractive conductive electrodes 323 and the plurality of second diffractive conductive electrodes 324 can accurately detect whether the diffractive optical element 30 is broken and the specific position of the crack, and when the diffractive optical element 30 is broken.
- the processor 80 changes the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40.
- the collimating element 20 is formed with a light-transmitting collimating conductive film 21, and the light-transmitting collimating conductive film 21 is provided with a collimating conductive electrode 22 (as shown in FIG. 18).
- the collimating conductive electrode 22 is energized to output a collimated electrical signal.
- the processor 80 is further configured to obtain a collimated electric signal outputted after the collimating conductive electrode 22 is powered on, determine whether the collimated electric signal is within a preset collimation range, and when the collimated electric signal is not within the preset collimation range. It is determined that the collimating element 20 is broken.
- the judgment mechanism of the failure of the collimating element 20 is the same as that of the aforementioned diffractive optical element 30, and will not be described herein.
- the manufacturing method and material of the light-transmitting collimating conductive film 21 are the same as those of the light-transmitting diffraction conductive film 31 described above, and will not be described herein.
- the collimating element 20 includes opposing collimating incident faces 201 and collimating exit faces 202.
- the light-transmitting collimating conductive film 21 is formed on the collimating element 20
- the light-transmitting collimating conductive film 21 has a single-layer structure
- the light-transmitting collimating conductive film 21 is disposed on the collimating exit surface 202.
- the electrochromic device 40 is in a thin film structure, the position of the electrochromic device 40 may be: one of the electrochromic devices 40 is disposed on the light-transmitting collimating conductive film 21, that is, along the light-emitting direction of the laser emitter 10.
- the collimating element 20, the light-transmitting collimating conductive film 21, and the electrochromic device 40 are sequentially arranged (as shown in FIG. 15); or, the electrochromic device 40 is disposed on the collimated incident surface 201, that is, electro-induced The color changing device 40, the collimating element 20, and the light-transmitting collimating conductive film 21 are sequentially arranged in the light emitting direction (not shown); or, the electrochromic device 40 is plural, one is disposed on the collimated incident surface 201, and one is disposed.
- the electrochromic device 40 On the collimation exit surface 202, that is, the electrochromic device 40, the collimating element 20, the transparent collimating conductive film 21, and the electrochromic device 40 are sequentially arranged in the light emitting direction (not shown); or, in the laser projection mode
- the group 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50
- the electrochromic device 40 is disposed on the inner surface of the electrochromic device 40, that is, the collimating element 20, the light-transmitting collimating conductive film 21,
- the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 are along the illuminating side Arranged in sequence (as shown in FIG.
- the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, there are a plurality of electrochromic devices 40, one of which is disposed on the protective cover 70.
- the inner surface, one disposed on the collimated incident surface 201, that is, the electrochromic device 40, the collimating element 20, the light transmissive collimating conductive film 21, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 are in the light emitting direction Arranged in sequence (not shown); or, when the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, there are a plurality of electrochromic devices 40, one of which is disposed on the inner surface of the protective cover 70.
- the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, there are a plurality of electrochromic devices 40, one of which is disposed on the inner surface of the protective cover 70.
- the light emitting directions are arranged in order (not shown).
- the electrochromic device 40 is a non-film sheet structure, in order to reduce the thickness of the laser projection module 100, only one electrochromic device 40 is provided, and the position of the electrochromic device 40 may be along the laser emitter 10.
- the laser emitter 10, the electrochromic device 40, the collimating element 20, the light-transmitting collimating conductive film 21, and the diffractive optical element 30 are sequentially arranged (as shown in FIG. 17); or, the laser emitter 10, collimating The element 20, the light-transmitting collimating conductive film 21, the electrochromic device 40, and the diffractive optical element 30 are sequentially arranged (not shown); or, the laser emitter 10, the collimating element 20, the light-transmitting collimating conductive film 21, and the diffraction The optical element 30 and the electrochromic device 40 are sequentially arranged (not shown).
- the collimating conductive electrode 22 may be a single strip, and the single collimating conductive electrode 22 includes a collimating input end 221 and a collimating output end 222, and the collimating input end The 221 and the collimated output 222 are both coupled to the processor 80 and form a collimated conductive loop.
- the arrangement of the collimating conductive electrodes 22 is various.
- the connecting direction of the collimating input end 221 and the collimating output end 222 ie, the extending direction of the collimating conductive electrode 22
- the length direction of 21 (as shown in FIG.
- the direction in which the collimating conductive electrode 22 extends is the width direction of the light-transmitting collimating conductive film 21 (not shown), or the direction in which the collimating conductive electrode 22 extends is light-transmitting.
- the diagonal direction of the conductive film 21 is collimated (not shown). Regardless of the manner in which the collimating conductive electrodes 22 are arranged, the collimating conductive electrodes 22 can span the entire light-transmitting collimating conductive film 21, and it is possible to more accurately detect whether or not the light-transmitting collimating conductive film 21 is broken. Referring to FIG.
- the collimating conductive electrodes 22 disposed on the transparent collimating conductive film 21 may also be multiple strips, and the plurality of collimating conductive electrodes 22 may be Disjoint with each other, each of the collimating conductive electrodes 22 includes a collimating input 221 and a collimating output 222.
- Each collimated input 221 and each collimated output 222 are coupled to the processor 80 to form a collimated conductive loop, whereby the collimated input 221 and the collimated output 222 of the plurality of collimated conductive electrodes 22 They are respectively coupled to the processor 80 to form a plurality of collimated conductive loops.
- the plurality of collimating conductive electrodes 22 are arranged in a plurality of manners. For example, each of the collimating conductive electrodes 22 extends in the longitudinal direction of the transparent collimating conductive film 21, and the plurality of collimating conductive electrodes 22 are spaced apart in parallel. The arrangement is as shown in FIG.
- each of the collimating conductive electrodes 22 is the width direction of the transparent collimating conductive film 21, and the plurality of collimating conductive electrodes 22 are arranged in parallel (not shown); or
- the direction in which each of the collimating conductive electrodes 22 extends is the diagonal direction of the light-transmitting collimating conductive film 21, and the plurality of collimating conductive electrodes 22 are arranged in parallel (not shown).
- the plurality of collimating conductive electrodes 22 can occupy a larger area of the light-transmitting collimating conductive film 21 than the single collimating conductive electrodes 22.
- more collimated electrical signals can be output. Since only a single collimating conductive electrode 22 is provided, there is a possibility that the position where the collimating element 20 is broken is far from the position of the single collimating conductive electrode 22, and the single collimating conductive electrode 22 has little influence, and the single collimating is small.
- the electrical signal output by the conductive electrode 22 is still within the preset collimation range, and the detection accuracy is not high.
- the plurality of collimating conductive electrodes 22 occupy more areas of the transparent collimating conductive film 21, correspondingly output more collimated electric signals, and the processor 80 can more accurately according to more collimated electric signals.
- the light transmissive collimating conductive film 21 of a single layer structure may also be disposed on the collimated incident surface 201.
- the position of the electrochromic device 40 may be: one of the electrochromic devices 40 is disposed on the collimated exit surface 202, that is, along the light emitting direction of the laser emitter 10, and transmits light.
- the collimating conductive film 21, the collimating element 20, and the electrochromic device 40 are sequentially arranged (as shown in FIG.
- the electrochromic device 40 is disposed on the transparent collimating conductive film 21, that is, electro-induced The color changing device 40, the light-transmitting collimating conductive film 21, and the collimating element 20 are sequentially arranged in the light emitting direction (not shown); or, the electrochromic device 40 is plural, and one is disposed on the light-transmitting collimating conductive film 21, One is disposed on the collimated exit surface 202, that is, the electrochromic device 40, the light-transmitting collimating conductive film 21, the collimating element 20, and the electrochromic device 40 are sequentially arranged along the light emitting direction (not shown); or, in the laser
- the projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, the electrochromic device 40 is one, and an electrochromic device 40 is disposed on the inner surface of the protective cover 70, that is, the transparent collimating conductive film 21 , collimating element 20, diffractive optical element 30, electrochromic device 40, The
- the electrochromic device 40 is plural, one of which Provided on the inner surface of the protective cover 70, one disposed on the light-transmitting collimating conductive film 21, that is, the electrochromic device 40, the light-transmitting collimating conductive film 21, the collimating element 20, the diffractive optical element 30, and the electrochromic device 40.
- the protective cover 70 is sequentially arranged along the light emitting direction (not shown); or, when the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, the electrochromic device 40 is plural, one set On the inner surface of the protective cover 70, one is disposed on the collimated exit surface 202, that is, the light transmissive collimating conductive film 21, the collimating element 20, the electrochromic device 40, the diffractive optical element 30, the electrochromic device 40, and the protection
- the cover 70 is sequentially arranged along the light emitting direction (not shown); or, when the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, the electrochromic device 40 is plural, one of which is disposed in protection.
- the inner surface of the cover 70 one disposed in the transparent collimator On the film 21, one is disposed on the collimation exit surface 202, that is, the electrochromic device 40, the transparent collimating conductive film 21, the collimating element 20, the electrochromic device 40, the diffractive optical element 30, the electrochromic device 40,
- the protective covers 70 are sequentially arranged in the light emitting direction (not shown).
- the electrochromic device 40 is a non-film sheet structure, in order to reduce the thickness of the laser projection module 100, only one electrochromic device 40 is provided, and the position of the electrochromic device 40 may be along the laser emitter 10.
- the laser emitter 10, the electrochromic device 40, the light-transmitting collimating conductive film 21, the collimating element 20, and the diffractive optical element 30 are sequentially arranged (as shown in FIG. 22); or, the laser emitter 10, the light transmitting device
- the collimating conductive film 21, the collimating element 20, the electrochromic device 40, and the diffractive optical element 30 are sequentially arranged (not shown); or, the laser emitter 10, the light transmissive collimating conductive film 21, the collimating element 20, and the diffraction
- the optical element 30 and the electrochromic device 40 are sequentially arranged (not shown).
- the collimating conductive electrodes 22 may be a single or a plurality of strips.
- the arrangement of the single or multiple collimated conductive electrodes 22 is similar to the arrangement of the collimated conductive electrodes 22 disposed on the collimated exit surface 202 of the transparent collimating conductive film 21, and details are not described herein again.
- the processor 80 can determine whether the collimating element 20 is broken according to the collimated electrical signal output by the collimating conductive electrode 22, and change the voltage applied to the electrochromic device 40 to reduce the electric power when the collimating element 20 is broken. The transmittance of the color-changing device 40.
- the light-transmitting collimating conductive film 21 is a single-layer bridging structure, and the light-transmitting collimating conductive film 21 is disposed in the collimated emission. Face 202 or collimated on incident surface 201.
- the position of the electrochromic device 40 and the light-transmitting collimating conductive film 21 of the single-layer structure are disposed on the collimating exit surface 202.
- the position of the electrochromic device 40 is similar when the light-transparent conductive film 21 of the single-layer bridging structure is disposed on the collimated incident surface 201, and the position of the electrochromic device 40 is transparent to the above-mentioned single-layer structure.
- the position of the electrochromic device 40 is similar when the straight conductive film 21 is disposed on the collimated incident surface 201, and details are not described herein again.
- the transparent collimating conductive film 21 includes a plurality of first collimating conductive electrodes 223 arranged in parallel, and a plurality of parallelly disposed first Two collimating conductive electrodes 224 and a plurality of bridging collimating conductive electrodes 225.
- the plurality of first collimating conductive electrodes 223 are vertically crisscrossed with the plurality of second collimating conductive electrodes 224, and each of the first collimating conductive electrodes 223 is continuously uninterrupted, and each of the second collimating conductive electrodes 224 is in a corresponding plurality of strips
- the staggered portion of the first collimating conductive electrode 223 is broken and does not conduct with the plurality of first collimating conductive electrodes 223.
- Each of the bridging collimating conductive electrodes 225 turns on the break of the corresponding second collimating conductive electrode 224.
- a collimating insulator 226 is disposed at an interlaced position of the bridge collimating conductive electrode 225 and the first collimating conductive electrode 223.
- Both ends of each of the first collimating conductive electrodes 223 are connected to the processor 80 to form a collimated conductive loop, and both ends of each of the second collimating conductive electrodes 224 are connected to the processor 80 to form a collimated conductive loop. Therefore, both ends of the plurality of first collimating conductive electrodes 223 and the processor 80 are respectively connected to form a multi-collimation strip conductive loop, and both ends of the plurality of second collimating conductive electrodes 224 are respectively connected to the processor 80. To form a plurality of collimated conductive loops.
- the material of the collimating insulator 226 may be an organic material having good light transmittance and insulation, and the collimating insulator 226 may be fabricated by a silk screen or a yellow light process.
- the explanation of "cross-hatching” is similar to the explanation of "cross-hatching" at the light-transmitting diffraction conductive film 31 of the single-layer bridging structure, and will not be described here.
- the processor 80 can simultaneously energize the plurality of first collimating conductive electrodes 223 and the plurality of second collimating conductive electrodes 224 to obtain a plurality of collimated electrical signals, or the processor 80 can sequentially perform the plurality of first lines.
- the collimating conductive electrode 223 and the plurality of second collimating conductive electrodes 224 are energized to obtain a plurality of collimated electric signals, and then the processor 80 determines whether the transparent collimating conductive film 21 is broken according to the collimated electric signal. When it is detected that the collimated electric signal output by the first collimating conductive electrode 223 of the number 1 is not within the preset collimation range, the collimated electric signal output by the second collimating conductive electrode 224 of the number 3 is not in the preset collimation.
- the light-transmitting collimating conductive film 21 is broken at the intersection of the first collimating conductive electrode 223 numbered 1 and the second collimating conductive electrode 224 numbered 3, and the collimating element 20 and the light-transmitting collimation The position corresponding to the rupture position of the conductive film 21 is also broken.
- the light-transmitting collimating conductive film 21 of the single-layer bridging structure can more accurately detect whether the collimating element 20 is broken and the specific position of the crack, and when the collimating element 20 is broken, the processor 80 is changed to be applied to the electric The voltage on the device 40 is changed to reduce the transmittance of the electrochromic device 40.
- the light-transmitting collimating conductive film 21 when the light-transmitting collimating conductive film 21 is formed on the collimating element 20, the light-transmitting collimating conductive film 21 includes the first collimating conductive film 211 disposed on the collimating incident surface 201 and is disposed in the collimation.
- the second collimating conductive film 212 on the exit surface 202.
- the position of the electrochromic device 40 may be: the electrochromic device 40 is disposed on the first collimating conductive film 211, the electrochromic device 40, and the first collimating conductive film 211
- the collimating element 20 and the second collimating conductive film 212 are sequentially arranged in the light emitting direction (as shown in FIG.
- the electrochromic device 40 is disposed on the second collimating conductive film 212, the first collimating conductive film 211, the collimating element 20, the second collimating conductive film 212, and the electrochromic device 40 are sequentially arranged along the light emitting direction (not shown); or, the electrochromic device 40 is plural, and one is disposed at the first collimated conductive On the film 211, one is disposed on the second collimating conductive film 212, and the electrochromic device 40, the first collimating conductive film 211, the collimating element 20, the second collimating conductive film 212, and the electrochromic device 40 are illuminated.
- the directions are sequentially arranged (not shown); or, when the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, the electrochromic device 40 is disposed on the inner surface of the protective cover 70, the first collimation Conductive film 211, collimating element 20, second collimating conductive film 212, diffractive optical element 30
- the electrochromic device 40 and the protective cover 70 are sequentially arranged in the light emitting direction (as shown in FIG.
- the electrochromic device 40 there are a plurality of electrochromic devices 40 disposed on the inner surface of the protective cover 70, one disposed on the first collimating conductive film 211, the electrochromic device 40, the first collimating conductive film 211, and the collimating element 20
- the second collimating conductive film 212, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (not shown); or, the laser projection module 100 is disposed at the top of the lens barrel 50.
- the protective cover 70 of 502 there are a plurality of electrochromic devices 40, one of which is disposed on the inner surface of the protective cover 70, and one disposed on the second collimating conductive film 212, the first collimating conductive film.
- the projection module 100 includes a top 502 disposed on the lens barrel 50
- a plurality of electrochromic devices 40 are disposed, one of which is disposed on the inner surface of the protective cover 70, one disposed on the first collimating conductive film 211, and one disposed on the second collimated conductive layer
- the electrochromic device 40, the first collimating conductive film 211, the collimating element 20, the second collimating conductive film 212, the electrochromic device 40, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 is arranged in order along the direction of illumination (not shown).
- the electrochromic device 40 is a non-film sheet structure
- the laser emitter 10 electrochromic The device 40, the first collimating conductive film 211, the collimating element 20, the second collimating conductive film 212, and the diffractive optical element 30 are sequentially arranged in the light emitting direction of the laser emitter 10.
- the other arrangement of the electrochromic device 40 of the non-film sheet structure is the same as that of the above-described laser projection module 100, and the electrochromic device 40 is a non-film sheet structure. The arrangement is the same and will not be described here.
- the first collimating conductive film 211 is provided with a plurality of parallel first collimating conductive electrodes 223, and the second collimating conductive film 212 is provided with a plurality of parallel second collimating conductive electrodes 224.
- the projection of the first collimated conductive electrode 223 on the collimated exit surface 202 is criss-crossed with the second collimated conductive electrode 224, and both ends of each of the first collimated conductive electrodes 223 are connected to the processor 80 to form a collimated conductive
- Each of the two ends of the second collimating conductive electrode 224 is connected to the processor 80 to form a collimated conductive loop.
- both ends of the plurality of first collimating conductive electrodes 223 are respectively connected to the processor 80.
- a plurality of collimating conductive loops are formed, and both ends of the plurality of second collimating conductive electrodes 224 are respectively connected to the processor 80 to form a plurality of collimating conductive loops.
- cross-hatching is similar to the explanation of "cross-hatching” at the light-transmitting diffraction conductive film 31 of the above-described two-layer structure, and will not be explained here.
- the processor 80 can simultaneously energize the plurality of first collimating conductive electrodes 223 and the plurality of second collimating conductive electrodes 224 to obtain a plurality of collimated electrical signals, or the processor 80 can sequentially perform the plurality of first lines.
- the collimating conductive electrode 223 and the plurality of second collimating conductive electrodes 224 are energized to obtain a plurality of collimated electric signals, and then the processor 80 determines whether the transparent collimating conductive film 21 is broken according to the collimated electric signal, and further determines Whether the collimating element 20 is broken.
- the collimated electrical signals outputted by the plurality of first collimating conductive electrodes 223 and the plurality of second collimating conductive electrodes 224 can accurately detect whether the collimating element 20 is broken and the specific position of the crack, and the collimating element When the 20 breaks, the processor 80 changes the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40.
- the electrochromic device 40 when the electrochromic device 40 is a thin film structure, the electrochromic device 40 can be formed on both the collimating element 20 and the diffractive optical element 30.
- the collimated incident surface 201 is provided with a light-transmitting collimating conductive film 21
- the diffractive incident surface 301 is provided with a light-transmitting diffractive conductive film 31.
- the position of the electrochromic device 40 may be: the electrochromic device 40 is A plurality, one disposed on the light-transmitting collimating conductive film 21, one disposed on the diffraction exit surface 302, that is, along the light emitting direction of the laser emitter 10, the electrochromic device 40, the light-transmitting collimating conductive film 21, and the collimation
- the element 20, the light-transmitting diffraction conductive film 31, the diffractive optical element 30, and the electrochromic device 40 are sequentially arranged.
- the collimating conductive electrode 22 and the single-layer transparent collimating conductive film 21 may be any one of the above embodiments, and the diffractive conductive electrode 32 and the single-layer transparent diffractive conductive film 31 may also be implemented as described above. Any of the ways.
- the collimating element 20 is provided with a light-transmitting collimating conductive film 21, and the diffractive optical element 30 is also provided with a light-transmitting diffractive conductive film 31, and the processor 80 can detect whether the collimating element 20 and the diffractive optical element 30 are broken. And when either one of them ruptures, the transmittance of the plurality of electrochromic devices 40 is changed, thereby more fully blocking the emission of the laser light and improving the safety of the user.
- the diffractive optical element 30 can be doped with diffractive conductive particles 33, and the diffractive conductive particles 33 form a diffractive conductive path 34.
- the judgment mechanism of whether or not the diffractive optical element 30 is broken is as follows: when the diffractive optical element 30 is in an intact state, the adjacent diffractive conductive particles 33 are joined, and at this time, the resistance of the entire diffractive conductive path 34 is small, In this state, the diffractive conductive path 34 is energized, that is, a voltage of a certain magnitude is applied, and at this time, the current output from the diffraction conductive path 34 obtained by the processor 80 is large.
- the diffractive optical element 30 When the diffractive optical element 30 is broken, the junction between the diffractive conductive particles 33 doped in the diffractive optical element 30 is broken, and at this time, the resistance value of the entire diffractive conductive path 34 is close to infinity, and the diffraction conductive is given in this state.
- the path 34 is energized and the current output by the diffractive conductive path 34 obtained by the processor 80 is small. Therefore, in the first mode, the diffractive optical element 30 can be judged based on the difference between the diffracted electric signal (i.e., current) outputted after the diffractive conductive path 34 is energized and the diffracted electric signal detected in the undisrupted state of the diffractive optical element 30.
- the second mode whether the diffractive optical element 30 is broken according to the diffracted electric signal outputted by the diffractive conductive path 34 in the diffractive optical element 30, specifically, if the diffracted electric signal output from the diffractive conductive path 34 is not When the diffraction range is within the diffraction range, it is determined that the diffractive optical element 30 is broken, and if the diffracted electric signal output from the diffraction conductive path 34 is within the predetermined diffraction range, it is determined that the diffractive optical element 30 is not broken.
- the diffractive optical element 30 includes a diffractive incident surface 301 and a diffractive exit surface 302 that are opposite each other.
- the diffractive optical element 30 is doped with a plurality of diffractive conductive particles 33, and the plurality of diffractive conductive particles 33 form a conductive path (shown in FIG. 29) or mutually disjoint and mutually insulated or a plurality of diffractive conductive paths 34 (not shown) ).
- Each of the diffractive conductive paths 34 includes a diffractive input 341 and a diffractive output 342 (shown in Figure 33).
- Each of the diffraction input ends 341 and each of the diffraction output ends 342 are coupled to the processor 80 and form a diffractive conductive loop.
- the plurality of diffractive input ends 341 and the plurality of diffractive output ends 342 form a plurality of diffractive conductive loops.
- the position of the electrochromic device 40 may be such that the electrochromic device 40 is disposed on the diffraction exit surface 302, that is, the collimating element 20, the diffractive optical element 30, and the electrochromic device 40. Arranged in the order of the light emission direction (as shown in FIG.
- the electrochromic device 40 is disposed on the diffraction incident surface 301, that is, the collimating element 20, the electrochromic device 40, and the diffractive optical element 30 are sequentially arranged along the light emitting direction ( Figure 2; or two electrochromic devices 40, respectively disposed on the diffractive incident surface 301 and the diffractive exit surface 302, namely the collimating element 20, the electrochromic device 40, the diffractive optical element 30, the electro-induced The color changing devices 40 are sequentially arranged in the light emitting direction (not shown); or, when the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, the electrochromic device 40 is disposed at the protective cover 70.
- the inner surface, that is, the collimating element 20, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (as shown in FIG. 31); or, the electrochromic device 40 is provided in two, respectively On the diffractive incident surface 301
- the inner surface of the protective cover 70, i.e., collimating element 20, an electrochromic device 40, the diffractive optical element 30, the electrochromic device 40, the protective cover 70 along the direction of light emission are sequentially arranged (not shown).
- the electrochromic device 40 is a non-film sheet structure, in order to reduce the thickness of the laser projection module 100, only one electrochromic device 40 is provided, and the position of the electrochromic device 40 may be along the laser emitter 10.
- the laser emitter 10, the electrochromic device 40, the collimating element 20, and the diffractive optical element 30 are sequentially arranged (as shown in FIG. 32); alternatively, the position of the electrochromic device 40 may be other situations, where Not exhaustive.
- the diffractive conductive path 34 is arranged in various ways.
- the extending direction of the diffractive conductive path 34 is the longitudinal direction of the diffractive optical element 30 (if the diffractive optical element 30 is Circular, where the length direction is the first radial direction of the diffractive optical element 30, the "longitudinal direction" of the diffractive optical element 30 is explained below, as shown in FIG.
- the diffractive conductive paths 34 can span the entire diffractive optical element 30, and it is possible to more accurately detect whether or not the diffractive optical element 30 is broken.
- the diffractive conductive paths 34 are arranged in various ways: for example, the extending direction of each of the diffractive conductive paths 34 is the diffractive optical element 30. In the longitudinal direction (as shown in FIG. 34), a plurality of diffraction conductive paths 34 are arranged in parallel, and since the diffractive optical element 30 has a certain thickness, the plurality of diffraction conductive paths 34 are parallelly spaced along the longitudinal direction of the diffractive optical element 30. After being disposed, they may be disposed at intervals in the thickness direction of the diffractive optical element 30 (as shown in FIG.
- the extending direction of each of the diffractive conductive paths 34 is the width direction of the diffractive optical element 30 (not shown).
- the plurality of diffractive conductive paths 34 are arranged in parallel at intervals; or, the extending direction of each of the diffractive conductive paths 34 is a diagonal direction of the diffractive incident surface 301 (not shown), and the plurality of diffractive conductive paths 34 are along the diffractive incident surface 301.
- the angular directions are arranged in parallel at intervals; or, the extending direction of each of the diffractive conductive paths 34 is a diagonal direction of the diffraction incident surface 301 and the diffraction exit surface 302 (not shown), and a plurality of The diffraction conductive paths 34 are arranged in parallel at intervals; or, each of the diffraction conductive paths 34 is arranged in parallel along the thickness direction of the diffractive optical element 30 (not shown). Regardless of the manner in which the diffractive conductive paths 34 are arranged, the plurality of diffractive conductive paths 34 can occupy more volume of the diffractive optical element 30 than the single diffractive conductive path 34, and accordingly can output more More diffracted electrical signals.
- the single diffractive conductive path 34 Since only a single diffractive conductive path 34 is provided, there is a possibility that the position at which the diffractive optical element 30 is broken is far from the position of the single diffractive conductive path 34, and has little effect on the single diffractive conductive path 34.
- the single diffractive conductive path 34 is not affected.
- the output of the diffracted electrical signal is still within the preset diffraction range, and the detection accuracy is not high.
- the plurality of diffractive conductive paths 34 occupy more volume of the diffractive optical element 30, correspondingly output more diffracted electrical signals, and the processor 80 can more accurately determine whether the diffractive optical element 30 is broken according to more diffracted electrical signals. The accuracy of the rupture detection of the diffractive optical element 30 is improved.
- the processor 80 can instantly change the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby avoiding excessive laser energy and causing damage to the user's eyes. hurt.
- the diffractive optical element 30 is doped with a plurality of diffractive conductive particles 33, and the plurality of diffractive conductive particles 33 form a plurality of diffractive conductive paths 34, and the plurality of diffractive conductive paths 34 include a plurality of first diffractive conductive paths 343 and A plurality of second diffractive conductive paths 344.
- a plurality of first diffractive conductive paths 343 are arranged in parallel, and a plurality of second diffractive conductive paths 344 are arranged in parallel.
- the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 are spatially crisscrossed, and each of the first diffractive conductive paths 343 includes a first diffractive input end 3431 and a first diffractive output end 3432, each of which The second diffractive conductive path 344 includes a second diffractive input end 3441 and a second diffractive output end 3442.
- Each of the first diffractive input terminals 3431 and each of the first diffractive output ends 3432 are coupled to the processor 80 to form a diffractive conductive loop, each of the second diffractive input terminals 3441 and each of the second diffractive output terminals 3442 and the processor 80. Connected to form a diffractive conductive loop. Therefore, both ends of the plurality of first diffractive conductive paths 343 and the processor 80 are respectively connected to form a plurality of diffraction conductive loops, and both ends of the plurality of second diffractive conductive paths 344 are respectively connected to the processor 80 to form a plurality of Strip diffraction conductive loop.
- the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 are spatially crisscrossed to mean that the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 are spatially perpendicular to each other, that is, The angle between the first diffractive conductive path 343 and the second diffractive conductive path 344 is 90 degrees.
- the extending direction of the plurality of first diffractive conductive paths 343 is the longitudinal direction of the diffractive optical element 30, and the extending direction of the plurality of second diffractive conductive paths 344 is the width direction of the diffractive optical element 30; or, a plurality of first The extending direction of the diffractive conductive path 343 is the thickness direction of the diffractive optical element 30, and the extending direction of the plurality of second diffractive conductive paths 344 is the longitudinal direction of the diffractive optical element 30.
- the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 are spatially crisscrossed, and may be a plurality of first diffractive conductive paths 343 and a plurality of second diffractive conductive paths 344. They are obliquely staggered in space.
- the processor 80 can simultaneously energize the plurality of first diffractive conductive vias 343 and the plurality of second diffractive conductive vias 344 to obtain a plurality of electrical signals.
- the processor 80 may sequentially energize the plurality of first diffractive conductive vias 343 and the plurality of second diffractive conductive vias 344 to obtain a plurality of diffracted electrical signals, and then the processor 80 determines the diffractive optical elements 30 based on the diffracted electrical signals. Whether it is broken. Referring to FIG.
- the diffractive optical element 30 is broken at the intersection of the first diffraction conductive path 343 numbered 2 and the second diffraction conductive path 344 numbered 4, and the position corresponding to the diffractive optical element 30 is also broken.
- the manner in which the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 are arranged in a crisscross pattern can more accurately detect whether the diffractive optical element 30 is broken and the specific position of the crack.
- the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 are spatially interlaced. After a pair of mutually intersecting diffractive conductive paths are paired, a plurality of pairs of mutually staggered diffractive conductive path pairs may be formed in the width direction or the thickness direction of the diffractive optical element 30.
- the processor 80 can simultaneously energize the plurality of first diffractive conductive vias 343 and the plurality of second diffractive conductive vias 344 to obtain a plurality of diffracted electrical signals.
- the processor 80 may sequentially energize the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 to obtain a plurality of diffracted electrical signals, and then the processor 80 determines whether the diffractive optical elements 30 are based on the electrical signals. The specific location of the rupture and rupture.
- the position at which the diffractive optical element 30 is broken is far from the position of the pair of the pair of diffractive conductive paths, but has little effect on the pair of the diffractive conductive paths.
- the diffraction electric signal outputted to the plurality of first diffractive conductive paths 343 and the plurality of second diffractive conductive paths 344 in the pair of diffractive conductive paths is still within a predetermined diffraction range, and the detection accuracy is not high.
- the pairs of diffractive conductive paths can occupy more volume of the diffractive optical element 30, correspondingly can output more diffracted electrical signals, and the processor 80 can more accurately according to more diffracted electrical signals.
- the processor 80 can instantly change the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby avoiding excessive laser energy and causing damage to the user's eyes. hurt.
- collimating conductive particles 23 may be doped in collimating element 20, and collimating conductive particles 23 form a collimating conductive path 24.
- the judging mechanism of the cracking of the collimating element 20 is the same as the judging mechanism of the rupture of the diffractive optical element 30 forming the diffractive conductive path 34, and details are not described herein again.
- the collimating element 20 includes opposing collimating incident faces 201 and collimating exit faces 202.
- the collimating element 20 is doped with a plurality of collimating conductive particles 23, and the plurality of collimating conductive particles 23 form a collimating conductive path 24 or a plurality of collimating conductive paths 24 that are mutually disjoint and mutually insulated.
- Each of the collimated conductive paths 24 includes a collimated input 241 and a collimated output 242 (shown in Figure 43).
- Each of the collimation input terminals 241 and each of the collimation output terminals 242 are coupled to the processor 80 and form a plurality of collimated conductive loops.
- the position of the electrochromic device 40 may be such that the electrochromic device 40 is disposed on the collimated exit surface 202, that is, the collimating element 20, the electrochromic device 40, and the diffractive optical element. 30 is arranged in the order of the light emission direction (as shown in FIG. 40); or, the electrochromic device 40 is disposed on the collimated incident surface 201, that is, the electrochromic device 40, the collimating element 20, and the diffractive optical element 30 are sequentially arranged along the light emitting direction.
- electrochromic devices 40 respectively disposed on the collimated incident surface 201 and the collimated exit surface 202, ie, the electrochromic device 40, the collimating element 20, the electrochromic device 40.
- the diffractive optical elements 30 are sequentially arranged along the light emitting direction (not shown); or, when the laser projection module 100 includes the protective cover 70 disposed at the top 502 of the lens barrel 50, the electrochromic device 40 is disposed at one
- the inner surface of the protective cover 70 that is, the collimating element 20, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (as shown in FIG. 41); or, the electrochromic device 40 is two.
- electrochromic Two devices 40 are disposed on the collimated exit surface 202 and the inner surface of the protective cover 70, that is, the collimating element 20, the electrochromic device 40, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70.
- electrochromic devices 40 Arranged in the order of illumination (not shown); or, there are a plurality of electrochromic devices 40, one disposed on the collimated incident surface 201, one disposed on the collimated exit surface 202, and one disposed within the protective cover 70
- the electrochromic device 40, the collimating element 20, the electrochromic device 40, the diffractive optical element 30, the electrochromic device 40, and the protective cover 70 are sequentially arranged in the light emitting direction (not shown).
- the electrochromic device 40 is a non-film sheet structure, in order to reduce the thickness of the laser projection module, only one electrochromic device 40 is provided.
- the position of the electrochromic device 40 may be: laser emitter 10, electro-optical The color changing device 40, the collimating element 20, and the diffractive optical element 30 are sequentially arranged in the light emitting direction (as shown in FIG. 42); or the position of the electrochromic device 40 may be other situations, which is not exhaustive.
- the collimating conductive vias 24 are arranged in a plurality of ways: for example, the extending direction of the collimating conductive vias 24 is the length direction of the collimating elements 20 (if The collimating element 20 is circular, the length direction here is the first radial direction of the collimating element 20, the interpretation of the "longitudinal direction" of the collimating element 20 is the same as shown in FIG. 43; or the collimating conduction
- the direction in which the via 24 extends is the width direction of the collimating element 20 (not shown); or the direction in which the collimating conductive via 24 extends is the diagonal direction of the collimating element 20 (not shown).
- the collimating conductive paths 24 can span the entire collimating element 20, and it is possible to more accurately detect whether or not the collimating elements 20 are broken.
- the collimating conductive paths 24 are arranged in various ways: for example, the extending direction of each of the collimating conductive paths 24 For the length direction of the collimating element 20 (as shown in FIG. 44), a plurality of collimating conductive paths 24 are arranged in parallel.
- the collimating element 20 Since the collimating element 20 has a certain thickness, the plurality of collimating conductive paths 24 are collimated along the edge. After the longitudinal direction of the elements 20 are arranged in parallel, they may be arranged at intervals in the thickness direction of the collimating elements 20 (as shown in FIG.
- each of the collimating conductive paths 24 is the collimating element 20 In the width direction (not shown), a plurality of collimating conductive paths 24 are arranged in parallel; or, each of the collimating conductive paths 24 extends in a diagonal direction of the collimated incident surface 201 (not shown), and a plurality of The collimating conductive paths 24 are arranged in parallel; or each of the collimating conductive paths 24 extends in a diagonal direction of the collimated incident surface 201 and the collimated exit surface 202 (not shown), and a plurality of collimated conductive paths 24 are arranged in parallel intervals; or, each collimation Spaced parallel electrical path 24 in the thickness direction of the collimating element 20 (not shown).
- the plurality of collimating conductive paths 24 can occupy more volume of the collimating elements 20 than the single collimating conductive paths 24 are provided, correspondingly More collimated electrical signals can be output. Since only a single collimated conductive path 24 is provided, there is a possibility that the position where the collimating element 20 is broken is far from the position of the single collimating conductive path 24, and the influence on the single collimating conductive path 24 is small. The collimated electric signal outputted by the straight conductive path 24 is still within the preset collimation range, and the detection accuracy is not high.
- the plurality of collimating conductive paths 24 occupy more volume of the collimating element 20, and correspondingly, more collimated electric signals can be output, and the processor 80 can more accurately according to more collimated electric signals. It is judged whether or not the collimating element 20 is broken, and the accuracy of the crack detection of the collimating element 20 is improved. In addition, upon detecting that the collimating element 20 is broken, the processor 80 can instantly change the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby avoiding excessive laser energy to the user's eyes. hurt.
- the collimating element 20 is doped with a plurality of collimating conductive particles 23, and the plurality of collimating conductive particles 23 form a plurality of collimating conductive paths 24, and the plurality of collimating conductive paths 24 include a plurality of first quasi-standards Straight conductive path 243 and a plurality of second collimated conductive paths 244.
- a plurality of first collimating conductive vias 243 are arranged in parallel, and a plurality of second collimating conductive vias 244 are arranged in parallel.
- the position of the electrochromic device 40 is similar to the position of the electrochromic device 40 when the plurality of conductive particles form a collimated conductive path 24, and details are not described herein again.
- the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 are spatially crisscrossed, and each of the first collimated conductive vias 243 includes a first collimated input end 2431 and a first collimated output end 2432.
- Each of the second collimated conductive vias 244 includes a second collimated input 2441 and a second collimated output 2442.
- Each of the first collimating input terminals 2431 and each of the first collimating output terminals 2432 are coupled to the processor 80 to form a collimated conductive loop
- each of the second collimating input terminals 2441 and each of the second collimating outputs 2442 is coupled to processor 80 to form a collimated conductive loop. Therefore, both ends of the plurality of first collimated conductive vias 243 and the processor 80 are respectively connected to form a plurality of collimated conductive loops, and both ends of the plurality of second collimated conductive vias 244 are respectively connected to the processor 80. To form a plurality of guiding direct electrical circuits.
- the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 are spatially crisscrossed to mean that the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 are spatially interdigitated
- the vertical staggering, that is, the angle between the first collimating conductive path 243 and the second collimating conductive path 244 is 90 degrees.
- the extending direction of the plurality of first collimating conductive vias 243 is the length direction of the collimating element 20, and the extending direction of the plurality of second collimating conductive vias 244 is the width direction of the collimating element 20; or, multiple The extending direction of the first collimating conductive path 243 is the thickness direction of the collimating element 20, and the extending direction of the plurality of second collimating conductive paths 244 is the length direction of the collimating element 20.
- the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 are spatially crisscrossed, and may be a plurality of first collimated conductive vias 243 and a plurality of second quasi-crosses.
- the straight conductive vias 244 are spatially staggered with each other.
- the processor 80 can simultaneously energize the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 to obtain a plurality of collimated electrical signals.
- the processor 80 can sequentially energize the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 to obtain a plurality of collimated electrical signals, and then the processor 80 determines the collimated electrical signals according to the collimated electrical signals. Whether the collimating element 20 is broken. Referring to FIG. 47, when it is detected that the electrical signal outputted by the first collimated conductive path 243 of number 2 is not within the preset collimation range, and the electrical signal output by the second collimated conductive path 244 of number 4 is not pre-predicted.
- the collimating element 20 is broken at the intersection of the first collimating conductive path 243 numbered 2 and the second collimating conductive path 244 numbered 4, and the corresponding position of the collimating element 20 is also
- the rupture as such, can be more accurately detected by the plurality of first collimating conductive paths 243 and the plurality of second collimating conductive paths 244 in a staggered arrangement, whether the collimating element 20 is broken or the specific position of the rupture.
- the plurality of first collimating conductive paths 243 and the plurality of second collimating conductive paths 244 are spatially mutually After staggering a pair of mutually orthogonal collimating conductive path pairs, a plurality of pairs of mutually staggered collimating conductive path pairs may be formed in the width direction or the thickness direction of the collimating element 20.
- the processor 80 can simultaneously energize the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 to obtain a plurality of collimated electrical signals.
- the processor 80 can sequentially energize the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 to obtain a plurality of collimated electrical signals, and then the processor 80 determines the collimation according to the electrical signals. Whether the component 20 is broken and the specific location of the crack. Since only one aligned pair of conductive paths is provided, there is a possibility that the position where the collimating element 20 is broken is far from the position of the pair of collimated conductive paths, but has little effect on the pair of collimating conductive paths.
- the collimated electric signal outputted by the plurality of first collimated conductive vias 243 and the plurality of second collimated conductive vias 244 in the pair of aligned conductive paths is still within a preset collimation range, and the detection accuracy is not tall.
- the plurality of pairs of collimated conductive path pairs can occupy more volume of the collimating element 20, correspondingly can output more collimated electric signals, and the processor 80 can judge more accurately according to more collimated electric signals.
- the specific position of the collimating element 20 is broken or broken, and the accuracy of the crack detection of the collimating element 20 is improved.
- the processor 80 upon detecting that the collimating element 20 is broken, the processor 80 can instantly change the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby avoiding excessive laser energy to the user's eyes. hurt.
- the electrochromic device 40 when the electrochromic device 40 is a thin film structure, the electrochromic device 40 can be formed on both the collimating element 20 and the diffractive optical element 30.
- the plurality of collimated conductive particles 23 doped by the collimating element 20 are formed with a plurality of collimated conductive vias 24 that are mutually disjoint and mutually insulated, and the diffractive optical particles 33 doped by the diffractive optical element 30 are formed into a plurality of strips.
- the first and second diffractive conductive paths 343 and 344 are vertically and horizontally staggered.
- the position of the electrochromic device 40 may be: a plurality of electrochromic devices 40, one disposed on the collimated incident surface 201, and one The dichroic emitting surface 302, that is, the electrochromic device 40, the collimating element 20, the diffractive optical element 30, and the electrochromic device 40 are sequentially arranged in the light emitting direction.
- the collimating conductive path 24 and the diffractive conductive path 34 may be any of the above embodiments.
- the collimating element 20 is provided with collimated conductive particles 23, and the diffractive optical element 30 is also provided with diffractive conductive particles 33, and the processor 80 can detect whether the collimating element 20 and the diffractive optical element 30 are broken, and When any one of them breaks, the transmittance of the plurality of electrochromic devices 40 is changed, thereby more effectively blocking the emission of the laser light and improving the safety of the user.
- the light-collecting collimating conductive film 21 may be disposed on the collimating element 20 to detect whether the collimating element 20 is broken, and the diffractive optical element 30 may be doped with the diffractive conductive particles 31 to detect whether the diffractive optical element 30 is broken;
- the collimating element 20 may be doped with the collimating conductive particles 23 to detect whether the collimating element 20 is broken, and the diffractive optical element 30 may be provided with the light transmitting diffractive conductive film 31 to detect whether the diffractive optical element 30 is broken.
- the position of the electrochromic device 40 may be the position described in any of the above embodiments.
- the laser projection module 100 further includes a substrate assembly 60.
- the substrate assembly 60 includes a substrate 62 and a circuit board 61 carried on the substrate.
- the circuit board 61 may be a hard board, a soft board or a soft and hard board.
- the circuit board 61 is provided with a via 611, and the laser emitter 10 is carried on the substrate 62 and housed in the via 611.
- the laser emitter 10 is electrically coupled to the processor 80 via a circuit board 61.
- a heat dissipation hole 621 is further disposed on the substrate 62.
- the heat generated by the operation of the laser emitter 10 or the circuit board 61 can be dissipated from the heat dissipation hole 621.
- the heat dissipation hole 621 can also be filled with the thermal conductive adhesive to further improve the heat dissipation performance of the substrate assembly 60.
- the laser emitter 10 may be a Vertical Cavity Surface Emitting Laser (VCSEL) or an edge-emitting laser (EEL). In the embodiment shown in FIG. 49, the laser emitter 10 is an edge.
- the transmitting laser in particular, the laser emitter 10 may be a Distributed Feedback Laser (DFB).
- the laser emitter 10 is used to emit laser light into the receiving cavity 54. Referring to FIG. 50, the laser emitter 10 is generally cylindrical.
- the laser emitter 10 forms a light-emitting surface 11 away from one end surface of the substrate assembly 60. The laser light is emitted from the light-emitting surface 11 and the light-emitting surface 11 faces the collimating element 20.
- the laser emitter 10 is fixed on the substrate assembly 60.
- the laser emitter 10 can be bonded to the substrate assembly 60 through the sealant 15, for example, the side of the laser emitter 10 opposite the light emitting surface 11 is bonded to the substrate assembly 60. on.
- the side surface 12 of the laser emitter 10 may also be bonded to the substrate assembly 60.
- the encapsulant 15 encloses the surrounding side 12, or may only bond one of the sides 12 to the substrate assembly 60. Or bonding a plurality of faces to the substrate assembly 60.
- the sealant 15 may be a thermal conductive adhesive to conduct heat generated by the operation of the laser emitter 10 into the substrate assembly 60.
- the laser projection module 100 adopts an edge-emitting laser as a laser emitter.
- the edge-emitting laser has a smaller temperature drift than the VCSEL array.
- the edge-emitting laser is a single-point light-emitting structure, it is not necessary to design an array structure, and the fabrication is simple. The cost of the laser projection module 100 is low.
- the gain of the power is obtained through the feedback of the grating structure.
- the injection current increases, the power consumption of the distributed feedback laser increases and the heat generation is severe.
- the edge emitting laser has a slender strip structure, the emitting laser is prone to accidents such as dropping, shifting or shaking, and thus setting The sealant 15 is capable of holding the edge emitting laser to prevent accidents such as dropping, shifting or shaking of the emitting laser.
- the laser emitter can also be secured to the substrate assembly 60 in a fixed manner as shown in Figure 52.
- the laser projection module 100 includes a plurality of supports 16 that can be secured to the substrate assembly 60.
- the plurality of support members 16 enclose a receiving space 160, and the laser emitter 10 is housed in the receiving space 160 and supported by the plurality of supporting members 16.
- the laser emitter 10 can be mounted directly between the plurality of supports 16 during installation.
- a plurality of supports 16 collectively clamp the laser emitter 10 to further prevent the laser emitter 10 from shaking.
- the substrate 61 can be omitted and the laser emitter 10 is directly attached to the circuit board 62 to reduce the overall thickness of the laser projection module 100.
- the present application also provides a depth camera 1000.
- the depth camera 1000 of the embodiment of the present application includes the laser projection module 100, the image collector 200, and the processor 80 of any of the above embodiments.
- the image collector 200 is configured to collect a laser pattern that is diffracted by the diffractive optical element 30 and projected into the target space.
- the processor 80 is connected to the laser projection module 100 and the image collector 200, respectively.
- the processor 80 is configured to process the laser pattern to obtain a depth image.
- Processor 80 herein may be processor 80 in laser projection module 100.
- the laser projection module 100 projects a laser pattern into the target space through the projection window 901, and the image collector 200 collects the laser pattern modulated by the target object through the acquisition window 902.
- the image collector 200 may be an infrared camera.
- the processor 80 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains a depth image of the laser pattern according to the deviation value.
- the image matching algorithm may be a Digital Image Correlation (DIC) algorithm. Of course, other image matching algorithms can be used instead of the DIC algorithm.
- DIC Digital Image Correlation
- an electronic device 3000 includes a housing 2000 and a depth camera 1000 of the above embodiment.
- the depth camera 1000 is disposed within the housing 2000 and exposed from the housing 2000 to acquire a depth image.
- the electronic device 3000 of the embodiment of the present application and the laser projection module 100 of the depth camera 1000 are provided with an electrochromic device 40.
- the processor 80 immediately Varying the voltage applied to the electrochromic device 40 to reduce the transmittance of the electrochromic device 40, thereby avoiding the problem that the collimated element 20 and the optical element are broken, causing the emitted laser energy to be too large to harm the user's eyes. Improve the safety of the user using the laser projection module 100.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
一种激光投射模组 (100)、深度相机 (1000)和电子装置 (3000)。激光投射模组 (100)包括激光发射器 (10)、准直元件 (20)、衍射光学元件 (30)、电致变色器件 (40)和处理器 (80)。激光发射器 (10)用于发射激光。准直元件 (20)用于准直激光。衍射光学元件 (30)用于衍射经准直元件 (20)准直后的激光以形成激光图案。电致变色器件(40)位于激光发射器 (10)的发光光路上。处理器 (80)与电致变色器件 (40)连接,处理器 (80)用于在准直元件 (20)和/或所述衍射光学元件 (30)破裂时,控制电致变色器件 (40)变色以阻挡激光的发射。
Description
优先权信息
本申请请求2018年2月27日向中国国家知识产权局提交的、专利申请号为201810164278.0的专利申请的优先权和权益,并且通过参照将其全文并入此处。
本申请涉及成像技术领域,特别涉及一种激光投射模组、深度相机和电子装置。
现有的一些激光发射器(例如垂直腔体激光发射器VSCEL等)会发射出聚焦信号较强的激光,这些激光经过准直元件、衍射光学元件后能量会衰减,以便满足信号强度低于对人体的伤害门限。
发明内容
本申请的实施例提供了一种激光投射模组、深度相机和电子装置。
本申请实施方式的激光投射模组包括激光发射器、准直元件、衍射光学元件、电致变色器件和处理器。所述激光发射器用于发射激光。所述准直元件用于准直所述激光。所述衍射光学元件用于衍射经所述准直元件准直后的激光以形成激光图案。所述电致变色器件位于所述激光发射器的发光光路上。所述处理器与所述电致变色器件连接,所述处理器用于在所述准直元件和/或所述衍射光学元件破裂时,控制所述电致变色器件变色以阻挡所述激光的发射。
本申请实施方式的深度相机包括上述的激光投射模组、图像采集器和处理器。所述图像采集器用于采集由所述激光投射模组向目标空间中投射的激光图案,所述处理器用于处理所述激光图案以获得深度图像。
本申请实施方式的电子装置包括壳体和上述的深度相机。所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1至图3是本申请某些实施方式的激光投射模组的结构示意图。
图4和图5是本申请某些实施方式的衍射导电电极的线路示意图。
图6至图8是本申请某些实施方式的激光投射模组的结构示意图。
图9是本申请某些实施方式的衍射光学元件的剖面图。
图10是本申请某些实施方式的衍射导电电极的线路示意图。
图11是本申请某些实施方式的衍射光学元件的剖面图。
图12至图17是本申请某些实施方式的激光投射模组的结构示意图。
图18和图19是本申请某些实施方式的准直导电电极的线路示意图。
图20至图22是本申请某些实施方式的激光投射模组的结构示意图。
图23是本申请某些实施方式的准直元件的剖面图。
图24是本申请某些实施方式的准直导电电极的线路示意图。
图25是本申请某些实施方式的准直元件的剖面图。
图26至图28是本申请某些实施方式的激光投射模组的结构示意图。
图29是本申请某些实施方式的衍射光学元件的剖面图。
图30至图32是本申请某些实施方式的激光投射模组的结构示意图。
图33和图34是本申请某些实施方式的衍射导电通路的线路示意图。
图35和图36是本申请某些实施方式的衍射光学元件的剖面图。
图37是本申请某些实施方式的衍射导电通路的线路示意图。
图38是本申请某些实施方式的衍射光学元件的剖面图。
图39是本申请某些实施方式的准直元件的剖面图。
图40至图42是本申请某些实施方式的激光投射模组的结构示意图。
图43和图44是本申请某些实施方式的准直导电通路的线路示意图。
图45和图46是本申请某些实施方式的准直元件的剖面图。
图47是本申请某些实施方式的准直导电通路的线路示意图。
图48是本申请某些实施方式的准直元件的剖面图。
图49是本申请某些实施方式的激光投射模组的结构示意图。
图50至图52是本申请某些实施方式的激光投射模组的部分结构示意图。
图53是本申请某些实施方式的深度相机的结构示意图。
图54是本申请某些实施方式的电子装置的结构示意图。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请提供一种激光投射模组100。激光投射模组100包括激光发射器10、准直元件20、衍射光学元件30、电致变色器件40和处理器80。激光发射器10用于发射激光。准直元件20用于准直激光发射器10发射的激光。衍射光学元件30用于衍射经准直元件20准直后的激光以形成激光图案。电致变色器件40位于激光发射器10的发光光路上。处理器80与电致变色器件40连接,处理器80用于在准直元件20和/或衍射光学元件30破裂时,控制电致变色器件40变色以阻挡激光的发射。
激光投射模组100还包括镜筒50。镜筒50包括相背的顶部502及底部501,镜筒50形成有贯穿顶部502及底部501的收容腔54,激光发射器10、准直元件20收容在收容腔54内。镜筒50的侧壁51向收容腔54的中心延伸有环形承载台52,衍射光学元件30放置在承载台52上。
其中,电致变色器件40由电致变色材料制成。电致变色是指材料的光学属性,例如发射率、透过率、吸收率等,在外加电场的作用下发生稳定、可逆的颜色变化的现象。电致变色材料可分为两大类,一类为无机变色材料,主要集中在过渡金属氧化物,这些过渡金属氧化物通过离子和电子的共注入和共抽出,使其化学价态或晶体结构发生变化,从而实现着色和褪色的可逆変化,最常见的如M
OO
3、V
2O
5、NiO、WO
3等。另一类为有机电致变色材料,通过电子的得失发生氧化-还原反应,从而实现着色和褪色的可逆変化。在本申请实施例中,可以使用具有较高变色效率和价格较低的WO
3作为电致变色器件40的材料。
激光发射器10工作时会发射出聚焦信号较强的激光,当激光投射模组100遇到摔落等情况,准直元 件20和/或衍射光学元件30出现破裂,激光将直接发射出来,照射用户的身体或眼睛,造成严重的安全问题。因此,在准直元件20和衍射光学元件30均未破裂时,处理器80对电致变色器件40施加一定电压以使电致变色器件40具有较高的透过率,以使得激光能够从电致变色器件40透射。而当处理器80检测到准直元件20破裂时,处理器80改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,从而利用电致变色器件40的低透过率遮挡发射的激光,以避免因准直元件20破裂,发射的激光能量过大而伤害用户眼睛的问题。同样地,当处理器80检测到衍射光学元件30破裂时,处理器80改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,从而利用电致变色器件40的低透过率遮挡发射的激光,以避免因衍射光学元件30破裂,发射的激光能量过大而伤害用户眼睛的问题。处理器80检测到当准直元件20和衍射光学元件30同时破裂时,处理器80同样会改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,从而利用电致变色器件40的低透过率遮挡发射的激光,以避免发射的激光能量过大而伤害用户眼睛的问题。
本申请实施方式的激光投射模组100中设置有电致变色器件40,在检测到准直元件20和衍射光学元件30中的任意一者破裂时,处理器80会立即改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,从而避免因准直元件20或衍射光学元件30破裂,导致发射的激光能量过大而伤害用户眼睛的问题,提升使用激光投射模组100的安全性。
请一并参阅图1及图4,在某些实施方式中,衍射光学元件30上形成有透光衍射导电膜31,透光衍射导电膜31上设有衍射导电电极32。衍射导电电极32通电后输出衍射电信号。处理器80还用于获取衍射导电电极32通电后输出的衍射电信号、判断衍射电信号是否处于预设衍射范围内、以及在衍射电信号不处于预设衍射范围内时确定衍射光学元件30破裂。衍射光学元件30破裂与否的判断机制如下:当衍射光学元件30处于完好状态时,透光衍射导电膜31的电阻较小,在此状态下给透光衍射导电膜31通电,即施加一定大小的电压,则此时处理器80获取到的衍射导电电极32输出的电流较大。而当衍射光学元件30破裂时,形成在衍射光学元件30上的透光衍射导电膜31也会碎裂,此时碎裂位置处的透光衍射导电膜31的电阻阻值接近无穷大,在此状态下给透光衍射导电膜31上的衍射导电电极32通电,处理器80获取到的衍射导电电极32输出的电流较小。因此,第一种方式,可以根据衍射电信号(即电流)与衍射光学元件30未破裂状态下检测到的衍射电信号(即电流)之间差异大小来判断透光衍射导电膜31是否破裂,进一步地,可根据透光衍射导电膜31的状态来判衍射光学元件30是否破裂,即,若透光衍射导电膜31破裂,则表明衍射光学元件30也破裂;若透光衍射导电膜31未破裂,则表明衍射光学元件30也未破裂。第二种方式:可根据衍射光学元件30上衍射导电电极32通电后输出的衍射电信号直接判断衍射光学元件30是否破裂,具体地,衍射导电电极32输出的衍射电信号不在预设衍射范围内时就确定透光衍射导电膜31破裂,进而判断衍射光学元件30也破裂;若衍射导电电极32输出的衍射电信号在预设衍射范围内时就确定透光衍射导电膜31未破裂,进而判断衍射光学元件30也未破裂。
透光衍射导电膜31可通过电镀等方式形成在衍射光学元件30的表面。透光衍射导电膜31的材质可以是氧化铟锡(Indium tin oxide,ITO)、纳米银丝、金属银线中的任意一种。氧化铟锡、纳米银丝、金属银线均具有良好的透光率及导电性能,可实现通电后的衍射电信号输出,同时不会对衍射光学元件30的出光光路产生遮挡。
具体地,衍射光学元件30包括相背的衍射入射面301和衍射出射面302。衍射光学元件30上形成有透光衍射导电膜31时,透光衍射导电膜31为单层结构,透光衍射导电膜31设置在衍射出射面302上。当电致变色器件40为薄膜结构时,电致变色器件40的位置可以是:电致变色器件40为一个,设置在透光衍射导电膜31上,即沿激光发射器10的发光方向,衍射光学元件30、透光衍射导电膜31、电致变色器件40依次排列(如图1所示);或者,电致变色器件40为一个,设置在衍射入射面301上,即电致变色器件40、衍射光学元件30、透光衍射导电膜31沿发光方向依次排列(图未示);或者,电致变色器件40为多个,一个设置在衍射入射面301上,一个设置在透光衍射导电膜31上,即电致变色器件40、衍射光学元件30、透光衍射导电膜31、电致变色器件40沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为一个,设置在保护罩70的内表面(内表面为保护罩70与衍射光学元件30相抵触的表面,下同),即衍射光学元件30、透光衍射导电膜31、电致变色器件40、保护罩70沿发光方向依次排列(如图2所示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个电致变色器件40设 置在保护罩70的内表面,一个设置在衍射入射面301上,即电致变色器件40、衍射光学元件30、透光衍射导电膜31、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组100的厚度,仅设置一个电致变色器件40,电致变色器件40的位置可以是:沿激光发射器10的发光方向,激光发射器10、电致变色器件40、准直元件20、衍射光学元件30、透光衍射导电膜31依次排列(如图3所示);或者,激光发射器10、准直元件20、电致变色器件40、衍射光学元件30、透光衍射导电膜31沿发光方向依次排列(图未示);或者,激光发射器10、准直元件20、衍射光学元件30、透光衍射导电膜31、电致变色器件40沿发光方向依次排列(图未示)。
请参阅图4,透光衍射导电膜31设置在衍射出射面302上时,衍射导电电极32可为单条,单条的衍射导电电极32包括衍射输入端321和衍射输出端322,衍射输入端321及衍射输出端322与处理器80连接并形成衍射导电回路。其中,衍射导电电极32的排布方式有多种,例如,衍射输入端321和衍射输出端322的连线方向(即衍射导电电极32的延伸方向)为透光衍射导电膜31的长度方向(如图4所示),或者衍射导电电极32的延伸方向为透光衍射导电膜31的宽度方向(图未示),或者衍射导电电极32的延伸方向为透光衍射导电膜31的对角线方向(图未示)。无论衍射导电电极32的排布方式是上述的哪种方式,衍射导电电极32都能跨越整个透光衍射导电膜31,可以较为准确地检测透光衍射导电膜31是否破裂。请参阅图5,透光衍射导电膜31设置在衍射出射面302上时,透光衍射导电膜31上设置的衍射导电电极32也可为多条,多条衍射导电电极32互不相交,每条衍射导电电极32包括衍射输入端321和衍射输出端322。每个衍射输入端321及每个衍射输出端322与处理器80均连接以形成一条衍射导电回路,由此,多条衍射导电电极32的衍射输入端321及衍射输出端322分别与处理器80连接以形成多条衍射导电回路。其中,多条衍射导电电极32的排布方式有多种:例如,每个衍射导电电极32的延伸方向为透光衍射导电膜31的长度方向,多条衍射导电电极32平行间隔设置(如图5所示);或者,每个衍射导电电极32的延伸方向为透光衍射导电膜31的宽度方向,多条衍射导电电极32平行间隔设置(图未示);或者,每个衍射导电电极32的延伸方向为透光衍射导电膜31的对角线方向,多条衍射导电电极32平行间隔设置(图未示)。无论衍射导电电极32的排布方式是上述的哪种形式,相较于设置单条衍射导电电极32而言,多条衍射导电电极32能够占据透光衍射导电膜31较多的面积,相对应地可以输出更多的衍射电信号。由于仅设置单条衍射导电电极32时,有可能存在衍射光学元件30破裂的位置与单条衍射导电电极32的位置相隔甚远,而对单条衍射导电电极32影响不大,该单条衍射导电电极32输出的电信号仍在预设衍射范围内的情况,检测准确度不高。而多条衍射导电电极32占据透光衍射导电膜31较多的面积,相对应地可以输出更多的衍射电信号,处理器80可根据较多的衍射电信号更为精确地判断透光衍射导电膜31是否破裂,进一步地判断衍射光学元件30是否破裂,提升衍射光学元件30破裂检测的准确性。在检测到透光衍射导电膜31破裂时,即认为衍射光学元件30破裂,此时处理器80即刻改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率。另外,由于衍射入射面301是凹凸不平的,因此,将透光衍射导电膜31设置在衍射出射面302上的制作工艺较为简单。
请参阅图6,可以理解,单层结构的透光衍射导电膜31还可设置在衍射入射面301上。此时,当电致变色器件40为薄膜结构时,电致变色器件40的位置可以是:电致变色器件40为一个,设置在透光衍射导电膜31上,即沿激光发射器10的发光方向,电致变色器件40、透光衍射导电膜31、衍射光学元件30依次排列(如图6所示);或者,电致变色器件40为一个,设置在衍射出射面302上,即透光衍射导电膜31、衍射光学元件30、电致变色器件40沿发光方向依次排列(图未示);或者,电致变色器件40为多个,一个设置在透光衍射导电膜31上,一个设置在衍射出射面302上,即电致变色器件40、透光衍射导电膜31、衍射光学元件30、电致变色器件40沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为一个,设置在保护罩70的内表面,透光衍射导电膜31、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(如图7所示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个设置在保护罩70的内表面,一个设置在透光衍射导电膜31上,即电致变色器件40、透光衍射导电膜31、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组100的厚度,仅设置一个电致变色器件40,电致变色器件40的位置可以是:激光发射器10、电致变色器件40、准直元件20、透光衍射导电膜31、衍射光学元件30沿发光方向依次排列(如图8所示);或者,激光发射器10、准直元件20、电致变色器 件40、透光衍射导电膜31、衍射光学元件30沿发光方向依次排列(图未示);或者,激光发射器10、准直元件20、透光衍射导电膜31、衍射光学元件30、电致变色器件40沿发光方向依次排列(图未示)。透光衍射导电膜31设置在衍射入射面301上时,衍射导电电极32可为单条或多条。单条或多条衍射导电电极32的排布方式与上述透光衍射导电膜31设置在衍射出射面302上的衍射导电电极32的排布方式类似,在此不再赘述。如此,处理器80可根据衍射导电电极32输出的衍射电信号判断衍射光学元件30是否破裂,并在衍射光学元件30破裂时,即可改变施加在电致变色器件40上的电压以改变电致变色器件40的透过率,从而避免激光对人眼的伤害。另外,由于衍射入射面301为衍射光栅,激光发射器10发射的激光经由衍射光栅才能形成激光图案,因此将透光衍射导电膜31设置在衍射入射面301上,使透光衍射导电膜31直接接触衍射光栅,可以提升衍射光学元件30破裂检测的准确性。
请结合图9,衍射光学元件30上形成有透光衍射导电膜31时,透光衍射导电膜31为单层架桥结构,透光衍射导电膜31设置在衍射出射面302上。此时电致变色器件40的位置与单层结构的透光衍射导电膜31设置在衍射出射面302上的位置类似,在此不再赘述。单层架桥结构的透光衍射导电膜31包括多条平行设置的第一衍射导电电极323、多条平行设置的第二衍射导电电极324和多条架桥衍射导电电极325。多条第一衍射导电电极323与多条第二衍射导电电极324纵横交错,每条第一衍射导电电极323连续不间断,每条第二衍射导电电极324在与对应的多条第一衍射导电电极323的交错处断开并与多条第一衍射导电电极323不导通。每条架桥衍射导电电极325将对应的第二衍射导电电极324的断开处导通。架桥衍射导电电极325与第一衍射导电电极323的交错位置设有衍射绝缘体326。每条第一衍射导电电极323的两端与处理器80连接以形成一条衍射导电回路,每条第二衍射导电电极324的两端与处理器80连接以形成一条衍射导电回路,由此,多条第一衍射导电电极323的两端与处理器80均分别连接以形成多条衍射导电回路,多条第二衍射导电电极324的两端与处理器80均分别连接以形成多条衍射导电回路。其中,衍射绝缘体326的材料可为具有良好的透光性和绝缘性的有机材料,衍射绝缘体326可采用丝印或黄光制程等方式进行制作。多条第一衍射导电电极323与多条第二衍射导电电极324纵横交错指的是多条第一衍射导电电极323与多条第二衍射导电电极324相互垂直交错,即第一衍射导电电极323与第二衍射导电电极324的夹角为90度。当然,在其他实施方式中,多条第一衍射导电电极323与多条第二衍射导电电极324纵横交错还可以是多条第一衍射导电电极323与多条第二衍射导电电极324相互倾斜交错。使用时,处理器80可以同时对多条第一衍射导电电极323和多条第二衍射导电电极324通电以得到多个衍射电信号,或者,处理器80可依次对多条第一衍射导电电极323和多条第二衍射导电电极324通电以得到多个衍射电信号,随后,处理器80再根据衍射电信号来判断透光衍射导电膜31是否破裂。请结合图10,当检测到编号为①的第一衍射导电电极323输出的衍射电信号不在预设衍射范围内,编号为③的第二衍射导电电极324输出的衍射电信号不在预设衍射范围内时,说明透光衍射导电膜31在编号为①的第一衍射导电电极323与编号为③的第二衍射导电电极324交错处破裂,则衍射光学元件30与透光衍射导电膜31破裂位置对应的位置也破裂。如此,单层架桥结构的透光衍射导电膜31可以更为精确地检测衍射光学元件30是否破裂以及破裂的具体位置,并在衍射光学元件30破裂时,处理器80改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率。
请结合图11,衍射光学元件30上形成有透光衍射导电膜31时,透光衍射导电膜31还可包括设置在衍射入射面301上的第一衍射导电膜311和设置在衍射出射面302上的第二衍射导电膜312(简称双层结构的透光衍射导电膜31)。当电致变色器件40为薄膜结构时,电致变色器件40的位置可为:电致变色器件40为一个,设置在第一衍射导电膜311上,即沿激光发射器10的发光方向,电致变色器件40、第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312依次排列(如图12所示);或者,电致变色器件40为一个,设置在第二衍射导电膜312上,即第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312、电致变色器件40沿发光方向依次排列(图未示);或者,电致变色器件40为多个,其中一个设置在第一衍射导电膜311上,一个设置在第二衍射导电膜312上,即电致变色器件40、第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312、电致变色器件40沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为一个,设置在保护罩70的内表面,即第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312、电致变色器件40、保护罩70沿发光方向依次排列(如图13所示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个电致变色器件40设置在保护罩70的内表面,一 个设置在第一衍射导电膜311上,即电致变色器件40、第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组100的厚度,仅设置一个电致变色器件40,电致变色器件40的位置可以是:激光发射器10、电致变色器件40、准直元件20、第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312沿发光方向依次排列(如图14所示);或者,激光发射器10、准直元件20、电致变色器件40、第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312沿发光方向依次排列(图未示);或者,激光发射器10、准直元件20、第一衍射导电膜311、衍射光学元件30、第二衍射导电膜312、电致变色器件40沿发光方向依次排列(图未示)。第一衍射导电膜311上设置有多条平行的第一衍射导电电极323,第二衍射导电膜312上设置有多条平行的第二衍射导电电极324。第一衍射导电电极323在衍射出射面302上的投影与第二衍射导电电极324纵横交错,每条第一衍射导电电极323的两端与处理器80连接以形成一条衍射导电回路,每条第二衍射导电电极324的两端与处理器80连接以形成一条衍射导电回路,由此,多条第一衍射导电电极323的两端与处理器80均分别连接以形成多条衍射导电回路,多条第二衍射导电电极324的两端与处理器80均分别连接以形成多条衍射导电回路。其中,第一衍射导电电极323在衍射出射面302上的投影与第二衍射导电电极324纵横交错指的是多条第一衍射导电电极323与多条第二衍射导电电极324在空间上相互垂直交错,即第一衍射导电电极323在衍射出射面302上的投影与第二衍射导电电极324的夹角为90度。当然,在其他实施方式中,多条第一衍射导电电极323在衍射出射面302上的投影与多条第二衍射导电电极324纵横交错还可以是多条第一衍射导电电极323与多条第二衍射导电电极324在空间上相互倾斜交错。使用时,处理器80可以同时对多条第一衍射导电电极323和多条第二衍射导电电极324通电以得到多个衍射电信号,或者,处理器80可依次对多条第一衍射导电电极323和多条第二衍射导电电极324通电以得到多个衍射电信号,随后,处理器80再根据衍射电信号来判断透光衍射导电膜31是否破裂,进一步判断衍射光学元件30是否破裂。同上,根据多条第一衍射导电电极323及多条第二衍射导电电极324输出的衍射电信号即可精确地检测衍射光学元件30是否破裂以及破裂的具体位置,并在衍射光学元件30破裂时,处理器80改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率。
请参阅图15,在某些实施方式中,准直元件20上形成有透光准直导电膜21,透光准直导电膜21上设有准直导电电极22(如图18所示)。准直导电电极22通电后输出准直电信号。处理器80还用于获取准直导电电极22通电后输出的准直电信号、判断准直电信号是否处于预设准直范围内、以及在准直电信号不处于预设准直范围内时确定准直元件20破裂。准直元件20破裂与否的判断机制与前述的衍射光学元件30破裂与否的判断机制相同,在此不再赘述。透光准直导电膜21的制作方式及材质与前述的透光衍射导电膜31的制作方式与材质相同,在此不再赘述。
请结合图15,准直元件20包括相背的准直入射面201和准直出射面202。准直元件20上形成有透光准直导电膜21时,透光准直导电膜21为单层结构,透光准直导电膜21设置在准直出射面202上。当电致变色器件40为薄膜结构时,电致变色器件40的位置可以是:电致变色器件40为一个,设置在透光准直导电膜21上,即沿激光发射器10的发光方向,准直元件20、透光准直导电膜21、电致变色器件40依次排列(如图15所示);或者,电致变色器件40为一个,设置在准直入射面201上,即电致变色器件40、准直元件20、透光准直导电膜21沿发光方向依次排列(图未示);或者,电致变色器件40为多个,一个设置在准直入射面201上,一个设置在准直出射面202上,即电致变色器件40、准直元件20、透光准直导电膜21、电致变色器件40沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为一个,设置在电致变色器件40的内表面,即准直元件20、透光准直导电膜21、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(如图16所示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个设置在保护罩70的内表面,一个设置在准直入射面201上,即电致变色器件40、准直元件20、透光准直导电膜21、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个设置在保护罩70的内表面,一个设置在透光准直导电膜21上,即准直元件20、透光准直导电膜21、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器 件40为多个,其中一个设置在保护罩70的内表面,一个设置在透光准直导电膜21上,一个设置在准直入射面201上,即电致变色器件40、准直元件20、透光准直导电膜21、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组100的厚度,仅设置一个电致变色器件40,电致变色器件40的位置可以是:沿激光发射器10的发光方向,激光发射器10、电致变色器件40、准直元件20、透光准直导电膜21、衍射光学元件30依次排列(如图17所示);或者,激光发射器10、准直元件20、透光准直导电膜21、电致变色器件40、衍射光学元件30依次排列(图未示);或者,激光发射器10、准直元件20、透光准直导电膜21、衍射光学元件30、电致变色器件40依次排列(图未示)。
透光准直导电膜21设置在准直出射面202上时,准直导电电极22可为单条,单条的准直导电电极22包括准直输入端221和准直输出端222,准直输入端221及准直输出端222与处理器80均连接并形成准直导电回路。其中,准直导电电极22的排布方式有多种,例如,准直输入端221和准直输出端222的连线方向(即准直导电电极22的延伸方向)为透光准直导电膜21的长度方向(如图18所示),或者准直导电电极22的延伸方向为透光准直导电膜21的宽度方向(图未示),或者准直导电电极22的延伸方向为透光准直导电膜21的对角线方向(图未示)。无论准直导电电极22的排布方式是上述的哪种方式,准直导电电极22都能跨越整个透光准直导电膜21,可以较为准确地检测透光准直导电膜21是否破裂。请参阅图19,透光准直导电膜21设置在准直出射面202上时,透光准直导电膜21上设置的准直导电电极22也可为多条,多条准直导电电极22互不相交,每条准直导电电极22包括准直输入端221和准直输出端222。每个准直输入端221及每个准直输出端222与处理器80连接以形成一条准直导电回路,由此,多条准直导电电极22的准直输入端221及准直输出端222分别与处理器80连接以形成多条准直导电回路。其中,多条准直导电电极22的排布方式有多种:例如,每个准直导电电极22的延伸方向为透光准直导电膜21的长度方向,多条准直导电电极22平行间隔设置(如图19所示);或者,每个准直导电电极22的延伸方向为透光准直导电膜21的宽度方向,多条准直导电电极22平行间隔设置(图未示);或者,每个准直导电电极22的延伸方向为透光准直导电膜21的对角线方向,多条准直导电电极22平行间隔设置(图未示)。无论准直导电电极22的排布方式是上述的哪种形式,相较于设置单条准直导电电极22而言,多条准直导电电极22能够占据透光准直导电膜21较多的面积,相对应地可以输出更多的准直电信号。由于仅设置单条准直导电电极22时,有可能存在准直元件20破裂的位置与单条准直导电电极22的位置相隔甚远,而对单条准直导电电极22影响不大,该单条准直导电电极22输出的电信号仍在预设准直范围内的情况,检测准确度不高。而多条准直导电电极22占据透光准直导电膜21较多的面积,相对应地可以输出更多的准直电信号,处理器80可根据较多的准直电信号更为精确地判断透光准直导电膜21是否破裂,进一步地判断准直元件20是否破裂,提升准直元件20破裂检测的准确性。在检测到透光准直导电膜21破裂时,即认为准直元件20破裂,此时处理器80即刻改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率。
请结合图20,可以理解,单层结构的透光准直导电膜21还可设置在准直入射面201上。当电致变色器件40为薄膜结构时,电致变色器件40的位置可以是:电致变色器件40为一个,设置在准直出射面202上,即沿激光发射器10的发光方向,透光准直导电膜21、准直元件20、电致变色器件40依次排列(如图20所示);或者,电致变色器件40为一个,设置在透光准直导电膜21上,即电致变色器件40、透光准直导电膜21、准直元件20沿发光方向依次排列(图未示);或者,电致变色器件40为多个,一个设置在透光准直导电膜21上,一个设置在准直出射面202上,即电致变色器件40、透光准直导电膜21、准直元件20、电致变色器件40沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为一个,一个电致变色器件40设置在保护罩70的内表面,即透光准直导电膜21、准直元件20、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(如图21所示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个设置在保护罩70的内表面,一个设置在透光准直导电膜21上,即电致变色器件40、透光准直导电膜21、准直元件20、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,一个设置在保护罩70的内表面,一个设置在准直出射面202上,即透光准直导电膜21、准直元件20、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向 依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个设置在保护罩70的内表面,一个设置在透光准直导电膜21上,一个设置准直出射面202上,即电致变色器件40、透光准直导电膜21、准直元件20、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组100的厚度,仅设置一个电致变色器件40,电致变色器件40的位置可以是:沿激光发射器10的发光方向,激光发射器10、电致变色器件40、透光准直导电膜21、准直元件20、衍射光学元件30依次排列(如图22所示);或者,激光发射器10、透光准直导电膜21、准直元件20、电致变色器件40、衍射光学元件30依次排列(图未示);或者,激光发射器10、透光准直导电膜21、准直元件20、衍射光学元件30、电致变色器件40依次排列(图未示)。透光准直导电膜21设置在准直入射面201上时,准直导电电极22可为单条或多条。单条或多条准直导电电极22的排布方式与透光准直导电膜21设置在准直出射面202上的准直导电电极22的排布方式类似,在此不再赘述。如此,处理器80可根据准直导电电极22输出的准直电信号判断准直元件20是否破裂,并在准直元件20破裂时即刻改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率。
请结合图23及图24,准直元件20上形成有透光准直导电膜21时,透光准直导电膜21为单层架桥结构,透光准直导电膜21设置在准直出射面202或准直入射面201上。单层架桥结构的透光准直导电膜21设置在准直出射面202上时,电致变色器件40的位置与上述单层结构的透光准直导电膜21设置在准直出射面202上时电致变色器件40的位置类似;单层架桥结构的透光准直导电膜21设置在准直入射面201上时,电致变色器件40的位置与上述单层结构的透光准直导电膜21设置在准直入射面201上时电致变色器件40的位置类似,在此不再赘述。单层架桥结构的透光准直导电膜21设置在准直出射面202上时,透光准直导电膜21包括多条平行设置的第一准直导电电极223、多条平行设置的第二准直导电电极224和多条架桥准直导电电极225。多条第一准直导电电极223与多条第二准直导电电极224纵横交错,每条第一准直导电电极223连续不间断,每条第二准直导电电极224在与对应的多条第一准直导电电极223的交错处断开并与多条第一准直导电电极223不导通。每条架桥准直导电电极225将对应的第二准直导电电极224的断开处导通。架桥准直导电电极225与第一准直导电电极223的交错位置设有准直绝缘体226。每条第一准直导电电极223的两端与处理器80连接以形成一条准直导电回路,每条第二准直导电电极224的两端与处理器80连接以形成一条准直导电回路,由此,多条第一准直导电电极223的两端与处理器80均分别连接以形成多准直条导电回路,多条第二准直导电电极224的两端与处理器80均分别连接以形成多条准直导电回路。其中,准直绝缘体226的材料可为具有良好的透光性和绝缘性的有机材料,准直绝缘体226可采用丝印或黄光制程等方式进行制作。此处“纵横交错”的解释与前述单层架桥结构的透光衍射导电膜31处“纵横交错”的解释类似,在此不再展开阐述。使用时,处理器80可以同时对多条第一准直导电电极223和多条第二准直导电电极224通电以得到多个准直电信号,或者,处理器80可依次对多条第一准直导电电极223和多条第二准直导电电极224通电以得到多个准直电信号,随后,处理器80再根据准直电信号来判断透光准直导电膜21是否破裂。当检测到编号为①的第一准直导电电极223输出的准直电信号不在预设准直范围内,编号为③的第二准直导电电极224输出的准直电信号不在预设准直范围内时,说明透光准直导电膜21在编号为①的第一准直导电电极223与编号为③的第二准直导电电极224交错处破裂,则准直元件20与透光准直导电膜21破裂位置对应的位置也破裂。如此,单层架桥结构的透光准直导电膜21可以更为精确地检测准直元件20是否破裂以及破裂的具体位置,并在准直元件20破裂时,处理器80改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率。
请结合图25,准直元件20上形成有透光准直导电膜21时,透光准直导电膜21包括设置在准直入射面201上的第一准直导电膜211和设置在准直出射面202上的第二准直导电膜212。当电致变色器件40为薄膜结构时,电致变色器件40的位置可为:电致变色器件40设置在第一准直导电膜211上,电致变色器件40、第一准直导电膜211、准直元件20、第二准直导电膜212沿发光方向依次排列(如图26所示);或者,电致变色器件40设置在第二准直导电膜212上,第一准直导电膜211、准直元件20、第二准直导电膜212、电致变色器件40沿发光方向依次排列(图未示);或者,电致变色器件40为多个,一个设置在第一准直导电膜211上,一个设置在第二准直导电膜212上,电致变色器件40、第一准直导电膜211、准直元件20、第二准直导电膜212、电致变色器件40沿发光方向依次排列(图未示);或者,在激光投 射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40设置在保护罩70的内表面,第一准直导电膜211、准直元件20、第二准直导电膜212、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(如图27所示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个电致变色器件40设置在保护罩70的内表面,一个设置在第一准直导电膜211上,电致变色器件40、第一准直导电膜211、准直元件20、第二准直导电膜212、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个电致变色器件40设置在保护罩70的内表面,一个设置在第二准直导电膜212上,第一准直导电膜211、准直元件20、第二准直导电膜212、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示);或者,在激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为多个,其中一个电致变色器件40设置在保护罩70的内表面,一个设置在第一准直导电膜211上,一个设置在第二准直导电膜212上,电致变色器件40、第一准直导电膜211、准直元件20、第二准直导电膜212、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组100的厚度,仅设置一个电致变色器件40,例如,如图28所示,激光发射器10、电致变色器件40、第一准直导电膜211、准直元件20、第二准直导电膜212、衍射光学元件30沿激光发射器10的发光方向依次排列。此外,非薄膜片状结构的电致变色器件40的其他排列方式与上述的激光投射模组100设置双层结构的透光衍射导电膜31,且电致变色器件40为非薄膜片状结构时的排列相同,在此不再赘述。
第一准直导电膜211上设置有多条平行的第一准直导电电极223,第二准直导电膜212上设置有多条平行的第二准直导电电极224。第一准直导电电极223在准直出射面202上的投影与第二准直导电电极224纵横交错,每条第一准直导电电极223的两端与处理器80连接以形成一条准直导电回路,每条第二准直导电电极224的两端与处理器80连接以形成一条准直导电回路,由此,多条第一准直导电电极223的两端与处理器80均分别连接以形成多条准直导电回路,多条第二准直导电电极224的两端与处理器80均分别连接以形成多条准直导电回路。此处“纵横交错”的解释与前述双层结构的透光衍射导电膜31处“纵横交错”的解释类似,在此不再展开阐述。使用时,处理器80可以同时对多条第一准直导电电极223和多条第二准直导电电极224通电以得到多个准直电信号,或者,处理器80可依次对多条第一准直导电电极223和多条第二准直导电电极224通电以得到多个准直电信号,随后,处理器80再根据准直电信号来判断透光准直导电膜21是否破裂,进一步判断准直元件20是否破裂。同上,根据多条第一准直导电电极223及多条第二准直导电电极224输出的准直电信号即可精确地检测准直元件20是否破裂以及破裂的具体位置,并在准直元件20破裂时,处理器80改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率。
在某些实施方式中,当电致变色器件40为薄膜结构时,准直元件20和衍射光学元件30上均可形成有电致变色器件40。举例来说,准直入射面201上设有透光准直导电膜21,衍射入射面301上设有透光衍射导电膜31,电致变色器件40的位置可以是:电致变色器件40为多个,一个设置在透光准直导电膜21上,一个设置在衍射出射面302上,即沿激光发射器10的发光方向,电致变色器件40、透光准直导电膜21、准直元件20、透光衍射导电膜31、衍射光学元件30、电致变色器件40依次排列。此时,准直导电电极22和单层的透光准直导电膜21可为上述实施方式中的任意一种结构,衍射导电电极32和单层的透光衍射导电膜31也可为上述实施方式中的任意一种结构。如此,准直元件20上设有透光准直导电膜21,衍射光学元件30上也设置有透光衍射导电膜31,处理器80可检测到准直元件20和衍射光学元件30是否破裂,并在二者中任意一者破裂时,改变多个电致变色器件40的透过率,从而更充分地阻挡激光的发射,提升用户使用的安全性。
请参阅图29,在某些实施方式中,衍射光学元件30中可掺杂衍射导电粒子33,衍射导电粒子33形成衍射导电通路34。此时,衍射光学元件30是否破裂的判断机制如下:当衍射光学元件30处于完好状态时,相邻的衍射导电粒子33之间是接合的,此时整个衍射导电通路34的电阻较小,在此状态下给衍射导电通路34通电,即施加一定大小的电压,则此时处理器80获取到的衍射导电通路34输出的电流较大。而当衍射光学元件30破裂时,掺杂在衍射光学元件30中的衍射导电粒子33之间的接合点断开,此时整个衍射导电通路34的电阻值接近无穷大,在此状态下给衍射导电通路34通电,处理器80获取到的 衍射导电通路34输出的电流较小。因此,第一种方式:可以根据衍射导电通路34通电后输出的衍射电信号(即电流)与衍射光学元件30未破裂状态下检测到的衍射电信号之间的差异大小来判断衍射光学元件30是否破裂;第二种方式:可根据衍射光学元件30中衍射导电通路34通电后输出的衍射电信号直接判断衍射光学元件30是否破裂,具体地,若衍射导电通路34输出的衍射电信号不在预设衍射范围内时就确定衍射光学元件30破裂,若衍射导电通路34输出的衍射电信号在预设衍射范围内时则确定衍射光学元件30未破裂。
具体地,衍射光学元件30包括相背的衍射入射面301和衍射出射面302。衍射光学元件30中掺杂了多个衍射导电粒子33,多个衍射导电粒子33形成一条导电通路(图29所示)或互不相交且相互绝缘的或多条衍射导电通路34(图未示)。每条衍射导电通路34包括衍射输入端341和衍射输出端342(图33所示)。每个衍射输入端341及每个衍射输出端342与处理器80连接并形成衍射导电回路,如此,多个衍射输入端341及多个衍射输出端342形成多条衍射导电回路。当电致变色器件40为薄膜结构时,电致变色器件40的位置可以是:电致变色器件40设置在衍射出射面302上,即准直元件20、衍射光学元件30、电致变色器件40沿发光方向依次排列(如图30所示);或者,电致变色器件40设置在衍射入射面301上,即准直元件20、电致变色器件40、衍射光学元件30沿发光方向依次排列(图未示);或者,电致变色器件40为两个,分别设置在衍射入射面301上及衍射出射面302上,即准直元件20、电致变色器件40、衍射光学元件30、电致变色器件40沿发光方向依次排列(图未示);或者,当激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为一个,设置在保护罩70的内表面,即准直元件20、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(如图31所示);或者,电致变色器件40为两个,分别设置在衍射入射面301上及保护罩70的内表面上,即准直元件20、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组100的厚度,仅设置一个电致变色器件40,电致变色器件40的位置可以是:沿激光发射器10的发光方向,激光发射器10、电致变色器件40、准直元件20、衍射光学元件30依次排列(如图32所示);或者,电致变色器件40的位置还可以是其他情形,在此不作穷举。多个衍射导电粒子33形成一条衍射导电通路34时,衍射导电通路34的排布方式有多种:例如,衍射导电通路34的延伸方向为衍射光学元件30的长度方向(若衍射光学元件30为圆形,此处的长度方向则为衍射光学元件30的第一径向,衍射光学元件30的“长度方向”的解释下同,如图33所示);或者衍射导电通路34的延伸方向为衍射光学元件30的宽度方向(图未示);或者,衍射导电通路34的延伸方向为衍射光学元件30的对角线方向(图未示)。无论衍射导电通路34的排布方式是上述的哪种方式,衍射导电通路34都能跨越整个衍射光学元件30,可以较为准确地检测衍射光学元件30是否破裂。多个衍射导电粒子33形成多条互不相交且相互绝缘的衍射导电通路34时,衍射导电通路34的排布方式有多种:例如,每条衍射导电通路34的延伸方向为衍射光学元件30的长度方向(如图34所示),多条衍射导电通路34平行间隔设置,由于衍射光学元件30具有一定的厚度,因此,多条衍射导电通路34在沿衍射光学元件30的长度方向平行间隔设置后,还可以沿衍射光学元件30的厚度方向呈层叠间隔设置(如图35所示);或者,每条衍射导电通路34的延伸方向为衍射光学元件30的宽度方向(图未示),多条衍射导电通路34平行间隔设置;或者,每条衍射导电通路34的延伸方向为衍射入射面301的对角线方向(图未示),多条衍射导电通路34沿衍射入射面301的对角线方向平行间隔设置;或者,每条衍射导电通路34的延伸方向为衍射入射面301与衍射出射面302的对角线方向(图未示),多条衍射导电通路34平行间隔设置;或者,每条衍射导电通路34沿衍射光学元件30的厚度方向平行间隔设置(图未示)。无论衍射导电通路34的排布方式是上述的哪种方式,相较于设置单条衍射导电通路34而言,多条衍射导电通路34能够占据衍射光学元件30较多的体积,相应地可以输出更多的衍射电信号。由于仅设置单条衍射导电通路34时,有可能存在衍射光学元件30破裂的位置与单条衍射导电通路34的位置相隔甚远,而对单条衍射导电通路34的影响不大,该单条衍射导电通路34输出的衍射电信号仍在预设衍射范围内的情况,检测准确度不高。而多条衍射导电通路34占据衍射光学元件30较多的体积,相应地可以输出更多的衍射电信号,处理器80可根据较多的衍射电信号更为精确地判断衍射光学元件30是否破裂,提升衍射光学元件30破裂检测的准确性。另外,在检测到衍射光学元件30破裂时,处理器80可即刻改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,避免激光能量过大对用户眼睛造成伤害。
请结合图36,衍射光学元件30中掺杂了多个衍射导电粒子33,多个衍射导电粒子33形成多条衍射导电通路34,多条衍射导电通路34包括多条第一衍射导电通路343和多条第二衍射导电通路344。多条第一衍射导电通路343平行间隔设置,多条第二衍射导电通路344平行间隔设置。此时,电致变色器件40的位置与多个衍射导电粒子33形成单条导电通路时电致变色器件40的位置一致,在此不再赘述。其中,多条第一衍射导电通路343和多条第二衍射导电通路344在空间上纵横交错,每条第一衍射导电通路343包括第一衍射输入端3431和第一衍射输出端3432,每条第二衍射导电通路344包括第二衍射输入端3441和第二衍射输出端3442。每个第一衍射输入端3431及每个第一衍射输出端3432与处理器80连接以形成一条衍射导电回路,每个第二衍射输入端3441及每个第二衍射输出端3442与处理器80连接以形成一条衍射导电回路。由此,多条第一衍射导电通路343的两端与处理器80均分别连接以形成多条衍射导电回路,多条第二衍射导电通路344的两端均与处理器80分别连接以形成多条衍射导电回路。多条第一衍射导电通路343与多条第二衍射导电通路344在空间上纵横交错指的是多条第一衍射导电通路343与多条第二衍射导电通路344在空间上相互垂直交错,即第一衍射导电通路343与第二衍射导电通路344的夹角为90度。此时,多条第一衍射导电通路343的延伸方向为衍射光学元件30的长度方向,且多条第二衍射导电通路344的延伸方向为衍射光学元件30的宽度方向;或者,多条第一衍射导电通路343的延伸方向为衍射光学元件30的厚度方向,且多条第二衍射导电通路344的延伸方向为衍射光学元件30的长度方向。当然,在其他实施方式中,多条第一衍射导电通路343与多条第二衍射导电通路344在空间上纵横交错还可以是多条第一衍射导电通路343与多条第二衍射导电通路344在空间上相互倾斜交错。使用时,处理器80可以同时对多条第一衍射导电通路343和多条第二衍射导电通路344通电以得到多个电信号。或者,处理器80可依次对多条第一衍射导电通路343和多条第二衍射导电通路344通电以得到多个衍射电信号,随后,处理器80再根据衍射电信号来判断衍射光学元件30是否破裂。请结合图37,当检测到编号为②的第一衍射导电通路343输出的电信号不在预设衍射范围内,且编号为④的第二衍射导电通路344输出的衍射电信号也不在预设衍射范围内时,说明衍射光学元件30在编号为②的第一衍射导电通路343和编号为④的第二衍射导电通路344的交错处破裂,则衍射光学元件30对应的位置也破裂,如此,通过多条第一衍射导电通路343和多条第二衍射导电通路344纵横交错排布的方式可以更为精确地检测衍射光学元件30是否破裂以及破裂的具体位置。此外,请一并参阅图37和图38,由于衍射光学元件30具有一定的宽度和厚度,因此,在多条第一衍射导电通路343和多条第二衍射导电通路344在空间上相互交错形成一对相互交错的衍射导电通路对后,还可以在衍射光学元件30的宽度方向或厚度方向形成多对上述相互交错的衍射导电通路对。同样地,使用时,处理器80可以同时对多条第一衍射导电通路343和多条第二衍射导电通路344通电以得到多个衍射电信号。或者,处理器80可依次对多条第一衍射导电通路343和多条第二衍射导电通路344通电以得到多个衍射电信号,随后,处理器80再根据电信号来判断衍射光学元件30是否破裂以及破裂的具体位置。由于仅设置一对衍射导电通路对时,有可能存在衍射光学元件30破裂的位置与单对的衍射导电通路对的位置相隔甚远,而对单对的衍射导电通路对影响不大,该单对衍射导电通路对中的多条第一衍射导电通路343和多条第二衍射导电通路344输出的衍射电信号仍在预设衍射范围内的情况,检测准确度不高。而本实施方式中,多对的衍射导电通路对可以占据衍射光学元件30更多的体积,相对应地可以输出更多的衍射电信号,处理器80可根据较多的衍射电信号更为精确地判断衍射光学元件30是否破裂及破裂的具体位置,提升衍射光学元件30破裂检测的准确性。另外,在检测到衍射光学元件30破裂时,处理器80可即刻改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,避免激光能量过大对用户眼睛造成伤害。
请参阅图39,在某些实施方式中,准直元件20中可掺杂准直导电粒子23,准直导电粒子23形成准直导电通路24。此时,准直元件20破裂与否的判断机制与前述的形成衍射导电通路34的衍射光学元件30破裂与否的判断机制相同,在此不再赘述。具体地,准直元件20包括相背的准直入射面201和准直出射面202。准直元件20中掺杂了多个准直导电粒子23,多个准直导电粒子23形成一条准直导电通路24或多条互不相交且相互绝缘的准直导电通路24。每条准直导电通路24包括准直输入端241和准直输出端242(图43所示)。每个准直输入端241及每个准直输出端242均与处理器80连接并形成多条准直导电回路。当电致变色器件40为薄膜结构时,电致变色器件40的位置可以是:电致变色器件40设置在准直出射面202上,即准直元件20、电致变色器件40、衍射光学元件30沿发光方向依次排列(如图40所示);或者,电致变色器件40设置在准直入射面201上,即电致变色器件40、准直元件20、衍射光学元件30 沿发光方向依次排列(图未示);或者,电致变色器件40为两个,分别设置在准直入射面201与准直出射面202上,即电致变色器件40、准直元件20、电致变色器件40、衍射光学元件30沿发光方向依次排列(图未示);或者,当激光投射模组100包括设置在镜筒50的顶部502的保护罩70时,电致变色器件40为一个,设置在保护罩70的内表面,即准直元件20、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(如图41所示);或者,电致变色器件40为两个,分别设置在准直入射面201上及保护罩70的内表面上,即电致变色器件40、准直元件20、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示);或者,电致变色器件40为两个,分别设置在准直出射面202上及保护罩70的内表面上,即准直元件20、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示);或者,电致变色器件40为多个,一个设置在准直入射面201上,一个设置在准直出射面202上,一个设置在保护罩70的内表面上,即电致变色器件40、准直元件20、电致变色器件40、衍射光学元件30、电致变色器件40、保护罩70沿发光方向依次排列(图未示)。当电致变色器件40为非薄膜片状结构时,为减小激光投射模组的厚度,仅设置一个电致变色器件40,电致变色器件40的位置可以是:激光发射器10、电致变色器件40、准直元件20、衍射光学元件30沿发光方向依次排列(如图42所示);或者,电致变色器件40的位置还可以是其他情形,在此不作穷举。当多个准直导电粒子23形成一条准直导电通路24时,准直导电通路24的排布方式有多种:例如,准直导电通路24的延伸方向为准直元件20的长度方向(若准直元件20为圆形,此处的长度方向则为准直元件20的第一径向,准直元件20的“长度方向”的解释下同,如图43所示);或者准直导电通路24的延伸方向为准直元件20的宽度方向(图未示);或者,准直导电通路24的延伸方向为准直元件20的对角线方向(图未示)。无论准直导电通路24的排布方式是上述的哪种方式,准直导电通路24都能跨越整个准直元件20,可以较为准确地检测准直元件20是否破裂。当多个准直导电粒子23形成多条互不相交且相互绝缘的准直导电通路24时,准直导电通路24的排布方式有多种:例如,每条准直导电通路24的延伸方向为准直元件20的长度方向(如图44所示),多条准直导电通路24平行间隔设置,由于准直元件20具有一定的厚度,因此,多条准直导电通路24在沿准直元件20的长度方向平行间隔设置后,还可以沿准直元件20的厚度方向呈层叠间隔设置(如图45所示);或者,每条准直导电通路24的延伸方向为准直元件20的宽度方向(图未示),多条准直导电通路24平行间隔设置;或者,每条准直导电通路24的延伸方向为准直入射面201的对角线方向(图未示),多条准直导电通路24平行间隔设置;或者,每条准直导电通路24的延伸方向为准直入射面201与准直出射面202的对角线方向(图未示),多条准直导电通路24沿平行间隔设置;或者,每条准直导电通路24沿准直元件20的厚度方向平行间隔设置(图未示)。无论准直导电通路24的排布方式是上述的哪种方式,相较于设置单条准直导电通路24而言,多条准直导电通路24能够占据准直元件20较多的体积,相应地可以输出更多的准直电信号。由于仅设置单条准直导电通路24时,有可能存在准直元件20破裂的位置与单条准直导电通路24的位置相隔甚远,而对单条准直导电通路24的影响不大,该单条准直导电通路24输出的准直电信号仍在预设准直范围内的情况,检测准确度不高。而本实施方式中,多条准直导电通路24占据准直元件20较多的体积,相应地可以输出更多的准直电信号,处理器80可根据较多的准直电信号更为精确地判断准直元件20是否破裂,提升准直元件20破裂检测的准确性。另外,在检测到准直元件20破裂时,处理器80可即刻改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,避免激光能量过大对用户眼睛造成伤害。
请结合图46,准直元件20中掺杂了多个准直导电粒子23,多个准直导电粒子23形成多条准直导电通路24,多条准直导电通路24包括多条第一准直导电通路243和多条第二准直导电通路244。多条第一准直导电通路243平行间隔设置,多条第二准直导电通路244平行间隔设置。此时,电致变色器件40的位置与多个导电粒子形成一条准直导电通路24时电致变色器件40的位置类似,在此不再赘述。多条第一准直导电通路243和多条第二准直导电通路244在空间上纵横交错,每条第一准直导电通路243包括第一准直输入端2431和第一准直输出端2432,每条第二准直导电通路244包括第二准直输入端2441和第二准直输出端2442。每个第一准直输入端2431及每个第一准直输出端2432与处理器80连接以形成一条准直导电回路,每个第二准直输入端2441及每个第二准直输出端2442与处理器80连接以形成一条准直导电回路。由此,多条第一准直导电通路243的两端与处理器80均分别连接以形成多条准直导电回路,多条第二准直导电通路244的两端均与处理器80分别连接以形成多条导准直电回路。多条第一准直导电通路243与多条第二准直导电通路244在空间上纵横交错指的是多条第一准直导电通路243与多条第二 准直导电通路244在空间上相互垂直交错,即第一准直导电通路243与第二准直导电通路244的夹角为90度。此时,多条第一准直导电通路243的延伸方向为准直元件20的长度方向,且多条第二准直导电通路244的延伸方向为准直元件20的宽度方向;或者,多条第一准直导电通路243的延伸方向为准直元件20的厚度方向,且多条第二准直导电通路244的延伸方向为准直元件20的长度方向。当然,在其他实施方式中,多条第一准直导电通路243与多条第二准直导电通路244在空间上纵横交错还可以是多条第一准直导电通路243与多条第二准直导电通路244在空间上相互倾斜交错。使用时,处理器80可以同时对多条第一准直导电通路243和多条第二准直导电通路244通电以得到多个准直电信号。或者,处理器80可依次对多条第一准直导电通路243和多条第二准直导电通路244通电以得到多个准直电信号,随后,处理器80再根据准直电信号来判断准直元件20是否破裂。请结合图47,当检测到编号为②的第一准直导电通路243输出的电信号不在预设准直范围内,且编号为④的第二准直导电通路244输出的电信号也不在预设准直范围内时,说明准直元件20在编号为②的第一准直导电通路243和编号为④的第二准直导电通路244的交错处破裂,则准直元件20对应的位置也破裂,如此,通过多条第一准直导电通路243和多条第二准直导电通路244纵横交错排布的方式可以更为精确地检测准直元件20是否破裂以及破裂的具体位置。此外,请一并参阅图47和图48,由于准直元件20具有一定的宽度和厚度,因此,在多条第一准直导电通路243和多条第二准直导电通路244在空间上相互交错形成一对相互交错的准直导电通路对后,还可以在准直元件20的宽度方向或厚度方向形成多对上述相互交错的准直导电通路对。同样地,使用时,处理器80可以同时对多条第一准直导电通路243和多条第二准直导电通路244通电以得到多个准直电信号。或者,处理器80可依次对多条第一准直导电通路243和多条第二准直导电通路244通电以得到多个准直电信号,随后,处理器80再根据电信号来判断准直元件20是否破裂以及破裂的具体位置。由于仅设置一对准直导电通路对时,有可能存在准直元件20破裂的位置与单对的准直导电通路对的位置相隔甚远,而对单对的准直导电通路对影响不大,该单对准直导电通路对中的多条第一准直导电通路243和多条第二准直导电通路244输出的准直电信号仍在预设准直范围内的情况,检测准确度不高。而多对的准直导电通路对可以占据准直元件20更多的体积,相对应地可以输出更多的准直电信号,处理器80可根据较多的准直电信号更为精确地判断准直元件20是否破裂及破裂的具体位置,提升准直元件20破裂检测的准确性。另外,在检测到准直元件20破裂时,处理器80可即刻改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,避免激光能量过大对用户眼睛造成伤害。
在某些实施方式中,当电致变色器件40为薄膜结构时,准直元件20和衍射光学元件30上均可形成有电致变色器件40。举例来说,准直元件20掺杂的多个准直导电粒子23形成有多条互不相交且相互绝缘的准直导电通路24,衍射光学元件30掺杂的衍射导电粒子33形成有多条在空间上纵横交错的第一衍射导电通路343和第二衍射导电通路344,电致变色器件40的位置可以是:电致变色器件40为多个,一个设置在准直入射面201上,一个设置在衍射出射面302上,即电致变色器件40、准直元件20、衍射光学元件30、电致变色器件40沿发光方向依次排列。当然,在其他实施方式中,准直导电通路24和衍射导电通路34可以为上述实施方式中的任意一种结构。如此,准直元件20上设有准直导电粒子23,衍射光学元件30上也设置有衍射导电粒子33,处理器80可检测到准直元件20和衍射光学元件30是否破裂,并在二者中任意一者破裂时,改变多个电致变色器件40的透过率,从而更充分地阻挡激光的发射,提升用户使用的安全性。
在某些实施方式中,准直元件20上可以设置透光准直导电膜21来检测准直元件20是否破裂,衍射光学元件30可以掺杂衍射导电粒子31来检测衍射光学元件30是否破裂;或者,准直元件20可以掺杂准直导电粒子23来检测准直元件20是否破裂,衍射光学元件30可以设置透光衍射导电膜31来检测衍射光学元件30是否破裂。此时,电致变色器件40的位置可以是上述任一实施方式中记载的位置。
请参阅图49,在某些实施方式中,激光投射模组100还包括基板组件60。基板组件60包括基板62及承载在基板上的电路板61。电路板61可以是硬板、软板或软硬结合板。电路板61开设有过孔611,激光发射器10承载在基板62上并收容在过孔611内。激光发射器10经由电路板61与处理器80电连接。基板62上还开设有散热孔621,激光发射器10或电路板61工作产生的热量可以由散热孔621散出,散热孔621内还可以填充导热胶,以进一步提高基板组件60的散热性能。
激光发射器10可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)或者边发射激光器(edge-emitting laser,EEL),在如图49所示的实施例中,激光发射器10为边发射激光器,具体 地,激光发射器10可以为分布反馈式激光器(Distributed Feedback Laser,DFB)。激光发射器10用于向收容腔54内发射激光。请结合图50,激光发射器10整体呈柱状,激光发射器10远离基板组件60的一个端面形成发光面11,激光从发光面11发出,发光面11朝向准直元件20。激光发射器10固定在基板组件60上,具体地,激光发射器10可以通过封胶15粘接在基板组件60上,例如激光发射器10与发光面11相背的一面粘接在基板组件60上。请结合图49和图51,激光发射器10的侧面12也可以粘接在基板组件60上,封胶15包裹住四周的侧面12,也可以仅粘结侧面12的某一个面与基板组件60或粘结某几个面与基板组件60。此时封胶15可以为导热胶,以将激光发射器10工作产生的热量传导至基板组件60中。
激光投射模组100采用边发射激光器作为激光发射器,一方面边发射激光器较VCSEL阵列的温飘较小,另一方面,由于边发射激光器为单点发光结构,无需设计阵列结构,制作简单,激光投射模组100的成本较低。
分布反馈式激光器的激光在传播时,经过光栅结构的反馈获得功率的增益。要提高分布反馈式激光器的功率,需要通过增大注入电流和/或增加分布反馈式激光器的长度,由于增大注入电流会使得分布反馈式激光器的功耗增大并且出现发热严重的问题,因此,为了保证分布反馈式激光器能够正常工作,需要增加分布反馈式激光器的长度,导致分布反馈式激光器一般呈细长条结构。当边发射激光器的发光面11朝向准直元件20时,边发射激光器呈竖直放置,由于边发射激光器呈细长条结构,边发射激光器容易出现跌落、移位或晃动等意外,因此通过设置封胶15能够将边发射激光器固定住,防止边发射激光器发生跌落、移位或晃动等意外。
请参阅图49和图52,在某些实施方式中,激光发射器也可采用如图52所示的固定方式固定在基板组件60上。具体地,激光投射模组100包括多个支撑件16,支撑件16可以固定在基板组件60上。多个支撑件16围成收容空间160,激光发射器10收容在收容空间160内并被多个支撑件16支撑住。在安装时可以将激光发射器10直接安装在多个支撑件16之间。在一个例子中,多个支撑件16共同夹持激光发射器10,以进一步防止激光发射器10发生晃动。
在某些实施方式中,基板61可以省去,激光发射器10直接固定在电路板62上以减小激光投射模组100的整体厚度。
请参阅图53,本申请还提供一种深度相机1000。本申请实施方式的深度相机1000包括上述任意一项实施方式的激光投射模组100、图像采集器200和处理器80。其中,图像采集器200用于采集经衍射光学元件30衍射后向目标空间中投射的激光图案。处理器80分别与激光投射模组100及图像采集器200连接。处理器80用于处理激光图案以获取深度图像。此处的处理器80可以为激光投射模组100中的处理器80。
具体地,激光投射模组100通过投射窗口901向目标空间中投射激光图案,图像采集器200通过采集窗口902采集被目标物体调制后的激光图案。图像采集器200可为红外相机,处理器80采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。
请参阅图54,本申请实施方式的电子装置3000包括壳体2000及上述实施方式的深度相机1000。深度相机1000设置在壳体2000内并从壳体2000暴露以获取深度图像。
本申请实施方式的电子装置3000及深度相机1000中的激光投射模组100设置有电致变色器件40,在检测到准直元件20和光学元件中的任意一者破裂时,处理器80会立即改变施加在电致变色器件40上的电压以减小电致变色器件40的透过率,从而避免因准直元件20和光学元件破裂,导致发射的激光能量过大而伤害用户眼睛的问题,提升用户使用激光投射模组100的安全性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (20)
- 一种激光投射模组,其特征在于,所述激光投射模组包括:激光发射器,所述激光发射器用于发射激光;准直元件,所述准直元件用于准直所述激光;衍射光学元件,所述衍射光学元件用于衍射经所述准直元件准直后的激光以形成激光图案;电致变色器件,所述电致变色器件位于所述激光发射器的发光光路上;和与所述电致变色器件连接的处理器,所述处理器用于在所述准直元件和/或所述衍射光学元件破裂时,控制所述电致变色器件变色以阻挡所述激光的发射。
- 根据权利要求1所述的激光投射模组,其特征在于,所述电致变色器件为薄膜结构,所述衍射光学元件包括相背的衍射入射面和衍射出射面,所述准直元件包括相背的准直入射面和准直出射面;所述电致变色器件形成在所述衍射出射面上;和/或所述电致变色器件形成在所述衍射入射面上;和/或所述电致变色器件形成在所述准直出射面上;和/或所述电致变色器件形成在所述准直入射面上。
- 根据权利要求1所述的激光投射模组,其特征在于,所述电致变色器件为薄膜结构,所述激光投射模组还包括镜筒及由透光材料制成的防护罩,所述镜筒包括相背的顶部及底部,所述镜筒形成有贯穿所述顶部及所述底部的收容腔,所述镜筒的侧壁向所述收容腔的中心延伸有环形承载台,所述保护罩设置在所述顶部上,所述衍射光学元件相背的两侧分别与所述保护罩及所述承载台抵触,所述电致变色器件形成在所述防护罩的与所述衍射光学元件抵触的表面上。
- 根据权利要求1所述的激光投射模组,其特征在于,所述电致变色器件为非薄膜片状结构,所述激光投射模组还包括镜筒,所述镜筒包括相背的顶部及底部,所述镜筒形成有贯穿所述顶部及所述底部的收容腔,所述镜筒的侧壁向所述收容腔的中心延伸有环形承载台,所述激光发射器、所述准直元件、及所述衍射光学元件均收容在所述收容腔内,所述衍射光学元件设置在所述承载台上;所述电致变色器件、所述准直元件、及所述衍射光学元件依次位于所述激光发射器的发光光路上;或所述准直元件、所述电致变色器件、及所述衍射光学元件依次位于所述激光发射器的发光光路上;或所述准直元件、所述衍射光学元件、及所述电致变色器件依次位于所述激光发射器的发光光路上。
- 根据权利要求1至4任意一项所述的激光投射模组,其特征在于,所述准直元件上还形成有透光准直导电膜,所述透光准直导电膜上设有准直导电电极,所述准直导电电极通电后用于输出准直电信号;所述处理器还用于获取所述准直电信号、判断所述准直电信号是否处于预设准直范围内、以及在所述准直电信号不处于所述预设准直范围内时确定所述准直元件破裂;和/或所述衍射光学元件上形成有透光衍射导电膜,所述透光衍射导电膜上设有衍射导电电极,所述衍射导电电极通电后用于输出衍射电信号;所述处理器还用于获取所述衍射电信号、判断所述衍射电信号是否处于预设衍射范围内、以及在所述衍射电信号不处于所述预设衍射范围内时确定所述衍射光学元件破裂。
- 根据权利要求5所述的激光投射模组,其特征在于,所述衍射导电电极为单条,所述衍射导电电极包括衍射输入端及衍射输出端,所述衍射输入端及所述衍射输出端与所述处理器连接并形成衍射导电回路。
- 根据权利要求5所述的激光投射模组,其特征在于,所述衍射导电电极为多条,多条所述衍射导电电极互不相交,每条所述衍射导电电极包括衍射输出端及衍射输入端,每个所述衍射输入端及每个衍射输出端与所述处理器连接以形成衍射导电回路。
- 根据权利要求5所述的激光投射模组,其特征在于,所述衍射导电电极为多条,所述衍射导电电极包括多条平行设置的第一衍射导电电极、多条平行设置的第二衍射导电电极和多条架桥衍射导电电极,多条所述第一衍射导电电极与多条所述第二衍射导电电极纵横交错,每条所述第一衍射导电电极连续不间断,每条所述第二衍射导电电极在与对应的多条所述第一衍射导电电极的交错处断开并与多条所述第一衍射导电电极不导通;每条所述架桥衍射导电电极将对应的所述第二衍射导电电极的断开处导通;所述架桥衍射导电电极与所述第一衍射导电电极的交错位置设置有衍射绝缘体;每条所述第一衍射导电电极的两端与所述处理器连接以形成衍射导电回路,每条所述第二衍射导电电极的两端与所述处理器连接 以形成衍射导电回路。
- 根据权利要求5所述的激光投射模组,其特征在于,所述衍射光学元件包括相背的衍射入射面和衍射出射面,当所述衍射光学元件上形成有透光衍射导电膜时,所述透光衍射导电膜包括设置在所述衍射入射面上的第一衍射导电膜和设置在所述衍射出射面上的第二衍射导电膜,所述第一衍射导电膜上设置有多条平行的第一衍射导电电极,所述第二衍射导电膜上设置有多条平行的第二衍射导电电极,所述第一衍射导电电极在所述衍射出射面上的投影与所述第二衍射导电电极纵横交错,每条所述第一衍射导电电极的两端与所述处理器连接以形成衍射导电回路,每条所述第二衍射导电电极的两端与所述处理器连接以形成衍射导电回路。
- 根据权利要求5所述的激光投射模组,其特征在于,所述准直射导电电极为单条,所述准直导电电极包括准直输入端及准直输出端,所述准直输入端及所述准直输出端与所述处理器连接并形成准直导电回路。
- 根据权利要求5所述的激光投射模组,其特征在于,所述准直导电电极为多条,多条所述准直导电电极互不相交,每条所述准直导电电极包括准直输出端及准直输入端,每个所述准直输入端及每个准直输出端与所述处理器连接以形成准直导电回路。
- 根据权利要求5所述的激光投射模组,其特征在于,所述准直导电电极为多条,所述准直导电电极包括多条平行设置的第一准直导电电极、多条平行设置的第二准直导电电极和多条架桥准直导电电极,多条所述第一准直导电电极与多条所述第二准直导电电极纵横交错,每条所述第一准直导电电极连续不间断,每条所述第二准直导电电极在与对应的多条所述第一准直导电电极的交错处断开并与多条所述第一准直导电电极不导通;每条所述架桥准直导电电极将对应的所述第二准直导电电极的断开处导通;所述架桥准直导电电极与所述第一准直导电电极的交错位置设置有准直绝缘体;每条所述第一准直导电电极的两端与所述处理器连接以形成准直导电回路,每条所述第二准直导电电极的两端与所述处理器连接以形成准直导电回路。
- 根据权利要求5所述的激光投射模组,其特征在于,所述准直光学元件包括相背的准直入射面和准直出射面,当所述准直光学元件上形成有透光准直导电膜时,所述透光准直导电膜包括设置在所述准直入射面上的第一准直导电膜和设置在所述准直出射面上的第二准直导电膜,所述第一准直导电膜上设置有多条平行的第一准直导电电极,所述第二准直导电膜上设置有多条平行的第二准直导电电极,所述第一准直导电电极在所述准直出射面上的投影与所述第二准直导电电极纵横交错,每条所述第一准直导电电极的两端与所述处理器连接以形成准直导电回路,每条所述第二准直导电电极的两端与所述处理器连接以形成准直导电回路。
- 根据权利要求1-4任意一项所述的激光投射模组,其特征在于,所述准直元件和/或所述衍射光学元件包括导电粒子,所述导电粒子掺杂在所述准直元件和/或所述衍射光学元件中,所述导电粒子形成导电通路,所述导电通路用于输出电信号,所述处理器用于获取所述电信号、判断所述电信号是否处于预设范围内、以及在所述电信号不处于所述预设范围内时确定所述准直元件和/或所述衍射光学元件破裂。
- 根据权利要求14所述的激光投射模组,其特征在于,所述导电通路为一条,所述导电通路包括输入端和输出端,所述输入端及所述输出端与所述处理器连接并形成导电回路。
- 根据权利要求14所述激光投射模组,其特征在于,所述导电通路为多条,多条所述导电通路互不相交,每条所述导电通路包括输入端及输出端,每个所述输入端及每个所述输出端与所述处理器连接并形成导电回路。
- 根据权利要求14所述的激光投射模组,其特征在于,所述导电通路为多条,多条所述导电通路包括多条第一导电通路和多条第二导电通路,多条所述第一导电通路平行间隔设置,多条第二所述导电通路平行间隔设置,多条所述第一导电通路和多条所述第二导电通路在空间上纵横交错,每条所述导电通路包括输入端及输出端,每个所述输入端及每个所述输出端与所述处理器连接并形成导电回路。
- 根据权利要求1所述的激光投射模组,其特征在于,所述激光投射模组还包括基板组件,所述基板组件包括基板及承载在所述基板上的电路板,所述电路板开设有过孔,所述光源收容在所述过孔内。
- 一种深度相机,其特征在于,所述深度相机包括:权利要求1-18任意一项所述的激光投射模组;图像采集器,所述图像采集器用于采集由所述激光投射模组向目标空间中投射的激光图案;和所述处理器用于处理所述激光图案以获得深度图像。
- 一种电子装置,其特征在于,所述电子装置包括:壳体;和权利要求19所述的深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810164278.0A CN108388063B (zh) | 2018-02-27 | 2018-02-27 | 激光投射模组、深度相机和电子装置 |
CN201810164278.0 | 2018-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019165852A1 true WO2019165852A1 (zh) | 2019-09-06 |
Family
ID=63069338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/070767 WO2019165852A1 (zh) | 2018-02-27 | 2019-01-08 | 激光投射模组、深度相机和电子装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108388063B (zh) |
WO (1) | WO2019165852A1 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108388063B (zh) * | 2018-02-27 | 2022-03-22 | Oppo广东移动通信有限公司 | 激光投射模组、深度相机和电子装置 |
CN108828562A (zh) * | 2018-08-22 | 2018-11-16 | Oppo广东移动通信有限公司 | 激光投射模组及控制方法、深度图像获取设备和电子装置 |
CN109061879A (zh) * | 2018-08-22 | 2018-12-21 | Oppo广东移动通信有限公司 | 光投射器及其破裂的检测方法、深度相机和电子装置 |
CN108873222A (zh) * | 2018-08-22 | 2018-11-23 | Oppo广东移动通信有限公司 | 激光投射装置、tof深度相机和电子设备 |
CN109188820B (zh) * | 2018-09-03 | 2022-01-25 | Oppo广东移动通信有限公司 | 设备控制方法、装置、存储介质及电子设备 |
CN111665640B (zh) * | 2019-03-08 | 2022-07-26 | 三赢科技(深圳)有限公司 | 结构光投射模组及其电子装置 |
CN109842704A (zh) * | 2019-03-26 | 2019-06-04 | Oppo广东移动通信有限公司 | 光发射器、飞行时间组件及电子设备 |
CN111812853A (zh) * | 2019-04-11 | 2020-10-23 | 宁波舜宇光电信息有限公司 | 反射元件、光学准直组件及其制造方法和结构光投射装置 |
CN110007379A (zh) * | 2019-04-19 | 2019-07-12 | 豪威光电子科技(上海)有限公司 | 光学镜头模组及其形成方法 |
CN210112060U (zh) * | 2019-06-21 | 2020-02-21 | Oppo广东移动通信有限公司 | 激光投射模组、深度相机和电子装置 |
CN110286538B (zh) * | 2019-06-28 | 2022-05-24 | Oppo广东移动通信有限公司 | 显示方法、显示装置、头戴式显示装置和存储介质 |
CN112217965B (zh) * | 2019-07-12 | 2021-11-09 | Oppo广东移动通信有限公司 | 摄像头盖板、壳体组件、电子设备以及电致变色方法 |
CN110531450A (zh) * | 2019-09-03 | 2019-12-03 | 豪威光电子科技(上海)有限公司 | 微透镜单元及其制作方法、微透镜光学组件 |
US11624836B2 (en) | 2019-09-24 | 2023-04-11 | Continental Autonomous Mobility US, LLC | Detection of damage to optical element of illumination system |
CN113433644B (zh) * | 2020-03-20 | 2023-01-17 | 三赢科技(深圳)有限公司 | 镜头模组 |
CN115343692A (zh) * | 2022-10-20 | 2022-11-15 | 合肥的卢深视科技有限公司 | 激光投射模组、深度相机及电子装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101652705A (zh) * | 2007-04-25 | 2010-02-17 | 夏普株式会社 | 液晶显示面板及其检查方法 |
CN102460291A (zh) * | 2009-06-11 | 2012-05-16 | 思维奇材料公司 | 可变透光率滤光片及其应用 |
CN104793375A (zh) * | 2015-05-18 | 2015-07-22 | 京东方科技集团股份有限公司 | 一种封框胶的检测装置 |
WO2017086542A1 (ko) * | 2015-11-16 | 2017-05-26 | 주식회사 스포컴 | 기능성 전기 변색 아이웨어 |
CN106794073A (zh) * | 2014-09-11 | 2017-05-31 | 3M创新有限公司 | 眼睛防护头盔 |
CN107209363A (zh) * | 2015-02-06 | 2017-09-26 | 3M创新有限公司 | 自动变暗滤光器设备和方法 |
CN107430280A (zh) * | 2015-03-31 | 2017-12-01 | 浜松光子学株式会社 | 投影显示装置 |
CN107608167A (zh) * | 2017-10-11 | 2018-01-19 | 深圳奥比中光科技有限公司 | 激光投影装置及其安全控制方法 |
CN108388063A (zh) * | 2018-02-27 | 2018-08-10 | 广东欧珀移动通信有限公司 | 激光投射模组、深度相机和电子装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1204588C (zh) * | 2001-01-03 | 2005-06-01 | 友达光电股份有限公司 | 等离子体显示器 |
CN101571778A (zh) * | 2009-06-15 | 2009-11-04 | 南京华睿川电子科技有限公司 | 投射电容式触摸屏 |
CN201867785U (zh) * | 2010-09-08 | 2011-06-15 | 汕头超声显示器有限公司 | 电容触摸感应装置 |
CN103309509A (zh) * | 2013-06-04 | 2013-09-18 | 苏州欧菲光科技有限公司 | 导电膜 |
-
2018
- 2018-02-27 CN CN201810164278.0A patent/CN108388063B/zh active Active
-
2019
- 2019-01-08 WO PCT/CN2019/070767 patent/WO2019165852A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101652705A (zh) * | 2007-04-25 | 2010-02-17 | 夏普株式会社 | 液晶显示面板及其检查方法 |
CN102460291A (zh) * | 2009-06-11 | 2012-05-16 | 思维奇材料公司 | 可变透光率滤光片及其应用 |
CN106794073A (zh) * | 2014-09-11 | 2017-05-31 | 3M创新有限公司 | 眼睛防护头盔 |
CN107209363A (zh) * | 2015-02-06 | 2017-09-26 | 3M创新有限公司 | 自动变暗滤光器设备和方法 |
CN107430280A (zh) * | 2015-03-31 | 2017-12-01 | 浜松光子学株式会社 | 投影显示装置 |
CN104793375A (zh) * | 2015-05-18 | 2015-07-22 | 京东方科技集团股份有限公司 | 一种封框胶的检测装置 |
WO2017086542A1 (ko) * | 2015-11-16 | 2017-05-26 | 주식회사 스포컴 | 기능성 전기 변색 아이웨어 |
CN107608167A (zh) * | 2017-10-11 | 2018-01-19 | 深圳奥比中光科技有限公司 | 激光投影装置及其安全控制方法 |
CN108388063A (zh) * | 2018-02-27 | 2018-08-10 | 广东欧珀移动通信有限公司 | 激光投射模组、深度相机和电子装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108388063B (zh) | 2022-03-22 |
CN108388063A (zh) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019165852A1 (zh) | 激光投射模组、深度相机和电子装置 | |
CN112611546A (zh) | 激光投射模组、深度相机和电子装置 | |
US11258234B2 (en) | Eye safe VCSEL illuminator package | |
WO2020038067A1 (zh) | 激光投射模组及控制方法、深度图像获取设备和电子装置 | |
CN108388072B (zh) | 激光投射模组、深度相机和电子装置 | |
WO2020038066A1 (zh) | 光投射器及其破裂的检测方法、深度相机和电子装置 | |
TWI697729B (zh) | 鐳射投射模組、深度相機和電子裝置 | |
TWI848140B (zh) | 結合增強安全特徵及熱管理之發光模組 | |
US20150146753A1 (en) | Light emitting device and image display apparatus | |
TWI696000B (zh) | 鐳射投射模組及其破裂的檢測方法、深度相機和電子裝置 | |
US20180342629A1 (en) | Wavelength conversion element and light source device | |
WO2020188838A1 (ja) | 発光装置、光学装置および情報処理装置 | |
CN108594563A (zh) | 结构光投射模组、图像撷取装置及电子设备 | |
JP2015103666A (ja) | 発光装置および画像表示装置 | |
JP4611721B2 (ja) | 発光デバイス及び車両用灯具 | |
TW202111969A (zh) | 包括增強的安全特徵的發光模組 | |
US10317286B2 (en) | Luminaire and method for temperature control | |
JP7413657B2 (ja) | 光学装置及び情報処理装置 | |
WO2020082876A1 (zh) | 光学组件、光电模组、深度获取装置及电子设备 | |
KR101369953B1 (ko) | 광원장치 | |
CN110737000B (zh) | 可调式发光装置 | |
US11631965B2 (en) | Light emitting device and optical part | |
JP2011204766A (ja) | 発光装置 | |
CN109854967B (zh) | 激光照明模块和车辆 | |
JP2022175106A (ja) | 発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19760854 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19760854 Country of ref document: EP Kind code of ref document: A1 |