[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019165566A1 - Artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa de una película de polímero y una tercera capa de un agente activo; proceso para obtener dicho artículo; y uso del mismo - Google Patents

Artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa de una película de polímero y una tercera capa de un agente activo; proceso para obtener dicho artículo; y uso del mismo Download PDF

Info

Publication number
WO2019165566A1
WO2019165566A1 PCT/CL2018/000022 CL2018000022W WO2019165566A1 WO 2019165566 A1 WO2019165566 A1 WO 2019165566A1 CL 2018000022 W CL2018000022 W CL 2018000022W WO 2019165566 A1 WO2019165566 A1 WO 2019165566A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
filter
absorbent article
activated carbon
mixture
Prior art date
Application number
PCT/CL2018/000022
Other languages
English (en)
French (fr)
Inventor
Igor Francisco ARAYA LAZO
Original Assignee
Comercializadora Innvento S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comercializadora Innvento S.A. filed Critical Comercializadora Innvento S.A.
Priority to PCT/CL2018/000022 priority Critical patent/WO2019165566A1/es
Priority to EP18908060.9A priority patent/EP3812038B9/en
Priority to US17/254,894 priority patent/US20210205782A1/en
Priority to ES18908060T priority patent/ES2969089T3/es
Publication of WO2019165566A1 publication Critical patent/WO2019165566A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K31/00Housing birds
    • A01K31/18Chicken coops or houses for baby chicks; Brooders including auxiliary features, e.g. feeding, watering, demanuring, heating, ventilation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28028Particles immobilised within fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/324Inorganic material layers containing free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3289Coatings involving more than one layer of same or different nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3295Coatings made of particles, nanoparticles, fibers, nanofibers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/22Treatment by sorption, e.g. absorption, adsorption, chemisorption, scrubbing, wet cleaning

Definitions

  • Multilayer filter-absorbent article comprising a first layer of a porous activated carbon support arranged on a nonwoven felt of polyester fibers, a second layer of a polymer film and a third layer of an active agent; process to obtain said article; and use of it.
  • the present invention relates to developing an innovative technology directed to a multi-layer filter-adsorbent article to eliminate offensive odors from the raising of poultry, such as pigs and birds.
  • a multilayer filter-adsorbent article that performs the function of continuously degrading the compounds responsible for offensive odors, with the smell generated by industrial, commercial or service substances or activities, which causes nuisance, although not causing damage to human health, such as those generated in an animal farm due to the presence of volatile organic compounds (VOCs) (ammonia, hydrogen sulfide, methane and carbon dioxide), resulting from the decomposition of organic waste of the animals.
  • VOCs volatile organic compounds
  • porous materials have covered numerous research areas due to the applications that can be obtained with them. These materials are used as adsorbents, ion exchange systems, compound separations, and as catalysts or catalytic supports.
  • porous solids have a varied composition, they have in common the accessible space inside their structure.
  • the aggregation of small particles of the solid results in the formation of pores within these grains and is defined as intra-particles or textural porosity.
  • the diameter of the textural pores is directly related to the size of the grains forming these pores.
  • CI200901573 refers to a process for impregnating a porous solid adsorbent, charcoal, with permanganate which comprises inerting charcoal with hydrophobic solvent applying empty, contact charcoal ⁇ nertized with aqueous solution of Na, K or Li permanganate, remove excess liquid and dry resulting solid; and porous solid adsorbent.
  • the presentation WO 2015/57873 discloses a method for impregnating a porous support with chemical agent (s), a porous support and a system for impregnating said support. It aims to describe a procedure to impregnate a porous support with chemical agent (s), the optimal porous support to be used depending on the surface area and a system specifically designed to perform the impregnation process.
  • document W01995013122 discloses a process for impregnating zeolite with a quaternary ammonium cation (QAC) and then coating the impregnated zeolite with permanganate (such as potassium permanganate) and for impregnating zeolite impregnated with permanganate and then coating the impregnated zeolite with QAC , and impregnated and coated zeolite crystals resulting from any of the processes.
  • QAC quaternary ammonium cation
  • any of the coatings acts as a protective agent for the impregnating substance inside each zeolite crystal and allows a controlled time release control of the impregnating substance, thus allowing a controlled diffusion (or absorption) rate in applications in which is used coated impregnated zeolite to absorb pollutants from air or water.
  • Combinations of coated and uncoated zeolite crystals can be chosen to match specific environmental circumstances calculable by analyzing the air or water to be treated.
  • impregnated zeolite can be used with coated and uncoated QAC to react with organic compounds such as benzene, toluene and xylene, uncoated zeolite impregnated with permanganate and mixtures of zeolite impregnated with coated and uncoated permanganate can be used to react with hydrogen sulfide, acetone, ethylene glycols, formaldehyde and other contaminants.
  • US8664153 refers to an adsorbent composition
  • Adsorbent compositions resulting from such processes are also disclosed herein.
  • the present application presents an original multi-layer filter-absorbent article, with innovative technological improvements, which aims to mitigate the odors of raising poultry animals, such as pigs and birds.
  • Said multi-layer filter-absorbent article comprises a first layer of a porous activated carbon support arranged on a non-woven felt of polyester fibers, where the high surface area of the activated carbon is bonded to a polymer film (applying the mixture A) , where its upper face is attached to an active agent and its lower face adheres to activated carbon through polar and non-polar interactions (applying mixture B).
  • the polymer is a liquid silicone, such as dimethylpolysiloxane and the active agent, such as a potassium permanganate salt APPLICATION EXAMPLE
  • samples from sources based on NCh 3386 and Dynamic Olfactometry Analysis according to NCh 3190: 2010 were prepared, which allows the measurement of odor concentration and that approves the international standard EN 13725: 2004 .
  • 16 samples were taken where 8 samples were compared without considering a filter article, 6 samples considering the multilayer filter-adsorbent article of the present invention and two samples with the filter article in the state prior to the present invention.
  • Table 1 shows the results obtained from the tests in pig farms with respect to liquid slurry.
  • the multilayer filter-adsorbent article of the present invention solves the problem of offensive odors produced by pig farms with greater efficiency in the adsorption of odors, with an unexpectedly surprising effect on comparison to a traditional porous adsorbent system.
  • the rapid action of the filter-adsorbent article on pig smell compounds is surprising, since it requires a very short contact time to achieve its functional action.
  • Figure 1 shows the pavilion where the multi-layer filter-adsorbent article is tested.
  • Figure 2 shows the pore of a porous activated carbon support prior to the invention (layer 1).
  • Figure 3 shows part of the layers of the multilayer filter-adsorbent article of the present invention with the silicone film (layer 2).
  • Figure 4 shows the absorbent article of the present invention with the permanganate salt on silicone film (layer 3).
  • Figure 5 shows the molecular lamination process to obtain the multi-layer adsorbent filter article used in the application example.
  • Figure 1 considers a pavilion with an ambient air inlet (1), a middle area that considers the air inside the pavilion (2) and an odorous gas outlet that is brought through ducts (3), to be treated (filtered).
  • the odorous gases are captured at the outlet of the ducts, whether treated consider filter-adsorbent article (4) or untreated, depending on what is required for the tests. Finally, the gases are returned to the environment.
  • Figure 2 shows a filter-adsorbent article, corresponding to layer 1, where the scheme represents the cross-sectional view of the surface of the activated carbon pore and shows the different areas with polarities and / or positive charges (+) , negative (-) and non-polar (0) charges.
  • Figure 3 shows details of the multilayer filter-adsorbent article of the present invention with the silicone film, which corresponds to layer 2.
  • Silicone is an inorganic polymer derived from polysiloxane that is constituted by a series of alternating silicon and oxygen atoms . It can be seen that the chemical structure of the silicone, such as dimethylpolysiloxane, forms a chain that begins with a silica (Si) atom attached, on the one hand, to two methyl groups (CH3), and on the other end to 1 oxygen atom (O), and so on to form a chain.
  • Si silica
  • Figure 4 shows the multi-layer filter-absorbent article of the present invention with the permanganate salt on silicone film (corresponding to layer 3).
  • Mn Manganese atom
  • O oxygen atoms
  • FIG. 5 shows a flow chart of the system, which together with the flow lines and processes show a procedure for achieving high performance molecular lamination and obtaining the multi-layer adsorbent filter article, which will be detailed below.
  • the present invention comprises the multi-layer filter-adsorbent article and uses a porous support consisting of a non-woven polyethylene terephthalate (PET) fiber felt impregnated with 40% activated vegetable carbon, having a specific surface area of at least 800 m 2 / g coal and a pore volume of at least 0.15 m 3 / g coal.
  • PET polyethylene terephthalate
  • mineral oil has several drawbacks; first, it is hydrophobic, therefore, it does not interact with the polar functional groups of the activated carbon surface; second, its viscosity and high surface tension prevents it from entering the pore and only manages to cover its outer surface, eliminating the main property of the porous support, what is its large available surface area, and, finally, the ecological problem, because mineral oil is a non-biodegradable compound.
  • a coating film such as a silicone film, was applied (see Figure 3).
  • the compound to be used for coating the porous surface of activated carbon and producing the second layer of the multilayer filter-adsorbent article should be an inert and biodegradable polymer such as liquid silicone, specifically dimethylpolysiloxane.
  • the molecular structure of the liquid silicone comprises methyl groups (neutral charge) and an oxygen group (polar charge), both joined by silica atoms (an electrophile), which enables them form a chain
  • This configuration allows non-polar bonds to form in the hydrophobic areas of the activated carbon surface using methyl groups.
  • functional groups with positive charge on the surface of activated carbon are present, they interact through polar bonds with the oxygen group of the silicone.
  • the presence of negative charges of functional groups on the surface of activated carbon interact with the silica atom, due to its electrophilic character due to the displacement of the electron cloud by the oxygen molecule. All these interactions contribute to generate a "silicone film" that covers the functional groups present in the pore of the activated carbon and consequently prevents direct contact with the active agent, such as a permanganate salt.
  • an aqueous mixture (mixture A) is prepared, which in the present invention is contacted with the porous activated carbon support as will be detailed below, in such a way to achieve a lamination.
  • High performance molecular High performance molecular.
  • a silicone film is obtained which, when adhered to the surface of activated carbon by means of apolar bonds (methyl group), on the opposite side, leaves the oxygen group available or exposed.
  • the oxygen group negative polarity
  • interacts with the manganese atom positive polarity
  • the permanganate salt is anchored to the silicone (see figure 4).
  • an aqueous mixture (mixture B) is prepared, which in the present invention is brought into contact with the porous activated carbon support containing the second silicone layer, as explained in the procedure to achieve a high performance molecular lamination.
  • a surface covered with the permanganate salt (Mn0 4 ⁇ ) is obtained, with its active site (-MhO) available to the medium, that is, a functional product with oxidative properties to act on the compounds (chemical structures and VOCs) responsible for offensive odors produced in animal farms such as pigs and birds.
  • the process for obtaining the multilayer filter-absorbent article comprises three stages, coating the porous support corresponding to activated carbon (first layer) with a mixture (A), containing water, silicone (dimethylpolysiloxane) and low foam surfactants (ethoxylated alcohols ), constituting the second layer; followed by a coating with the mixture (B) prepared with potassium permanganate salt and low foam surfactant (ethoxylated alcohol) in acidic aqueous medium, thus forming a third layer. Finally, drying is carried out by removing the excess water contained in the pores and thus, obtaining the product of the present invention, the multi-layer filter-adsorbent article.
  • mixtures (A) and (B) are prepared, As indicated in Figure 5, the aqueous mixture A (3) is prepared in the mixing tank (2).
  • the mixture of the present invention has the advantage over the state of the art of other mixtures because it contains a low foam surfactant (ethoxylated alcohol) that allows the surface tension of the mixture to be lowered, facilitating and enabling the penetration of solutes into the interior. of the pores of activated carbon. In this way the silicone molecules contained in the mixture (A) are distributed evenly on the surface of the pores walls of the activated carbon, forming the second layer.
  • a low foam surfactant ethoxylated alcohol
  • the chemical agent was considered at a low concentration (less than 10% w / v) and of surfactant (less than 2% w / v) by weight / volume of the total mix
  • the mixture A is transferred (4) to the degassing tank (5), where vacuum less than 10,000 Pa is applied for 5 to 10 minutes by means of a vacuum pump (6), in order to produce degassing (7), preventing the gases dissolved in the mixture interfere with the breaking of surface tension in the stage of molecular lamination of the pores of activated carbon.
  • the multilayer filter-adsorbent porous support prior to the invention contained in a basket (8) to control buoyancy, is introduced in the autoclave (10), where a vacuum (11) of less than 200 is applied Pa for a period of between 20 to 30 minutes, giving the porous support the distinctive property of not containing air in the pores.
  • a vacuum pump (6) is used to achieve this vacuum level.
  • the next step is started by transferring (12) the mixture A from the degassing tank (5) to the autoclave (10), with the essential characteristic that this filling must be carried out in ascending order.
  • it is essential to maintain a vacuum level below 500 Pa, since this is the only It is possible to quickly access the inside of the pores of activated carbon while they are free of oxygen.
  • the filter-adsorbent article is kept submerged and under vacuum for a period between 20 to 30 minutes.
  • the vacuum is broken (15). and discharge the autoclave (10), transferring the mixture (16) back to the degassing tank (5), using the remaining vacuum of the degassing tank. Once the autoclave (10) has been emptied, the machinery is cleaned.
  • the basket (8) with the filter-adsorbent article inside the autoclave (10) is removed and transferred (18) to a centrifuge (20).
  • a key (17) is used for this function.
  • a centrifugation step (21) is applied between 200 and 1000 rpm for a period of 1 to 6 minutes at an ascending gradual speed, to eliminate excess mixing.
  • the filter-adsorbent article with the second layer, already centrifuged is transferred (22) back to the autoclave (10), where it is subjected to a vacuum of less than 500 Pa (23) and at a temperature between 30 ° C and 36 ° C (24).
  • the mixture B (3) is prepared in the mixing tank (2).
  • the mixture contains a low foam surfactant (ethoxylated alcohol) that allows the surface tension of the mixture to be lowered, facilitating the penetration of solutes into the pores, while the presence of an acidic medium allows the salt stability of permanganate. In this way the mixture is distributed evenly on the surface of the pore walls of activated carbon.
  • a low foam surfactant ethoxylated alcohol
  • the permanganate salt at a low concentration (less than 6% w / v) and a surfactant (less than 1% w / v) by weight / volume of the total mixture.
  • the mixture B is transferred (4) to the degassing tank (5), where a vacuum greater than 10,000 Pa is applied for 5 to 10 minutes by means of a vacuum pump (6), in order to produce degassing (7), preventing the gases dissolved in the mixture interfere with the breakdown of surface tension in the stage of molecular lamination of the pores of activated carbon.
  • the filter-adsorbent article with the silicone layer contained in a basket (8) to control buoyancy, is introduced into the autoclave (10), where vacuum (11) of less than 200 Pa is applied, by a period of between 20 to 30 minutes, giving the filter-adsorbent article with the silicone layer the distinctive property of not containing air in the pores.
  • vacuum (11) of less than 200 Pa is applied, by a period of between 20 to 30 minutes, giving the filter-adsorbent article with the silicone layer the distinctive property of not containing air in the pores.
  • a vacuum pump (6) is used to achieve this vacuum level.
  • the next stage is started by transferring (12) the mixture from the degassing tank (5) to the autoclave (10), with the essential characteristic that this filling must be carried out in ascending order.
  • it is essential to maintain a vacuum level of less than 500 Pa, since only in this way it is possible to quickly access the inside of the pores of the activated carbon, while these are free of oxygen .
  • molecular lamination is ensured that the molecules are distributed uniformly throughout the filter-adsorbent article with the silicone layer, constitute a homogeneous layer and consistent in the time of permanganate salt.
  • the filter-adsorbent article is maintained with the layers of silicone and permanganate salt, submerged already empty for a period between 20 to 30 minutes.
  • the vacuum (15) is broken and the autoclave (10) discharged, transferring the mixture (16) back to the degassing tank (5), taking advantage of the remaining vacuum of the degassing tank.
  • the machinery is cleaned.
  • the basket (8) is removed with the filter-adsorbent article, with the silicone and permanganate salt layers, contained inside, of the autoclave (10) and transferred (18) to a centrifuge (20).
  • a centrifuge (20) For this function a key (17) is used.
  • a centrifugation step (21) is applied between 200 and 1000 rpm for a period of 1 to 6 minutes of gradual speed, to eliminate excess mixing.
  • the filter-adsorbent article with the layers of silicone and permanganate salt, already centrifuged, is transferred (22) back to the autoclave (10), where it is subjected to a vacuum of less than 500 Pa (23) and at a temperature between 30 ° C and 36 ° C (24).
  • the multilayer filter-adsorbent article of the present invention is finally obtained to eliminate offensive odors from the raising of poultry animals, such as pigs and birds.
  • the dry weight was measured by gravimetry and infrared radiation until a constant mass free of moisture was obtained.
  • the mass addition value of the multilayer filter-adsorbent article is obtained, where according to the experience described previously, values comprised between 50% and 120% of added mass of silicone (second layer) by weight / dry; and between 200% and 300% of added mass of permanganate salt (third layer) by weight / dry, with respect to the weight of activated carbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

La presente invención se refiere a un artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa donde la superficie de la primera capa se une a una película de polímero y tensoactivos de baja espuma (mezcla A), y una tercera capa donde la superficie de la segunda capa se una a una película que comprende un agente activo y un tensoactivo de baja espuma en medio acuoso ácido (mezcla B), donde dicha película de polímero, en su cara superior se une al agente activo y su cara inferior se adhiere al carbón activado, mediante interacciones polares y no-polares. También se divulga un proceso para obtener el artículo filtrante-absorbente multicapa y uso del artículo filtrante-absorbente multicapa.

Description

Artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa de una película de polímero y una tercera capa de un agente activo; proceso para obtener dicho artículo; y uso del mismo.
La presente invención se refiere a desarrollar una tecnología innovadora dirigida a un artículo filtrante-adsorbente multicapas para eliminar olores ofensivos de la crianza de animales de corral, tales como porcinos y aves.
Específicamente se divulga un artículo filtrante-adsorbente multicapa que cumple la función de degradar en forma continua los compuestos responsables de los olores ofensivos, entendiéndose con esto al olor generado por sustancias o actividades industriales, comerciales o de servicio, que produce fastidio, aunque no cause daño a la salud humana, tal como los que se generan en un criadero de animales debido a la presencia de compuestos orgánicos volátiles (COVs) (amoniaco, sulfuro de hidrógeno, metano y bióxido de carbono), producto de la descomposición de los desechos orgánicos de los animales. También se divulga un proceso para obtener dicho artículo filtrante- adsorbente multicapa.
DESCRIPCIÓN DE LO CONOCIDO EN LA MATERIA
Es sabido que los materiales porosos han abarcado numerosas áreas de investigación debido a las aplicaciones que pueden obtenerse con ellos. Estos materiales son usados como adsorbentes, sistemas de intercambio iónico, separaciones de compuestos, y como catalizadores o soportes catalíticos.
Aunque los sólidos porosos poseen una variada composición, ellos tienen en común el espacio accesible en el interior de su estructura. En otras palabras, la agregación de partículas pequeñas del sólido resulta en la formación de poros dentro de estos granos y se define como intra-partículas o porosidad textural. El diámetro de los poros texturales se encuentra directamente relacionado con el tamaño de los granos formando estos poros.
En el arte previo se han divulgado diferentes tipos de estructuras adsorbentes y procesos de aplicación de los mismos, específicamente el documento CI200901573 se refiere a un proceso para impregnar un adsorbente solido poroso, carbón vegetal, con permanganato que comprende ínertizar carbón vegetal con solvente hidrofóbico aplicando vacío, contactar carbón vegetal ¡nertizado con solución acuosa de permanganato de Na, K o Li, eliminar excesó de líquido y secar solido resultante; y adsorbente solido poroso.
Por otro lado, la presentación WO 2015/57873 divulga un procedimiento para impregnar un soporte poroso con agente(s) químico(s), un soporte poroso y un sistema para impregnar dicho soporte. Tiene como objetivo describir un procedimiento para impregnar un soporte poroso con agente(s) químico(s), el soporte poroso óptimo a utilizar en función del área superficial y un sistema específicamente diseñado para realizar el proceso de impregnación.
Además, en el documento W01995013122 se revela un proceso para impregnar zeolita con un catión de amonio cuaternario (QAC) y luego recubrir la zeolita impregnada con permanganato (como permanganato de potasio) y para impregnar zeolita con permanganato y luego recubrir la zeolita impregnada con QAC, y cristales de zeolita impregnados y recubiertos resultante de cualquiera de los procesos. Cualquiera de los recubrimientos actúa como agente protector de la sustancia de impregnación en el interior de cada cristal de zeolita y permite un control de liberación de tiempo regulado de la sustancia de impregnación, permitiendo así una velocidad de difusión (o absorción) controlada en aplicaciones en las que se emplea zeolita impregnada recubierta para absorber contaminantes del aire o agua. Las combinaciones de cristales de zeolitas recubiertas y sin recubrir se pueden elegir para que coincidan con circunstancias ambientales específicas calculables mediante el análisis del aire o agua a tratar. Se pueden usar mezclas de zeolita impregnada con QAC recubierta y sin revestir para reaccionar con compuestos orgánicos tales como benceno, tolueno y xileno, zeolita sin revestir impregnada con permanganato y se pueden usar mezclas de zeolita impregnada con permanganato recubierto y sin revestir para reaccionar con sulfuro de hidrógeno, acetona, etilenglicoles, formaldehído y otros contaminantes.
También se divulgan métodos para producir cristales de zeolita impregnados con dióxido de manganeso, y para usar dichos cristales impregnados con dióxido de manganeso para absorber contaminantes del fluido.
Por otro lado, el documento US8664153 se refiere a una composición adsorbente que comprende: un carbón activado impregnado con al menos un hidrocarburo alifático saturado de cadena larga, una sal de permanganato, y óxido de hierro (III). También en este documento se divulgan composiciones adsorbentes que resultan de tales procesos.
La presente solicitud presenta un original artículo filtrante-absorbente multicapa, con mejoras tecnológicas innovadoras, el cual tiene como objetivo mitigar los olores de la crianza de animales de corral, tales como porcinos y aves.
Dicho artículo filtrante-absorbente multicapa comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, donde la elevada área superficial del carbón activado se une a una película de un polímero (aplicando la mezcla A), donde su cara superior se une a un agente activo y su cara inferior se adhiere al carbón activado mediante interacciones polares y no-polares (aplicando la mezcla B). Donde el polímero es una silicona líquida, tal como el dimetilpolisiloxano y el agente activo, tal como una sal de permanganato de potasio EJEMPLO DE APLICACIÓN
Para la evaluación de la eficacia del artículo filtrante-adsorbente de olores se prepararon muéstreos de fuentes basados en NCh 3386 y Análisis Olfatometría Dinámica según NCh 3190:2010 que permite la medición de la concentración de olor y que homologa la norma internacional EN 13725:2004.
Se tomaron 16 muestras donde se compararon 8 muestras sin considerar un artículo filtrante, 6 muestras que consideran el artículo filtrante-adsorbente multicapa de la presente invención y dos muestras con el artículo filtrante en el estado previo a la presente invención.
Se consideró un análisis de la intensidad de olores (olfatometría dinámica) en las muestras de aire, considerando el artículo filtrante-adsorbente multicapa o no, según corresponda el caso. Se expone que“el olor a cerdo” se caracteriza por una alta concentración de amoniaco (Nf-b), ácido sulfhídrico (H2S) y otros compuestos volátiles orgánicos (COVs).
La evaluación se realizó en el laboratorio de olfatometría de Ecometrika (empresa certificada internacionalmente) en Santiago. Los ensayos se realizaron de acuerdo a los protocolos internacionales vigentes y utilizando como estándar de medida la“Unidad de Olor Europea (ouE/m3)”. Es importante señalar que el umbral de detección de un olor se registra en 5 ouE/m3.
Para este efecto, se recolectaron un total de 16 muestras de aire de recirculación en pabellones de cerdos, realizando pruebas sobre purines líquidos y sólidos por su muy distinta carga odorante. Los purines líquidos representan las pruebas de la 1 a la 4, mientras que los purines sólidos se reúnen en las pruebas de la 5 a la 16. RESULTADOS DE LA MEDICIÓN DE OLORES
En la tabla 1 , se muestran los resultados obtenidos de las pruebas en criaderos de cerdo respecto de los purines líquidos.
Figure imgf000007_0001
En función la prueba descrita en i) de intensidad de olores, el efecto del artículo filtrante-adsorbente tiene un gran impacto generando una disminución en la concentración del olor de un 98,3% en promedio. Se observó que la reducción en Unidades de Olor Europea llegó a 121.065 uoE en el mejor de los casos vistos, con y sin artículo filtrante-adsorbente de la invención.
Los resultados de las pruebas sobre purines sólidos con y sin artículo filtrante- adsorbente de la invención se presentan en la tabla 2.
Se observó que los purines sólidos poseen una emisión odorante muchos menos ofensiva que los purines líquidos. El resultado de estas pruebas arrojó una disminución en la concentración de olor de un 90,3% en promedio.
Figure imgf000008_0001
Se puede observar que existen diferencias en la eficiencia de los valores de concentración total, entre las pruebas con y sin articulo filtrante-adsorbente (pruebas de 1 a 12), donde se puede obtener un promedio en la disminución de la concentración total mayor al 93%, (ver % variación de las concentraciones).
A continuación, se presentan los resultados de las pruebas 13 a 16, muestras que prueban el articulo filtrante previo a la invención (capa de carbón activado sin el tratamiento), donde se observa el valor promedio en la disminución de la concentración total de los gases de 42%, muy por debajo del 93% de eficiencia cuando la superficie de carbón activado es modificada, según la presente invención.
Figure imgf000008_0002
Se concluye que los resultados de estas pruebas evidencian que el artículo filtrante-adsorbente multicapa de la presente invención resuelve el problema de olores ofensivos producidos por los planteles de criaderos de cerdos con una mayor eficiencia en la adsorción de olores, con un efecto sorprendente inesperado en comparación a un sistema poroso adsorbente tradicional. Asimismo, resulta sorprendente la rápida acción del artículo filtrante-adsorbente sobre los compuestos del olor a cerdo, ya que requiere de un muy breve tiempo de contacto para lograr su acción funcional.
Para comprender mejor la invención, se la describirá en base a figuras que tienen solamente un carácter ilustrativo, no limitándose el alcance de la invención ni a las dimensiones, ni a la cantidad de elementos ilustrados.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 : muestra el pabellón donde se prueba el artículo filtrante-adsorbente multicapa.
La figura 2: muestra el poro de un soporte poroso de carbón activado previo a la invención (capa 1).
La figura 3: muestra parte de las capas del artículo filtrante-adsorbente multicapa de la presente invención con la película de silicona (capa 2).
La figura 4: muestra el artículo absorbente de la presente invención con la sal de permanganato sobre película de silicona (capa 3).
La figura 5: muestra el procedimiento de laminación molecular para obtener el artículo filtrante-adsorbente multicapa que se usa en el ejemplo de aplicación.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La figura 1 considera un pabellón con una entrada de aire del ambiente (1 ), una zona media que considera el aire del interior del pabellón (2) y una salida de gases olorosos que son encausados por medio de ductos (3), para ser tratados (filtrados). Los gases olorosos se capturan a la salida de los ductos, ya sea tratados considera articulo filtrante-adsorbente (4) o no tratados, en función de lo que se requiera para las pruebas. Finalmente, los gases son devueltos al ambiente.
La figura 2 muestra un artículo filtrante-adsorbente, que corresponde a la capa 1 , donde el esquema representa la vista de un corte transversal de la superficie del poro del carbón activado y muestra las distintas zonas con polaridades y/o cargas positivas (+), cargas negativas (-) y no polares (0).
La figura 3 muestra detalles del artículo filtrante-adsorbente multicapa de la presente invención con la película de silicona, que corresponde a la capa 2. La silicona es un polímero inorgánico derivado del polisiloxano que está constituido por una serie de átomos de silicio y oxígeno alternados. Se puede observar que la estructura química de la silicona, tal como el dimetilpolisiloxano, forma una cadena que comienza con un átomo de Sílice (Si) unido, por un lado, a dos grupos metilo (CH3), y por el otro extremo a 1 átomo de oxígeno (O), y así sucesivamente para formar una cadena.
La figura 4, muestra el artículo filtrante-absorbente multicapa de la presente invención con la sal de permanganato sobre película de silicona (que corresponde a la capa 3). La interacción del átomo de Manganeso (Mn) con los átomos de oxigeno (O) expuestos de la cadena de silicona, del dimetilpolisiloxano, permite el anclaje y así se forma la tercera superficie activa de sal de permanganato.
La figura 5 muestra un diagrama de flujo del sistema, que en conjunto con las líneas de flujo y procesos muestran un procedimiento para lograr una laminación molecular de alto desempeño y obtener el articulo filtrante- adsorbente multicapa, que será detallado a continuación. La presente invención comprende el artículo filtrante-adsorbente multicapas y usa un soporte poroso que consiste en un fieltro de fibra de tereftalato de polietileno (PET) no tejida impregnado con un 40% de carbón activado vegetal, teniendo un área superficial específica de al menos 800 m2/g carbón y un volumen de poros de al menos 0,15 m3/g carbón.
En el estado del arte se ha propuesto resolver el problema de la reactividad no selectiva de la superficie del carbón activado por medio de la utilización de aceite mineral para cubrir la superficie. Esta reactividad a controlar obedece a los grupos funcionales como hidroxilos, carbonilos, carboxilo, entre otros, que le confieren el carácter anfótero, que puede ser ácido, polaridad positiva o básica, polaridad negativa, (ver figura 2).
Sin embargo, el aceite mineral presenta varios inconvenientes; primero, es hidrófobo, por lo cual, no interactúa con los grupos funcionales polares de la superficie del carbón activado; segundo, su viscosidad y alta tensión superficial impide entrar al poro y sólo logra cubrir su superficie externa, eliminando la principal propiedad del soporte poroso, cuál es su gran área superficial disponible, y, por último, el problema ecológico, porque el aceite mineral es un compuesto no biodegradable.
Para resolver estos inconvenientes, en la presente invención, se aplicó una película de recubrimiento, tal como una película de silicona (ver figura 3).
Para la presente invención, se determinó que el compuesto a utilizar para el recubrimiento de la superficie porosa del carbón activado y producir la segunda capa del artículo filtrante-adsorbente multicapa, debía ser un polímero inerte y biodegradable como la silicona líquida, específicamente dimetilpolisiloxano.
Tal como se mencionó anteriormente, la estructura molecular de la silicona liquida comprende grupos metilos (carga neutra) y un grupo oxígeno (carga polar), ambos unidos por átomos de sílice (un electrófilo), lo que les posibilita formar una cadena. Esta configuración permite que se formen enlaces no polares en las zonas hidrofóbicas de la superficie del carbón activado utilizando los grupos metilo. Por otro lado, cuando se presentan grupos funcionales con carga positiva en la superficie del carbón activado, interactúan mediante enlaces polares con el grupo oxígeno de la silicona. Por último, la presencia de cargas negativas de grupos funcionales en la superficie del carbón activado, interactúan con el átomo sílice, debido a su carácter electrófilo por el desplazamiento de la nube de electrones por parte de la molécula de oxígeno. Todas estas interacciones contribuyen a generar una“película de silicona” que cubre los grupos funcionales presentes en el poro del carbón activado y en consecuencia, impiden el contacto directo con el agente activo, tal como una sal de permanganato.
Para obtener esta segunda capa del artículo filtrante-adsorbente multicapa, se prepara una mezcla acuosa (mezcla A), que en la presente invención se pone en contacto con el soporte poroso carbón activado según se detallará a continuación, de tal manera de lograr una laminación molecular de alto desempeño.
En una primera etapa, se obtiene una película de silicona que cuando se adhiere a la superficie del carbón activado mediante enlaces apolares (grupo metilo), en la cara opuesta, deja disponible o expuesto el grupo oxígeno. El grupo oxígeno (polaridad negativa) interactúa con el átomo de manganeso (polaridad positiva) y así, la sal de permanganato se ancla a la silicona (ver figura 4).
Para obtener esta tercera capa del artículo filtrante-adsorbente multicapa, se prepara una mezcla acuosa (mezcla B), que en la presente invención se pone en contacto con el soporte poroso carbón activado que contiene la segunda capa de silicona, según lo explicado en el procedimiento para lograr una laminación molecular de alto desempeño. En esta segunda etapa, se obtiene una superficie cubierta con la sal de permanganato (Mn04·), con su sitio activo (-MhO ) disponible al medio, es decir, un producto funcional con propiedades oxidativas para actuar sobre los compuestos (estructuras químicas y COVs) responsables de los olores ofensivos producidos en los criaderos de animales como cerdos y aves.
El proceso para obtener el artículo filtrante-absorbente multicapa comprende tres etapas, recubrir el soporte poroso que corresponde a carbón activado (primera capa) con una mezcla (A), que contiene agua, silicona (dimetilpolisiloxano) y tensoactivos de baja espuma (alcoholes etoxilados), constituyendo la segunda capa; seguida de un recubrimiento con la mezcla (B) preparada con sal de permanganato de potasio y tensoactivo baja espuma (alcohol etoxilado) en medio acuoso ácido, formando así una tercera capa. Finalmente, se realiza un secado eliminando el excedente de agua contenido en los poros y así, obtener el producto de la presente invención, el artículo filtrante-adsorbente multicapa.
A pesar de que, en el estado del arte se describe un procedimiento de impregnación bajo condiciones de vacío como en la presente invención (con algunas adaptaciones), el propósito ha sido el de sellar superficies de artículos que están expuestos a condiciones extremas, y no se ha aplicado este procedimiento, tal como se describe en la presente invención, sobre superficies de alta porosidad y de gran área superficial, con el objetivo de crear un artículo filtrante-adsorbente multicapas de gran área superficial y funcionalidad.
A continuación, se describen los flujos de proceso empleadas (Figura 5).
Para comenzar el procedimiento de laminación molecular del artículo filtrante- absorbente multicapa de la presente invención, primeramente, se preparan las mezclas (A) y (B), Tal como se indica en la figura 5, se prepara la mezcla acuosa A (3) en el estanque mezclador (2). La mezcla de la presente invención tiene la ventaja por sobre el estado del arte de otras mezclas porque contiene un agente surfactante de baja espuma (alcohol etoxilado) que permite bajar la tensión superficial de la mezcla, facilitando y posibilitando la penetración de los solutos al interior de los poros del carbón activado. De esta forma las moléculas de silicona que contiene la mezcla (A) se distribuyen uniformemente en la superficie de las paredes de los poros del carbón activado, formando la segunda capa.
Para determinar un valor de cubrimiento con la mezcla A, en la práctica se consideró el agente químico a una baja concentración (menor a 10% p/v) y de surfactante (menor a 2% p/v) en peso/volumen de la mezcla total.
La mezcla A se trasvasija (4) al estanque desgasificador (5), donde se le aplica vacío menor a 10.000 Pa por 5 a 10 minutos mediante una bomba de vacío (6), a fin de producir una desgasificación (7), evitando que los gases disueltos en la mezcla interfieran en el rompimiento de la tensión superficial en la etapa de laminación molecular de los poros del carbón activado.
Paralelamente se introduce (9) el soporte poroso artículo filtrante-adsorbente multicapa previo a la invención, contenido en un canastillo (8) para controlar la flotabilidad, en la autoclave (10), donde se la aplica un vacío (11) inferior a 200 Pa por un período de entre 20 a 30 minutos, otorgando al soporte poroso la propiedad distintiva de no contener aire en los poros. Para lograr este nivel de vacío se utiliza una bomba de vacío (6).
Se inicia la etapa siguiente trasvasijando (12) la mezcla A desde el estanque desgasificador (5) a la autoclave (10), con la característica esencial que este llenado debe realizarse en forma ascendente. De igual forma, durante todo el proceso de llenado ascendente (12) de la autoclave (10), es condición primordial mantener un nivel de vacío inferior a los 500 Pa, pues sólo así es posible acceder rápidamente al interior de los poros del carbón activado mientras éstos se encuentran libres de oxígeno.
De este modo, se asegura que la laminación molecular, que consiste en que las moléculas se distribuyan en forma uniforme en todo el soporte poroso, constituya una capa homogénea y consistente en el tiempo. Luego, se mantiene el artículo filtrante-adsorbente sumergido y a vacío por un período entre 20 a 30 minutos.
Posteriormente, se procede a romper el vacío (15). y descargar la autoclave (10), trasvasijando la mezcla (16) nuevamente al estanque desgasificador (5), utilizando el vacío remanente del estanque desgasificador. Una vez vaciada la autoclave (10), se procede a realizar la limpieza de la maquinaria.
En la próxima etapa del procedimiento, se extrae el canastillo (8) con el artículo filtrante-adsorbente en su interior de la autoclave (10) y se traslada (18) a una centrífuga (20). Para esta función se utiliza un tecle (17). Entonces se aplica una etapa de centrifugación (21) entre 200 y 1000 rpm por un lapso de 1 a 6 minutos a velocidad gradual ascendente, para eliminar el exceso de mezcla.
Por último, el artículo filtrante-adsorbente con la segunda capa, ya centrifugado, se traslada (22) nuevamente a la autoclave (10), donde se somete a un vacío inferior a 500 Pa (23) y a una temperatura entre 30°C y 36°C (24).
La combinación de ambos factores, vacío y temperatura permite generar una rápida evaporación del agua a baja temperatura, logrando que la silicona (dimetilpolisiloxano) se deposite en la superficie porosa y forme una capa uniforme. Esta corresponde a la última etapa del proceso de laminación molecular de la segunda capa, restando sólo retirar el canastillo (8) con el soporte poroso contenido en su interior utilizando el tecle (17). De este modo, se obtiene un artículo filtrante-adsorbente que contiene silicona (la segunda capa), listo para continuar con el procedimiento para agregar la tercera capa (sal de permanganato).
Para la segunda etapa, se prepara la mezcla B (3) en el estanque mezclador (2). La mezcla contiene un agente surfactante de baja espuma (alcohol etoxilado) que permite bajar la tensión superficial de la mezcla, facilitando la penetración de los solutos al interior de los poros, mientras que la presencia de un medio ácido permite la estabilidad de la sal de permanganato. De esta forma la mezcla se distribuye uniformemente en la superficie de las paredes de los poros del carbón activado.
Para determinar un valor de cubrimiento con el solvente, en la práctica se consideró que la sal de permanganato a una baja concentración (menor a 6% p/v) y de un surfactante (menor a 1% p/v) en peso/volumen de la mezcla total.
La mezcla B se trasvasija (4) al estanque desgasificador (5), donde se le aplica vacío mayor 10.000 Pa por 5 a 10 minutos mediante una bomba de vacío (6), a fin de producir una desgasificación (7), evitando que los gases disueltos en la mezcla interfieran en el rompimiento de la tensión superficial en la etapa de laminación molecular de los poros del carbón activado.
Paralelamente se introduce (9) el artículo filtrante-adsorbente con la capa de silicona, contenido en un canastillo (8) para controlar la flotabilidad, en la autoclave (10), donde se la aplica vacío (11) inferior a 200 Pa, por un período de entre 20 a 30 minutos, otorgando al artículo filtrante-adsorbente con la capa de silicona la propiedad distintiva de no contener aire en los poros. Para lograr este nivel de vacío se utiliza una bomba de vacío (6).
Se inicia la etapa siguiente trasvasijando (12) la mezcla desde el estanque desgasificador (5) a la autoclave (10), con la característica esencial que este llenado debe realizarse en forma ascendente. De igual forma, durante todo el proceso de llenado ascendente (12) de la autoclave (10), es condición primordial mantener un nivel de vacío inferior a 500 Pa, pues sólo así es posible acceder rápidamente al interior de los poros del carbón activado, mientras éstos se encuentran libres de oxígeno. De este modo, se asegura la laminación molecular que consiste en que las moléculas se distribuyan en forma uniforme en todo el artículo filtrante-adsorbente con la capa de silicona, constituya una capa homogénea y consistente en el tiempo de sal de permanganato. Se mantiene el artículo filtrante-adsorbente con las capas de silicona y sal de permanganato, sumergido y a vacío por un período entre 20 a 30 minutos.
Posteriormente, se procede a romper el vacío (15) y descargar la autoclave (10), trasvasijando la mezcla (16) nuevamente al estanque desgasificador (5), aprovechando el vacío remanente del estanque desgasificador. Una vez vaciada la autoclave (10), se procede a realizar la limpieza de la maquinaria.
En la próxima etapa del procedimiento, se extrae el canastillo (8) con el artículo filtrante-adsorbente, con las capas de silicona y sal de permanganato, contenido en su interior, de la autoclave (10) y se traslada (18) a una centrífuga (20). Para esta función se utiliza un tecle (17). Entonces se aplica una etapa de centrifugación (21) entre 200 y 1000 rpm por un lapso de 1 a 6 minutos de velocidad gradual, para eliminar el exceso de mezcla.
Por último, el artículo filtrante-adsorbente con las capas de silicona y sal de permanganato, ya centrifugado, se traslada (22) nuevamente a la autoclave (10), donde se somete a un vacío inferior a 500 Pa (23) y a una temperatura entre 30°C y 36°C (24).
La combinación de ambos factores, vacío y temperatura permite generar una rápida evaporación del agua a baja temperatura, logrando que la sal de permanganato se deposite en la superficie porosa y forme una capa uniforme. Esta corresponde a la última etapa del proceso de laminación molecular, restando sólo retirar el canastillo (8) con el soporte poroso contenido en su interior utilizando el tecle (17).
De la forma aquí descrita, se obtiene finalmente el artículo filtrante-adsorbente multicapa de la presente invención para eliminar olores ofensivos de la crianza de animales de corral, tales como porcinos y aves.
Para determinar el contenido de sólidos incorporados al interior de los poros, se midió el peso seco por gravimetría y radiación de infrarrojo hasta obtener masa constante libre de humedad.
Así desarrollada la práctica, y mediante un balance de masa, se obtiene el valor de adición de masa del artículo filtrante-adsorbente multicapa, donde de acuerdo a la experiencia descrita previamente, se obtuvo valores comprendidos entre 50% y 120 % de masa añadida de silicona (segunda capa) en peso/seco; y entre 200% y 300% de masa añadida de sal de permanganato (tercera capa) en peso/seco, respecto del peso del carbón activado.

Claims

REIVINDICACIONES
1.- Artículo filtrante-absorbente multícapa CARACTERIZADO porque comprende:
- una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, y
- una segunda capa donde la superficie de la primera capa se une a una película de polímero y tensoactivos de baja espuma (mezcla (A)), y
- una tercera capa donde la superficie de la segunda capa se una a una película que comprende un agente activo y un tensoactivo de baja espuma en medio acuoso ácido (mezcla (B)), y
donde dicha película de polímero, en su cara superior se une al agente activo y su cara inferior se adhiere al carbón activado, mediante interacciones polares y no-polares.
2.- Artículo filtrante-absorbente multicapa, de acuerdo con la reivindicación 1 , CARACTERIZADO, porque dicho polímero es una silicona líquida.
3.- Artículo filtrante-absorbente multicapa, de acuerdo con las reivindicaciones precedentes, CARACTERIZADO, porque dicho polímero es una silicona líquida, tal como dimetilpolisiloxano.
4.- Artículo filtrante-absorbente multicapa, de acuerdo con las reivindicaciones precedentes, CARACTERIZADO, porque dichos tensoactivos de baja espuma son alcoholes etoxilados.
5.- Artículo filtrante-absorbente multicapa, de acuerdo con la reivindicación 1 , CARACTERIZADO, porque el agente activo es una sal de permanganato de potasio.
6.- Artículo filtrante-absorbente multicapa, de acuerdo con la reivindicación 1 , CARACTERIZADO, porque el fieltro no tejido de fibras de poliéster es un fieltro de fibra de tereftalato de polietileno (PET) no tejida.
7.- Artículo filtrante-absorbente multicapa, de acuerdo con la reivindicación 5, CARACTERIZADO, porque el fieltro de fibra de tereftalato de polietileno (PET) no tejida está impregnado con un 40% de carbón activado vegetal, teniendo un área superficial específica de al menos 800 m2/g carbón y un volumen de poros de al menos 0,15 m3/g carbón, constituyendo la primera capa.
8.- Proceso para obtener el artículo filtrante-absorbente multicapa, según reivindicación 1 , CARACTERIZADO, porque comprende:
- recubrir un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster (primera capa) con una mezcla (A), donde la mezcla (A) contiene agua, un polímero de silicona y tensoactivos de baja espuma, constituyendo la segunda capa, posteriormente,
- recubrir la segunda capa con una mezcla (B) preparada con sal de permanganato de potasio y tensoactivo de baja espuma en medio acuoso ácido, formando así una tercera capa,
- Finalmente secar el artículo filtrante-adsorbente multicapa obtenido.
9.- Proceso para obtener el artículo filtrante-absorbente multicapa, de acuerdo con la reivindicación 8, CARACTERIZADO porque el polímero de silicona es dimetilpolisíloxano y los tensoactivos de baja espuma son alcoholes etoxilados.
10.- Uso del artículo filtrante-absorbente multicapa, de acuerdo con la reivindicación 1 , CARACTERIZADO, porque sirve para eliminar olores ofensivos de la crianza de animales de corral.
11.- Uso del artículo filtrante-absorbente multicapa, de acuerdo con la reivindicación 10, CARACTERIZADO, porque sirve para eliminar olores ofensivos de porcinos y aves.
PCT/CL2018/000022 2018-06-22 2018-06-22 Artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa de una película de polímero y una tercera capa de un agente activo; proceso para obtener dicho artículo; y uso del mismo WO2019165566A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CL2018/000022 WO2019165566A1 (es) 2018-06-22 2018-06-22 Artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa de una película de polímero y una tercera capa de un agente activo; proceso para obtener dicho artículo; y uso del mismo
EP18908060.9A EP3812038B9 (en) 2018-06-22 2018-06-22 Multilayer absorbent filtering item; method for obtaining said item; and use of same
US17/254,894 US20210205782A1 (en) 2018-06-22 2018-06-22 Multilayer absorbent filtering item comprising a first layer of a porous activated carbon support disposed on a nonwoven polyester-fibre felt, a second layer of a polymer film and a third layer of an active ingredient; method for obtaining said item; and use of same
ES18908060T ES2969089T3 (es) 2018-06-22 2018-06-22 Artículo filtrante-absorbente multicapa; proceso para obtener dicho artículo; y uso del mismo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/000022 WO2019165566A1 (es) 2018-06-22 2018-06-22 Artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa de una película de polímero y una tercera capa de un agente activo; proceso para obtener dicho artículo; y uso del mismo

Publications (1)

Publication Number Publication Date
WO2019165566A1 true WO2019165566A1 (es) 2019-09-06

Family

ID=67804761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/000022 WO2019165566A1 (es) 2018-06-22 2018-06-22 Artículo filtrante-absorbente multicapa que comprende una primera capa de un soporte poroso de carbón activado dispuesto sobre un fieltro no tejido de fibras de poliéster, una segunda capa de una película de polímero y una tercera capa de un agente activo; proceso para obtener dicho artículo; y uso del mismo

Country Status (4)

Country Link
US (1) US20210205782A1 (es)
EP (1) EP3812038B9 (es)
ES (1) ES2969089T3 (es)
WO (1) WO2019165566A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212131A (en) * 1991-02-20 1993-05-18 Innovative Research Enterprises Low pressure drop filter
WO1995013122A1 (en) 1993-11-10 1995-05-18 Fred Klatte Chemically impregnated zeolite and method for chemically impregnating and coating zeolite
US20120288958A1 (en) * 2010-01-17 2012-11-15 Jonathan Thompson Carbon Laminated Materials for Sample Preparation
US8664153B1 (en) 2013-03-15 2014-03-04 Sociedad Oxidquimica Limitada Activated carbon as an adsorbent composition
WO2015057873A1 (en) 2013-10-17 2015-04-23 Blueprint Medicines Corporation Compositions useful for treating disorders related to kit
WO2015157873A1 (es) * 2014-04-15 2015-10-22 Purificación Y Control De Ambientes Limitada Procedimiento para impregnar un soporte poroso con agente(s) químico(s). soporte poroso y sistema para impregnar dicho soporte

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251884B1 (en) * 2000-02-04 2006-07-05 The Procter & Gamble Company Air filtering device
JP2005192950A (ja) * 2004-01-09 2005-07-21 Ajinomoto Co Inc 微生物乾燥菌体を有効成分とする脱臭剤及び脱臭方法
US9138684B2 (en) * 2013-01-03 2015-09-22 Milliken & Company Filter for removal of heavy metals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212131A (en) * 1991-02-20 1993-05-18 Innovative Research Enterprises Low pressure drop filter
WO1995013122A1 (en) 1993-11-10 1995-05-18 Fred Klatte Chemically impregnated zeolite and method for chemically impregnating and coating zeolite
US20120288958A1 (en) * 2010-01-17 2012-11-15 Jonathan Thompson Carbon Laminated Materials for Sample Preparation
US8664153B1 (en) 2013-03-15 2014-03-04 Sociedad Oxidquimica Limitada Activated carbon as an adsorbent composition
WO2014140825A2 (en) * 2013-03-15 2014-09-18 Sociedad Oxidquimica Limitada Activated carbon as an adsorbent composition
WO2015057873A1 (en) 2013-10-17 2015-04-23 Blueprint Medicines Corporation Compositions useful for treating disorders related to kit
WO2015157873A1 (es) * 2014-04-15 2015-10-22 Purificación Y Control De Ambientes Limitada Procedimiento para impregnar un soporte poroso con agente(s) químico(s). soporte poroso y sistema para impregnar dicho soporte

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEBRERO, R. ET AL.: "Abatement of odorant compounds in one- and two-phase biotrickling filters under steady and transient conditions", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 97, no. 10, 2013, pages 4627 - 4638, XP055634130, ISSN: 0175-7598, DOI: 10.1007/s00253-012-4247-1 *
See also references of EP3812038A4
XIE, Z. Z. ET AL.: "Adsorption properties of regenerative materials for removal of low concentration of toluene", JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, vol. 66, no. 12, 2016, pages 1224 - 1236, XP055634133, DOI: 10.1080/10962247.2016.1209257 *

Also Published As

Publication number Publication date
EP3812038B1 (en) 2023-11-01
ES2969089T3 (es) 2024-05-16
EP3812038A4 (en) 2022-02-09
EP3812038A1 (en) 2021-04-28
EP3812038B9 (en) 2024-02-21
EP3812038C0 (en) 2023-11-01
US20210205782A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
US9592488B2 (en) Process for preparing lipid coated particles of plant material
RU2611519C2 (ru) Способ нанесения поглощающего покрытия на субстрат, основу и/или субстрат, покрытый основой
US9533250B2 (en) Sorbents for carbon dioxide reduction from indoor air
Werner et al. The sequestration of PCBs in Lake Hartwell sediment with activated carbon
Siddiqa et al. Silica decorated CNTs sponge for selective removal of toxic contaminants and oil spills from water
Zhang et al. Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery
US20220220008A1 (en) A composite material and a water purifying system
CN106902574B (zh) 一种基于玻璃纤维和氧化铝纤维骨架的空气净化滤芯及其制备方法和应用
Moritz et al. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study
Rani et al. A study on water hyacinth Eichhornia crassipes as oil sorbent
Lyubimov et al. The use of hypercrosslinked polymer sorbents and composites based on them in the sorption of toxic and bad-smelling substances
ES2969089T3 (es) Artículo filtrante-absorbente multicapa; proceso para obtener dicho artículo; y uso del mismo
JP2015044175A (ja) シロキサン除去剤およびそれを用いたシロキサン除去フィルタ
JP4772852B2 (ja) 耐熱性二酸化炭素吸収材およびその製造方法並びにこれを用いた二酸化炭素吸収方法および二酸化炭素吸収装置
ES2848649T3 (es) Recuperación de petróleo crudo a partir de un adsorbente de petróleo crudo y regeneración del adsorbente
KR102168615B1 (ko) 나노 다공성의 미네랄 활성탄 및 그 사용방법
JP6264859B2 (ja) シロキサン除去剤およびそれを用いたシロキサン除去フィルタ
JP2010022952A (ja) アルデヒド除去剤および除去シート
BRPI1005885A2 (pt) processo de preparação, aplicação e recuperação de material absorvente para compostos ou misturas apolares
KR20210045587A (ko) 알지네이트 겔을 이용한 흡착제 및 이의 제조방법
RU2340393C2 (ru) Способ получения сорбентов для жидких углеводородов
WO2015157873A1 (es) Procedimiento para impregnar un soporte poroso con agente(s) químico(s). soporte poroso y sistema para impregnar dicho soporte
RU2375403C1 (ru) Материал и способ для обработки загрязнений из нефти и/или нефтепродуктов
JP7308040B2 (ja) 無機多孔質体よりなる油吸着剤、及びその製造方法
RU2768701C1 (ru) Сорбент на основе модифицированного хитозана

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018908060

Country of ref document: EP

Effective date: 20210122