[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019164342A1 - 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법 - Google Patents

탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법 Download PDF

Info

Publication number
WO2019164342A1
WO2019164342A1 PCT/KR2019/002232 KR2019002232W WO2019164342A1 WO 2019164342 A1 WO2019164342 A1 WO 2019164342A1 KR 2019002232 W KR2019002232 W KR 2019002232W WO 2019164342 A1 WO2019164342 A1 WO 2019164342A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrocarbon
carrier
promoter
oxychlorolation
Prior art date
Application number
PCT/KR2019/002232
Other languages
English (en)
French (fr)
Inventor
방정업
김도희
황교현
정종욱
방용주
유영석
김정은
Original Assignee
주식회사 엘지화학
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 서울대학교산학협력단 filed Critical 주식회사 엘지화학
Priority to CN201980007191.5A priority Critical patent/CN111565838B/zh
Priority to EP19757172.2A priority patent/EP3721993B1/en
Priority to JP2020536777A priority patent/JP7067696B2/ja
Priority to US16/958,443 priority patent/US11179703B2/en
Publication of WO2019164342A1 publication Critical patent/WO2019164342A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/06Preparation of halogenated hydrocarbons by addition of halogens combined with replacement of hydrogen atoms by halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/154Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of saturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present specification relates to a catalyst for oxychlorolation process of a hydrocarbon, a method for preparing the same, and a method for preparing an oxychloroated compound of a hydrocarbon using the same.
  • the present specification provides a catalyst for an oxychlorolation process of a hydrocarbon, a method for preparing the same, and a method for preparing an oxychloroated compound of a hydrocarbon using the same.
  • One embodiment of the present specification includes a catalyst material including copper; And a carrier comprising cerium oxide (CeO 2 ), wherein the catalyst material comprises at least one first promoter selected from the group consisting of alkali metals and alkaline earth metals; And a second cocatalyst comprising a lanthanide metal.
  • a catalyst material including copper; And a carrier comprising cerium oxide (CeO 2 ), wherein the catalyst material comprises at least one first promoter selected from the group consisting of alkali metals and alkaline earth metals; And a second cocatalyst comprising a lanthanide metal.
  • an exemplary embodiment of the present specification comprises the steps of preparing a carrier comprising cerium oxide (CeO 2 ); And supporting a catalyst material including copper, a first promoter, and a second promoter on the carrier.
  • an exemplary embodiment of the present specification provides a method for preparing an oxychlorolated compound of a hydrocarbon that is performed under a catalyst for an oxychlorolating process of the hydrocarbon, and includes an oxychlorolating reaction of a hydrocarbon.
  • the catalyst for the oxychlorolation process of a hydrocarbon of the present specification when used in the oxychlorolation process, has the effect of increasing the selectivity of the desired product.
  • the catalyst for the oxychlorolation process of a hydrocarbon of the present specification when used in the oxychlorolation process, has the effect of suppressing the generation of by-products such as carbon monoxide or carbon dioxide.
  • the catalyst for the oxychlorolation process of the hydrocarbon of the present specification when used in the oxychlorolation process, has the effect of increasing the selectivity of the desired product even at low temperatures.
  • FIG. 1 shows an XRD pattern of a catalyst according to Example 1.
  • FIG. 6 is EDS data of the catalyst of Example 2.
  • the "catalyst material” may be an “active material” having catalytic activity.
  • a “catalyst” may be a catalyst for the oxychlorolation process of hydrocarbons.
  • the term "oxychloroination process of hydrocarbon” means a process for substituting chlorine for hydrogen in a hydrocarbon, and may also be referred to as an oxidative chlorolation process of a hydrocarbon. For example, it may be a process of generating chloromethane (CH 3 Cl, CH 2 Cl 2 or CHCl 3 ) by substituting hydrogen of methane gas (CH 4 ) with chlorine, and may be represented by the following Chemical Formula (I). . Chloromethane produced via general formula (I) can be converted into useful chemical products via general formula (II). In general formula (I) below, not only chloromethane but also byproducts such as carbon monoxide or carbon dioxide can be produced.
  • the present specification includes a catalyst material including copper; And a carrier comprising cerium oxide (CeO 2 ), wherein the catalyst material comprises at least one first promoter selected from the group consisting of alkali metals and alkaline earth metals; And a second cocatalyst comprising a lanthanide metal.
  • the carrier includes cerium oxide, it is possible to induce the effect of catalyst stability, increase in lifespan and increase in yield due to the excellent oxygen adsorption-desorption performance of cerium oxide.
  • the above-described effects can be increased by simultaneously including the copper and the promoter in the cerium oxide carrier.
  • cerium oxide is used as a carrier
  • copper is used as an active material included in the catalyst material
  • the first and second cocatalysts described above By using, it can be used in a fixed bed, fluidized bed or circulating fluidized bed reactor.
  • the catalyst according to one embodiment of the present specification, it is intended to suppress the production of by-products generated in the oxychlorolation process of hydrocarbons to the maximum, and to maximize the production of the desired product.
  • the reactant is methane (CH 4 ) and the desired products are CH 3 Cl, CH 2 Cl 2 and CHCl 3
  • the chlorolated compounds of methane, by-products CO 2 and CO are generated, wherein the chlorolation It is intended to maximize the production of methane CH 3 Cl, CH 2 Cl 2 and CHCl 3 and to minimize the generation of byproducts CO 2 and CO.
  • the amount of carbon dioxide and carbon monoxide generated as harmful substances while suppressing the risk that can be generated by the process, while increasing the production of the target product to reduce the process cost.
  • the catalyst for oxychlorolation process of the hydrocarbon is copper; At least one first promoter selected from the group consisting of alkali metals and alkaline earth metals; And a second cocatalyst including a lanthanide metal may be supported on a carrier including the cerium oxide (CeO 2 ).
  • the supporting method is not particularly limited as long as it is a method generally used in the art to which the technology belongs, and a specific method will be described later.
  • copper included in the catalyst material may be used as the active material. Specifically, since copper is included in the catalyst material, there is an effect of reducing the selectivity of by-products such as carbon monoxide or carbon dioxide which may be generated in the oxychlorolation process of hydrocarbons.
  • the catalytic material is platinum (Pt), palladium (Pd), nickel (Ni), cobalt (Co), ruthenium (Ru), rhenium (Re), rhodium ( Rh), osmium (Os), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe) or lead (Zn) may be further included, which may be alone or in alloy form.
  • platinum platinum
  • Pd palladium
  • Ni nickel
  • Co cobalt
  • Ru ruthenium
  • Re rhenium
  • Rh rhodium
  • titanium Ti
  • Cr chromium
  • Mn manganese
  • Fe iron
  • lead (Zn) zinc
  • the catalyst material may be supported on the carrier.
  • the supported method is not particularly limited as long as it is a method generally used in the art to which the technology belongs, and specific methods will be described later.
  • the catalyst material is 5 wt% or more and 25 wt% or less, preferably 10 wt% or more and 23 wt% or less, based on the total weight of the catalyst for the oxychlorolation process of the hydrocarbon. Preferably it may be included in more than 15% by weight 20% by weight.
  • the function of the catalyst by the catalyst material may be efficiently performed, and the deactivation phenomenon of the catalyst may be suppressed.
  • the content of the first promoter and the second promoter is the same or different, respectively, 10 parts by weight or more and 2,000 parts by weight or less, 15 parts by weight or more and 1,000 parts by weight with respect to 100 parts by weight of copper 20 parts by weight or more and 500 parts by weight or less, 80 parts by weight or more and 300 parts by weight or less, or 100 parts by weight or more and 200 parts by weight or less.
  • the reaction active point of the catalyst may increase.
  • the content of the catalyst material (or the first promoter and the second promoter) means the extent to which the catalyst material (or the first promoter and the second promoter) is supported on the carrier.
  • the first promoter may include one or more selected from the group consisting of sodium, lithium, potassium, magnesium, and calcium.
  • the first promoter may include potassium.
  • potassium is included as the first cocatalyst, there is an effect that the contribution to the active substance can be increased.
  • the second promoter may further include one or more selected from the group consisting of yttria and rare earth elements.
  • the rare earth element is scandium (Sc), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thorium (Tm), ytterbium (Yb) or ruthenium (Lu).
  • the second promoter may include lanthanum.
  • lanthanum included as the second promoter, there is an effect that the contribution to the active substance can be increased.
  • the first promoter may be potassium, and the second promoter may be lanthanum. In this case, the contribution to the active substance can be maximized.
  • the carrier may be one having a single composition of cerium oxide (CeO 2 ).
  • the cerium oxide (CeO 2 ) single composition means that the carrier contains little or no other materials other than cerium oxide.
  • the content of the cerium oxide may be 80% by weight, 90% by weight, 95% by weight, or 99% by weight or more, and most preferably 100% by weight, based on 100% by weight of the carrier. .
  • the carrier having a single composition of cerium oxide can be confirmed by the general method used in the art. For example, X-Ray Diffraction peak patterns can be checked to confirm the presence of CeO 2 . Specifically, when peaks corresponding to the (111), (200), (220), and (311) crystal planes exist, it may be confirmed that CeO 2 on the cubic phase is present. Energy dispersive spectroscopy (EDS) measurements also show the presence and weight percent of Ce and O atoms. The EDS analysis is used to confirm the chemical composition of the sample together with the SEM picture. In the EDS measurement for the cerium oxide, peaks corresponding to Ce and O atoms are observed. On the other hand, if peaks of atoms other than Ce and O atoms are hardly observed, it can be confirmed that the carrier has a cerium oxide single composition.
  • EDS Energy dispersive spectroscopy
  • the carrier may be composed of only cerium oxide.
  • the carrier including cerium oxide (CeO 2 ) may be in powder form, the powder may be in spherical form, and the diameter of the catalyst including the carrier will be described later.
  • ABSC / CeO 2 catalyst may mean that A, B, and C, which are metals or metal oxides, are supported on a CeO 2 carrier.
  • the specific surface area of the carrier may be 50 m 2 / g or more and 250 m 2 / g or less, 100 m 2 / g or more and 200 m 2 / g or less, preferably 130 m 2 / may be greater than or equal to 150 m 2 / g.
  • the specific surface area of the carrier may refer to the area (m 2 ) of pores in the carrier relative to the total weight (g) of the carrier.
  • the specific surface area of the carrier may be measured by a method generally used in the art, for example, by the Brunauer, Emmett and Teller (BET) method. It is a kind of gas phase adsorption method that adsorbs molecules or ions on the surface of the carrier to measure the surface area from the amount of adsorption.
  • BET Brunauer, Emmett and Teller
  • the sample is stored at 250 ° C for 5 hours and then N 2 adsorption-desorption isotherm using a Micromeritics ASAP 2010 machine. It can be measured.
  • the carrier may further include a complex oxide including at least one element selected from the group consisting of Zr, Y, an alkali metal element, an alkaline earth metal element, a lanthanide element, and a rare earth element.
  • a complex oxide including at least one element selected from the group consisting of Zr, Y, an alkali metal element, an alkaline earth metal element, a lanthanide element, and a rare earth element. Specific examples of the alkali metal element, alkaline earth metal element, lanthanide element and rare earth element are as described above.
  • examples of the composite oxide include CeZr composite oxide (70:30), CeZrLa composite oxide (86: 10: 4), CeZrLa composite oxide (66: 29: 5), and CeZrLaY composite oxide. (40: 50: 5: 5), CeZrPr composite oxide (40: 55: 5), CeZrLaNdPr composite oxide, or CeZrNdPrCa composite oxide.
  • the numbers in parentheses at the end mean the weight ratio of each element.
  • the diameter of the hydrocarbon catalyst for oxychlorolation process may be 0.1mm or more and 1.0mm, preferably 0.1mm or less 0.5mm, more preferably 0.18mm or less 0.25mm.
  • the diameter of the catalyst may mean an average particle diameter of the catalyst particles.
  • the diameter of the catalyst can be measured by methods commonly used in the art, for example, using SEM (Scanning Electron Microscopy) or TEM (Transmission Electron Microscopy). Each diameter of the at least two catalyst particles can be measured and the average of the measured diameters of the particles can be calculated as the average particle diameter.
  • One embodiment of the present specification comprises the steps of preparing a carrier comprising cerium oxide (CeO 2 ); And it provides a method for producing a catalyst for the oxychlorolation process of the above-described hydrocarbon comprising the step of supporting the active material containing copper, the first promoter, and the second promoter on the carrier.
  • CeO 2 cerium oxide
  • the step of supporting the active material including the copper, the first promoter, and the second promoter on the carrier may use an incipient wetness method.
  • Other impregnation methods are also available.
  • the precipitation method a coprecipitation method, a homogeneous precipitation method, or an annual precipitation method may be used.
  • the active material and the carrier are precipitated at the same time, so that the catalyst in the powder state can be obtained, the ratio of the active material can be freely controlled, and the mutual bonding force between the active material and the carrier is strengthened and stability is achieved. The production of this excellent catalyst powder is possible.
  • an active material including copper; First promoter; And supporting the second promoter on the carrier may include an active material precursor including an active material precursor; A first promoter precursor comprising a first promoter; And it can be carried out by putting the carrier in the aqueous solution of the precursor containing a second promoter promoter including a second promoter and stirring.
  • the active material precursor, the first promoter precursor and the second promoter precursor may vary according to the type of target material.
  • the active material is copper
  • the active material precursor is Copper chloride dihydrate (CuCl 2 .2H 2 O)
  • the first promoter precursor is potassium chloride.
  • the second promoter when the second promoter is lanthanum, the second promoter may be lanthanum chloride heptahydrate (LCl 3 ⁇ 7H 2 O).
  • the stirring is performed so that the precursor aqueous solution may be well supported on the carrier, and may be performed for 0.5 hours or more, preferably 1 hour or more.
  • a method of preparing a catalyst for an oxychlorolation process of a hydrocarbon includes drying a catalyst; And calcining the catalyst.
  • the drying of the catalyst is for evaporating the water of the catalyst, and is not particularly limited as long as it is a method generally used in the art.
  • water may be evaporated using a rotary evaporator and dried at a temperature of 100 ° C. for at least 10 hours.
  • the calcining of the catalyst is performed to remove the precursor material remaining in the catalyst after loading, and is not particularly limited as long as it is a method generally used in the art. For example, it may be carried out at a temperature of 1 to 10 hours at a temperature of 400 °C or more. When the operating temperature and the running time are satisfied, the precursor material may be effectively removed, and the problem of deterioration of durability caused by the phase change of the carrier may be suppressed.
  • An exemplary embodiment of the present specification provides a method for preparing an oxychlorolated compound of a hydrocarbon that is carried out under the catalyst for the oxychlorolating process of a hydrocarbon as described above, and includes an oxychlorolating reaction of a hydrocarbon.
  • the catalyst for the oxychlorolation process of hydrocarbons mentioned above is applied, the increase in the production amount of the oxychlorolated compound of a hydrocarbon and the fall of activity of a catalyst are low. That is, the above-mentioned catalyst for the oxychlorolation process of hydrocarbon shows excellent activity even at low temperatures, and has the advantage of being suitable for low temperature processes.
  • the method for preparing the oxychlorolated compound of the hydrocarbon may be expressed herein as 'process'.
  • to be carried out under the catalyst for the oxychlorolation process of a hydrocarbon may be to induce a reaction by introducing a reaction gas or the like into a reactor in which the catalyst for the oxychlorolation process of a hydrocarbon is installed.
  • the oxychlorolation reaction of a hydrocarbon means a reaction for substituting hydrogen of a hydrocarbon raw material gas with chlorine, as described above.
  • the inlet gas refers to an aggregate of gases introduced into the reactor, and is distinguished from the exhaust gas discharged to the outside of the reactor after the reaction.
  • the method for producing the oxychlorolated compound of the hydrocarbon may be by contacting the inlet gas with the catalyst described above.
  • the partial oxidation reaction of the hydrocarbon is by contacting the catalyst with an inlet gas comprising a hydrocarbon source gas and a hydrogen chloride gas.
  • the catalyst comprises any active sites or active centers, and the catalysis takes place at the active point or active center. Catalytic reaction occurs while the inlet gas is in contact with the active point or the active center.
  • the inlet gas may include a hydrocarbon source gas, a hydrogen chloride gas, and an oxygen gas.
  • the hydrocarbon raw material gas is a gas containing carbon and hydrogen, and means a gas that is a raw material of a desired product.
  • straight or branched chain saturated aliphatic hydrocarbons having 1 to 16 carbon atoms such as methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane and decane; Alicyclic saturated hydrocarbons such as cyclohexane, methylcyclohexane and cyclooctane; Monocyclic and polycyclic aromatic hydrocarbons; City gas; LPG; naphtha; And hydrocarbons such as kerosene.
  • the hydrogen chloride gas (HCl) may function as a source of chlorine atoms.
  • the inlet gas may further include one or two or more inert gases selected from the group consisting of nitrogen, helium, argon, and carbon dioxide.
  • the ratio of the volume flow rate of the hydrocarbon source gas to the hydrogen chloride gas is 1: 1 to 10: 1, preferably 1: 1 to 5: 1, more preferably 1: 1 to 3 : 1, most preferably 1.5: 1 to 2.5: 1. If the above numerical range is satisfied, the activity of the catalyst can be kept excellent. This has the advantage that the selectivity of the desired product can be maintained high.
  • the inlet gas further includes an oxygen gas
  • the ratio of the volume flow rate of the hydrocarbon source gas to the oxygen gas is 1: 1 to 10: 1, preferably 2: 1 to 6: 1, more preferably 3: 1 to 5: 1. If the ratio of the volumetric flow rate of hydrocarbon feedstock gas to oxygen gas is less than 1: 1, the selectivity of the target product chloromethane may decrease, and if the ratio of the volumetric flow rate of hydrocarbon feedstock gas to oxygen gas is greater than 10: 1, carbon monoxide Or there may be a problem that the selectivity of by-products such as carbon dioxide is increased.
  • the ratio of the volume flow rate of the hydrocarbon source gas to the inert gas may be 1: 0.5 to 1:10, preferably 1: 0.5 to 1: 5.
  • the ratio of the volume flow rate may be measured by a method generally used in the art to which the art belongs, and may be achieved by adjusting the temperature and pressure of the inlet gas introduced into the reactor.
  • the ratio of the volume flow rate may be measured at room temperature (25 ° C.) and at atmospheric pressure (1 atm), and may be measured using a volume flow meter commonly used in the art.
  • the process may be performed under process temperature, pressure, and space velocity of 20,000h -1 2,000h -1 or higher or less than 3atm of 0.5atm or less in a range from 450 °C 550 °C.
  • the process may be performed at a temperature of 450 ° C or more and 530 ° C or less, 450 ° C or more and less than 530 ° C, 450 ° C or more and 520 ° C or less, or 450 ° C or more and 510 ° C or less.
  • the hydrocarbon feedstock is methane.
  • the inflow rate of the inlet gas may be 10,000 ml / (h gcat) or more and 50,000 ml / (h gcat) or less.
  • the inflow gas is sufficiently fluid, so that coke can be effectively suppressed.
  • the gcat refers to the amount of catalyst charged in the reactor.
  • the method for preparing the oxychlorolated compound of the hydrocarbon may be performed in a fixed bed reactor, a fluidized bed reactor, or a circulating fluidized bed reactor.
  • the method for preparing the oxychlorolated compound of the hydrocarbon may further include a neutralization process.
  • the neutralization process is for removing hydrogen chloride gas contained in the reactants.
  • the neutralization process can be performed by passing the reactants through a reactor loaded with a sodium carbonate bed.
  • the neutralization process may be one equivalent of sodium carbonate reacts with two equivalents of hydrogen chloride to produce one equivalent of carbon dioxide gas and two equivalents of sodium chloride, which may be represented by the following figure.
  • cerium oxide carrier (CeO 2 ) powder (3 g, from Rhodia®, surface area of 130 m 2 / g or more) was prepared.
  • copper (Cu) precursor was used copper chloride dihydrate (CuCl 2 ⁇ 2H 2 O).
  • Potassium chloride (Potassium chloride, KCl) was used as a precursor.
  • Lanthanum (La) precursor was used as lanthanum chloride heptahydrate (Lanthanum chloride heptahydrate, LaCl 3 ⁇ 7H 2 O).
  • the precursors were weighed by a calculated amount and dissolved in distilled water to prepare a precursor solution.
  • the cerium oxide carrier was powdered into the precursor solution and stirred well for 1 hour, followed by water using a rotary evaporator.
  • the catalyst materials were supported on the cerium oxide carrier by evaporation. Thereafter, the mixture was dried at a temperature of 100 ° C. for about 12 hours or more, and then calcined at 600 ° C. for 6 hours.
  • Example 1 is a diagram according to X-ray diffraction analysis (XRD, X-ray diffraction) of the catalyst according to Example 1.
  • the X-ray diffraction analysis can be measured at 40kV and 30mA measurement conditions using Ultra X18 (Rigaku corp).
  • Cu K-alpha can be used as a radiation source and measured with a scanning step of 0.02 °.
  • EDS confirming data of the catalyst of Example 2 is shown in FIG. Through this, the catalyst is supported on Cu, K and La, it was confirmed that the CeO 2 carrier containing Ce and O elements in particular was used. In particular, through the other elements other than the elements of the catalyst material and CeO 2 is not confirmed, the catalyst is cerium oxide (CeO 2) was confirmed to be a single composition.
  • ⁇ -Al 2 O 3 powder (3 g, from Sasol Co. surface area: 192 m 2 / g) was prepared as a carrier.
  • the catalytic materials copper (Cu), potassium (K) and lanthanum (La) were supported on the ⁇ -Al 2 O 3 carrier by the following method.
  • copper (Cu) precursor was used copper chloride dihydrate (CuCl 2 ⁇ 2H 2 O).
  • Potassium chloride (Potassium chloride, KCl) was used as a precursor.
  • Lanthanum (La) precursor was used as lanthanum chloride heptahydrate (Lanthanum chloride heptahydrate, LaCl 3 ⁇ 7H 2 O).
  • a rotary evaporator (Rotary evaporator) The water was evaporated using to support the catalyst materials on the cerium oxide carrier. Thereafter, the mixture was dried at a temperature of 120 ° C. for about 12 hours and then calcined at 550 ° C. for 4 hours.
  • ⁇ -Al 2 O 3 powder (3 g, from Sasol Co. surface area: 192 m 2 / g) was prepared as a carrier.
  • the catalytic materials copper (Cu), potassium (K) and lanthanum (La) were supported on the ⁇ -Al 2 O 3 carrier by the following method.
  • copper (Cu) precursor was used copper chloride dihydrate (CuCl 2 ⁇ 2H 2 O).
  • Potassium chloride (Potassium chloride, KCl) was used as a precursor.
  • Lanthanum (La) precursor was used as lanthanum chloride heptahydrate (Lanthanum chloride heptahydrate, LaCl 3 ⁇ 7H 2 O).
  • a rotary evaporator (Rotary evaporator) The water was evaporated using to support the catalyst materials on the cerium oxide carrier. Thereafter, the mixture was dried at a temperature of 100 ° C. for about 12 hours and then calcined at 600 ° C. for 4 hours.
  • CeZr powder (3 g, from Sasol Co. surface area: 192 m 2 / g) was prepared as a carrier. Copper, potassium and lanthanum were respectively supported on the carrier in the same manner as in Comparative Example 1, and the content of each component in the catalyst was 7% by weight and 2% by weight based on the total weight of the catalyst (the total weight of the carrier and the catalyst material). % And 2% by weight, and the weight ratio Ce: Zr of the carrier was 7: 3.
  • a catalyst was prepared in the same manner as in Example 1 except that no other metal was supported. In this case, the same cerium oxide carrier (CeO 2 ) powder as described in Example 1 was used.
  • CeO 2 cerium oxide carrier
  • Example 2 It was prepared in the same manner as in Example 1 except that only copper was supported on the cerium oxide carrier. At this time, the precursor solution of copper and the cerium oxide carrier (CeO 2 ) powder was the same as described in Example 1.
  • Example 2 It was prepared in the same manner as in Example 1 except that only potassium (K) was supported on the cerium oxide carrier. At this time, the precursor solution of potassium and cerium oxide carrier (CeO 2 ) powder was used in the same manner as described in Example 1.
  • Example 2 It was prepared in the same manner as in Example 1 except that only lanthanum (La) was supported on the cerium oxide carrier. At this time, the precursor solution of lanthanum and the cerium oxide carrier (CeO 2 ) powder was the same as described in Example 1.
  • Example 2 It was prepared in the same manner as in Example 1 except that only copper (Cu) and potassium (K) were supported on the cerium oxide carrier. At this time, the precursor solution of copper and potassium and the cerium oxide carrier (CeO 2 ) powder was the same as described in Example 1.
  • Example 2 It was prepared in the same manner as in Example 1 except that only copper (Cu) and lanthanum (La) were supported on the cerium oxide carrier. At this time, the precursor solution of copper and lanthanum and the cerium oxide carrier (CeO 2 ) powder used were the same as described in Example 1.
  • cerium oxide carrier (CeO 2 ) powder (3 g, from Rhodia®, surface area of 130 m 2 / g or more) was prepared.
  • iron (III) nitrate nonahydrate was used as a precursor of iron.
  • Precursors, supporting conditions, drying and firing conditions of the remaining K and La are the same as in Example 1.
  • the particle size of the catalyst prepared in Examples and Comparative Examples was controlled by sieve 180 to 250 ⁇ m.
  • a fixed bed reactor (PBR) made of quartz as shown in FIG. 5 was applied to the experiment.
  • the catalysts according to the above Examples and Comparative Examples were loaded in the portions indicated in blue in the drawings.
  • Process temperature was controlled using a thermocouple provided outside of the fixed bed reactor.
  • the CH 4 : O 2 : HCl is a reactant, and Ar serves as a diluent.
  • the concentration of gas produced was measured by GC Chromatograph downstream.
  • the concentrations of CH 4 , CH 3 Cl, CH 2 Cl 2 and CHCl 3 were measured by Flame Ionization Detector (FID), and the concentrations of CH 4 , N 2 , O 2 , CO 2 and CO were measured by TCD (Thermal Conductivity Detector). Measured through.
  • the resulting gas may be heated to 150 ° C.
  • Equation 1 Yield and selectivity associated with the gas can be calculated by Equations 1 to 3 below.
  • the correction coefficient ⁇ related to the inflow and outflow of nitrogen gas is calculated through Equation 1 below.
  • Methane conversion (X: conversion,%) is calculated through the following equation (2).
  • the same material was supported, but compared with the case of different carriers.
  • the type of carrier is a conventional aluminum oxide (Comparative Example 1: ⁇ -Al 2 O 3 ) or CeZr (Comparative Example 3)
  • the selectivity of the target product, chloro compound was higher, and the selectivity of carbon dioxide and carbon monoxide were byproducts.
  • the catalyst material further contains potassium in addition to copper (Comparative Example 8) or further includes lanthanum (Comparative Example 9), the problem of formation of by-products has been solved to some extent, It confirmed that it decreased compared with the comparative example 4.
  • Example 1 by including all of the copper, potassium and lanthanum as the catalyst material, it was possible to minimize the production of by-products while maximizing the selectivity of the desired product.
  • the selectivity was calculated by measuring the degree of generation of gas with temperature, and is shown in Table 3 and FIG. 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 명세서는 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다.

Description

탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법
본 출원은 2018년 2월 23일 한국특허청에 제출된 한국 특허 출원 제10-2018-0022215호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다
본 명세서는 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법에 관한 것이다.
유가의 지속적인 상승으로 인하여 가격이 저렴하며 매장량이 풍부한 천연가스 활용 방안에 관한 연구는 그 중요성이 더욱 증대되고 있으며, 주로 천연가스 중의 메탄을 산소를 이용하는 열분해 반응 및 촉매를 이용하는 커플링 반응에 관한 선행 기술이 많이 보고 되어 있다. 이와 함께 메탄의 활성화를 위하여 클로린 화합물을 이용할 수 있는 종래의 방안으로서, 메탄과 클로린을 고온에서 열분해하는 방법이 미국 등록특허 제4199533호, 미국 등록특허 제4804797호, 미국 등록특허 제4714796호 및 미국 등록특허 제4983783호 등에 개시되어 있다. 그러나, 상기 메탄의 클로린에 의한 고온 열분해 방법은 선택도 조절에 있어 단순히 제공되는 열 공급량 및 반응시간에 의존하므로 메틸렌클로라이드나 코크스와 같은 부산물의 발생이 부가적으로 많이 발생한다.
[선행기술문헌]
[특허문헌]
한국 공개 특허 10-2010-0074017호
본 명세서는 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다.
본 명세서의 일 실시상태는 구리를 포함하는 촉매 물질; 및 세륨옥사이드(CeO2)를 포함하는 담체를 포함하고, 상기 촉매 물질은 알칼리 금속 및 알칼리 토금속으로 이루어진 군으로부터 선택되는 1 이상의 제1 조촉매; 및 란탄족 금속을 포함하는 제2 조촉매를 더 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매을 제공한다.
또한, 본 명세서의 일 실시상태는 세륨옥사이드(CeO2)를 포함하는 담체를 준비하는 단계; 및 구리를 포함하는 촉매 물질, 제1 조촉매, 및 제2 조촉매를 상기 담체에 담지하는 단계를 포함하는 것인 상기 탄화수소의 옥시클로로화 공정용 촉매의 제조방법을 제공한다.
또한, 본 명세서의 일 실시상태는 상기 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행되고, 탄화수소의 옥시클로로화 반응을 포함하는 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다.
본 명세서의 탄화수소의 옥시클로로화 공정용 촉매는 옥시클로로화 공정에 이용될 경우, 목적 생성물의 선택도 높일 수 있는 효과를 갖는다.
또한, 본 명세서의 탄화수소의 옥시클로로화 공정용 촉매는 옥시클로로화 공정에 이용될 경우, 일산화탄소 또는 이산화탄소와 같은 부산물의 생성을 억제할 수 있는 효과를 갖는다.
또한, 본 명세서의 탄화수소의 옥시클로로화 공정용 촉매는 옥시클로로화 공정에 이용될 경우, 낮은 온도에서도 목적 생성물의 선택도를 높일 수 있는 효과를 갖는다.
도 1은 실시예 1에 따른 촉매의 XRD 패턴을 도시한 것이다.
도 2 내지 도 4는 실험예 1 또는 실험예 2의 결과를 나타낸 것이다.
도 5는 공정 시험에서 사용된 반응기를 나타낸 것이다.
도 6은 실시예 2의 촉매의 EDS 자료이다.
이하, 본 명세서에 대하여 설명한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, "촉매 물질"은 촉매 활성을 갖는 "활성 물질"일 수 있다.
본 명세서에 있어서, 다른 언급이 없는 한, "촉매"는 탄화수소의 옥시클로로화 공정용 촉매일 수 있다.
본 명세서에서 "탄화수소의 옥시클로로화 공정"은 탄화수소의 수소를 염소로 치환하기 위한 공정을 의미하고, 탄화수소의 산화적 클로로화 공정이라고도 명명될 수 있다. 예를 들어, 메탄 기체(CH4)의 수소를 염소로 치환하여 클로로메탄(CH3Cl, CH2Cl2 또는 CHCl3)을 생성하는 공정일 수 있고, 하기 화학식 (I)로 표시될 수 있다. 하기 일반식 (I)을 통해 생성된 클로로메탄은 하기 일반식 (II)를 통해 유용한 화학물질 제품으로 전환될 수 있다. 하기 일반식 (I)에서는 클로로메탄 뿐만 아니라, 일산화탄소 또는 이산화탄소와 같은 부산물이 생성될 수 있다.
CH4 + HCl + O2 → 클로로메탄 + H2O (I)
클로로메탄 → 화학물질 제품 + HCl (II)
본 명세서에서는, 상기 일반식 (I)의 공정에서 사용되는 촉매이면서, 생성물 중 클로로메탄의 선택도는 높이면서도, 부산물의 선택도는 최소화할 수 있는 촉매를 제공하고자 한다.
본 명세서는 구리를 포함하는 촉매 물질; 및 세륨옥사이드(CeO2)를 포함하는 담체를 포함하고, 상기 촉매 물질은 알칼리 금속 및 알칼리 토금속으로 이루어진 군으로부터 선택되는 1 이상의 제1 조촉매; 및 란탄족 금속을 포함하는 제2 조촉매를 더 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매를 제공한다. 상기 담체가 세륨옥사이드를 포함함에 따라, 세륨 옥사이드의 우수한 산소 흡-탈착 성능에 의하여 촉매 안정성, 수명 증가 및 생산량 증가 효과를 유도할 수 있다. 또한, 세륨옥사이드 담체에 상기 구리 및 조촉매를 동시에 포함함에 따라 상술한 효과를 증대시킬 수 있다.
본 명세서는 탄화수소의 옥시클로로화 반응을 통하여 클로로화합물을 제조함에 있어서, 담체로서 세륨옥사이드를 포함하고, 촉매 물질에 포함되는 활성 물질로서 구리를 사용하고, 상술한 제1 조촉매와 제2 조촉매를 사용함으로써, 고정층, 유동층 또는 순환 유동층 반응기에서 사용될 수 있다.
또한, 본 명세서의 일 실시상태에 따른 촉매를 사용함으로써, 탄화수소의 옥시클로로화 공정시 발생되는 부산물의 생성을 최대한 억제하고, 목적 생성물의 생성을 최대화하고자 한다. 예를 들어, 반응물이 메탄(CH4)이고, 목적 생성물이 메탄의 클로로화 화합물인 CH3Cl, CH2Cl2 및 CHCl3인 경우, 부산물인 CO2 및 CO가 발생되는데, 이때 상기 클로로화 메탄 CH3Cl, CH2Cl2 및 CHCl3의 생성량을 최대화하고, 부산물인 CO2 및 CO의 발생을 최소화하고자 한다. 이 경우, 유해한 물질인 이산화 탄소 및 일산화탄소의 발생량을 최소화하여, 공정에 의해 발생될 수 있는 위험을 억제하면서도, 목적 생성물의 생산량을 증가시켜 공정 비용의 절감을 유도하고자 한다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 공정용 촉매는 구리; 알칼리 금속 및 알칼리 토금속으로 이루어진 군으로부터 선택되는 1 이상의 제1 조촉매; 및 란탄족 금속을 포함하는 제2 조촉매가 상기 세륨옥사이드(CeO2)를 포함하는 담체에 담지된 것일 수 있다. 상기 담지 방법은 이 기술이 속하는 분야에서 일반적으로 사용되는 방법이라면 특별히 제한되지 않으며, 구체적인 방법에 대하여는 후술하기로 한다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질에 포함되는 구리는 활성 물질로 사용될 수 있다. 구체적으로, 구리가 촉매 물질에 포함됨으로써, 탄화수소의 옥시클로로화 공정에서 발생될 수 있는 일산화탄소 또는 이산화탄소와 같은 부산물의 선택도를 줄일 수 있는 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질은 구리 외에 활성 물질로서 백금(Pt), 팔라듐(Pd), 니켈(Ni), 코발트(Co), 루테늄(Ru), 레늄(Re), 로듐(Rh), 오스뮴(Os), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe) 또는 연(Zn)을 더 포함할 수 있으며, 이들은 단독으로 또는 합금 형태로 사용될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질은 상기 담체에 담지된 것일 수 있다. 담지되는 방법은 이 기술이 속하는 분야에서 일반적으로 사용되는 방법이라면 특별히 제한되지 않으며, 구체적인 방법에 대하여는 후술하기로 한다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 물질은 상기 탄화수소의 옥시클로로화 공정용 촉매 전체의 중량을 기준으로 5 중량% 이상 25 중량% 이하, 바람직하게는 10 중량% 이상 23 중량% 이하, 더욱 바람직하게는 15 중량% 이상 20 중량%이하로 포함될 수 있다. 상기 수치 범위를 만족하는 경우, 촉매 물질에 의한 촉매의 기능이 효율적으로 이루어질 수 있으며, 촉매의 비활성화 현상이 억제될 수 있는 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 조촉매 및 제2 조촉매의 함량은 동일하거나 상이하고, 각각 상기 구리 100 중량부에 대하여 10 중량부 이상 2,000 중량부 이하, 15 중량부 이상 1,000 중량부 이하, 20 중량부 이상 500 중량부 이하, 80 중량부 이상 300 중량부 이하, 또는 100 중량부 이상 200 중량부 이하일 수 있다. 상기 수치범위를 만족하는 경우, 촉매의 반응 활성점이 많아질 수 있다. 상기 촉매 물질(또는 제1 조촉매 및 제2 조촉매)의 함량은 촉매 물질(또는 제1 조촉매 및 제2 조촉매)이 담체에 담지되는 정도를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 조촉매는 나트륨, 리튬, 칼륨, 마그네슘 및 칼슘으로 이루어진 군으로부터 선택되는 1 이상을 포함하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 조촉매는 칼륨을 포함할 수 있다. 제1 조촉매로서 칼륨이 포함되는 경우, 활성 물질에 대한 기여도가 높아질 수 있는 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 조촉매는 이트리아 및 희토류 원소로 이루어진 군으로부터 선택되는 1 이상을 더 포함하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 희토류 원소는 스칸듐(Sc), 세륨(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 프로메튬(Pm), 사마륨(Sm), 유로퓸(Eu), 가돌리늄(Gd), 터븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 어븀(Er), 톨륨(Tm), 이터븀(Yb) 또는 루테늄(Lu)일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 조촉매는 란타넘을 포함할 수 있다. 제2 조촉매로서 란타넘이 포함되는 경우, 활성 물질에 대한 기여도가 높아질 수 있는 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 조촉매는 칼륨이고, 제2 조촉매는 란타넘일 수 있다. 이 경우, 활성 물질에 대한 기여도가 최대화될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체는 세륨옥사이드(CeO2) 단일 조성을 갖는 것일 수 있다. 상기 세륨옥사이드(CeO2) 단일 조성이란, 상기 담체가 세륨옥사이드 외에 다른 물질을 거의 포함하지 않거나, 포함하더라도 소량 포함하는 것을 의미한다. 예를 들어, 상기 담체 전체 100 중량 기준으로 상기 세륨옥사이드의 함량이 80 중량% 이상, 90 중량% 이상, 95 중량% 이상, 또는 99 중량% 이상일 수 있으며, 가장 바람직하게는 100 중량%일 수 있다.
상기 담체가 세륨옥사이드(CeO2) 단일 조성을 갖는 것은 이 기술이 속하는 분야에서 사용되는 일반적인 방법에 의하여 확인할 수 있다. 예를 들어, X-Ray Diffraction peak patterns을 확인하여 CeO2의 존재 여부를 확인할 수 있다. 구체적으로, (111), (200), (220), (311) 결정면에 해당하는 peak가 존재하는 경우, 큐빅 상의 CeO2가 존재하는 것을 확인할 수 있다. 또한, Energy dispersive spectroscopy (EDS) 측정을 통하여 Ce 및 O 원자의 존재 여부 및 중량%를 확인할 수 있다. 상기 EDS 분석은 SEM 사진과 함께 시료의 화학적 조성을 확인하기 위하여 사용되는 것이다. 상기 세륨옥사이드에 대한 EDS 측정시, Ce 및 O 원자에 해당하는 peak가 관찰된다. 반면에, Ce 및 O 원자가 아닌 다른 원자의 peak가 거의 관찰되지 않는 경우, 상기 담체가 세륨옥사이드 단일 조성을 갖는 것임을 확인할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체는 세륨옥사이드 만으로 구성될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 세륨옥사이드(CeO2)를 포함하는 담체는 분말 형태일 수 있고, 분말은 구체 형태일 수 있으며, 상기 담체를 포함하는 촉매의 직경에 대하여는 후술하기로 한다.
본 명세서의 일 실시상태에 있어서, "A-B-C/CeO2 촉매"는 CeO2 담체에 금속 또는 금속산화물인 A, B 및 C가 담지된 것을 의미할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체의 비표면적은 50 m2/g 이상 250 m2/g 이하일 수 있고, 100 m2/g 이상 200 m2/g 이하, 바람직하게는 130 m2/g 이상 150 m2/g 이하일 수 있다. 상기 수치 범위를 만족하는 경우, 촉매의 활성 성분과의 접촉면적이 넓게 확보될 수 있고, 유입 가스가 촉매 내에 전달될 때, 물질 전달 저항이 적절히 제어되어, 원료 가스의 전환율이 우수하게 달성될 수 있다. 상기 담체의 비표면적은 담체 총 중량(g) 대비 담체 내부 기공의 면적(m2)을 의미할 수 있다. 상기 담체의 비표면적은 이 기술분야에서 일반적으로 사용되는 방법으로 측정될 수 있으며, 예를 들면, BET(Brunauer, Emmett and Teller)법으로 측정될 수 있다. 담체 표면에 분자나 이온을 흡착시켜 그 흡착량에서 표면적을 측정하는 기상 흡착법의 일종이며, 샘플을 250℃에서 5시간 동안 보관한 후 Micromeritics ASAP 2010 기계를 이용하여 N2 adsorption-desorption isotherm을 이용하여 측정할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 담체는 Zr, Y, 알칼리 금속 원소, 알칼리 토금속 원소, 란탄족 원소 및 희토류 원소로 이루어진 군으로부터 선택된 1 이상의 원소를 포함하는 복합 산화물을 더 포함할 수 있다. 알칼리 금속 원소, 알칼리 토금속 원소, 란탄족 원소 및 희토류 원소에 대한 구체적인 예시는 상술한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 복합 산화물의 예는, CeZr 복합 산화물(70:30), CeZrLa 복합 산화물 (86:10:4), CeZrLa 복합 산화물(66:29:5), CeZrLaY 복합 산화물(40:50:5:5), CeZrPr 복합 산화물(40:55:5), CeZrLaNdPr 복합 산화물 또는 CeZrNdPrCa 복합 산화물 등이 있다. 후단의 괄호 내의 숫자는 각 원소의 중량 비율을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 공정용 촉매의 직경은 0.1mm 이상 1.0mm, 바람직하게는 0.1mm 이하 0.5mm, 더욱 바람직하게는 0.18mm 이하 0.25mm일 수 있다. 촉매 직경이 0.1mm 보다 작은 경우, 반응기 내의 압력강하 현상이 크게 나타나, 전환율 또는 반응속도가 저하될 수 있다. 반면에, 촉매 직경이 1.0mm를 초과하는 경우, 반응물이 촉매층을 거치지 않는 편류(channeling) 현상이 나타날 수 있다. 상기 촉매의 직경은 촉매 입자의 평균 입자 직경을 의미할 수 있다. 상기 촉매의 직경은 이 기술분야에서 일반적으로 사용되는 방법으로 측정될 수 있으며, 예를 들어, SEM(주사 전자 현미경, Scanning Electron Microscopy) 또는 TEM(투과 전자 현미경, Transmission Electron Microscopy)을 이용하여, 2개 이상의 촉매 입자의 각 직경을 측정하고, 측정된 입자의 지름의 평균을 평균 입자 직경으로 계산할 수 있다.
본 명세서의 일 실시상태는 세륨옥사이드(CeO2)를 포함하는 담체를 준비하는 단계; 및 구리를 포함하는 활성 물질, 제1 조촉매, 및 제2 조촉매를 상기 담체에 담지하는 단계를 포함하는 것인 상술한 탄화수소의 옥시클로로화 공정용 촉매의 제조방법을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 구리를 포함하는 활성 물질, 제1 조촉매, 및 제2 조촉매를 상기 담체에 담지하는 단계는 초기 함침법 (incipient wetness method)을 이용할 수 있고, 그 밖의 다른 함침법도 이용할 수 있다. 상기 침전법으로는 공침법(coprecipitation method), 균일 침전법 (homogeneous precipitation method) 또는 연차 침전법 (sequential precipitation method) 등을 이용할 수 있다. 침전법으로 촉매 분말 제조 시, 구성 요소인 활성물질과 담체를 동시에 침전시킴으로, 분말상태의 촉매가 얻어지고, 활성물질의 비율을 자유롭게 조절할 수 있으며, 활성물질과 담체 사이의 상호 결합력을 강하게 하여 안정성이 우수한 촉매 분말의 제조가 가능하다.
본 명세서의 일 실시상태에 있어서, 구리를 포함하는 활성 물질; 제1 조촉매; 및 제2 조촉매를 상기 담체에 담지하는 단계는 활성 물질 전구체를 포함하는 활성 물질 전구체; 제1 조촉매를 포함하는 제1 조촉매 전구체; 및 제2 조촉매를 포함하는 제2 조촉매 전구체를 포함하는 전구체 수용액에 상기 담체를 넣고 교반하는 방법으로 수행될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 활성 물질 전구체, 제1 조촉매 전구체 및 제2 조촉매 전구체는 목적 물질의 종류에 따라 달라질 수 있다. 예를 들어, 활성 물질이 구리인 경우 활성 물질 전구체는 커퍼 클로라이드 디하이드레이트(Copper chloride dihydrate, CuCl2·2H2O)이고, 제1 조촉매 물질이 포타슘인 경우, 제1 조촉매 전구체는 포타슘 클로라이드(Potassium chloride, KCl)이고, 제2 조촉매가 란타넘인 경우 제2 조촉매 전구체는 란타넘 클로라이드 헵타하이드레이트(Lanthanum chloride heptahydrate, LaCl3·7H2O)일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 교반은 전구체 수용액이 담체에 잘 담지될 수 있도록 수행되는 것으로써, 0.5 시간 이상, 바람직하게는 1 시간 이상 수행될 수 있다.
본 명세서의 일 실시상태에 있어서, 탄화수소의 옥시클로로화 공정용 촉매의 제조방법은 촉매를 건조하는 단계; 및 촉매를 하소하는 단계를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매를 건조하는 단계는 촉매의 수분을 증발시키기 위한 것으로서, 이 기술이 속하는 분야에서 일반적으로 사용되는 방법이라면 크게 제한되지 않는다. 예를 들어, 회전 증발기(Rotary evaporator)를 이용하여 수분을 증발시키고, 100℃의 온도에서 10 시간 이상 건조하는 방법으로 수행될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매를 하소하는 단계는 담지 후 촉매에 남아있는 전구체물질을 제거하기 위해 수행되는 것으로서, 이 기술이 속하는 분야에서 일반적으로 사용되는 방법이라면 크게 제한되지 않으며, 예를 들면 400℃ 이상의 온도에서 1 내지 10 시간의 온도에서 수행될 수 있다. 상기 수행 온도 및 수행 시간을 만족하는 경우, 전구체 물질을 효과적으로 제거할 수 있으며, 담체의 상 변화가 일어남으로써 발생되는 내구성 저하 문제를 억제할 수 있다.
본 명세서의 일 실시상태는 상술한 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행되고, 탄화수소의 옥시클로로화 반응을 포함하는 탄화수소의 옥시클로로화 화합물의 제조방법을 제공한다. 상술한 탄화수소의 옥시클로로화 공정용 촉매를 적용할 경우, 탄화수소의 옥시클로로화 화합물 생산량의 증대 및 촉매의 활성 저하가 낮다. 즉, 상술한 탄화수소의 옥시클로로화 공정용 촉매는 저온에서도 우수한 활성을 나타내어, 저온 공정에 적합한 장점을 갖는다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 본 명세서에서 '공정'이라고 표현될 수 있다.
본 명세서의 일 실시상태에 있어서, 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행된다는 것은 탄화수소의 옥시클로로화 공정용 촉매가 설치된 반응기 내에 반응 기체 등을 유입시켜 반응을 유도하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 탄화수소의 옥시클로로화 반응은, 탄화수소 원료 가스의 수소를 염소로 치환시키는 반응을 의미하는 것으로서, 상술한 바와 같다.
본 명세서의 일 실시상태에 있어서, 유입 가스는 반응기 내에 유입되는 가스의 집합체를 의미하는 것으로서, 반응 후 반응기 외부로 배출되는 배출 가스와는 구별되는 것이다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 유입 가스와 상술한 촉매를 접촉시키는 것에 의할 수 있다. 상기 탄화수소의 부분 산화 반응은 탄화수소 원료 가스 및 염화수소 가스를 포함하는 유입 가스와 촉매를 접촉시키는 것에 의한다. 상기 접촉의 의미는, 촉매 이론에 의하여 설명될 수 있다. 구체적으로, 촉매는 어떠한 활성점(active sites) 또는 활성 중심(centers)를 포함하고, 상기 활성점 또는 활성 중심에서 촉매 작용이 이루어지게 된다. 상기 활성점 또는 활성 중심에 유입 가스가 접하면서 촉매 반응이 일어나게 된다. 예를 들어, 반응기에 촉매를 충진하고 상기 반응기 내에 상기 유입 가스를 유통시키는 방법이 있다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스는 탄화수소 원료 가스, 염화수소 가스 및 산소 가스를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소 원료 가스는 탄소 및 수소를 포함하는 가스로서, 목적 생성물의 원료가 되는 가스를 의미한다. 예를 들어, 메탄, 에탄, 프로판, 부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸 등의 탄소수 1 내지 16의 직쇄형 또는 분지쇄형의 포화 지방족 탄화수소; 시클로헥산, 메틸시클로헥산, 시클로옥탄 등의 지환식 포화 탄화수소; 단환 및 다환의 방향족 탄화수소; 도시 가스; LPG; 나프타; 및 등유 등의 탄화수소를 들 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 염화수소 가스(HCl)은 염소 원자의 공급원으로서 기능할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스는 질소, 헬륨, 아르곤 및 이산화탄소로 이루어진 군으로부터 선택된 1 또는 2 이상의 불활성 가스를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소 원료 가스 대 염화수소 가스의 부피 유량의 비는 1:1 내지 10:1, 바람직하게는 1:1 내지 5:1, 더욱 바람직하게는 1:1 내지 3:1, 가장 바람직하게는 1.5:1 내지 2.5:1일 수 있다. 상기 수치 범위를 만족하는 경우, 촉매의 활성이 우수하게 유지될 수 있다. 이로 인해, 목적 생성물의 선택도를 높게 유지할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스는 산소 가스를 더 포함하고, 상기 탄화수소 원료 가스 대 산소 가스의 부피 유량의 비는 1:1 내지 10:1, 바람직하게는 2:1 내지 6:1, 더욱 바람직하게는 3:1 내지 5:1일 수 있다. 탄화수소 원료 가스 대 산소 가스의 부피 유량의 비가 1:1보다 작은 경우, 목적 생성물인 클로로 메탄의 선택도가 감소할 수 있고, 탄화수소 원료 가스 대 산소 가스의 부피 유량의 비가 10:1보다 큰 경우 일산화탄소 또는 이산화탄소와 같은 부산물의 선택도가 증가하는 문제가 있을 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소 원료 가스 대 불활성 가스의 부피 유량의 비는 1:0.5 내지 1:10, 바람직하게는 1:0.5 내지 1:5인 것일 수 있다.
상기 부피 유량의 비는 이 기술이 속하는 기술 분야에서 일반적으로 사용되는 방법에 의하여 측정될 수 있으며, 반응기 내에 유입되는 유입 가스의 온도 및 압력을 조절하여 달성될 수 있다. 예를 들어, 상기 부피 유량의 비는 상온(25℃) 및 상압(1atm)에서 측정된 것일 수 있고, 이 기술분야에서 일반적으로 사용되는 체적 유량계를 사용하여 측정할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 공정은 450℃ 이상 550℃ 이하의 공정 온도, 0.5atm 이상 3atm 이하의 압력 및 2,000h-1 이상 20,000h-1이하의 공간 속도 하에서 수행되는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 공정은 450℃ 이상 530℃ 이하, 450℃ 이상 530℃ 미만, 450℃ 이상 520℃ 이하, 또는 450℃ 이상 510℃이하의 온도 조건에서 수행될 수 있다. 상기 범위를 만족하는 경우, 부산물이 생성되는 것을 억제할 수 있고, 목적 생성물의 선택도를 높일 수 있다. 예를 들어, 탄화수소 원료가 메탄인 경우. 1) 염화수소 산화를 통한 Cl 활성화종 생성, 2) 메탄과 Cl 활성화종의 반응을 통한 CH3Cl로의 생성 및 3) 생성된 CH3Cl의 추가적인 반응 또는 메탄의 산화로부터 일산화탄소 또는 이산화 탄소의 부산물 생성 순으로 반응이 진행된다. 이때, 공정온도가 저온인 경우 반응에 대한 촉매의 영향이 지배적이어서 촉매 자체의 산화환원 능력을 통해 1)번 반응의 Cl 활성화종의 생성 속도가 2)번 반응의 Cl 활성화종의 소모 속도보다 빠르게 된다. 그러나, 온도가 고온인 경우 온도의 영향이 점차 증가하면서 3)번 반응의 속도가 더욱 빠르게 되므로 부산물 생성이 증가하게 되는 문제가 있다.
본 명세서에서는, 공정 조건을 상기와 같이 조절하여, 상술한 3)번 반응의 속도를 제어하면서도 1)번 및 2)번 반응의 속도를 적절히 유지하여 일산화탄소 또는 이산화탄소와 같은 부산물이 생성되는 것을 억제하고자 한다.
본 명세서의 일 실시상태에 있어서, 상기 유입 가스의 유입 속도는 10,000 ml/(h·gcat) 이상 50,000 ml/(h·gcat) 이하일 수 있다. 상기 범위를 만족하는 경우, 유입 가스가 충분히 유동적이므로, 코크스가 발생하는 것을 효과적으로 억제할 수 있다. 상기 gcat는 반응기에 충진되는 촉매의 함량을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 고정층 반응기, 유동층 반응기 또는 순환 유동층 반응기 내에서 수행되는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄화수소의 옥시클로로화 화합물의 제조방법은 중화 공정을 더 포함할 수 있다. 중화 공정은 반응물에 포함된 염화 수소 기체를 제거하기 위한 공정이다. 구체적으로, 상기 중화 공정은 반응물을 탄산나트륨 베드(bed)가 로딩된 반응기에 통과시킴으로써 수행될 수 있다. 상기 중화 공정은 1당량의 탄산 나트륨에 2 당량의 염화수소가 반응하여 1당량의 이산화탄소 기체 및 2 당량의 염화나트륨을 생성하는 것일 수 있으며, 하기 그림으로 표현될 수 있다.
Figure PCTKR2019002232-appb-I000001
이하, 실시예를 통해 상술한 내용을 설명하기로 한다. 다만, 본 명세서의 권리 범위는 이하의 실시예에 의해 한정되는 것은 아니다.
<실시예 1>
담체로서, 세륨옥사이드 담체(CeO2) 분말(3g, from Rhodia®, surface area 130 m2/g 이상)을 준비하였다. 촉매 물질인 구리(Cu), 포타슘(K) 및 란타넘(La)은 CeO2 담체에 하기 방법에 의해 담지되었다. 이때, 구리(Cu) 전구체로는 커퍼 클로라이드 디하이드레이트(Copper chloride dihydrate, CuCl2·2H2O)를 사용하였다. 포타슘(K) 전구체로는 포타슘 클로라이드(Potassium chloride, KCl)을 사용하였다. 란타넘(La) 전구체로는 란타넘 클로라이드 헵타하이드레이트(Lanthanum chloride heptahydrate, LaCl3·7H2O)를 사용하였다.
상기 전구체들을 계산된 양만큼 칭량하여 증류수에 녹여 전구체 용액을 제조하고, 상기 전구체 용액에 상기 세륨옥사이드 담체를 분말 상태로 만들어 넣어 1시간 동안 잘 교반한 후, 회전 증발기(Rotary evaporator)를 이용하여 물을 증발시켜, 촉매 물질들을 세륨옥사이드 담체에 담지시켰다. 이후, 100℃의 온도에서 약 12 시간 이상 건조 후 600℃의 온도에서 6 시간 동안 소성시켜 제조하였다.
이때, 촉매에 담지된 구리, 포타슘 및 란타넘의 중량 비율은 각각 Cu:K:La=5:6:5의 중량 비율을 유지하였으며, 촉매 내의 각각의 성분 함량은 촉매 전체 중량(담체 및 촉매 물질 중량의 총합)을 기준으로 각각 5 중량%, 6 중량% 및 5 중량%였다.
도 1은 상기 실시예 1에 따른 촉매의 X-선 회절 분석법(XRD, X-ray diffraction)에 따른 도면이다. 상기 X-선 회절 분석은 Ultra X18(Rigaku corp)을 이용하여 40kV 및 30mA의 측정 조건에서 측정될 수 있다. Cu K-alpha가 radiation source로 사용될 수 있으며, 0.02°의 scanning step으로 측정하였다.
<실시예 2>
촉매 물질인 구리, 포타슘 및 란타넘의 중량 비율을 Cu:K:La=7:2:2의 중량 비율로 조절한 것 외에는 상기 실시예 1과 동일한 방법으로 촉매를 제조하였다. 이때, 촉매에 담지된 구리, 포타슘 및 란타넘의 중량 비율은 각각 Cu:K:La=7:2:2의 중량 비율을 유지하였으며, 촉매 내의 각각의 성분 함량은 촉매 전체 중량(담체 및 촉매 물질 중량의 총합)을 기준으로 각각 7 중량%, 2 중량% 및 2 중량%였다.
상기 실시예 2의 촉매의 EDS 확인 자료를 도 6에 나타내었다. 이를 통해, 상기 촉매는 Cu, K 및 La가 담지되어 있으며, 특히 Ce 및 O 원소를 포함하는 CeO2 담체가 사용된 것을 확인할 수 있었다. 특히, 상기 촉매 물질과 CeO2의 원소 외의 다른 원소가 확인되지 않은 것을 통하여, 상기 촉매가 세륨옥사이드(CeO2) 단일 조성인 것을 확인할 수 있었다.
<비교예 1>
담체로서 γ-Al2O3 분말(3g, from Sasol Co. 표면적: 192 m2/g)을 준비하였다. 촉매 물질인 구리(Cu), 포타슘(K) 및 란타넘(La)은 γ-Al2O3 담체에 하기 방법에 의해 담지되었다. 이때, 구리(Cu) 전구체로는 커퍼 클로라이드 디하이드레이트(Copper chloride dihydrate, CuCl2·2H2O)를 사용하였다. 포타슘(K) 전구체로는 포타슘 클로라이드(Potassium chloride, KCl)을 사용하였다. 란타넘(La) 전구체로는 란타넘 클로라이드 헵타하이드레이트(Lanthanum chloride heptahydrate, LaCl3·7H2O)를 사용하였다.
상기 전구체들을 계산된 양만큼 칭량하여 증류수에 녹여 전구체 용액을 제조하고, 상기 전구체 용액에 상기 γ-Al2O3 담체를 분말 상태로 만들어 넣어 1시간 동안 잘 교반한 후, 회전 증발기(Rotary evaporator)를 이용하여 물을 증발시켜, 촉매 물질들을 세륨옥사이드 담체에 담지시켰다. 이후, 120℃의 온도에서 약 12 시간 동안 건조 후 550℃의 온도에서 4 시간 동안 소성시켜 제조하였다.
이때, 촉매 상의 구리, 포타슘 및 란타넘의 비율은 각각 Cu:K:La=5:6:5의 중량 비율을 유지하였으며, 촉매 내의 각각의 성분 함량은 촉매 전체 중량(담체 및 촉매 물질 중량의 총합)을 기준으로 각각 5 중량%, 6 중량% 및 5 중량%였다.
<비교예 2>
담체로서 γ-Al2O3 분말(3g, from Sasol Co. 표면적: 192 m2/g)을 준비하였다. 촉매 물질인 구리(Cu), 포타슘(K) 및 란타넘(La)은 γ-Al2O3 담체에 하기 방법에 의해 담지되었다. 이때, 구리(Cu) 전구체로는 커퍼 클로라이드 디하이드레이트(Copper chloride dihydrate, CuCl2·2H2O)를 사용하였다. 포타슘(K) 전구체로는 포타슘 클로라이드(Potassium chloride, KCl)을 사용하였다. 란타넘(La) 전구체로는 란타넘 클로라이드 헵타하이드레이트(Lanthanum chloride heptahydrate, LaCl3·7H2O)를 사용하였다.
상기 전구체들을 계산된 양만큼 칭량하여 증류수에 녹여 전구체 용액을 제조하고, 상기 전구체 용액에 상기 γ-Al2O3 담체를 분말 상태로 만들어 넣어 1시간 동안 잘 교반한 후, 회전 증발기(Rotary evaporator)를 이용하여 물을 증발시켜, 촉매 물질들을 세륨옥사이드 담체에 담지시켰다. 이후, 100℃의 온도에서 약 12 시간 동안 건조 후 600℃의 온도에서 4 시간 동안 소성시켜 제조하였다.
이때, 촉매 상의 구리, 포타슘 및 란타넘의 비율은 각각 Cu:K:La=7:2:2의 중량 비율을 유지하였으며, 촉매 내의 각각의 성분 함량은 촉매 전체 중량(담체 및 촉매 물질 중량의 총합)을 기준으로 각각 7 중량%, 2 중량% 및 2 중량%였다.
<비교예 3>
담체로서 CeZr 분말(3g, from Sasol Co. 표면적: 192 m2/g)을 준비하였다. 상기 담체에 상기 비교예 1과 동일한 방법으로 구리, 포타슘 및 란타넘을 각각 담지하였으며, 촉매 내의 각각의 성분의 함량은 촉매 전체 중량(담체 및 촉매 물질 중량의 총합)을 기준으로 7 중량%, 2 중량% 및 2 중량%이었으며, 담체의 Ce:Zr의 중량비는 7:3이었다.
<비교예 4>
다른 금속이 담지되지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. 이때, 세륨옥사이드 담체(CeO2) 분말은 실시예 1에서 설명한 것과 동일한 것을 사용하였다.
<비교예 5>
세륨옥사이드 담체에 구리만 담지한 것을 제외하고는 실시예 1과 동일한 방법을 통해 제조하였다. 이때, 구리의 전구체 용액 및 세륨옥사이드 담체(CeO2) 분말은 실시예 1에서 설명한 것과 동일한 것을 사용하였다.
<비교예 6>
세륨옥사이드 담체에 포타슘(K)만 담지한 것을 제외하고는 실시예 1과 동일한 방법을 통해 제조하였다. 이때, 포타슘의 전구체 용액 및 세륨옥사이드 담체(CeO2) 분말은 실시예 1에서 설명한 것과 동일한 것을 사용하였다.
<비교예 7>
세륨옥사이드 담체에 란타넘(La)만 담지한 것을 제외하고는 실시예 1과 동일한 방법을 통해 제조하였다. 이때, 란타넘의 전구체 용액 및 세륨옥사이드 담체(CeO2) 분말은 실시예 1에서 설명한 것과 동일한 것을 사용하였다.
<비교예 8>
세륨옥사이드 담체에 구리(Cu) 및 포타슘(K)만 담지한 것을 제외하고는 실시예 1과 동일한 방법을 통해 제조하였다. 이때, 구리 및 포타슘의 전구체 용액 및 세륨옥사이드 담체(CeO2) 분말은 실시예 1에서 설명한 것과 동일한 것을 사용하였다.
<비교예 9>
세륨옥사이드 담체에 구리(Cu) 및 란타넘(La)만 담지한 것을 제외하고는 실시예 1과 동일한 방법을 통해 제조하였다. 이때, 구리 및 란타넘의 전구체 용액 및 세륨옥사이드 담체(CeO2) 분말은 실시예 1에서 설명한 것과 동일한 것을 사용하였다.
<비교예 10>
담체로서, 세륨옥사이드 담체(CeO2) 분말(3g, from Rhodia®, surface area 130 m2/g 이상)을 준비하였다. 촉매 물질인 철(Fe), 포타슘(K) 및 란타넘(La)은 CeO2 담체에 하기 방법에 의해 담지되었다.
이때, 철의 전구체로는 Iron(Ⅲ)nitrate nonahydrate를 사용하였다. 나머지 K 및 La의 전구체, 담지 조건, 건조 및 소성 조건은 상기 실시예 1과 같다.
이때, 촉매에 담지된 철, 포타슘 및 란타넘의 중량 비율은 각각 Fe:K:La=5:6:5의 중량 비율을 유지하였으며, 촉매 내의 각각의 성분 함량은 촉매 전체 중량(담체 및 촉매 물질 중량의 총합)을 기준으로 각각 5 중량%, 6 중량% 및 5 중량%였다.
<메탄의 옥시클로로화 반응 실험>
시험 조건
상기 실시예 및 비교예에서 제조된 따른 촉매의 입자 크기는 180㎛ 내지 250㎛로 sieve하여 조절하였다.
도 5와 같은 quartz 재질의 고정층 반응기(PBR)를 실험에 적용하였다. 도면의 파란색으로 표시된 부분에 상기 실시예 및 비교예에 따른 촉매를 충진(loading)하였다. 공정 온도는 상기 고정층 반응기의 외부에 구비된 thermocouple을 이용하여 조절하였다.
Inlet 기체의 조성은 CH4:O2:HCl:Ar:N2=4:1:2:3:10의 부피비로 이루어져 있으며, 반응기 내의 압력을 조절하여 Inlet 기체의 부피 유량(υ0)이 50 ml/min이고, Flow rate/catalyst weight의 비율[FT/Wcat]은 30,000 ml/(h·gcat)이 되게 조절하였다. 상기 CH4:O2:HCl는 반응 기체(reactnant)이고, 상기 Ar는 희석제(diluent)로 작용한다.
모든 기체 조건의 설정이 완료된 후 반응기를 450 ℃까지 예열한 후 실험을 시작하였으며, 생성되는 기체의 조성을 모니터링하였다.
생성되는 기체의 농도를 GC 다운 스트림(Gas Chromatograph downstream)에 의하여 측정하였다. CH4, CH3Cl, CH2Cl2, CHCl3의 농도는 FID(Flame Ionization Detector)를 통해 측정하였고, CH4, N2, O2, CO2 및 CO의 농도는 TCD(Thermal Conductivity Detector)를 통해 측정하였다. 생성되는 기체의 응축을 방지하기 위하여, 생성되는 기체를 150℃까지 가열할 수 있다.
기체와 관련된 수율 및 선택도는 아래 수학식 1 내지 3에 의해 계산될 수 있다. 유입 및 유출되는 질소 기체와 관련된 보정계수(α)는 아래 수학식 1을 통해 계산된다.
[수학식 1]
Figure PCTKR2019002232-appb-I000002
상기
Figure PCTKR2019002232-appb-I000003
는 반응기로 유입되는 질소 기체의 몰수이고, 상기
Figure PCTKR2019002232-appb-I000004
는 반응기로부터 빠져나가는 질소 기체의 몰수이다.
메탄 전환율(X: conversion, %) 는 하기 수학식 2를 통해 계산된다.
[수학식 2]
Figure PCTKR2019002232-appb-I000005
상기
Figure PCTKR2019002232-appb-I000006
는 반응기로 유입되는 메탄 기체의 몰수이고, 상기
Figure PCTKR2019002232-appb-I000007
는 반응기로부터 빠져나가는 메탄 기체의 몰수이다.
생성되는 기체의 선택도(S: selectivity)는 하기 수학식 3을 통해 계산된다.
[수학식 3]
Figure PCTKR2019002232-appb-I000008
상기
Figure PCTKR2019002232-appb-I000009
는 반응기로부터 빠져나가는 각 생성 기체의 몰수이고,
Figure PCTKR2019002232-appb-I000010
는 상기 생성 기체들의 총 몰수이다.
한편, 각 실시예 및 비교예의 촉매에 대한 실험 시, 공정 온도는 하기 표 1 및 표 2와 같다.
<실험예 1: 담지 물질 및 담체의 종류에 따른 실험>
실시예 및 비교예에 따른 촉매를 사용하여 메탄의 옥시클로로화 반응을 수행하였다. 이때, 각 생성물의 수율을 하기 표 1, 표 2 및 도 2에 나타내었다.
구분 구성/종류 실시예 1 실시예 2 비교예 1 비교예 2 비교예 3 비교예 4
촉매 종류 담지 물질 Cu(5),K(6),La(5) Cu(7),K(2),La(2) Cu(5),K(6),La(5) Cu(7),K(2),La(2) Cu(7),K(2),La(2)/ 미담지
담체 CeO2 CeO2 γ-Al2O3 γ-Al2O3 CeZr CeO2
실험 결과 공정 온도(℃) 550 550 570 미실시 510 550
목적생성물 선택도 CH3Cl 15.1 14.8 10.5 미실시 9.7 13.4
CH2Cl2 6.8 6.8 2.9 미실시 1.9 4.1
CHCl3 1.36 1.4 0.02 미실시 0 0.07
부산물 선택도 CO2 0.4 0.4 4.4 미실시 4.4 1.7
CO 0.2 0.5 2.4 미실시 2.4 4.4
구분 구성/종류 비교예 5 비교예 6 비교예 7 비교예 8 비교예 9 비교예 10
촉매 종류 담지 물질 Cu K L Cu, K Cu,La Fe(5),K(6),La(5)
담체 CeO2 CeO2 CeO2 CeO2 CeO2 CeO2
실험 결과 공정 온도(℃) 550 550 550 550 550 550
목적생성물 선택도 CH3Cl 14.8 12.5 6.7 11.2 7.5 11.1
CH2Cl2 5.2 3.5 2.1 3.5 1.9 3.7
CHCl3 0.12 0.08 0.33 0.26 0.24 0.6
부산물 선택도 CO2 3.4 1.9 0 0.2 0 0
CO 0.4 4.0 4.0 0.6 0.7 0.9
동일한 물질이 담지되나, 담체의 종류가 다른 경우와 비교하였다. 구체적으로, 담체의 종류가 CeO2인 촉매의 경우(실시예 1 및 실시예 2), 담체의 종류가 종래의 알루미늄 산화물(비교예 1: γ-Al2O3) 또는 CeZr(비교예 3)인 경우에 비해 목적생성물인 클로로 화합물의 선택도가 높았으며, 부산물인 이산화탄소 및 일산화탄소의 선택도가 낮은 것을 확인할 수 있었다.
담체의 종류가 동일하나, 상이한 물질이 담지되는 경우를 비교하였다. 실시예 1에 따른 촉매의 경우, 구리-포타슘-란타넘을 모두 포함하는 촉매 물질을 사용함으로써, 목적 생성물(CH3Cl, CH2Cl2, CHCl3)의 선택도를 높이면서도, 부산물의 생성을 낮추는 효과를 갖는다. 구체적으로, 촉매 물질로서 구리를 포함하는 경우(비교예 5), 구리를 포함하지 않는 비교예 4, 6 및 7에 비하여 생성물의 선택도가 우수한 것을 확인할 수 있었다. 그러나, 비교예 5의 경우, 부산물인 이산화탄소 및 일산화탄소가 발생하는 문제가 있었다.
이를 해결하기 위하여, 촉매 물질로서 구리 외에 더 포타슘을 포함하거나(비교예 8), 란타넘(비교예 9)을 더 포함하는 경우, 부산물의 생성문제가 어느 정도 해소되었으나, 목적 생성물의 선택도가 비교예 4에 비해 감소하는 것을 확인할 수 있었다.
따라서, 상기 실시예 1에서는 촉매 물질로서 구리, 포타슘 및 란타넘을 모두 포함시킴으로써, 목적 생성물의 선택도를 극대화하면서도 부산물의 생성을 최소화할 수 있었다.
한편, 촉매 물질로서 구리 대신 철을 포함하는 경우(비교예 10), 부산물의 생성이 적으나, 목적 생성물의 선택도가 낮은 것을 확인할 수 있었다. 이는 구리의 활성이 철의 활성보다 뛰어나기 때문이다.
<실험예 2: 공정 온도에 따른 실험>
실시예 1에 따른 촉매를 사용하여, 온도에 따른 기체의 생성 정도를 측정하여 선택도를 계산하였으며 하기 표 3 및 도 3에 나타내었다.
공정 온도(℃) 목적 생성물 부산물
CH3Cl CH2Cl2 CHCl3 CO2 CO
450 6.7 1.3 0.09 0 0
480 9.2 2.6 0.28 0 0
510 12.1 4.4 0.66 0 0
530 14.0 5.7 1.00 0 0
550 15.1 6.8 1.36 0.4 0.2
570 15.2 6.7 1.26 0.3 0.9
590 14.4 6.8 1.42 0.3 1.3
공정 온도가 550℃ 이상인 경우, 부산물인 이산화탄소 및 일산화탄소가 일부 생성되고, 공정 온도가 상승할 수록 부산물이 더욱 많이 생성되는 것을 확인할 수 있었다. 이와 같은 결과는, 공정 온도가 530℃ 초과인 경우, 공정 과정에서 온도에 의한 영향이 증가하여 생성된 CH3Cl가 추가적으로 반응하거나, CH4이 직접 산화하여 부산물인 이산화탄소 및 일산화탄소가 많이 생성되었기 때문이다.반면에, 공정 온도가 530℃ 이하인 경우, CH3Cl가 추가적으로 반응하는 것을 억제하거나, CH4이 직접 산화하는 것을 억제하여 부산물인 이산화탄소 및 일산화탄소가 생성되는 것을 방지할 수 있었다.
상기 실험예 1 및 실험예 2에 대한 각 촉매에 대한 결과는 도 2 내지 도 4에 나타낸 바와 같다.

Claims (12)

  1. 구리를 포함하는 촉매 물질; 및
    세륨옥사이드(CeO2)를 포함하는 담체를 포함하고,
    상기 촉매 물질은 알칼리 금속 및 알칼리 토금속으로 이루어진 군으로부터 선택되는 1 이상의 제1 조촉매; 및 란탄족 금속을 포함하는 제2 조촉매를 더 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  2. 청구항 1에 있어서, 상기 촉매 물질은 상기 탄화수소의 옥시클로로화 공정용 촉매 전체의 중량을 기준으로 5 중량% 이상 25 중량% 이하로 포함되는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  3. 청구항 1에 있어서, 상기 제1 조촉매 및 제2 조촉매의 함량은 동일하거나 상이하고, 각각 상기 구리 100 중량부에 대하여 10 중량부 이상 2,000 중량부 이하로 포함되는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  4. 청구항 1에 있어서, 상기 제1 조촉매는 나트륨, 리튬, 칼륨, 마그네슘 및 칼슘으로 이루어진 군으로부터 선택되는 1 이상을 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  5. 청구항 1에 있어서, 상기 제2 조촉매는 이트리아 및 희토류 원소로 이루어진 군으로부터 선택되는 1 이상을 더 포함하는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  6. 청구항 1에 있어서, 상기 담체의 비표면적은 50 m2/g 이상 250 m2/g 이하인 것인 탄화수소의 옥시클로로화 공정용 촉매.
  7. 청구항 1에 있어서, 상기 담체는 세륨옥사이드(CeO2) 단일 조성을 갖는 것인 탄화수소의 옥시클로로화 공정용 촉매.
  8. 청구항 1에 있어서, 직경이 0.1mm 이상 1.0mm 이하인 것인 탄화수소의 탄화수소의 옥시클로로화 공정용 촉매.
  9. 세륨옥사이드(CeO2)를 포함하는 담체를 준비하는 단계; 및
    구리를 포함하는 활성 물질, 제1 조촉매, 및 제2 조촉매를 상기 담체에 담지하는 단계를 포함하는 것인 청구항 1 내지 8 중 어느 한 항에 따른 탄화수소의 옥시클로로화 공정용 촉매의 제조방법.
  10. 청구항 1 내지 8 중 어느 한 항에 따른 탄화수소의 옥시클로로화 공정용 촉매 하에서 수행되고,
    탄화수소의 옥시클로로화 반응을 포함하는 탄화수소의 옥시클로로화 화합물의 제조방법.
  11. 청구항 10에 있어서, 450℃ 이상 550℃ 이하의 공정 온도, 0.5atm 이상 3atm이하의 압력 및 2,000h-1 이상 20,000h-1이하의 공간 속도 하에서 수행되는 것인 탄화수소의 옥시클로로화 화합물의 제조방법.
  12. 청구항 10에 있어서, 고정층 반응기, 유동층 반응기 또는 순환 유동층 반응기 내에서 수행되는 것인 탄화수소의 옥시클로로화 화합물의 제조방법.
PCT/KR2019/002232 2018-02-23 2019-02-22 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법 WO2019164342A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980007191.5A CN111565838B (zh) 2018-02-23 2019-02-22 用于烃的氧氯化工艺的催化剂、其制备方法和使用该催化剂制备烃的氧氯化化合物的方法
EP19757172.2A EP3721993B1 (en) 2018-02-23 2019-02-22 Catalyst for processing oxychlorination of hydrocarbon, preparation method therefor, and preparation method of oxychlorinated compound of hydrocarbon using same
JP2020536777A JP7067696B2 (ja) 2018-02-23 2019-02-22 炭化水素のオキシクロロ化工程用触媒、その製造方法およびそれを用いた炭化水素のオキシクロロ化化合物の製造方法
US16/958,443 US11179703B2 (en) 2018-02-23 2019-02-22 Catalyst for processing oxychlorination of hydrocarbon, preparation method therefor, and preparation method of oxychlorinated compound of hydrocarbon using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0022215 2018-02-23
KR20180022215 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019164342A1 true WO2019164342A1 (ko) 2019-08-29

Family

ID=67686919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002232 WO2019164342A1 (ko) 2018-02-23 2019-02-22 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법

Country Status (6)

Country Link
US (1) US11179703B2 (ko)
EP (1) EP3721993B1 (ko)
JP (1) JP7067696B2 (ko)
KR (1) KR102230978B1 (ko)
CN (1) CN111565838B (ko)
WO (1) WO2019164342A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479324A (zh) * 2019-09-06 2019-11-22 内蒙古大学 一种乙烷氧氯化制氯乙烯稀土锆基催化剂制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199533A (en) 1978-11-03 1980-04-22 University Of Southern California Conversion of methane
US4714796A (en) 1987-04-21 1987-12-22 Illinois Institute Of Technology Production of higher molecular weight hydrocarbons from methane
US4804797A (en) 1987-08-24 1989-02-14 Gas Research Institute Production of commodity chemicals from natural gas by methane chlorination
US4983783A (en) 1989-07-25 1991-01-08 Illinois Institute Of Technology Reduction in carbon oxides in oxidative pyrolysis of halogenated methanes
KR940001934A (ko) * 1992-07-28 1994-02-16 조 에이. 포웰 에틸렌을 에틸렌디클로라이드(edc)로 옥시클로리네이션시키기 위하여 개량된 촉매 및 공정
KR19990045511A (ko) * 1997-11-24 1999-06-25 볼커 버그달 지지된 촉매, 이의 제조방법 및 에틸렌의 옥시염소화에 있어서의 이의 용도
KR20080037900A (ko) * 2006-10-27 2008-05-02 주식회사 엘지화학 메탄의 옥시클로리네이션 반응에 사용하는클로로금속화합물 촉매 및 이를 이용한 클로로화합물제조방법
KR20100074017A (ko) 2008-12-23 2010-07-01 슈드-케미 캐터리스트 이탈리아 에스.알.엘. 1,2-디클로로에탄으로의 에틸렌의 고정층 옥시염소화 반응용 촉매
KR20150131139A (ko) * 2013-03-15 2015-11-24 옥시 비닐스, 엘.피. 에틸렌의 디클로로에탄으로의 옥시염소화를 위한 촉매 및 방법
KR20180022215A (ko) 2016-08-23 2018-03-06 양남수 휴대용 미스트장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113027A (en) * 1989-12-15 1992-05-12 Vulcan Materials Company Oxychlorination process using a catalyst which comprises copper chloride supported on rare-earth modified alumina
JP3092330B2 (ja) 1992-06-30 2000-09-25 住友化学工業株式会社 オキシ塩素化触媒、その製造方法およびそれを用いるオキシ塩素化方法
FR2695574B1 (fr) 1992-09-15 1994-11-04 Rhone Poulenc Chimie Composition à base d'oxyde cérique, préparation et utilisation.
GB9315679D0 (en) * 1993-07-29 1993-09-15 Rover Group Base metal catalyst,catalytic support and two-stage process for the purification of vehicle exhaust gases
EP0720975A1 (en) * 1995-01-06 1996-07-10 Dow Corning Corporation Oxyhydrochlorination catalyst and process
US20090286678A1 (en) * 2005-05-02 2009-11-19 Symyx Technologies, Inc. High Surface Area Metal And Metal Oxide Materials and Methods of Making the Same
JP2008540093A (ja) 2005-05-12 2008-11-20 ソルヴェイ(ソシエテ アノニム) オキシ塩素化触媒及び該触媒を用いる方法
JP5084193B2 (ja) * 2006-07-13 2012-11-28 日揮触媒化成株式会社 オキシクロリネーション用流動触媒およびその製造方法
CN101687178A (zh) 2007-07-13 2010-03-31 拜尔技术服务有限责任公司 用于氯化氢气相氧化的热稳定催化剂
US20100189633A1 (en) 2007-07-13 2010-07-29 Bayer Technology Services Gmbh Method for producing chlorine by gas phase oxidation
KR101799033B1 (ko) 2010-11-15 2017-11-20 엘지디스플레이 주식회사 적색 인광 호스트 물질 및 이를 이용한 유기전계발광소자
US9248434B2 (en) * 2012-11-06 2016-02-02 Basf Corporation Catalyst for the oxychlorination of ethylene to 1, 2-dichloroethane
CN103721759B (zh) * 2014-01-07 2015-12-30 中国人民解放军防化学院 一种空气净化剂及其制备方法
WO2017216653A1 (en) 2016-06-17 2017-12-21 Sabic Global Technologies B.V. Mixed cerium-lanthanum oxide catalysts and systems for oxidative halogenation of an alkane
EP3272418A1 (en) * 2016-07-21 2018-01-24 ETH Zurich A catalyst composition for direct synthesis of vinyl chloride from ethylene
KR20180079178A (ko) 2016-12-29 2018-07-10 주식회사 효성 복합 촉매 담체, 탈수소 촉매 및 그의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199533A (en) 1978-11-03 1980-04-22 University Of Southern California Conversion of methane
US4714796A (en) 1987-04-21 1987-12-22 Illinois Institute Of Technology Production of higher molecular weight hydrocarbons from methane
US4804797A (en) 1987-08-24 1989-02-14 Gas Research Institute Production of commodity chemicals from natural gas by methane chlorination
US4983783A (en) 1989-07-25 1991-01-08 Illinois Institute Of Technology Reduction in carbon oxides in oxidative pyrolysis of halogenated methanes
KR940001934A (ko) * 1992-07-28 1994-02-16 조 에이. 포웰 에틸렌을 에틸렌디클로라이드(edc)로 옥시클로리네이션시키기 위하여 개량된 촉매 및 공정
KR19990045511A (ko) * 1997-11-24 1999-06-25 볼커 버그달 지지된 촉매, 이의 제조방법 및 에틸렌의 옥시염소화에 있어서의 이의 용도
KR20080037900A (ko) * 2006-10-27 2008-05-02 주식회사 엘지화학 메탄의 옥시클로리네이션 반응에 사용하는클로로금속화합물 촉매 및 이를 이용한 클로로화합물제조방법
KR20100074017A (ko) 2008-12-23 2010-07-01 슈드-케미 캐터리스트 이탈리아 에스.알.엘. 1,2-디클로로에탄으로의 에틸렌의 고정층 옥시염소화 반응용 촉매
KR20150131139A (ko) * 2013-03-15 2015-11-24 옥시 비닐스, 엘.피. 에틸렌의 디클로로에탄으로의 옥시염소화를 위한 촉매 및 방법
KR20180022215A (ko) 2016-08-23 2018-03-06 양남수 휴대용 미스트장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHARFE, MATTHIAS: "Mechanism of Ethylene Oxychlorination on Ceria", ACS CATALYSIS, vol. 8, no. 4, 15 February 2018 (2018-02-15), pages 2651 - 2663, XP055631698 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479324A (zh) * 2019-09-06 2019-11-22 内蒙古大学 一种乙烷氧氯化制氯乙烯稀土锆基催化剂制备方法

Also Published As

Publication number Publication date
CN111565838B (zh) 2023-09-26
KR102230978B1 (ko) 2021-03-23
KR20190101907A (ko) 2019-09-02
US11179703B2 (en) 2021-11-23
JP7067696B2 (ja) 2022-05-16
CN111565838A (zh) 2020-08-21
EP3721993B1 (en) 2022-06-15
EP3721993A4 (en) 2021-01-20
JP2021509636A (ja) 2021-04-01
US20210053036A1 (en) 2021-02-25
EP3721993A1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP7579275B2 (ja) 有機水素吸蔵原料用脱水素触媒及びその担体、水素吸蔵性合金、並びに、高純度水素ガスの供給方法
Velu et al. Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO2 and ZrO2
US6693060B2 (en) Modified θ-Al2O3-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
Yue et al. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce–Zr/Al2O3 catalysts
Liu et al. Methanol decomposition to synthesis gas at low temperature over palladium supported on ceria–zirconia solid solutions
TW202106384A (zh) 有機儲氫原料脫氫催化劑以及該催化劑的載體、儲氫合金、和提供高純度氫氣的方法
JP3345783B2 (ja) 合成ガスの製造方法
WO2020138600A1 (ko) 산소 캐리어 물질 및 탈수소 촉매를 포함하는 올레핀 제조용 촉매
WO2019164342A1 (ko) 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법
JP4226684B2 (ja) 部分酸化法による合成ガスの製造方法
CN111889096B (zh) 贵金属用量减少的高活性有机储氢化合物脱氢制氢气催化剂及其制备方法
WO2019177362A1 (ko) 탄화수소의 부분 산화 공정
WO2019164345A1 (ko) 탄화수소의 옥시클로로화 공정용 촉매, 이의 제조방법 및 이를 이용한 탄화수소의 옥시클로로화 화합물의 제조방법
Nakayama et al. Partial oxidation of CH4 with air to produce pure hydrogen and syngas
JP3813646B2 (ja) 水蒸気改質触媒の製造方法および水素製造方法
EP0133778B1 (en) Methanol conversion process
WO2014137293A1 (en) A method for preparing a highly dispersed supported metal catalyst
WO2024219706A1 (ko) 암모니아 크래킹 반응용 삼중금속 촉매, 이의 제조방법 및 이를 이용한 수소 제조 방법
KR102542195B1 (ko) 탄화수소의 부분 산화 공정용 촉매 및 이를 이용한 일산화탄소의 제조방법
KR101440193B1 (ko) 천연가스의 혼합개질용 촉매, 이의 제조방법 및 상기 촉매를 이용한 천연가스의 혼합개질방법
JP4226685B2 (ja) 水素の製造方法
KR101080860B1 (ko) 일산화탄소 수성반응 촉매 및 이의 제조방법
KR101644195B1 (ko) 프로판으로부터 프로필렌을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536777

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019757172

Country of ref document: EP

Effective date: 20200706

NENP Non-entry into the national phase

Ref country code: DE