[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019163775A1 - Gas sensor and method for manufacturing gas sensor - Google Patents

Gas sensor and method for manufacturing gas sensor Download PDF

Info

Publication number
WO2019163775A1
WO2019163775A1 PCT/JP2019/006100 JP2019006100W WO2019163775A1 WO 2019163775 A1 WO2019163775 A1 WO 2019163775A1 JP 2019006100 W JP2019006100 W JP 2019006100W WO 2019163775 A1 WO2019163775 A1 WO 2019163775A1
Authority
WO
WIPO (PCT)
Prior art keywords
packing
wiring board
gas sensor
wiring
gas
Prior art date
Application number
PCT/JP2019/006100
Other languages
French (fr)
Japanese (ja)
Inventor
鬼頭 真一郎
大昌 伊藤
西山 寛幸
青山 惠哉
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2019163775A1 publication Critical patent/WO2019163775A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present disclosure relates to a gas sensor and a method for manufacturing the gas sensor.
  • a gas sensor for detecting a specific component contained in a gas to be measured there is a gas sensor having a wiring board in which a sensor element is suspended and fixed by wire bonding or the like, and a wiring board and a casing are stacked.
  • a gas sensor having such a configuration for example, a gas sensor having a configuration in which a wiring board is accommodated in a casing and a part of the wiring board protrudes outside the casing is known (Patent Document 1).
  • a rectangular hole for projecting a part of the wiring board is provided on the side of the casing, and the gap between the hole and the wiring board can be sealed with a sealing material. Further, by suspending and fixing the sensor element to the wiring board, it is possible to improve the gas detection accuracy and responsiveness by reducing the heat capacity of the sensor element and the surrounding thermal influence.
  • the present disclosure provide a gas sensor and a gas sensor manufacturing method capable of suppressing a gap from being generated between the casing and the wiring board in a gas sensor having a structure in which the wiring board and the casing are laminated.
  • One aspect of the present disclosure is a gas sensor including a wiring board, a sensor element, a first packing, a first casing body, a plurality of bolts, and a plurality of nuts.
  • This gas sensor has a configuration in which at least a first casing body, a first packing, and a wiring board are fixed using bolts and nuts.
  • the wiring board is provided with a plurality of wiring portions on at least a part of the outermost surface.
  • the sensor element has a gas detector that detects a specific component contained in the gas to be measured.
  • the sensor element is disposed on the wiring board and electrically connected to the plurality of wiring portions.
  • the first packing is made of a fluorine resin.
  • a 1st packing is laminated
  • the first packing has an opening having a size that encloses the sensor element.
  • the first packing is annular.
  • the first casing body is laminated on the side opposite to the wiring board in the first packing, and at least a first flow part for flowing the gas to be measured is formed.
  • the first casing body is made of metal or ceramic.
  • Each of the plurality of bolts is provided so as to penetrate each member of the laminated body in which at least the first casing body, the first packing, and the wiring board are laminated in the laminating direction.
  • the plurality of nuts are tightened against each of the plurality of bolts.
  • the bolt has a bolt head and a shaft.
  • the bolt head is located outside one side of the stack in the stacking direction.
  • the shaft portion projects from the bolt head toward the other side in the stacking direction of the laminate, and has an outer diameter smaller than that of the bolt head.
  • the shaft portion is coupled with a nut disposed outside the laminated body on the tip side of the shaft portion.
  • the gas sensor further includes a spring washer.
  • the spring washer is interposed between at least one of the bolt head and the laminated body or between the nut and the laminated body.
  • the first packing is provided in a state in which the first packing is in contact with the wiring board even in a region between the plurality of wiring parts on the surface in contact with the plurality of wiring parts.
  • This gas sensor has a structure in which each member of the first casing body, the first packing, and the wiring board is pressed in the stacking direction by the elastic force of the spring washer, and the first packing is also formed in a region between the plurality of wiring portions. It is the structure which contacts a wiring board. Thereby, this gas sensor can suppress that a space
  • this gas sensor in the gas sensor having a configuration in which the wiring board and the first casing body are stacked, between the wiring board and the first casing body (specifically, between the first packing and the wiring board). It becomes difficult to generate a gap, and a decrease in airtightness can be suppressed.
  • this gas sensor since the first packing constituted by using a fluorine-based resin is used, an adverse gas (which affects gas detection is affected by the first packing) under use conditions in which the first casing body is at a high temperature. The gas detection accuracy can be satisfactorily obtained in combination with the effect of suppressing the decrease in airtightness.
  • the wiring board may include a plurality of lead pins protruding outward from the outermost surface different from the outermost surface on which the plurality of wiring portions are provided.
  • the plurality of lead pins are electrically connected to the plurality of wiring portions inside the wiring board.
  • This gas sensor can be connected to external equipment via multiple lead pins.
  • a plurality of lead pins may be electrically connected to the circuit board when the gas sensors are stacked on the circuit board.
  • the first packing is in contact with the wiring board even in the region between the plurality of wiring portions, it is possible to suppress the occurrence of a gap between the first packing and the wiring board.
  • the spring washer includes a first spring washer provided between the bolt head and the laminated body, and a second spring washer provided between the nut and the laminated body. Also good.
  • the spring washer is provided at two locations with respect to one bolt, so that the laminated body (first casing body) is obtained by the elastic force of the two spring washers (first spring washer and second spring washer).
  • the first packing and the wiring board are pressed in the stacking direction.
  • This gas sensor can be configured such that the first packing contacts the wiring board even in a region between the plurality of wiring portions. Thereby, it can suppress that a clearance gap produces between the 1st packing and a wiring board in the field between a plurality of wiring parts.
  • the laminate may include a second packing and a second casing body.
  • the second packing is configured using a fluorine-based resin, and is disposed on the opposite side of the wiring substrate from the first packing.
  • a 2nd casing body is laminated
  • the second casing body has at least a second circulation part for circulating the gas to be measured.
  • the second casing body is made of metal or ceramic.
  • the wiring board is provided with a plurality of wiring portions on each of the first outermost surface of the outermost surface on which the first packing is laminated and the second outermost surface of the outermost surface on which the second packing is laminated.
  • the second packing is provided in a state where the second packing is in contact with the wiring board even in a region between the plurality of wiring parts on the surface in contact with the plurality of wiring parts.
  • This gas sensor has a structure in which each member of the laminated body (first casing body, first packing, wiring board, second packing, second casing body) is pressed in the laminating direction by the elastic force of the spring washer.
  • the first packing and the second packing are in contact with the wiring board in the region between the wiring portions.
  • this gas sensor in the gas sensor having a configuration in which the first casing body, the second casing body, and the wiring board are stacked, there is a gap between the first packing and the wiring board and between the second packing and the wiring board. Is less likely to occur, and deterioration of airtightness can be suppressed. Further, according to this gas sensor, since the first and second packings formed using the fluorine-based resin are used, the first and second packings are used under the use conditions in which the first and second casing bodies are at a high temperature. Thus, the release of gas that affects the gas detection of the gas sensor is suppressed, and in combination with the effect of suppressing the decrease in airtightness, the accuracy of gas detection can be obtained satisfactorily.
  • Another aspect of the present disclosure is a method for manufacturing a gas sensor, which includes a stacked body forming step, a first fastening step, a heat application step, and a second fastening step.
  • the gas sensor includes a wiring board, a sensor element, a first packing, a first casing body, a plurality of bolts, and a plurality of nuts.
  • a wiring board In the gas sensor, at least the first casing body, the first packing, and the wiring board are fixed using bolts and nuts.
  • the wiring board is provided with a plurality of wiring portions on at least a part of the outermost surface.
  • the sensor element has a gas detector that detects a specific component contained in the gas to be measured.
  • the sensor element is disposed on the wiring board and electrically connected to the plurality of wiring portions.
  • the first packing is a member configured using a fluorine-based resin.
  • a 1st packing is laminated
  • the first packing has an opening having a size that encloses the sensor element.
  • the first packing is annular.
  • the first casing body is laminated on the side opposite to the wiring board in the first packing, and at least a first flow part for flowing the gas to be measured is formed.
  • the first casing body is made of metal or ceramic.
  • Each of the plurality of bolts is provided so as to penetrate each member of the laminate in which at least the first casing body, the first packing, and the wiring substrate are laminated in the lamination direction.
  • the plurality of nuts are tightened against each of the plurality of bolts.
  • the bolt includes a bolt head portion and a shaft portion.
  • the bolt head is located outside one side of the stack in the stacking direction.
  • the shaft portion protrudes from the bolt head toward the other side in the stacking direction of the stacked body and has an outer diameter smaller than that of the bolt head.
  • the shaft portion is coupled with a nut disposed outside the laminated body on the tip side of the shaft portion.
  • the gas sensor further includes a spring washer interposed between at least one of the bolt head and the laminated body or between the nut and the laminated body.
  • each member of the first casing body, the first packing, and the wiring board is laminated to form a laminated body.
  • a spring washer is interposed between at least one of the bolt head and the laminated body or between the nut and the laminated body, and the bolt shaft portion is attached to each member of the laminated body. And tighten the nut on the tip side of the shaft to temporarily fix each member.
  • the heat application step heat is applied to the first packing after the first tightening step to such an extent that the first packing is softened.
  • the nut fastened to the shaft portion of the bolt is tightened again to fix each member and hold the sensor element inside the laminate.
  • the tightening process is performed twice, not the manufacturing method in which the tightening process is performed only once. Moreover, the adhesiveness of a 1st packing and a wiring board can be improved by giving the heat
  • the gas sensor manufactured by this manufacturing method is a structure which presses each member of a 1st casing body, a 1st packing, and a wiring board in the lamination direction with the elastic force of a spring washer.
  • This gas sensor can be configured such that the first packing contacts the wiring board even in a region between the plurality of wiring portions. Thereby, it can suppress that a clearance gap produces between the 1st packing and a wiring board in the field between a plurality of wiring parts.
  • the gap between the wiring board and the first casing body (specifically, the first packing and the wiring board)
  • a gas sensor in which a gap is difficult to occur can be manufactured, and a decrease in hermeticity in the gas sensor can be suppressed.
  • the gas sensor obtained by this manufacturing method uses the first packing made of a fluorine-based resin, the gas sensor can detect the gas from the first packing under use conditions in which the first casing body is at a high temperature. The release of the influential gas is suppressed, and the accuracy of gas detection can be obtained well in combination with the effect of suppressing the decrease in airtightness.
  • SYMBOLS 1 Gas sensor (exhalation sensor), 10 ... Detection part, 10a ... Bolt, 10a1 ... Bolt head, 10a2 ... Shaft part, 10b ... Nut, 10c ... 1st spring washer, 10d ... 2nd spring washer, 11 ... 1st Plate part, 12 ... 2nd plate part, 13 ... Sealing material (gasket), 14 ... Sealing material (gasket), 15 ... Ceramic wiring board, 15d ... Wiring part, 15e ... Base end part, 15h ... Opening part, 15p ... Conductive pad section, 19 ... cassette connector, 20 ... element section, 21 ... substrate, 22 ... first heater, 23 ... sensing element, 30 ...
  • the gas sensor 1 is used, for example, for the purpose of measuring an extremely low concentration (several ppb to several hundred ppb level) of NO in the breath G (measured gas G) for asthma diagnosis.
  • the gas sensor 1 includes a main body 90, a detection unit 10, a conversion unit 30, and a gas circulation pipe 60.
  • the main body 90 is provided as a box-shaped housing.
  • the main body 90 is configured using a resin material.
  • the main body 90 accommodates the detection unit 10, the conversion unit 30, and the gas flow pipe 60 therein.
  • the main body 90 includes a first member 91 and a second member 92, as shown in FIG.
  • the first member 91 and the second member 92 are integrally assembled with a screw 93 to form the main body 90.
  • the main body 90 includes a detection unit space 90a, a conversion unit space 90b, and a distribution pipe space 90c.
  • the detection unit space 90a is a space in which the detection unit 10 is arranged.
  • the conversion unit space 90b is a space in which the conversion unit 30 is arranged.
  • the flow pipe space 90c is a space in which the gas flow pipe 60 is disposed.
  • the detection unit 10 is connected to a cylindrical cassette connector 19.
  • the cassette connector 19 is configured to be connectable to an external device (not shown) via a lead wire 19a and a connection connector 19b.
  • a detection signal output from the detection unit 10 is output from the cassette connector 19 to an external device via the lead wire 19a and the connection connector 19b.
  • the detection unit 10 includes a detection heater (not shown) that generates heat when energized. Heater power to the detection heater is supplied from an external device to the detection heater via the connection connector 19b, the lead wire 19a, and the cassette connector 19.
  • the conversion unit 30 is connected to a cylindrical cassette connector 39.
  • the cassette connector 39 is configured to be connectable to an external device (not shown) via a lead wire 39a and a connection connector 39b.
  • the conversion unit 30 includes a second heater 51 (see FIG. 5) that generates heat when energized. Heater power to the second heater 51 is supplied from the external device to the second heater 51 via the connection connector 39b, the lead wire 39a, and the cassette connector 39.
  • the detection unit 10 includes an introduction pipe 12a for introducing the exhaled breath G after conversion, and a discharge pipe 11a for discharging the exhaled breath G after detection.
  • the conversion unit 30 includes a pipe 31a (also referred to as an introduction pipe 31a) for introducing exhalation G, and a pipe 32b (also referred to as an exhaust pipe 32b) for discharging the exhaled breath G after conversion.
  • the introduction pipe 31a and the discharge pipe 32b are each made of a metal material (for example, stainless steel).
  • exhaled gas G is introduced into the conversion unit 30 through the sub-pipes 85, 84, and 83, exits the conversion unit 30, and then is introduced into the detection unit 10 through the gas distribution pipe 60. The After the specific component in the exhalation G is detected by the detection unit 10, the exhalation G is discharged to the outside through the auxiliary pipe 81 connected to the detection unit 10.
  • the gas distribution pipe 60 is a tube made entirely of a polymer material (fluorine rubber, fluoroelastomer, etc.) containing fluorine.
  • An inlet end 60 a of the gas flow pipe 60 is connected to the discharge pipe 32 b of the conversion unit 30, and an outlet end 60 b of the gas flow pipe 60 is connected to the introduction pipe 12 a of the detection unit 10. That is, the gas flow pipe 60 constitutes a gas flow path for the exhalation G between the conversion unit 30 and the detection unit 10.
  • the gas sensor 1 includes a first heat insulating material 71, a second heat insulating material 72, and a third heat insulating material 73 inside the main body 90.
  • the 1st heat insulating material 71, the 2nd heat insulating material 72, and the 3rd heat insulating material 73 are comprised, for example using glass fiber.
  • the 1st heat insulating material 71 and the 2nd heat insulating material 72 are arrange
  • the 1st heat insulating material 71 is a shape arrange
  • the second heat insulating material 72 has a plate shape and is disposed below the first heat insulating material 71.
  • the 3rd heat insulating material 73 is arrange
  • the 3rd heat insulating material 73 is plate shape, is arrange
  • the detection unit 10 includes a first plate portion 11, a sealing material 13 (gasket 13), a ceramic wiring substrate 15, a sealing material 14 (gasket 14), and a second plate portion. 12 are laminated in this order.
  • the first plate part 11 is made of a metal material (for example, stainless steel) and includes a discharge pipe 11a for discharging the exhalation G.
  • the 2nd board part 12 is formed with the metal material (for example, stainless steel), and is provided with the inlet tube 12a for introducing the exhalation G.
  • Each of the sealing materials 13 and 14 has a rectangular frame shape, and is configured using a fluorine-based resin (for example, fluorine rubber, fluorinated hydrocarbon polymer, or the like).
  • the ceramic wiring board 15 includes an opening 15h formed at the center of the rectangular plate shape and a narrow base end portion 15e protruding from one side of the rectangular plate shape.
  • the detection unit 10 includes an element unit 20 and current-carrying members 16 and 17.
  • the element unit 20 is disposed inside the opening 15 h of the ceramic wiring substrate 15.
  • the energizing members 16 and 17 are members formed of a conductive material, and the element unit 20 is suspended and fixed in the opening 15h.
  • the first plate portion 11, the sealing material 13, the ceramic wiring substrate 15, the sealing material 14, and the second plate portion 12 are laminated in this order, and are fastened and fixed using bolts 10 a and nuts 10 b,
  • the sealing members 13 and 14 are pressed between the second plate portion 12 and the ceramic wiring substrate 15 is sealed.
  • the sealing materials 13 and 14 include openings 13a and 14a each having a size that encloses the element portion 20, respectively.
  • the bolt 10a includes a bolt head portion 10a1 and a shaft portion 10a2.
  • the bolt head portion 10 a 1 is disposed outside the first plate portion 11.
  • the shaft portion 10a2 has a smaller outer diameter than the bolt head portion 10a1, and is configured in such a manner that the nut 10b is coupled.
  • the shaft portion 10a2 protrudes from the bolt head portion 10a1 toward the second plate portion 12.
  • a nut 10b disposed outside the second plate portion 12 is coupled to the distal end side of the shaft portion 10a2.
  • the first spring washer 10c is inserted between the bolt head portion 10a1 and the first plate portion 11 in the shaft portion 10a2.
  • a second spring washer 10d is inserted between the nut 10b and the second plate portion 12 in the shaft portion 10a2.
  • the detection unit 10 As shown in FIG. 6, in the detection unit 10, the elastically deformed sealing materials 13 and 14 are in contact with each other between the plurality of wiring units 15 d on the surface of the ceramic wiring substrate 15 without any gap. As a result, the detection unit 10 has a structure in which the space between the first plate portion 11 and the ceramic wiring substrate 15 and the space between the second plate portion 12 and the ceramic wiring substrate 15 are sealed (sealed). Gas leakage between 15h and the outside can be suppressed.
  • the detection unit 10 is configured to introduce the exhalation G from the introduction tube 12a, and after the exhalation G contacts the element unit 20 to detect the concentration of a specific component, the exhalation G is discharged from the discharge tube 11a to the outside.
  • the element unit 20 includes a rectangular plate-shaped substrate 21, a first heater 22 disposed on the upper surface (surface facing upward in FIG. 4) side of the substrate 21, and a detection element 23 disposed on the lower surface side of the substrate 21. ,have.
  • the element unit 20 has an integrated structure in which the detection element 23 and the first heater 22 are stacked on the top and bottom of the substrate 21.
  • the sensing element 23 comes into contact with the exhalation G that has passed through the conversion unit 30 and changes in electrical characteristics according to the concentration of NO 2 in the exhalation G.
  • the 1st heater 22 heats detection element 23 to the 1st temperature which is operating temperature by generating heat by energization.
  • the output terminal of the detection element 23 and the energization terminal of the first heater 22 are electrically connected to the lead portion of the ceramic wiring substrate 15 via the energization members 16 and 17.
  • the temperature sensor for measuring the temperature of the 1st heater 22 is arrange
  • the substrate 21 can be a ceramic substrate, for example.
  • the sensing element 23 can be formed, for example, as a mixed potential sensor (nitrogen oxide sensor) using a solid electrolyte body and a pair of electrodes made of different materials disposed on the surface of the solid electrolyte body.
  • the first heater 22 can be formed as a meandering pattern.
  • a plurality of conductive pad portions 15p are arranged on the front and back surfaces of the base end portion 15e of the ceramic wiring substrate 15.
  • the plurality of conductive pad portions 15p are electrically connected to the detection element 23 and the first heater 22 via the lead portions and the energization members 16 and 17, respectively.
  • the conductive pad portion 15p on the back side of the ceramic wiring board 15 is not shown.
  • the electrical signal output from the detection element 23 is output to the cassette connector 19 via the conductive pad portion formed on the back surface side of the ceramic wiring substrate 15, and is output to the external device via the cassette connector 19.
  • the electric power supplied from the external device is supplied to the conductive pad portion 15p formed on the surface side of the ceramic wiring substrate 15 via the cassette connector 19, and is supplied to the first heater 22 via the conductive pad portion 15p. . Thereby, electricity supply to the 1st heater 22 is performed and the 1st heater 22 generates heat.
  • the conversion unit 30 includes a rectangular plate-shaped upper lid 31, a rectangular frame-shaped spacer 33 a 1, a rectangular plate-shaped upper catalyst support unit 35 a 1 in which the catalyst 41 is applied and formed on both surfaces thereof, A spacer 33a2, a rectangular plate-shaped upper catalyst support portion 35b1 on which the catalyst 42 is applied and formed on one surface (the surface facing the upper side in the figure), and a narrow base end portion 50e protrudes from one side of the rectangular plate shape.
  • the heater substrate 50, the lower catalyst support part 35b2 having a rectangular plate shape on which the catalyst 42 is applied and formed on one side (the side facing the lower side in the figure), the spacer 33a3, and the catalyst 41 are applied and formed on both sides.
  • the rectangular plate-shaped lower catalyst support portion 35a2, the spacer 33a4, and the rectangular plate-shaped lower lid 32 are laminated in this order.
  • the spacers 33a1 to 33a4 have the same shape and are collectively referred to as the spacer 33a.
  • the upper catalyst support part 35a1 and the lower catalyst support part 35a2 have the same shape, and are collectively referred to as the catalyst support part 35a.
  • the upper catalyst support portion 35b1 and the lower catalyst support portion 35b2 have the same shape, and are collectively referred to as the catalyst support portion 35b.
  • Each member 31, 32, 33 a, 35 a, 35 b, 50 is made of, for example, ceramic, and the members are laminated in an airtight manner via, for example, a glass or inorganic adhesive layer. ing.
  • the upper lid 31 is configured by attaching a pipe 31a (introduction pipe 31a) extending along the through hole to a through hole (not shown) provided in a part of the rectangular plate.
  • the pipe 31 a rises to the outside from the through hole, then bends 90 degrees along the plate surface of the upper lid 31, and one bent end extends toward the base end portion 50 e of the heater substrate 50.
  • the lower lid 32 includes a through hole 32a provided in a part of the rectangular plate, and a pipe 32b (discharge pipe 32b) extending from the through hole 32a.
  • the pipe 32 b rises outside from the through hole 32 a, and then bends 90 degrees along the plate surface of the lower lid 32, and one bent end extends in a direction opposite to the base end portion 50 e of the heater substrate 50. .
  • the pipe 31a attached to the upper lid 31 forms an exhalation G introduction pipe, and the pipe 32b forms an exhaust pipe.
  • the catalyst 41 is applied and formed in a substantially rectangular shape at a position corresponding to the inside of the internal space of the spacers 33a1 and 33a2.
  • the upper catalyst support portion 35a1 has a slit-shaped opening 35s in a region adjacent to one side of the catalyst 41.
  • the exhaled gas G introduced from the pipe 31a contacts the upper catalyst 41 in the inner space of the spacer 33a1, and then contacts the lower catalyst 41 in the inner space of the spacer 33a2 through the opening 35s.
  • the catalyst 42 is applied and formed in a substantially rectangular shape on one side of the upper catalyst support 35b1 (the surface facing the upper side in the figure) at a position corresponding to the inside of the internal space of the spacer 33a2.
  • the upper catalyst support portion 35b1 has a round hole-shaped opening 35h at the center of one side of the catalyst 42 (obliquely upper right side in the figure).
  • the exhaled gas G contacts the catalyst 42 in the internal space of the spacer 33a2, and then flows downward through the opening 35h.
  • the opposite surface of the upper catalyst support portion 35b1 is in contact with the heater substrate 50.
  • the second heater 51 having a meandering pattern formed on the surface of the heater substrate 50 generates heat
  • the upper catalyst support portion 35b1 and the catalyst 42 are brought to a second temperature different from the first temperature via the heater substrate 50. Heated.
  • a temperature sensor (not shown) for detecting the heating temperature of the second heater 51 is arranged in a form having a predetermined pattern.
  • the heater substrate 50 includes a round hole-shaped opening 50 h that overlaps the opening 35 h.
  • the exhalation G that has passed through the opening 35h flows downward through the opening 50h.
  • the catalysts 41 and 42 a known catalyst material that converts the first gas component contained in the expiration gas G into the second gas component, for example, converts NO in the expiration gas G into NO 2 can be used.
  • the catalysts 41 and 42 adjust the partial pressure ratio between NO and NO 2 in the exhalation G.
  • a plurality of conductive pad portions 50p are disposed on the surface of the base end portion 50e of the heater substrate 50, respectively.
  • the plurality of conductive pad portions 50p are electrically connected to the second heater 51 and a temperature sensor (not shown) through lead portions, respectively.
  • the electric power supplied from the external device is supplied to the conductive pad portion 50p formed on the surface side of the heater substrate 50 through the cassette connector 39, and is supplied to the second heater 51 through the conductive pad portion 50p. Thereby, electricity supply to the 2nd heater 51 is performed and the 2nd heater 51 generates heat.
  • the lower catalyst support portion 35b2 is in contact with the lower surface (the surface facing the lower side of the drawing) of the heater substrate 50, and the upper catalyst support portion 35b1 is connected to the lower surface (the surface facing the lower side of the drawing) of the lower catalyst support portion 35b2.
  • the catalyst 42 is applied and formed in a substantially rectangular shape.
  • the lower catalyst support 35b2 on the lower side of the heater substrate 50, the spacer 33a3, the lower catalyst support 35a2, the spacer 33a4, and the lower lid 32 are arranged on the upper catalyst support 35b1 on the upper side of the heater substrate 50 via the heater substrate 50.
  • the spacer 33a2, the upper catalyst support 35a1, the spacer 33a1, and the upper lid 31 are arranged symmetrically and perform substantially the same function, and thus detailed description thereof is omitted.
  • the exhaled gas G flowing downward through the opening 50h and the opening 35h of the lower catalyst support 35b2 comes into contact with the catalyst 42 in the internal space of the spacer 33a3, and then the upper catalyst 41 in the lower catalyst support 35a2. Contact with. Thereafter, the expiratory gas G contacts the lower catalyst 41 in the lower catalyst support portion 35a2 in the inner space of the spacer 33a4 through the opening 35s, and is discharged from the pipe 32b.
  • the expiratory gas G contacts the catalyst heated to the second temperature, and the first gas component (specifically NO) contained in the expiratory gas G is the second gas component (specifically NO 2 ). Is converted to
  • each process (laminated body formation process, 1st clamping process, heat provision process, 2nd clamping process) shown in FIG. 7 is implemented.
  • a laminated body forming step is executed.
  • the first plate portion 11, the sealing material 13, the ceramic wiring substrate 15, the sealing material 14, and the second plate portion 12 are laminated in this order to form a laminated body.
  • the ceramic wiring board 15, the one in which the element portion 20 is assembled in advance is used.
  • the surfaces of the sealing material 13 and the ceramic wiring board 15 are separated from each other by the wiring portion 15d.
  • the first tightening process is executed.
  • the first spring washer 10c is interposed between the bolt head portion 10a1 and the first plate portion 11, and the second spring washer 10d is interposed between the nut 10b and the second plate portion 12. So that the shaft portion 10a2 of the bolt 10a penetrates each member of the laminated body.
  • each member of the laminate is temporarily fixed by tightening the nut 10b on the tip side of the shaft portion 10a2.
  • the nut 10b is tightened with a tightening strength at which the sealing material 13 and the sealing material 14 are elastically deformed.
  • a heat application step is executed.
  • the laminated body is heated using the first heater 22 at 395 ° C. for 20 minutes. That is, the laminated body is heated using the first heater 22 so that the sealing material 13 and the sealing material 14 are heated to such a degree that the sealing material 13 and the sealing material 14 are softened.
  • the second tightening process is executed.
  • the nut 10b is tightened to fix each member of the laminate, and the element unit 20 is held inside the laminate.
  • the sealing material 13 and the ceramic wiring board 15 abut on each other in a region between the plurality of wiring portions 15d.
  • the sealing material 14 and the ceramic wiring board 15 are in contact with each other without any gap.
  • sealing material 13 (sealing material 14) is elastically deformed through the first tightening step, the heat application step, and the second tightening step, and thereby along the surface of the wiring portion 15d as shown in the lower side of FIG. And a state in contact with the surface of the ceramic wiring board 15.
  • fastening states “(a) with washer, with additional tightening”, “(b) without washer, with additional tightening”, and “(c) with washer, without additional tightening”. Carried out. “Washer present / absent” represents the case where the first spring washer 10c and the second spring washer 10d are used and the case where they are not used. “With / without additional tightening” represents when the second tightening process is performed and when it is not performed.
  • the measurement is performed by performing a cooling cycle in which the high temperature environment (395 ° C.) by energization ON (heating) to the first heater 22 and the cooling by energization OFF to the first heater 22 are alternately repeated.
  • the amount of gas leakage (leakage amount) from the inside (opening 15h) was measured.
  • the high temperature environment and the cooling processing time were set to energization ON 20 minutes and energization OFF 10 minutes, respectively.
  • the leak amount at the maximum number of cooling cycles (43 times) is the smallest in “(a) with washer, with additional tightening”, followed by “(b) without washer, with additional tightening”. “(C) with washer, no additional tightening” is the most common.
  • the amount of increase in the leak amount with respect to the increase in the number of cooling cycles is “(a) with washer, with additional tightening” is smaller than “(b) without washer, with additional tightening”.
  • “(C) Washer present, no additional tightening” indicates that the amount of leakage is reduced when the number of cooling cycles is 43 compared to 28, but “(a) With washer, additional tightening”. Since the absolute value of the leak amount is larger than “Yes”, it cannot be evaluated that the airtightness is high.
  • the manufacturing process of the detection unit 10 is not a manufacturing method in which the tightening process is performed only once, but the tightening process (first tightening process: S120) twice.
  • the second tightening step: S140) is performed.
  • the sealing material 13 and the sealing material 14 are softened between the first fastening process and the second fastening process (heat application process: S130), the sealing material 13 and the ceramic wiring board 15 And the adhesion between the sealing material 14 and the ceramic wiring board 15 can be improved.
  • the gas sensor 1 (specifically, the detection unit 10) manufactured by this manufacturing method has the first plate portion 11, the sealing material 13, and the ceramic by the elastic force of the first spring washer 10c and the second spring washer 10d.
  • each member of the wiring board 15, the sealing material 14, and the second plate portion 12 is pressed in the stacking direction.
  • the gas sensor 1 can be configured such that the sealing material 13 and the sealing material 14 are in contact with the ceramic wiring board 15 even in a region between the plurality of wiring portions 15d.
  • the manufacturing method (gas sensor manufacturing method) of the present embodiment in manufacturing the gas sensor 1 having a configuration in which a part of the ceramic wiring board 15 protrudes outside the first plate portion 11 and the second plate portion 12.
  • the gas sensor 1 or the detection unit 10 corresponds to an example of a gas sensor
  • the ceramic wiring board 15 corresponds to an example of a wiring board
  • the wiring part 15d corresponds to an example of a wiring part
  • the element part 20 corresponds to an example of a sensor element.
  • the detection element 23 corresponds to an example of a gas detection unit.
  • the sealing material 13 corresponds to an example of a first packing
  • the sealing material 14 corresponds to an example of a second packing
  • the first plate portion 11 corresponds to an example of a first casing body
  • the discharge pipe 11a corresponds to a first flow portion.
  • the second plate portion 12 corresponds to an example of a second casing body
  • the introduction pipe 12a corresponds to an example of a second circulation portion.
  • the bolt 10a corresponds to an example of a bolt
  • the nut 10b corresponds to an example of a nut
  • the bolt head 10a1 corresponds to an example of a bolt head
  • the shaft portion 10a2 corresponds to an example of a shaft portion
  • the first spring washer 10c corresponds to an example of a first spring washer
  • the second spring washer 10d corresponds to an example of a second spring washer.
  • S110 corresponds to an example of a laminate forming process
  • S120 corresponds to an example of a first fastening process
  • S130 corresponds to an example of a heat application process
  • S140 corresponds to an example of a second fastening process.
  • the second gas sensor is similar to the gas sensor 1 of the first embodiment.
  • the second gas sensor has a very low concentration (several ppb to several hundreds ppb level) of NO in the expiratory gas G (measurement gas G). Used for measuring
  • the second gas sensor has a configuration in which a part of the gas sensor 1 is changed, and at least the detection unit 10 in the gas sensor 1 is replaced with the second detection unit 110.
  • the second gas sensor will be described with a focus on portions different from the gas sensor 1.
  • the second gas sensor includes a second main body part, a second detection part 110, a conversion part 30, and a gas flow pipe 60.
  • the second main body portion is provided as a box-shaped housing in the same manner as the main body portion 90.
  • the second main body is configured using a resin material.
  • the 2nd main part stores the 2nd detection part 110, conversion part 30, and gas distribution pipe 60 inside.
  • the second main body includes a detection unit space, a conversion unit space, and a distribution pipe space.
  • the space for the detection unit is a space in which the second detection unit 110 is arranged.
  • the conversion unit space is a space in which the conversion unit 30 is arranged.
  • the space for the circulation pipe is a space where the gas circulation pipe 60 is arranged.
  • the second detection unit 110 is configured by stacking a casing body 111, a seal material 113 (gasket 113), and a ceramic wiring board 115 in this order.
  • the casing body 111 includes a metal (for example, stainless steel) introduction pipe 111a, a metal (for example, stainless steel) discharge pipe 111b, and a ceramic (for example, alumina) plate portion 111c.
  • the introduction tube 111 a is an introduction unit for introducing the exhalation G after conversion by the conversion unit 30.
  • the discharge pipe 111b is a discharge unit for discharging the exhaled breath G after detection.
  • the introduction pipe 111a and the discharge pipe 111b are fixed to the plate portion 111c by brazing.
  • the plate part 111c is provided with a through hole (not shown) penetrating in the thickness direction of the plate at a fixed position of the introduction tube 111a and the discharge tube 111b.
  • the sealing material 113 has a rectangular frame shape, and is configured using a fluorine-based resin (for example, fluorine rubber, fluorinated hydrocarbon polymer, or the like).
  • a fluorine-based resin for example, fluorine rubber, fluorinated hydrocarbon polymer, or the like.
  • the ceramic wiring board 115 has a rectangular plate shape, and includes an element arrangement portion 115h formed as a concave space at the center thereof.
  • the ceramic wiring board 115 includes a plurality of wiring portions 115d on at least a part of the outermost surface.
  • the ceramic wiring board 115 includes a plurality of lead pins 115p on the outermost surface different from the outermost surface on which the plurality of wiring portions 115d are provided (specifically, the outermost surface on the side periphery constituting the side periphery).
  • the plurality of lead pins 115p protrude outward from the outermost surface (side outermost surface) of the ceramic wiring board 115.
  • the plurality of lead pins 115p having a substantially L-shape project outward from the two outermost outer peripheral surfaces of the rectangular ceramic wiring board 115.
  • the plurality of lead pins 115p are electrically connected to the plurality of wiring portions 115d inside the ceramic wiring substrate 115.
  • the 2nd detection part 110 is provided with the 2nd element part 120 and the several electricity supply member 116, as shown in FIG.
  • the second element unit 120 is arranged on the element arrangement unit 115 h of the ceramic wiring substrate 115.
  • the energizing member 116 is made of a conductive material.
  • the second element unit 120 includes a rectangular plate-shaped substrate 121, a first heater 122 disposed inside the substrate 121, and a detection element 123 disposed on the outermost surface of the substrate 121.
  • the second element unit 120 has an integral structure in which the detection element 123 and the first heater 122 are disposed on the substrate.
  • the detection element 123 is a gas detection unit that detects a specific component (NO) contained in the gas to be measured (expired gas G).
  • the second element portion 10 is fixed to the element arrangement portion 115h of the ceramic wiring substrate 115 via an adhesive.
  • the sensing element 123 comes into contact with the exhaled gas G that has passed through the conversion unit 30 and changes its electrical characteristics according to the concentration of NO 2 in the exhaled gas G.
  • the first heater 122 generates heat by energization to heat the detection element 123 to the first temperature that is the operating temperature.
  • a temperature sensor for measuring the temperature of the heater is disposed on the substrate 121 in a form having a predetermined pattern.
  • the substrate 121 can be formed as a ceramic substrate, for example.
  • the sensing element 123 can be formed, for example, as a mixed potential sensor (nitrogen oxide sensor) using a solid electrolyte body and a pair of electrodes made of different materials disposed on the surface of the solid electrolyte body.
  • the first heater 122 can be formed as a meandering pattern. Note that as the detection element 123, a resistance variable sensor including a metal oxide semiconductor and a pair of electrodes may be applied.
  • the 2nd element part 120 is provided with the some electrode part 120a in the outermost surface, as shown in FIG.
  • a part of the plurality of electrode portions 120a is electrically connected to the output terminal of the detection element, and constitutes a signal output unit that outputs a detection signal from the detection element.
  • the other part of the plurality of electrode parts 120a is electrically connected to the energization terminal of the heater, and constitutes a power receiving part that receives power supplied to the heater.
  • the second element unit 120 is electrically connected to the plurality of wiring units 115d. Specifically, the plurality of electrode portions 120a are electrically connected to the plurality of wiring portions 115d through the plurality of current-carrying members 116.
  • the sealing material 113 is laminated on the outermost surface of the ceramic wiring board 115 where the wiring part 115d is provided.
  • the sealing material 113 has an annular shape (rectangular frame shape) in which an opening 113 a having a size that encloses the second element portion 120 is formed.
  • the casing body 111 is laminated on the opposite side of the sealing material 113 from the ceramic wiring board 115.
  • the casing body 111 has at least an introduction pipe 111a and a discharge pipe 111b for circulating the gas to be measured.
  • the casing body 111 includes at least a metal part or a ceramic part.
  • the casing body 111, the sealing material 113, and the ceramic wiring board 115 are laminated in this order, and are tightened and fixed using the bolts 10a and the nuts 10b, whereby the sealing material 113 is pressed between the casing body 111 and the ceramic wiring board 115. The Thereby, the space between the casing body 111 and the ceramic wiring board 115 is sealed (sealed) by the sealing material 113.
  • the first spring washer 10c is inserted between the bolt head 10a1 and the casing body 111 in the shaft portion 10a2 of the bolt 10a.
  • the spring washer is not provided between the nut 10b and the 2nd board part 12 among the axial parts 10a2 of the volt
  • the elastically deformed seal material 113 is in contact with the gap between the plurality of wiring units 115d on the surface of the ceramic wiring board 115 without any gap.
  • the 2nd detection part 110 becomes a structure where between the casing body 111 and the ceramic wiring board 115 is sealed (sealed), and the gas leakage between the element arrangement
  • the second detection unit 110 introduces the exhalation G from the introduction tube 111a, and after the exhalation G contacts the second element unit 120 and detects the concentration of the specific component, the exhalation G is discharged to the outside from the discharge tube 111b. It is.
  • the plurality of lead pins 115p in the ceramic wiring substrate 115 are electrically connected to the detection element and the heater of the second element unit 120 through the plurality of wiring units 115d and the energization member 116, respectively.
  • the electrical signal output from the sensing element is output to a circuit board (not shown) via a plurality of lead pins 115p formed on the ceramic wiring board 115, and is output to an external device via the circuit board.
  • the electric power supplied from the external device is supplied to the plurality of lead pins 115p formed on the ceramic wiring substrate 115 through the circuit board, and is supplied to the heater through the plurality of lead pins 115p. Thereby, the heater is energized and the heater generates heat.
  • the plurality of lead pins 115p configure a signal path of a detection signal output from the second detection unit 110, a power supply path to the second detection unit 110, and the like.
  • each process shown in FIG. 7 (a laminated body formation process, a 1st clamping process, a heat provision process, a 2nd clamping process). To implement.
  • a stacked body forming step is executed.
  • the casing body 111, the sealing material 113, and the ceramic wiring board 115 are laminated in this order to form a laminated body.
  • the ceramic wiring board 115 the one in which the second element unit 120 is assembled in advance is used.
  • the surfaces of the sealing material 113 and the ceramic wiring board 115 are separated from each other by the wiring portion 115d.
  • the first tightening process is executed.
  • the shaft portion 10a2 of the bolt 10a is passed through each member of the laminate so that the first spring washer 10c is interposed between the bolt head portion 10a1 and the casing body 111.
  • each member of the laminate is temporarily fixed by tightening the nut 10b on the tip side of the shaft portion 10a2.
  • the nut 10b is tightened with a tightening strength at which the sealing material 113 is elastically deformed.
  • a heat application step is executed.
  • the laminate is heated at 395 ° C. for 20 minutes using the heater of the second element unit 120. That is, the stacked body is heated using the heater of the second element portion 120 so that the sealing material 113 is heated to such an extent that the sealing material 113 is softened.
  • the second tightening process is executed.
  • each member of the multilayer body is fixed by tightening the nut 10b, and the second element portion 120 is held inside the multilayer body.
  • the sealing material 113 and the ceramic wiring board 115 abut on each other in a region between the plurality of wiring portions 115d. That is, the seal material 113 is elastically deformed through the first tightening step, the heat application step, and the second tightening step, thereby forming a shape along the surface of the wiring portion 115d as shown in the lower side of FIG. Then, it comes into contact with the surface of the ceramic wiring board 115.
  • the sealing material 113 is provided in a state in contact with the surface of the ceramic wiring board 115 even in a region between the plurality of wiring portions 115 d.
  • each component (sub piping 85, 84, 83, circuit board, second detection unit 110, sub piping 81, cassette connector 39, conversion unit 30, gas distribution pipe 60, etc.) is manufactured. After that, each component is connected to each other. Next, in the method for manufacturing the second gas sensor, the components connected to each other are accommodated in the second main body, thereby completing the manufacturing process of the second gas sensor.
  • the manufacturing process of the second detection unit 110 is not a manufacturing method in which the tightening process is performed only once, but the tightening process (first process).
  • the adhesion between the sealing material 113 and the ceramic wiring board 115 is improved. It can be improved.
  • the first spring washer 10c is interposed in the first tightening step (S120).
  • the second gas sensor (specifically, the second detection unit 110) manufactured by this manufacturing method has the casing body 111, the sealing material 113, and the ceramic wiring board 115 each of which is elastic by the elastic force of the first spring washer 10c. It is a structure which presses a member in the lamination direction.
  • the second gas sensor can be configured such that the sealing material 113 is in contact with the ceramic wiring board 115 even in a region between the plurality of wiring portions 115d. Thereby, it can suppress that a clearance gap produces between the sealing material 113 and the ceramic wiring board 115 in the area
  • the manufacturing method (gas sensor manufacturing method) of the second embodiment when manufacturing the second gas sensor having the structure in which the ceramic wiring board 115 and the casing body 111 are laminated, the ceramic wiring board 115 and the casing body 111 are manufactured. (In detail, between the sealing material 113 and the ceramic wiring substrate 115) is less likely to occur, and a decrease in hermeticity can be suppressed.
  • the sealing material 113 configured using a fluorine-based resin since the sealing material 113 configured using a fluorine-based resin is used, an adverse gas (influence on gas detection is exerted from the sealing material 113 under a use condition in which the casing body 111 is at a high temperature.
  • the gas detection accuracy can be satisfactorily obtained in combination with the effect of suppressing the decrease in airtightness.
  • the ceramic wiring substrate 115 includes a plurality of lead pins 115p protruding outward from the outermost surface different from the outermost surface on which the plurality of wiring units 115d are provided. .
  • the second gas sensor (specifically, the second detection unit 110) can be connected to an external device via the plurality of lead pins 115p.
  • the plurality of lead pins 115p may be electrically connected to the circuit board.
  • the sealing material 113 is in contact with the ceramic wiring board 115 even in the region between the plurality of wiring portions 115d, it is possible to suppress the generation of a gap between the sealing material 113 and the ceramic wiring board 115.
  • the second gas sensor or the second detection unit 110 corresponds to an example of a gas sensor
  • the ceramic wiring board 115 corresponds to an example of a wiring board
  • the wiring part 115d corresponds to an example of a wiring part
  • the second element part 120 corresponds to a sensor element.
  • the detection element of the second element unit 120 corresponds to an example of a gas detection unit.
  • the sealing material 113 corresponds to an example of a first packing
  • the casing body 111 corresponds to an example of a first casing body
  • the introduction pipe 111a and the discharge pipe 111b correspond to an example of a first circulation part.
  • this indication is not limited to the above-mentioned embodiment, and can be carried out in various modes in the range which does not deviate from the gist of this indication.
  • numerical values in the manufacturing process are not limited to the above numerical values, and are arbitrary values suitable for the use and structure of the gas sensor (detection unit). May be adopted.
  • one spring washer is provided for one bolt 10a (specifically, the shaft portion 10a2). It is not restricted to such a structure.
  • the second detection unit 110 may be changed to a configuration in which two spring washers are provided for one bolt 10a (specifically, the shaft portion 10a2).
  • the gas sensor according to the present disclosure includes, as spring washers, a first spring washer 10c provided between the bolt head 10a1 and the laminate, and a second spring washer provided between the nut 10b and the laminate. 10d.
  • the spring washer is provided at two positions with respect to one bolt, so that the elastic force of the two spring washers (the first spring washer 10c and the second spring washer 10d) is stacked.
  • each member of the body (casing body 111, sealing material 113, ceramic wiring substrate 115) is pressed in the stacking direction.
  • This gas sensor can be configured such that the sealing material 113 is in contact with the ceramic wiring board 115 even in a region between the plurality of wiring portions 115d. Thereby, it can suppress that a clearance gap produces between the sealing material 113 and the ceramic wiring board 115 in the area
  • the second detection unit 110 of the second embodiment is configured to include one spring washer for one bolt 10a (specifically, the shaft portion 10a2), and includes a bolt head 10a1 and a laminated body. Although one spring washer is interposed between the two, a structure in which a spring washer is interposed between the nut 10b and the laminated body may be used.
  • the laminated body includes a second packing and a second casing body in addition to the casing body 111, the sealing material 113, and the ceramic wiring board 115. You may prepare.
  • the second packing is made of a fluorine-based resin, and is disposed on the opposite side of the ceramic wiring substrate 115 from the sealing material 113 (first packing).
  • a 2nd casing body is laminated
  • the second casing body has at least a second circulation part for circulating the gas to be measured.
  • the second casing body is made of metal or ceramic.
  • the second casing body may have the same configuration as the second plate portion 12.
  • the ceramic wiring board 115 is provided on each of the first outermost surface on which the sealing material 113 (first packing) is laminated among the outermost surfaces and the second outermost surface on which the second packing is laminated among the outermost surfaces.
  • a plurality of wiring portions 115d are provided.
  • the second packing is provided in a state in which the second packing is in contact with the ceramic wiring substrate 115 even in a region between the plurality of wiring portions 115d on the surface in contact with the plurality of wiring portions 115d.
  • This gas sensor (second detection unit 110) has a laminated body (casing body 111 (first casing body), sealing material 113 (first packing), ceramic wiring substrate 115, second packing, second packing, and the like, by the elastic force of a spring washer. 2 casing body) is pressed in the stacking direction, and the seal material 113 (first packing) and the second packing are in contact with the ceramic wiring board 115 even in the region between the plurality of wiring portions 115d. It is a configuration. As a result, a gap is generated between the sealing material 113 (first packing) and the ceramic wiring board 115 in a region between the plurality of wiring parts 115d, or between the second packing and the ceramic wiring board 115. It can suppress that a clearance gap arises.
  • the seal material 113 first packing
  • the ceramic wiring board 115 It is difficult to create a gap between the second packing and the ceramic wiring board 115, and the deterioration of the airtightness can be suppressed.
  • each of the above embodiments may be shared by a plurality of components, or the function of a plurality of components may be exhibited by one component.
  • at least a part of the configuration of each of the above embodiments may be added to or replaced with the configuration of the other above embodiments.
  • all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

[Problem] To provide: a gas sensor in which a wiring board and a casing are stacked and which is capable of suppressing the formation of a gap between the casing and the wiring board; and a method for manufacturing a gas sensor. [Solution] An aspect of the present invention provides a gas sensor provided with: a wiring board; a sensor element; a first packing; a first casing body; a plurality of bolts; and a plurality of nuts. This gas sensor has a structure in which respective members of the first casing body, the first packing, and the wiring board are pressed in a stacking direction by the elastic force of a first spring washer, and is configured such that the first packing abuts the wiring board even in areas between a plurality of wiring parts. Accordingly, this gas sensor can suppress the formation of a gap between the first packing and the wiring board in the areas between the plurality of wiring parts.

Description

ガスセンサおよびガスセンサの製造方法Gas sensor and gas sensor manufacturing method 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2018年2月21日に日本国特許庁に出願された日本国特許出願第2018-029031号に基づく優先権を主張するものであり、日本国特許出願第2018-029031号の全内容を参照により本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2018-029031 filed with the Japan Patent Office on February 21, 2018, and is based on Japanese Patent Application No. 2018-029031. The entire contents are incorporated herein by reference.
 本開示は、ガスセンサおよびガスセンサの製造方法に関する。 The present disclosure relates to a gas sensor and a method for manufacturing the gas sensor.
 被測定ガスに含まれる特定成分を検出するガスセンサとして、センサ素子をワイヤボンディング等で宙吊り固定した配線基板を備え、配線基板とケーシングとを積層した構成のガスセンサがある。また、このような構成のガスセンサとしては、例えば、配線基板をケーシング内に収容し、配線基板の一部をケーシング外に突出させた構成のガスセンサが知られている(特許文献1)。 As a gas sensor for detecting a specific component contained in a gas to be measured, there is a gas sensor having a wiring board in which a sensor element is suspended and fixed by wire bonding or the like, and a wiring board and a casing are stacked. As a gas sensor having such a configuration, for example, a gas sensor having a configuration in which a wiring board is accommodated in a casing and a part of the wiring board protrudes outside the casing is known (Patent Document 1).
 この技術では、ケーシング側面に配線基板の一部を突出させる矩形の孔が設けられ、この孔と配線基板との隙間をシール材で封止する構成を採用することができる。また、センサ素子を配線基板に宙吊り固定することで、センサ素子の熱容量や周囲の熱的影響を減らしてガスの検知精度や応答性を向上させることができる。 In this technique, a rectangular hole for projecting a part of the wiring board is provided on the side of the casing, and the gap between the hole and the wiring board can be sealed with a sealing material. Further, by suspending and fixing the sensor element to the wiring board, it is possible to improve the gas detection accuracy and responsiveness by reducing the heat capacity of the sensor element and the surrounding thermal influence.
特開平9-184817号公報Japanese Patent Laid-Open No. 9-184817
 しかし、配線基板の表面に配線部が形成されている場合、配線部の厚み分だけ基板表面に凹凸が生じるため、配線基板の一部をケーシング外に突出させた場合に、配線部の凹凸により配線基板とケーシングとの間に隙間が生じ、ケーシング内のガスがその隙間から漏れてセンサ素子による測定に影響を与える可能性がある。 However, when the wiring part is formed on the surface of the wiring board, unevenness is generated on the surface of the board by the thickness of the wiring part. Therefore, when a part of the wiring board protrudes from the casing, the unevenness of the wiring part There is a possibility that a gap is generated between the wiring board and the casing, and gas in the casing leaks from the gap and affects the measurement by the sensor element.
 また、ケーシングの外側に配線基板の一部を突出させない構成であっても、配線基板とケーシングとの間に隙間が生じた場合には、ケーシング内のガスがその隙間から漏れる可能性がある。 In addition, even in a configuration in which a part of the wiring board does not protrude outside the casing, if a gap is generated between the wiring board and the casing, gas in the casing may leak from the gap.
 そこで、本開示は、配線基板とケーシングとを積層した構成のガスセンサにおいて、ケーシングと配線基板との間に隙間が生じるのを抑制できるガスセンサおよびガスセンサの製造方法を提供することが望ましい。 Therefore, it is desirable that the present disclosure provide a gas sensor and a gas sensor manufacturing method capable of suppressing a gap from being generated between the casing and the wiring board in a gas sensor having a structure in which the wiring board and the casing are laminated.
 本開示の一態様は、配線基板と、センサ素子と、第1パッキンと、第1ケーシング体と、複数のボルトと、複数のナットと、を備えるガスセンサである。このガスセンサは、ボルト及びナットを用いて、少なくとも第1ケーシング体、第1パッキン、配線基板が固定された構成である。 One aspect of the present disclosure is a gas sensor including a wiring board, a sensor element, a first packing, a first casing body, a plurality of bolts, and a plurality of nuts. This gas sensor has a configuration in which at least a first casing body, a first packing, and a wiring board are fixed using bolts and nuts.
 配線基板は、最表面の少なくとも一部に複数の配線部が設けられている。センサ素子は、被測定ガスに含まれる特定成分を検出するガス検出部を有する。センサ素子は、配線基板に配置されると共に複数の配線部と電気的に接続される。 The wiring board is provided with a plurality of wiring portions on at least a part of the outermost surface. The sensor element has a gas detector that detects a specific component contained in the gas to be measured. The sensor element is disposed on the wiring board and electrically connected to the plurality of wiring portions.
 第1パッキンは、フッ素系樹脂を用いて構成されている。第1パッキンは、配線基板のうち配線部が設けられた最表面に積層される。第1パッキンは、センサ素子を内包する大きさの開口部が形成されている。第1パッキンは、環状である。 The first packing is made of a fluorine resin. A 1st packing is laminated | stacked on the outermost surface in which the wiring part was provided among the wiring boards. The first packing has an opening having a size that encloses the sensor element. The first packing is annular.
 第1ケーシング体は、第1パッキンのうちで配線基板とは反対側に積層されると共に、被測定ガスを流通するための第1流通部が少なくとも形成されている。第1ケーシング体は、金属製またはセラミック製である。 The first casing body is laminated on the side opposite to the wiring board in the first packing, and at least a first flow part for flowing the gas to be measured is formed. The first casing body is made of metal or ceramic.
 複数のボルトは、それぞれ、少なくとも第1ケーシング体、第1パッキン、配線基板を積層した積層体の各部材を積層方向に貫通するように設けられている。複数のナットは、複数のボルトのそれぞれに対して締め付けられる。 Each of the plurality of bolts is provided so as to penetrate each member of the laminated body in which at least the first casing body, the first packing, and the wiring board are laminated in the laminating direction. The plurality of nuts are tightened against each of the plurality of bolts.
 ボルトは、ボルト頭部と、軸部とを、備えている。ボルト頭部は、積層体における積層方向の一方側の外部に位置する。軸部は、ボルト頭部から積層体における積層方向の他方側に向けて突出すると共に、ボルト頭部よりも外径が小さい。軸部は、当該軸部の先端側に積層体の外部に配置されるナットが結合される。 The bolt has a bolt head and a shaft. The bolt head is located outside one side of the stack in the stacking direction. The shaft portion projects from the bolt head toward the other side in the stacking direction of the laminate, and has an outer diameter smaller than that of the bolt head. The shaft portion is coupled with a nut disposed outside the laminated body on the tip side of the shaft portion.
 当該ガスセンサは、さらに、スプリングワッシャを備えている。スプリングワッシャは、ボルト頭部と積層体との間、または、ナットと積層体との間の少なくとも一方に介在する。 The gas sensor further includes a spring washer. The spring washer is interposed between at least one of the bolt head and the laminated body or between the nut and the laminated body.
 第1パッキンは、複数の配線部と当接する面において、複数の配線部どうしの間の領域でも、配線基板と当接する状態で備えられる。 The first packing is provided in a state in which the first packing is in contact with the wiring board even in a region between the plurality of wiring parts on the surface in contact with the plurality of wiring parts.
 このガスセンサは、スプリングワッシャの弾性力によって、第1ケーシング体、第1パッキン、配線基板の各部材を積層方向に押圧する構造であるとともに、複数の配線部どうしの間の領域でも第1パッキンが配線基板と当接する構成である。これにより、このガスセンサは、複数の配線部どうしの間の領域で、第1パッキンと配線基板との間に隙間が生じることを抑制できる。 This gas sensor has a structure in which each member of the first casing body, the first packing, and the wiring board is pressed in the stacking direction by the elastic force of the spring washer, and the first packing is also formed in a region between the plurality of wiring portions. It is the structure which contacts a wiring board. Thereby, this gas sensor can suppress that a space | gap arises between a 1st packing and a wiring board in the area | region between several wiring parts.
 よって、このガスセンサによれば、配線基板と第1ケーシング体とを積層した構成のガスセンサにおいて、配線基板と第1ケーシング体との間(詳細には、第1パッキンと配線基板との間)に隙間が生じがたくなり、気密性の低下を抑制できる。また、このガスセンサによれば、フッ素系樹脂を用いて構成された第1パッキンを用いているため、第1ケーシング体が高温となる使用条件において、第1パッキンから悪影響ガス(ガス検出に影響を与えるガス)の放出が抑制され、気密性の低下を抑制する効果と相俟ってガス検出の精度を良好に得ることができる。 Therefore, according to this gas sensor, in the gas sensor having a configuration in which the wiring board and the first casing body are stacked, between the wiring board and the first casing body (specifically, between the first packing and the wiring board). It becomes difficult to generate a gap, and a decrease in airtightness can be suppressed. In addition, according to this gas sensor, since the first packing constituted by using a fluorine-based resin is used, an adverse gas (which affects gas detection is affected by the first packing) under use conditions in which the first casing body is at a high temperature. The gas detection accuracy can be satisfactorily obtained in combination with the effect of suppressing the decrease in airtightness.
 次に、上述のガスセンサにおいては、配線基板は、複数の配線部が設けられる最表面とは異なる最表面から外向きに突出する複数のリードピンを備えてもよい。複数のリードピンは、配線基板の内部で複数の配線部と電気的に接続されている。 Next, in the gas sensor described above, the wiring board may include a plurality of lead pins protruding outward from the outermost surface different from the outermost surface on which the plurality of wiring portions are provided. The plurality of lead pins are electrically connected to the plurality of wiring portions inside the wiring board.
 このガスセンサは、複数のリードピンを介して外部機器と接続できる。例えば、回路基板にガスセンサを積層配置する際に、複数のリードピンを回路基板と電気的に接続してもよい。この場合、第1パッキンが複数の配線部どうしの間の領域でも配線基板と当接することから、第1パッキンと配線基板との間に隙間が生じるのを抑制できる。 This gas sensor can be connected to external equipment via multiple lead pins. For example, a plurality of lead pins may be electrically connected to the circuit board when the gas sensors are stacked on the circuit board. In this case, since the first packing is in contact with the wiring board even in the region between the plurality of wiring portions, it is possible to suppress the occurrence of a gap between the first packing and the wiring board.
 次に、上述のガスセンサにおいては、スプリングワッシャは、ボルト頭部と積層体との間に設けられる第1スプリングワッシャと、ナットと積層体との間に設けられる第2スプリングワッシャと、を備えてもよい。 Next, in the gas sensor described above, the spring washer includes a first spring washer provided between the bolt head and the laminated body, and a second spring washer provided between the nut and the laminated body. Also good.
 このガスセンサは、スプリングワッシャが1本のボルトに対して2箇所に設けられることで、2個のスプリングワッシャ(第1スプリングワッシャおよび第2スプリングワッシャ)の弾性力によって、積層体(第1ケーシング体、第1パッキン、配線基板)の各部材を積層方向に押圧する構造である。このガスセンサは、複数の配線部どうしの間の領域でも第1パッキンが配線基板と当接する構成となりうる。これにより、複数の配線部どうしの間の領域で、第1パッキンと配線基板との間に隙間が生じることを抑制できる。 In this gas sensor, the spring washer is provided at two locations with respect to one bolt, so that the laminated body (first casing body) is obtained by the elastic force of the two spring washers (first spring washer and second spring washer). The first packing and the wiring board are pressed in the stacking direction. This gas sensor can be configured such that the first packing contacts the wiring board even in a region between the plurality of wiring portions. Thereby, it can suppress that a clearance gap produces between the 1st packing and a wiring board in the field between a plurality of wiring parts.
 次に、上述のガスセンサにおいては、積層体は、第2パッキンと、第2ケーシング体と、を備えてもよい。第2パッキンは、フッ素系樹脂を用いて構成され、配線基板のうち第1パッキンとは反対側に配置される。第2ケーシング体は、第2パッキンのうちで配線基板とは反対側に積層される。第2ケーシング体は、被測定ガスを流通するための第2流通部が少なくとも形成されている。第2ケーシング体は、金属製またはセラミック製である。 Next, in the gas sensor described above, the laminate may include a second packing and a second casing body. The second packing is configured using a fluorine-based resin, and is disposed on the opposite side of the wiring substrate from the first packing. A 2nd casing body is laminated | stacked on the opposite side to a wiring board among 2nd packing. The second casing body has at least a second circulation part for circulating the gas to be measured. The second casing body is made of metal or ceramic.
 配線基板は、最表面のうち第1パッキンが積層される第1最表面、および最表面のうち第2パッキンが積層される第2最表面のそれぞれに、複数の配線部が設けられている。第2パッキンは、複数の配線部と当接する面において、複数の配線部どうしの間の領域でも、配線基板と当接する状態で備えられる。 The wiring board is provided with a plurality of wiring portions on each of the first outermost surface of the outermost surface on which the first packing is laminated and the second outermost surface of the outermost surface on which the second packing is laminated. The second packing is provided in a state where the second packing is in contact with the wiring board even in a region between the plurality of wiring parts on the surface in contact with the plurality of wiring parts.
 このガスセンサは、スプリングワッシャの弾性力によって、積層体(第1ケーシング体、第1パッキン、配線基板、第2パッキン、第2ケーシング体)の各部材を積層方向に押圧する構造であるとともに、複数の配線部どうしの間の領域でも第1パッキン及び第2パッキンがそれぞれ配線基板と当接する構成である。これにより、複数の配線部どうしの間の領域で、第1パッキンと配線基板との間に隙間が生じることや、第2パッキンと配線基板との間に隙間が生じることを抑制できる。 This gas sensor has a structure in which each member of the laminated body (first casing body, first packing, wiring board, second packing, second casing body) is pressed in the laminating direction by the elastic force of the spring washer. The first packing and the second packing are in contact with the wiring board in the region between the wiring portions. Thereby, it can suppress that a clearance gap produces between a 1st packing and a wiring board in a field between a plurality of wiring parts, and a gap arises between a 2nd packing and a wiring board.
 よって、このガスセンサによれば、第1ケーシング体、第2ケーシング体、配線基板を積層した構成のガスセンサにおいて、第1パッキンと配線基板との間、および第2パッキンと配線基板との間に隙間が生じがたくなり、気密性の低下を抑制できる。また、このガスセンサによれば、フッ素系樹脂を用いて構成された第1、第2パッキンを用いているため、第1、第2ケーシング体が高温となる使用条件において、第1、第2パッキンからガスセンサのガス検出に影響を与えるガスの放出が抑制され、気密性の低下を抑制する効果と相俟ってガス検出の精度を良好に得ることができる。 Therefore, according to this gas sensor, in the gas sensor having a configuration in which the first casing body, the second casing body, and the wiring board are stacked, there is a gap between the first packing and the wiring board and between the second packing and the wiring board. Is less likely to occur, and deterioration of airtightness can be suppressed. Further, according to this gas sensor, since the first and second packings formed using the fluorine-based resin are used, the first and second packings are used under the use conditions in which the first and second casing bodies are at a high temperature. Thus, the release of gas that affects the gas detection of the gas sensor is suppressed, and in combination with the effect of suppressing the decrease in airtightness, the accuracy of gas detection can be obtained satisfactorily.
 本開示の他の一態様は、ガスセンサの製造方法であって、積層体形成工程と、第1締め付け工程と、熱付与工程と、第2締め付け工程と、を有するガスセンサの製造方法である。 Another aspect of the present disclosure is a method for manufacturing a gas sensor, which includes a stacked body forming step, a first fastening step, a heat application step, and a second fastening step.
 ガスセンサは、配線基板と、センサ素子と、第1パッキンと、第1ケーシング体と、複数のボルトと、複数のナットと、を備える。ガスセンサにおいては、ボルト及びナットを用いて少なくとも第1ケーシング体、第1パッキン、配線基板が固定される。 The gas sensor includes a wiring board, a sensor element, a first packing, a first casing body, a plurality of bolts, and a plurality of nuts. In the gas sensor, at least the first casing body, the first packing, and the wiring board are fixed using bolts and nuts.
 配線基板は、最表面の少なくとも一部に複数の配線部が設けられる。センサ素子は、被測定ガスに含まれる特定成分を検出するガス検出部を有する。センサ素子は、配線基板に配置されると共に複数の配線部と電気的に接続される。 The wiring board is provided with a plurality of wiring portions on at least a part of the outermost surface. The sensor element has a gas detector that detects a specific component contained in the gas to be measured. The sensor element is disposed on the wiring board and electrically connected to the plurality of wiring portions.
 第1パッキンは、フッ素系樹脂を用いて構成された部材である。第1パッキンは、配線基板のうち配線部が設けられた最表面に積層される。第1パッキンは、センサ素子を内包する大きさの開口部が形成されている。第1パッキンは、環状である。 The first packing is a member configured using a fluorine-based resin. A 1st packing is laminated | stacked on the outermost surface in which the wiring part was provided among the wiring boards. The first packing has an opening having a size that encloses the sensor element. The first packing is annular.
 第1ケーシング体は、第1パッキンのうちで配線基板とは反対側に積層されると共に、被測定ガスを流通するための第1流通部が少なくとも形成されている。第1ケーシング体は、金属製またはセラミック製である。 The first casing body is laminated on the side opposite to the wiring board in the first packing, and at least a first flow part for flowing the gas to be measured is formed. The first casing body is made of metal or ceramic.
 複数のボルトは、それぞれ、少なくとも第1ケーシング体、第1パッキン、配線基板を積層した積層体の各部材を積層方向に貫通するように設けられる。複数のナットは、複数のボルトのそれぞれに対して締め付けられる。ボルトは、ボルト頭部と軸部とを備える。ボルト頭部は、積層体における積層方向の一方側の外部に位置する。軸部は、ボルト頭部から積層体における積層方向の他方側に向けて突出すると共にボルト頭部よりも外径が小さい。軸部は、当該軸部の先端側に積層体の外部に配置されるナットが結合される。 Each of the plurality of bolts is provided so as to penetrate each member of the laminate in which at least the first casing body, the first packing, and the wiring substrate are laminated in the lamination direction. The plurality of nuts are tightened against each of the plurality of bolts. The bolt includes a bolt head portion and a shaft portion. The bolt head is located outside one side of the stack in the stacking direction. The shaft portion protrudes from the bolt head toward the other side in the stacking direction of the stacked body and has an outer diameter smaller than that of the bolt head. The shaft portion is coupled with a nut disposed outside the laminated body on the tip side of the shaft portion.
 ガスセンサは、さらに、ボルト頭部と積層体との間、または、ナットと積層体との間の少なくとも一方に介在するスプリングワッシャを備える。 The gas sensor further includes a spring washer interposed between at least one of the bolt head and the laminated body or between the nut and the laminated body.
 積層体形成工程では、第1ケーシング体、第1パッキン、配線基板の各部材を積層して積層体を形成する。第1締め付け工程では、ボルト頭部と積層体との間、または、ナットと積層体との間の少なくとも一方にスプリングワッシャを介在させるようにして、ボルトの軸部を積層体の各部材に対して貫通させ、軸部の先端側にナットを締め付け、各部材を仮固定する。 In the laminated body forming step, each member of the first casing body, the first packing, and the wiring board is laminated to form a laminated body. In the first tightening step, a spring washer is interposed between at least one of the bolt head and the laminated body or between the nut and the laminated body, and the bolt shaft portion is attached to each member of the laminated body. And tighten the nut on the tip side of the shaft to temporarily fix each member.
 熱付与工程では、第1締め付け工程の後に、第1パッキンが軟化する程度の熱を第1パッキンに与える。第2締め付け工程は、熱付与工程の後に、ボルトの軸部に締め付けられているナットを再度締め付け、各部材を固定してセンサ素子を積層体の内部に保持する。 In the heat application step, heat is applied to the first packing after the first tightening step to such an extent that the first packing is softened. In the second tightening step, after the heat application step, the nut fastened to the shaft portion of the bolt is tightened again to fix each member and hold the sensor element inside the laminate.
 このガスセンサの製造方法においては、締め付け工程を1回のみ実施する製造方法ではなく、2回にわたり締め付け工程を実施する。また、第1締め付け工程と第2締め付け工程との間に、第1パッキンが軟化する程度の熱を与えることで(熱付与工程)、第1パッキンと配線基板との密着性を向上できる。 In this gas sensor manufacturing method, the tightening process is performed twice, not the manufacturing method in which the tightening process is performed only once. Moreover, the adhesiveness of a 1st packing and a wiring board can be improved by giving the heat | fever that a 1st packing softens between a 1st clamping process and a 2nd clamping process (heat provision process).
 また、このガスセンサの製造方法では、第1締め付け工程において、スプリングワッシャを介在させている。このため、この製造方法で製造されたガスセンサは、スプリングワッシャの弾性力によって、第1ケーシング体、第1パッキン、配線基板の各部材を積層方向に押圧する構造である。このガスセンサは、複数の配線部どうしの間の領域でも第1パッキンが配線基板と当接する構成となりうる。これにより、複数の配線部どうしの間の領域で、第1パッキンと配線基板との間に隙間が生じることを抑制できる。 Further, in this gas sensor manufacturing method, a spring washer is interposed in the first tightening step. For this reason, the gas sensor manufactured by this manufacturing method is a structure which presses each member of a 1st casing body, a 1st packing, and a wiring board in the lamination direction with the elastic force of a spring washer. This gas sensor can be configured such that the first packing contacts the wiring board even in a region between the plurality of wiring portions. Thereby, it can suppress that a clearance gap produces between the 1st packing and a wiring board in the field between a plurality of wiring parts.
 よって、この製造方法によれば、配線基板と第1ケーシング体とを積層した構成のガスセンサを製造するにあたり、配線基板と第1ケーシング体との間(詳細には、第1パッキンと配線基板との間)に隙間が生じがたいガスセンサを製造することができ、ガスセンサにおける気密性の低下を抑制できる。また、この製造方法によって得られるガスセンサでは、フッ素系樹脂を用いて構成された第1パッキンを用いているため、第1ケーシング体が高温となる使用条件において、第1パッキンからガスセンサのガス検出に影響を与えるガスの放出が抑制され、気密性の低下を抑制する効果と相俟ってガス検出の精度を良好に得ることができる。 Therefore, according to this manufacturing method, in manufacturing a gas sensor having a configuration in which the wiring board and the first casing body are laminated, the gap between the wiring board and the first casing body (specifically, the first packing and the wiring board) A gas sensor in which a gap is difficult to occur can be manufactured, and a decrease in hermeticity in the gas sensor can be suppressed. In addition, since the gas sensor obtained by this manufacturing method uses the first packing made of a fluorine-based resin, the gas sensor can detect the gas from the first packing under use conditions in which the first casing body is at a high temperature. The release of the influential gas is suppressed, and the accuracy of gas detection can be obtained well in combination with the effect of suppressing the decrease in airtightness.
ガスセンサの内部構造を表す断面図である。It is sectional drawing showing the internal structure of a gas sensor. ガスセンサの分解斜視図である。It is a disassembled perspective view of a gas sensor. 検知部の斜視図である。It is a perspective view of a detection part. 検知部の分解斜視図である。It is a disassembled perspective view of a detection part. 変換部の分解斜視図である。It is a disassembled perspective view of a conversion part. 検知部のうち、複数の配線部、ボルト、ナットが配置される部分の積層構造を表した断面図である。It is sectional drawing showing the laminated structure of the part by which a some wiring part, a volt | bolt, and a nut are arrange | positioned among detection parts. 検知部を製造する際の各工程(積層体形成工程、第1締め付け工程、熱付与工程、第2締め付け工程)を表したフローチャートである。It is a flowchart showing each process (laminated body formation process, 1st clamping process, heat provision process, 2nd clamping process) at the time of manufacturing a detection part. 積層体形成工程および第2締め付け工程のそれぞれにおける第1板部、シール材、セラミック配線基板、配線部の拡大断面を表した説明図である。It is explanatory drawing showing the expanded cross section of the 1st board part in each of a laminated body formation process and a 2nd clamping process, a sealing material, a ceramic wiring board, and a wiring part. 3種類の締結状態のそれぞれについて冷熱サイクル回数に対するリーク量の測定結果を表した説明図である。It is explanatory drawing showing the measurement result of the leak amount with respect to the frequency | count of a thermal cycle about each of three types of fastening states. 第2検知部の分解斜視図である。It is a disassembled perspective view of a 2nd detection part. セラミック配線基板の斜視図である。It is a perspective view of a ceramic wiring board. 第2検知部のうち、複数の配線部、ボルト、ナットが配置される部分の積層構造を表した断面図である。It is sectional drawing showing the laminated structure of the part by which a some wiring part, a volt | bolt, and a nut are arrange | positioned among 2nd detection parts. 第2検知部に関して、積層体形成工程および第2締め付け工程のそれぞれにおけるケーシング体、シール材、セラミック配線基板、配線部の拡大断面を表した説明図である。It is explanatory drawing showing the expanded cross section of the casing body in each of a laminated body formation process and a 2nd clamping process, a sealing material, a ceramic wiring board, and a wiring part regarding a 2nd detection part.
 1…ガスセンサ(呼気センサ)、10…検知部、10a…ボルト、10a1…ボルト頭部、10a2…軸部、10b…ナット、10c…第1スプリングワッシャ、10d…第2スプリングワッシャ、11…第1板部、12…第2板部、13…シール材(ガスケット)、14…シール材(ガスケット)、15…セラミック配線基板、15d…配線部、15e…基端部、15h…開口部、15p…導電パッド部、19…カセットコネクタ、20…素子部、21…基板、22…第1ヒータ、23…検知素子、30…変換部、51…第2ヒータ、60…ガス流通管、110…第2検知部、111…ケーシング体、113…シール材(ガスケット)、115…セラミック配線基板、115d…配線部、115p…導電パッド部、120…第2素子部、G…呼気(被測定ガス)。 DESCRIPTION OF SYMBOLS 1 ... Gas sensor (exhalation sensor), 10 ... Detection part, 10a ... Bolt, 10a1 ... Bolt head, 10a2 ... Shaft part, 10b ... Nut, 10c ... 1st spring washer, 10d ... 2nd spring washer, 11 ... 1st Plate part, 12 ... 2nd plate part, 13 ... Sealing material (gasket), 14 ... Sealing material (gasket), 15 ... Ceramic wiring board, 15d ... Wiring part, 15e ... Base end part, 15h ... Opening part, 15p ... Conductive pad section, 19 ... cassette connector, 20 ... element section, 21 ... substrate, 22 ... first heater, 23 ... sensing element, 30 ... conversion section, 51 ... second heater, 60 ... gas flow pipe, 110 ... second Detecting part, 111 ... casing body, 113 ... sealing material (gasket), 115 ... ceramic wiring board, 115d ... wiring part, 115p ... conductive pad part, 120 ... second element part, ... breath (the gas to be measured).
 以下、本開示が適用された実施形態について、図面を用いて説明する。 Hereinafter, embodiments to which the present disclosure is applied will be described with reference to the drawings.
 尚、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。 In addition, this indication is not limited to the following embodiment at all, and it cannot be overemphasized that various forms may be taken as long as it belongs to the technical scope of this indication.
 [1.第1実施形態]
 [1-1.全体構成]
 第1実施形態として、ガスセンサ1(呼気センサ1)について説明する。
[1. First Embodiment]
[1-1. overall structure]
As a first embodiment, a gas sensor 1 (exhalation sensor 1) will be described.
 ガスセンサ1は、例えば、喘息診断のために、呼気G(被測定ガスG)中の極低濃度(数ppb~数百ppbレベル)のNOを測定する用途に用いられる。 The gas sensor 1 is used, for example, for the purpose of measuring an extremely low concentration (several ppb to several hundred ppb level) of NO in the breath G (measured gas G) for asthma diagnosis.
 図1および図2に示すように、ガスセンサ1は、本体部90と、検知部10と、変換部30と、ガス流通管60と、を備える。 As shown in FIGS. 1 and 2, the gas sensor 1 includes a main body 90, a detection unit 10, a conversion unit 30, and a gas circulation pipe 60.
 本体部90は、箱状に形成されたハウジングとして備えられている。本体部90は、樹脂材料を用いて構成される。本体部90は、検知部10、変換部30、ガス流通管60を内部に収容する。 The main body 90 is provided as a box-shaped housing. The main body 90 is configured using a resin material. The main body 90 accommodates the detection unit 10, the conversion unit 30, and the gas flow pipe 60 therein.
 本体部90は、図2に示すように、第1部材91と、第2部材92と、を備える。第1部材91および第2部材92は、ネジ93により一体に組み付けられることで、本体部90を形成する。 The main body 90 includes a first member 91 and a second member 92, as shown in FIG. The first member 91 and the second member 92 are integrally assembled with a screw 93 to form the main body 90.
 本体部90は、自身の内部に、検知部用空間90a、変換部用空間90b、流通管用空間90cを備える。検知部用空間90aは、検知部10が配置される空間である。変換部用空間90bは、変換部30が配置される空間である。流通管用空間90cは、ガス流通管60が配置される空間である。 The main body 90 includes a detection unit space 90a, a conversion unit space 90b, and a distribution pipe space 90c. The detection unit space 90a is a space in which the detection unit 10 is arranged. The conversion unit space 90b is a space in which the conversion unit 30 is arranged. The flow pipe space 90c is a space in which the gas flow pipe 60 is disposed.
 検知部10は、筒状のカセットコネクタ19が接続されている。カセットコネクタ19は、リード線19aおよび接続コネクタ19bを介して外部機器(図示省略)に接続可能に構成されている。検知部10から出力される検知信号は、カセットコネクタ19からリード線19aおよび接続コネクタ19bを介して外部機器に出力される。検知部10は、通電により発熱する検知用ヒータ(図示省略)を備えている。検知用ヒータへのヒータ電力は、外部機器から接続コネクタ19b、リード線19a、カセットコネクタ19を介して検知用ヒータに供給される。 The detection unit 10 is connected to a cylindrical cassette connector 19. The cassette connector 19 is configured to be connectable to an external device (not shown) via a lead wire 19a and a connection connector 19b. A detection signal output from the detection unit 10 is output from the cassette connector 19 to an external device via the lead wire 19a and the connection connector 19b. The detection unit 10 includes a detection heater (not shown) that generates heat when energized. Heater power to the detection heater is supplied from an external device to the detection heater via the connection connector 19b, the lead wire 19a, and the cassette connector 19.
 変換部30は、筒状のカセットコネクタ39が接続されている。カセットコネクタ39は、リード線39aおよび接続コネクタ39bを介して外部機器(図示省略)に接続可能に構成されている。変換部30は、後述するが、通電による発熱する第2ヒータ51(図5参照)を備えている。第2ヒータ51へのヒータ電力は、外部機器から接続コネクタ39b、リード線39a、カセットコネクタ39を介して第2ヒータ51に供給される。 The conversion unit 30 is connected to a cylindrical cassette connector 39. The cassette connector 39 is configured to be connectable to an external device (not shown) via a lead wire 39a and a connection connector 39b. As will be described later, the conversion unit 30 includes a second heater 51 (see FIG. 5) that generates heat when energized. Heater power to the second heater 51 is supplied from the external device to the second heater 51 via the connection connector 39b, the lead wire 39a, and the cassette connector 39.
 検知部10は、変換後の呼気Gを導入するための導入管12aと、検知後の呼気Gを排出するための排出管11aとを備えている。変換部30は、呼気Gを導入するためのパイプ31a(導入管31aともいう)と、変換後の呼気Gを排出するためのパイプ32b(排出管32bともいう)と、を備えている。導入管31aおよび排出管32bは、それぞれ金属材料(例えば、ステンレス)で構成されている。 The detection unit 10 includes an introduction pipe 12a for introducing the exhaled breath G after conversion, and a discharge pipe 11a for discharging the exhaled breath G after detection. The conversion unit 30 includes a pipe 31a (also referred to as an introduction pipe 31a) for introducing exhalation G, and a pipe 32b (also referred to as an exhaust pipe 32b) for discharging the exhaled breath G after conversion. The introduction pipe 31a and the discharge pipe 32b are each made of a metal material (for example, stainless steel).
 図2に示すように、呼気Gは、副配管85,84,83を介して変換部30に導入され、変換部30を出た後、ガス流通管60を経由して検知部10に導入される。呼気G中の特定成分が検知部10で検出された後、呼気Gは、検知部10に接続された副配管81を介して外部に排出される。 As shown in FIG. 2, exhaled gas G is introduced into the conversion unit 30 through the sub-pipes 85, 84, and 83, exits the conversion unit 30, and then is introduced into the detection unit 10 through the gas distribution pipe 60. The After the specific component in the exhalation G is detected by the detection unit 10, the exhalation G is discharged to the outside through the auxiliary pipe 81 connected to the detection unit 10.
 ガス流通管60は、全体がフッ素を含有する高分子材料(フッ素ゴム、フルオロエラストマーなど)で形成されたチューブである。ガス流通管60の入口端部60aは、変換部30の排出管32bに接続され、ガス流通管60の出口端部60bは、検知部10の導入管12aに接続されている。つまり、ガス流通管60は、変換部30と検知部10との間における呼気Gのガス流路を構成する。 The gas distribution pipe 60 is a tube made entirely of a polymer material (fluorine rubber, fluoroelastomer, etc.) containing fluorine. An inlet end 60 a of the gas flow pipe 60 is connected to the discharge pipe 32 b of the conversion unit 30, and an outlet end 60 b of the gas flow pipe 60 is connected to the introduction pipe 12 a of the detection unit 10. That is, the gas flow pipe 60 constitutes a gas flow path for the exhalation G between the conversion unit 30 and the detection unit 10.
 図1および図2に示すように、ガスセンサ1は、本体部90の内部に、第1断熱材71、第2断熱材72、第3断熱材73を備える。第1断熱材71、第2断熱材72、第3断熱材73は、例えばガラス繊維を用いて構成される。 1 and 2, the gas sensor 1 includes a first heat insulating material 71, a second heat insulating material 72, and a third heat insulating material 73 inside the main body 90. The 1st heat insulating material 71, the 2nd heat insulating material 72, and the 3rd heat insulating material 73 are comprised, for example using glass fiber.
 第1断熱材71および第2断熱材72は、変換部用空間90bに配置される。第1断熱材71は、変換部30の上側、横側、下側に配置される形状であり、変換部30と本体部90とを断熱するために備えられている。第2断熱材72は、板状であり、第1断熱材71の下側に配置されている。第3断熱材73は、検知部用空間90aに配置される。第3断熱材73は、板状であり、検知部10の下側に配置されて、検知部10と変換部用空間90bとを断熱するために備えられている。 The 1st heat insulating material 71 and the 2nd heat insulating material 72 are arrange | positioned in the space 90b for conversion parts. The 1st heat insulating material 71 is a shape arrange | positioned at the upper side of the conversion part 30, a horizontal side, and the lower side, and is provided in order to insulate the conversion part 30 and the main-body part 90. FIG. The second heat insulating material 72 has a plate shape and is disposed below the first heat insulating material 71. The 3rd heat insulating material 73 is arrange | positioned in the space 90a for detection parts. The 3rd heat insulating material 73 is plate shape, is arrange | positioned under the detection part 10, and is equipped in order to insulate the detection part 10 and the space 90b for conversion parts.
 [1-2.検知部]
 図3および図4に示すように、検知部10は、第1板部11と、シール材13(ガスケット13)と、セラミック配線基板15と、シール材14(ガスケット14)と、第2板部12と、がこの順に積層されて構成されている。
[1-2. Detection unit]
As shown in FIGS. 3 and 4, the detection unit 10 includes a first plate portion 11, a sealing material 13 (gasket 13), a ceramic wiring substrate 15, a sealing material 14 (gasket 14), and a second plate portion. 12 are laminated in this order.
 第1板部11は、金属材料(例えば、ステンレス)で形成されており、呼気Gを排出するための排出管11aを備える。第2板部12は、金属材料(例えば、ステンレス)で形成されており、呼気Gを導入するための導入管12aを備える。シール材13、14は、それぞれ矩形枠状であり、フッ素系樹脂(例えば、フッ素ゴム、フッ素化された炭化水素ポリマーなど)を用いて構成されている。セラミック配線基板15は、矩形板状の中央に形成される開口部15hと、矩形板状の一辺から突出する狭幅の基端部15eと、を備える。 The first plate part 11 is made of a metal material (for example, stainless steel) and includes a discharge pipe 11a for discharging the exhalation G. The 2nd board part 12 is formed with the metal material (for example, stainless steel), and is provided with the inlet tube 12a for introducing the exhalation G. Each of the sealing materials 13 and 14 has a rectangular frame shape, and is configured using a fluorine-based resin (for example, fluorine rubber, fluorinated hydrocarbon polymer, or the like). The ceramic wiring board 15 includes an opening 15h formed at the center of the rectangular plate shape and a narrow base end portion 15e protruding from one side of the rectangular plate shape.
 検知部10は、素子部20と、通電部材16,17と、を備えている。素子部20は、セラミック配線基板15の開口部15hの内部に配置される。通電部材16,17は、導電性材料で形成された部材であり、素子部20を開口部15hに宙吊り固定している。 The detection unit 10 includes an element unit 20 and current-carrying members 16 and 17. The element unit 20 is disposed inside the opening 15 h of the ceramic wiring substrate 15. The energizing members 16 and 17 are members formed of a conductive material, and the element unit 20 is suspended and fixed in the opening 15h.
 第1板部11、シール材13、セラミック配線基板15、シール材14、第2板部12をこの順に積層し、ボルト10aおよびナット10bを用いて締め付け固定することで、第1板部11と第2板部12との間でシール材13、14が押圧されてセラミック配線基板15がシールされる。なお、シール材13、14は、それぞれ、素子部20を内包する大きさの開口部13a,14aを備えている。 The first plate portion 11, the sealing material 13, the ceramic wiring substrate 15, the sealing material 14, and the second plate portion 12 are laminated in this order, and are fastened and fixed using bolts 10 a and nuts 10 b, The sealing members 13 and 14 are pressed between the second plate portion 12 and the ceramic wiring substrate 15 is sealed. The sealing materials 13 and 14 include openings 13a and 14a each having a size that encloses the element portion 20, respectively.
 ボルト10aは、ボルト頭部10a1と、軸部10a2と、を備える。ボルト頭部10a1は、第1板部11の外部に配置される。軸部10a2は、ボルト頭部10a1よりも外径が小さく、ナット10bが結合される形態で構成されている。軸部10a2は、ボルト頭部10a1から第2板部12に向けて突出する。軸部10a2の先端側には、第2板部12の外部に配置されるナット10bが結合される。 The bolt 10a includes a bolt head portion 10a1 and a shaft portion 10a2. The bolt head portion 10 a 1 is disposed outside the first plate portion 11. The shaft portion 10a2 has a smaller outer diameter than the bolt head portion 10a1, and is configured in such a manner that the nut 10b is coupled. The shaft portion 10a2 protrudes from the bolt head portion 10a1 toward the second plate portion 12. A nut 10b disposed outside the second plate portion 12 is coupled to the distal end side of the shaft portion 10a2.
 軸部10a2のうちボルト頭部10a1と第1板部11との間には、第1スプリングワッシャ10cが挿通されている。軸部10a2のうち、ナット10bと第2板部12との間に第2スプリングワッシャ10dが挿通されている。 The first spring washer 10c is inserted between the bolt head portion 10a1 and the first plate portion 11 in the shaft portion 10a2. A second spring washer 10d is inserted between the nut 10b and the second plate portion 12 in the shaft portion 10a2.
 図6に示すように、検知部10においては、セラミック配線基板15の表面のうち複数の配線部15dどうしの間に、弾性変形したシール材13、14が隙間無く当接する。これにより、検知部10は、第1板部11とセラミック配線基板15との間、および第2板部12とセラミック配線基板15との間がそれぞれシール(封止)される構造となり、開口部15hと外部との間でのガス漏洩が抑制できる。 As shown in FIG. 6, in the detection unit 10, the elastically deformed sealing materials 13 and 14 are in contact with each other between the plurality of wiring units 15 d on the surface of the ceramic wiring substrate 15 without any gap. As a result, the detection unit 10 has a structure in which the space between the first plate portion 11 and the ceramic wiring substrate 15 and the space between the second plate portion 12 and the ceramic wiring substrate 15 are sealed (sealed). Gas leakage between 15h and the outside can be suppressed.
 検知部10は、呼気Gを導入管12aから導入し、呼気Gが素子部20に接触して特定成分の濃度を検出した後、呼気Gを排出管11aから外部に排出する構成である。 The detection unit 10 is configured to introduce the exhalation G from the introduction tube 12a, and after the exhalation G contacts the element unit 20 to detect the concentration of a specific component, the exhalation G is discharged from the discharge tube 11a to the outside.
 素子部20は、矩形板状の基板21と、基板21の上面(図4の上方に向く面)側に配置された第1ヒータ22と、基板21の下面側に配置された検知素子23と、を有している。素子部20は、検知素子23と第1ヒータ22が基板21の上下に積層された一体構造となっている。 The element unit 20 includes a rectangular plate-shaped substrate 21, a first heater 22 disposed on the upper surface (surface facing upward in FIG. 4) side of the substrate 21, and a detection element 23 disposed on the lower surface side of the substrate 21. ,have. The element unit 20 has an integrated structure in which the detection element 23 and the first heater 22 are stacked on the top and bottom of the substrate 21.
 検知素子23は、変換部30を通過した呼気Gに接触すると共に呼気G中のNOの濃度に応じて電気的特性が変化する。第1ヒータ22は、通電により発熱することで、検知素子23を動作温度である第1温度に加熱する。検知素子23の出力端子、及び第1ヒータ22の通電端子は、通電部材16,17を介してセラミック配線基板15のリード部に電気的に接続されている。なお、基板21のうち第1ヒータ22が配置される面には、第1ヒータ22の温度を測定するための温度センサが所定のパターンを有する形態で配置されている。 The sensing element 23 comes into contact with the exhalation G that has passed through the conversion unit 30 and changes in electrical characteristics according to the concentration of NO 2 in the exhalation G. The 1st heater 22 heats detection element 23 to the 1st temperature which is operating temperature by generating heat by energization. The output terminal of the detection element 23 and the energization terminal of the first heater 22 are electrically connected to the lead portion of the ceramic wiring substrate 15 via the energization members 16 and 17. In addition, the temperature sensor for measuring the temperature of the 1st heater 22 is arrange | positioned on the surface where the 1st heater 22 is arrange | positioned among the board | substrates 21 with the form which has a predetermined pattern.
 基板21は、例えばセラミック基板とすることができる。検知素子23は、例えば固体電解質体と、固体電解質体の表面に配置された異なる材料で構成された一対の電極を用いた混成電位型のセンサ(窒素酸化物センサ)として形成することができる。第1ヒータ22は、蛇行状をなすパターンとして形成することができる。なお、検知素子23としては、金属酸化物半導体と一対の電極とを備える抵抗変化型センサを適用してもよい。 The substrate 21 can be a ceramic substrate, for example. The sensing element 23 can be formed, for example, as a mixed potential sensor (nitrogen oxide sensor) using a solid electrolyte body and a pair of electrodes made of different materials disposed on the surface of the solid electrolyte body. The first heater 22 can be formed as a meandering pattern. In addition, as the detection element 23, you may apply the resistance change type sensor provided with a metal oxide semiconductor and a pair of electrode.
 セラミック配線基板15の基端部15eの表面および裏面には、導電パッド部15pが複数配置されている。複数の導電パッド部15pは、それぞれリード部および通電部材16,17を介して、検知素子23および第1ヒータ22に電気的に接続される。なお、セラミック配線基板15の裏面側の導電パッド部15pについては、図示を省略している。 A plurality of conductive pad portions 15p are arranged on the front and back surfaces of the base end portion 15e of the ceramic wiring substrate 15. The plurality of conductive pad portions 15p are electrically connected to the detection element 23 and the first heater 22 via the lead portions and the energization members 16 and 17, respectively. The conductive pad portion 15p on the back side of the ceramic wiring board 15 is not shown.
 検知素子23から出力された電気信号は、セラミック配線基板15の裏面側に形成された導電パッド部を介してカセットコネクタ19に出力され、カセットコネクタ19を介して外部機器に出力される。外部機器から供給された電力は、カセットコネクタ19を介してセラミック配線基板15の表面側に形成された導電パッド部15pに供給され、その導電パッド部15pを介して第1ヒータ22に供給される。これにより、第1ヒータ22への通電が行われ、第1ヒータ22が発熱する。 The electrical signal output from the detection element 23 is output to the cassette connector 19 via the conductive pad portion formed on the back surface side of the ceramic wiring substrate 15, and is output to the external device via the cassette connector 19. The electric power supplied from the external device is supplied to the conductive pad portion 15p formed on the surface side of the ceramic wiring substrate 15 via the cassette connector 19, and is supplied to the first heater 22 via the conductive pad portion 15p. . Thereby, electricity supply to the 1st heater 22 is performed and the 1st heater 22 generates heat.
 [1-3.変換部]
 図5に示すように、変換部30は、矩形板状の上蓋31と、矩形枠状のスペーサ33a1と、触媒41が自身の両面に塗布形成された矩形板状の上側触媒支持部35a1と、スペーサ33a2と、触媒42が自身の片面(図の上側に向く面)に塗布形成された矩形板状の上側触媒支持部35b1と、矩形板状の一辺から狭幅の基端部50eが突出するヒータ基板50と、触媒42が自身の片面(図の下側を向く面)に塗布形成された矩形板状の下側触媒支持部35b2と、スペーサ33a3と、触媒41が自身の両面に塗布形成された矩形板状の下側触媒支持部35a2と、スペーサ33a4と、矩形板状の下蓋32とが、この順で積層して構成されている。
[1-3. Conversion unit]
As shown in FIG. 5, the conversion unit 30 includes a rectangular plate-shaped upper lid 31, a rectangular frame-shaped spacer 33 a 1, a rectangular plate-shaped upper catalyst support unit 35 a 1 in which the catalyst 41 is applied and formed on both surfaces thereof, A spacer 33a2, a rectangular plate-shaped upper catalyst support portion 35b1 on which the catalyst 42 is applied and formed on one surface (the surface facing the upper side in the figure), and a narrow base end portion 50e protrudes from one side of the rectangular plate shape. The heater substrate 50, the lower catalyst support part 35b2 having a rectangular plate shape on which the catalyst 42 is applied and formed on one side (the side facing the lower side in the figure), the spacer 33a3, and the catalyst 41 are applied and formed on both sides. The rectangular plate-shaped lower catalyst support portion 35a2, the spacer 33a4, and the rectangular plate-shaped lower lid 32 are laminated in this order.
 スペーサ33a1~33a4は同一形状であり、まとめてスペーサ33aとも表記する。上側触媒支持部35a1および下側触媒支持部35a2は同一形状であり、まとめて触媒支持部35aとも表記する。上側触媒支持部35b1および下側触媒支持部35b2は同一形状であり、まとめて触媒支持部35bとも表記する。 The spacers 33a1 to 33a4 have the same shape and are collectively referred to as the spacer 33a. The upper catalyst support part 35a1 and the lower catalyst support part 35a2 have the same shape, and are collectively referred to as the catalyst support part 35a. The upper catalyst support portion 35b1 and the lower catalyst support portion 35b2 have the same shape, and are collectively referred to as the catalyst support portion 35b.
 各部材31、32、33a、35a、35b、50は、例えばセラミックを用いて構成されており、各部材の間は、例えばガラスまたは無機系の接着剤層を介して気密に接着されて積層されている。 Each member 31, 32, 33 a, 35 a, 35 b, 50 is made of, for example, ceramic, and the members are laminated in an airtight manner via, for example, a glass or inorganic adhesive layer. ing.
 上蓋31は、矩形板の一部に設けた貫通孔(図示省略)に、貫通孔に沿って延びるパイプ31a(導入管31a)を取付けて構成されている。パイプ31aは、貫通孔から外部に立ち上がった後、上蓋31の板面に沿って90度曲がり、その屈曲した一端はヒータ基板50の基端部50eへ向けて延びている。 The upper lid 31 is configured by attaching a pipe 31a (introduction pipe 31a) extending along the through hole to a through hole (not shown) provided in a part of the rectangular plate. The pipe 31 a rises to the outside from the through hole, then bends 90 degrees along the plate surface of the upper lid 31, and one bent end extends toward the base end portion 50 e of the heater substrate 50.
 下蓋32は、矩形板の一部に設けた貫通孔32aと、貫通孔32aから延びるパイプ32b(排出管32b)と、を備えている。パイプ32bは、貫通孔32aから外部に立ち上がった後、下蓋32の板面に沿って90度曲がり、その屈曲した一端はヒータ基板50の基端部50eとは反対方向へ向けて延びている。 The lower lid 32 includes a through hole 32a provided in a part of the rectangular plate, and a pipe 32b (discharge pipe 32b) extending from the through hole 32a. The pipe 32 b rises outside from the through hole 32 a, and then bends 90 degrees along the plate surface of the lower lid 32, and one bent end extends in a direction opposite to the base end portion 50 e of the heater substrate 50. .
 本実施形態では、上蓋31に取り付けられたパイプ31aが呼気Gの導入管をなし、パイプ32bが排出管をなしている。 In the present embodiment, the pipe 31a attached to the upper lid 31 forms an exhalation G introduction pipe, and the pipe 32b forms an exhaust pipe.
 上側触媒支持部35a1の両面には、それぞれスペーサ33a1、33a2の内部空間の内側に相当する位置に、それぞれ触媒41が略矩形状に塗布形成されている。上側触媒支持部35a1は、触媒41の一辺に隣接する領域にスリット状の開口部35sを有している。パイプ31aから導入された呼気Gは、スペーサ33a1の内部空間で上側の触媒41と接触した後、開口部35sを通ってスペーサ33a2の内部空間で下側の触媒41と接触する。 On both surfaces of the upper catalyst support portion 35a1, the catalyst 41 is applied and formed in a substantially rectangular shape at a position corresponding to the inside of the internal space of the spacers 33a1 and 33a2. The upper catalyst support portion 35a1 has a slit-shaped opening 35s in a region adjacent to one side of the catalyst 41. The exhaled gas G introduced from the pipe 31a contacts the upper catalyst 41 in the inner space of the spacer 33a1, and then contacts the lower catalyst 41 in the inner space of the spacer 33a2 through the opening 35s.
 上側触媒支持部35b1の片面(図の上側に向く面)には、スペーサ33a2の内部空間の内側に相当する位置に、触媒42が略矩形状に塗布形成されている。上側触媒支持部35b1は、触媒42の一辺(図の斜め右上側)の中央に丸穴状の開口部35hを有している。呼気Gは、スペーサ33a2の内部空間で触媒42と接触した後、開口部35hを通って下方へ流れる。 The catalyst 42 is applied and formed in a substantially rectangular shape on one side of the upper catalyst support 35b1 (the surface facing the upper side in the figure) at a position corresponding to the inside of the internal space of the spacer 33a2. The upper catalyst support portion 35b1 has a round hole-shaped opening 35h at the center of one side of the catalyst 42 (obliquely upper right side in the figure). The exhaled gas G contacts the catalyst 42 in the internal space of the spacer 33a2, and then flows downward through the opening 35h.
 上側触媒支持部35b1の反対面はヒータ基板50に接触する。ヒータ基板50の表面に形成された蛇行状のパターンを有する第2ヒータ51の発熱に伴い、ヒータ基板50を介して上側触媒支持部35b1および触媒42が、第1温度とは異なる第2温度に加熱される。ヒータ基板50の裏面には、第2ヒータ51の加熱温度を検出するための温度センサ(図示せず)が所定のパターンを有する形態で配置されている。ヒータ基板50は、開口部35hと重なる丸穴状の開口部50hを備える。開口部35hを通った呼気Gは、開口部50hを介して下方へ流れる。 The opposite surface of the upper catalyst support portion 35b1 is in contact with the heater substrate 50. As the second heater 51 having a meandering pattern formed on the surface of the heater substrate 50 generates heat, the upper catalyst support portion 35b1 and the catalyst 42 are brought to a second temperature different from the first temperature via the heater substrate 50. Heated. On the back surface of the heater substrate 50, a temperature sensor (not shown) for detecting the heating temperature of the second heater 51 is arranged in a form having a predetermined pattern. The heater substrate 50 includes a round hole-shaped opening 50 h that overlaps the opening 35 h. The exhalation G that has passed through the opening 35h flows downward through the opening 50h.
 触媒42の加熱に伴い、触媒42が面しているスペーサ33a2の内部空間の呼気G、ひいてはスペーサ33a2に面している触媒41も加熱される。触媒41の熱は上側触媒支持部35a1から反対面(上面)の触媒41にも伝わる。 As the catalyst 42 is heated, the exhalation G in the internal space of the spacer 33a2 facing the catalyst 42, and thus the catalyst 41 facing the spacer 33a2 is also heated. The heat of the catalyst 41 is also transmitted from the upper catalyst support portion 35a1 to the catalyst 41 on the opposite surface (upper surface).
 触媒41、42は、呼気Gに含まれる第1ガス成分を第2ガス成分に変換し、例えば呼気G中のNOをNOに変換する公知の触媒材料を用いることができる。触媒41、42は、呼気G中のNOとNOとの分圧比を調整する。 As the catalysts 41 and 42, a known catalyst material that converts the first gas component contained in the expiration gas G into the second gas component, for example, converts NO in the expiration gas G into NO 2 can be used. The catalysts 41 and 42 adjust the partial pressure ratio between NO and NO 2 in the exhalation G.
 ヒータ基板50の基端部50eの表面には、それぞれ導電パッド部50pが複数配置されている。複数の導電パッド部50pは、それぞれリード部を介して第2ヒータ51、温度センサ(図示せず)に電気的に接続される。 A plurality of conductive pad portions 50p are disposed on the surface of the base end portion 50e of the heater substrate 50, respectively. The plurality of conductive pad portions 50p are electrically connected to the second heater 51 and a temperature sensor (not shown) through lead portions, respectively.
 外部機器から供給された電力は、カセットコネクタ39を介してヒータ基板50の表面側に形成された導電パッド部50pに供給され、その導電パッド部50pを介して第2ヒータ51に供給される。これにより、第2ヒータ51への通電が行われ、第2ヒータ51が発熱する。 The electric power supplied from the external device is supplied to the conductive pad portion 50p formed on the surface side of the heater substrate 50 through the cassette connector 39, and is supplied to the second heater 51 through the conductive pad portion 50p. Thereby, electricity supply to the 2nd heater 51 is performed and the 2nd heater 51 generates heat.
 ヒータ基板50の下面(図の下側に向く面)に下側触媒支持部35b2が接触し、下側触媒支持部35b2の下面(図の下側に向く面)には、上側触媒支持部35b1と同様に触媒42が略矩形状に塗布形成されている。 The lower catalyst support portion 35b2 is in contact with the lower surface (the surface facing the lower side of the drawing) of the heater substrate 50, and the upper catalyst support portion 35b1 is connected to the lower surface (the surface facing the lower side of the drawing) of the lower catalyst support portion 35b2. Similarly to the above, the catalyst 42 is applied and formed in a substantially rectangular shape.
 ヒータ基板50の下側の下側触媒支持部35b2、スペーサ33a3、下側触媒支持部35a2、スペーサ33a4、下蓋32は、ヒータ基板50を介して、ヒータ基板50の上側の上側触媒支持部35b1、スペーサ33a2、上側触媒支持部35a1、スペーサ33a1、上蓋31と対称に配置されており、実質的に同一の機能を果たすので、詳しい説明は省略する。 The lower catalyst support 35b2 on the lower side of the heater substrate 50, the spacer 33a3, the lower catalyst support 35a2, the spacer 33a4, and the lower lid 32 are arranged on the upper catalyst support 35b1 on the upper side of the heater substrate 50 via the heater substrate 50. The spacer 33a2, the upper catalyst support 35a1, the spacer 33a1, and the upper lid 31 are arranged symmetrically and perform substantially the same function, and thus detailed description thereof is omitted.
 開口部50h、及び下側触媒支持部35b2の開口部35hを介して下方へ流れた呼気Gは、スペーサ33a3の内部空間で触媒42と接触した後、下側触媒支持部35a2における上側の触媒41と接触する。その後、呼気Gは、開口部35sを通ってスペーサ33a4の内部空間で下側触媒支持部35a2における下側の触媒41と接触し、パイプ32bから排出される。 The exhaled gas G flowing downward through the opening 50h and the opening 35h of the lower catalyst support 35b2 comes into contact with the catalyst 42 in the internal space of the spacer 33a3, and then the upper catalyst 41 in the lower catalyst support 35a2. Contact with. Thereafter, the expiratory gas G contacts the lower catalyst 41 in the lower catalyst support portion 35a2 in the inner space of the spacer 33a4 through the opening 35s, and is discharged from the pipe 32b.
 以上のようにして、第2温度に加熱された触媒に呼気Gが接触し、呼気Gに含まれる第1ガス成分(具体的にはNO)が第2ガス成分(具体的にはNO)に変換される。 As described above, the expiratory gas G contacts the catalyst heated to the second temperature, and the first gas component (specifically NO) contained in the expiratory gas G is the second gas component (specifically NO 2 ). Is converted to
 [1-4.ガスセンサの製造方法]
 ガスセンサ1の製造方法のうち、まず、検知部10の製造方法について説明する。
[1-4. Manufacturing method of gas sensor]
Of the manufacturing method of the gas sensor 1, first, a manufacturing method of the detection unit 10 will be described.
 検知部10を製造する際には、図7に示す各工程(積層体形成工程、第1締め付け工程、熱付与工程、第2締め付け工程)を実施する。 When manufacturing the detection part 10, each process (laminated body formation process, 1st clamping process, heat provision process, 2nd clamping process) shown in FIG. 7 is implemented.
 検知部10の製造方法においては、まず、S110において、積層体形成工程を実行する。積層体形成工程では、第1板部11、シール材13、セラミック配線基板15、シール材14、第2板部12をこの順に積層し、積層体を形成する。このとき、セラミック配線基板15としては、予め素子部20が組み付けられた状態のものを用いる。 In the manufacturing method of the detection unit 10, first, in S110, a laminated body forming step is executed. In the laminated body forming step, the first plate portion 11, the sealing material 13, the ceramic wiring substrate 15, the sealing material 14, and the second plate portion 12 are laminated in this order to form a laminated body. At this time, as the ceramic wiring board 15, the one in which the element portion 20 is assembled in advance is used.
 このとき、図8の上側に示すように、シール材13およびセラミック配線基板15の互いの表面どうしは、配線部15dによって離れた状態となる。 At this time, as shown in the upper side of FIG. 8, the surfaces of the sealing material 13 and the ceramic wiring board 15 are separated from each other by the wiring portion 15d.
 次のS120では、第1締め付け工程を実行する。第1締め付け工程では、まず、ボルト頭部10a1と第1板部11との間に第1スプリングワッシャ10cを介在させ、また、ナット10bと第2板部12との間に第2スプリングワッシャ10dを介在させるようにして、ボルト10aの軸部10a2を積層体の各部材に対して貫通させる。 In the next S120, the first tightening process is executed. In the first tightening step, first, the first spring washer 10c is interposed between the bolt head portion 10a1 and the first plate portion 11, and the second spring washer 10d is interposed between the nut 10b and the second plate portion 12. So that the shaft portion 10a2 of the bolt 10a penetrates each member of the laminated body.
 さらに、第1締め付け工程では、軸部10a2の先端側にナット10bを締め付けることで、積層体の各部材を仮固定する。このとき、シール材13、シール材14が弾性変形する締め付け強度でナット10bを締め付ける。 Furthermore, in the first tightening step, each member of the laminate is temporarily fixed by tightening the nut 10b on the tip side of the shaft portion 10a2. At this time, the nut 10b is tightened with a tightening strength at which the sealing material 13 and the sealing material 14 are elastically deformed.
 次のS130では、熱付与工程を実行する。熱付与工程では、第1ヒータ22を用いて、395℃で20分間にわたり積層体を加熱する。つまり、シール材13、シール材14が軟化する程度の熱をシール材13、シール材14に与えるように、第1ヒータ22を用いて積層体を加熱する。 In the next S130, a heat application step is executed. In the heat application step, the laminated body is heated using the first heater 22 at 395 ° C. for 20 minutes. That is, the laminated body is heated using the first heater 22 so that the sealing material 13 and the sealing material 14 are heated to such a degree that the sealing material 13 and the sealing material 14 are softened.
 次のS140では、第2締め付け工程を実行する。第2締め付け工程では、ナット10bを増し締めすることで、積層体の各部材を固定して、素子部20を積層体の内部に保持する。このとき、シール材13、シール材14が弾性変形する締め付け強度でナット10bを締め付けることで、複数の配線部15dどうしの間の領域で、シール材13とセラミック配線基板15とが隙間なく当接するとともに、シール材14とセラミック配線基板15とが隙間なく当接する。つまり、シール材13(シール材14)は、第1締め付け工程、熱付与工程、第2締め付け工程を経て弾性変形することで、図8の下側に示すように、配線部15dの表面に沿った形状になるとともに、セラミック配線基板15の表面に当接する状態となる。 In the next S140, the second tightening process is executed. In the second tightening step, the nut 10b is tightened to fix each member of the laminate, and the element unit 20 is held inside the laminate. At this time, by tightening the nut 10b with a tightening strength at which the sealing material 13 and the sealing material 14 are elastically deformed, the sealing material 13 and the ceramic wiring board 15 abut on each other in a region between the plurality of wiring portions 15d. At the same time, the sealing material 14 and the ceramic wiring board 15 are in contact with each other without any gap. That is, the sealing material 13 (sealing material 14) is elastically deformed through the first tightening step, the heat application step, and the second tightening step, and thereby along the surface of the wiring portion 15d as shown in the lower side of FIG. And a state in contact with the surface of the ceramic wiring board 15.
 なお、検知部10以外の構成要素(変換部30など)の製造方法については説明を省略する。 In addition, description is abbreviate | omitted about the manufacturing method of components other than the detection part 10 (conversion part 30 etc.).
 ガスセンサ1の製造方法においては、各構成要素(副配管85,84,83、カセットコネクタ19、検知部10、副配管81、カセットコネクタ39、変換部30、ガス流通管60など)を製造した後、各構成要素を互いに接続する。次に、ガスセンサ1の製造方法においては、互いに接続された各構成要素を第1部材91および第2部材92の内部に収容しつつ、第1部材91および第2部材92をネジ93で固定することで、ガスセンサ1の製造工程が完了する。 In the manufacturing method of the gas sensor 1, after each component (sub piping 85, 84, 83, cassette connector 19, detection unit 10, sub piping 81, cassette connector 39, conversion unit 30, gas distribution pipe 60, etc.) is manufactured. , Each component is connected to each other. Next, in the method for manufacturing the gas sensor 1, the first member 91 and the second member 92 are fixed with the screws 93 while the components connected to each other are accommodated in the first member 91 and the second member 92. Thus, the manufacturing process of the gas sensor 1 is completed.
 [1-5.測定結果]
 ここで、検知部のガス漏れについて測定した測定結果について説明する。
[1-5. Measurement result]
Here, the measurement result measured about the gas leak of a detection part is demonstrated.
 本測定では、ボルト10a、ナット10b、第1スプリングワッシャ10c、第2スプリングワッシャ10dを用いた締結状態の違いによって、検知部10のガス漏れ状態に違いが生じるか否かを測定した。 In this measurement, it was measured whether or not a difference in the gas leakage state of the detection unit 10 occurred due to the difference in the fastening state using the bolt 10a, the nut 10b, the first spring washer 10c, and the second spring washer 10d.
 具体的には、締結状態として、「(a)ワッシャ有り、増し締め有り」、「(b)ワッシャ無し、増し締め有り」、「(c)ワッシャ有り、増し締め無し」の3種類について測定を実施した。なお、「ワッシャ有り・無し」は、第1スプリングワッシャ10cおよび第2スプリングワッシャ10dを用いる場合と、用いない場合とを表している。「増し締め有り・無し」は、第2締め付け工程を行う場合と、行わない場合とを表している。 Specifically, three types of fastening states are measured: “(a) with washer, with additional tightening”, “(b) without washer, with additional tightening”, and “(c) with washer, without additional tightening”. Carried out. “Washer present / absent” represents the case where the first spring washer 10c and the second spring washer 10d are used and the case where they are not used. “With / without additional tightening” represents when the second tightening process is performed and when it is not performed.
 また、測定は、第1ヒータ22への通電ON(加熱)による高温環境(395℃)と、第1ヒータ22への通電OFFによる冷却とを交互に繰り返す冷熱サイクルを実行し、検知部10の内部(開口部15h)からのガス漏洩量(リーク量)を測定した。このとき、高温環境および冷却処理時間は、それぞれ通電ON20分、通電OFF10分とした。 The measurement is performed by performing a cooling cycle in which the high temperature environment (395 ° C.) by energization ON (heating) to the first heater 22 and the cooling by energization OFF to the first heater 22 are alternately repeated. The amount of gas leakage (leakage amount) from the inside (opening 15h) was measured. At this time, the high temperature environment and the cooling processing time were set to energization ON 20 minutes and energization OFF 10 minutes, respectively.
 上記3種類の締結状態それぞれについて、冷熱サイクル回数に対するリーク量の測定結果を、図9に表した。 The measurement results of the leak amount with respect to the number of cooling cycles for each of the three types of fastening states are shown in FIG.
 図9に示すように、冷熱サイクル回数の最大値(43回)におけるリーク量は、「(a)ワッシャ有り、増し締め有り」が最も少なく、次に「(b)ワッシャ無し、増し締め有り」が少なく、「(c)ワッシャ有り、増し締め無し」が最も多い。 As shown in FIG. 9, the leak amount at the maximum number of cooling cycles (43 times) is the smallest in “(a) with washer, with additional tightening”, followed by “(b) without washer, with additional tightening”. “(C) with washer, no additional tightening” is the most common.
 また、冷熱サイクル回数の増加に対するリーク量の増加量は、「(a)ワッシャ有り、増し締め有り」が「(b)ワッシャ無し、増し締め有り」に比べて少ない。なお、「(c)ワッシャ有り、増し締め無し」は、冷熱サイクル回数が43回の場合が28回の場合に比べて、リーク量は減少しているが、「(a)ワッシャ有り、増し締め有り」に比べて、リーク量の絶対値が大きいため、気密性が高いとは評価できない。 In addition, the amount of increase in the leak amount with respect to the increase in the number of cooling cycles is “(a) with washer, with additional tightening” is smaller than “(b) without washer, with additional tightening”. “(C) Washer present, no additional tightening” indicates that the amount of leakage is reduced when the number of cooling cycles is 43 compared to 28, but “(a) With washer, additional tightening”. Since the absolute value of the leak amount is larger than “Yes”, it cannot be evaluated that the airtightness is high.
 この測定結果によれば、本開示の実施例としての「(a)ワッシャ有り、増し締め有り」は、比較例としての「(b)ワッシャ無し、増し締め有り」および「(c)ワッシャ有り、増し締め無し」に比べて、気密性が高いことが分かる。 According to this measurement result, “(a) with washer, with additional tightening” as an example of the present disclosure is “(b) without washer, with additional tightening” and “(c) with a washer” as comparative examples. It can be seen that the airtightness is higher than “no retightening”.
 [1-6.効果]
 以上説明したように、本実施形態のガスセンサ1の製造方法においては、検知部10の製造にあたり、締め付け工程を1回のみ実施する製造方法ではなく、2回にわたり締め付け工程(第1締め付け工程:S120、第2締め付け工程:S140)を実施する。
[1-6. effect]
As described above, in the manufacturing method of the gas sensor 1 of the present embodiment, the manufacturing process of the detection unit 10 is not a manufacturing method in which the tightening process is performed only once, but the tightening process (first tightening process: S120) twice. The second tightening step: S140) is performed.
 また、第1締め付け工程と第2締め付け工程との間に、シール材13およびシール材14が軟化する程度の熱を与えることで(熱付与工程:S130)、シール材13とセラミック配線基板15との密着性、およびシール材14とセラミック配線基板15との密着性を向上できる。 Further, by applying heat to such an extent that the sealing material 13 and the sealing material 14 are softened between the first fastening process and the second fastening process (heat application process: S130), the sealing material 13 and the ceramic wiring board 15 And the adhesion between the sealing material 14 and the ceramic wiring board 15 can be improved.
 また、本実施形態の製造方法では、第1締め付け工程(S120)において、第1スプリングワッシャ10cおよび第2スプリングワッシャ10dを介在させている。このため、この製造方法で製造されたガスセンサ1(詳細には、検知部10)は、第1スプリングワッシャ10cおよび第2スプリングワッシャ10dの弾性力によって、第1板部11、シール材13、セラミック配線基板15、シール材14、第2板部12の各部材を積層方向に押圧する構造である。このガスセンサ1は、複数の配線部15dどうしの間の領域でもシール材13およびシール材14がそれぞれセラミック配線基板15と当接する構成となりうる。これにより、複数の配線部15dどうしの間の領域で、シール材13とセラミック配線基板15との間に隙間が生じることや、シール材14とセラミック配線基板15との間に隙間が生じることを抑制できる。このことは、上述の測定結果(図9参照)からも理解できる。 In the manufacturing method of the present embodiment, the first spring washer 10c and the second spring washer 10d are interposed in the first tightening step (S120). For this reason, the gas sensor 1 (specifically, the detection unit 10) manufactured by this manufacturing method has the first plate portion 11, the sealing material 13, and the ceramic by the elastic force of the first spring washer 10c and the second spring washer 10d. In this structure, each member of the wiring board 15, the sealing material 14, and the second plate portion 12 is pressed in the stacking direction. The gas sensor 1 can be configured such that the sealing material 13 and the sealing material 14 are in contact with the ceramic wiring board 15 even in a region between the plurality of wiring portions 15d. As a result, a gap is generated between the sealing material 13 and the ceramic wiring board 15 in a region between the plurality of wiring portions 15d, and a gap is generated between the sealing material 14 and the ceramic wiring board 15. Can be suppressed. This can be understood from the above measurement results (see FIG. 9).
 よって、本実施形態の製造方法(ガスセンサの製造方法)によれば、第1板部11および第2板部12の外側にセラミック配線基板15の一部を突出させる構成のガスセンサ1を製造するにあたり、シール材13とセラミック配線基板15との間、シール材14とセラミック配線基板15との間に隙間が生じがたいガスセンサ1を製造することができ、ガスセンサ1における気密性の低下を抑制できる。 Therefore, according to the manufacturing method (gas sensor manufacturing method) of the present embodiment, in manufacturing the gas sensor 1 having a configuration in which a part of the ceramic wiring board 15 protrudes outside the first plate portion 11 and the second plate portion 12. In addition, it is possible to manufacture the gas sensor 1 in which a gap is hardly generated between the sealing material 13 and the ceramic wiring board 15 and between the sealing material 14 and the ceramic wiring board 15, and it is possible to suppress a decrease in hermeticity in the gas sensor 1.
 [1-7.文言の対応関係]
 ここで、文言の対応関係について説明する。
[1-7. Correspondence of wording]
Here, the correspondence between words will be described.
 ガスセンサ1または検知部10がガスセンサの一例に相当し、セラミック配線基板15が配線基板の一例に相当し、配線部15dが配線部の一例に相当し、素子部20がセンサ素子の一例に相当し、検知素子23がガス検出部の一例に相当する。シール材13が第1パッキンの一例に相当し、シール材14が第2パッキンの一例に相当し、第1板部11が第1ケーシング体の一例に相当し、排出管11aが第1流通部の一例に相当し、第2板部12が第2ケーシング体の一例に相当し、導入管12aが第2流通部の一例に相当する。 The gas sensor 1 or the detection unit 10 corresponds to an example of a gas sensor, the ceramic wiring board 15 corresponds to an example of a wiring board, the wiring part 15d corresponds to an example of a wiring part, and the element part 20 corresponds to an example of a sensor element. The detection element 23 corresponds to an example of a gas detection unit. The sealing material 13 corresponds to an example of a first packing, the sealing material 14 corresponds to an example of a second packing, the first plate portion 11 corresponds to an example of a first casing body, and the discharge pipe 11a corresponds to a first flow portion. The second plate portion 12 corresponds to an example of a second casing body, and the introduction pipe 12a corresponds to an example of a second circulation portion.
 ボルト10aがボルトの一例に相当し、ナット10bがナットの一例に相当し、ボルト頭部10a1がボルト頭部の一例に相当し、軸部10a2が軸部の一例に相当し、第1スプリングワッシャ10cが第1スプリングワッシャの一例に相当し、第2スプリングワッシャ10dが第2スプリングワッシャの一例に相当する。 The bolt 10a corresponds to an example of a bolt, the nut 10b corresponds to an example of a nut, the bolt head 10a1 corresponds to an example of a bolt head, the shaft portion 10a2 corresponds to an example of a shaft portion, and the first spring washer 10c corresponds to an example of a first spring washer, and the second spring washer 10d corresponds to an example of a second spring washer.
 S110が積層体形成工程の一例に相当し、S120が第1締め付け工程の一例に相当し、S130が熱付与工程の一例に相当し、S140が第2締め付け工程の一例に相当する。 S110 corresponds to an example of a laminate forming process, S120 corresponds to an example of a first fastening process, S130 corresponds to an example of a heat application process, and S140 corresponds to an example of a second fastening process.
 [2.第2実施形態]
 [2-1.全体構成]
 次に、第2実施形態として、第2検知部110を備える第2ガスセンサ(第2呼気センサ)について説明する。
[2. Second Embodiment]
[2-1. overall structure]
Next, a second gas sensor (second breath sensor) including the second detection unit 110 will be described as a second embodiment.
 なお、第2ガスセンサは、第1実施形態のガスセンサ1と同様に、例えば、喘息診断のために、呼気G(被測定ガスG)中の極低濃度(数ppb~数百ppbレベル)のNOを測定する用途に用いられる。 The second gas sensor is similar to the gas sensor 1 of the first embodiment. For example, for the diagnosis of asthma, the second gas sensor has a very low concentration (several ppb to several hundreds ppb level) of NO in the expiratory gas G (measurement gas G). Used for measuring
 第2ガスセンサは、ガスセンサ1の一部が変更された構成であり、ガスセンサ1のうち少なくとも検知部10が第2検知部110に置き換えられた構成である。第2ガスセンサのうちガスセンサ1と異なる部分を中心に説明する。 The second gas sensor has a configuration in which a part of the gas sensor 1 is changed, and at least the detection unit 10 in the gas sensor 1 is replaced with the second detection unit 110. The second gas sensor will be described with a focus on portions different from the gas sensor 1.
 第2ガスセンサは、第2本体部と、第2検知部110と、変換部30と、ガス流通管60と、を備える。 The second gas sensor includes a second main body part, a second detection part 110, a conversion part 30, and a gas flow pipe 60.
 第2本体部は、図示は省略するが、本体部90と同様に、箱状に形成されたハウジングとして備えられている。第2本体部は、樹脂材料を用いて構成される。第2本体部は、第2検知部110、変換部30、ガス流通管60を内部に収容する。第2本体部は、検知部用空間、変換部用空間、流通管用空間を備える。検知部用空間は、第2検知部110が配置される空間である。変換部用空間は、変換部30が配置される空間である。流通管用空間は、ガス流通管60が配置される空間である。 Although the illustration is omitted, the second main body portion is provided as a box-shaped housing in the same manner as the main body portion 90. The second main body is configured using a resin material. The 2nd main part stores the 2nd detection part 110, conversion part 30, and gas distribution pipe 60 inside. The second main body includes a detection unit space, a conversion unit space, and a distribution pipe space. The space for the detection unit is a space in which the second detection unit 110 is arranged. The conversion unit space is a space in which the conversion unit 30 is arranged. The space for the circulation pipe is a space where the gas circulation pipe 60 is arranged.
 なお、変換部30およびガス流通管60は、第1実施形態と同様の構成であるため、説明を省略する。 In addition, since the conversion part 30 and the gas distribution pipe 60 are the structures similar to 1st Embodiment, description is abbreviate | omitted.
 [2-2.検知部]
 第2検知部110は、図10の分解斜視図に示すように、ケーシング体111、シール材113(ガスケット113)、セラミック配線基板115がこの順に積層されて構成されている。
[2-2. Detection unit]
As shown in the exploded perspective view of FIG. 10, the second detection unit 110 is configured by stacking a casing body 111, a seal material 113 (gasket 113), and a ceramic wiring board 115 in this order.
 ケーシング体111は、金属製(例えば,ステンレス)の導入管111aと、金属製(例えば,ステンレス)の排出管111bと、セラミック製(例えば、アルミナ)の板部111cと、を備える。導入管111aは、変換部30による変換後の呼気Gを導入するための導入部である。排出管111bは、検知後の呼気Gを排出するための排出部である。導入管111aおよび排出管111bは、ロウ付けにより板部111cに固定されている。板部111cは、導入管111aおよび排出管111bの固定位置に、板の厚さ方向に貫通する貫通穴(図示省略)を備えている。 The casing body 111 includes a metal (for example, stainless steel) introduction pipe 111a, a metal (for example, stainless steel) discharge pipe 111b, and a ceramic (for example, alumina) plate portion 111c. The introduction tube 111 a is an introduction unit for introducing the exhalation G after conversion by the conversion unit 30. The discharge pipe 111b is a discharge unit for discharging the exhaled breath G after detection. The introduction pipe 111a and the discharge pipe 111b are fixed to the plate portion 111c by brazing. The plate part 111c is provided with a through hole (not shown) penetrating in the thickness direction of the plate at a fixed position of the introduction tube 111a and the discharge tube 111b.
 シール材113は、矩形枠状であり、フッ素系樹脂(例えば、フッ素ゴム、フッ素化された炭化水素ポリマーなど)を用いて構成されている。 The sealing material 113 has a rectangular frame shape, and is configured using a fluorine-based resin (for example, fluorine rubber, fluorinated hydrocarbon polymer, or the like).
 セラミック配線基板115は、矩形板状であり、その中央部分に凹状の空間として形成された素子配置部115hを備える。セラミック配線基板115は、最表面の少なくとも一部に複数の配線部115dを備える。セラミック配線基板115は、複数の配線部115dが設けられる最表面とは異なる最表面(詳細には、側周を構成する側周最表面)に複数のリードピン115pを備える。複数のリードピン115pは、セラミック配線基板115の最表面(側周最表面)から外向きに突出する。詳細には、略L字状をなす複数のリードピン115pは、矩形状のセラミック配線基板115のうち、向かい合う2つの側周最表面から外向きに突出する。複数のリードピン115pは、セラミック配線基板115の内部で複数の配線部115dと電気的に接続されている。 The ceramic wiring board 115 has a rectangular plate shape, and includes an element arrangement portion 115h formed as a concave space at the center thereof. The ceramic wiring board 115 includes a plurality of wiring portions 115d on at least a part of the outermost surface. The ceramic wiring board 115 includes a plurality of lead pins 115p on the outermost surface different from the outermost surface on which the plurality of wiring portions 115d are provided (specifically, the outermost surface on the side periphery constituting the side periphery). The plurality of lead pins 115p protrude outward from the outermost surface (side outermost surface) of the ceramic wiring board 115. Specifically, the plurality of lead pins 115p having a substantially L-shape project outward from the two outermost outer peripheral surfaces of the rectangular ceramic wiring board 115. The plurality of lead pins 115p are electrically connected to the plurality of wiring portions 115d inside the ceramic wiring substrate 115.
 また、第2検知部110は、図11に示すように、第2素子部120と、複数の通電部材116と、を備えている。第2素子部120は、セラミック配線基板115の素子配置部115hに配置される。通電部材116は、導電性材料で形成されている。 Moreover, the 2nd detection part 110 is provided with the 2nd element part 120 and the several electricity supply member 116, as shown in FIG. The second element unit 120 is arranged on the element arrangement unit 115 h of the ceramic wiring substrate 115. The energizing member 116 is made of a conductive material.
 第2素子部120は、矩形板状の基板121と、基板121の内部に配置された第1ヒータ122と、基板121の最表面に配置された検知素子123と、を有している。第2素子部120は、検知素子123および第1ヒータ122が基板に配置された一体構造である。検知素子123は、被測定ガス(呼気G)に含まれる特定成分(NO)を検出するガス検出部である。第2素子部10は、セラミック配線基板115の素子配置部115hに接着剤を介して固定されている。 The second element unit 120 includes a rectangular plate-shaped substrate 121, a first heater 122 disposed inside the substrate 121, and a detection element 123 disposed on the outermost surface of the substrate 121. The second element unit 120 has an integral structure in which the detection element 123 and the first heater 122 are disposed on the substrate. The detection element 123 is a gas detection unit that detects a specific component (NO) contained in the gas to be measured (expired gas G). The second element portion 10 is fixed to the element arrangement portion 115h of the ceramic wiring substrate 115 via an adhesive.
 検知素子123は、変換部30を通過した呼気Gに接触すると共に呼気G中のNOの濃度に応じて電気的特性が変化する。第1ヒータ122は、通電により発熱することで、検知素子123を動作温度である第1温度に加熱する。なお、基板121には、ヒータの温度を測定するための温度センサが所定のパターンを有する形態で配置されている。 The sensing element 123 comes into contact with the exhaled gas G that has passed through the conversion unit 30 and changes its electrical characteristics according to the concentration of NO 2 in the exhaled gas G. The first heater 122 generates heat by energization to heat the detection element 123 to the first temperature that is the operating temperature. Note that a temperature sensor for measuring the temperature of the heater is disposed on the substrate 121 in a form having a predetermined pattern.
 基板121は、例えばセラミック基板として形成することができる。検知素子123は、例えば固体電解質体と、固体電解質体の表面に配置された異なる材料で構成された一対の電極を用いた混成電位型のセンサ(窒素酸化物センサ)として形成することができる。第1ヒータ122は、蛇行状をなすパターンとして形成することができる。なお、検知素子123としては、金属酸化物半導体と一対の電極とを備える抵抗変化型センサを適用してもよい。 The substrate 121 can be formed as a ceramic substrate, for example. The sensing element 123 can be formed, for example, as a mixed potential sensor (nitrogen oxide sensor) using a solid electrolyte body and a pair of electrodes made of different materials disposed on the surface of the solid electrolyte body. The first heater 122 can be formed as a meandering pattern. Note that as the detection element 123, a resistance variable sensor including a metal oxide semiconductor and a pair of electrodes may be applied.
 第2素子部120は、図11に示すように、最表面に複数の電極部120aを備える。複数の電極部120aのうち一部は、検知素子の出力端子と電気的に接続されて、検知素子からの検知信号を出力する信号出力部を構成する。複数の電極部120aのうち他の一部は、ヒータの通電端子と電気的に接続されて、ヒータへの供給電力を受電する受電部を構成する。 The 2nd element part 120 is provided with the some electrode part 120a in the outermost surface, as shown in FIG. A part of the plurality of electrode portions 120a is electrically connected to the output terminal of the detection element, and constitutes a signal output unit that outputs a detection signal from the detection element. The other part of the plurality of electrode parts 120a is electrically connected to the energization terminal of the heater, and constitutes a power receiving part that receives power supplied to the heater.
 第2素子部120は、複数の配線部115dと電気的に接続される。詳細には、複数の電極部120aが、複数の通電部材116を介して、複数の配線部115dと電気的に接続される。 The second element unit 120 is electrically connected to the plurality of wiring units 115d. Specifically, the plurality of electrode portions 120a are electrically connected to the plurality of wiring portions 115d through the plurality of current-carrying members 116.
 シール材113は、セラミック配線基板115のうち配線部115dが設けられた最表面に積層される。シール材113は、第2素子部120を内包する大きさの開口部113aが形成された環状(矩形枠状)である。 The sealing material 113 is laminated on the outermost surface of the ceramic wiring board 115 where the wiring part 115d is provided. The sealing material 113 has an annular shape (rectangular frame shape) in which an opening 113 a having a size that encloses the second element portion 120 is formed.
 ケーシング体111は、シール材113のうちでセラミック配線基板115とは反対側に積層される。ケーシング体111は、被測定ガスを流通するための導入管111aおよび排出管111bが少なくとも形成されている。ケーシング体111は、金属製部分またはセラミック製部分を少なくとも含んで構成されている。 The casing body 111 is laminated on the opposite side of the sealing material 113 from the ceramic wiring board 115. The casing body 111 has at least an introduction pipe 111a and a discharge pipe 111b for circulating the gas to be measured. The casing body 111 includes at least a metal part or a ceramic part.
 ケーシング体111、シール材113、セラミック配線基板115をこの順に積層し、ボルト10aおよびナット10bを用いて締め付け固定することで、ケーシング体111とセラミック配線基板115との間でシール材113が押圧される。これにより、ケーシング体111とセラミック配線基板115との間が、シール材113によりシール(封止)される。 The casing body 111, the sealing material 113, and the ceramic wiring board 115 are laminated in this order, and are tightened and fixed using the bolts 10a and the nuts 10b, whereby the sealing material 113 is pressed between the casing body 111 and the ceramic wiring board 115. The Thereby, the space between the casing body 111 and the ceramic wiring board 115 is sealed (sealed) by the sealing material 113.
 ボルト10aの軸部10a2のうちボルト頭部10a1とケーシング体111との間には、第1スプリングワッシャ10cが挿通されている。なお、ボルト10aの軸部10a2のうち、ナット10bと第2板部12との間にはスプリングワッシャは設けられていない。 The first spring washer 10c is inserted between the bolt head 10a1 and the casing body 111 in the shaft portion 10a2 of the bolt 10a. In addition, the spring washer is not provided between the nut 10b and the 2nd board part 12 among the axial parts 10a2 of the volt | bolt 10a.
 図12に示すように、第2検知部110においては、セラミック配線基板115の表面のうち複数の配線部115dどうしの間に、弾性変形したシール材113が隙間無く当接する。これにより、第2検知部110は、ケーシング体111とセラミック配線基板115との間がシール(封止)される構造となり、素子配置部115hと外部との間でのガス漏洩が抑制できる。 As shown in FIG. 12, in the second detection unit 110, the elastically deformed seal material 113 is in contact with the gap between the plurality of wiring units 115d on the surface of the ceramic wiring board 115 without any gap. Thereby, the 2nd detection part 110 becomes a structure where between the casing body 111 and the ceramic wiring board 115 is sealed (sealed), and the gas leakage between the element arrangement | positioning part 115h and the exterior can be suppressed.
 第2検知部110は、呼気Gを導入管111aから導入し、呼気Gが第2素子部120に接触して特定成分の濃度を検出した後、呼気Gを排出管111bから外部に排出する構成である。 The second detection unit 110 introduces the exhalation G from the introduction tube 111a, and after the exhalation G contacts the second element unit 120 and detects the concentration of the specific component, the exhalation G is discharged to the outside from the discharge tube 111b. It is.
 セラミック配線基板115における複数のリードピン115pは、それぞれ複数の配線部115dおよび通電部材116を介して、第2素子部120の検知素子およびヒータに電気的に接続される。 The plurality of lead pins 115p in the ceramic wiring substrate 115 are electrically connected to the detection element and the heater of the second element unit 120 through the plurality of wiring units 115d and the energization member 116, respectively.
 検知素子から出力された電気信号は、セラミック配線基板115に形成された複数のリードピン115pを介して回路基板(図示省略)に出力され、回路基板を介して外部機器に出力される。外部機器から供給された電力は、回路基板を介してセラミック配線基板115に形成された複数のリードピン115pに供給され、その複数のリードピン115pを介してヒータに供給される。これにより、ヒータへの通電が行われ、ヒータが発熱する。このように、複数のリードピン115pは、第2検知部110から出力される検知信号の信号経路や、第2検知部110への電力供給経路などを構成する。 The electrical signal output from the sensing element is output to a circuit board (not shown) via a plurality of lead pins 115p formed on the ceramic wiring board 115, and is output to an external device via the circuit board. The electric power supplied from the external device is supplied to the plurality of lead pins 115p formed on the ceramic wiring substrate 115 through the circuit board, and is supplied to the heater through the plurality of lead pins 115p. Thereby, the heater is energized and the heater generates heat. As described above, the plurality of lead pins 115p configure a signal path of a detection signal output from the second detection unit 110, a power supply path to the second detection unit 110, and the like.
 [2-3.ガスセンサの製造方法]
 第2ガスセンサの製造方法のうち、第2検知部110の製造方法について、簡単に説明する。
[2-3. Manufacturing method of gas sensor]
Of the methods for manufacturing the second gas sensor, a method for manufacturing the second detector 110 will be briefly described.
 第2検知部110を製造する際には、第1実施形態の検知部10と同様に、図7に示す各工程(積層体形成工程、第1締め付け工程、熱付与工程、第2締め付け工程)を実施する。 When manufacturing the 2nd detection part 110, similarly to the detection part 10 of 1st Embodiment, each process shown in FIG. 7 (a laminated body formation process, a 1st clamping process, a heat provision process, a 2nd clamping process). To implement.
 第2検知部110の製造方法においては、まず、S110において、積層体形成工程を実行する。積層体形成工程では、ケーシング体111、シール材113、セラミック配線基板115をこの順に積層し、積層体を形成する。このとき、セラミック配線基板115としては、予め第2素子部120が組み付けられた状態のものを用いる。 In the manufacturing method of the second detection unit 110, first, in S110, a stacked body forming step is executed. In the laminated body forming step, the casing body 111, the sealing material 113, and the ceramic wiring board 115 are laminated in this order to form a laminated body. At this time, as the ceramic wiring board 115, the one in which the second element unit 120 is assembled in advance is used.
 このとき、図13の上側に示すように、シール材113およびセラミック配線基板115の互いの表面どうしは、配線部115dによって離れた状態となる。 At this time, as shown on the upper side of FIG. 13, the surfaces of the sealing material 113 and the ceramic wiring board 115 are separated from each other by the wiring portion 115d.
 次のS120では、第1締め付け工程を実行する。第1締め付け工程では、まず、ボルト頭部10a1とケーシング体111との間に第1スプリングワッシャ10cを介在させるようにして、ボルト10aの軸部10a2を積層体の各部材に対して貫通させる。 In the next S120, the first tightening process is executed. In the first tightening step, first, the shaft portion 10a2 of the bolt 10a is passed through each member of the laminate so that the first spring washer 10c is interposed between the bolt head portion 10a1 and the casing body 111.
 さらに、第1締め付け工程では、軸部10a2の先端側にナット10bを締め付けることで、積層体の各部材を仮固定する。このとき、シール材113が弾性変形する締め付け強度でナット10bを締め付ける。 Furthermore, in the first tightening step, each member of the laminate is temporarily fixed by tightening the nut 10b on the tip side of the shaft portion 10a2. At this time, the nut 10b is tightened with a tightening strength at which the sealing material 113 is elastically deformed.
 次のS130では、熱付与工程を実行する。熱付与工程では、第2素子部120のヒータを用いて、395℃で20分間にわたり積層体を加熱する。つまり、シール材113が軟化する程度の熱をシール材113に与えるように、第2素子部120のヒータを用いて積層体を加熱する。 In the next S130, a heat application step is executed. In the heat application step, the laminate is heated at 395 ° C. for 20 minutes using the heater of the second element unit 120. That is, the stacked body is heated using the heater of the second element portion 120 so that the sealing material 113 is heated to such an extent that the sealing material 113 is softened.
 次のS140では、第2締め付け工程を実行する。第2締め付け工程では、ナット10bを増し締めすることで、積層体の各部材を固定して、第2素子部120を積層体の内部に保持する。このとき、シール材113が弾性変形する締め付け強度でナット10bを締め付けることで、複数の配線部115dどうしの間の領域で、シール材113とセラミック配線基板115とが隙間なく当接する。つまり、シール材113は、第1締め付け工程、熱付与工程、第2締め付け工程を経て弾性変形することで、図13の下側に示すように、配線部115dの表面に沿った形状になるとともに、セラミック配線基板115の表面に当接する状態となる。とりわけ、シール材113は、複数の配線部115dどうしの間の領域でも、セラミック配線基板115の表面と当接する状態で備えられる。 In the next S140, the second tightening process is executed. In the second tightening step, each member of the multilayer body is fixed by tightening the nut 10b, and the second element portion 120 is held inside the multilayer body. At this time, by tightening the nut 10b with a tightening strength at which the sealing material 113 is elastically deformed, the sealing material 113 and the ceramic wiring board 115 abut on each other in a region between the plurality of wiring portions 115d. That is, the seal material 113 is elastically deformed through the first tightening step, the heat application step, and the second tightening step, thereby forming a shape along the surface of the wiring portion 115d as shown in the lower side of FIG. Then, it comes into contact with the surface of the ceramic wiring board 115. In particular, the sealing material 113 is provided in a state in contact with the surface of the ceramic wiring board 115 even in a region between the plurality of wiring portions 115 d.
 なお、第2検知部110以外の構成要素(変換部30など)の製造方法については説明を省略する。 In addition, description is abbreviate | omitted about the manufacturing method of components other than the 2nd detection part 110 (conversion part 30 etc.).
 第2ガスセンサの製造方法においては、各構成要素(副配管85,84,83、回路基板、第2検知部110、副配管81、カセットコネクタ39、変換部30、ガス流通管60など)を製造した後、各構成要素を互いに接続する。次に、第2ガスセンサの製造方法においては、互いに接続された各構成要素を第2本体部の内部に収容することで、第2ガスセンサの製造工程が完了する。 In the manufacturing method of the second gas sensor, each component (sub piping 85, 84, 83, circuit board, second detection unit 110, sub piping 81, cassette connector 39, conversion unit 30, gas distribution pipe 60, etc.) is manufactured. After that, each component is connected to each other. Next, in the method for manufacturing the second gas sensor, the components connected to each other are accommodated in the second main body, thereby completing the manufacturing process of the second gas sensor.
 [2-4.効果]
 以上説明したように、本第2実施形態の第2ガスセンサの製造方法においては、第2検知部110の製造にあたり、締め付け工程を1回のみ実施する製造方法ではなく、2回にわたり締め付け工程(第1締め付け工程:S120、第2締め付け工程:S140)を実施する。
[2-4. effect]
As described above, in the manufacturing method of the second gas sensor of the second embodiment, the manufacturing process of the second detection unit 110 is not a manufacturing method in which the tightening process is performed only once, but the tightening process (first process). First tightening step: S120, second tightening step: S140).
 また、第1締め付け工程と第2締め付け工程との間に、シール材113が軟化する程度の熱を与えることで(熱付与工程:S130)、シール材113とセラミック配線基板115との密着性を向上できる。 Further, by applying heat to such an extent that the sealing material 113 is softened between the first fastening process and the second fastening process (heat application process: S130), the adhesion between the sealing material 113 and the ceramic wiring board 115 is improved. It can be improved.
 また、本第2実施形態の製造方法では、第1締め付け工程(S120)において、第1スプリングワッシャ10cを介在させている。このため、この製造方法で製造された第2ガスセンサ(詳細には、第2検知部110)は、第1スプリングワッシャ10cの弾性力によって、ケーシング体111、シール材113、セラミック配線基板115の各部材を積層方向に押圧する構造である。この第2ガスセンサは、複数の配線部115dどうしの間の領域でもシール材113がそれぞれセラミック配線基板115と当接する構成となりうる。これにより、複数の配線部115dどうしの間の領域で、シール材113とセラミック配線基板115との間に隙間が生じることを抑制できる。 In the manufacturing method of the second embodiment, the first spring washer 10c is interposed in the first tightening step (S120). For this reason, the second gas sensor (specifically, the second detection unit 110) manufactured by this manufacturing method has the casing body 111, the sealing material 113, and the ceramic wiring board 115 each of which is elastic by the elastic force of the first spring washer 10c. It is a structure which presses a member in the lamination direction. The second gas sensor can be configured such that the sealing material 113 is in contact with the ceramic wiring board 115 even in a region between the plurality of wiring portions 115d. Thereby, it can suppress that a clearance gap produces between the sealing material 113 and the ceramic wiring board 115 in the area | region between several wiring parts 115d.
 よって、本第2実施形態の製造方法(ガスセンサの製造方法)によれば、セラミック配線基板115とケーシング体111とを積層した構成の第2ガスセンサを製造するにあたり、セラミック配線基板115とケーシング体111との間(詳細には、シール材113とセラミック配線基板115との間)に隙間が生じがたくなり、気密性の低下を抑制できる。 Therefore, according to the manufacturing method (gas sensor manufacturing method) of the second embodiment, when manufacturing the second gas sensor having the structure in which the ceramic wiring board 115 and the casing body 111 are laminated, the ceramic wiring board 115 and the casing body 111 are manufactured. (In detail, between the sealing material 113 and the ceramic wiring substrate 115) is less likely to occur, and a decrease in hermeticity can be suppressed.
 また、第2ガスセンサによれば、フッ素系樹脂を用いて構成されたシール材113を用いているため、ケーシング体111が高温となる使用条件において、シール材113から悪影響ガス(ガス検出に影響を与えるガス)の放出が抑制され、気密性の低下を抑制する効果と相俟ってガス検出の精度を良好に得ることができる。 In addition, according to the second gas sensor, since the sealing material 113 configured using a fluorine-based resin is used, an adverse gas (influence on gas detection is exerted from the sealing material 113 under a use condition in which the casing body 111 is at a high temperature. The gas detection accuracy can be satisfactorily obtained in combination with the effect of suppressing the decrease in airtightness.
 次に、第2ガスセンサの第2検知部110においては、セラミック配線基板115は、複数の配線部115dが設けられる最表面とは異なる最表面から外向きに突出する複数のリードピン115pを備えている。このため、第2ガスセンサ(詳細には、第2検知部110)は、複数のリードピン115pを介して外部機器と接続できる。例えば、回路基板に第2ガスセンサ(第2検知部110)を積層配置する際に、複数のリードピン115pを回路基板と電気的に接続してもよい。この場合、シール材113が複数の配線部115dどうしの間の領域でもセラミック配線基板115と当接することから、シール材113とセラミック配線基板115との間に隙間が生じるのを抑制できる。 Next, in the second detection unit 110 of the second gas sensor, the ceramic wiring substrate 115 includes a plurality of lead pins 115p protruding outward from the outermost surface different from the outermost surface on which the plurality of wiring units 115d are provided. . For this reason, the second gas sensor (specifically, the second detection unit 110) can be connected to an external device via the plurality of lead pins 115p. For example, when the second gas sensor (second detection unit 110) is stacked on the circuit board, the plurality of lead pins 115p may be electrically connected to the circuit board. In this case, since the sealing material 113 is in contact with the ceramic wiring board 115 even in the region between the plurality of wiring portions 115d, it is possible to suppress the generation of a gap between the sealing material 113 and the ceramic wiring board 115.
 [2-5.文言の対応関係]
 ここで、文言の対応関係について説明する。
[2-5. Correspondence of wording]
Here, the correspondence between words will be described.
 第2ガスセンサまたは第2検知部110がガスセンサの一例に相当し、セラミック配線基板115が配線基板の一例に相当し、配線部115dが配線部の一例に相当し、第2素子部120がセンサ素子の一例に相当し、第2素子部120の検知素子がガス検出部の一例に相当する。シール材113が第1パッキンの一例に相当し、ケーシング体111が第1ケーシング体の一例に相当し、導入管111aおよび排出管111bが第1流通部の一例に相当する。 The second gas sensor or the second detection unit 110 corresponds to an example of a gas sensor, the ceramic wiring board 115 corresponds to an example of a wiring board, the wiring part 115d corresponds to an example of a wiring part, and the second element part 120 corresponds to a sensor element. The detection element of the second element unit 120 corresponds to an example of a gas detection unit. The sealing material 113 corresponds to an example of a first packing, the casing body 111 corresponds to an example of a first casing body, and the introduction pipe 111a and the discharge pipe 111b correspond to an example of a first circulation part.
 [3.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
[3. Other Embodiments]
As mentioned above, although embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, and can be carried out in various modes in the range which does not deviate from the gist of this indication.
 例えば、製造工程での数値(熱付与工程での加熱温度および加熱時間など)は、上記の数値に限られることはなく、ガスセンサ(検知部)の用途や構造などに応じて適した任意の値を採用しても良い。 For example, numerical values in the manufacturing process (such as heating temperature and heating time in the heat application process) are not limited to the above numerical values, and are arbitrary values suitable for the use and structure of the gas sensor (detection unit). May be adopted.
 また、第2実施形態の第2検知部110においては、1つのボルト10a(詳細には、軸部10a2)に対して1つのスプリングワッシャが備えられる構成であったが、本開示のガスセンサはこのような構成に限られるものではない。例えば、第2検知部110を、1つのボルト10a(詳細には、軸部10a2)に対して2つのスプリングワッシャが備えられる構成に変更してもよい。具体的には、本開示のガスセンサは、スプリングワッシャとして、ボルト頭部10a1と積層体との間に設けられる第1スプリングワッシャ10cと、ナット10bと積層体との間に設けられる第2スプリングワッシャ10dと、を備えてもよい。 In the second detection unit 110 of the second embodiment, one spring washer is provided for one bolt 10a (specifically, the shaft portion 10a2). It is not restricted to such a structure. For example, the second detection unit 110 may be changed to a configuration in which two spring washers are provided for one bolt 10a (specifically, the shaft portion 10a2). Specifically, the gas sensor according to the present disclosure includes, as spring washers, a first spring washer 10c provided between the bolt head 10a1 and the laminate, and a second spring washer provided between the nut 10b and the laminate. 10d.
 このような構成のガスセンサは、スプリングワッシャが1本のボルトに対して2箇所に設けられることで、2個のスプリングワッシャ(第1スプリングワッシャ10cおよび第2スプリングワッシャ10d)の弾性力によって、積層体(ケーシング体111、シール材113、セラミック配線基板115)の各部材を積層方向に押圧する構造である。このガスセンサは、複数の配線部115dどうしの間の領域でもシール材113がセラミック配線基板115と当接する構成となりうる。これにより、複数の配線部115dどうしの間の領域で、シール材113とセラミック配線基板115との間に隙間が生じることを抑制できる。 In the gas sensor having such a configuration, the spring washer is provided at two positions with respect to one bolt, so that the elastic force of the two spring washers (the first spring washer 10c and the second spring washer 10d) is stacked. In this structure, each member of the body (casing body 111, sealing material 113, ceramic wiring substrate 115) is pressed in the stacking direction. This gas sensor can be configured such that the sealing material 113 is in contact with the ceramic wiring board 115 even in a region between the plurality of wiring portions 115d. Thereby, it can suppress that a clearance gap produces between the sealing material 113 and the ceramic wiring board 115 in the area | region between several wiring parts 115d.
 また、第2実施形態の第2検知部110は、1つのボルト10a(詳細には、軸部10a2)に対して1つのスプリングワッシャを備える構成であって、ボルト頭部10a1と積層体との間に1つのスプリングワッシャを介在させる構成であったが、ナット10bと積層体との間にスプリングワッシャを介在させる構成であってもよい。 The second detection unit 110 of the second embodiment is configured to include one spring washer for one bolt 10a (specifically, the shaft portion 10a2), and includes a bolt head 10a1 and a laminated body. Although one spring washer is interposed between the two, a structure in which a spring washer is interposed between the nut 10b and the laminated body may be used.
 次に、第2実施形態の第2検知部110においては、積層体は、ケーシング体111、シール材113、セラミック配線基板115に加えて、さらに、第2パッキンと、第2ケーシング体と、を備えてもよい。 Next, in the second detection unit 110 of the second embodiment, the laminated body includes a second packing and a second casing body in addition to the casing body 111, the sealing material 113, and the ceramic wiring board 115. You may prepare.
 第2パッキンは、フッ素系樹脂を用いて構成され、セラミック配線基板115のうちシール材113(第1パッキン)とは反対側に配置される。第2ケーシング体は、第2パッキンのうちでセラミック配線基板115とは反対側に積層される。第2ケーシング体は、被測定ガスを流通するための第2流通部が少なくとも形成されている。第2ケーシング体は、金属製またはセラミック製である。第2ケーシング体は、例えば、第2板部12と同様の構成であってもよい。 The second packing is made of a fluorine-based resin, and is disposed on the opposite side of the ceramic wiring substrate 115 from the sealing material 113 (first packing). A 2nd casing body is laminated | stacked on the opposite side to the ceramic wiring board 115 among 2nd packing. The second casing body has at least a second circulation part for circulating the gas to be measured. The second casing body is made of metal or ceramic. For example, the second casing body may have the same configuration as the second plate portion 12.
 この場合、セラミック配線基板115は、最表面のうちシール材113(第1パッキン)が積層される第1最表面、および最表面のうち第2パッキンが積層される第2最表面のそれぞれに、複数の配線部115dが設けられている。第2パッキンは、複数の配線部115dと当接する面において、複数の配線部115dどうしの間の領域でも、セラミック配線基板115と当接する状態で備えられる。 In this case, the ceramic wiring board 115 is provided on each of the first outermost surface on which the sealing material 113 (first packing) is laminated among the outermost surfaces and the second outermost surface on which the second packing is laminated among the outermost surfaces. A plurality of wiring portions 115d are provided. The second packing is provided in a state in which the second packing is in contact with the ceramic wiring substrate 115 even in a region between the plurality of wiring portions 115d on the surface in contact with the plurality of wiring portions 115d.
 このガスセンサ(第2検知部110)は、スプリングワッシャの弾性力によって、積層体(ケーシング体111(第1ケーシング体)、シール材113(第1パッキン)、セラミック配線基板115、第2パッキン、第2ケーシング体)の各部材を積層方向に押圧する構造であるとともに、複数の配線部115dどうしの間の領域でもシール材113(第1パッキン)及び第2パッキンがそれぞれセラミック配線基板115と当接する構成である。これにより、複数の配線部115dどうしの間の領域で、シール材113(第1パッキン)とセラミック配線基板115との間に隙間が生じることや、第2パッキンとセラミック配線基板115との間に隙間が生じることを抑制できる。 This gas sensor (second detection unit 110) has a laminated body (casing body 111 (first casing body), sealing material 113 (first packing), ceramic wiring substrate 115, second packing, second packing, and the like, by the elastic force of a spring washer. 2 casing body) is pressed in the stacking direction, and the seal material 113 (first packing) and the second packing are in contact with the ceramic wiring board 115 even in the region between the plurality of wiring portions 115d. It is a configuration. As a result, a gap is generated between the sealing material 113 (first packing) and the ceramic wiring board 115 in a region between the plurality of wiring parts 115d, or between the second packing and the ceramic wiring board 115. It can suppress that a clearance gap arises.
 よって、このガスセンサによれば、ケーシング体111(第1ケーシング体)、第2ケーシング体、セラミック配線基板115を積層した構成のガスセンサにおいて、シール材113(第1パッキン)とセラミック配線基板115との間、および第2パッキンとセラミック配線基板115との間に隙間が生じがたくなり、気密性の低下を抑制できる。 Therefore, according to this gas sensor, in the gas sensor having a configuration in which the casing body 111 (first casing body), the second casing body, and the ceramic wiring board 115 are stacked, the seal material 113 (first packing) and the ceramic wiring board 115 It is difficult to create a gap between the second packing and the ceramic wiring board 115, and the deterioration of the airtightness can be suppressed.
 次に、上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を、省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 Next, the function of one component in each of the above embodiments may be shared by a plurality of components, or the function of a plurality of components may be exhibited by one component. Moreover, you may abbreviate | omit a part of structure of each said embodiment. In addition, at least a part of the configuration of each of the above embodiments may be added to or replaced with the configuration of the other above embodiments. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

Claims (5)

  1.  最表面の少なくとも一部に複数の配線部が設けられる配線基板と、
     被測定ガスに含まれる特定成分を検出するガス検出部を有し、前記配線基板に配置されると共に前記複数の配線部と電気的に接続されるセンサ素子と、
     フッ素系樹脂を用いて構成される第1パッキンであって、前記配線基板のうち前記配線部が設けられた最表面に積層され、前記センサ素子を内包する大きさの開口部が形成された環状の第1パッキンと、
     前記第1パッキンのうちで前記配線基板とは反対側に積層されると共に、前記被測定ガスを流通するための第1流通部が少なくとも形成された金属製またはセラミック製の第1ケーシング体と、
     少なくとも前記第1ケーシング体、前記第1パッキン、前記配線基板を積層した積層体の各部材を積層方向に貫通するように設けられた複数のボルトと、
     前記複数のボルトのそれぞれに対して締め付けられる複数のナットと、
     を備え、前記ボルト及び前記ナットを用いて、少なくとも前記第1ケーシング体、前記第1パッキン、前記配線基板が固定されたガスセンサであって、
     前記ボルトは、
      前記積層体における前記積層方向の一方側の外部に位置するボルト頭部と、
      前記ボルト頭部から前記積層体における前記積層方向の他方側に向けて突出すると共に前記ボルト頭部よりも外径が小さい軸部であって、当該軸部の先端側に前記積層体の外部に配置される前記ナットが結合される軸部とを、備えており、
     当該ガスセンサは、さらに、
     前記ボルト頭部と前記積層体との間、または、前記ナットと前記積層体との間の少なくとも一方に介在するスプリングワッシャと、
     を備えており、
     前記第1パッキンは、前記複数の配線部と当接する面において、前記複数の配線部どうしの間の領域でも、前記配線基板と当接する状態で備えられる、
     ガスセンサ。
    A wiring board provided with a plurality of wiring parts on at least a part of the outermost surface;
    A sensor element that detects a specific component contained in the gas to be measured, and is disposed on the wiring board and electrically connected to the plurality of wiring parts;
    1st packing comprised using a fluorine-type resin, Comprising: It is laminated | stacked on the outermost surface in which the said wiring part was provided among the said wiring boards, and the cyclic | annular form by which the opening part of the magnitude | size which includes the said sensor element was formed was formed The first packing of
    A first casing body made of metal or ceramic that is laminated on the side opposite to the wiring board in the first packing, and at least a first flow part for flowing the gas to be measured is formed,
    A plurality of bolts provided so as to penetrate each member of a laminate in which at least the first casing body, the first packing, and the wiring board are laminated;
    A plurality of nuts fastened to each of the plurality of bolts;
    A gas sensor in which at least the first casing body, the first packing, and the wiring board are fixed using the bolt and the nut,
    The bolt is
    Bolt heads located outside one side of the stacking direction in the stack,
    A shaft portion that protrudes from the bolt head toward the other side in the stacking direction of the stacked body and has a smaller outer diameter than the bolt head, and is on the tip side of the shaft portion and outside the stacked body. A shaft portion to which the nut to be arranged is coupled,
    The gas sensor further includes
    A spring washer interposed between at least one of the bolt head and the laminate or between the nut and the laminate;
    With
    The first packing is provided in a state where the first packing is in contact with the wiring board even in a region between the plurality of wiring parts on a surface in contact with the plurality of wiring parts.
    Gas sensor.
  2.  請求項1に記載のガスセンサであって、
     前記配線基板は、前記複数の配線部が設けられる最表面とは異なる最表面から外向きに突出する複数のリードピンを備えており、
     前記複数のリードピンは、前記配線基板の内部で前記複数の配線部と電気的に接続される、
     ガスセンサ。
    The gas sensor according to claim 1,
    The wiring board includes a plurality of lead pins protruding outward from the outermost surface different from the outermost surface on which the plurality of wiring portions are provided,
    The plurality of lead pins are electrically connected to the plurality of wiring portions inside the wiring board,
    Gas sensor.
  3.  請求項1または請求項2に記載のガスセンサであって、
     前記スプリングワッシャは、前記ボルト頭部と前記積層体との間に設けられる第1スプリングワッシャと、前記ナットと前記積層体との間に設けられる第2スプリングワッシャと、を備える、
     ガスセンサ。
    The gas sensor according to claim 1 or 2, wherein
    The spring washer includes a first spring washer provided between the bolt head and the laminate, and a second spring washer provided between the nut and the laminate.
    Gas sensor.
  4.  請求項1から請求項3のうちいずれか一項に記載のガスセンサであって、
     前記積層体は、
     フッ素系樹脂を用いて構成され、前記配線基板のうち前記第1パッキンとは反対側に配置される第2パッキンと、
     前記第2パッキンのうちで前記配線基板とは反対側に積層されると共に、前記被測定ガスを流通するための第2流通部が少なくとも形成された金属製またはセラミック製の第2ケーシング体と、
     を備え、
     前記配線基板は、前記最表面のうち前記第1パッキンが積層される第1最表面、および前記最表面のうち前記第2パッキンが積層される第2最表面のそれぞれに、前記複数の配線部が設けられており、
     前記第2パッキンは、前記複数の配線部と当接する面において、前記複数の配線部どうしの間の領域でも、前記配線基板と当接する状態で備えられる、
     ガスセンサ。
    The gas sensor according to any one of claims 1 to 3,
    The laminate is
    A second packing that is configured using a fluorine-based resin and is disposed on the opposite side of the wiring packing from the first packing;
    A second casing body made of metal or ceramic that is laminated on the side opposite to the wiring board in the second packing, and at least a second flow part for flowing the gas to be measured is formed,
    With
    The wiring board includes a plurality of wiring portions on a first outermost surface of the outermost surface on which the first packing is stacked and a second outermost surface of the outermost surface on which the second packing is stacked. Is provided,
    The second packing is provided in a state in which the second packing is in contact with the wiring board even in a region between the plurality of wiring parts on a surface in contact with the plurality of wiring parts.
    Gas sensor.
  5.  最表面の少なくとも一部に複数の配線部が設けられる配線基板と、
     被測定ガスに含まれる特定成分を検出するガス検出部を有し、前記配線基板に配置されると共に前記複数の配線部と電気的に接続されるセンサ素子と、
     フッ素系樹脂を用いて構成される第1パッキンであって、前記配線基板のうち前記配線部が設けられた最表面に積層され、前記センサ素子を内包する大きさの開口部が形成された環状の第1パッキンと、
     前記第1パッキンのうちで前記配線基板とは反対側に積層されると共に、前記被測定ガスを流通するための第1流通部が少なくとも形成された金属製またはセラミック製の第1ケーシング体と、
     少なくとも前記第1ケーシング体、前記第1パッキン、前記配線基板を積層した積層体の各部材を積層方向に貫通するように設けられた複数のボルトと、
     前記複数のボルトのそれぞれに対して締め付けられる複数のナットと、
     を備え、前記ボルト及び前記ナットを用いて、少なくとも前記第1ケーシング体、前記第1パッキン、前記配線基板が固定されたガスセンサの製造方法であって、
     前記ボルトは、
      前記積層体における前記積層方向の一方側の外部に位置するボルト頭部と、
      前記ボルト頭部から前記積層体における前記積層方向の他方側に向けて突出すると共に前記ボルト頭部よりも外径が小さい軸部であって、当該軸部の先端側に前記積層体の外部に配置される前記ナットが結合される軸部とを、備えており、
     当該ガスセンサは、さらに、
     前記ボルト頭部と前記積層体との間、または、前記ナットと前記積層体との間の少なくとも一方に介在するスプリングワッシャと、
     を備えており、
     前記第1ケーシング体、前記第1パッキン、前記配線基板の各部材を積層して積層体を形成する積層体形成工程と、
     前記ボルト頭部と前記積層体との間、または、前記ナットと前記積層体との間の少なくとも一方に前記スプリングワッシャを介在させるようにして、前記ボルトの前記軸部を前記積層体の前記各部材に対して貫通させ、前記軸部の先端側に前記ナットを締め付け、前記各部材を仮固定する第1締め付け工程と、
     前記第1締め付け工程の後に、前記第1パッキンが軟化する程度の熱を前記第1パッキンに与える熱付与工程と、
     前記熱付与工程の後に、前記ボルトの前記軸部に締め付けられている前記ナットを再度締め付け、前記各部材を固定して前記センサ素子を前記積層体の内部に保持する第2締め付け工程と、
     を有するガスセンサの製造方法。
    A wiring board provided with a plurality of wiring parts on at least a part of the outermost surface;
    A sensor element that detects a specific component contained in the gas to be measured, and is disposed on the wiring board and electrically connected to the plurality of wiring parts;
    1st packing comprised using a fluorine-type resin, Comprising: It is laminated | stacked on the outermost surface in which the said wiring part was provided among the said wiring boards, and the cyclic | annular form by which the opening part of the magnitude | size which includes the said sensor element was formed was formed The first packing of
    A first casing body made of metal or ceramic that is laminated on the side opposite to the wiring board in the first packing, and at least a first flow part for flowing the gas to be measured is formed,
    A plurality of bolts provided so as to penetrate each member of a laminate in which at least the first casing body, the first packing, and the wiring board are laminated;
    A plurality of nuts fastened to each of the plurality of bolts;
    A method of manufacturing a gas sensor in which at least the first casing body, the first packing, and the wiring board are fixed using the bolt and the nut,
    The bolt is
    Bolt heads located outside one side of the stacking direction in the stack,
    A shaft portion that protrudes from the bolt head toward the other side in the stacking direction of the stacked body and has a smaller outer diameter than the bolt head, and is on the tip side of the shaft portion and outside the stacked body. A shaft portion to which the nut to be arranged is coupled,
    The gas sensor further includes
    A spring washer interposed between at least one of the bolt head and the laminate or between the nut and the laminate;
    With
    A laminated body forming step of forming a laminated body by laminating each member of the first casing body, the first packing, and the wiring board;
    At least one of the bolt head and the laminate, or between the nut and the laminate, the spring washer is interposed, and the shaft portion of the bolt is connected to each of the laminates. A first tightening step of penetrating the member, tightening the nut to the tip end side of the shaft portion, and temporarily fixing each member;
    After the first tightening step, a heat application step for applying heat to the first packing such that the first packing is softened;
    After the heat application step, a second fastening step of fastening the nut fastened to the shaft portion of the bolt again, fixing the members and holding the sensor element inside the laminated body,
    The manufacturing method of the gas sensor which has this.
PCT/JP2019/006100 2018-02-21 2019-02-19 Gas sensor and method for manufacturing gas sensor WO2019163775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029031 2018-02-21
JP2018029031 2018-02-21

Publications (1)

Publication Number Publication Date
WO2019163775A1 true WO2019163775A1 (en) 2019-08-29

Family

ID=67687683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006100 WO2019163775A1 (en) 2018-02-21 2019-02-19 Gas sensor and method for manufacturing gas sensor

Country Status (1)

Country Link
WO (1) WO2019163775A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015134895A1 (en) * 2014-03-07 2015-09-11 Spirometrix, Inc. Respiratory monitor
JP2018013352A (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Method for manufacturing gas sensor
JP2018013353A (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Gas sensor
JP2018013355A (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Gas sensor
WO2018016482A1 (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Gas sensor
WO2018088241A1 (en) * 2016-11-09 2018-05-17 日本特殊陶業株式会社 Gas sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015134895A1 (en) * 2014-03-07 2015-09-11 Spirometrix, Inc. Respiratory monitor
JP2018013352A (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Method for manufacturing gas sensor
JP2018013353A (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Gas sensor
JP2018013355A (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Gas sensor
WO2018016482A1 (en) * 2016-07-19 2018-01-25 日本特殊陶業株式会社 Gas sensor
WO2018088241A1 (en) * 2016-11-09 2018-05-17 日本特殊陶業株式会社 Gas sensor

Similar Documents

Publication Publication Date Title
US10670440B2 (en) Thermal airflow measuring device
JP2007532909A (en) Pressure sensor device and method
JP3641608B2 (en) Ozone generator
JP3672252B2 (en) Ozone generator
EP2182773A1 (en) Heating element device and method of manufacturing the same
WO2019163775A1 (en) Gas sensor and method for manufacturing gas sensor
JP2008293766A (en) Fuel cell stack
WO2021193725A1 (en) Gas concentration sensor
JP3607890B2 (en) Ozone generator
WO2018235487A1 (en) Gas sensor
US7199336B2 (en) Protection structure of ceramic resistor heating module
WO2019187303A1 (en) Pressure sensor
WO2019163232A1 (en) Gas sensor
KR101327573B1 (en) In line heater assembly
JP2000281318A (en) Discharge cell for ozone generator
JP2014126503A (en) Capacitance type pressure sensor
JP2002168825A (en) Terminal connection structure for sensor
JPH11307227A (en) Dielectric barrier discharge device
JP2002013994A (en) Pressure sensor
JPH06337229A (en) Temperature detection element and applied element thereof
US20230358615A1 (en) Temperature measuring device
JP2014170772A (en) Temperature sensor
JP2015068738A (en) Capacitive pressure sensor
JP2019191035A (en) Gas sensor
JP2014190804A (en) Humidity sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP