[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019163017A1 - ウェーハの製造方法 - Google Patents

ウェーハの製造方法 Download PDF

Info

Publication number
WO2019163017A1
WO2019163017A1 PCT/JP2018/006188 JP2018006188W WO2019163017A1 WO 2019163017 A1 WO2019163017 A1 WO 2019163017A1 JP 2018006188 W JP2018006188 W JP 2018006188W WO 2019163017 A1 WO2019163017 A1 WO 2019163017A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
grinding
coating layer
resin
grinding step
Prior art date
Application number
PCT/JP2018/006188
Other languages
English (en)
French (fr)
Inventor
田中 利幸
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020207023322A priority Critical patent/KR102328577B1/ko
Priority to US16/969,836 priority patent/US11948789B2/en
Priority to CN201880090100.4A priority patent/CN111758152B/zh
Priority to DE112018007133.2T priority patent/DE112018007133T5/de
Priority to JP2020501895A priority patent/JP6878676B2/ja
Priority to PCT/JP2018/006188 priority patent/WO2019163017A1/ja
Priority to TW108102373A priority patent/TWI693124B/zh
Publication of WO2019163017A1 publication Critical patent/WO2019163017A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a method for manufacturing a wafer.
  • PV value Peak (toalValley value)
  • Patent Document 1 includes a resin coating process in which an entire surface of a wafer sliced from an ingot is covered with a resin, holding the one surface of the wafer, grinding the two surfaces of the wafer, And holding one surface of the wafer and grinding one surface of the wafer.
  • a curable resin is applied to the second surface of the wafer, and after the curable resin is processed and cured flatly, the flat surface of the curable resin is held to hold the first surface of the wafer.
  • the surface is ground and then the curable resin is removed.
  • the technique may be referred to as “resin pasting grinding”.
  • the second surface is ground while holding the first surface of the resin-ground wafer. Thereafter, the resin pasting grinding and the surface grinding of the surface not ground by the resin pasting grinding are repeated.
  • the outer periphery of the wire is not a free abrasive grain method that supplies cutting fluid containing abrasive grains to the wire.
  • a method of slicing with a fixed abrasive wire saw in which abrasive grains are fixed to the surface is being used (for example, Patent Document 3).
  • An object of the present invention is to provide a wafer manufacturing method capable of manufacturing a wafer excellent in nanotopography characteristics without reducing productivity.
  • the inventors of the present invention have found that when a surface of a wafer is coated with a curable material and subjected to surface grinding, the surface opposite to the surface is coated with a curable material only once on one side.
  • the second surface grinding with a curable material applied, and the third surface grinding on the first grinding surface the productivity is high and the final nanotopography of the wafer is obtained.
  • the inventors have found that the quality is improved and have completed the present invention. Specifically, after slicing, the second surface of the wafer is coated with a curable material, the first surface is surface ground, the curable material on the second surface is removed, and then the first surface is coated with the curable material. Then ground the second surface. Further, after removing the curable material on the first surface, the first surface is ground. Such a process can improve the quality of nanotopography without reducing productivity.
  • a first aspect of the present invention is a method of manufacturing a wafer for grinding a wafer obtained by slicing a single crystal ingot using a wire saw device, and includes a first resin pasting and grinding step, and a second resin A first surface-grinding step, wherein a first curable material is applied to the entire second surface of the wafer to form a flat first coating layer.
  • the resin bonding grinding process 2 is performed on the wafer.
  • a second coating layer removing step for removing from the first surface of the wafer wherein the third surface grinding step is such that the surface subjected to the last surface grinding comes into contact with the reference surface of the table of the grinding device Is mounted on the table, and then the surface of the wafer opposite to the surface in contact with the reference surface is surface ground by the grinding apparatus.
  • a wafer having excellent nanotopography quality can be manufactured without reducing productivity.
  • a second aspect of the present invention is an invention based on the first aspect, further comprising the first resin adhesion grinding step between the second resin adhesion grinding step and the third surface grinding step. Or the first resin adhesion grinding step and the second resin adhesion grinding step are repeated at least once in the order, or the first resin adhesion grinding step and the In this wafer manufacturing method, the second resin adhesion grinding step is repeated at least once in this order, and finally the first resin adhesion grinding step is performed.
  • a wafer having excellent nanotopography quality can be manufactured by performing a plurality of first resin pasting grinding steps and second resin pasting grinding steps.
  • a third aspect of the present invention is a wafer manufacturing method in which a grinding amount in the first resin pasting grinding step is equal to or greater than a grinding amount in the third surface grinding step.
  • the third aspect of the present invention is that the amount of grinding in the first resin pasting grinding process is equal to or greater than the grinding quantity in the third surface grinding process, so that the nanotopography quality is low even if the total grinding allowance is small. Can be manufactured.
  • a fourth aspect of the present invention is an invention based on the first to third aspects, and is a method for manufacturing a wafer in which the wire saw device is a slice method using a fixed abrasive wire.
  • the waviness is reduced as much as possible by the present manufacturing method. Wafers with excellent nanotopography quality.
  • a fifth aspect of the present invention is an invention based on the first to fourth aspects, wherein the wafer has a diameter of 300 mm or more, particularly 450 mm or more.
  • the wafer manufacturing method according to the present invention manufactures a wafer having excellent nanotopography quality even if the total grinding allowance is small. it can.
  • FIG. 1 It is a flowchart which shows the schematic process of the manufacturing method of the wafer which concerns on one Embodiment of this invention. It is explanatory drawing of the manufacturing method of the said wafer. It is explanatory drawing of the manufacturing method of the said wafer, and shows the state following FIG. It is explanatory drawing of the manufacturing method of the wafer which concerns on Example 1 of this invention. It is explanatory drawing of the manufacturing method of the wafer which concerns on the comparative example 1 and the comparative example 2 of this invention. It is explanatory drawing of the manufacturing method of the wafer in the said comparative example 2, and shows the state following FIG. It is a nanotopography map after the mirror polishing of Example 1 and Comparative Examples 1 and 2. It is the figure which showed the nanotopography result of Example 1 and Comparative Examples 1 and 2. FIG.
  • the wafer manufacturing method includes a slicing step S1 for slicing a single crystal ingot using a wire saw device to obtain a thin disk-shaped wafer, a first resin pasting and grinding step S2, 2 resin pasting grinding process S3 and 3rd surface grinding grinding process S4 are provided.
  • the first resin pasting and grinding step S2 includes a first coating layer forming step S21 in which a curable material is applied to the entire second surface of the wafer to form a flat first coating layer, and the first coating layer includes A first surface grinding step S22 in which the wafer is placed on the table so as to come into contact with the reference surface of the table of the grinding device, and then the first surface of the wafer is surface ground by the grinding device, and a first surface grinding step S22.
  • a first coating layer removing step S23 for removing the subsequent first coating layer from the second surface of the wafer.
  • the second resin adhesion grinding step S3 includes a second coating layer forming step S31 in which a curable material is applied to the entire first surface of the wafer to form a flat second coating layer, and the second coating layer includes A wafer is placed on the table so as to come into contact with the reference surface of the table of the grinding device, and then a second surface grinding step S32 in which the second surface of the wafer is surface ground by the grinding device, and a second surface grinding step S32 And a second coating layer removing step S33 for removing the subsequent second coating layer from the first surface of the wafer.
  • the wafer is placed on the table so that the surface subjected to the surface grinding last comes into contact with the reference surface of the table of the grinding device, and then contacted with the reference surface of the wafer by the grinding device.
  • Surface grinding is performed on the opposite surface.
  • a lapping process may be performed between the slicing process S1 and the first resin pasting and grinding process S2.
  • the chamfering process is a secondary chamfering process in which the primary chamfering is performed after the slicing process S1 and the chamfering amount is larger than the primary chamfering after the third surface grinding process S4.
  • chamfering may be performed between any step from after the slicing step S1 to after the third surface grinding step S4, or may be performed a plurality of times.
  • the first resin pasting and grinding step S2 and the second resin pasting and grinding step S3 may be performed at least once.
  • the first resin adhesion grinding process S2 may be performed between the second resin adhesion grinding process S3 and the third surface grinding process S4, or the first resin adhesion grinding process S2 may be performed.
  • the second resin adhesion grinding step S3 may be repeated at least once in the order, and the first resin adhesion grinding step S2 and the second resin adhesion grinding step S3 are repeated at least once in the order.
  • the first resin pasting and grinding step S2 may be performed.
  • Surface grinding By dividing the resin pasting process into multiple times on the front and back surfaces of the wafer, the nanotopography characteristics on the wafer surface are satisfied. That is, in order to improve nanotopography with a single resin paste grinding, it is difficult to remove all the waviness components present on the wafer. However, by repeating the resin paste grinding, the nanotopography is repeated each time it is repeated. It was found that the characteristics were improved. In this way, by repeatedly applying resin-bonded grinding, the waviness on the wafer surface can be reduced, and the nanotopography characteristics on the wafer surface can be improved.
  • FIG. 2A shows a state of the wafer W sliced with a fixed abrasive wire saw.
  • a known multi-wire saw device (not shown) is used for slicing, and a plurality of wafers W can be manufactured at a time from an ingot.
  • the multi-wire saw device spans a guide roller provided with a plurality of grooves for guiding the wire and a roller for rotating the wire, and a plurality of wires of ultra fine steel wire are wound around the wire.
  • the multi-wire saw apparatus has a fixed abrasive grain system and a free abrasive grain system depending on how to use abrasive grains for cutting.
  • a steel wire having diamond abrasive grains or the like attached thereto by vapor deposition is used for the wire.
  • the loose abrasive method is used while applying a slurry in which abrasive particles and an oil agent are mixed to a wire.
  • the wire itself to which the abrasive particles are fixed cuts the workpiece, so that the cutting time is short and the productivity is excellent.
  • FIG. 2B shows an example of the holding and pressing device 10 used in the first coating layer forming step S21.
  • the curable material R to be a coating layer is dropped onto the flattened flat plate 11 of the holding and pressing device 10.
  • the first surface W1 of the wafer W is sucked and held by the holding surface 121 of the holding means 12, and the holding surface 121 is moved downward to press the second surface W2 of the wafer W against the curable material R.
  • the pressure of the holding surface 121 is released, and the curable material R is cured on the second surface W2 of the wafer W in a state where the undulations W11 and W21 remaining on the wafer W are not elastically deformed.
  • One coating layer RH1 is formed.
  • the surface of the first coating layer RH1 in contact with the flat plate 11 becomes a highly planarized surface, and can be used as a reference surface RH11 when the first surface W1 of the wafer W is ground.
  • the method for applying the curable material R to the wafer W is to drop the curable material R onto the second surface W2 with the second surface W2 of the wafer W as the upper surface, rotate the wafer W, and apply the curable material R to the second surface W2.
  • a screen coating is applied to the entire surface by spin coating or a second surface W2 by placing a curable material R on the screen membrane and pressing with a squeegee, or by an electric spray deposition method.
  • the coated surface is brought into contact with and pressed on the flattened flat plate 11 after being coated by a method such as spraying on the entire surface
  • one surface of the wafer W is flattened not only by the above method but also by the curable material R. The method is applicable.
  • the curable material R is preferably a curable material R such as a thermosetting resin, a thermoreversible resin, or a photosensitive resin in terms of ease of peeling after processing.
  • the photosensitive resin is also preferable in that it is not subjected to heat stress.
  • a resin by UV curing was used as the curable material R.
  • Other specific curable material R materials include synthetic rubber and adhesives (wax, etc.).
  • FIG. 2C shows an example of the surface grinding device 20 used in the first surface grinding step S22.
  • the reference surface RH11 of the first coating layer RH1 created in the first coating layer forming step S21 is placed on the highly planarized reference surface 211 of the vacuum chuck table 21 of the surface grinding apparatus 20 and held by suction.
  • a grinding wheel 23 having a grindstone 22 installed on one surface is installed on the upper surface of the installed wafer W.
  • the first surface W1 of the wafer W is ground by rotating the grinding wheel 23 and the vacuum chuck table 21.
  • FIG. 3D shows the first coating layer removal step S23.
  • the first coating layer RH1 is peeled off from the wafer W whose first surface W1 has been surface-ground in the first surface grinding step S22.
  • the first coating layer RH1 may be removed chemically using a solvent.
  • the first surface W1 of the surface-ground wafer W has been improved by surface grinding, but the undulation W11 still remains. This is because the thickness of the first coating layer RH1 is partially different within the wafer surface depending on the size of the waviness W21, and the amount of elastic deformation due to the processing pressure of the surface grinding is also different. It is estimated that the difference in amount remains as undulation W11.
  • the second coating layer forming step S31 for forming the second coating layer on the first surface W1
  • FIG. 2B Using the same apparatus as the first surface grinding step S22 shown in C), the second surface grinding step S32 for surface grinding the second surface W2, and the first coating layer removing step S23 shown in FIG.
  • the second coating layer removing step S33 for peeling off the second coating layer on the first surface W1 is performed. That is, the second resin pasting and grinding step S3 is performed.
  • FIG. 3E shows an example of the third surface grinding step S4.
  • the surface grinding apparatus is the same as the surface grinding apparatus 20 used in the first surface grinding step S22.
  • the second surface W2 of the wafer W surface-ground in the second surface grinding step S32 is used as the vacuum chuck table 21.
  • the first surface W1 of the wafer W is ground by being directly placed on the reference surface 211 and held by suction.
  • FIG. 3F a wafer W that is highly planarized on both sides can be obtained.
  • the machining allowance in each grinding is 1 15 to 30 ⁇ m in the first first surface grinding step S22, 20 to 40 ⁇ m in the first second surface grinding step S32, 5 to 10 ⁇ m in the second first surface grinding step S22, and the second and third times.
  • each of 5 to 10 ⁇ m may be ground.
  • the wafer W that has undergone the third surface grinding step S4 is flattened on both sides, and the nanotopography characteristics are improved each time it is repeated. If the number of times of resin pasting is determined three times (first resin pasting grinding step S2 twice, second resin pasting grinding step S3 once) or more according to the required nanotopography characteristics Good.
  • the wafer W used in Example 1 and Comparative Examples 1 and 2 was a wafer W having a diameter of 300 mm sliced from a silicon single crystal ingot using a fixed abrasive grain type wire saw device under the same conditions.
  • FIG. 4 shows the state of the wafer in each step according to Example 1 of the present invention.
  • the processing steps of Example 1 will be described with reference to FIG.
  • the UV curable resin is applied and cured on the second surface W2 of the wafer W after the slicing step S1, as shown in FIG. 4B, and a flat reference surface RH11 is obtained.
  • 1st coating layer RH1 which has was formed (1st coating layer formation process S21).
  • the first coating layer RH1 is formed on the second surface W2, it may be formed on the first surface W1 first.
  • the second surface W2 and the first surface W1 are interchanged in the following description.
  • the first surface W1 of the wafer W in which the reference surface RH11 of the first coating layer RH1 is sucked and held by the vacuum chuck table 21 is surface-ground to 15 ⁇ m (the surface of the broken line P1) as the first machining allowance (first surface).
  • the first coating layer RH1 was peeled off (first coating layer removal step S23).
  • the wafer W that has undergone the first resin pasting and grinding step S2 is reversed (first inversion step), and as shown in FIG. A UV curable resin was applied to the first surface W1 and cured to form a second coating layer RH2 having a flat reference surface RH21 (second coating layer forming step S31). Then, after the second surface W2 of the wafer W on which the reference surface RH21 is sucked and held by the vacuum chuck table 21 is subjected to surface grinding to 20 ⁇ m (surface of the broken line P2) as a second machining allowance (second surface grinding step S32), As shown in FIG. 4F, the second coating layer RH2 was peeled off (second coating layer removing step S33).
  • the wafer W subjected to the second resin pasting and grinding step S3 is inverted (second inversion step), and the second resin pasting and grinding step S3 is performed.
  • the first surface W1 of the wafer W on which the surface W2 was sucked and held by the vacuum chuck table 21 was subjected to surface grinding to 5 ⁇ m (the surface of the broken line P3) as a third machining allowance (third surface grinding step S4).
  • the wafer W of Example 1 in which both surfaces were highly planarized was obtained.
  • Comparative Example 1 The state of the wafer in each process according to Comparative Example 1 is shown in FIG. Comparative Example 1 includes the second coating layer forming step S31, the second resin bonding grinding step S3, the second resin bonding grinding step S3, and the third surface grinding step S4 performed in Example 1. The steps except the coating layer removing step S33 and the third surface grinding step S4 are performed.
  • FIGS. 5A to 5D correspond to FIGS. 4A to 4D except that the second coating layer forming step S31 is not performed in the second resin pasting and grinding step S3. To do. After the steps from FIG. 5 (A) to FIG. 5 (D), as shown in FIG.
  • the first surface W1 subjected to the first surface grinding step S22 was sucked and held by the vacuum chuck table 21.
  • the second surface W2 of the wafer W was surface ground to the surface of the broken line P2 (second surface grinding step S32), and the wafer W of Comparative Example 1 as shown in FIG. 5E was obtained.
  • the machining allowance was ground at 20 ⁇ m in the first surface grinding step S22 and 20 ⁇ m in the second surface grinding step S32.
  • Comparative Example 2 The state of the wafer in each process according to Comparative Example 2 is shown in FIG. Comparative Example 2 is a case where Comparative Example 1 is repeated twice, and may be further repeated.
  • the process of the comparative example 1 as shown in FIG. 5 (A) to FIG. 5 (E) is performed.
  • the machining allowance in the first surface grinding step S22 and the second surface grinding step S32 was 15 ⁇ m.
  • the wafer W is inverted (inversion process), and as shown in FIG. 6 (G), a second coating layer is formed on the second surface W2 of the wafer W with a UV curable resin. RH2 was formed (second coating layer forming step).
  • the first surface W1 of the wafer W on which the reference surface RH21 of the second coating layer RH2 is sucked and held by the vacuum chuck table 21 is subjected to surface grinding to 5 ⁇ m (the surface of the broken line P3) as the third machining allowance (third).
  • the second coating layer RH2 was peeled off as shown in FIG. 6H (second coating layer removing step).
  • the second surface W2 of the wafer W on which the first surface W1 subjected to the third surface grinding is sucked and held by the vacuum chuck table 21 is set to 5 ⁇ m as the fourth machining allowance.
  • Surface grinding was performed up to (the surface of the broken line P4) (fourth surface grinding step), and the wafer W of Comparative Example 2 as shown in FIG. 6J was obtained.
  • ⁇ Evaluation test 1> The influence of the surface shape of each wafer W obtained in Example 1 and Comparative Examples 1 and 2 on the nanotopography on the wafer surface after the subsequent mirror polishing was investigated. Specifically, first, for each wafer W obtained in Example 1 and Comparative Examples 1 and 2, as a common mirror polishing process, a double-side polishing apparatus is used to apply the same conditions to the front and back surfaces of each wafer. After performing the rough polishing process, a single-side polishing apparatus was used to subject the surface of each wafer to a final polishing process under the same conditions, thereby creating a wafer in which the surface of each wafer W was mirror-polished. FIG.
  • 7 is a nanotopography map in which the height distribution (height difference) of each wafer surface is measured using an optical interference type flatness measuring device (KLA Tencor: Wafersight 2) on each mirror-polished wafer surface. The measurement results of each wafer after mirror polishing are filtered to remove long wavelength components, and the nanotopography measurement results are illustrated in shades of color.
  • 7 is a diagram showing the height difference of nanotopography, where the altitude is lower as the color becomes darker, and the darkest part is ⁇ 20 nm from the central altitude, and the color becomes lighter. The altitude is high, and the thinnest part is +20 nm from the central altitude. The difference in height from the lowest altitude to the highest altitude is 40 nm.
  • the nanotopography was measured by fixing three arbitrary points on the outer edge of the wafer. Therefore, the nanotopography map represents the height difference of the surface when the wafer is not attracted.
  • Example 1 has a substantially uniform density and a small overall height difference. This is because the warp and waviness of the wafer surface are improved in the first resin bonding grinding process, but the nanotopography characteristics of the wafer surface are improved.
  • the surface of the wafer that has been sufficiently reduced in warpage and waviness is ground using the reference surface as a reference surface. I think I was able to get it.
  • Comparative Example 1 the height difference of the light and shade stripe pattern can be confirmed on the entire wafer. From this, it can be seen that a large difference in height due to undulation remains throughout.
  • Comparative Example 2 the density is almost uniform, and as in Example 1, it can be seen that there is little difference in overall height. Also in Comparative Example 2, a highly flattened surface as in Example 1 can be obtained. However, while the surface grinding process in Example 1 is three times, when Comparative Example 2 is performed, the surface grinding process is four times, and Comparative Example 2 has a problem that the productivity is low.
  • the height difference was 9 to 11 nm in Example 1, 17 to 28 nm in Comparative Example 1, and 9 to 11 nm in Comparative Example 2.
  • the wafer W of Example 1 and Comparative Example 2 was able to obtain a highly planarized surface having a nanotopography of 11 nm or less over the entire surface.
  • W wafer, W1 ... first side, W2 ... second side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

ウェーハの製造方法は、第1の樹脂貼り研削工程と、第2の樹脂貼り研削工程と、第3の平面研削工程とを備え、第1の樹脂貼り研削工程は、ウェーハの第二面全体に第1の塗布層を形成する第1の塗布層形成工程と、第1の塗布層がテーブルの基準面に当接するようにウェーハを載置し、ウェーハの第一面を平面研削する第1の平面研削工程と、第1の塗布層を除去する第1の塗布層除去工程とを備え、第2の樹脂貼り研削工程は、第一面全体に第2の塗布層を形成する第2の塗布層形成工程と、第2の塗布層がテーブルの基準面に当接するようにウェーハを載置し、第二面を平面研削する第2の平面研削工程と、第2の塗布層を除去する第2の塗布層除去工程とを備え、第3の平面研削工程は、最後に平面研削を行った面がテーブルの基準面に当接するようにウェーハを載置し、ウェーハにおける基準面に当接している面の反対側の面を平面研削する。

Description

ウェーハの製造方法
 本発明は、ウェーハの製造方法に関する。
 従来、ウェーハは、微細なパターンを写真製版により作成するために、ウェーハの表面の平坦化が求められていた。特に「ナノトポグラフィー」と呼ばれる表面うねりは、波長λ=0.2mm~20mmの成分をもち、PV値(Peak to Valley値)が0.1μm~0.2μm以下のうねりであり、最近、このナノトポグラフィーを低減することでウェーハの平坦度を向上させるための技術が提案されている(例えば、特許文献1,2参照)。
 特許文献1の製造方法は、インゴットからスライスされたウェーハの一の面全面を樹脂で覆う樹脂塗布工程と、ウェーハの一の面を保持し、ウェーハの二の面を研削した後、ウェーハの二の面を保持し、ウェーハの一の面を研削する工程とを含んでいる。
 特許文献2の製造方法は、ウェーハの第二面に硬化性樹脂を塗布し、この硬化性樹脂を平坦に加工して硬化させた後、硬化性樹脂の平坦面を保持してウェーハの第一面を研削し、その後、硬化性樹脂を除去する。なお、以下において、当該技術を「樹脂貼り研削」と言う場合がある。次に、樹脂貼り研削されたウェーハの第一面を保持して、第二面を研削する。その後、樹脂貼り研削と、当該樹脂貼り研削で研削されていない面の平面研削とを繰り返し行う。
 一方、単結晶インゴットをスライスする方法として、単結晶インゴットの円筒の中心付近へ砥粒を確実に供給するために、砥粒を含んだ切削液をワイヤーに供給する遊離砥粒方式ではなくワイヤー外周面に砥粒が固定された固定砥粒ワイヤーソーによりスライスする方式が用いられようとしている(例えば、特許文献3)。
特開平08-066850号公報 特開2015-008247号公報 特開2010-074056号公報
 上記特許文献1に示された樹脂塗布処理による研削工程では、ウェーハのうねり、そりがあるままの状態で樹脂塗布処理しているので、樹脂厚みの差による樹脂部の弾性変形量の大小により、うねりが残ってしまうという課題があった。
 また、上記特許文献2では、樹脂貼り研削と平面研削とをこの順序で繰り返すことで、うねりは除去されるが、ウェーハの両面の研削を繰り返すため、最低でも4回の研削工程が必要であり、生産性が低いという問題があった。
 また、これまでウェーハ表面にうねりが残留していても、樹脂塗布工程でウェーハ表面に塗布した樹脂により平坦な基準面が造り込まれた状態でうねりを除去するように研削処理が行われるため、スライス時のウェーハの表面状態については問題視されていなかった。ところが、本発明者らの実験によれば、特許文献1で記載されるような樹脂塗布処理を行っても、鏡面研磨処理後のウェーハ表面のナノトポグラフィー品質は十分ではないことを知見した。
 更に、特許文献3のようにスライス工程において、固定砥粒ワイヤーを用いた場合、ウェーハへの加工ダメージが大きく、切断後のウェーハ表面に発生するうねりも非常に大きくなるため、よりナノトポグラフィーが悪化する問題があることを知見した。
 本発明の目的は、生産性を落とすことなくナノトポグラフィー特性に優れるウェーハを製造できるウェーハの製造方法を提供することにある。
 本発明者らは上記目的を達成するため鋭意検討した結果、ウェーハの表面に硬化性材料をコーティングして平面研削する場合、片面1回目だけ硬化性材料を塗布した平面研削をするより、反対面についても硬化性材料を塗布した2回目の平面研削を行い、さらに1回目の研削面に対する3回目の平面研削を行うことにより、生産性が高く、かつ、最終的に得られるウェーハのナノトポグラフィー品質が良くなることを知見し、本発明を完成させた。
 具体的には、スライス後にウェーハの第二面を硬化性材料でコーティングして第一面を平面研削し、第二面の硬化性材料を除去した後に、第一面を硬化性材料でコーティングして第二面を平面研削する。さらに第一面の硬化性材料を除去した後、第一面を平面研削する。このような工程により、生産性を落とすことなくナノトポグラフィーの品質が改善できる。
 本発明の第1の観点は、単結晶インゴットをワイヤーソー装置を用いてスライスして得られたウェーハを研削するウェーハの製造方法であって、第1の樹脂貼り研削工程と、第2の樹脂貼り研削工程と、第3の平面研削工程とを備え、前記第1の樹脂貼り研削工程は、前記ウェーハの第二面全体に硬化性材料を塗布して平坦な第1の塗布層を形成する第1の塗布層形成工程と、前記第1の塗布層が研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し、続いて前記研削装置により前記ウェーハの第一面を平面研削する第1の平面研削工程と、前記第1の平面研削工程後の前記第1の塗布層を前記ウェーハの第二面から除去する第1の塗布層除去工程とを備え、前記第2の樹脂貼り研削工程は、前記ウェーハの第一面全体に硬化性材料を塗布して平坦な第2の塗布層を形成する第2の塗布層形成工程と、前記第2の塗布層が研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し、続いて前記研削装置により前記ウェーハの第二面を平面研削する第2の平面研削工程と、前記第2の平面研削工程後の前記第2の塗布層を前記ウェーハの第一面から除去する第2の塗布層除去工程とを備え、前記第3の平面研削工程は、最後に平面研削を行った面が研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し、続いて前記研削装置により前記ウェーハにおける前記基準面に当接している面の反対側の面を平面研削するウェーハの製造方法である。
 本発明の第1の観点では、生産性を落とすことなくナノトポグラフィー品質に優れるウェーハを製造できる。
 本発明の第2の観点は、第1の観点に基づく発明であって、前記第2の樹脂貼り研削工程と前記第3の平面研削工程との間に、さらに前記第1の樹脂貼り研削工程のみを行うか、または、さらに前記第1の樹脂貼り研削工程および前記第2の樹脂貼り研削工程を当該順序で少なくとも1回繰り返して行うか、または、さらに前記第1の樹脂貼り研削工程および前記第2の樹脂貼り研削工程を当該順序で少なくとも1回繰り返して行い、最後に前記第1の樹脂貼り研削工程を行うウェーハの製造方法である。
 本発明の第2の観点では、第1の樹脂貼り研削工程や第2の樹脂貼り研削工程を複数行うことで、さらにナノトポグラフィー品質に優れるウェーハを製造できる。
 本発明の第3の観点は、前記第1の樹脂貼り研削工程での研削量が前記第3の平面研削工程での研削量以上であるウェーハの製造方法である。
 本発明の第3の観点は、第1の樹脂貼り研削工程での研削量を第3の平面研削工程での研削量以上とすることで、トータルの研削の取代が少なくてもナノトポグラフィー品質に優れるウェーハを製造できる。
 本発明の第4の観点は、第1から第3の観点に基づく発明であって、前記ワイヤーソー装置が固定砥粒ワイヤーを用いたスライス方式であるウェーハの製造方法である。
 本発明の第4の観点では、特に、固定砥粒方式のワイヤーソー装置を用いて切断されたうねりの大きなウェーハを用いる場合であっても本製造方法によって、うねりを可及的に低減することができ、ナノトポグラフィー品質に優れるウェーハを製造できる。
 本発明の第5の観点は、第1から第4の観点に基づく発明であって、前記ウェーハの直径が300mm以上であり、特に、450mm以上であるウェーハの製造方法である。
 本発明の第5の観点では、ウェーハの直径が300mm以上、特に、450mm以上においても本発明にかかるウェーハの製造方法によって、トータルの研削の取代が少なくてもナノトポグラフィー品質に優れるウェーハを製造できる。
本発明の一実施形態に係るウェーハの製造方法の概略工程を示すフローチャートである。 前記ウェーハの製造方法の説明図である。 前記ウェーハの製造方法の説明図であり、図2に続く状態を示す。 本発明の実施例1に係るウェーハの製造方法の説明図である。 本発明の比較例1および比較例2に係るウェーハの製造方法の説明図である。 前記比較例2におけるウェーハの製造方法の説明図であり、図5に続く状態を示す。 実施例1および比較例1,2の鏡面研磨後のナノトポグラフィーマップである。 実施例1および比較例1,2のナノトポグラフィー結果を示した図である。
 次に本発明を実施するための形態を図面に基づいて説明する。
 ウェーハの製造方法は、図1に示すように、単結晶インゴットをワイヤーソー装置を用いてスライスして薄円板状のウェーハを得るスライス工程S1と、第1の樹脂貼り研削工程S2と、第2の樹脂貼り研削工程S3と、第3の平面研削工程S4とを備えている。第1の樹脂貼り研削工程S2は、ウェーハの第二面全体に硬化性材料を塗布して平坦な第1の塗布層を形成する第1の塗布層形成工程S21と、第1の塗布層が研削装置のテーブルの基準面に当接するようにウェーハをテーブルに載置し、続いて研削装置によりウェーハの第一面を平面研削する第1の平面研削工程S22と、第1の平面研削工程S22後の第1の塗布層をウェーハの第二面から除去する第1の塗布層除去工程S23とを備えている。第2の樹脂貼り研削工程S3は、ウェーハの第一面全体に硬化性材料を塗布して平坦な第2の塗布層を形成する第2の塗布層形成工程S31と、第2の塗布層が研削装置のテーブルの基準面に当接するようにウェーハをテーブルに載置し、続いて研削装置によりウェーハの第二面を平面研削する第2の平面研削工程S32と、第2の平面研削工程S32後の第2の塗布層をウェーハの第一面から除去する第2の塗布層除去工程S33とを備えている。第3の平面研削工程S4は、最後に平面研削を行った面が研削装置のテーブルの基準面に当接するようにウェーハをテーブルに載置し、続いて研削装置によりウェーハにおける基準面に当接している面の反対側の面を平面研削する。
 なお、スライス工程S1と第1の樹脂貼り研削工程S2との間には、ラッピング工程が行われることもある。また、ウェーハの外縁上を面取りする工程は特に示していないが、面取りする工程は、スライス工程S1の後に一次面取りを行い、第3の平面研削工程S4の後に一次面取りより面取り量の大きな2次面取りを行うなどスライス工程S1の後から第3の平面研削工程S4の後までの間どこの工程の間で行っても、また、複数回行ってもよい。
 また、本実施形態のウェーハの製造方法において、第1の樹脂貼り研削工程S2と、第2の樹脂貼り研削工程S3とは少なくとも1回ずつ行われればよい。例えば、第2の樹脂貼り研削工程S3と、第3の平面研削工程S4との間に、さらに第1の樹脂貼り研削工程S2のみを行ってもよいし、さらに第1の樹脂貼り研削工程S2および第2の樹脂貼り研削工程S3を当該順序で少なくとも1回繰り返して行ってもよいし、さらに第1の樹脂貼り研削工程S2および第2の樹脂貼り研削工程S3を当該順序で少なくとも1回繰り返して行い、最後に第1の樹脂貼り研削工程S2を行ってもよい。なお、第3の平面研削工程S4は、当該第3の平面研削工程S4の直前に行われた第1の樹脂貼り研削工程S2または第2の樹脂貼り研削工程S3において平面研削されていない面を平面研削する。
 樹脂貼り研削工程をウェーハの表面、裏面に複数回に分けることで、ウェーハ表面のナノトポグラフィー特性が満足される。すなわち、1回の樹脂貼り研削でナノトポグラフィーを改善するためには、ウェーハに存在するうねり成分を全て除去することは困難であるが、樹脂貼り研削を繰り返すことにより、繰り返す毎にナノトポグラフィー特性が改善されることを知見した。このように、繰り返し樹脂貼り研削を施すことにより、ウェーハ表面のうねりが軽減され、ウェーハ表面のナノトポグラフィー特性を向上させることができる。
 次に、ウェーハの製造方法を図2を参照して詳しく説明する。
 図2(A)は、固定砥粒ワイヤーソーでスライスされたウェーハWの状態を示す。
 スライスには、図示しない公知のマルチワイヤーソー装置が用いられ、インゴットから一度に複数枚のウェーハWを製造することができる。マルチワイヤーソー装置は、ワイヤーをガイドする溝が複数設けられたガイドローラとワイヤーを回転させるためのローラにまたがり、極細鋼線のワイヤーが複数巻き付けてある。ローラを高速回転させて、ガイドローラとローラの間に露出した複数のワイヤーに被切断物を押しあてて被切断物を複数枚に切断する装置である。
 マルチワイヤーソー装置には、切断するための砥粒の使い方によって固定砥粒方式と遊離砥粒方式とがある。固定砥粒方式は、ダイヤモンド砥粒などを蒸着などにより付着させた鋼線をワイヤーに使用する。遊離砥粒方式は、ワイヤーに砥粒と油剤を混ぜたスラリーをかけながら使用する。固定砥粒方式は、砥粒を固着させたワイヤー自体が被切断物を切断するため、切断時間が短く生産性にすぐれる。また、スラリーを使用しないために切断後の切り屑の混じったスラリーを廃棄する必要がないため、環境にも優しく経済的である。
 本実施形態には、どちらの方式を使用しても可能であるが、環境面、経済面で有利な固定砥粒方式が望ましい。なお、固定砥粒ワイヤーソーを用いた場合、ウェーハ表面に与える加工ダメージが大きく、切断後のウェーハ表面に発生するうねりも大きくなるため、よりナノトポグラフィーが悪化する問題があるが、本発明の加工方法を用いることにより、ナノトポグラフィー特性に優れる、すなわち、ナノトポグラフィーの値が小さいウェーハを製造することができる。
 固定砥粒ワイヤーソーでスライスし、ラッピングがされた後のウェーハWの第一面W1および第二面W2には、図2(A)に示すように、周期的に波打つようなうねりW11,W12が発生している。
 図2(B)に、第1の塗布層形成工程S21に使用する保持押圧装置10の一例を示す。まず、保持押圧装置10の高平坦化された平板11上に塗布層となる硬化性材料Rを滴下する。一方、ウェーハWは、第一面W1が保持手段12の保持面121に吸引保持され、保持面121を下方に移動させてウェーハWの第二面W2を硬化性材料Rに押圧する。その後、保持面121の圧力を解除して、ウェーハWに残留しているうねりW11,W21に弾性変形を与えていない状態で、ウェーハWの第二面W2に硬化性材料Rを硬化させて第1の塗布層RH1を形成する。この工程により、平板11と接触する第1の塗布層RH1の面は高平坦化された面となり、ウェーハWの第一面W1を研削するときの基準面RH11とすることができる。
 ウェーハWに硬化性材料Rを塗布する方法は、ウェーハWの第二面W2を上面として第二面W2上に硬化性材料Rを滴下させウェーハWを回転し硬化性材料Rを第二面W2全面に広げるスピンコート法又は第二面W2にスクリーン膜を設置し、スクリーン膜の上に硬化性材料Rを載せ、スキージで押し込むスクリーン印刷による方法、更にはエレクトリックスプレーデポジション法により第二面W2全面にスプレーする方法等によって塗布した後に高平坦化された平板11上に塗布面を接触、押圧する方法の他、上記方法に限らず、硬化性材料RによってウェーハWの一面を高平坦化する方法が適用できる。硬化性材料Rは、熱硬化性樹脂、熱可逆性樹脂、感光性樹脂などの硬化性材料Rが、加工後の剥離のしやすさの点で好ましい。特に、感光性樹脂は熱によるストレスが加わらないという点でも好適である。本実施例では、硬化性材料Rとして、UV硬化による樹脂を使用した。また、他の具体的な硬化性材料Rの材質として、合成ゴムや接着剤(ワックス等)などが挙げられる。
 図2(C)に第1の平面研削工程S22に使用する平面研削装置20の一例を示す。まず、第1の塗布層形成工程S21で作成された第1の塗布層RH1の基準面RH11を平面研削装置20の真空チャックテーブル21の高平坦化された基準面211に設置し吸引保持する。次いで、設置されたウェーハWの上面には、砥石22を一面に設置した研削ホイール23が設置される。次に、砥石22とウェーハWの第一面W1とが接触した状態で、研削ホイール23と真空チャックテーブル21とを回転させることでウェーハWの第一面W1を研削する。
 図3(D)に第1の塗布層除去工程S23を示す。第1の平面研削工程S22で第一面W1が平面研削されたウェーハWから、第1の塗布層RH1を引き剥がす。第1の塗布層RH1の除去は溶剤を用いて化学的に除去するようにしてもよい。
 この時、平面研削されたウェーハWの第一面W1には、平面研削により改善はされているが、依然、うねりW11が残留している。これは、第1の塗布層RH1の厚みが、うねりW21の大きさによりウェーハ面内で部分的に異なるため、平面研削の加工圧力による弾性変形量も異なってしまうためで、その部分毎の変形量の差が、うねりW11となって残留するものと推定される。
 その後、図2(B)に示す第1の塗布層形成工程S21と同じ装置を使用し、第一面W1に第2の塗布層を形成する第2の塗布層形成工程S31と、図2(C)に示す第1の平面研削工程S22と同じ装置を使用し、第二面W2を平面研削する第2の平面研削工程S32と、図3(A)に示す第1の塗布層除去工程S23と同じように、第一面W1の第2の塗布層を引き剥がす第2の塗布層除去工程S33とを行う。つまり、第2の樹脂貼り研削工程S3を行う。
 図3(E)に第3の平面研削工程S4の一例を示す。平面研削する装置は第1の平面研削工程S22で使用した平面研削装置20と同じ装置である。例えば、第3の平面研削工程S4の直前に第2の樹脂貼り研削工程S3が行われた場合、第2の平面研削工程S32で平面研削されたウェーハWの第二面W2を真空チャックテーブル21の基準面211に直接設置して吸引保持し、ウェーハWの第一面W1を研削する。これにより、図3(F)に示すように、両面ともに高平坦化されたウェーハWを得ることができる。
 なお、第2の樹脂貼り研削工程S3と第3の平面研削工程S4との間に、さらに第1の樹脂貼り研削工程S2や第2の樹脂貼り研削工程S3を行ってもよい。
 例えば、第1の樹脂貼り研削工程S2と第2の樹脂貼り研削工程S3とをこの順序で3回繰り返してから、第3の平面研削工程S4を行う場合、それぞれの研削での取代は、1回目の第1の平面研削工程S22では15~30μm、1回目の第2の平面研削工程S32では20~40μm、2回目の第1の平面研削工程S22では5~10μm、2回目および3回目の第2の平面研削工程S32、3回目の第1の平面研削工程S22では5~10μmそれぞれ研削すればよい。第3の平面研削工程S4を経たウェーハWは両面とも高平坦化され、回を重ねる毎にナノトポグラフィー特性が改善される。樹脂貼り研削の回数は、3回(第1の樹脂貼り研削工程S2を2回、第2の樹脂貼り研削工程S3を1回)以上、必要とされるナノトポグラフィー特性に応じて決定すればよい。
 次に本発明の実施例を比較例とともに詳しく説明する。なお、実施例1、比較例1,2に用いたウェーハWは、シリコン単結晶インゴットから固定砥粒方式ワイヤーソー装置を用いて同一条件でスライスした直径300mmのウェーハWを用いた。
 <実施例1>
 本発明の実施例1に係る各工程でのウェーハの状態を図4に示す。図4を基に実施例1の加工工程を説明する。
 図4(A)に示すように、スライス工程S1後のウェーハWの第二面W2に、図4(B)に示すように、UV硬化性樹脂を塗布して硬化させ、平坦な基準面RH11を有する第1の塗布層RH1を形成した(第1の塗布層形成工程S21)。なお、第1の塗布層RH1を第二面W2に形成したが、最初に、第一面W1に形成してもかまわない。第1の塗布層RH1を第一面W1に形成した場合は、以下の説明で、第二面W2と第一面W1とが入れ替わることとする。
 次に、第1の塗布層RH1の基準面RH11が真空チャックテーブル21で吸引保持されたウェーハWの第一面W1を、1回目の取代として15μm(破線P1の面)まで平面研削した(第1の平面研削工程S22)後、図4(C)に示すように、第1の塗布層RH1を引き剥がした(第1の塗布層除去工程S23)。
 次に、図4(D)に示すように、第1の樹脂貼り研削工程S2を行ったウェーハWを反転し(第1の反転工程)、図4(E)に示すように、ウェーハWの第一面W1にUV硬化性樹脂を塗布して硬化させ、平坦な基準面RH21を有する第2の塗布層RH2を形成した(第2の塗布層形成工程S31)。そして、基準面RH21が真空チャックテーブル21で吸引保持されたウェーハWの第二面W2を2回目の取代として20μm(破線P2の面)まで平面研削した(第2の平面研削工程S32)後、図4(F)に示すように、第2の塗布層RH2を引き剥がした(第2の塗布層除去工程S33)。
 次に、図4(G)に示すように、第2の樹脂貼り研削工程S3を行ったウェーハWを反転し(第2の反転工程)、第2の樹脂貼り研削工程S3を行った第二面W2が真空チャックテーブル21で吸引保持されたウェーハWの第一面W1を3回目の取代として5μm(破線P3の面)まで平面研削した(第3の平面研削工程S4)。
 以上、全工程を終了し、図4(H)に示すように、両面ともに高平坦化された実施例1のウェーハWが得られた。
 <比較例1>
 比較例1に係る各工程でのウェーハの状態を図5に示す。比較例1は実施例1で行った第1の樹脂貼り研削工程S2、第2の樹脂貼り研削工程S3および第3の平面研削工程S4のうち、第2の塗布層形成工程S31、第2の塗布層除去工程S33および第3の平面研削工程S4を除く工程を行ったものである。
 図5(A)から図5(D)は、第2の樹脂貼り研削工程S3のうち、第2の塗布層形成工程S31を行わない以外、図4(A)から図4(D)に対応する。図5(A)から図5(D)の工程の後、図5(D)に示すように、第1の平面研削工程S22を行った第一面W1が真空チャックテーブル21で吸引保持されたウェーハWの第二面W2を、破線P2の面まで平面研削し(第2の平面研削工程S32)、図5(E)に示すような比較例1のウェーハWが得られた。取代は、第1の平面研削工程S22で20μm、第2の平面研削工程S32で20μmとして研削した。
 <比較例2>
 比較例2に係る各工程でのウェーハの状態を図6に示す。比較例2は比較例1を2回繰り返す場合であり、さらに繰り返してもよい。
 まず、図5(A)から図5(E)に示すような比較例1の工程を行う。なお、比較例2では、第1の平面研削工程S22および第2の平面研削工程S32での取代を15μmとした。
 その後、図6(F)に示すように、ウェーハWを反転し(反転工程)、図6(G)に示すように、ウェーハWの第二面W2にUV硬化性樹脂で第2の塗布層RH2を形成した(第2の塗布層形成工程)。そして、第2の塗布層RH2の基準面RH21が真空チャックテーブル21で吸引保持されたウェーハWの第一面W1を、3回目の取代として5μm(破線P3の面)まで平面研削した(第3の平面研削工程)後、図6(H)に示すように第2の塗布層RH2を引き剥がした(第2の塗布層除去工程)。この後、図6(I)に示すように、第3の平面研削を行った第一面W1が真空チャックテーブル21で吸引保持されたウェーハWの第二面W2を、4回目の取代として5μm(破線P4の面)まで平面研削し(第4の平面研削工程)、図6(J)にしめすような比較例2のウェーハWが得られた。
 <評価試験1>
 実施例1と比較例1,2で得られた各ウェーハWの表面形状が、その後に行われる鏡面研磨処理後のウェーハ表面におけるナノトポグラフィーにどのような影響を与えるのかを調査した。
 具体的には、まず、実施例1と比較例1、2で得られた各ウェーハWそれぞれに対して、共通の鏡面研磨処理として、両面研磨装置を用いて各ウェーハの表裏面に同一条件の粗研磨処理を施した後、片面研磨装置を用いて各ウェーハ表面に同一条件の仕上げ研磨処理を施して、各ウェーハWの表面が鏡面研磨されたウェーハを作成した。図7は、鏡面研磨された各ウェーハ表面を光学干渉式の平坦度測定装置(KLA Tencor社:Wafersight2)を用いて各ウェーハ表面の高さ分布(高低差)を測定したナノトポグラフィーマップであり、鏡面研磨処理後の各ウェーハの測定結果をフィルタリング処理して長波長成分を除去した後、ナノトポグラフィーの測定結果を濃淡色で図示化したものである。図7に記載される高低差の図は、ナノトポグラフィーの高低差を表す図であって、濃い色になるほど高度が低く、一番濃い部分は中心高度から-20nmになり、薄い色になるほど高度は高く、一番薄い部分は中心高度から+20nmになっている。最低高度から最高高度までの高低差は40nmとなる。なお、ナノトポグラフィーの測定は、ウェーハの外縁の任意の3点を固定して測定した。従って、ナノトポグラフィーマップは、ウェーハを非吸着の状態での表面の高低差を表している。
 図7に示すように、実施例1は、ほぼ均一した濃さであり、全面高低差が少ないことがわかる。この理由は、第1の樹脂貼り研削工程でそり、うねりは全て研削されないけれども、ウェーハ表面のナノトポグラフィー特性が改善され、第2の樹脂貼り研削工程で、ウェーハ表面のそり、うねりが十分に軽減され、第3の平面研削工程では、そり、うねりが十分に軽減されたウェーハ表面を基準面にして平面研削するため、少ない取代で、ナノトポグラフィー特性が改善され高平坦化された表面を得ることができたと考える。
 比較例1では、ウェーハ全体に濃淡の縞模様の高低差が確認できる。このことから、全体にうねりによる高低差が大きく残っていることがわかる。
 比較例2では、ほぼ均一した濃さであり、実施例1と同様に、全面高低差が少ないことがわかる。比較例2によっても、実施例1のような高平坦化された表面を得ることができる。しかし実施例1での平面研削工程が3回であるのに対し、比較例2を実施する場合、平面研削工程が4回となり、比較例2は生産性が低くなるという問題がある。
 <評価試験2>
 評価試験1と同様に、各ウェーハWの表面形状が鏡面研磨処理後のウェーハ表面のナノトポグラフィーにどのような影響を与えるのかを調査した。
 本試験では、実施例1、比較例1,2と同条件のウェーハWをそれぞれ複数枚製造し、その複数のウェーハWそれぞれについて、評価試験1と同条件の鏡面研磨処理(両面研磨装置を用いた粗研磨処理+片面研磨装置を用いた仕上げ研磨処理)を施して、各ウェーハWの表面が鏡面研磨されたウェーハWを作成した。図8は、鏡面研磨された各ウェーハWの表面を光学干渉式の平坦度測定装置(KLA Tencor社:Wafersight2)を用いて各ウェーハWの表面のウィンドウサイズ10mmのナノトポグラフィーを測定し、個々のグラフに表したものである。
 図8から明らかなように、実施例1では高低差が9~11nm、比較例1では17~28nm、比較例2では9~11nmの範囲となった。実施例1,比較例2のウェーハWは表面全体のナノトポグラフィーが11nm以下の高平坦化された表面を得ることができた。
 W…ウェーハ、W1…第一面、W2…第二面。

Claims (5)

  1.  単結晶インゴットをワイヤーソー装置を用いてスライスして得られたウェーハを研削するウェーハの製造方法であって、
     第1の樹脂貼り研削工程と、第2の樹脂貼り研削工程と、第3の平面研削工程とを備え、
     前記第1の樹脂貼り研削工程は、
     前記ウェーハの第二面全体に硬化性材料を塗布して平坦な第1の塗布層を形成する第1の塗布層形成工程と、
     前記第1の塗布層が研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し、続いて前記研削装置により前記ウェーハの第一面を平面研削する第1の平面研削工程と、
     前記第1の平面研削工程後の前記第1の塗布層を前記ウェーハの第二面から除去する第1の塗布層除去工程とを備え、
     前記第2の樹脂貼り研削工程は、
     前記ウェーハの第一面全体に硬化性材料を塗布して平坦な第2の塗布層を形成する第2の塗布層形成工程と、
     前記第2の塗布層が研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し、続いて前記研削装置により前記ウェーハの第二面を平面研削する第2の平面研削工程と、
     前記第2の平面研削工程後の前記第2の塗布層を前記ウェーハの第一面から除去する第2の塗布層除去工程とを備え、
     前記第3の平面研削工程は、
     最後に平面研削を行った面が研削装置のテーブルの基準面に当接するように前記ウェーハを前記テーブルに載置し、続いて前記研削装置により前記ウェーハにおける前記基準面に当接している面の反対側の面を平面研削するウェーハの製造方法。
  2.  前記第2の樹脂貼り研削工程と前記第3の平面研削工程との間に、
     さらに前記第1の樹脂貼り研削工程のみを行うか、または、
     さらに前記第1の樹脂貼り研削工程および前記第2の樹脂貼り研削工程を当該順序で少なくとも1回繰り返して行うか、または、
     さらに前記第1の樹脂貼り研削工程および前記第2の樹脂貼り研削工程を当該順序で少なくとも1回繰り返して行い、最後に前記第1の樹脂貼り研削工程を行う請求項1に記載のウェーハの製造方法。
  3.  前記第1の樹脂貼り研削工程での研削量が前記第3の平面研削工程での研削量以上である請求項1に記載のウェーハの製造方法。
  4.  前記ワイヤーソー装置が固定砥粒ワイヤーを用いたスライス方式である請求項1から請求項3のいずれか1項に記載のウェーハの製造方法。
  5.  前記ウェーハの直径が300mm以上である請求項1から請求項4のいずれか1項に記載のウェーハの製造方法。
PCT/JP2018/006188 2018-02-21 2018-02-21 ウェーハの製造方法 WO2019163017A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207023322A KR102328577B1 (ko) 2018-02-21 2018-02-21 웨이퍼의 제조 방법
US16/969,836 US11948789B2 (en) 2018-02-21 2018-02-21 Wafer production method
CN201880090100.4A CN111758152B (zh) 2018-02-21 2018-02-21 晶片的制造方法
DE112018007133.2T DE112018007133T5 (de) 2018-02-21 2018-02-21 Waferproduktionsverfahren
JP2020501895A JP6878676B2 (ja) 2018-02-21 2018-02-21 ウェーハの製造方法
PCT/JP2018/006188 WO2019163017A1 (ja) 2018-02-21 2018-02-21 ウェーハの製造方法
TW108102373A TWI693124B (zh) 2018-02-21 2019-01-22 晶圓的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006188 WO2019163017A1 (ja) 2018-02-21 2018-02-21 ウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2019163017A1 true WO2019163017A1 (ja) 2019-08-29

Family

ID=67687051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006188 WO2019163017A1 (ja) 2018-02-21 2018-02-21 ウェーハの製造方法

Country Status (7)

Country Link
US (1) US11948789B2 (ja)
JP (1) JP6878676B2 (ja)
KR (1) KR102328577B1 (ja)
CN (1) CN111758152B (ja)
DE (1) DE112018007133T5 (ja)
TW (1) TWI693124B (ja)
WO (1) WO2019163017A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112621557A (zh) * 2020-12-17 2021-04-09 江苏集萃精凯高端装备技术有限公司 Yag晶片的抛光方法
WO2023228787A1 (ja) * 2022-05-23 2023-11-30 信越半導体株式会社 研削ウェーハの製造方法及びウェーハの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7208759B2 (ja) * 2018-10-16 2023-01-19 株式会社ディスコ ウエーハ保持装置を用いたウエーハの加工方法
US11415971B2 (en) 2020-02-10 2022-08-16 Globalwafers Co., Ltd. Systems and methods for enhanced wafer manufacturing
CN112658974A (zh) * 2020-12-17 2021-04-16 江苏集萃精凯高端装备技术有限公司 Yag晶片的研磨加工方法
CN116276405A (zh) * 2023-05-18 2023-06-23 扬州韩思半导体科技有限公司 一种晶圆片加工用抛光装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269761A (ja) * 2005-03-24 2006-10-05 Disco Abrasive Syst Ltd ウェハの製造方法
JP2014011378A (ja) * 2012-07-02 2014-01-20 Tokyo Seimitsu Co Ltd ウェーハ吸着装置およびウェーハ吸着方法
JP2015008247A (ja) * 2013-06-26 2015-01-15 株式会社Sumco 半導体ウェーハの加工プロセス
WO2017134925A1 (ja) * 2016-02-03 2017-08-10 株式会社Sumco ウェーハの製造方法およびウェーハ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3055401B2 (ja) 1994-08-29 2000-06-26 信越半導体株式会社 ワークの平面研削方法及び装置
JPH10286750A (ja) * 1997-04-14 1998-10-27 Disco Abrasive Syst Ltd ウェーハの研磨方法
JP3924641B2 (ja) * 1997-10-07 2007-06-06 東芝セラミックス株式会社 半導体ウェーハの製造方法
JP4663362B2 (ja) * 2005-03-18 2011-04-06 株式会社ディスコ ウエーハの平坦加工方法
JP5504412B2 (ja) 2008-05-09 2014-05-28 株式会社ディスコ ウェーハの製造方法及び製造装置、並びに硬化性樹脂組成物
JP2010074056A (ja) 2008-09-22 2010-04-02 Sumco Corp 半導体ウェーハおよびその製造方法
JP2011003379A (ja) 2009-06-18 2011-01-06 Seiko Epson Corp 光源装置およびプロジェクター
JP2011098414A (ja) * 2009-11-06 2011-05-19 Dainippon Printing Co Ltd 研磨フィルム、その製造方法及び塗工剤
JP5524716B2 (ja) * 2010-05-28 2014-06-18 株式会社ディスコ ウェーハの平坦加工方法
CN104769704B (zh) * 2013-02-19 2017-10-13 胜高股份有限公司 半导体晶片的加工方法
JP2014192307A (ja) 2013-03-27 2014-10-06 Disco Abrasive Syst Ltd サファイア基板の平坦加工方法
JP2015038919A (ja) * 2013-08-19 2015-02-26 株式会社ディスコ ウェーハの製造方法
JP6418130B2 (ja) * 2015-10-20 2018-11-07 株式会社Sumco 半導体ウェーハの加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269761A (ja) * 2005-03-24 2006-10-05 Disco Abrasive Syst Ltd ウェハの製造方法
JP2014011378A (ja) * 2012-07-02 2014-01-20 Tokyo Seimitsu Co Ltd ウェーハ吸着装置およびウェーハ吸着方法
JP2015008247A (ja) * 2013-06-26 2015-01-15 株式会社Sumco 半導体ウェーハの加工プロセス
WO2017134925A1 (ja) * 2016-02-03 2017-08-10 株式会社Sumco ウェーハの製造方法およびウェーハ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112621557A (zh) * 2020-12-17 2021-04-09 江苏集萃精凯高端装备技术有限公司 Yag晶片的抛光方法
WO2023228787A1 (ja) * 2022-05-23 2023-11-30 信越半導体株式会社 研削ウェーハの製造方法及びウェーハの製造方法

Also Published As

Publication number Publication date
US20200381243A1 (en) 2020-12-03
JP6878676B2 (ja) 2021-06-02
DE112018007133T5 (de) 2020-11-05
KR20200104909A (ko) 2020-09-04
KR102328577B1 (ko) 2021-11-17
TWI693124B (zh) 2020-05-11
CN111758152B (zh) 2023-10-31
TW201936315A (zh) 2019-09-16
US11948789B2 (en) 2024-04-02
JPWO2019163017A1 (ja) 2021-02-04
CN111758152A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
JP6187579B2 (ja) 半導体ウェーハの加工方法
WO2019163017A1 (ja) ウェーハの製造方法
JP6111893B2 (ja) 半導体ウェーハの加工プロセス
JP6418130B2 (ja) 半導体ウェーハの加工方法
JP3924641B2 (ja) 半導体ウェーハの製造方法
WO2018079105A1 (ja) ウェーハの製造方法およびウェーハ
WO2017134925A1 (ja) ウェーハの製造方法およびウェーハ
WO2018079222A1 (ja) ウェーハの製造方法およびウェーハ
KR101086966B1 (ko) 반도체 웨이퍼 연마방법
WO2023228787A1 (ja) 研削ウェーハの製造方法及びウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501895

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207023322

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18906727

Country of ref document: EP

Kind code of ref document: A1