WO2019160108A1 - 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法 - Google Patents
無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法 Download PDFInfo
- Publication number
- WO2019160108A1 WO2019160108A1 PCT/JP2019/005668 JP2019005668W WO2019160108A1 WO 2019160108 A1 WO2019160108 A1 WO 2019160108A1 JP 2019005668 W JP2019005668 W JP 2019005668W WO 2019160108 A1 WO2019160108 A1 WO 2019160108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- oriented electrical
- electrical steel
- steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the present invention relates to a non-oriented electrical steel sheet and a method for producing a non-oriented electrical steel sheet.
- Non-oriented electrical steel sheets are used, for example, in the iron core of motors, and non-oriented electrical steel sheets are required to have excellent magnetic properties, for example, high magnetic flux density.
- various techniques such as those disclosed in Patent Documents 1 to 9 have been proposed, but it is difficult to obtain a sufficient magnetic flux density.
- An object of the present invention is to provide a non-oriented electrical steel sheet capable of obtaining a higher magnetic flux density without deteriorating iron loss, and a method for producing the non-oriented electrical steel sheet.
- the present inventors have intensively studied to solve the above problems. As a result, it became clear that it is important to make the relationship between chemical composition and crystal orientation appropriate. It has also become clear that this relationship should be maintained throughout the thickness direction of the non-oriented electrical steel sheet.
- the isotropic texture of a rolled steel sheet is high in a region close to the rolled surface and decreases as the distance from the rolled surface increases.
- Patent Document 9 it is shown in the experimental data disclosed in the document that the isotropic property of the texture decreases as the measurement position of the texture increases from the surface layer.
- the present inventors have found that it is necessary to preferably control the crystal orientation even in the non-oriented electrical steel sheet.
- Patent Document 9 crystal orientations are accumulated near the cube orientation near the surface layer of the steel sheet, whereas a gamma fiber texture is developed in the central layer of the steel sheet.
- Patent document 9 is explaining that it is a novel feature that a texture differs greatly between a steel plate surface layer and a steel plate center layer.
- crystal orientation is accumulated in the vicinity of ⁇ 200 ⁇ and ⁇ 110 ⁇ which are cube orientations near the surface layer of the steel sheet, and a gamma fiber texture is formed in the steel sheet center layer. Some ⁇ 222 ⁇ develops.
- the inventor needs to accumulate the crystal orientation in the vicinity of ⁇ 200 ⁇ which is the cube orientation in the vicinity of the surface layer of the steel sheet, and also in the center layer of the steel sheet to accumulate the crystal orientation in the vicinity of ⁇ 200 ⁇ . I found out.
- the non-oriented electrical steel sheet according to one aspect of the present invention is mass%, C: 0.0030% or less, Si: 2.00% or less, Al: 1.00% or less, Mn: 0.10.
- Parameter Q 2.00 or less, Sn: 0.00% to 0.40%, Cu: 0.00% to 1.00%, and the balance: Fe and impurities.
- the parameters R are defined as I 211 , I 332 , and I 221, and the parameter R expressed by Formula 2 is 0.80 or more.
- a method for producing a non-oriented electrical steel sheet according to another aspect of the present invention is a method for producing a non-oriented electrical steel sheet according to the above (1) or (2), wherein a continuous casting process of molten steel and , The hot rolling process of the steel ingot obtained by the continuous casting process, the cold rolling process of the steel strip obtained by the hot rolling process, and the finish of the cold rolled steel sheet obtained by the cold rolling process An annealing step, wherein the molten steel has the chemical composition described in the above (1) or (2), and the steel strip has an area fraction of columnar crystals of 80% or more and an average crystal The particle size is 0.10 mm or more, and the rolling reduction in the cold rolling step is 90% or less.
- a method for producing a non-oriented electrical steel sheet according to another aspect of the present invention is a method for producing a non-oriented electrical steel sheet according to the above (1) or (2), wherein a rapid solidification step of molten steel and And a cold rolling step of the steel strip obtained by the rapid solidification step, and a finish annealing step of the cold rolled steel plate obtained by the cold rolling step, wherein the molten steel is the above (1) or (2
- the steel strip has a columnar crystal ratio of 80% or more in area fraction and an average crystal grain size of 0.10 mm or more, and the rolling reduction in the cold rolling step Is 90% or less.
- the molten steel in the rapid solidification step, is solidified using a cooling body that moves and updates, and is injected into the cooling body that moves and updates.
- the temperature of the molten steel may be 25 ° C. or more higher than the solidification temperature of the molten steel.
- the molten steel in the rapid solidification step, is solidified using a cooling body that is moved and updated, and the solidification of the molten steel is completed.
- the average cooling rate until winding of the steel strip may be 1,000 to 3,000 ° C./min.
- the sheet feeding tension in the finish annealing step is 3 MPa or less, and the cooling rate at 950 ° C. to 700 ° C. May be 1 ° C./second or less.
- the relationship between the chemical composition and the crystal orientation is appropriate, a high magnetic flux density can be obtained without deteriorating the iron loss.
- the chemical composition of the non-oriented electrical steel sheet and the molten steel used for manufacturing the non-oriented electrical steel sheet according to the embodiment of the present invention will be described. Although the details will be described later, the non-oriented electrical steel sheet according to the embodiment of the present invention is manufactured through molten steel casting and hot rolling or rapid solidification of the molten steel, cold rolling, finish annealing, and the like. Therefore, the chemical composition of the non-oriented electrical steel sheet and the molten steel considers not only the characteristics of the non-oriented electrical steel sheet but also these treatments.
- “%”, which is a unit of content of each element contained in a non-oriented electrical steel sheet or molten steel means “mass%” unless otherwise specified.
- the non-oriented electrical steel sheet according to the present embodiment includes C: 0.0030% or less, Si: 2.00% or less, Al: 1.00% or less, Mn: 0.10% to 2.00%, S: 0.0030% or less, one or more selected from the group consisting of Mg, Ca, Sr, Ba, Nd, Pr, La, Ce, Zn, and Cd: 0.0003% or more and less than 0.0015% in total, Si content Parameter Q represented by Formula 1 with the amount (mass%) defined as [Si], the Al content (mass%) defined as [Al], and the Mn content (mass%) defined as [Mn]: 2.00 or less Sn: 0.00% to 0.40%, Cu: 0.00% to 1.00%, and balance: Fe and chemical composition represented by impurities. Examples of the impurities include those contained in raw materials such as ore and scrap and those contained in the manufacturing process.
- Q [Si] + 2 ⁇ [Al] ⁇ [Mn] (Formula 1)
- C (C: 0.0030% or less) C increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better, and it is not necessary to set the lower limit.
- the lower limit value of the C content may be 0%, 0.0001%, 0.0002%, 0.0005%, or 0.0010%. Such a phenomenon is remarkable when the C content exceeds 0.0030%. For this reason, C content shall be 0.0030% or less.
- the upper limit value of the C content may be 0.0028%, 0.0025%, 0.0022%, or 0.0020%.
- Si 0.30% or more, 2.00% or less
- Si is a component having an action of reducing iron loss, and is contained in order to exhibit this action. If the Si content is less than 0.30%, the effect of reducing the iron loss is not sufficiently exhibited, so the lower limit value of the Si amount is set to 0.30%.
- the lower limit value of the Si content may be 0.90%, 0.95%, 0.98%, or 1.00%.
- the upper limit value of the Si content may be 1.80%, 1.60%, 1.40%, or 1.10%.
- Al 1.00% or less
- Al has the effect of increasing the electrical resistance and reducing the iron loss.
- the texture obtained by primary recrystallization is sometimes referred to as a crystal having a ⁇ 100 ⁇ plane parallel to the plate surface (hereinafter referred to as “ ⁇ 100 ⁇ crystal”).
- ⁇ 100 ⁇ crystal the texture obtained by primary recrystallization
- Al is contained.
- the lower limit of the Al content may be 0%, 0.01%, 0.02%, or 0.03%.
- the Al content exceeds 1.00%, the magnetic flux density decreases as in the case of Si, so the content is made 1.00% or less.
- the upper limit value of the Al content may be 0.50%, 0.20%, 0.10%, or 0.05%.
- Mn increases electrical resistance, reduces eddy current loss, and reduces iron loss.
- Mn increases electrical resistance, reduces eddy current loss, and reduces iron loss.
- the ⁇ 100 ⁇ crystal is a crystal suitable for uniformly improving the magnetic properties in all directions within the plate surface.
- the higher the Mn content the higher the MnS precipitation temperature, and the larger the MnS that is precipitated. For this reason, the higher the Mn content, the more difficult it is to precipitate fine MnS having a particle size of about 100 nm that hinders recrystallization and crystal grain growth in finish annealing.
- the Mn content is 0.10% or more.
- the lower limit value of the Mn content may be 0.12%, 0.15%, 0.18%, or 0.20%.
- the Mn content exceeds 2.00%, the crystal grains do not grow sufficiently in the finish annealing, and the iron loss increases. Therefore, the Mn content is 2.00% or less.
- the upper limit value of the Mn content may be 1.00%, 0.50%, 0.30%, or 0.25%.
- S is not an essential element but is contained as an impurity in steel, for example. S inhibits recrystallization and crystal grain growth in finish annealing due to precipitation of fine MnS. Therefore, the lower the S content, the better. Such an increase in iron loss is significant when the S content exceeds 0.0030%. For this reason, S content shall be 0.0030% or less.
- the lower limit of the S content need not be specified, and may be, for example, 0%, 0.0005%, 0.0010%, or 0.0015%.
- Mg, Ca, Sr, Ba, Nd, Pr, La, Ce, Zn, and Cd react with S in the molten steel at the time of casting or rapid solidification of the molten steel to form precipitates of sulfide or oxysulfide or both of them.
- Mg, Ca, Sr, Ba, Nd, Pr, La, Ce, Zn, and Cd may be collectively referred to as “coarse precipitate forming elements”.
- the particle size of the coarse precipitate-forming element precipitate is about 1 ⁇ m to 2 ⁇ m, which is much larger than the particle size (about 100 nm) of fine precipitates such as MnS, TiN, and AlN. For this reason, these fine precipitates adhere to the precipitates of the coarse precipitate-forming elements, and it becomes difficult to inhibit recrystallization and crystal grain growth in finish annealing. If the content of coarse precipitate-forming elements is less than 0.0003% in total, these effects cannot be obtained stably. Therefore, the total content of coarse precipitate-forming elements is 0.0003% or more. The lower limit of the content of coarse precipitate-forming elements may be 0.0005%, 0.0007%, 0.0008%, or 0.0009% in total.
- the content of coarse precipitate-generating elements is 0.0015% or more in total, sulfides, oxysulfides, or both of these precipitates may hinder recrystallization and grain growth in finish annealing. is there. Therefore, the total content of coarse precipitate forming elements is less than 0.0015%.
- the upper limit of the content of coarse precipitate-forming elements may be 0.0014%, 0.0013%, 0.0012%, or 0.0010% in total. According to the experimental results of the present inventors, as long as the content of the coarse precipitate-generating element is within the above range, the effect of the coarse precipitate is surely expressed, and the crystal grains of the non-oriented electrical steel sheet are sufficient. Was growing up.
- the total mass of S contained in the sulfide or oxysulfide of the coarse precipitate forming element is 40% of the total mass of S contained in the non-oriented electrical steel sheet.
- the coarse precipitate-forming element reacts with S in the molten steel at the time of casting or rapid solidification of the molten steel to generate sulfides, oxysulfides, or both of these precipitates.
- the ratio of the total mass of S contained in the sulfide or oxysulfide of the coarse precipitate-forming element to the total mass of S contained in the non-oriented electrical steel sheet is high. It means that the element is contained in the non-oriented electrical steel sheet, and fine precipitates such as MnS are effectively adhered to the precipitates. For this reason, the higher the ratio, the more accelerated the recrystallization and crystal grain growth in the finish annealing, and the better the magnetic properties are obtained.
- the said ratio is achieved by controlling the manufacturing conditions at the time of casting or rapid solidification of molten steel as described later, for example.
- the parameter Q is a value expressed by Formula 1 by defining the Si content (% by mass) as [Si], the Al content (% by mass) as [Al], and the Mn content (% by mass) as [Mn]. It is.
- Q [Si] + 2 ⁇ [Al] ⁇ [Mn] (Formula 1)
- the upper limit value of the parameter Q may be 1.50%, 1.20%, 1.00%, 0.90%, or 0.88%. Note that the lower limit value of the parameter Q is not particularly limited, but may be 0.20%, 0.40%, 0.80%, 0.82%, or 0.85%, for example.
- Sn and Cu are not essential elements, and the lower limit of the content thereof is 0%. However, Sn and Cu are optional elements that may be appropriately contained in the non-oriented electrical steel sheet up to a predetermined amount.
- Sn and Cu develop a crystal suitable for improving magnetic properties by primary recrystallization. For this reason, when Sn or Cu or both of them are contained, a texture in which ⁇ 100 ⁇ crystals suitable for uniform improvement in magnetic properties in all directions within the plate surface are easily obtained by primary recrystallization. Sn suppresses oxidation and nitridation of the surface of the steel sheet during finish annealing, and suppresses variation in crystal grain size. Therefore, Sn or Cu or both of them may be contained. In order to sufficiently obtain these functions and effects, Sn is preferably 0.02% or more, or Cu: 0.10% or more, or both.
- the lower limit value of the Sn content may be 0.05%, 0.08%, or 0.10%.
- the lower limit value of the Cu content may be 0.12%, 0.15%, or 0.20%.
- the Sn content is set to 0.40% or less.
- the upper limit value of the Sn content may be 0.35%, 0.30%, or 0.20%. If the Cu content exceeds 1.00%, the steel plate becomes brittle, and hot rolling and cold rolling become difficult, and it becomes difficult to pass through the annealing line for finish annealing. Therefore, the Cu content is set to 1.00% or less.
- the upper limit value of the Cu content may be 0.80%, 0.60%, or 0.40%.
- ⁇ 100 ⁇ crystal orientation strength, ⁇ 310 ⁇ crystal orientation strength, ⁇ 411 ⁇ crystal orientation strength, ⁇ 521 ⁇ crystal orientation strength, ⁇ 111 ⁇ crystal orientation at the center of the plate thickness strength, ⁇ 211 ⁇ crystal orientation strength, ⁇ 332 ⁇ crystal orientation strength is defined as ⁇ 221 ⁇ crystal each orientation intensity I 100, I 310, I 411 , I 521, I 111, I 211, I 332, I 221 ,
- the parameter R represented by Equation 2 is 0.80 or more.
- the center portion of the plate thickness (usually sometimes referred to as 1 / 2T portion) is a depth of about 1/2 of the thickness T of the non-oriented electrical steel plate from the rolling surface of the non-oriented electrical steel plate. It means the area. In other words, the center portion of the plate thickness means an intermediate surface between both rolled surfaces of the non-oriented electrical steel sheet and its vicinity.
- R (I 100 + I 310 + I 411 + I 521 ) / (I 111 + I 211 + I 332 + I 221 ) (Formula 2)
- ⁇ 310 ⁇ , ⁇ 411 ⁇ and ⁇ 521 ⁇ are in the vicinity of ⁇ 100 ⁇ , and the sum of I 100 , I 310 , I 411 and I 521 is the crystal orientation in the vicinity of ⁇ 100 ⁇ including ⁇ 100 ⁇ itself. Indicates the sum of strengths.
- ⁇ 211 ⁇ , ⁇ 332 ⁇ , and ⁇ 221 ⁇ are in the vicinity of ⁇ 111 ⁇ , and the sum of I 111 , I 211 , I 332, and I 221 is the crystal orientation in the vicinity of ⁇ 111 ⁇ , including ⁇ 111 ⁇ itself Indicates the sum of strengths.
- the parameter R at the central portion of the plate thickness is less than 0.80, the magnetic characteristics are degraded such as a decrease in magnetic flux density and an increase in iron loss.
- the magnetic flux density B50 L in the rolling direction (L direction) is 1.79 T or more
- the magnetic flux density B50 in the rolling direction and the width direction (C direction) Average value B50 L + C : 1.75 T or more
- iron loss W15 / 50 L in rolling direction 4.5 W / kg or less
- average value W15 / 50 of iron loss W15 / 50 in rolling direction and width direction W15 / 50 L + C : 5.0 W /
- the magnetic properties represented by kg or less cannot be exhibited.
- the parameter R at the center of the plate thickness is, for example, the difference between the temperature injected into the surface of the cooling body that moves and updates the molten steel and the solidification temperature of the molten steel, the temperature difference between one surface of the slab and the other surface during solidification By adjusting the amount of sulfide or oxysulfide produced, the cold rolling rate, etc., the desired value can be obtained.
- the lower limit value of the parameter R in the center portion of the plate thickness may be 0.82, 0.85, 0.90, or 0.95. Since it is better that the parameter R at the center of the plate thickness is high, it is not necessary to define the upper limit value, but it may be set to 2.00, 1.90, 1.80, or 1.70, for example.
- the crystal orientation of the non-oriented electrical steel sheet according to the present embodiment needs to be controlled as described above for the entire board.
- the isotropy of the texture in the rolled steel sheet is usually high in the region close to the rolled surface and usually decreases as the distance from the rolled surface increases.
- “Effect of cold rolling conditions on r value of ultra low carbon cold rolled steel sheet”, Hashimoto et al., Iron and Steel, Vol. 76, no. 1 (1990), P.I. 50 after cold rolling 0.0035% C-0.12% Mn-0.001% P-0.0084% S-0.03% Al-0.11% Ti steel at a rolling reduction of 73%, In the steel plate obtained by annealing at 750 ° C.
- the center of the plate thickness is shown to be higher (222), lower (200), and lower (110) than the surface layer. Therefore, if the parameter R is 0.8 or more in the center portion of the plate thickness, which is the region farthest from the rolling surface, equivalent or higher isotropy is achieved in other regions. For the above reasons, the crystal orientation of the non-oriented electrical steel sheet according to the present embodiment is defined at the center of the plate thickness.
- Crystal orientation strength and ⁇ 221 ⁇ crystal orientation strength can be measured by an X-ray diffraction method (XRD) or an electron backscatter diffraction (EBSD) method. Specifically, a surface parallel to the rolling surface of the non-oriented electrical steel sheet and having a depth of about 1 ⁇ 2 of the plate thickness T appears from the rolled surface by a normal method. By performing XRD analysis or EBSD analysis, each crystal orientation strength can be measured, and the parameter R at the center of the plate thickness can be calculated. Since the diffraction intensities from the X-ray and electron beam samples are different for each crystal orientation, the crystal orientation strength can be obtained based on the relative ratio with respect to the random orientation sample.
- XRD X-ray diffraction method
- EBSD electron backscatter diffraction
- the non-oriented electrical steel sheet according to the present embodiment has a magnetic flux density B50 L in the rolling direction (L direction) of 1.79 T or more in the rolling direction and the width direction (C direction), for example, when the thickness is 0.50 mm.
- Average value B50 L + C of magnetic flux density B50 1.75 T or more
- iron loss W15 / 50 L in rolling direction 4.5 W / kg or less
- average value W15 / 50 L + C of iron loss W15 / 50 in rolling direction and width direction Magnetic properties represented by 5.0 W / kg or less can be exhibited.
- the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A / m
- the iron loss W15 / 50 is the iron loss at a magnetic flux density of 1.5 T and a frequency of 50 Hz.
- the method for manufacturing the non-oriented electrical steel sheet according to the present embodiment is not particularly limited.
- the non-oriented electrical steel sheet that satisfies the above requirements corresponds to the non-oriented electrical steel sheet according to the present embodiment even if it is obtained by a method other than the manufacturing method exemplified below.
- the 1st manufacturing method of the non-oriented electrical steel sheet concerning this embodiment is explained exemplarily. In the first manufacturing method, continuous casting of molten steel, hot rolling, cold rolling, finish annealing, and the like are performed.
- a molten steel having the above chemical composition is cast to produce a steel ingot such as a slab, this hot rolling is performed, and the ratio of columnar crystals is 80% or more in area fraction, A steel strip having an average crystal grain size of 0.10 mm or more is obtained.
- the solidified crystal grains on the surface of the steel ingot Grows in the direction and forms columnar crystals.
- columnar crystals grow so that the ⁇ 100 ⁇ plane is parallel to the surface of the steel ingot.
- the temperature inside the steel ingot or the temperature of the other surface of the steel ingot decreases.
- the solidification temperature is reached, crystallization starts inside the steel ingot or on the other surface of the steel ingot. Crystals crystallized in the steel ingot or on the other surface of the steel ingot grow in equiaxed grains and have a crystal orientation different from the columnar crystal.
- the columnar crystal ratio can be measured, for example, by the following procedure. First, the steel strip cross section is polished, and the cross section is etched with a picric acid-based corrosive solution to reveal a solidified structure.
- the cross section of the steel strip may be an L cross section parallel to the longitudinal direction of the steel strip or a C cross section perpendicular to the longitudinal direction of the steel strip, but is generally an L cross section.
- this cross section when dendrite develops in the plate thickness direction and penetrates the full plate thickness, it is determined that the columnar crystal ratio is 100%.
- the cross section when a granular black structure (equal axis grains) is seen in addition to the dendrite, the value obtained by subtracting the thickness of this granular structure from the total thickness of the steel sheet by the total thickness of the steel sheet is the columnar shape of the steel sheet. The crystallinity is assumed.
- the ⁇ ⁇ ⁇ transformation is likely to occur during cooling after continuous casting of molten steel, but the crystal structure that has undergone the ⁇ ⁇ ⁇ transformation from the columnar crystal is also regarded as a columnar crystal.
- the ⁇ 100 ⁇ ⁇ 0vw> texture of the columnar crystal is sharpened.
- the columnar crystal has a ⁇ 100 ⁇ ⁇ 0vw> texture desirable for uniform improvement of the magnetic properties of the non-oriented electrical steel sheet, particularly the magnetic properties in all directions within the plate surface.
- the ⁇ 100 ⁇ ⁇ 0vw> texture is a texture in which a crystal parallel to the plate surface is a ⁇ 100 ⁇ plane and a rolling direction is a ⁇ 0vw> orientation (v and w are arbitrary real numbers (except when v and w are both 0)).
- v and w are arbitrary real numbers (except when v and w are both 0)
- the ratio of columnar crystals in the steel strip is 80% or more.
- the ratio of columnar crystals in the steel strip can be specified by observing the cross section of the steel strip with a microscope.
- the columnar crystal ratio of the steel strip cannot be accurately measured after cold rolling or heat treatment described later is applied to the steel strip. For this reason, in the non-oriented electrical steel sheet according to the present embodiment, the columnar crystal ratio is not particularly defined.
- the temperature difference between one surface of a steel ingot such as a slab during solidification and the other surface is 40 ° C. or more.
- This temperature difference can be controlled by the cooling structure of the mold, material, mold taper, mold flux, and the like.
- the crystals grown from within the crystal grains are desirable ⁇ 100 ⁇ crystals for magnetic properties, whereas crystals grown from the grain boundaries.
- undesired crystals for magnetic properties such as ⁇ 111 ⁇ ⁇ 112> crystals. Therefore, the larger the average crystal grain size of the steel strip, the easier it is to develop ⁇ 100 ⁇ crystals that are desirable for magnetic properties in the final annealing, and particularly excellent magnetic properties when the average crystal grain size of the steel strip is 0.10 mm or more. Easy to obtain characteristics.
- the average crystal grain size of the steel strip is 0.10 mm or more.
- the average crystal grain size of the steel strip is adjusted by the temperature difference between the two surfaces of the slab during casting, the average cooling rate in the temperature range of 700 ° C. or higher, the hot rolling start temperature, the coiling temperature, etc. be able to.
- the temperature difference between the two surfaces of the slab during casting is 40 ° C. or more and the average cooling rate at 700 ° C. or more is 10 ° C./min or less
- the average grain size of columnar crystals contained in the steel strip A steel strip of 0.10 mm or more is obtained.
- the hot rolling start temperature is 900 ° C. or lower and the coiling temperature is 650 ° C.
- the crystal grains contained in the steel strip are non-recrystallized stretched grains, so the average crystal grain size is 0.10 mm.
- the above steel strip is obtained.
- the average cooling rate in the temperature range of 700 ° C. or higher is the average cooling rate in the temperature range from the casting start temperature to 700 ° C.
- the difference between the casting start temperature and 700 ° C. is the casting start temperature. It is a value divided by the time required for cooling to 700 ° C.
- Coarse precipitate forming elements are put in the bottom of the last pan before casting in the steel making process, molten steel containing elements other than coarse precipitate forming elements is injected into the pan, and coarse precipitates are generated in the molten steel. It is preferable to dissolve the element. Thereby, a coarse precipitate generation element can be made difficult to scatter from molten steel, and reaction with a coarse precipitate formation element and S can be promoted.
- the last pan before casting in the steel making process is, for example, a pan immediately above the tundish of a continuous casting machine.
- the rolling reduction of cold rolling is 90% or less. If the rolling reduction of cold rolling is less than 40%, it may be difficult to ensure the thickness accuracy and flatness of the non-oriented electrical steel sheet. Therefore, the rolling reduction of cold rolling is preferably 40% or more.
- the final annealing causes primary recrystallization and crystal grain growth, and the average crystal grain size is 50 ⁇ m to 180 ⁇ m.
- the finish annealing a texture in which ⁇ 100 ⁇ crystals suitable for uniform improvement in magnetic properties in all directions within the plate surface are obtained.
- the holding temperature is 750 ° C. or more and 950 ° C. or less
- the holding time is 10 seconds or more and 60 seconds or less.
- the passing plate tension of the finish annealing is more than 3 MPa
- an anisotropic elastic strain may easily remain in the non-oriented electrical steel sheet.
- the elastic strain having anisotropy deforms the texture, so that even if a texture with a developed ⁇ 100 ⁇ crystal is obtained, this deforms and the uniformity of the magnetic properties in the plate surface decreases. There is. Therefore, it is preferable that the plate tension of finish annealing is 3 MPa or less. Even when the cooling rate at 950 ° C. to 700 ° C. in the finish annealing is more than 1 ° C./second, anisotropic elastic strain tends to remain in the non-oriented electrical steel sheet. Therefore, the cooling rate at 950 ° C. to 700 ° C.
- the cooling rate in the finish annealing is preferably 1 ° C./second or less.
- the cooling rate is different from the average cooling rate (a value obtained by dividing the difference between the cooling start temperature and the cooling end temperature by the time required for cooling).
- the cooling rate is always 1 ° C./second or less in the temperature range of 950 ° C. to 700 ° C.
- the non-oriented electrical steel sheet according to this embodiment can be manufactured.
- an insulating film may be formed by coating and baking.
- the molten steel having the above chemical composition is rapidly solidified on the surface of the cooling body to be renewed, the columnar crystal ratio is 80% or more in area fraction, and the average crystal grain size is 0.10 mm or more Get the steel strip.
- the ⁇ ⁇ ⁇ transformation is likely to occur during cooling after rapid solidification of the molten steel, but the crystal structure that has undergone the ⁇ ⁇ ⁇ transformation from the columnar crystal is also regarded as a columnar crystal.
- the ⁇ 100 ⁇ ⁇ 0vw> texture of the columnar crystal is sharpened.
- the columnar crystal has a ⁇ 100 ⁇ ⁇ 0vw> texture desirable for uniform improvement of the magnetic properties of the non-oriented electrical steel sheet, particularly the magnetic properties in all directions within the plate surface.
- the ⁇ 100 ⁇ ⁇ 0vw> texture is a texture in which a crystal parallel to the plate surface is a ⁇ 100 ⁇ plane and a rolling direction is a ⁇ 0vw> orientation (v and w are arbitrary real numbers (except when v and w are both 0)).
- v and w are arbitrary real numbers (except when v and w are both 0)
- the ratio of columnar crystals in the steel strip is 80% or more.
- the ratio of the columnar crystals in the steel strip can be specified by microscopic observation as described above.
- the temperature injected into the surface of the cooling body to which the molten steel is renewed is increased by 25 ° C. or more from the solidification temperature.
- the ratio of columnar crystals can be made almost 100%.
- the molten steel is solidified under such conditions that the ratio of columnar crystals is 80% or more, sulfide, oxysulfide of Mg, Ca, Sr, Ba, Nd, Pr, La, Ce, Zn, or Cd, or these Both are easily generated, and the production of fine sulfides such as MnS is suppressed.
- the crystals grown from within the crystal grains are desirable ⁇ 100 ⁇ crystals for magnetic properties, whereas crystals grown from the grain boundaries.
- undesired crystals for magnetic properties such as ⁇ 111 ⁇ ⁇ 112> crystals. Therefore, the larger the average crystal grain size of the steel strip, the easier it is to develop ⁇ 100 ⁇ crystals that are desirable for magnetic properties in the final annealing, and particularly excellent magnetic properties when the average crystal grain size of the steel strip is 0.10 mm or more. Easy to obtain characteristics.
- the average crystal grain size of the steel strip is 0.10 mm or more.
- the average crystal grain size of the steel strip can be adjusted by the average cooling rate from completion of solidification to winding during rapid solidification. Specifically, the average cooling rate from the completion of solidification of the molten steel to the winding of the steel strip is set to 1,000 to 3,000 ° C./min.
- the coarse precipitate forming element is put in the bottom of the last pan before casting in the steel making process, and molten steel containing elements other than the coarse precipitate forming element is injected into the pan, and the molten steel is poured into the molten steel. It is preferable to dissolve coarse precipitate-forming elements. Thereby, a coarse precipitate generation element can be made difficult to scatter from molten steel, and reaction with a coarse precipitate formation element and S can be promoted.
- the last pan before casting in the steel making process is, for example, a pan immediately above the tundish of a casting machine that rapidly solidifies.
- the rolling reduction of cold rolling is 90% or less. If the rolling reduction of cold rolling is less than 40%, it may be difficult to ensure the thickness accuracy and flatness of the non-oriented electrical steel sheet. Therefore, the rolling reduction of cold rolling is preferably 40% or more.
- the final annealing causes primary recrystallization and crystal grain growth, and the average crystal grain size is 50 ⁇ m to 180 ⁇ m.
- the finish annealing a texture in which ⁇ 100 ⁇ crystals suitable for uniform improvement in magnetic properties in all directions within the plate surface are obtained.
- the holding temperature is 750 ° C. or more and 950 ° C. or less
- the holding time is 10 seconds or more and 60 seconds or less.
- the passing plate tension of the finish annealing is more than 3 MPa
- an anisotropic elastic strain may easily remain in the non-oriented electrical steel sheet.
- the elastic strain having anisotropy deforms the texture, so that even if a texture with a developed ⁇ 100 ⁇ crystal is obtained, this deforms and the uniformity of the magnetic properties in the plate surface decreases. There is. Therefore, it is preferable that the plate tension of finish annealing is 3 MPa or less. Even when the cooling rate at 950 ° C. to 700 ° C. in the finish annealing is more than 1 ° C./second, elastic strain having anisotropy tends to remain in the non-oriented electrical steel sheet. Therefore, the cooling rate at 950 ° C.
- the cooling rate is a concept different from the average cooling rate (a value obtained by dividing the difference between the cooling start temperature and the cooling end temperature by the time required for cooling). In consideration of the necessity of always keeping the cooling rate small, in the finish annealing, it is necessary that the cooling rate is always 1 ° C./second or less in the temperature range of 950 ° C. to 700 ° C.
- the non-oriented electrical steel sheet according to this embodiment can be manufactured.
- an insulating film may be formed by coating and baking.
- the magnetic flux density B50 L in the rolling direction (L direction) is 1.79 T or more
- the rolling direction and the width direction (C Direction)) magnetic flux density B50 average value B50 L + C 1.75 T or more
- iron loss W15 / 50 L in the rolling direction 4.5 W / kg or less
- iron loss W15 / 50 average value W15 / 50 in the rolling direction and width direction W15 / 50 L + C High magnetic flux density of 5.0 W / kg or less and low magnetic loss magnetic properties.
- non-oriented electrical steel sheet according to the embodiment of the present invention will be specifically described with reference to examples.
- the following examples are merely examples of the non-oriented electrical steel sheets according to the embodiments of the present invention, and the non-oriented electrical steel sheets according to the present invention are not limited to the following examples.
- the underline in Table 3 indicates that the value is not in the desired range. That is, the underline of the magnetic flux density B50 L column indicates that it is less than 1.79T, the underline of the average value B50 L + C column indicates that it is less than 1.75T, and the underline of the iron loss W15 / 50 L column. Indicates over 4.5 W / kg, and the underline in the mean value W15 / 50 L + C column indicates over 5.0 W / kg.
- Ca forms many inclusions such as CaO, the iron loss W15 / 50 L and the average value W15 / 50 L + C are large, the magnetic flux density B50 L and the average value B50 L + C are low. It was. Sample No. 10, the parameter Q was too large, so the magnetic flux density B50 L and the average value B50 L + C were low.
- Table 4-2 shows the temperature difference between the two surfaces, the ratio of columnar crystals, and the average crystal grain size.
- cold rolling was performed at a rolling reduction of 78.2% to obtain a steel sheet having a thickness of 0.50 mm.
- the continuous finish annealing for 30 seconds was performed at 850 degreeC, and the non-oriented electrical steel sheet was obtained.
- strength of the 8 crystal orientation of each non-oriented electrical steel sheet was measured, and the parameter R in the plate
- the results are also shown in Table 4-2.
- the underline in Table 5 indicates that the value is not in the desired range. That is, the underline of the magnetic flux density B50 L column indicates that it is less than 1.79T, the underline of the average value B50 L + C column indicates that it is less than 1.75T, and the underline of the iron loss W15 / 50 L column. Indicates over 4.5 W / kg, and the underline in the mean value W15 / 50 L + C column indicates over 5.0 W / kg.
- Table 7 shows the ratio of columnar crystals and the average crystal grain size. Subsequently, cold rolling was performed at a rolling reduction of 79.2% to obtain a steel sheet having a thickness of 0.50 mm. Thereafter, continuous finish annealing was performed at 880 ° C. for 45 seconds to obtain a non-oriented electrical steel sheet. And the intensity
- the underline in Table 8 indicates that the value is not in the desired range. That is, the underline in the column of iron bundle density B50 L indicates that it is less than 1.79T, the underline in the column of average value B50 L + C indicates that it is less than 1.75T, and the iron loss W15 / 50 L column The underline indicates that it exceeds 4.5 W / kg, and the underline in the column of the average value W15 / 50 L + C indicates that it exceeds 5.0 W / kg.
- the underline in Table 11 indicates that the value is not in the desired range. That is, the underline of the magnetic flux density B50 L column indicates that it is less than 1.79T, the underline of the average value B50 L + C column indicates that it is less than 1.75T, and the underline of the iron loss W15 / 50 L column. Indicates over 4.5 W / kg, and the underline in the mean value W15 / 50 L + C column indicates over 5.0 W / kg.
- sample No. 1 was subjected to cold rolling with an appropriate reduction amount.
- 51-No. 55 and no. In 51 ′ to 55 ′ the parameter R at the central portion of the plate thickness is within the range of the present invention, so that good magnetic properties were obtained.
- Sample No. containing an appropriate amount of Sn or Cu. 53, no. 54, no. 53 ′ and No. In 54 ′ particularly excellent iron loss W15 / 50 L , average value W15 / 50 L + C , magnetic flux density B50 L, and average value B50 L + C were obtained.
- the elastic strain anisotropy was further low, and further excellent iron loss W15 / 50 L , average value W15 / 50 L + C , magnetic flux density B50 L and average value B50 L + C were obtained.
- the length of each side is 55 mm, the two sides are parallel to the rolling direction, and the two sides are parallel to the direction perpendicular to the rolling direction (sheet width direction).
- a square sample was cut out from each non-oriented electrical steel sheet, and the length of each side after deformation under the influence of elastic strain was measured. Then, it was determined how much the length in the direction perpendicular to the rolling direction was longer than the length in the rolling direction.
- the underline in Table 16 indicates that the value is not in the desired range. That is, the underline of the magnetic flux density B50 L column indicates that it is less than 1.79T, the underline of the average value B50 L + C column indicates that it is less than 1.75T, and the underline of the iron loss W15 / 50 L column. Indicates over 4.5 W / kg, and the underline in the mean value W10 / 15 L + C column indicates over 5.0 W / kg.
- sample no. 111-No. 122 and no. 111′-No. In 119 ′ the chemical composition was within the range of the present invention, and the parameter R at the center of the plate thickness was within the range of the present invention. Therefore, good magnetic properties were obtained.
- Sample No. 101-No. In 106 since the parameter R at the central portion of the plate thickness was too small, the iron loss W15 / 50 L and the average value W15 / 50 L + C were large, and the magnetic flux density B50 L and the average value B50 L + C were low.
- the injection temperature was adjusted to change the columnar crystal ratio and average crystal grain size of the steel strip.
- Table 17 shows the difference between the injection temperature and the solidification temperature, the ratio of columnar crystals, and the average crystal grain size.
- cold rolling was performed at a rolling reduction of 78.2% to obtain a steel sheet having a thickness of 0.50 mm.
- the continuous finish annealing for 30 seconds was performed at 850 degreeC, and the non-oriented electrical steel sheet was obtained.
- strength of the 8 crystal orientation of each non-oriented electrical steel sheet was measured, and the parameter R in the plate
- the results are also shown in Table 17.
- the underline in Table 17 indicates that the numerical value is out of the scope of the present invention.
- the underline in Table 18 indicates that the value is not in the desired range. That is, the underline of the magnetic flux density B50 L column indicates that it is less than 1.79T, the underline of the average value B50 L + C column indicates that it is less than 1.75T, and the underline of the iron loss W15 / 50 L column. Indicates over 4.5 W / kg, and the underline in the mean value W15 / 50 L + C column indicates over 5.0 W / kg.
- the underline in Table 21 indicates that the value is not in the desired range. That is, the underline in the column of iron bundle density B50 L indicates that it is less than 1.79T, the underline in the column of average value B50 L + C indicates that it is less than 1.75T, and the iron loss W15 / 50 L column The underline indicates that it exceeds 4.5 W / kg, and the underline in the column of the average value W15 / 50 L + C indicates that it exceeds 5.0 W / kg.
- the underline in Table 24 indicates that the value is not in the desired range. That is, the underline of the magnetic flux density B50 L column indicates that it is less than 1.79T, the underline of the average value B50 L + C column indicates that it is less than 1.75T, and the underline of the iron loss W15 / 50 L column. Indicates over 4.5 W / kg, and the underline in the mean value W15 / 50 L + C column indicates over 5.0 W / kg.
- a sample No. 1 was subjected to cold rolling with an appropriate reduction amount using a steel strip having an appropriate chemical composition, columnar crystal ratio, and average crystal grain size.
- the parameter R at the central portion of the plate thickness is within the range of the present invention, so that good magnetic characteristics were obtained.
- Sample No. containing an appropriate amount of Sn or Cu. 153, no. 154, no. 153 ′ and No. In 154 ′, particularly excellent iron loss W15 / 50 L , average value W15 / 50 L + C , magnetic flux density B50 L and average value B50 L + C were obtained.
- 155 and no. In 155 ′ the iron loss W15 / 50 L and the average value W15 / 50 L + C were large, and the magnetic flux density B50 L and the average value B50 L + C were low.
- the injection temperature was 32 ° C. higher than the solidification temperature
- the ratio of columnar crystals in the steel strip was 90%
- the average crystal grain size was 0.17 mm.
- cold rolling was performed at a reduction rate of 78.3% to obtain a steel plate having a thickness of 0.50 mm.
- continuous finish annealing was performed at 920 ° C. for 20 seconds to obtain a non-oriented electrical steel sheet.
- the plate tension and the cooling rate from 920 ° C. to 700 ° C. were changed.
- Table 25 shows the plate tension and the cooling rate.
- strength of the crystal orientation of each non-oriented electrical steel sheet was measured, and the parameter R in the plate
- the elastic strain anisotropy was further low, and further excellent iron loss W15 / 50 L , average value W15 / 50 L + C , magnetic flux density B50 L, and average value B50 L + C were obtained.
- the length of each side is 55 mm, the two sides are parallel to the rolling direction, and the two sides are parallel to the direction perpendicular to the rolling direction (sheet width direction).
- a quadrilateral sample was cut out from each non-oriented electrical steel sheet, and the length of each side after being deformed by the influence of elastic strain was measured. Then, it was determined how much the length in the direction perpendicular to the rolling direction was longer than the length in the rolling direction.
- the present invention can be used, for example, in the non-oriented electrical steel sheet manufacturing industry and the non-oriented electrical steel sheet utilization industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Continuous Casting (AREA)
Abstract
Description
本願は、2018年2月16日に、日本に出願された特願2018-026103号に基づき優先権を主張し、その内容をここに援用する。
上記特許文献9では、鋼板の表層付近でキューブ方位付近に結晶方位が集積しているのに対し、鋼板の中心層ではガンマファイバー集合組織が発達している。特許文献9は、鋼板表層と鋼板中心層との間で集合組織が大きく異なることが新規な特徴であると説明している。また、一般的に圧延鋼板を焼鈍して再結晶させると、鋼板の表層付近ではキューブ方位である{200}及び{110}の付近に結晶方位が集積し、鋼板中心層ではガンマファイバー集合組織である{222}が発達する。例えば、「極低炭素冷延鋼板のr値におよぼす冷延条件の影響」、橋本ら、鉄と鋼,Vol.76,No.1(1990),P.50では、0.0035%C-0.12%Mn-0.001%P-0.0084%S-0.03%Al-0.11%Ti鋼を、圧下率73%で冷延後、750℃で3時間焼鈍して得られた鋼板では、板厚中心は表層に比べ、(222)が高く、(200)が低く、(110)が低いことが示されている。
一方、本発明者は、鋼板の表層付近でキューブ方位である{200}付近に結晶方位を集積させることに加え、鋼板中心層でも{200}付近に結晶方位を集積させることが必要であると知見した。
Q=[Si]+2×[Al]-[Mn](式1)
R=(I100+I310+I411+I521)/(I111+I211+I332+I221)(式2)
(2)上記(1)に記載の無方向性電磁鋼板では、前記化学組成において、Sn:0.02%~0.40%、若しくはCu:0.10%~1.00%、又はこれらの両方が満たされてもよい。
(3)本発明の別の態様に係る無方向性電磁鋼板の製造方法は、上記(1)又は(2)に記載の無方向性電磁鋼板の製造方法であって、溶鋼の連続鋳造工程と、前記連続鋳造工程によって得られた鋼塊の熱間圧延工程と、前記熱間圧延工程によって得られた鋼帯の冷間圧延工程と、前記冷間圧延工程によって得られた冷延鋼板の仕上げ焼鈍工程と、を備え、前記溶鋼は、上記(1)又は(2)に記載の化学組成を有し、前記鋼帯は、柱状晶の割合が面積分率で80%以上、かつ、平均結晶粒径が0.10mm以上であり、前記冷間圧延工程における圧下率を90%以下とする。
(4)上記(3)に記載の無方向性電磁鋼板の製造方法では、前記連続鋳造工程において、凝固時の前記鋼塊の一方の表面と他方の表面との温度差を40℃以上としてもよい。
(5)上記(3)又は(4)に記載の無方向性電磁鋼板の製造方法では、前記熱間圧延工程において、熱間圧延の開始温度を900℃以下とし、かつ前記鋼帯の巻取温度を650℃以下としてもよい。
(6)上記(3)~(5)のいずれか一項に記載の無方向性電磁鋼板の製造方法では、前記仕上げ焼鈍工程における通板張力を3MPa以下とし、950℃~700℃における冷却速度を1℃/秒以下としてもよい。
(7)本発明の別の態様に係る無方向性電磁鋼板の製造方法は、上記(1)又は(2)に記載の無方向性電磁鋼板の製造方法であって、溶鋼の急速凝固工程と、前記急速凝固工程によって得られた鋼帯の冷間圧延工程と、前記冷間圧延工程によって得られた冷延鋼板の仕上げ焼鈍工程と、を備え、前記溶鋼は、上記(1)又は(2)に記載の化学組成を有し、前記鋼帯は、柱状晶の割合が面積分率で80%以上、かつ、平均結晶粒径が0.10mm以上であり、前記冷間圧延工程における圧下率を90%以下とする。
(8)上記(7)に記載の無方向性電磁鋼板の製造方法では、前記急速凝固工程では、移動更新する冷却体を用いて前記溶鋼を凝固させ、前記移動更新する冷却体に注入される前記溶鋼の温度を、前記溶鋼の凝固温度より25℃以上高くしてもよい。
(9)上記(7)又は(8)に記載の無方向性電磁鋼板の製造方法では、前記急速凝固工程では、移動更新する冷却体を用いて前記溶鋼を凝固させ、前記溶鋼の凝固完了から前記鋼帯の巻取りまでの平均冷却速度を1,000~3,000℃/分としてもよい。
(10)上記(7)~(9)のいずれか一項に記載の無方向性電磁鋼板の製造方法では、前記仕上げ焼鈍工程における通板張力を3MPa以下とし、950℃~700℃における冷却速度を1℃/秒以下としてもよい。
Q=[Si]+2×[Al]-[Mn] (式1)
Cは、鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほどよく、その下限値を定める必要はない。C含有量の下限値を0%、0.0001%、0.0002%、0.0005%、又は0.0010%としてもよい。このような現象は、C含有量が0.0030%超で顕著である。このため、C含有量は0.0030%以下とする。C含有量の上限値を0.0028%、0.0025%、0.0022%、又は0.0020%としてもよい。
Siは、周知のように鉄損を低下させる作用のある成分であり、この作用を奏するために含有させる。Siの含有量が0.30%未満では、鉄損低減効果が十分発揮されないため、Si量の下限値を0.30%とする。例えば、Si含有量の下限値を0.90%、0.95%、0.98%、又は1.00%としてもよい。一方、Siの含有量が増えると磁束密度が低下し、また圧延作業性が劣化し、さらにはコスト高ともなるので、2.0%以下とする。Si含有量の上限値を1.80%、1.60%、1.40%、又は1.10%としてもよい。
Alは、Siと同様に電気抵抗を高めて鉄損を下げる効果がある。また、無方向性電磁鋼板にAlが含まれる場合、一次再結晶で得られる集合組織が、板面に平行な面が{100}面の結晶(以下、「{100}結晶」ということがある)が発達したものになりやすい。この作用を奏するためにAlを含有させる。例えばAl含有量の下限値を0%、0.01%、0.02%、又は0.03%としてもよい。一方、Al含有量が1.00%を超えると、Siの場合と同様に磁束密度が低下するので、1.00%以下とする。Al含有量の上限値を0.50%、0.20%、0.10%、又は0.05%としてもよい。
Mnは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。Mnが含まれると、一次再結晶で得られる集合組織が、板面に平行な面が{100}結晶が発達したものになりやすい。{100}結晶は、板面内の全方向における磁気特性の均一な向上に好適な結晶である。また、Mn含有量が高いほど、MnSの析出温度が高くなり、析出してくるMnSが大きなものとなる。このため、Mn含有量が高いほど、仕上げ焼鈍における再結晶及び結晶粒の成長を阻害する粒径が100nm程度の微細なMnSが析出しにくい。Mn含有量が0.10%未満では、これらの作用効果を十分に得られない。従って、Mn含有量は0.10%以上とする。Mn含有量の下限値を0.12%、0.15%、0.18%、又は0.20%としてもよい。一方、Mn含有量が2.00%超では、仕上げ焼鈍において結晶粒が十分に成長せず、鉄損が増大する。従って、Mn含有量は2.00%以下とする。Mn含有量の上限値を1.00%、0.50%、0.30%、又は0.25%としてもよい。
Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、微細なMnSの析出により、仕上げ焼鈍における再結晶及び結晶粒の成長を阻害する。従って、S含有量は低ければ低いほどよい。このような鉄損の増加は、S含有量が0.0030%超で顕著である。このため、S含有量は0.0030%以下とする。S含有量の下限値は特に規定する必要はなく、例えば0%、0.0005%、0.0010%、又は0.0015%としてもよい。
Mg、Ca、Sr、Ba、Nd、Pr、La、Ce、Zn及びCdは、溶鋼の鋳造又は急速凝固時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。以下、Mg、Ca、Sr、Ba、Nd、Pr、La、Ce、Zn及びCdを総称して「粗大析出物生成元素」ということがある。粗大析出物生成元素の析出物の粒径は1μm~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。このため、これら微細析出物は粗大析出物生成元素の析出物に付着し、仕上げ焼鈍における再結晶及び結晶粒の成長を阻害しにくくなる。粗大析出物生成元素の含有量が総計で0.0003%未満では、これらの作用効果を安定して得ることができない。従って、粗大析出物生成元素の含有量は総計で0.0003%以上とする。粗大析出物生成元素の含有量の下限値を総計で0.0005%、0.0007%、0.0008%、又は0.0009%としてもよい。一方、粗大析出物生成元素の含有量が総計で0.0015%以上では、硫化物若しくは酸硫化物又はこれらの両方の析出物が、仕上げ焼鈍における再結晶及び結晶粒の成長を阻害することがある。従って、粗大析出物生成元素の含有量は総計で0.0015%未満とする。粗大析出物生成元素の含有量の上限値を総計で0.0014%、0.0013%、0.0012%、又は0.0010%としてもよい。
なお、本発明者らの実験結果によれば、粗大析出物生成元素の含有量を上記範囲内とする限り、粗大析出物による効果が確実に発現し、無方向性電磁鋼板の結晶粒は十分に成長していた。従って、粗大析出物生成元素によって生成された粗大析出物の形態及び成分を特に限定する必要はない。一方、本実施形態に係る無方向性電磁鋼板では、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量が、無方向性電磁鋼板に含まれるSの総質量の40%以上であることが好ましい。上記のように、粗大析出物生成元素は、溶鋼の鋳造又は急速凝固時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。従って、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の、無方向性電磁鋼板に含まれるSの総質量に対する割合が高いことは、十分な量の粗大析出物生成元素が無方向性電磁鋼板に含まれ、この析出物にMnS等の微細析出物が効果的に付着していることを意味する。このため、上記割合が高いほど、仕上げ焼鈍における再結晶及び結晶粒の成長が促進されており、優れた磁気特性が得られる。上記割合は、例えば溶鋼の鋳造又は急速凝固時の製造条件を後述のように制御することによって達成される。
パラメータQは、Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]、Mn含有量(質量%)を[Mn]と定義して式1で表される値である。
Q=[Si]+2×[Al]-[Mn] (式1)
パラメータQを2.00以下とすることにより、溶鋼の連続鋳造後又は急速凝固後の冷却時においてオーステナイトからフェライトへの変態(γ→α変態)が生じやすくなり、柱状晶の{100}<0vw>集合組織がより先鋭化される。パラメータQの上限値を、1.50%、1.20%、1.00%、0.90%、又は0.88%としてもよい。なお、パラメータQの下限値は特に限定する必要が無いが、例えば0.20%、0.40%、0.80%、0.82%、又は0.85%としてもよい。
Sn及びCuは、磁気特性の向上に好適な結晶を一次再結晶で発達させる。このため、Sn若しくはCu又はこれらの両方が含まれると、板面内の全方向における磁気特性の均一な向上に好適な{100}結晶が発達した集合組織が一次再結晶で得られやすい。Snは、仕上げ焼鈍時の鋼板の表面の酸化及び窒化を抑制したり、結晶粒の大きさのばらつきを抑制したりする。従って、Sn若しくはCu又はこれらの両方が含有されていてもよい。これらの作用効果を十分に得るために、好ましくは、Sn:0.02%以上若しくはCu:0.10%以上又はこれらの両方とする。Sn含有量の下限値を0.05%、0.08%、又は0.10%としてもよい。Cu含有量の下限値を0.12%、0.15%、又は0.20%としてもよい。一方、Snが0.40%超では、上記作用効果が飽和して徒にコストが高くなったり、仕上げ焼鈍において結晶粒の成長が抑制されたりする。従って、Sn含有量は0.40%以下とする。Sn含有量の上限値を0.35%、0.30%、又は0.20%としてもよい。Cu含有量が1.00%超では、鋼板が脆化し、熱間圧延及び冷間圧延が困難になったり、仕上げ焼鈍の焼鈍ラインの通板が困難になったりする。従って、Cu含有量は1.00%以下とする。Cu含有量の上限値を0.80%、0.60%、又は0.40%としてもよい。
R=(I100+I310+I411+I521)/(I111+I211+I332+I221) (式2)
なお、本実施形態に係る無方向性電磁鋼板の結晶方位は、板全体において上述のように制御されている必要がある。しかしながら、圧延鋼板における集合組織の等方性は、圧延面に近い領域では高く、圧延面から離れるほど低下することが通常である。例えば、「極低炭素冷延鋼板のr値におよぼす冷延条件の影響」、橋本ら、鉄と鋼,Vol.76,No.1(1990),P.50では、0.0035%C-0.12%Mn-0.001%P-0.0084%S-0.03%Al-0.11%Ti鋼を、圧下率73%で冷延後、750℃で3時間焼鈍して得られた鋼板では、板厚中心は表層に比べ、(222)が高く、(200)が低く、(110)が低いことが示されている。
従って、圧延面から最も離れた領域である板厚中心部においてパラメータRが0.8以上であれば、その他の領域においても同等以上の等方性が達成される。以上の理由から、本実施形態に係る無方向性電磁鋼板の結晶方位は、板厚中心部において規定される。
まず、本実施形態に係る無方向性電磁鋼板の第1の製造方法について例示的に説明する。第1の製造方法では、溶鋼の連続鋳造、熱間圧延、冷間圧延、仕上げ焼鈍等を行う。
柱状晶率は、例えば、以下の手順で測定可能である。まず、鋼帯断面を研磨し、ピクリン酸系の腐食液で断面をエッチングして凝固組織を現出させる。ここで、鋼帯断面は、鋼帯長手方向に平行なL断面でも、鋼帯長手方向に垂直なC断面でも良いが、L断面とするのが一般的である。この断面において、板厚方向にデンドライトが発達し、板厚全厚を貫通している場合、柱状晶率100%と判断する。断面において、デンドライト以外に粒状の黒い組織(等軸粒)が見える場合は、この粒状組織の厚みを鋼板の全厚から引いた値を、鋼板の全厚さで除した値を、鋼板の柱状晶率とする。
第1の製造方法では、溶鋼の連続鋳造後の冷却中にγ→α変態が生じやすいが、柱状晶からγ→α変態を経た結晶組織も同様に柱状晶とみなす。γ→α変態を経ることにより、柱状晶の{100}<0vw>集合組織がより先鋭化される。
第1の製造方法において、柱状晶の割合を80%以上とするためには、例えば、凝固時の鋳片等の鋼塊の一方の表面と他方の表面との間の温度差を40℃以上とする。この温度差は、鋳型の冷却構造、材質、モールドテーパー、モールドフラックス等により制御することができる。このような柱状晶の割合が80%以上となる条件で溶鋼を鋳造した場合、Mg、Ca、Sr、Ba、Nd、Pr、La、Ce、Zn又はCdの硫化物若しくは酸硫化物又はこれらの両方が容易に生成し、MnS等の微細硫化物の生成が抑制される。
第2の製造方法において、柱状晶の割合を80%以上とするためには、例えば、溶鋼の移動更新する冷却体の表面に注入する温度を凝固温度よりも25℃以上高める。特に溶鋼の温度を凝固温度よりも40℃以上高めた場合には、柱状晶の割合をほぼ100%にすることができる。このような柱状晶の割合が80%以上となる条件で溶鋼を凝固させた場合、Mg、Ca、Sr、Ba、Nd、Pr、La、Ce、Zn又はCdの硫化物若しくは酸硫化物又はこれらの両方が容易に生成し、MnS等の微細硫化物の生成が抑制される。
第1の試験では、表1に示す化学組成を有する溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って鋼帯を得た。表1中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。表1中の下線は、その数値が本発明の範囲から外れていることを示す。次いで、鋼帯の冷間圧延及び仕上げ焼鈍を行って、厚さが0.50mmの種々の無方向性電磁鋼板を作製した。そして、各無方向性電磁鋼板の板厚中心部における結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果を表2に示す。表2中の下線は、その数値が本発明の範囲から外れていることを示す。
試料No.1~No.6では、板厚中心部におけるパラメータRが小さすぎたため、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.7では、S含有量が高すぎたため、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.8では、粗大析出物生成元素の総含有量が低すぎたため、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の、無方向性電磁鋼板に含まれるSの総質量に対する割合が40%未満であり、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.9では、粗大析出物生成元素の総含有量が高すぎたため、粗大析出物生成元素の硫化物又は酸硫化物に含まれるSの総質量の、無方向性電磁鋼板に含まれるSの総質量に対する割合は40%以上であったが、CaがCaO等の介在物を多数形成し、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.10では、パラメータQが大きすぎたため、磁束密度B50L及び平均値B50L+Cが低かった。
第2の試験では、質量%で、C:0.0023%、Si:0.81%、Al:0.03%、Mn:0.20%、S:0.0003%及びPr:0.0007%を含有し、残部がFe及び不純物からなる溶鋼(表4-1試料31~33に対応)と、C:0.0021%、Si:0.83%、Al:0.05%、Mn:0.19%、S:0.0007%及びPr:0.0013%を含有し、残部がFe及び不純物からなる溶鋼(表4-1試料31’~33’に対応)とを鋳造してスラブを作製し、このスラブの熱間圧延を行って、厚さが2.1mmの鋼帯を得た。鋳造の際に鋳片の2表面間の温度差を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。表4-2に、2表面間の温度差、柱状晶の割合及び平均結晶粒径を示す。次いで、78.2%の圧下率で冷間圧延を行って、厚さが0.50mmの鋼板を得た。その後、850℃で30秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の8結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表4-2に示す。表4-2中の下線は、その数値が本発明の範囲から外れていることを示す。
第3の試験では、表6に示す化学組成を有する溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って、厚さが2.4mmの鋼帯を得た。残部はFe及び不純物であり、表6中の下線は、その数値が本発明の範囲から外れていることを示す。鋳造の際に、鋳片の2表面間の温度差と、700℃以上での平均冷却速度とを調整することにより、鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。2表面間の温度差は48℃~60℃とした。試料No.41、42、41’、及び42’では、700℃以上での平均冷却速度を20℃/分とし、その他の試料では700℃以上での平均冷却速度を10℃/分以下とした。表7に、柱状晶の割合及び平均結晶粒径を示す。次いで、79.2%の圧下率で冷間圧延を行って、厚さが0.50mmの鋼板を得た。その後、880℃で45秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の8結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表7に示す。表7中の下線は、その数値が本発明の範囲から外れていることを示す。
第4の試験では、表9に示す化学組成を有する溶鋼を鋳造してスラブを作製し、このスラブの熱間圧延を行って、表10に示す厚さの鋼帯を得た。表9中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。鋳造の際に鋳片の2表面間の温度差を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。2表面間の温度差は51℃~68℃とした。表10に、柱状晶の割合及び平均結晶粒径も示す。次いで、表10に示す圧下率で冷間圧延を行って、厚さが0.50mmの鋼板を得た。その後、830℃で40秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の8結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表10に示す。表10中の下線は、その数値が本発明の範囲から外れていることを示す。
冷間圧延の圧下率を高くしすぎた試料No.56及びNo.56’では、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。
第5の試験では、質量%で、C:0.0014%、Si:0.34%、Al:0.48%、Mn:1.42%、S:0.0017%及びSr:0.0011%を含有し、残部がFe及び不純物からなる溶鋼(表12-1試料61~64に対応)と、C:0.0015%、Si:0.35%、Al:0.47%、Mn:1.41%、S:0.0007%及びSr:0.0014%を含有し、残部がFe及び不純物からなる溶鋼(表12-1試料61’~64’に対応)を鋳造してスラブを作製し、このスラブの熱間圧延を行って、厚さが2.3mmの鋼帯を得た。鋳造の際に鋳片の2表面間の温度差を59℃として鋼帯の柱状晶の割合を90%、平均結晶粒径を0.17mmとした。次いで、78.3%の圧下率で冷間圧延を行って、厚さが0.50mmの鋼板を得た。その後、920℃で20秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。仕上げ焼鈍では、通板張力及び950℃から700℃までの冷却速度を変化させた。表12-2に通板張力及び冷却速度を示す。そして、各無方向性電磁鋼板の結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表12-2に示す。
第6の試験では、表14に示す化学組成を有する溶鋼を双ロール法により急速凝固させて鋼帯を得た。表14中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。表14中の下線は、その数値が本発明の範囲から外れていることを示す。次いで、鋼帯の冷間圧延及び仕上げ焼鈍を行って、厚さが0.50mmの種々の無方向性電磁鋼板を作製した。そして、各無方向性電磁鋼板の8結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果を表15に示す。表15中の下線は、その数値が本発明の範囲から外れていることを示す。
試料No.101~No.106では、板厚中心部におけるパラメータRが小さすぎたため、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.107では、S含有量が高すぎたため、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.108では、粗大析出物生成元素の総含有量が低すぎたため、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.109では、粗大析出物生成元素の総含有量が高すぎたため、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。試料No.110では、パラメータQが大きすぎたため、磁束密度B50L及び平均値B50L+Cが低かった。
第7の試験では、質量%で、C:0.0023%、Si:0.81%、Al:0.03%、Mn:0.20%、S:0.0003%及びNd:0.0007%を含有し、残部がFe及び不純物からなる溶鋼(表17-1試料131~133に対応)と、C:0.0021%、Si:0.83%、Al:0.05%、Mn:0.19%、S:0.0007%及びNd:0.0013%を含有し、残部がFe及び不純物からなる溶鋼(表17-1試料131’~133’に対応)を双ロール法により急速凝固させて、厚さが2.1mmの鋼帯を得た。このとき、注入温度を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。表17に、注入温度と凝固温度との差、柱状晶の割合及び平均結晶粒径を示す。次いで、78.2%の圧下率で冷間圧延を行って、厚さが0.50mmの鋼板を得た。その後、850℃で30秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の8結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表17に示す。表17中の下線は、その数値が本発明の範囲から外れていることを示す。
第8の試験では、表19に示す化学組成を有する溶鋼を双ロール法により急速凝固させて、厚さが2.4mmの鋼帯を得た。残部はFe及び不純物であり、表19中の下線は、その数値が本発明の範囲から外れていることを示す。このとき、注入温度と、溶鋼の凝固完了から鋼帯の巻取りまでの平均冷却速度を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。試料No.143~No.145及びNo.143’~145’の注入温度は凝固温度よりも29℃~35℃高くし、溶鋼の凝固完了から鋼帯の巻取りまでの平均冷却速度は1,500~2,000℃/分とした。試料No.141、No.142、No.141’及びNo.142’の注入温度は凝固温度より20~24℃高くし、溶鋼の凝固完了から鋼帯の巻取りまでの平均冷却速度は3,000℃/分超とした。表20に、柱状晶の割合及び平均結晶粒径を示す。次いで、79.2%の圧下率で冷間圧延を行って、厚さが0.50mmの鋼板を得た。その後、880℃で45秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の8結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表20に示す。表20中の下線は、その数値が本発明の範囲から外れていることを示す。
第9の試験では、表22に示す化学組成を有する溶鋼を双ロール法により急速凝固させて、表23に示す厚さの鋼帯を得た。表22中の空欄は、当該元素の含有量が検出限界未満であったことを示し、残部はFe及び不純物である。このとき、注入温度を調整して鋼帯の柱状晶の割合及び平均結晶粒径を変化させた。注入温度は凝固温度よりも28℃~37℃高くした。表23に、柱状晶の割合及び平均結晶粒径も示す。次いで、表23に示す圧下率で冷間圧延を行って、厚さが0.20mmの鋼板を得た。その後、830℃で40秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。そして、各無方向性電磁鋼板の8結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表23に示す。表23中の下線は、その数値が本発明の範囲から外れていることを示す。
冷間圧延の圧下率を高くしすぎた試料No.155及びNo.155’では、鉄損W15/50L及び平均値W15/50L+Cが大きく、磁束密度B50L及び平均値B50L+Cが低かった。
第10の試験では、質量%で、C:0.0014%、Si:0.34%、Al:0.48%、Mn:1.42%、S:0.0017%及びSr:0.0011%を含有し、残部がFe及び不純物からなる溶鋼(表25-1試料161~164に対応)と、C:0.0015%、Si:0.35%、Al:0.47%、Mn:1.41%、S:0.0007%及びSr:0.0013%を含有し、残部がFe及び不純物からなる溶鋼(表25-1試料161’~164’に対応)を双ロール法により急速凝固させて、厚さが2.3mmの鋼帯を得た。このとき、注入温度を凝固温度よりも32℃高くして鋼帯の柱状晶の割合を90%、平均結晶粒径を0.17mmとした。次いで、78.3%の圧下率で冷間圧延を行って、厚さが0.50mmの鋼板を得た。その後、920℃で20秒間の連続仕上げ焼鈍を行って、無方向性電磁鋼板を得た。仕上げ焼鈍では、通板張力及び920℃から700℃までの冷却速度を変化させた。表25に通板張力及び冷却速度を示す。そして、各無方向性電磁鋼板の結晶方位の強度を測定し、板厚中心部におけるパラメータRを算出した。この結果も表25に示す。
Claims (10)
- 質量%で、
C:0.0030%以下、
Si:2.00%以下、
Al:1.00%以下、
Mn:0.10%~2.00%、
S:0.0030%以下、
Mg、Ca、Sr、Ba、Nd、Pr、La、Ce、Zn及びCdからなる群から選択された一種以上:総計で0.0003%以上0.0015%未満、
Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]、Mn含有量(質量%)を[Mn]と定義して式1で表されるパラメータQ:2.00以下、
Sn:0.00%~0.40%、
Cu:0.00%~1.00%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
板厚中心部における{100}結晶方位強度、{310}結晶方位強度、{411}結晶方位強度、{521}結晶方位強度、{111}結晶方位強度、{211}結晶方位強度、{332}結晶方位強度、{221}結晶方位強度がそれぞれI100、I310、I411、I521、I111、I211、I332、I221と定義され、式2で表されるパラメータRが0.80以上であることを特徴とする無方向性電磁鋼板。
Q=[Si]+2×[Al]-[Mn] (式1)
R=(I100+I310+I411+I521)/(I111+I211+I332+I221) (式2) - 前記化学組成において、
Sn:0.02%~0.40%、若しくは
Cu:0.10%~1.00%、
又はこれらの両方が満たされることを特徴とする請求項1に記載の無方向性電磁鋼板。 - 請求項1又は2に記載の無方向性電磁鋼板の製造方法であって、
溶鋼の連続鋳造工程と、
前記連続鋳造工程によって得られた鋼塊の熱間圧延工程と、
前記熱間圧延工程によって得られた鋼帯の冷間圧延工程と、
前記冷間圧延工程によって得られた冷延鋼板の仕上げ焼鈍工程と、を備え、
前記溶鋼は、請求項1又は2に記載の化学組成を有し、
前記鋼帯は、柱状晶の割合が面積分率で80%以上、かつ、平均結晶粒径が0.10mm以上であり、
前記冷間圧延工程における圧下率を90%以下とする
ことを特徴とする無方向性電磁鋼板の製造方法。 - 前記連続鋳造工程において、凝固時の前記鋼塊の一方の表面と他方の表面との温度差を40℃以上とすることを特徴とする請求項3に記載の無方向性電磁鋼板の製造方法。
- 前記熱間圧延工程において、熱間圧延の開始温度を900℃以下とし、かつ前記鋼帯の巻取温度を650℃以下とすることを特徴とする請求項3又は4に記載の無方向性電磁鋼板の製造方法。
- 前記仕上げ焼鈍工程における通板張力を3MPa以下とし、950℃~700℃における冷却速度を1℃/秒以下とする
ことを特徴とする請求項3~5のいずれか一項に記載の無方向性電磁鋼板の製造方法。 - 請求項1又は2に記載の無方向性電磁鋼板の製造方法であって、
溶鋼の急速凝固工程と、
前記急速凝固工程によって得られた鋼帯の冷間圧延工程と、
前記冷間圧延工程によって得られた冷延鋼板の仕上げ焼鈍工程と、を備え、
前記溶鋼は、請求項1又は2に記載の化学組成を有し、
前記鋼帯は、柱状晶の割合が面積分率で80%以上、かつ、平均結晶粒径が0.10mm以上であり、
前記冷間圧延工程における圧下率を90%以下とする
ことを特徴とする無方向性電磁鋼板の製造方法。 - 前記急速凝固工程では、移動更新する冷却体を用いて前記溶鋼を凝固させ、
前記移動更新する冷却体に注入される前記溶鋼の温度を、前記溶鋼の凝固温度より25℃以上高くする
ことを特徴とする請求項7に記載の無方向性電磁鋼板の製造方法。 - 前記急速凝固工程では、移動更新する冷却体を用いて前記溶鋼を凝固させ、
前記溶鋼の凝固完了から前記鋼帯の巻取りまでの平均冷却速度を1,000~3,000℃/分とすることを特徴とする請求項7又は8に記載の無方向性電磁鋼板の製造方法。 - 前記仕上げ焼鈍工程における通板張力を3MPa以下とし、950℃~700℃における冷却速度を1℃/秒以下とする
ことを特徴とする請求項7~9のいずれか一項に記載の無方向性電磁鋼板の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019572296A JP6860094B2 (ja) | 2018-02-16 | 2019-02-15 | 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法 |
EP19754449.7A EP3754041B1 (en) | 2018-02-16 | 2019-02-15 | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet |
US16/958,097 US11566303B2 (en) | 2018-02-16 | 2019-02-15 | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet |
PL19754449.7T PL3754041T3 (pl) | 2018-02-16 | 2019-02-15 | Blacha cienka z niezorientowanej stali elektrotechnicznej i sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej |
BR112020013279-9A BR112020013279B1 (pt) | 2018-02-16 | 2019-02-15 | Chapa de aço elétrico não orientado e seus métodos de produção |
KR1020207018351A KR102448800B1 (ko) | 2018-02-16 | 2019-02-15 | 무방향성 전자 강판, 및 무방향성 전자 강판의 제조 방법 |
CN201980008576.3A CN111601909B (zh) | 2018-02-16 | 2019-02-15 | 无取向电磁钢板及无取向电磁钢板的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-026103 | 2018-02-16 | ||
JP2018026103 | 2018-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019160108A1 true WO2019160108A1 (ja) | 2019-08-22 |
Family
ID=67619453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005668 WO2019160108A1 (ja) | 2018-02-16 | 2019-02-15 | 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11566303B2 (ja) |
EP (1) | EP3754041B1 (ja) |
JP (1) | JP6860094B2 (ja) |
KR (1) | KR102448800B1 (ja) |
CN (1) | CN111601909B (ja) |
PL (1) | PL3754041T3 (ja) |
TW (1) | TWI681064B (ja) |
WO (1) | WO2019160108A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022196800A1 (ja) * | 2021-03-19 | 2022-09-22 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102407998B1 (ko) * | 2018-02-16 | 2022-06-14 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법 |
EP3754042B1 (en) * | 2018-02-16 | 2024-06-26 | Nippon Steel Corporation | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet |
JP7371815B1 (ja) * | 2021-12-16 | 2023-10-31 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
CN114713780B (zh) * | 2022-03-31 | 2024-03-22 | 江苏沙钢集团有限公司 | 一种提高硅钢钢水在薄带连铸工艺下凝固成带稳定性的方法 |
CN114752861B (zh) * | 2022-04-29 | 2022-10-18 | 鞍钢股份有限公司 | 一种低屈强比电工纯铁热轧板及其制造方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02133523A (ja) | 1988-11-12 | 1990-05-22 | Nippon Steel Corp | 磁気特性の優れた無方向性電磁鋼板の製造方法 |
JPH05140648A (ja) | 1991-07-25 | 1993-06-08 | Nippon Steel Corp | 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法 |
JPH0657332A (ja) | 1992-08-12 | 1994-03-01 | Nippon Steel Corp | 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法 |
JPH10183309A (ja) * | 1996-12-20 | 1998-07-14 | Kawasaki Steel Corp | 磁気特性の優れた無方向性電磁鋼板およびその製造方法 |
JP2002241905A (ja) | 2000-12-11 | 2002-08-28 | Nippon Steel Corp | 磁気特性と打ち抜き加工性に優れた無方向性電磁鋼板 |
JP2004197217A (ja) | 2002-12-06 | 2004-07-15 | Nippon Steel Corp | 全周磁気特性の優れた無方向性電磁鋼板及びその製造方法 |
JP2004332042A (ja) | 2003-05-07 | 2004-11-25 | Nippon Steel Corp | 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法 |
JP2005067737A (ja) | 2003-07-31 | 2005-03-17 | Kendro Lab Products Lp | サンプル容器及びそのシール方法 |
JP2005298876A (ja) * | 2004-04-08 | 2005-10-27 | Nippon Steel Corp | 磁束密度の高い無方向性電磁鋼板の製造方法 |
WO2008050597A1 (fr) * | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Procédé de fabrication de tôle magnétique non orientée présentant d'excellentes propriétés magnétiques |
JP2010001557A (ja) | 2008-01-30 | 2010-01-07 | Nippon Steel Corp | 磁束密度の高い無方向性電磁鋼板の製造方法 |
JP2011140683A (ja) | 2010-01-06 | 2011-07-21 | Nippon Steel Corp | 磁気特性と打ち抜き加工性に優れた無方向性電磁鋼板 |
JP2018026103A (ja) | 2016-08-11 | 2018-02-15 | 惠州三華工業有限公司 | 高圧直流電源及びその制御方法 |
WO2018220838A1 (ja) * | 2017-06-02 | 2018-12-06 | 新日鐵住金株式会社 | 無方向性電磁鋼板 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5388506B2 (ja) * | 2008-08-19 | 2014-01-15 | 新日鐵住金株式会社 | 磁束密度の高い無方向性電磁鋼板の製造方法 |
CN104520458B (zh) | 2012-08-08 | 2017-04-12 | 杰富意钢铁株式会社 | 高强度电磁钢板及其制造方法 |
TWI531663B (zh) | 2013-04-09 | 2016-05-01 | 新日鐵住金股份有限公司 | 無方向性電磁鋼板及其製造方法 |
JP6020863B2 (ja) | 2015-01-07 | 2016-11-02 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
EP3272894B1 (en) | 2015-03-17 | 2019-06-19 | Nippon Steel & Sumitomo Metal Corporation | Non-oriented electromagnetic steel sheet and method for manufacturing same |
BR112018012496B1 (pt) | 2015-12-28 | 2022-02-15 | Jfe Steel Corporation | Chapa de aço eletromagnética não orientada e método para fabricar chapa de aço eletromagnética não orientada |
EP3754042B1 (en) * | 2018-02-16 | 2024-06-26 | Nippon Steel Corporation | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet |
-
2019
- 2019-02-15 EP EP19754449.7A patent/EP3754041B1/en active Active
- 2019-02-15 PL PL19754449.7T patent/PL3754041T3/pl unknown
- 2019-02-15 WO PCT/JP2019/005668 patent/WO2019160108A1/ja unknown
- 2019-02-15 KR KR1020207018351A patent/KR102448800B1/ko active IP Right Grant
- 2019-02-15 TW TW108105143A patent/TWI681064B/zh active
- 2019-02-15 CN CN201980008576.3A patent/CN111601909B/zh active Active
- 2019-02-15 US US16/958,097 patent/US11566303B2/en active Active
- 2019-02-15 JP JP2019572296A patent/JP6860094B2/ja active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02133523A (ja) | 1988-11-12 | 1990-05-22 | Nippon Steel Corp | 磁気特性の優れた無方向性電磁鋼板の製造方法 |
JPH05140648A (ja) | 1991-07-25 | 1993-06-08 | Nippon Steel Corp | 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法 |
JPH0657332A (ja) | 1992-08-12 | 1994-03-01 | Nippon Steel Corp | 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法 |
JPH10183309A (ja) * | 1996-12-20 | 1998-07-14 | Kawasaki Steel Corp | 磁気特性の優れた無方向性電磁鋼板およびその製造方法 |
JP2002241905A (ja) | 2000-12-11 | 2002-08-28 | Nippon Steel Corp | 磁気特性と打ち抜き加工性に優れた無方向性電磁鋼板 |
JP2004197217A (ja) | 2002-12-06 | 2004-07-15 | Nippon Steel Corp | 全周磁気特性の優れた無方向性電磁鋼板及びその製造方法 |
JP2004332042A (ja) | 2003-05-07 | 2004-11-25 | Nippon Steel Corp | 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法 |
JP2005067737A (ja) | 2003-07-31 | 2005-03-17 | Kendro Lab Products Lp | サンプル容器及びそのシール方法 |
JP2005298876A (ja) * | 2004-04-08 | 2005-10-27 | Nippon Steel Corp | 磁束密度の高い無方向性電磁鋼板の製造方法 |
WO2008050597A1 (fr) * | 2006-10-23 | 2008-05-02 | Nippon Steel Corporation | Procédé de fabrication de tôle magnétique non orientée présentant d'excellentes propriétés magnétiques |
JP2010001557A (ja) | 2008-01-30 | 2010-01-07 | Nippon Steel Corp | 磁束密度の高い無方向性電磁鋼板の製造方法 |
JP2011140683A (ja) | 2010-01-06 | 2011-07-21 | Nippon Steel Corp | 磁気特性と打ち抜き加工性に優れた無方向性電磁鋼板 |
JP2018026103A (ja) | 2016-08-11 | 2018-02-15 | 惠州三華工業有限公司 | 高圧直流電源及びその制御方法 |
WO2018220838A1 (ja) * | 2017-06-02 | 2018-12-06 | 新日鐵住金株式会社 | 無方向性電磁鋼板 |
Non-Patent Citations (2)
Title |
---|
HASHIMOTO ET AL.: "Effects of Cold Rolling Conditions on r-Value of Ultra Low Carbon Cold Rolled Steel Sheet", IRON AND STEEL, vol. 76, no. 1, 1990, pages 50 |
See also references of EP3754041A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022196800A1 (ja) * | 2021-03-19 | 2022-09-22 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
JPWO2022196800A1 (ja) * | 2021-03-19 | 2022-09-22 | ||
JP7269527B2 (ja) | 2021-03-19 | 2023-05-09 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201934775A (zh) | 2019-09-01 |
TWI681064B (zh) | 2020-01-01 |
BR112020013279A2 (pt) | 2020-12-01 |
CN111601909B (zh) | 2022-05-13 |
PL3754041T3 (pl) | 2024-12-16 |
US11566303B2 (en) | 2023-01-31 |
KR102448800B1 (ko) | 2022-09-29 |
KR20200088463A (ko) | 2020-07-22 |
JP6860094B2 (ja) | 2021-04-14 |
EP3754041B1 (en) | 2024-09-11 |
EP3754041A1 (en) | 2020-12-23 |
CN111601909A (zh) | 2020-08-28 |
JPWO2019160108A1 (ja) | 2020-12-03 |
US20210062286A1 (en) | 2021-03-04 |
EP3754041A4 (en) | 2021-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6860094B2 (ja) | 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法 | |
JP7010358B2 (ja) | 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法 | |
JP7010359B2 (ja) | 無方向性電磁鋼板、及び無方向性電磁鋼板の製造方法 | |
WO2018220837A1 (ja) | 無方向性電磁鋼板 | |
WO2018220838A1 (ja) | 無方向性電磁鋼板 | |
JP6828816B2 (ja) | 無方向性電磁鋼板 | |
JP7127308B2 (ja) | 無方向性電磁鋼板 | |
TWI693289B (zh) | 無方向性電磁鋼板 | |
TW201903167A (zh) | 無方向性電磁鋼板 | |
TW201903164A (zh) | 無方向性電磁鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19754449 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019572296 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207018351 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019754449 Country of ref document: EP Effective date: 20200916 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020013279 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020013279 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200629 |