[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019159430A1 - Wireless communication method and wireless communication system - Google Patents

Wireless communication method and wireless communication system Download PDF

Info

Publication number
WO2019159430A1
WO2019159430A1 PCT/JP2018/038055 JP2018038055W WO2019159430A1 WO 2019159430 A1 WO2019159430 A1 WO 2019159430A1 JP 2018038055 W JP2018038055 W JP 2018038055W WO 2019159430 A1 WO2019159430 A1 WO 2019159430A1
Authority
WO
WIPO (PCT)
Prior art keywords
deinterleaver
bit information
wireless communication
bit
iterative decoding
Prior art date
Application number
PCT/JP2018/038055
Other languages
French (fr)
Japanese (ja)
Inventor
敬亮 山本
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2020500266A priority Critical patent/JP6872073B2/en
Publication of WO2019159430A1 publication Critical patent/WO2019159430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/45Soft decoding, i.e. using symbol reliability information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a wireless communication method for transmitting and receiving data via a wireless propagation path.
  • BICM-ID Bit Interleaved Coded Modulation with Iterative decoding
  • Patent Document 1 and Non-Patent Document 2 a technique called BICM-ID
  • excellent characteristics can be obtained by repeating demodulation processing for modulation and decoding processing for encoding.
  • the characteristics of the BICM-ID are determined not by the characteristics of the demodulator and the decoder but by their matching. For this reason, it is possible to analyze a convergence characteristic using EXT (Extrinsic Information Transfer) analysis and design a demodulator and a decoder that realize excellent characteristics (see, for example, Non-Patent Document 3).
  • EXT Extransic Information Transfer
  • a soft decision result of a maximum likelihood sequence estimation (MLSE) of a DPSK modulated signal and a decoder are used.
  • a method has been proposed in which performance is improved by performing BICM-ID as compared with normal delay detection without using BICM-ID.
  • a typical example of the invention disclosed in the present application is as follows. That is, a wireless communication method for transmitting data from a transmission apparatus to a reception apparatus, wherein the transmission apparatus includes a modulator that outputs a DPSK signal in parallel using OFDM, and the reception apparatus demodulates the radio signal.
  • An MLSE demodulator that outputs bit information, a decoder that decodes the bit information, an interleave processing unit that changes the bit order of the bit information, a deinterleaver for differential phase shift, and the differential phase shift
  • a deinterleaver for repetitive decoding having a block length smaller than that of the transfer deinterleaver, and having a deinterleave processing unit for changing the bit order of the bit information, and the differential phase shift deinterleaver transmits in parallel Having a function of performing a deinterleaving process by changing the time order of the DPSK signals generated, and the method includes:
  • the deinterleaver for transfer and the MLSE demodulator perform deinterleave processing and demodulation processing on the first radio signal output from the OFDM demodulator, output first bit information, and the deinterleaver for iterative decoding,
  • the first bit information is deinterleaved to return the order of the bits exchanged in the interleaving process, and the second bit
  • the decoder decodes the second bit information. Then, the third bit information is output, and the interleave processing unit performs an interleaving process that is the reverse of the deinterleaving process on the third bit information to generate fourth bit information, By inputting the fourth bit information as prior information to the MLSE demodulator, iterative decoding processing is performed.
  • FIG. 3A is a diagram illustrating an iterative decoding process according to an embodiment of the present invention
  • FIG. 3A is a diagram illustrating a configuration in which an interleaver and a deinterleaver are divided for differential phase shift and iterative decoding processing.
  • FIG. 7B is a diagram illustrating a configuration in which a differential phase shift deinterleaver is provided outside the iterative decoding processing unit. It is a figure which shows the iterative decoding process using OFDM and DPSK of the Example of this invention. It is a figure which shows the iterative decoding process using OFDM and DPSK of the Example of this invention. It is a figure which shows an example of the deinterleaving process for DPSK. It is a figure which shows an example of the deinterleaving process for DPSK of the Example of this invention. It is a figure which shows an example of the deinterleaving process for iterative decoding processes.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system of the present embodiment includes an encoder 10, an interleaver 11, a DPSK (differential phase shift) modulator 12, a transmitter having an OFDM (orthogonal frequency division multiplexing) modulator 13, and an antenna 14, and an OFDM demodulator. 17, a receiver having an iterative decoding processing unit 21 and an antenna 16. A transmitter and a receiver are connected via a wireless propagation path 15.
  • the encoder 10 encodes information bits
  • the interleaver 11 switches the bit order in the code word output from the encoder 10
  • the DPSK modulator 12 performs differential shift keying
  • the OFDM modulator 13 Output a plurality of DPSK signals from the antenna 14 on the subcarriers.
  • the iterative decoding processing unit 21 of the receiver includes a DPSK demodulator 18, a deinterleaver 19, a decoder 20, and an interleaver 24.
  • a signal is received via the radio propagation path 15, the OFDM demodulator 17 demodulates the received signal, a DPSK demodulator 18 demodulates the demodulation result, and a deinterleaver 19 that performs reverse processing of the interleaver 11.
  • the bit order is restored and the decoder 20 performs decoding.
  • the decoding result is input to the DPSK demodulator 18 via the interleaver 24, and the DPSK demodulator 18 refers to the decoding result of the decoder 20 and outputs a more accurate demodulation result (BICM-ID processing).
  • FIG. 2A is a diagram illustrating the iterative decoding processing unit 21 of the receiver in this embodiment
  • FIG. 2B is a diagram illustrating the EXIT analysis result of the iterative decoding processing.
  • blind (no channel information) demodulation using maximum likelihood sequence estimation (MLSE) is used.
  • LLR Log Likelihood Ratio
  • the convergence characteristics of the BICM-ID iterative decoding process can be analyzed by EXT (Extrinsic Information Transfer) analysis described in Non-Patent Document 3.
  • EXIT Extrinsic Information Transfer
  • the input / output characteristics of the decoder and demodulator are displayed in the form of the mutual information amount Im of the bit expressed by Equation (2), and the characteristics of both are overlapped and plotted on one chart for repeated decoding.
  • the amount of information obtained by processing can be analyzed.
  • the mutual information amount in Equation (2) is an average of the entire code word of the mutual information amount of bits, and is expressed by a value of 0 to 1, and the closer to 1, the greater the bit likelihood of the entire code word.
  • the mutual information amount increases along each characteristic by the iterative decoding process. When the characteristics of the two intersect, the increase of the mutual information stops at the intersection, and an error remains in the decoding result.
  • FIG. 2B since the convergence characteristics of the demodulator and the decoder do not intersect with the analysis result 23, it is possible to obtain an error-free result. However, since the convergence characteristic is determined by the average of the entire codeword, a codeword that is sufficiently asymptotic to the average value is required.
  • DPSK modulation In DPSK modulation using OFDM, DPSK modulation is used in the time direction in order to follow the time variation of the channel.
  • the DPSK modulation data of each subcarrier is one per OFDM symbol, and good convergence is achieved.
  • 1000 OFDM symbols or more are required to obtain DPSK modulation data for obtaining characteristics.
  • the scale of data processed by the iterative decoding processing unit increases, and in particular, the scale of the interleaver and deinterleaver can become a bottleneck in reducing the circuit scale.
  • DPSK signals transmitted in parallel are associated through the interleaver 24, the decoder 20 and the deinterleaver 19, thereby bundling fewer OFDM symbols DPSK signals in the subcarrier direction.
  • a signal processing method for forming a codeword capable of obtaining good convergence characteristics and a method for dividing the interleaver 24 and the deinterleaver 19 into a plurality of parts and reducing the interleaver 24 and the deinterleaver 19 included in the iterative decoding unit are provided.
  • FIG. 3 is a diagram showing the iterative decoding processing unit 21 of the embodiment of the present invention.
  • FIG. 3A divides the deinterleaver into a differential phase shift deinterleaver 31 and an iterative decoding deinterleaver 32.
  • FIG. 3B is a diagram illustrating a configuration in which the interleaver is divided into a differential phase shift 33 and an iterative decoding process 32.
  • FIG. 3B illustrates the differential phase shift deinterleaver 31 that repeatedly performs the decoding process. It is a figure which shows the structure provided in the exterior.
  • the differential phase shift deinterleaver 31 whose magnitude is selected with respect to the channel fluctuation and the deinterleaver 32 required by the iterative decoding processing unit 21 are divided into the differential phase shift deinterleaver, and the differential phase shift deinterleave processing is the iterative decoding. It is set as the structure performed before. In FIG. 3A, the differential phase shift deinterleaver 31 has a larger block size than the iterative decoding deinterleaver 32, and is designed to obtain sufficient diversity with respect to channel variations.
  • the MLSE demodulator 22 executes a process of estimating a transmission bit from the phase difference between adjacent signals, and if the differential phase shift deinterleaver 31 maintains the context of the DPSK signal, MLSE and The order of the above can be exchanged and taken out of the iterative decoding processing unit 21. That is, as shown in FIG. 3B, the differential phase shift deinterleaver 31 is provided in the preceding stage of the MLSE demodulator 22 and executes processing outside the iterative decoding processing unit 21. Phase shift deinterleaving is not required. With this configuration, the circuit scale of the iterative decoding processing unit 21 can be reduced.
  • the deinterleaving process is an inverse process of the interleaving process.
  • the interleaving process and the deinterleaving process according to the embodiment of the present invention will be described mainly using the deinterleaving process on the receiving side.
  • FIG. 4 is a diagram illustrating an iterative decoding process using OFDM and DPSK.
  • the DPSK signal 41 is arranged in the OFDM time direction, and the DSPK signals in the frequency direction are independent of each other.
  • processing of DPSK symbols 42 requires adjacent DPSK signals, so interleaving and deinterleaving between MLSE 22 and decoder 20 when the order of DPSK signals in the time direction is interleaved. Is required.
  • the iterative decoding processing unit 21 repeatedly decodes a sufficiently long DPSK signal and the decoding result of the decoder 20 for each subcarrier.
  • FIG. 5 is a diagram showing an iterative decoding process using OFDM and DPSK according to an embodiment of the present invention.
  • the DPSK signal is shorter than the symbol length of the differential phase shift deinterleaver 31, and a plurality of subcarrier DPSK signals are processed as one MLSE group. Decoding results are also collected in time and subcarrier directions as one codeword, and iterative decoding is performed.
  • FIG. 6 is a diagram illustrating an example of a conventional differential phase shift deinterleaving process, and the time of DPSK symbols 42 in the DPSK signal 41 of the subcarrier before and after the deinterleaving process in which the time order of 100 OFDM symbols is switched at random. Indicates the order.
  • the deinterleaving result 61 is that the time order of the DPSK symbols 42 is changed in the subcarriers before the deinterleaving. Therefore, it is necessary to restore the order changed before the MLSE. It is difficult to put 31 out of iterative decoding.
  • FIG. 7 is a diagram showing an example of the deinterleaving process for differential phase shift according to the embodiment of the present invention.
  • the deinterleaving result 71 realizes the deinterleaving function by changing the time order between the subcarriers while maintaining the time order of the DPSK symbols 42 in the DPSK signal 41 of the subcarrier.
  • a delay of 1 to 100 symbols is randomly inserted for each subcarrier. If the number of subcarriers is sufficiently large, a diversity effect of 100 symbols can be expected.
  • the time order of the DPSK symbols 42 is maintained before and after deinterleaving, and the relationship between adjacent DPSK symbols 42 necessary for MLSE is maintained. Therefore, the order of MLSE and interleaving is changed. Can be easily replaced.
  • FIG. 8 is a diagram showing an example of deinterleaving processing using a conventional interleaver as a deinterleaver for iterative decoding processing.
  • deinterleaving for iterative processing a signal that has been deinterleaved in the time direction by deinterleaving for differential phase shift is deinterleaved. It is desirable that the deinterleaving process of the iterative decoding unit be as small as possible.
  • the likelihood of the DPSK signal 41 of each subcarrier in the iterative decoding process Information is not exchanged and good convergence characteristics cannot be realized.
  • the DPSK signal 41 is associated in the iterative decoding process can be confirmed by an index in the subcarrier direction 81 after deinterleaving.
  • the index in the subcarrier direction of the DPSK signal 41 only includes f75, and the association between the DPSK signals 41 is limited.
  • FIG. 9 is a diagram illustrating an example of deinterleaving processing for iterative decoding processing according to the embodiment of this invention.
  • the deinterleaver shown in FIG. 9 randomly swaps both the time and frequency directions in the MLSE group of the demodulator.
  • the index in the frequency direction includes f75, f99, f72, and f42, and likelihood information is exchanged between the DPSK signals of these subcarriers.
  • interleaving processing and deinterleaving processing are required before and after MLSE, but the symbol size is shorter than that of the differential phase shift deinterleaver, so that the circuit scale can be reduced.
  • the function required as the iterative decoding interleaver according to the embodiment of the present invention is that the interleaving process is different from one OFDM symbol unit. That is, as shown in FIG. 8, if the unit of interleaving processing is equal to one OFDM symbol unit, the interleaving processing is performed in OFDM symbol units. However, as shown in FIG. 9, the unit of interleaving processing is one OFDM symbol. If it is different from the unit, the shift width is changed for each interleave process, and the interleave process is shifted from the OFDM symbol unit.
  • the unit of interleaving processing is preferably larger than one OFDM symbol unit, but may be smaller.
  • FIG. 10 shows the configuration of the deinterleaver 32 for iterative decoding when the interleaving process is the same as for one OFDM and combined with a convolutional bit interleaver.
  • the block deinterleaver 102 is, for example, a deinterleaver that restores the original order in which subcarrier positions in one OFDM symbol are randomly interleaved (bits on subcarriers in units of subcarriers).
  • the output of the deinterleaver is delayed by the bitwise convolutional deinterleaver 101, and the delay added by the interleaving is returned to the original order.
  • the deinterleaving process by the block deinterleaver 102 is closed in one OFDM symbol, some bits in one OFDM symbol are mixed with bits in other OFDM symbols in the subsequent convolutional deinterleaver. In the iterative decoding of the present invention, good characteristics can be realized.
  • the iterative decoding deinterleaver 32 shown in FIG. 10 can change the bit order with different replacement patterns when viewed in bit units. That is, the interleave pattern can be switched for each OFDM symbol, and likelihood information is exchanged between the DPSK signals of the subcarriers, so that good characteristics can be realized.
  • FIG. 11 is a diagram illustrating an example in which a plurality of OFDM symbol deinterleavers are combined.
  • the deinterleaver randomly replaces subcarriers in one OFDM symbol.
  • a different interleaving pattern is used for each OFDM symbol, and the DPSK signal 41 of the deinterleaving result 111 includes frequency indexes f75, f99, f72, and f42, and likelihood information between the DPSK signals of these subcarriers. Will be replaced.
  • good characteristics can be realized without combining with the convolutional deinterleaver 101 as shown in FIG.
  • FIG. 12 is a diagram showing error rate characteristics in the wireless communication system according to the embodiment of the present invention.
  • the characteristic of delay detection when BICM-ID is not used is represented by ⁇
  • the characteristic when BICM-ID is used is represented by ⁇
  • the characteristic using the iterative decoding unit of the embodiment of the present invention is represented by ⁇ . From FIG. 12, by using the technique of the present invention, it is possible to improve the SNR over the BICM-ID while reducing the circuit scale.
  • a radio communication system that transmits data from a transmission device to a reception device, the differential phase shift deinterleaver 31 and the MLSE demodulator 22 cooperate.
  • the first radio signal output from the OFDM demodulator 17 is deinterleaved and demodulated to output first bit information.
  • the iterative decoding deinterleaver 32 applies the first bit information to the first bit information. Deinterleaving is performed to restore the order of the bits replaced in the interleaving process, and the second bit information is output.
  • the decoder 20 decodes the second bit information and outputs the third bit information.
  • the interleaving processing unit 34 performs interleaving processing that is the reverse of the deinterleaving processing on the third bit information to generate fourth bit information, and the second bit information. Is input to the MLSE demodulator as prior information, so that the iterative decoding process is performed, and the characteristics of the iterative decoding process are improved (required SNR in the error rate characteristic is reduced), while suppressing the increase in the circuit scale of the iterative decoding process it can.
  • the differential phase shift deinterleaver 31 is arranged in front of the MLSE demodulator 22, and the differential phase shift deinterleaver 31 performs the second radio signal obtained by deinterleaving the first radio signal.
  • the signal is output, and the MLSE demodulator 22 demodulates the second radio signal using the prior information and outputs the first bit information, so that the differential phase shift deinterleaver 31 is repeatedly decoded.
  • the differential phase shift deinterleaving process is unnecessary, and the circuit scale of the iterative decoding processing unit 21 can be reduced.
  • the iterative decoding deinterleaver 32 has a function of changing the bit order across at least two OFDM signals, and the MLSE demodulator 22 has a smaller block size than the differential phase shift deinterleaver 31. Since the demodulated result of the DPSK signal demodulated by modulating the demodulated signal and the bit order being changed by the iterative decoding deinterleaver 32 is repeatedly decoded between the decoders 20, the interleaving process deviates from the OFDM symbol unit. Likelihood information is exchanged between the DPSK signals of the carriers, and better characteristics can be realized.
  • the deinterleaver 32 for iterative decoding has a function of changing the bit order across at least two OFDM signals, the size of the bit information to be exchanged is different from that of one OFDM symbol, interleave processing is performed in units of OFDM symbols. Therefore, likelihood information is exchanged between DPSK signals of subcarriers, and better characteristics can be realized.
  • the iterative decoding deinterleaver 32 has the function of changing the bit order with different replacement patterns across at least two or more OFDM signals in which the size of the bit information to be replaced is the same as that of one OFDM symbol. Since the symbol unit and the interleave processing are shifted, likelihood information is exchanged between the subcarrier DPSK signals, and better characteristics can be realized.
  • the iterative decoding deinterleaver 32 is composed of a deinterleaver having the same bit information size as one OFDM symbol and an interleaver having a different delay time in one OFDM symbol. Interleaving patterns can be switched, likelihood information is exchanged between subcarrier DPSK signals, and good characteristics can be realized.
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • another configuration may be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

In this wireless communication system which transmits data from a transmission device to a receiving device, the transmission device has a modulator which outputs DPSK signals in parallel by using OFDM, and the receiving device is composed of: an MLSE demodulator which demodulates a wireless signal and outputs bit information; a decoder which decodes the bit information; an interleave processing unit which exchanges a bit sequence of the bit information; a deinterleaver for differential phase-shift keying; and a deinterleave processing unit which is composed of a deinterleaver for repetitive decoding having a block length smaller than that of the deinterleaver for differential phase-shift keying, and exchanges the bit sequence of the bit information, wherein the deinterleaver for differential phase-shift keying has a function of performing a deinterleave process by exchanging a time sequence of the DPSK signals transmitted in parallel.

Description

無線通信方法及び無線通信システムWireless communication method and wireless communication system 参照による取り込みImport by reference
 本出願は、平成30年(2018年)2月19日に出願された日本出願である特願2018-27242の優先権を主張し、その内容を参照することにより、本出願に取り込む。 This application claims the priority of Japanese Patent Application No. 2018-27242, which was filed on February 19, 2018, and is incorporated herein by reference.
 本発明は、無線伝搬路を介してデータを送受信する無線通信方法に関する。 The present invention relates to a wireless communication method for transmitting and receiving data via a wireless propagation path.
 本技術分野の背景技術として、BICM-ID(Bit Interleaved Coded Modulation with Iterative decoding)という技術が提案されている。例えば、特許文献1や非特許文献2に記載されるように、BICM-IDでは、変調に対する復調処理と符号化に対する復号処理とを繰り返して優れた特性を得ることができる。BICM-IDの特性は、復調器と復号器の各々の特性ではなく、それらの整合(マッチング)によって決定される。このため、EXIT(Extrinsic Information Transfer)解析を用いて収束特性を解析し、優れた特性を実現する復調器と復号器を設計することができる(例えば、非特許文献3参照)。 As a background technology in this technical field, a technique called BICM-ID (Bit Interleaved Coded Modulation with Iterative decoding) has been proposed. For example, as described in Patent Document 1 and Non-Patent Document 2, in BICM-ID, excellent characteristics can be obtained by repeating demodulation processing for modulation and decoding processing for encoding. The characteristics of the BICM-ID are determined not by the characteristics of the demodulator and the decoder but by their matching. For this reason, it is possible to analyze a convergence characteristic using EXT (Extrinsic Information Transfer) analysis and design a demodulator and a decoder that realize excellent characteristics (see, for example, Non-Patent Document 3).
 また、直交周波数分割多重(OFDM)と差動位相偏移(DPSK)変調を組み合わせて用いる方式の受信装置において、DPSK変調信号の最尤系列推定(MLSE)の軟判定結果及び復号器を用いてBICM-IDを行うことにより、BICM-IDを用ない通常の遅延検波より特性を改善する方式が提案されている。 Further, in a receiving apparatus using a combination of orthogonal frequency division multiplexing (OFDM) and differential phase shift (DPSK) modulation, a soft decision result of a maximum likelihood sequence estimation (MLSE) of a DPSK modulated signal and a decoder are used. A method has been proposed in which performance is improved by performing BICM-ID as compared with normal delay detection without using BICM-ID.
特開2010-124367号公報JP 2010-124367 A
 従来のOFDMでDPSK信号を並列に送信するシステムにおいて、MLSE及びBICM-ID方式を復調処理に用いた繰り返し復号処理を適用することによって良好な特性を実現する方式が提案されている。しかしながら、MLSE及びBICM-IDを用いた繰り返し復号方式では、BICM-IDで良好な収束特性を実現するためのDPSK信号のシンボル長が大きくなるため、良好な特性が得られるシンボル長においては、繰り返し復号処理部の回路規模の増大が課題となる。特に信号の順序をランダムに入れ替えるインタリーバ及びデインタリーバの回路規模は、処理するデータのサイズにより決定されるため、回路規模削減のボトルネックとなり得る。 In a conventional system in which DPSK signals are transmitted in parallel by OFDM, a scheme has been proposed that realizes good characteristics by applying iterative decoding processing using the MLSE and BICM-ID schemes for demodulation processing. However, in the iterative decoding method using MLSE and BICM-ID, the symbol length of the DPSK signal for realizing good convergence characteristics with BICM-ID becomes large. An increase in the circuit scale of the decoding processing unit becomes a problem. In particular, the circuit scales of the interleaver and deinterleaver that randomly change the order of signals are determined by the size of data to be processed, which can be a bottleneck for circuit scale reduction.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、送信装置から受信装置へデータを送信する無線通信方法であって、前記送信装置は、OFDMを用いてDPSK信号を並列に出力する変調器を有し、前記受信装置は、無線信号を復調し、ビット情報を出力するMLSE復調器と、前記ビット情報を復号する復号器と、前記ビット情報のビット順序を入れ替えるインタリーブ処理部と、差動位相偏移用デインタリーバと、前記差動位相偏移用デインタリーバよりブロック長が小さい繰り返し復号用デインタリーバとから構成され、前記ビット情報のビット順序を入れ替えるデインタリーブ処理部とを有し、前記差動位相偏移用デインタリーバは、並列に送信されたDPSK信号の時間順序を入れ替えることによってデインタリーブ処理を行う機能を有し、前記方法は、前記差動位相偏移用デインタリーバ及び前記MLSE復調器が、OFDM復調器から出力された第1の無線信号にデインタリーブ処理及び復調処理を行い、第1のビット情報を出力し、前記繰り返し復号用デインタリーバが、前記第1のビット情報に対し、インタリーブ処理で入れ替えられたビットの順序を元に戻すデインタリーブ処理を行い、第2のビット情報を出力し、前記復号器が、前記第2のビット情報を復号して、第3のビット情報を出力し、前記インタリーブ処理部が、前記第3のビット情報に対し、前記デインタリーブ処理の逆となるインタリーブ処理を行って第4のビット情報を生成し、前記第4のビット情報を事前情報として前記MLSE復調器へ入力することにより、繰り返し復号処理を行う。 A typical example of the invention disclosed in the present application is as follows. That is, a wireless communication method for transmitting data from a transmission apparatus to a reception apparatus, wherein the transmission apparatus includes a modulator that outputs a DPSK signal in parallel using OFDM, and the reception apparatus demodulates the radio signal. An MLSE demodulator that outputs bit information, a decoder that decodes the bit information, an interleave processing unit that changes the bit order of the bit information, a deinterleaver for differential phase shift, and the differential phase shift A deinterleaver for repetitive decoding having a block length smaller than that of the transfer deinterleaver, and having a deinterleave processing unit for changing the bit order of the bit information, and the differential phase shift deinterleaver transmits in parallel Having a function of performing a deinterleaving process by changing the time order of the DPSK signals generated, and the method includes: The deinterleaver for transfer and the MLSE demodulator perform deinterleave processing and demodulation processing on the first radio signal output from the OFDM demodulator, output first bit information, and the deinterleaver for iterative decoding, The first bit information is deinterleaved to return the order of the bits exchanged in the interleaving process, and the second bit information is output. The decoder decodes the second bit information. Then, the third bit information is output, and the interleave processing unit performs an interleaving process that is the reverse of the deinterleaving process on the third bit information to generate fourth bit information, By inputting the fourth bit information as prior information to the MLSE demodulator, iterative decoding processing is performed.
 本発明の代表的な実施の形態によれば、繰り返し復号処理による特性を改善しつつ、繰り返し復号処理の回路規模の増大を抑制できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。 According to the representative embodiment of the present invention, it is possible to suppress an increase in the circuit scale of the iterative decoding process while improving the characteristics of the iterative decoding process. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
本発明の実施例の無線通信システムの構成を示す図である。It is a figure which shows the structure of the radio | wireless communications system of the Example of this invention. 本発明の実施例の再送方法における繰り返し復号処理を示す図であり、図2(A)は本実施例における受信側の繰り返し復号処理部を示す図であり、図2(B)はEXIT解析結果を示す図である。It is a figure which shows the iterative decoding process in the retransmission method of the Example of this invention, FIG. 2 (A) is a figure which shows the iterative decoding process part of the receiving side in a present Example, FIG.2 (B) is an EXIT analysis result FIG. 本発明の実施例の繰り返し復号処理を示す図であり、図3(A)はインタリーバ及びデインタリーバを差動位相偏移用と繰り返し復号処理用に分割した構成を示す図であり、図3(B)は差動位相偏移用デインタリーバを繰り返し復号処理部の外部に設けた構成を示す図である。FIG. 3A is a diagram illustrating an iterative decoding process according to an embodiment of the present invention, and FIG. 3A is a diagram illustrating a configuration in which an interleaver and a deinterleaver are divided for differential phase shift and iterative decoding processing. FIG. 7B is a diagram illustrating a configuration in which a differential phase shift deinterleaver is provided outside the iterative decoding processing unit. 本発明の実施例のOFDM及びDPSKを用いた繰り返し復号処理を示す図である。It is a figure which shows the iterative decoding process using OFDM and DPSK of the Example of this invention. 本発明の実施例のOFDM及びDPSKを用いた繰り返し復号処理を示す図である。It is a figure which shows the iterative decoding process using OFDM and DPSK of the Example of this invention. DPSK用デインタリーブ処理の一例を示す図である。It is a figure which shows an example of the deinterleaving process for DPSK. 本発明の実施例のDPSK用デインタリーブ処理の一例を示す図である。It is a figure which shows an example of the deinterleaving process for DPSK of the Example of this invention. 繰り返し復号処理用デインタリーブ処理の一例を示す図である。It is a figure which shows an example of the deinterleaving process for iterative decoding processes. 本発明の実施例の繰り返し復号処理用デインタリーブ処理の一例を示す図である。It is a figure which shows an example of the deinterleaving process for iterative decoding processes of the Example of this invention. 本発明の実施例の繰り返し復号用デインタリーバの構成を示す図である。It is a figure which shows the structure of the deinterleaver for iterative decoding of the Example of this invention. 本発明の実施例の繰り返し復号処理用デインタリーブ処理の一例を示す図である。It is a figure which shows an example of the deinterleaving process for iterative decoding processes of the Example of this invention. 本発明の実施例の無線通信システムにおける誤り率特性を示す図である。It is a figure which shows the error rate characteristic in the radio | wireless communications system of the Example of this invention.
 <実施例1>
 以下、本発明の実施例を図面を用いて説明する。
<Example 1>
Embodiments of the present invention will be described below with reference to the drawings.
 図1は、本発明の実施例の無線通信システムの構成を示す図である。 FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
 本実施例の無線通信システムは、符号器10、インタリーバ11、DPSK(差動位相偏移)変調器12、OFDM(直交周波数分割多重)変調器13及びアンテナ14を有する送信機、及びOFDM復調器17、繰り返し復号処理部21及びアンテナ16を有する受信機によって構成される。送信機と受信機との間は、無線伝搬路15を介して接続されている。 The wireless communication system of the present embodiment includes an encoder 10, an interleaver 11, a DPSK (differential phase shift) modulator 12, a transmitter having an OFDM (orthogonal frequency division multiplexing) modulator 13, and an antenna 14, and an OFDM demodulator. 17, a receiver having an iterative decoding processing unit 21 and an antenna 16. A transmitter and a receiver are connected via a wireless propagation path 15.
 送信機では、符号器10が情報ビットを符号化し、符号器10から出力される符号語内のビット順序をインタリーバ11が入れ替え、DPSK変調器12が差動偏移変調を行い、OFDM変調器13が複数のDPSK信号をサブキャリアに乗せてアンテナ14から出力する。 In the transmitter, the encoder 10 encodes information bits, the interleaver 11 switches the bit order in the code word output from the encoder 10, the DPSK modulator 12 performs differential shift keying, and the OFDM modulator 13 Output a plurality of DPSK signals from the antenna 14 on the subcarriers.
 受信機の繰り返し復号処理部21は、DPSK復調器18、デインタリーバ19、復号器20及びインタリーバ24を有する。受信機では、無線伝搬路15を介して信号を受信し、受信した信号をOFDM復調器17が復調し、復調結果をDPSK復調器18が復調し、インタリーバ11の逆処理を行うデインタリーバ19がビット順序を元に戻し、復号器20が復号する。復号結果はインタリーバ24を介してDPSK復調器18に入力され、DPSK復調器18は復号器20の復号結果を参照してさらに高精度の復調結果を出力する(BICM-ID処理)。 The iterative decoding processing unit 21 of the receiver includes a DPSK demodulator 18, a deinterleaver 19, a decoder 20, and an interleaver 24. In the receiver, a signal is received via the radio propagation path 15, the OFDM demodulator 17 demodulates the received signal, a DPSK demodulator 18 demodulates the demodulation result, and a deinterleaver 19 that performs reverse processing of the interleaver 11. The bit order is restored and the decoder 20 performs decoding. The decoding result is input to the DPSK demodulator 18 via the interleaver 24, and the DPSK demodulator 18 refers to the decoding result of the decoder 20 and outputs a more accurate demodulation result (BICM-ID processing).
 図2(A)は、本実施例における受信機の繰り返し復号処理部21を示す図であり、図2(B)は、繰り返し復号処理のEXIT解析結果を示す図である。DPSKの軟判定復号処理には最尤系列推定(MLSE)を用いたブラインド(チャネル情報なし)復調が用いられる。 FIG. 2A is a diagram illustrating the iterative decoding processing unit 21 of the receiver in this embodiment, and FIG. 2B is a diagram illustrating the EXIT analysis result of the iterative decoding processing. In the DPSK soft decision decoding process, blind (no channel information) demodulation using maximum likelihood sequence estimation (MLSE) is used.
 BICM-IDで復調器と復号器の間でやり取りされる尤度情報としては、ビット単位の対数尤度比(LLR:Log Likelihood Ratio)が一般的に用いられる。LLRは、当該ビットbが0である確率と1である確率の比の対数表現であり、数式(1)で表される。 As the likelihood information exchanged between the demodulator and the decoder using BICM-ID, a log-likelihood ratio (LLR: Log Likelihood Ratio) in units of bits is generally used. LLR is a logarithmic expression of the ratio between the probability that the bit b is 0 and the probability that it is 1, and is expressed by Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、P(b=0)はbが0である確率、P(b=1)はbが1である確率を示す。 In Equation (1), P (b = 0) indicates the probability that b is 0, and P (b = 1) indicates the probability that b is 1.
 BICM-IDの繰り返し復号処理の収束特性は、非特許文献3に記載されたEXIT(Extrinsic Information Transfer)解析によって解析できる。EXIT解析では、復号器、復調器の入出力特性を、数式(2)で表わされるビットの相互情報量Imの形で表示し、両者の特性を重ねて一つのチャートにプロットすることによって繰り返し復号処理で得られる情報量を解析できる。 The convergence characteristics of the BICM-ID iterative decoding process can be analyzed by EXT (Extrinsic Information Transfer) analysis described in Non-Patent Document 3. In the EXIT analysis, the input / output characteristics of the decoder and demodulator are displayed in the form of the mutual information amount Im of the bit expressed by Equation (2), and the characteristics of both are overlapped and plotted on one chart for repeated decoding. The amount of information obtained by processing can be analyzed.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式(2)の相互情報量は、ビットの相互情報量の符号語全体の平均であり、0~1の値で表され、1に近いほど符号語全体のビット尤度が大きいことを示す。 The mutual information amount in Equation (2) is an average of the entire code word of the mutual information amount of bits, and is expressed by a value of 0 to 1, and the closer to 1, the greater the bit likelihood of the entire code word.
 復調器の事前情報IA,DEMと復号器の外部情報IE,DECを横軸に、復調器の外部情報IA,DEM、復号器の事前情報IE,DECを縦軸に取ると、繰り返し復号処理により相互情報量はそれぞれの特性に沿って増加する。両者の特性が交差している場合、交差点で相互情報量の増加が停止し、復号結果に誤りが残留する。図2(B)において、解析結果23で復調器と復号器の収束特性は交差していないため、誤りのない結果を得ることが可能となる。但し、収束特性は符号語全体の平均によって決定されるため、平均値に十分に漸近する程度の符号語が必要となる。OFDMを用いたDPSK変調では、チャネルの時間変動に追従するために時間方向にDPSK変調を用いるが、この場合、各サブキャリアのDPSK変調データは一つのOFDMシンボル当たり1個であり、良好な収束特性が得られるためのDPSK変調データを得るには1000OFDMシンボル以上必要となることが一般的である。この場合、繰り返し復号処理部で処理するデータ規模が大きくなり、特にインタリーバ、デインタリーバの規模が回路規模を削減する上でボトルネックになり得る。 Prior information I A demodulator, DEM and the decoder of the external information I E, the DEC on the horizontal axis, the external information I A demodulator, DEM, prior information I E of the decoder, taking the vertical axis to DEC, The mutual information amount increases along each characteristic by the iterative decoding process. When the characteristics of the two intersect, the increase of the mutual information stops at the intersection, and an error remains in the decoding result. In FIG. 2B, since the convergence characteristics of the demodulator and the decoder do not intersect with the analysis result 23, it is possible to obtain an error-free result. However, since the convergence characteristic is determined by the average of the entire codeword, a codeword that is sufficiently asymptotic to the average value is required. In DPSK modulation using OFDM, DPSK modulation is used in the time direction in order to follow the time variation of the channel. In this case, the DPSK modulation data of each subcarrier is one per OFDM symbol, and good convergence is achieved. In general, 1000 OFDM symbols or more are required to obtain DPSK modulation data for obtaining characteristics. In this case, the scale of data processed by the iterative decoding processing unit increases, and in particular, the scale of the interleaver and deinterleaver can become a bottleneck in reducing the circuit scale.
 本発明では、回路規模の問題を解決するため、並列に送信されるDPSK信号をインタリーバ24、復号器20及びデインタリーバ19を介して関連付けることにより、少ないOFDMシンボルのDPSK信号をサブキャリア方向に束ねて良好な収束特性が得られる符号語を構成する信号処理方法と、インタリーバ24及びデインタリーバ19を複数に分割し、繰り返し復号部に含まれるインタリーバ24及びデインタリーバ19を小さくする方法を提供する。 In the present invention, in order to solve the problem of circuit scale, DPSK signals transmitted in parallel are associated through the interleaver 24, the decoder 20 and the deinterleaver 19, thereby bundling fewer OFDM symbols DPSK signals in the subcarrier direction. In addition, a signal processing method for forming a codeword capable of obtaining good convergence characteristics and a method for dividing the interleaver 24 and the deinterleaver 19 into a plurality of parts and reducing the interleaver 24 and the deinterleaver 19 included in the iterative decoding unit are provided.
 図3は、本発明の実施例の繰り返し復号処理部21を示す図であり、図3(A)は、デインタリーバを差動位相偏移用デインタリーバ31と繰り返し復号用デインタリーバ32に分割し、かつ、インタリーバを差動位相偏移用33と繰り返し復号処理用32に分割した構成を示す図であり、図3(B)は、差動位相偏移用デインタリーバ31を繰り返し復号処理部21の外部に設けた構成を示す図である。 FIG. 3 is a diagram showing the iterative decoding processing unit 21 of the embodiment of the present invention. FIG. 3A divides the deinterleaver into a differential phase shift deinterleaver 31 and an iterative decoding deinterleaver 32. FIG. 3B is a diagram illustrating a configuration in which the interleaver is divided into a differential phase shift 33 and an iterative decoding process 32. FIG. 3B illustrates the differential phase shift deinterleaver 31 that repeatedly performs the decoding process. It is a figure which shows the structure provided in the exterior.
 本発明の実施例では、複数サブキャリアのDPSK信号を束ねて一つの符号語として扱うため、BICM-IDで良好な特性を得るために最低限の必要なOFDMシンボル長を短くできる。しかし、インタリーバの本来の大きさはチャネルの変動に対してダイバーシチを得るのに十分な大きさとなるように選択されるため、BICM-IDの収束特性に必要な符号語サイズのみでは決定されない。そこで、チャネル変動に対して大きさが選択される差動位相偏移用デインタリーバ31と繰り返し復号処理部21で必要なデインタリーバ32に分割し、差動位相偏移用デインタリーブ処理は繰り返し復号の前に行う構成とする。図3(A)において、差動位相偏移用デインタリーバ31は繰り返し復号用デインタリーバ32より大きなブロックサイズを有し、チャネルの変動に対して十分なダイバーシチが得られるように設計される。 In the embodiment of the present invention, since DPSK signals of a plurality of subcarriers are bundled and handled as one code word, the minimum required OFDM symbol length can be shortened to obtain good characteristics with BICM-ID. However, since the original size of the interleaver is selected so as to be sufficiently large to obtain diversity with respect to channel fluctuation, it is not determined only by the codeword size necessary for the convergence characteristics of BICM-ID. Therefore, the differential phase shift deinterleaver 31 whose magnitude is selected with respect to the channel fluctuation and the deinterleaver 32 required by the iterative decoding processing unit 21 are divided into the differential phase shift deinterleaver, and the differential phase shift deinterleave processing is the iterative decoding. It is set as the structure performed before. In FIG. 3A, the differential phase shift deinterleaver 31 has a larger block size than the iterative decoding deinterleaver 32, and is designed to obtain sufficient diversity with respect to channel variations.
 ここで、MLSE復調器22は、隣接信号の位相差から送信ビットを推定する処理を実行し、差動位相偏移用デインタリーバ31においてDPSK信号の前後関係が保持されるのであれば、MLSEとの順序を入れ替え、繰り返し復号処理部21の外に出すことができる。すなわち、図3(B)に示すように、差動位相偏移用デインタリーバ31はMLSE復調器22の前段に設けられており、繰り返し復号処理部21の外部で処理を実行するため、差動位相偏移用デインタリーブ処理は不要となる。このような構成とすることで繰り返し復号処理部21の回路規模を小さくできる。デインタリーブ処理はインタリーブ処理の逆処理であり、以下、主に受信側でのデインタリーブ処理を用いて、本発明の実施例のインタリーブ及びデインタリーブ処理を説明する。 Here, the MLSE demodulator 22 executes a process of estimating a transmission bit from the phase difference between adjacent signals, and if the differential phase shift deinterleaver 31 maintains the context of the DPSK signal, MLSE and The order of the above can be exchanged and taken out of the iterative decoding processing unit 21. That is, as shown in FIG. 3B, the differential phase shift deinterleaver 31 is provided in the preceding stage of the MLSE demodulator 22 and executes processing outside the iterative decoding processing unit 21. Phase shift deinterleaving is not required. With this configuration, the circuit scale of the iterative decoding processing unit 21 can be reduced. The deinterleaving process is an inverse process of the interleaving process. Hereinafter, the interleaving process and the deinterleaving process according to the embodiment of the present invention will be described mainly using the deinterleaving process on the receiving side.
 図4は、OFDM及びDPSKを用いた繰り返し復号処理を示す図である。DPSK信号41はOFDM時間方向に配置されており、周波数方向のDSPK信号はそれぞれ独立している。MLSEにおいて、DPSKシンボル42の処理には、隣接するDPSK信号が必要となるため、DPSK信号の時間方向の順序をインタリーブで入れ替えた場合には、MLSE22と復号器20の間で、インタリーブ、デインタリーブが必要となる。繰り返し復号処理部21では、十分な長さのDPSK信号と復号器20の復号結果を各サブキャリア毎に繰り返し復号処理をする。 FIG. 4 is a diagram illustrating an iterative decoding process using OFDM and DPSK. The DPSK signal 41 is arranged in the OFDM time direction, and the DSPK signals in the frequency direction are independent of each other. In MLSE, processing of DPSK symbols 42 requires adjacent DPSK signals, so interleaving and deinterleaving between MLSE 22 and decoder 20 when the order of DPSK signals in the time direction is interleaved. Is required. The iterative decoding processing unit 21 repeatedly decodes a sufficiently long DPSK signal and the decoding result of the decoder 20 for each subcarrier.
 図5は、本発明の実施例のOFDM及びDPSKを用いた繰り返し復号処理を示す図である。DPSK信号は差動位相偏移用デインタリーバ31のシンボル長より短く、複数サブキャリアのDPSK信号を一つのMLSEグループとして処理する。復号結果も時間及びサブキャリア方向に纏めたものを一つの符号語として用い、繰り返し復号を行う。 FIG. 5 is a diagram showing an iterative decoding process using OFDM and DPSK according to an embodiment of the present invention. The DPSK signal is shorter than the symbol length of the differential phase shift deinterleaver 31, and a plurality of subcarrier DPSK signals are processed as one MLSE group. Decoding results are also collected in time and subcarrier directions as one codeword, and iterative decoding is performed.
 次に、図6及び図7を用いて、本発明の実施例の差動位相偏移用インタリーブ処理及びデインタリーブ処理を説明する。 Next, the differential phase shift interleaving process and the deinterleaving process according to the embodiment of the present invention will be described with reference to FIGS.
 図6は、従来の差動位相偏移用デインタリーブ処理の一例を示す図であり、100OFDMシンボルの時間順序をランダムに入れ替えるデインタリーブ処理前後のサブキャリアのDPSK信号41内のDPSKシンボル42の時間順序を示す。図6においてデインタリーブ結果61は、デインタリーブ前からサブキャリア内でDPSKシンボル42の時間順序が入れ替わるため、MLSEの前に入れ替えた順序を元に戻す必要があり、差動位相偏移用デインタリーバ31を繰り返し復号の外に出すことは困難となる。 FIG. 6 is a diagram illustrating an example of a conventional differential phase shift deinterleaving process, and the time of DPSK symbols 42 in the DPSK signal 41 of the subcarrier before and after the deinterleaving process in which the time order of 100 OFDM symbols is switched at random. Indicates the order. In FIG. 6, the deinterleaving result 61 is that the time order of the DPSK symbols 42 is changed in the subcarriers before the deinterleaving. Therefore, it is necessary to restore the order changed before the MLSE. It is difficult to put 31 out of iterative decoding.
 図7は、本発明の実施例の差動位相偏移用デインタリーブ処理の一例を示す図である。図7においてデインタリーブ結果71は、サブキャリアのDPSK信号41内のDPSKシンボル42の時間順序を保持しつつ、サブキャリア間の時間順序を異ならせることによってデインタリーブ機能を実現している。デインタリーブ後のDPSKシンボル42には、サブキャリア毎にランダムに1から100シンボルの遅延が挿入されており、サブキャリア数が十分に大きければ、100シンボル分のダイバーシチ効果が期待できる。この場合、DPSK信号41内では、デインタリーブ前後でDPSKシンボル42の時間順序は維持されており、MLSEで必要な隣接するDPSKシンボル42の関係は維持されていることから、MLSEとインタリーブの順序を容易に入れ替えることができる。 FIG. 7 is a diagram showing an example of the deinterleaving process for differential phase shift according to the embodiment of the present invention. In FIG. 7, the deinterleaving result 71 realizes the deinterleaving function by changing the time order between the subcarriers while maintaining the time order of the DPSK symbols 42 in the DPSK signal 41 of the subcarrier. In the DPSK symbol 42 after deinterleaving, a delay of 1 to 100 symbols is randomly inserted for each subcarrier. If the number of subcarriers is sufficiently large, a diversity effect of 100 symbols can be expected. In this case, in the DPSK signal 41, the time order of the DPSK symbols 42 is maintained before and after deinterleaving, and the relationship between adjacent DPSK symbols 42 necessary for MLSE is maintained. Therefore, the order of MLSE and interleaving is changed. Can be easily replaced.
 次に、図8から図11を用いて本発明の実施例の繰り返し復号用インタリーブ、デインタリーブ処理を説明する。 Next, iterative decoding interleaving and deinterleaving processing according to an embodiment of the present invention will be described with reference to FIGS.
 図8は、従来のインタリーバを繰り返し復号処理用デインタリーバとして用いたデインタリーブ処理の一例を示す図である。繰り返し処理用のデインタリーブでは、差動位相偏移用デインタリーブで時間方向のデインタリーブが行われた信号をデインタリーブする。繰り返し復号部のデインタリーブ処理は可能な限り処理量が少ないことが望ましいが、単純にOFDMシンボル単位の周波数方向のデインタリーブを組み合わせた場合、繰り返し復号処理において各サブキャリアのDPSK信号41の尤度情報が交換されず、良好な収束特性を実現できない。繰り返し復号処理におけるDPSK信号41の関連付けの有無は、デインタリーブ後81のサブキャリア方向のインデックスで確認できる。図8に示すデインタリーブ結果81では、DPSK信号41のサブキャリア方向のインデックスはf75を含むのみであり、DPSK信号41間での関連付けは限定的である。 FIG. 8 is a diagram showing an example of deinterleaving processing using a conventional interleaver as a deinterleaver for iterative decoding processing. In deinterleaving for iterative processing, a signal that has been deinterleaved in the time direction by deinterleaving for differential phase shift is deinterleaved. It is desirable that the deinterleaving process of the iterative decoding unit be as small as possible. However, when deinterleaving in the frequency direction in units of OFDM symbols is simply combined, the likelihood of the DPSK signal 41 of each subcarrier in the iterative decoding process Information is not exchanged and good convergence characteristics cannot be realized. Whether or not the DPSK signal 41 is associated in the iterative decoding process can be confirmed by an index in the subcarrier direction 81 after deinterleaving. In the deinterleave result 81 shown in FIG. 8, the index in the subcarrier direction of the DPSK signal 41 only includes f75, and the association between the DPSK signals 41 is limited.
 図9は、本発明の実施例の繰り返し復号処理用デインタリーブ処理の一例を示す図である。図9に示すデインタリーバは復調器のMLSEグループ内の時間及び周波数方向の両方をランダムに入れ替えている。図9に示すデインタリーブ結果91のDPSK信号41において、周波数方向のインデックスはf75、f99、f72、f42を含んでおり、これらのサブキャリアのDPSK信号間で尤度情報が交換される。この場合、MLSE前後でインタリーブ処理及びデインタリーブ処理が必要となるが、差動位相偏移用デインタリーバよりシンボル長が短いため、回路規模を削減できる。 FIG. 9 is a diagram illustrating an example of deinterleaving processing for iterative decoding processing according to the embodiment of this invention. The deinterleaver shown in FIG. 9 randomly swaps both the time and frequency directions in the MLSE group of the demodulator. In the DPSK signal 41 of the deinterleave result 91 shown in FIG. 9, the index in the frequency direction includes f75, f99, f72, and f42, and likelihood information is exchanged between the DPSK signals of these subcarriers. In this case, interleaving processing and deinterleaving processing are required before and after MLSE, but the symbol size is shorter than that of the differential phase shift deinterleaver, so that the circuit scale can be reduced.
 図9のブロックインタリーバを用いれば良好な特性が得られるが、本発明の実施例の繰り返し復号用インタリーバとして必要な機能は、インタリーブ処理が一つのOFDMシンボル単位と異なればよい。すなわち、図8に示すように、インタリーブ処理の単位が一つのOFDMシンボル単位と等しければ、OFDMシンボル単位でインタリーブ処理が行われるが、図9に示すように、インタリーブ処理の単位が一つのOFDMシンボル単位と異なれば、インタリーブ処理毎にズレ幅が変化しつつ、OFDMシンボル単位とインタリーブ処理がずれる。すなわち、MLSEグループ内の全てのDPSK信号のインタリーブ処理及びデインタリーブ処理が完了した後に一つのサブキャリアのDPSK信号41に複数サブキャリアの尤度情報が含まれることになる。このため、より良好な特性が実現できる。なお、インタリーブ処理の単位は、一つのOFDMシンボル単位より大きいことが望ましいが、小さくてもよい。 Although good characteristics can be obtained by using the block interleaver shown in FIG. 9, the function required as the iterative decoding interleaver according to the embodiment of the present invention is that the interleaving process is different from one OFDM symbol unit. That is, as shown in FIG. 8, if the unit of interleaving processing is equal to one OFDM symbol unit, the interleaving processing is performed in OFDM symbol units. However, as shown in FIG. 9, the unit of interleaving processing is one OFDM symbol. If it is different from the unit, the shift width is changed for each interleave process, and the interleave process is shifted from the OFDM symbol unit. That is, the likelihood information of a plurality of subcarriers is included in the DPSK signal 41 of one subcarrier after the interleaving processing and the deinterleaving processing of all DPSK signals in the MLSE group are completed. For this reason, better characteristics can be realized. The unit of interleaving processing is preferably larger than one OFDM symbol unit, but may be smaller.
 また、インタリーブ処理が一つのOFDMシンボル単位と同一でも、畳み込みビットインタリーブや、複数個のインタリーブを組み合わせることによって良好な特性が実現できる。 Also, even if the interleaving process is the same as one OFDM symbol unit, good characteristics can be realized by combining convolutional bit interleaving and a plurality of interleaving.
 図10は、インタリーブ処理が一つのOFDMと同一で、畳み込みビットインタリーバと組み合わせた場合の繰り返し復号用デインタリーバ32の構成を示す。ブロックデインタリーバ102は、例えば一つのOFDMシンボル内のサブキャリアの位置を(サブキャリア単位でサブキャリア上のビットを)インタリーブでランダムに入れ替えたものを元の順番に戻すデインタリーバである。デインタリーバの出力はビット単位の畳み込みデインタリーバ101で遅延を加えられ、インタリーブで加えられた遅延を元の順番へ戻す。この場合、ブロックデインタリーバ102によるデインタリーブ処理は一つのOFDMシンボル内で閉じているものの、その後の畳み込みデインタリーバで一つのOFDMシンボル内の一部のビットが他のOFDMシンボル内のビットと混ざるので、本発明の繰り返し復号では良好な特性を実現できる。 FIG. 10 shows the configuration of the deinterleaver 32 for iterative decoding when the interleaving process is the same as for one OFDM and combined with a convolutional bit interleaver. The block deinterleaver 102 is, for example, a deinterleaver that restores the original order in which subcarrier positions in one OFDM symbol are randomly interleaved (bits on subcarriers in units of subcarriers). The output of the deinterleaver is delayed by the bitwise convolutional deinterleaver 101, and the delay added by the interleaving is returned to the original order. In this case, although the deinterleaving process by the block deinterleaver 102 is closed in one OFDM symbol, some bits in one OFDM symbol are mixed with bits in other OFDM symbols in the subsequent convolutional deinterleaver. In the iterative decoding of the present invention, good characteristics can be realized.
 図10に示す繰り返し復号用デインタリーバ32では、ビット単位でみた場合、異なる入れ替えパターンでビット順序を入れ替えることができる。つまり、OFDMシンボル毎にインタリーブパターンを切り替えることができ、サブキャリアのDPSK信号間で尤度情報が交換され、良好な特性が実現できる。 The iterative decoding deinterleaver 32 shown in FIG. 10 can change the bit order with different replacement patterns when viewed in bit units. That is, the interleave pattern can be switched for each OFDM symbol, and likelihood information is exchanged between the DPSK signals of the subcarriers, so that good characteristics can be realized.
 図11は、複数個のOFDMシンボル単位のデインタリーバを組み合わせた例を示す図である。図11においてデインタリーバは、一つのOFDMシンボル内のサブキャリアをランダムに入れ替えるものである。但し、OFDMシンボル毎に異なるインタリーブパターンを用いており、デインタリーブ結果111のDPSK信号41は、周波数インデックスf75、f99、f72、f42を含んでおり、これらのサブキャリアのDPSK信号間で尤度情報が交換される。図11に示す例おいては、図10のような畳み込みデインタリーバ101と組み合わせることなく良好な特性を実現できる。 FIG. 11 is a diagram illustrating an example in which a plurality of OFDM symbol deinterleavers are combined. In FIG. 11, the deinterleaver randomly replaces subcarriers in one OFDM symbol. However, a different interleaving pattern is used for each OFDM symbol, and the DPSK signal 41 of the deinterleaving result 111 includes frequency indexes f75, f99, f72, and f42, and likelihood information between the DPSK signals of these subcarriers. Will be replaced. In the example shown in FIG. 11, good characteristics can be realized without combining with the convolutional deinterleaver 101 as shown in FIG.
 図12は、本発明の実施例の無線通信システムにおける誤り率特性を示す図である。BICM-IDを用いない場合の遅延検波の特性を□で表し、BICM-IDを用いた場合の特性を○で表し、本発明の実施例の繰り返し復号部を用いた特性を×で表す。図12より、本発明の手法を用いることで、回路規模を削減しつつ、BICM-IDよりSNRを改善できる。 FIG. 12 is a diagram showing error rate characteristics in the wireless communication system according to the embodiment of the present invention. The characteristic of delay detection when BICM-ID is not used is represented by □, the characteristic when BICM-ID is used is represented by ◯, and the characteristic using the iterative decoding unit of the embodiment of the present invention is represented by ×. From FIG. 12, by using the technique of the present invention, it is possible to improve the SNR over the BICM-ID while reducing the circuit scale.
 以上に説明したように、本発明の実施例によると、送信装置から受信装置へデータを送信する無線通信システムであって、差動位相偏移用デインタリーバ31及びMLSE復調器22は協働して、OFDM復調器17から出力された第1の無線信号にデインタリーブ処理及び復調処理を行い、第1のビット情報を出力し、繰り返し復号用デインタリーバ32は、第1のビット情報に対し、インタリーブ処理で入れ替えられたビットの順序を元に戻すデインタリーブ処理を行い、第2のビット情報を出力し、復号器20は、第2のビット情報を復号して、第3のビット情報を出力し、インタリーブ処理部34は、第3のビット情報に対し、デインタリーブ処理の逆となるインタリーブ処理を行って第4のビット情報を生成し、第2のビット情報を事前情報としてMLSE復調器へ入力することにより、繰り返し復号処理を行うので、繰り返し復号処理による特性を改善(誤り率特性における所要SNRを低減)しつつ、繰り返し復号処理の回路規模の増大を抑制できる。 As described above, according to the embodiment of the present invention, a radio communication system that transmits data from a transmission device to a reception device, the differential phase shift deinterleaver 31 and the MLSE demodulator 22 cooperate. The first radio signal output from the OFDM demodulator 17 is deinterleaved and demodulated to output first bit information. The iterative decoding deinterleaver 32 applies the first bit information to the first bit information. Deinterleaving is performed to restore the order of the bits replaced in the interleaving process, and the second bit information is output. The decoder 20 decodes the second bit information and outputs the third bit information. Then, the interleaving processing unit 34 performs interleaving processing that is the reverse of the deinterleaving processing on the third bit information to generate fourth bit information, and the second bit information. Is input to the MLSE demodulator as prior information, so that the iterative decoding process is performed, and the characteristics of the iterative decoding process are improved (required SNR in the error rate characteristic is reduced), while suppressing the increase in the circuit scale of the iterative decoding process it can.
 また、差動位相偏移用デインタリーバ31は、MLSE復調器22の前段に配置されており、差動位相偏移用デインタリーバ31は、第1の無線信号をデインタリーブ処理した第2の無線信号を出力し、MLSE復調器22は、事前情報を用いて第2の無線信号を復調し、第1のビット情報を出力するので、差動位相偏移用デインタリーバ31を繰り返し復号処理部21の外部に配置でき、差動位相偏移用デインタリーブ処理が不要となり、繰り返し復号処理部21の回路規模を小さくできる。 Further, the differential phase shift deinterleaver 31 is arranged in front of the MLSE demodulator 22, and the differential phase shift deinterleaver 31 performs the second radio signal obtained by deinterleaving the first radio signal. The signal is output, and the MLSE demodulator 22 demodulates the second radio signal using the prior information and outputs the first bit information, so that the differential phase shift deinterleaver 31 is repeatedly decoded. , The differential phase shift deinterleaving process is unnecessary, and the circuit scale of the iterative decoding processing unit 21 can be reduced.
 また、繰り返し復号用デインタリーバ32は、少なくとも二つ以上のOFDM信号に跨ってビット順序を入れ替える機能を有し、MLSE復調器22は、差動位相偏移用デインタリーバ31よりブロックサイズが小さいDPSK変調信号を復調し、繰り返し復号用デインタリーバ32によってビット順序が入れ替えられたDPSK信号の復調結果を、復号器20の間で繰り返し復号処理を行うので、OFDMシンボル単位とインタリーブ処理がずれるため、サブキャリアのDPSK信号間で尤度情報が交換され、より良好な特性が実現できる。 The iterative decoding deinterleaver 32 has a function of changing the bit order across at least two OFDM signals, and the MLSE demodulator 22 has a smaller block size than the differential phase shift deinterleaver 31. Since the demodulated result of the DPSK signal demodulated by modulating the demodulated signal and the bit order being changed by the iterative decoding deinterleaver 32 is repeatedly decoded between the decoders 20, the interleaving process deviates from the OFDM symbol unit. Likelihood information is exchanged between the DPSK signals of the carriers, and better characteristics can be realized.
 また、繰り返し復号用デインタリーバ32は、入れ替えるビット情報の大きさが一つのOFDMシンボルと異なって、少なくとも二つ以上のOFDM信号に跨ってビット順序を入れ替える機能を有するので、OFDMシンボル単位とインタリーブ処理がずれるため、サブキャリアのDPSK信号間で尤度情報が交換され、より良好な特性が実現できる。 Further, since the deinterleaver 32 for iterative decoding has a function of changing the bit order across at least two OFDM signals, the size of the bit information to be exchanged is different from that of one OFDM symbol, interleave processing is performed in units of OFDM symbols. Therefore, likelihood information is exchanged between DPSK signals of subcarriers, and better characteristics can be realized.
 また、繰り返し復号用デインタリーバ32は、入れ替えるビット情報の大きさが一つのOFDMシンボルと同一で、少なくとも二つ以上のOFDM信号に跨って、異なる入れ替えパターンでビット順序を入れ替える機能を有するので、OFDMシンボル単位とインタリーブ処理がずれるため、サブキャリアのDPSK信号間で尤度情報が交換され、より良好な特性が実現できる。 In addition, the iterative decoding deinterleaver 32 has the function of changing the bit order with different replacement patterns across at least two or more OFDM signals in which the size of the bit information to be replaced is the same as that of one OFDM symbol. Since the symbol unit and the interleave processing are shifted, likelihood information is exchanged between the subcarrier DPSK signals, and better characteristics can be realized.
 また、繰り返し復号用デインタリーバ32は、入れ替えるビット情報の大きさが一つのOFDMシンボルと同一のデインタリーバと、一つのOFDMシンボル内で遅延時間が異なるインタリーバとで構成されるので、OFDMシンボル毎にインタリーブパターンを切り替えることができ、サブキャリアのDPSK信号間で尤度情報が交換され、良好な特性が実現できる。 The iterative decoding deinterleaver 32 is composed of a deinterleaver having the same bit information size as one OFDM symbol and an interleaver having a different delay time in one OFDM symbol. Interleaving patterns can be switched, likelihood information is exchanged between subcarrier DPSK signals, and good characteristics can be realized.
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 The present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Moreover, you may add the structure of another Example to the structure of a certain Example. In addition, for a part of the configuration of each embodiment, another configuration may be added, deleted, or replaced.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Claims (12)

  1.  送信装置から受信装置へデータを送信する無線通信方法であって、
     前記送信装置は、OFDMを用いてDPSK信号を並列に出力する変調器を有し、
     前記受信装置は、
     無線信号を復調し、ビット情報を出力するMLSE復調器と、
     前記ビット情報を復号する復号器と、
     前記ビット情報のビット順序を入れ替えるインタリーブ処理を行うインタリーブ処理部と、
     差動位相偏移用デインタリーバと、前記差動位相偏移用デインタリーバよりブロック長が小さい繰り返し復号用デインタリーバとから構成され、前記ビット情報のビット順序を入れ替えるデインタリーブ処理を行うデインタリーブ処理部とを有し、
     前記方法は、
     前記差動位相偏移用デインタリーバ及び前記MLSE復調器が、OFDM復調器から出力された第1の無線信号にデインタリーブ処理及び復調処理を行い、第1のビット情報を出力し、
     前記繰り返し復号用デインタリーバが、前記第1のビット情報に対し、前記インタリーブ処理で入れ替えられたビットの順序を元に戻すデインタリーブ処理を行い、第2のビット情報を出力し、
     前記復号器が、前記第2のビット情報を復号して、第3のビット情報を出力し、
     前記インタリーブ処理部が、前記第3のビット情報に対し、前記デインタリーブ処理の逆となるインタリーブ処理を行って第4のビット情報を生成し、前記第4のビット情報を事前情報として前記MLSE復調器へ入力し、
     以上の処理によって繰り返し復号処理を行うことを特徴とする無線通信方法。
    A wireless communication method for transmitting data from a transmitting device to a receiving device,
    The transmitter has a modulator that outputs a DPSK signal in parallel using OFDM,
    The receiving device is:
    An MLSE demodulator that demodulates a radio signal and outputs bit information;
    A decoder for decoding the bit information;
    An interleaving processing unit for performing an interleaving process for switching the bit order of the bit information;
    A deinterleave process comprising a differential phase shift deinterleaver and an iterative decoding deinterleaver having a block length smaller than that of the differential phase shift deinterleaver, and performing a deinterleave process for changing the bit order of the bit information And
    The method
    The differential phase shift deinterleaver and the MLSE demodulator perform deinterleave processing and demodulation processing on the first radio signal output from the OFDM demodulator, and output first bit information;
    The iterative decoding deinterleaver performs deinterleaving processing for returning the order of the bits exchanged in the interleaving processing to the first bit information, and outputs second bit information;
    The decoder decodes the second bit information and outputs third bit information;
    The interleave processing unit performs interleaving processing on the third bit information, which is the reverse of the deinterleaving processing, to generate fourth bit information. The MLSE demodulation is performed using the fourth bit information as prior information. Input
    A wireless communication method characterized by repeatedly performing decoding processing by the above processing.
  2.  請求項1に記載の無線通信方法であって、
     前記差動位相偏移用デインタリーバは、前記MLSE復調器の前段に配置されており、
     前記方法は、
     前記差動位相偏移用デインタリーバが、前記第1の無線信号をデインタリーブ処理した第2の無線信号を出力し、
     前記MLSE復調器が、前記事前情報を用いて第2の無線信号を復調し、第1のビット情報を出力することを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The differential phase shift deinterleaver is disposed in front of the MLSE demodulator,
    The method
    The differential phase shift deinterleaver outputs a second radio signal obtained by deinterleaving the first radio signal;
    The wireless communication method, wherein the MLSE demodulator demodulates a second wireless signal using the prior information and outputs first bit information.
  3.  請求項1に記載の無線通信方法であって、
     前記繰り返し復号用デインタリーバは、少なくとも二つ以上のOFDM信号に跨ってビット順序を入れ替えることを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The wireless communication method, wherein the iterative decoding deinterleaver changes the bit order across at least two OFDM signals.
  4.  請求項1に記載の無線通信方法であって、
     前記繰り返し復号用デインタリーバは、入れ替えるビット情報の大きさが一つのOFDMシンボルと異なって、少なくとも二つ以上のOFDM信号に跨ってビット順序を入れ替えることを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The iterative decoding deinterleaver is characterized in that the bit information to be exchanged is different from one OFDM symbol and the bit order is exchanged across at least two OFDM signals.
  5.  請求項1に記載の無線通信方法であって、
     前記繰り返し復号用デインタリーバは、入れ替えるビット情報の大きさが一つのOFDMシンボルと同一で、少なくとも二つ以上のOFDM信号に跨って、異なる入れ替えパターンでビット順序を入れ替えることを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The iterative decoding deinterleaver, wherein the bit information to be exchanged has the same size as one OFDM symbol, and exchanges the bit order with different exchange patterns across at least two OFDM signals. .
  6.  請求項5に記載の無線通信方法であって、
     前記繰り返し復号用デインタリーバは、入れ替えるビット情報の大きさが一つのOFDMシンボルと同一のデインタリーバと、一つのOFDMシンボル内で遅延時間が異なるインタリーバとで構成されることを特徴とする無線通信方法。
    The wireless communication method according to claim 5,
    The iterative decoding deinterleaver comprises a deinterleaver having the same bit information size to be replaced with one OFDM symbol, and an interleaver having a different delay time within one OFDM symbol. .
  7.  送信装置から受信装置へデータを送信する無線通信システムであって、
     前記送信装置は、OFDMを用いてDPSK信号を並列に出力する変調器を有し、
     前記受信装置は、
     無線信号を復調し、ビット情報を出力するMLSE復調器と、
     前記ビット情報を復号する復号器と、
     前記ビット情報のビット順序を入れ替えるインタリーブ処理を行うインタリーブ処理部と、
     差動位相偏移用デインタリーバと、前記差動位相偏移用デインタリーバよりブロック長が小さい繰り返し復号用デインタリーバとから構成され、前記ビット情報のビット順序を入れ替えるデインタリーブ処理を行うデインタリーブ処理部とを有し、
     前記差動位相偏移用デインタリーバ及び前記MLSE復調器は、OFDM復調器から出力された第1の無線信号にデインタリーブ処理及び復調処理を行い、第1のビット情報を出力し、
     前記繰り返し復号用デインタリーバは、前記第1のビット情報に対し、前記インタリーブ処理で入れ替えられたビットの順序を元に戻すデインタリーブ処理を行い、第2のビット情報を出力し、
     前記復号器は、前記第2のビット情報を復号して、第3のビット情報を出力し、
     前記インタリーブ処理部は、前記第3のビット情報に対し、前記デインタリーブ処理の逆となるインタリーブ処理を行って第4のビット情報を生成し、前記第4のビット情報を事前情報として前記MLSE復調器へ入力し、
     以上の処理によって繰り返し復号処理を行うことを特徴とする無線通信システム。
    A wireless communication system for transmitting data from a transmitting device to a receiving device,
    The transmitter has a modulator that outputs a DPSK signal in parallel using OFDM,
    The receiving device is:
    An MLSE demodulator that demodulates a radio signal and outputs bit information;
    A decoder for decoding the bit information;
    An interleaving processing unit for performing an interleaving process for switching the bit order of the bit information;
    A deinterleave process comprising a differential phase shift deinterleaver and an iterative decoding deinterleaver having a block length smaller than that of the differential phase shift deinterleaver, and performing a deinterleave process for changing the bit order of the bit information And
    The differential phase shift deinterleaver and the MLSE demodulator perform deinterleave processing and demodulation processing on the first radio signal output from the OFDM demodulator, and output first bit information,
    The iterative decoding deinterleaver performs deinterleaving processing for returning the order of the bits exchanged in the interleaving processing to the first bit information, and outputs second bit information,
    The decoder decodes the second bit information and outputs third bit information;
    The interleaving unit performs interleaving on the third bit information, which is the reverse of the deinterleaving process, to generate fourth bit information, and uses the fourth bit information as prior information to perform the MLSE demodulation. Input
    A wireless communication system that performs iterative decoding processing by the above processing.
  8.  請求項7に記載の無線通信システムであって、
     前記差動位相偏移用デインタリーバは、前記MLSE復調器の前段に配置されており、
     前記差動位相偏移用デインタリーバは、前記第1の無線信号をデインタリーブ処理した第2の無線信号を出力し、
     前記MLSE復調器は、前記事前情報を用いて第2の無線信号を復調し、第1のビット情報を出力することを特徴とする無線通信システム。
    The wireless communication system according to claim 7,
    The differential phase shift deinterleaver is disposed in front of the MLSE demodulator,
    The differential phase shift deinterleaver outputs a second radio signal obtained by deinterleaving the first radio signal;
    The MLSE demodulator demodulates a second radio signal using the prior information and outputs first bit information.
  9.  請求項7に記載の無線通信システムであって、
     前記繰り返し復号用デインタリーバは、少なくとも二つ以上のOFDM信号に跨ってビット順序を入れ替える機能を有することを特徴とする無線通信システム。
    The wireless communication system according to claim 7,
    The iterative decoding deinterleaver has a function of changing a bit order across at least two OFDM signals.
  10.  請求項7に記載の無線通信システムであって、
     前記繰り返し復号用デインタリーバは、入れ替えるビット情報の大きさが一つのOFDMシンボルと異なって、少なくとも二つ以上のOFDM信号に跨ってビット順序を入れ替える機能を有する無線通信システム。
    The wireless communication system according to claim 7,
    The iterative decoding deinterleaver is a wireless communication system having a function of changing bit order across at least two or more OFDM signals, the size of bit information to be changed being different from one OFDM symbol.
  11.  請求項7に記載の無線通信システムであって、
     前記繰り返し復号用デインタリーバは、入れ替えるビット情報の大きさが一つのOFDMシンボルと同一で、少なくとも二つ以上のOFDM信号に跨って、異なる入れ替えパターンでビット順序を入れ替える機能を有することを特徴とする無線通信システム。
    The wireless communication system according to claim 7,
    The iterative decoding deinterleaver is characterized in that the size of bit information to be exchanged is the same as that of one OFDM symbol, and has a function of exchanging bit order with different exchange patterns across at least two or more OFDM signals. Wireless communication system.
  12.  請求項11に記載の無線通信システムであって、
     前記繰り返し復号用デインタリーバは、入れ替えるビット情報の大きさが一つのOFDMシンボルと同一のデインタリーバと、一つのOFDMシンボル内で遅延時間が異なるインタリーバとで構成されることを特徴とする無線通信システム。
    A wireless communication system according to claim 11, wherein
    The iterative decoding deinterleaver is composed of a deinterleaver having the same bit information size as that of one OFDM symbol and an interleaver having a different delay time in one OFDM symbol. .
PCT/JP2018/038055 2018-02-19 2018-10-12 Wireless communication method and wireless communication system WO2019159430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500266A JP6872073B2 (en) 2018-02-19 2018-10-12 Wireless communication method and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-027242 2018-02-19
JP2018027242 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019159430A1 true WO2019159430A1 (en) 2019-08-22

Family

ID=67618630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038055 WO2019159430A1 (en) 2018-02-19 2018-10-12 Wireless communication method and wireless communication system

Country Status (2)

Country Link
JP (1) JP6872073B2 (en)
WO (1) WO2019159430A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168719A (en) * 2012-02-14 2013-08-29 Hitachi Kokusai Electric Inc Receiver and method for decoding received signal
WO2017168821A1 (en) * 2016-03-29 2017-10-05 株式会社日立国際電気 Wireless communication method and wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168719A (en) * 2012-02-14 2013-08-29 Hitachi Kokusai Electric Inc Receiver and method for decoding received signal
WO2017168821A1 (en) * 2016-03-29 2017-10-05 株式会社日立国際電気 Wireless communication method and wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, XIAODONG ET AL.: "Bit-interleaved coded modulation with iterative decoding", IEEE COMMUNICATIONS LETTERS, vol. 1, 6 November 1997 (1997-11-06), pages 169 - 171, XP055633768 *
NISHIMOTO, HIROSHI ET AL.: "Blind Iterative Decoding in Bit-Interleaved Coded DPSK", IEICE TECHNICAL REPORT, vol. 107, 27 February 2008 (2008-02-27), pages 193 - 198, XP008173889 *

Also Published As

Publication number Publication date
JP6872073B2 (en) 2021-05-19
JPWO2019159430A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
EP1798920B1 (en) Iterative detection and decoding in MIMO communication systems
EP2482483A2 (en) Multidimensional constellations for coded transmission
EP2405590A1 (en) Coder, receiver, wireless communication system, puncture pattern selection method, and program therefor
US8498195B1 (en) HARQ retransmission scheme for at least two transmit antennas
TW201004158A (en) Method and system for LLR buffer reduction in a wireless communication modem
CN115118383A (en) Inner FEC encoding system and method
EP2391044A2 (en) A receiver for a wireless telecommunication system with a channel deinterleaver
US20130073920A1 (en) Implementation-oriented method of bicm based on ldpc check matrix
US20070115960A1 (en) De-interleaver for data decoding
US7573962B1 (en) Diversity code combining scheme for turbo coded systems
EP2175581B1 (en) Turbo encoding and decoding communication system
WO2019159430A1 (en) Wireless communication method and wireless communication system
JP4904963B2 (en) Communication system, communication method, transmitter and receiver
CN100463370C (en) Input control apparatus and input control method
EP2690813A1 (en) Transparent component interleaving for rotated constellations
US20100318755A1 (en) Reduced contention storage for channel coding
JP6602955B2 (en) Wireless communication method and wireless communication system
WO2016051467A1 (en) Wireless communication apparatus and wireless communication system
US8081577B2 (en) Method of calculating soft value and method of detecting transmission signal
KR20060086673A (en) Transmitter and receiver in dblast system
JP2008035442A (en) Multi-antenna receiver, multi-antenna transmitter, and multi-antenna communication system
WO2018225364A1 (en) Wireless communication method and wireless communication system
EP4425794A1 (en) Method and device for decoding data in communication and broadcasting systems
KR101407172B1 (en) Data transmission method using turbo code
Benaissa et al. Efficient Trellis-coded Modulation using Ungerboeck-Gray mapping associated with Space-time block code

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906200

Country of ref document: EP

Kind code of ref document: A1