WO2019159240A1 - Rotating electrical machine - Google Patents
Rotating electrical machine Download PDFInfo
- Publication number
- WO2019159240A1 WO2019159240A1 PCT/JP2018/004936 JP2018004936W WO2019159240A1 WO 2019159240 A1 WO2019159240 A1 WO 2019159240A1 JP 2018004936 W JP2018004936 W JP 2018004936W WO 2019159240 A1 WO2019159240 A1 WO 2019159240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- flow path
- electrical machine
- rotating electrical
- inner case
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 40
- 239000003507 refrigerant Substances 0.000 claims description 119
- 238000011144 upstream manufacturing Methods 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 238000010030 laminating Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 239000002826 coolant Substances 0.000 abstract description 18
- 230000014759 maintenance of location Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 16
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/14—Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
- H02K9/16—Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
Definitions
- the present invention relates to a rotating electrical machine.
- Patent Document 1 a housing capable of accommodating a motor, a water jacket disposed along the peripheral surface of the stator, and a first formed along the axial direction on the radially outer side of the water jacket in the wall portion of the housing.
- Cooling oil is supplied to a second transition portion of a coil provided between the oil passage and protruding from the other end of the stator core, and the oil is distributed from the first oil passage to the second oil passage.
- An oil distribution path is disclosed.
- the motor disclosed in JP2010-263715A includes an oil distribution path, so that the cooling oil flowing through the first oil path is dropped onto the second transition part of the coil and the second oil path formed in the stator core. And is also dropped onto the first transition part of the coil.
- motor structural components such as a stator disposed in the housing are cooled from the outer peripheral side by the water jacket and the cooling oil.
- An object of the present invention is to provide a technique capable of reducing the number of parts and improving the cooling efficiency by improving the flow path of the refrigerant used for increasing the cooling efficiency of the rotating electrical machine.
- a rotating electrical machine capable of cooling a stator from the outer peripheral side using a first refrigerant and a second refrigerant.
- This rotating electrical machine includes an inner case that accommodates a stator, an outer case that is provided on the outer peripheral side of the inner case, and one of the outer peripheral surface of the inner case or the inner peripheral surface of the outer case.
- a first flow path that is formed along the circumferential direction of the rotating electrical machine and through which the first refrigerant passes, and a second flow path that is formed along the axial direction of the rotating electrical machine of the outer case and through which the second refrigerant passes.
- FIG. 1 is a schematic configuration diagram showing a motor according to a first embodiment of the present invention.
- FIG. 2 is an enlarged view of a main part showing an enlarged main part of a cross section taken along line II-II in FIG.
- FIG. 3 is a schematic configuration diagram showing a motor according to the second embodiment of the present invention.
- FIG. 4 is a schematic configuration diagram showing a motor according to the third embodiment of the present invention.
- FIG. 5 is a schematic configuration diagram showing a modification of the motor according to the third embodiment of the present invention.
- FIG. 6 is a schematic configuration diagram showing a motor according to the fourth embodiment of the present invention.
- FIG. 7 is a schematic diagram illustrating a stator used in the motor according to the fourth embodiment.
- FIG. 8 is a schematic diagram illustrating a stator shown as a modification of the stator used in the motor according to the fourth embodiment.
- FIG. 9 is a schematic diagram illustrating a configuration of a stator used in the motor according to the fourth embodiment.
- FIG. 1 is a schematic configuration diagram showing a motor 1 according to the first embodiment of the present invention.
- a motor 1 shown in FIG. 1 functions as an electric motor that rotates by receiving power supplied from a power source such as a battery and drives wheels of a vehicle.
- the motor 1 also functions as a generator that generates power by being driven by an external force. Therefore, the motor 1 is configured as a so-called rotating electric machine (motor generator) that functions as an electric motor and a generator.
- the motor 1 includes a rotor 10, a stator 20 disposed on the outer peripheral side of the rotor 10, and a case 30 that houses the rotor 10 and the stator 20.
- the rotor 10 is disposed inside the stator 20 so as to be rotatable with respect to the stator 20.
- the rotor 10 has a rotor shaft 11 as a rotating shaft.
- the rotor shaft 11 is rotatably supported by bearings 31 and 32 provided on the case 30.
- the stator 20 is a cylindrical member formed by laminating a plurality of electromagnetic steel plates 21.
- a U-phase, V-phase, and W-phase coil is wound around the teeth of the stator 20, and the end of the wound coil (hereinafter referred to as a coil end 22) is the shaft of the motor 1 rather than the stator 20. Projects outward in the direction.
- the outer peripheral surface of the stator 20 is fixed to the inner case 40 in a state of being in surface contact with the inner peripheral surface of the inner case 40 described later.
- the case 30 includes the above-described inner case 40 and an outer case 50 that is fitted on the outer peripheral side of the inner case 40.
- the inner case 40 accommodates the stator 20.
- the inner case 40 is a housing configured as a cylindrical member that can accommodate the stator 20.
- the inner peripheral surface of the inner case 40 is formed as a flat installation surface on which the stator 20 is installed.
- a first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 40.
- the first flow path 41 is recessed along the circumferential direction of the motor 1 over the entire circumference of the outer peripheral surface of the inner case 40.
- the first flow path 41 functions as a flow path through which a coolant (coolant), which is a first refrigerant for cooling the stator 20 and the like, flows between the outer case 50 and the inner case 40.
- the outer diameter on the end side in the axial direction of the motor 1 relative to the first flow path 41 is formed larger than the outer diameter at the position where the first flow path 41 is formed. Further, seal grooves 42 ⁇ / b> A and 42 ⁇ / b> B into which O-rings 33 and 34 (see FIG. 1) are fitted are formed on the end side in the axial direction of the motor 1 with respect to the first flow path 41.
- a flange 44 protruding in the radial direction of the case is formed at the end portion 43 on the outer side in the axial direction of the motor 1 with respect to the seal groove 42B of the inner case 40.
- the flange 44 functions as a stopper that restricts the position of the outer case 50 in the axial direction of the motor 1 when the outer case 50 is disposed in the inner case 40.
- a refrigerant reservoir 45 is formed in the inner case 40.
- the refrigerant reservoir 45 is formed so as to be positioned above the coil end 22 that protrudes from the teeth of the stator 20.
- the refrigerant storage unit 45 communicates with a second flow path 51 to be described later, and stores the second refrigerant sent through the second flow path 51.
- the inner case 40 is formed with a first opening 46 that faces the coil end 22 protruding from the teeth of the stator 20 and communicates with the refrigerant reservoir 45.
- the outer case 50 is a housing configured as a cylindrical member into which the inner case 40 can be inserted.
- the inner diameter of the outer case 50 is set to be approximately equal to or slightly larger than the outer diameter of the inner case 40, and is configured to be fitted on the outer peripheral surface of the inner case 40.
- the outer case 50 is formed with a second flow path 51 through which the second refrigerant passes.
- the second flow path 51 is formed along the axial direction of the motor 1.
- the outer case 50 is formed with a second opening 52 that communicates the second flow path 51 and the above-described refrigerant reservoir 45.
- cooling oil is used as the second refrigerant.
- the outer case 50 has a supply port for supplying the coolant to the first flow path 41 and a discharge port for discharging the coolant from the first flow path 41 to the outside.
- the coolant is configured to circulate through the first flow path 41 of the motor 1 by a coolant pump (not shown).
- the motor 1 includes an oil pump 60 for circulating and cooling the cooling oil as the second refrigerant. Although not shown, the motor 1 is formed with a flow path for collecting the cooling oil dropped in the housing of the inner case 40.
- the oil pump 60 is connected to a cooling oil recovery path and a second flow path 51 formed in the outer case 50.
- the oil pump 60 collects the cooling oil from the bottom of the motor 1, cools it, and cools the second flow path 51. Shed.
- FIG. 2 is an enlarged view of the main part showing the main part of the cross section taken along the line II-II in FIG.
- the refrigerant reservoir 45 is formed on a part of the outer peripheral surface of the inner case 40 by wall portions w ⁇ b> 1 and w ⁇ b> 2 that protrude outward in the radial direction.
- the wall portions w1 and w2 are preferably formed symmetrically across a virtual line L passing through the axis of the rotor 10 in a cross section perpendicular to the rotation axis of the rotor 10 shown in FIG. Is preferably less than 180 °.
- the angle ⁇ formed by the walls w1, w2 is preferably 90 °.
- a plurality of first openings 46 are formed in the refrigerant reservoir 45 along the circumferential direction of the motor 1.
- the three first openings 46 are formed at equal intervals. From the viewpoint of dropping the second refrigerant onto the coil end 22, one of the three first openings 46 is preferably disposed on an imaginary line L passing through the axis of the rotor 10.
- the second refrigerant sent through the second flow path 51 is stored in the refrigerant storage unit 45 and dropped from the first opening 46 to the coil end 22.
- one of the outer peripheral surfaces of the inner case 40 is recessed so that the first refrigerant is formed between the inner case 40 and the outer case 50 along the circumferential direction of the motor 1.
- the stator 20 can be cooled.
- the motor 1 includes a second flow path 51 that is formed in the outer case 50 along the axial direction of the motor 1 and through which the second refrigerant passes. The first refrigerant and the inner case 40 can be cooled by the refrigerant.
- the refrigerant reservoir 45 is formed with one first opening 46 symmetrically about the imaginary line L, one on the imaginary line L passing through the axis of the rotor 10.
- the second refrigerant stored in the refrigerant storage unit 45 can be efficiently dropped onto the coil end 22 of the stator 20.
- FIG. 3 is a schematic configuration diagram showing the motor 2 according to the second embodiment of the present invention.
- the motor 2 shown as the second embodiment components having the same functions as those described in the motor 1 are denoted by the same reference numerals and detailed description thereof is omitted.
- the motor 2 includes a case 230 that accommodates the rotor 10 and the stator 20, as shown in FIG.
- the case 230 includes an inner case 240 and an outer case 250 that is fitted on the outer peripheral side of the inner case 240.
- the first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 240.
- the inner case 40 is formed with a refrigerant reservoir 245.
- the refrigerant reservoir 45 is formed in the motor 2 so as to be positioned above the coil end 22 protruding from the teeth of the stator 20.
- the refrigerant reservoir 245 communicates with a second flow path 51 described later, and is formed on the upstream side of the second flow path 51 in the inner case 240.
- the inner case 240 has a first opening 246 that faces the coil end 22 of the stator 20 from the refrigerant reservoir 245. Further, in the inner case 240, an inner case opening 247 that directly faces a coil end 22 of the stator 20 on the downstream side of the second flow path 51 with respect to the first flow path 41. Is formed.
- the outer case 250 is formed with a second opening 252 that communicates the second flow path 51 and the refrigerant reservoir 245 and a second opening 253 that communicates the second flow path 51 and the inner case opening 247. Has been.
- the second refrigerant sent through the second flow path 51 is stored in the refrigerant storage section 245 on the upstream side of the second flow path 51 and is dropped from the first opening 246 to the coil end 22. Further, the second refrigerant sent through the second flow path 51 is dropped from the second opening 253 through the inner case opening 247 to the coil end 22 on the downstream side of the second flow path 51. .
- the stator 20 can be cooled by the first refrigerant flowing through the first flow path 41.
- the motor 2 can cool the first refrigerant and the inner case 240 by the second refrigerant flowing through the second flow path 51 by providing the outer case 250 with the second flow path 51.
- the motor 2 has a refrigerant reservoir 245 in which a first opening 246 facing the coil end 22 of the stator 20 is formed on the upstream side of the second flow path 51 of the inner case 240. For this reason, the motor 2 does not require a separate member for storing the second refrigerant between the inner case 40 and the coil end 22.
- the motor 2 since the motor 2 includes the refrigerant reservoir 245 on the upstream side of the second flow path 51, the cooling oil having a low temperature sent from the oil pump 60 can be quickly dropped onto the coil end 22. Is increased.
- FIG. 4 is a schematic configuration diagram showing a motor 3 according to the third embodiment of the present invention.
- the motor 3 shown as the third embodiment components having the same functions as those described in the motor 1 are denoted by the same reference numerals and detailed description thereof is omitted.
- the motor 3 includes a case 330 that accommodates the rotor 10 and the stator 20 as shown in FIG.
- the case 330 includes an inner case 340 and an outer case 350 that is fitted on the outer peripheral side of the inner case 340.
- a first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 340.
- refrigerant reservoirs 345 and 346 are formed on both the upstream side and the downstream side of the first flow path 41.
- the refrigerant storage part 345 is formed on the upstream side of the second flow path 51 with respect to the first flow path 41, and the refrigerant storage part 346 is in the second flow path 51 with respect to the first flow path 41. It is formed on the downstream side.
- the inner case 340 faces the coil end 22 located on the upstream side of the second flow path 51, and is located on the downstream side of the second opening 51 and the first opening 347 communicating with the refrigerant storage part 345.
- a first opening 348 that faces the coil end 22 and communicates with the refrigerant reservoir 346 is formed.
- the outer case 250 is formed with a second opening 352 that communicates the second flow path 51 and the refrigerant storage part 345, and a second opening 353 that communicates the second flow path 51 and the refrigerant storage part 346. ing.
- the stator 20 can be cooled by the first refrigerant flowing through the first flow path 41.
- the motor 3 can cool the first refrigerant and the inner case 340 by the second refrigerant flowing through the second flow path 51 by providing the outer case 350 with the second flow path 51.
- the motor 3 has a refrigerant storage part 345 in which a first opening 347 facing the coil end 22 of the stator 20 is formed on the upstream side of the second flow path 51 of the inner case 340. For this reason, the motor 2 does not require a separate member for storing the second refrigerant between the inner case 40 and the coil end 22.
- the motor 3 includes the refrigerant reservoir 345 on the upstream side of the second flow path 51 with respect to the first flow path 41, the low-temperature oil sent from the oil pump 60 is quickly dropped onto the coil end 22. Cooling efficiency is increased.
- coolant storage part 346 is also provided in the downstream of the 2nd flow path 51 with respect to the 1st flow path 41, after a 2nd refrigerant
- FIG. 5 is a schematic configuration diagram showing a modification of the motor 3 according to the third embodiment of the present invention.
- a second opening 354 that communicates the second flow path 51 and the refrigerant reservoir 345 with the outer case 350, and a second that communicates the second flow path 51 and the refrigerant reservoir 346.
- An opening 355 is formed.
- the size of the second opening 355 communicating with the refrigerant storage section 346 (corresponding to the downstream communication section) located on the downstream side is located on the upstream side with respect to the first flow path 41. It is formed to be larger than the size of the second opening 354 (corresponding to the upstream communication portion) communicating with the refrigerant storage portion 345.
- the cross-sectional area along the axial direction of the motor 4 of the second opening 355 located on the downstream side is equal to that of the motor 4 of the second opening 354 located on the upstream side. It is larger than the cross-sectional area along the axial direction.
- the cross-sectional area along the axial direction of the motor 4 of the second opening 355 located on the downstream side of the first flow path 41 in the second flow path 51 is located on the upstream side.
- the second opening 354 is formed larger than the cross-sectional area along the axial direction of the motor 4. For this reason, the amount of the second refrigerant flowing into the refrigerant reservoir 346 can be increased on the downstream side, compared to the amount of the second refrigerant flowing into the refrigerant reservoir 345 on the upstream side.
- the amount of the second refrigerant flowing into the refrigerant reservoirs 345 and 346 can be made uniform on the upstream side near the oil pump 60 where the flow velocity is high and on the downstream side where the flow velocity is away from the oil pump 60 and the flow velocity is reduced.
- the refrigerant reservoir 345 is provided on the upstream side of the second flow path 51 with respect to the first flow path 41, so that the low-temperature oil sent from the oil pump 60 is quickly supplied to the coil end 22.
- the second refrigerant can be dripped from the refrigerant reservoir 346 disposed on the downstream side of the second flow path 51 toward the coil end 22 without any spots. Therefore, the cooling efficiency is increased.
- FIG. 6 is a schematic configuration diagram showing a motor 5 according to the fourth embodiment of the present invention.
- the motor 5 shown as the fourth embodiment components having the same functions as those described in the motor 1 are denoted by the same reference numerals and detailed description thereof is omitted.
- the motor 5 includes a stator 520 as shown in FIG.
- the motor 5 includes a case 530 that houses the rotor 10 and the stator 520.
- the case 530 includes an inner case 540 and an outer case 550 that is fitted on the outer peripheral side of the inner case 540.
- a groove portion 522 that is recessed along the axial direction of the motor 5 is formed on the outer peripheral surface of the stator 520.
- the groove part 522 receives the second refrigerant from the refrigerant storage part 545 described later, and causes the second refrigerant to flow downstream.
- the first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 540.
- a refrigerant reservoir 545 is formed on the upstream side of the second flow path 51 with respect to the first flow path 41.
- the outer case 550 is formed with a second opening 552 that communicates the second flow path 51 and the refrigerant reservoir 545.
- the inner case 540 is formed with a third opening 547 that faces the groove 522 and communicates with the refrigerant reservoir 545.
- FIG. 7 is a schematic diagram illustrating a stator 520 used for the motor 5. As shown in FIG. 7, the second refrigerant can flow into the groove 522 of the stator 520 from the refrigerant reservoir 545 through the third opening 547.
- the first opening 546 facing the coil end 22 of the stator 520 and the third opening 547 facing the groove 522 formed in the stator 520 are formed on the upstream side of the second flow path 51 of the inner case 540. It has the formed refrigerant storage part 545. For this reason, the motor 5 does not require another member for storing the second refrigerant between the inner case 540 and the coil end 22.
- the stator 520 can be cooled by the first refrigerant flowing through the first flow path 41.
- the second refrigerant can be dropped from the refrigerant reservoir 545 through the first opening 546 to the coil end 22 from the first opening 546 located on the upstream side of the second flow path 51. Since the second refrigerant can flow directly from the third opening 547 to the stator 520, the stator 420 can be cooled.
- the cooling efficiency of the motor 4 can be increased.
- FIG. 8 is a schematic diagram illustrating a stator 570 shown as a modification.
- the stator 570 has a groove portion 591 formed in a spiral shape on the outer surface.
- the second refrigerant can flow through the groove 591 so as to surround the outer periphery of the stator 570 from the refrigerant reservoir 445 through the third opening 547. Thereby, the cooling efficiency of the stator 570 can be increased.
- stator 520 used in the fourth embodiment and the stator 570 shown as a modification can be realized by stacking a plurality of electromagnetic steel sheets.
- FIG. 9 is a schematic diagram illustrating the configuration of the stator 570.
- the stator 570 is formed by laminating a plurality of disc-shaped electromagnetic steel plates 571, 572, 573,. In the electromagnetic steel plates 571, 572, 573,..., 57n, notches 581, 582, 583,.
- the groove part 522 can be formed by aligning the notch part of adjacent electromagnetic steel plates, and laminating
- the groove part 591 can be formed by laminating
- the motor 1 has been described as a motor generator for an electric vehicle.
- the motor 1 may be used for an apparatus other than a vehicle, for example, an industrial machine such as a construction machine, a household electric apparatus, or a conveyor.
- the first flow path 41 only needs to form a sealed flow path between the inner case 40 and the outer case 50, and is recessed on the inner peripheral surface of the outer case 50. Also good.
- the first opening 46 formed in the motor 1 may be one. There may also be three or more.
- the groove 522 is described as being recessed in the outer peripheral surface of the stator 520, but the groove may be formed in the inner peripheral surface of the inner case 540. The same applies to the groove 591.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
The present invention is a rotating electrical machine which can cool a stator from the outer peripheral side using a first coolant and a second coolant, wherein the rotating electrical machine is provided with: an inner case that accommodates the stator; an outer case disposed on the outer peripheral side of the inner case; a first channel, which is formed in the circumferential direction of the rotating electrical machine between the inner case and the outer case by recessing the outer peripheral surface of the inner case or the inner peripheral surface of the outer case, and through which the first coolant passes; a second channel, which is formed in the outer case in the axial direction of the rotating electrical machine and through which the second coolant passes; a coolant retention section, which is formed in the inner case, communicates with the second channel, and stores the second coolant fed through the second channel; and a first opening section, which is formed in the inner case, faces a coil end of the stator, and communicates with the coolant retention section.
Description
本発明は、回転電機に関する。
The present invention relates to a rotating electrical machine.
特許文献1には、モータを収容可能なハウジングと、ステータの周面に沿って配されたウォータジャケットと、ハウジングの壁部におけるウォータジャケットの径方向外側に軸方向に沿って形成された第1油路と、ステータコアに形成されておりステータコアの軸方向の一方の端部に突出形成されたコイルの第1の渡り部に冷却油を供給する第2油路と、第1油路と第2油路との間に設けられて、ステータコアの他方の端部に突出形成されたコイルの第2の渡り部に冷却油を供給するとともに、第1油路から第2油路に油を分配する油分配経路と、を備えたモータが開示されている。
In Patent Document 1, a housing capable of accommodating a motor, a water jacket disposed along the peripheral surface of the stator, and a first formed along the axial direction on the radially outer side of the water jacket in the wall portion of the housing. An oil passage, a second oil passage that supplies cooling oil to a first transition portion of a coil that is formed in the stator core and protrudes from one end of the stator core in the axial direction, a first oil passage, and a second oil passage Cooling oil is supplied to a second transition portion of a coil provided between the oil passage and protruding from the other end of the stator core, and the oil is distributed from the first oil passage to the second oil passage. An oil distribution path is disclosed.
JP2010-263715Aに開示されたモータは、油分配経路を備えたことにより、第1油路を流れる冷却油が、コイルの第2の渡り部に滴下されるとともにステータコアに形成された第2油路に分配されてコイルの第1の渡り部にも滴下される。このように、JP2010-263715Aに開示されたモータでは、ハウジング内に配置されるステータ等のモータ構造部品がウォータジャケット及び冷却油によって、外周側から冷却されている。
The motor disclosed in JP2010-263715A includes an oil distribution path, so that the cooling oil flowing through the first oil path is dropped onto the second transition part of the coil and the second oil path formed in the stator core. And is also dropped onto the first transition part of the coil. As described above, in the motor disclosed in JP2010-263715A, motor structural components such as a stator disposed in the housing are cooled from the outer peripheral side by the water jacket and the cooling oil.
JP2010-263715Aに記載されたモータでは、コイルの第1の渡り部及び第2の渡り部に冷媒としての油を巡らせるために、ハウジングに形成された第1油路からステータコアに形成された第2油路に油を分配するための油分配経路を必要とする。このため、JP2010-263715Aに記載されたモータでは、油分配経路を用意するためのコストが増加する問題があった。
In the motor described in JP2010-263715A, in order to circulate oil as refrigerant in the first and second transition portions of the coil, the second oil passage formed in the stator core from the first oil passage formed in the housing. An oil distribution path for distributing oil to the oil path is required. For this reason, the motor described in JP2010-263715A has a problem that the cost for preparing an oil distribution path increases.
本発明は、回転電機の冷却効率を高めるために用いられる冷媒の流路を改善することによって、部品点数を削減するとともに、冷却効率を高めることが可能な技術を提供することを目的とする。
An object of the present invention is to provide a technique capable of reducing the number of parts and improving the cooling efficiency by improving the flow path of the refrigerant used for increasing the cooling efficiency of the rotating electrical machine.
本発明の一態様によれば、第1の冷媒及び第2の冷媒を用いて外周側からステータを冷却可能な回転電機が提供される。この回転電機は、ステータを収容するインナケースと、インナケースの外周側に設けられるアウタケースと、インナケースの外周面又は前記アウタケースの内周面の一方を凹設することでこれらケース間に回転電機の周方向に沿って形成されており第1の冷媒が通過する第1流路と、アウタケースの回転電機の軸方向に沿って形成されており第2の冷媒が通過する第2流路と、インナケースに形成されており第2流路と連通され、第2流路を通って送られた第2の冷媒を貯留する冷媒貯留部と、インナケースに形成されておりステータのコイルエンドに臨み、冷媒貯留部に連通する第1開口部と、を備えるように構成される。
According to one aspect of the present invention, there is provided a rotating electrical machine capable of cooling a stator from the outer peripheral side using a first refrigerant and a second refrigerant. This rotating electrical machine includes an inner case that accommodates a stator, an outer case that is provided on the outer peripheral side of the inner case, and one of the outer peripheral surface of the inner case or the inner peripheral surface of the outer case. A first flow path that is formed along the circumferential direction of the rotating electrical machine and through which the first refrigerant passes, and a second flow path that is formed along the axial direction of the rotating electrical machine of the outer case and through which the second refrigerant passes. A refrigerant passage that is formed in the inner case, communicates with the second flow path and stores the second refrigerant sent through the second flow path, and a stator coil formed in the inner case. A first opening that faces the end and communicates with the refrigerant reservoir.
以下、図面を参照して、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
図1は、本発明の第1実施形態に係るモータ1を示す概略構成図である。図1に示すモータ1は、バッテリ等の電源から電力の供給を受けて回転し、車両の車輪を駆動する電動機として機能する。モータ1は、外力により駆動されて発電する発電機としても機能する。したがって、モータ1は、電動機及び発電機として機能する、いわゆる回転電機(モータジェネレータ)として構成されている。 [First Embodiment]
FIG. 1 is a schematic configuration diagram showing amotor 1 according to the first embodiment of the present invention. A motor 1 shown in FIG. 1 functions as an electric motor that rotates by receiving power supplied from a power source such as a battery and drives wheels of a vehicle. The motor 1 also functions as a generator that generates power by being driven by an external force. Therefore, the motor 1 is configured as a so-called rotating electric machine (motor generator) that functions as an electric motor and a generator.
図1は、本発明の第1実施形態に係るモータ1を示す概略構成図である。図1に示すモータ1は、バッテリ等の電源から電力の供給を受けて回転し、車両の車輪を駆動する電動機として機能する。モータ1は、外力により駆動されて発電する発電機としても機能する。したがって、モータ1は、電動機及び発電機として機能する、いわゆる回転電機(モータジェネレータ)として構成されている。 [First Embodiment]
FIG. 1 is a schematic configuration diagram showing a
図1に示すように、モータ1は、ロータ10と、ロータ10の外周側に配置されるステータ20と、ロータ10及びステータ20を収容するケース30と、を備えている。
As shown in FIG. 1, the motor 1 includes a rotor 10, a stator 20 disposed on the outer peripheral side of the rotor 10, and a case 30 that houses the rotor 10 and the stator 20.
ロータ10は、ステータ20の内部に、当該ステータ20に対して回転可能に配置されている。ロータ10は、回転軸としてのロータシャフト11を有している。ロータシャフト11は、ケース30に設けられた軸受31,32により回転自在に支持されている。
The rotor 10 is disposed inside the stator 20 so as to be rotatable with respect to the stator 20. The rotor 10 has a rotor shaft 11 as a rotating shaft. The rotor shaft 11 is rotatably supported by bearings 31 and 32 provided on the case 30.
ステータ20は、複数枚の電磁鋼板21を積層して形成された円筒状部材である。ステータ20のティースには、U相、V相及びW相のコイルが巻き回されており、巻回されたコイルの端部(以下、コイルエンド22という)は、ステータ20よりもモータ1の軸方向外側に突出している。ステータ20の外周面は、後述するインナケース40の内周面に面接触した状態でインナケース40に固定されている。
The stator 20 is a cylindrical member formed by laminating a plurality of electromagnetic steel plates 21. A U-phase, V-phase, and W-phase coil is wound around the teeth of the stator 20, and the end of the wound coil (hereinafter referred to as a coil end 22) is the shaft of the motor 1 rather than the stator 20. Projects outward in the direction. The outer peripheral surface of the stator 20 is fixed to the inner case 40 in a state of being in surface contact with the inner peripheral surface of the inner case 40 described later.
ケース30は、上述したインナケース40と、インナケース40の外周側に外嵌めされるアウタケース50と、を備えている。
The case 30 includes the above-described inner case 40 and an outer case 50 that is fitted on the outer peripheral side of the inner case 40.
インナケース40は、ステータ20を収容する。インナケース40は、ステータ20を収容可能な円筒状部材として構成されたハウジングである。インナケース40の内周面は、ステータ20が設置される平坦な設置面として形成されている。
The inner case 40 accommodates the stator 20. The inner case 40 is a housing configured as a cylindrical member that can accommodate the stator 20. The inner peripheral surface of the inner case 40 is formed as a flat installation surface on which the stator 20 is installed.
また、インナケース40の外周面には、第1の冷媒が通過する第1流路41が形成されている。第1流路41は、インナケース40の外周面の全周に亘って、モータ1の周方向に沿って凹設されている。第1流路41は、アウタケース50とインナケース40との間において、ステータ20等を冷却するための第1の冷媒である冷却液(クーラント)が流される流路として機能する。
Also, a first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 40. The first flow path 41 is recessed along the circumferential direction of the motor 1 over the entire circumference of the outer peripheral surface of the inner case 40. The first flow path 41 functions as a flow path through which a coolant (coolant), which is a first refrigerant for cooling the stator 20 and the like, flows between the outer case 50 and the inner case 40.
インナケース40においては、第1流路41よりもモータ1の軸方向における端部側の外径は、第1流路41が形成される位置における外径よりも大きく形成されている。また、第1流路41よりもモータ1の軸方向における端部側には、Oリング33,34(図1参照)が嵌め込まれるシール溝42A,42Bが形成されている。
In the inner case 40, the outer diameter on the end side in the axial direction of the motor 1 relative to the first flow path 41 is formed larger than the outer diameter at the position where the first flow path 41 is formed. Further, seal grooves 42 </ b> A and 42 </ b> B into which O-rings 33 and 34 (see FIG. 1) are fitted are formed on the end side in the axial direction of the motor 1 with respect to the first flow path 41.
また、インナケース40のシール溝42Bよりもモータ1の軸方向外側の端部43には、ケース径方向に突出するフランジ44が形成されている。フランジ44は、アウタケース50をインナケース40に配置した場合に、アウタケース50のモータ1の軸方向における位置を規制するストッパとして機能する。
Further, a flange 44 protruding in the radial direction of the case is formed at the end portion 43 on the outer side in the axial direction of the motor 1 with respect to the seal groove 42B of the inner case 40. The flange 44 functions as a stopper that restricts the position of the outer case 50 in the axial direction of the motor 1 when the outer case 50 is disposed in the inner case 40.
インナケース40には、冷媒貯留部45が形成されている。冷媒貯留部45は、モータ1において、ステータ20のティースから突出するコイルエンド22よりも上方に位置するように形成されている。冷媒貯留部45は、後述する第2流路51と連通されており、第2流路51を通って送られた第2の冷媒を貯留する。また、インナケース40には、ステータ20のティースから突出するコイルエンド22に臨み、冷媒貯留部45に連通する第1開口部46が形成されている。
In the inner case 40, a refrigerant reservoir 45 is formed. In the motor 1, the refrigerant reservoir 45 is formed so as to be positioned above the coil end 22 that protrudes from the teeth of the stator 20. The refrigerant storage unit 45 communicates with a second flow path 51 to be described later, and stores the second refrigerant sent through the second flow path 51. Further, the inner case 40 is formed with a first opening 46 that faces the coil end 22 protruding from the teeth of the stator 20 and communicates with the refrigerant reservoir 45.
アウタケース50は、インナケース40を挿入可能な円筒状部材として構成されたハウジングである。アウタケース50の内径は、インナケース40の外径とほぼ等しく又は僅かに大きく設定されており、インナケース40の外周面に外嵌めされるように構成されている。
The outer case 50 is a housing configured as a cylindrical member into which the inner case 40 can be inserted. The inner diameter of the outer case 50 is set to be approximately equal to or slightly larger than the outer diameter of the inner case 40, and is configured to be fitted on the outer peripheral surface of the inner case 40.
アウタケース50には、第2の冷媒が通過する第2流路51が形成されている。第2流路51は、モータ1の軸方向に沿って形成されている。アウタケース50には、第2流路51と、上述した冷媒貯留部45とを連通する第2開口部52が形成されている。本実施形態においては、第2の冷媒として、冷却油が用いられる。
The outer case 50 is formed with a second flow path 51 through which the second refrigerant passes. The second flow path 51 is formed along the axial direction of the motor 1. The outer case 50 is formed with a second opening 52 that communicates the second flow path 51 and the above-described refrigerant reservoir 45. In the present embodiment, cooling oil is used as the second refrigerant.
アウタケース50がインナケース40に取り付けられた状態では、アウタケース50の一方側の端面がインナケース40のフランジ44の側面に当接し、アウタケース50の内周面とインナケース40の外周面との間はOリング33,34(図1参照)によりシールされる。したがって、インナケース40の外周面に凹設して形成された第1流路41を流れる冷却液がモータ1の外部に漏れ出ることがない。
In a state where the outer case 50 is attached to the inner case 40, one end surface of the outer case 50 abuts on the side surface of the flange 44 of the inner case 40, and the inner peripheral surface of the outer case 50 and the outer peripheral surface of the inner case 40 are Is sealed by O-rings 33 and 34 (see FIG. 1). Therefore, the coolant flowing through the first flow path 41 formed by being recessed in the outer peripheral surface of the inner case 40 does not leak out of the motor 1.
また、アウタケース50は、図示しないが、第1流路41に冷却液を供給する供給ポートと、第1流路41から外部へと冷却液を排出する排出ポートとを有している。冷却液は、図示しない冷却液ポンプによって、モータ1の第1流路41を循環するように構成されている。
Although not shown, the outer case 50 has a supply port for supplying the coolant to the first flow path 41 and a discharge port for discharging the coolant from the first flow path 41 to the outside. The coolant is configured to circulate through the first flow path 41 of the motor 1 by a coolant pump (not shown).
また、モータ1は、第2の冷媒としての冷却油を循環及び冷却するためのオイルポンプ60を備える。図示されていないが、モータ1には、インナケース40のハウジング内に滴下された冷却油を回収する流路が形成されている。
Further, the motor 1 includes an oil pump 60 for circulating and cooling the cooling oil as the second refrigerant. Although not shown, the motor 1 is formed with a flow path for collecting the cooling oil dropped in the housing of the inner case 40.
オイルポンプ60は、冷却油の回収経路と、アウタケース50に形成される第2流路51に接続されており、モータ1の底部から冷却油を回収し、冷却して、第2流路51に流す。
The oil pump 60 is connected to a cooling oil recovery path and a second flow path 51 formed in the outer case 50. The oil pump 60 collects the cooling oil from the bottom of the motor 1, cools it, and cools the second flow path 51. Shed.
図2は、図1におけるII-II線における断面の要部を拡大して示す要部拡大図である。モータ1において、冷媒貯留部45は、インナケース40の外周面の一部に、径方向外側に向けて突出した壁部w1,w2によって形成されている。壁部w1,w2は、図2に示すロータ10の回転軸に垂直な断面において、ロータ10の軸心を通る仮想線Lを挟んで対称に形成されていることが好ましく、壁部w1,w2のなす角θは、180°未満とすることが好ましい。コイルエンド22へ第2の冷媒を好適に滴下させる観点から、壁部w1,w2のなす角θは、90°とすることが好ましい。
FIG. 2 is an enlarged view of the main part showing the main part of the cross section taken along the line II-II in FIG. In the motor 1, the refrigerant reservoir 45 is formed on a part of the outer peripheral surface of the inner case 40 by wall portions w <b> 1 and w <b> 2 that protrude outward in the radial direction. The wall portions w1 and w2 are preferably formed symmetrically across a virtual line L passing through the axis of the rotor 10 in a cross section perpendicular to the rotation axis of the rotor 10 shown in FIG. Is preferably less than 180 °. From the viewpoint of suitably dropping the second refrigerant onto the coil end 22, the angle θ formed by the walls w1, w2 is preferably 90 °.
また、図2に示すように、冷媒貯留部45には、モータ1の周方向に亘って複数の第1開口部46が形成されている。本実施形態においては、3つの第1開口部46が等間隔に形成されている。コイルエンド22へ第2の冷媒を滴下させる観点から、3つのうち1つの第1開口部46は、ロータ10の軸心を通る仮想線L上に配置されていることが好ましい。
Further, as shown in FIG. 2, a plurality of first openings 46 are formed in the refrigerant reservoir 45 along the circumferential direction of the motor 1. In the present embodiment, the three first openings 46 are formed at equal intervals. From the viewpoint of dropping the second refrigerant onto the coil end 22, one of the three first openings 46 is preferably disposed on an imaginary line L passing through the axis of the rotor 10.
第2流路51を通って送られた第2の冷媒は、冷媒貯留部45に貯留されて、第1開口部46からコイルエンド22に滴下される。
The second refrigerant sent through the second flow path 51 is stored in the refrigerant storage unit 45 and dropped from the first opening 46 to the coil end 22.
上述したモータ1によれば、インナケース40の外周面の一方を凹設することで、インナケース40とアウタケース50との間にモータ1の周方向に沿って形成され、第1の冷媒が通過する第1流路41を備えることにより、ステータ20を冷却できる。また、モータ1は、アウタケース50に、モータ1の軸方向に沿って形成されて、第2の冷媒が通過する第2流路51を備えることにより、第2流路51を流れる第2の冷媒によって、第1の冷媒及びインナケース40を冷却できる。
According to the motor 1 described above, one of the outer peripheral surfaces of the inner case 40 is recessed so that the first refrigerant is formed between the inner case 40 and the outer case 50 along the circumferential direction of the motor 1. By providing the first flow path 41 that passes therethrough, the stator 20 can be cooled. In addition, the motor 1 includes a second flow path 51 that is formed in the outer case 50 along the axial direction of the motor 1 and through which the second refrigerant passes. The first refrigerant and the inner case 40 can be cooled by the refrigerant.
また、モータ1は、ステータ20のコイルエンド22に臨む第1開口部46が形成された冷媒貯留部45がインナケース40に形成されている。このため、モータ1においては、インナケース40とコイルエンド22との間に第2の冷媒を貯留するための別部材を必要としない。また、モータ1によれば、アウタケース50の第2流路51を流れ、インナケース40に形成された冷媒貯留部45に貯留された第2の冷媒が第1開口部46からステータ20のコイルエンド22に滴下されるため、モータ1の冷却効率を高めることができる。
Further, in the motor 1, a refrigerant reservoir 45 in which a first opening 46 facing the coil end 22 of the stator 20 is formed in the inner case 40. For this reason, the motor 1 does not require a separate member for storing the second refrigerant between the inner case 40 and the coil end 22. Further, according to the motor 1, the second refrigerant that flows through the second flow path 51 of the outer case 50 and is stored in the refrigerant storage portion 45 formed in the inner case 40 passes through the coil of the stator 20 from the first opening 46. Since it is dripped at the end 22, the cooling efficiency of the motor 1 can be increased.
また、図2に示すように、冷媒貯留部45には、ロータ10の軸心を通る仮想線L上に1つ、仮想線Lに対称に2つの第1開口部46が形成されているため、冷媒貯留部45に貯留された第2の冷媒をステータ20のコイルエンド22に効率よく滴下させることができる。
Further, as shown in FIG. 2, the refrigerant reservoir 45 is formed with one first opening 46 symmetrically about the imaginary line L, one on the imaginary line L passing through the axis of the rotor 10. The second refrigerant stored in the refrigerant storage unit 45 can be efficiently dropped onto the coil end 22 of the stator 20.
[第2実施形態]
図3は、本発明の第2実施形態に係るモータ2を示す概略構成図である。第2実施形態として示すモータ2において、モータ1に記載された構成と同様の機能を有する構成については、同一の番号を付して詳細な説明は省略する。 [Second Embodiment]
FIG. 3 is a schematic configuration diagram showing themotor 2 according to the second embodiment of the present invention. In the motor 2 shown as the second embodiment, components having the same functions as those described in the motor 1 are denoted by the same reference numerals and detailed description thereof is omitted.
図3は、本発明の第2実施形態に係るモータ2を示す概略構成図である。第2実施形態として示すモータ2において、モータ1に記載された構成と同様の機能を有する構成については、同一の番号を付して詳細な説明は省略する。 [Second Embodiment]
FIG. 3 is a schematic configuration diagram showing the
モータ2は、図3に示すように、ロータ10及びステータ20を収容するケース230を備えている。ケース230は、インナケース240と、インナケース240の外周側に外嵌めされるアウタケース250と、を備える。
The motor 2 includes a case 230 that accommodates the rotor 10 and the stator 20, as shown in FIG. The case 230 includes an inner case 240 and an outer case 250 that is fitted on the outer peripheral side of the inner case 240.
インナケース240の外周面には、第1の冷媒が通過する第1流路41が形成されている。また、インナケース40には、冷媒貯留部245が形成されている。冷媒貯留部45は、モータ2において、ステータ20のティースから突出するコイルエンド22よりも上方に位置するように形成されている。冷媒貯留部245は、後述する第2流路51と連通されており、インナケース240において、第2流路51の上流側に形成されている。
The first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 240. Further, the inner case 40 is formed with a refrigerant reservoir 245. The refrigerant reservoir 45 is formed in the motor 2 so as to be positioned above the coil end 22 protruding from the teeth of the stator 20. The refrigerant reservoir 245 communicates with a second flow path 51 described later, and is formed on the upstream side of the second flow path 51 in the inner case 240.
インナケース240には、冷媒貯留部245からステータ20のコイルエンド22に臨む第1開口部246が形成されている。また、インナケース240において、第1流路41に対して、第2流路51の下流側には、後述の第2開口部253をステータ20のコイルエンド22に直接臨ませるインナケース開口部247が形成されている。
The inner case 240 has a first opening 246 that faces the coil end 22 of the stator 20 from the refrigerant reservoir 245. Further, in the inner case 240, an inner case opening 247 that directly faces a coil end 22 of the stator 20 on the downstream side of the second flow path 51 with respect to the first flow path 41. Is formed.
アウタケース250には、第2流路51と冷媒貯留部245とを連通する第2開口部252と、第2流路51とインナケース開口部247とを連通する第2開口部253とが形成されている。
The outer case 250 is formed with a second opening 252 that communicates the second flow path 51 and the refrigerant reservoir 245 and a second opening 253 that communicates the second flow path 51 and the inner case opening 247. Has been.
第2流路51を通って送られた第2の冷媒は、第2流路51の上流側において、冷媒貯留部245に貯留されて、第1開口部246からコイルエンド22に滴下される。また、第2流路51を通って送られた第2の冷媒は、第2流路51の下流側において、第2開口部253からインナケース開口部247を通ってコイルエンド22に滴下される。
The second refrigerant sent through the second flow path 51 is stored in the refrigerant storage section 245 on the upstream side of the second flow path 51 and is dropped from the first opening 246 to the coil end 22. Further, the second refrigerant sent through the second flow path 51 is dropped from the second opening 253 through the inner case opening 247 to the coil end 22 on the downstream side of the second flow path 51. .
上述したモータ2によれば、第1流路41を流れる第1の冷媒により、ステータ20を冷却できる。また、モータ2は、アウタケース250に第2流路51を備えることにより、第2流路51を流れる第2の冷媒によって、第1の冷媒及びインナケース240を冷却できる。
According to the motor 2 described above, the stator 20 can be cooled by the first refrigerant flowing through the first flow path 41. The motor 2 can cool the first refrigerant and the inner case 240 by the second refrigerant flowing through the second flow path 51 by providing the outer case 250 with the second flow path 51.
また、モータ2は、インナケース240の、第2流路51の上流側にステータ20のコイルエンド22に臨む第1開口部246が形成された冷媒貯留部245を有する。このため、モータ2は、インナケース40とコイルエンド22との間に第2の冷媒を貯留するための別部材を必要としない。
Further, the motor 2 has a refrigerant reservoir 245 in which a first opening 246 facing the coil end 22 of the stator 20 is formed on the upstream side of the second flow path 51 of the inner case 240. For this reason, the motor 2 does not require a separate member for storing the second refrigerant between the inner case 40 and the coil end 22.
また、モータ2は、第2流路51の上流側に冷媒貯留部245を備えるため、オイルポンプ60から送り出された温度の低い冷却油をいち早くコイルエンド22に滴下することができるため、冷却効率が高められる。
Further, since the motor 2 includes the refrigerant reservoir 245 on the upstream side of the second flow path 51, the cooling oil having a low temperature sent from the oil pump 60 can be quickly dropped onto the coil end 22. Is increased.
[第3実施形態]
図4は、本発明の第3実施形態に係るモータ3を示す概略構成図である。第3実施形態として示すモータ3において、モータ1に記載された構成と同様の機能を有する構成については、同一の番号を付して詳細な説明は省略する。 [Third Embodiment]
FIG. 4 is a schematic configuration diagram showing amotor 3 according to the third embodiment of the present invention. In the motor 3 shown as the third embodiment, components having the same functions as those described in the motor 1 are denoted by the same reference numerals and detailed description thereof is omitted.
図4は、本発明の第3実施形態に係るモータ3を示す概略構成図である。第3実施形態として示すモータ3において、モータ1に記載された構成と同様の機能を有する構成については、同一の番号を付して詳細な説明は省略する。 [Third Embodiment]
FIG. 4 is a schematic configuration diagram showing a
モータ3は、図4に示すように、ロータ10及びステータ20を収容するケース330を備えている。ケース330は、インナケース340と、インナケース340の外周側に外嵌めされるアウタケース350と、を備える。
The motor 3 includes a case 330 that accommodates the rotor 10 and the stator 20 as shown in FIG. The case 330 includes an inner case 340 and an outer case 350 that is fitted on the outer peripheral side of the inner case 340.
インナケース340の外周面には、第1の冷媒が通過する第1流路41が形成されている。また、インナケース340には、冷媒貯留部345,346が第1流路41の上流側と下流側の両方に形成されている。冷媒貯留部345は、第1流路41に対して、第2流路51の上流側に形成されており、冷媒貯留部346は、第1流路41に対して、第2流路51の下流側に形成されている。
A first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 340. In the inner case 340, refrigerant reservoirs 345 and 346 are formed on both the upstream side and the downstream side of the first flow path 41. The refrigerant storage part 345 is formed on the upstream side of the second flow path 51 with respect to the first flow path 41, and the refrigerant storage part 346 is in the second flow path 51 with respect to the first flow path 41. It is formed on the downstream side.
また、インナケース340には、第2流路51の上流側に位置するコイルエンド22に臨み、冷媒貯留部345に連通する第1開口部347と、第2流路51の下流側に位置するコイルエンド22に臨み、冷媒貯留部346に連通する第1開口部348とが形成されている。
Further, the inner case 340 faces the coil end 22 located on the upstream side of the second flow path 51, and is located on the downstream side of the second opening 51 and the first opening 347 communicating with the refrigerant storage part 345. A first opening 348 that faces the coil end 22 and communicates with the refrigerant reservoir 346 is formed.
アウタケース250には、第2流路51と冷媒貯留部345とを連通する第2開口部352と、第2流路51と冷媒貯留部346とを連通する第2開口部353とが形成されている。
The outer case 250 is formed with a second opening 352 that communicates the second flow path 51 and the refrigerant storage part 345, and a second opening 353 that communicates the second flow path 51 and the refrigerant storage part 346. ing.
上述したモータ3によれば、第1流路41を流れる第1の冷媒により、ステータ20を冷却できる。また、モータ3は、アウタケース350に第2流路51を備えることにより、第2流路51を流れる第2の冷媒によって、第1の冷媒及びインナケース340を冷却できる。
According to the motor 3 described above, the stator 20 can be cooled by the first refrigerant flowing through the first flow path 41. The motor 3 can cool the first refrigerant and the inner case 340 by the second refrigerant flowing through the second flow path 51 by providing the outer case 350 with the second flow path 51.
また、モータ3は、インナケース340の、第2流路51の上流側にステータ20のコイルエンド22に臨む第1開口部347が形成された冷媒貯留部345を有する。このため、モータ2は、インナケース40とコイルエンド22との間に第2の冷媒を貯留するための別部材を必要としない。
Also, the motor 3 has a refrigerant storage part 345 in which a first opening 347 facing the coil end 22 of the stator 20 is formed on the upstream side of the second flow path 51 of the inner case 340. For this reason, the motor 2 does not require a separate member for storing the second refrigerant between the inner case 40 and the coil end 22.
また、モータ3は、第1流路41に対して、第2流路51の上流側に冷媒貯留部345を備えるため、オイルポンプ60から送り出された温度の低いオイルをいち早くコイルエンド22に滴下することができるため、冷却効率が高められる。
Further, since the motor 3 includes the refrigerant reservoir 345 on the upstream side of the second flow path 51 with respect to the first flow path 41, the low-temperature oil sent from the oil pump 60 is quickly dropped onto the coil end 22. Cooling efficiency is increased.
また、第1流路41に対して、第2流路51の下流側にも冷媒貯留部346を備えるため、第2の冷媒は、冷媒貯留部346に一旦貯留された後、第1開口部348からコイルエンド22に向けて滴下される。したがって、第2の冷媒を安定してコイルエンド22に供給できるため、冷却効率が高められる。
Moreover, since the refrigerant | coolant storage part 346 is also provided in the downstream of the 2nd flow path 51 with respect to the 1st flow path 41, after a 2nd refrigerant | coolant is once stored in the refrigerant | coolant storage part 346, it is 1st opening part. It is dropped from 348 toward the coil end 22. Accordingly, since the second refrigerant can be stably supplied to the coil end 22, the cooling efficiency is improved.
<第3実施形態の変形例>
図5は、本発明の第3実施形態に係るモータ3の変形例を示す概略構成図である。図5に示すモータ4では、アウタケース350に、第2流路51と冷媒貯留部345とを連通する第2開口部354と、第2流路51と冷媒貯留部346とを連通する第2開口部355とが形成されている。 <Modification of Third Embodiment>
FIG. 5 is a schematic configuration diagram showing a modification of themotor 3 according to the third embodiment of the present invention. In the motor 4 shown in FIG. 5, a second opening 354 that communicates the second flow path 51 and the refrigerant reservoir 345 with the outer case 350, and a second that communicates the second flow path 51 and the refrigerant reservoir 346. An opening 355 is formed.
図5は、本発明の第3実施形態に係るモータ3の変形例を示す概略構成図である。図5に示すモータ4では、アウタケース350に、第2流路51と冷媒貯留部345とを連通する第2開口部354と、第2流路51と冷媒貯留部346とを連通する第2開口部355とが形成されている。 <Modification of Third Embodiment>
FIG. 5 is a schematic configuration diagram showing a modification of the
第2流路51において、下流側に位置する冷媒貯留部346(下流側連通部に相当する)に連通する第2開口部355のサイズは、第1流路41に対して上流側に位置する冷媒貯留部345に連通する第2開口部354(上流側連通部に相当する)のサイズよりも大きくなるように形成されている。
In the second flow path 51, the size of the second opening 355 communicating with the refrigerant storage section 346 (corresponding to the downstream communication section) located on the downstream side is located on the upstream side with respect to the first flow path 41. It is formed to be larger than the size of the second opening 354 (corresponding to the upstream communication portion) communicating with the refrigerant storage portion 345.
具体的には、図5に示すモータ4では、下流側に位置する第2開口部355のモータ4の軸方向に沿った断面積は、上流側に位置する第2開口部354のモータ4の軸方向に沿った断面積よりも大きい。
Specifically, in the motor 4 shown in FIG. 5, the cross-sectional area along the axial direction of the motor 4 of the second opening 355 located on the downstream side is equal to that of the motor 4 of the second opening 354 located on the upstream side. It is larger than the cross-sectional area along the axial direction.
上述のモータ4によれば、第2流路51において第1流路41に対して下流側に位置する第2開口部355のモータ4の軸方向に沿った断面積は、上流側に位置する第2開口部354のモータ4の軸方向に沿った断面積よりも大きく形成されている。このため、上流側において、冷媒貯留部345に流れ込む第2の冷媒の量よりも、下流側において、冷媒貯留部346に流れ込む第2の冷媒の量を増加させることができる。これにより、オイルポンプ60に近く流速の大きい上流側と、オイルポンプ60から遠ざかり流速の衰える下流側とで、冷媒貯留部345,346に流れ込む第2の冷媒の量を揃えることができる。
According to the motor 4 described above, the cross-sectional area along the axial direction of the motor 4 of the second opening 355 located on the downstream side of the first flow path 41 in the second flow path 51 is located on the upstream side. The second opening 354 is formed larger than the cross-sectional area along the axial direction of the motor 4. For this reason, the amount of the second refrigerant flowing into the refrigerant reservoir 346 can be increased on the downstream side, compared to the amount of the second refrigerant flowing into the refrigerant reservoir 345 on the upstream side. Thereby, the amount of the second refrigerant flowing into the refrigerant reservoirs 345 and 346 can be made uniform on the upstream side near the oil pump 60 where the flow velocity is high and on the downstream side where the flow velocity is away from the oil pump 60 and the flow velocity is reduced.
したがって、モータ4によれば、第1流路41に対して、第2流路51の上流側に冷媒貯留部345を備えるため、オイルポンプ60から送り出された温度の低いオイルをいち早くコイルエンド22に滴下することができるとともに、第2流路51の下流側に配置された冷媒貯留部346からもコイルエンド22に向けて、第2の冷媒が斑無く滴下できる。したがって、冷却効率が高められる。
Therefore, according to the motor 4, the refrigerant reservoir 345 is provided on the upstream side of the second flow path 51 with respect to the first flow path 41, so that the low-temperature oil sent from the oil pump 60 is quickly supplied to the coil end 22. In addition, the second refrigerant can be dripped from the refrigerant reservoir 346 disposed on the downstream side of the second flow path 51 toward the coil end 22 without any spots. Therefore, the cooling efficiency is increased.
[第4実施形態]
図6は、本発明の第4実施形態に係るモータ5を示す概略構成図である。第4実施形態として示すモータ5において、モータ1に記載された構成と同様の機能を有する構成については、同一の番号を付して詳細な説明は省略する。 [Fourth Embodiment]
FIG. 6 is a schematic configuration diagram showing amotor 5 according to the fourth embodiment of the present invention. In the motor 5 shown as the fourth embodiment, components having the same functions as those described in the motor 1 are denoted by the same reference numerals and detailed description thereof is omitted.
図6は、本発明の第4実施形態に係るモータ5を示す概略構成図である。第4実施形態として示すモータ5において、モータ1に記載された構成と同様の機能を有する構成については、同一の番号を付して詳細な説明は省略する。 [Fourth Embodiment]
FIG. 6 is a schematic configuration diagram showing a
モータ5は、図4に示すように、ステータ520を備える。また、モータ5は、ロータ10及びステータ520を収容するケース530を備えている。ケース530は、インナケース540と、インナケース540の外周側に外嵌めされるアウタケース550と、を備える。
The motor 5 includes a stator 520 as shown in FIG. The motor 5 includes a case 530 that houses the rotor 10 and the stator 520. The case 530 includes an inner case 540 and an outer case 550 that is fitted on the outer peripheral side of the inner case 540.
第4実施形態に係るモータ5では、ステータ520の外周面に、モータ5の軸方向に沿って凹設された溝部522が形成されている。溝部522は、後述する冷媒貯留部545から第2の冷媒を受けて、下流側に第2の冷媒を流す。
In the motor 5 according to the fourth embodiment, a groove portion 522 that is recessed along the axial direction of the motor 5 is formed on the outer peripheral surface of the stator 520. The groove part 522 receives the second refrigerant from the refrigerant storage part 545 described later, and causes the second refrigerant to flow downstream.
インナケース540の外周面には、第1の冷媒が通過する第1流路41が形成されている。また、インナケース540には、第1流路41に対して、第2流路51の上流側に、冷媒貯留部545が形成されている。
The first flow path 41 through which the first refrigerant passes is formed on the outer peripheral surface of the inner case 540. In the inner case 540, a refrigerant reservoir 545 is formed on the upstream side of the second flow path 51 with respect to the first flow path 41.
アウタケース550には、第2流路51と冷媒貯留部545とを連通する第2開口部552が形成されている。また、モータ5において、インナケース540には、溝部522に臨み、冷媒貯留部545に連通する第3開口部547が形成されている。
The outer case 550 is formed with a second opening 552 that communicates the second flow path 51 and the refrigerant reservoir 545. In the motor 5, the inner case 540 is formed with a third opening 547 that faces the groove 522 and communicates with the refrigerant reservoir 545.
図7は、モータ5に用いられるステータ520を説明する模式図である。図7に示すように、冷媒貯留部545から第3開口部547を通って、第2の冷媒がステータ520の溝部522に流れ込むことができる。
FIG. 7 is a schematic diagram illustrating a stator 520 used for the motor 5. As shown in FIG. 7, the second refrigerant can flow into the groove 522 of the stator 520 from the refrigerant reservoir 545 through the third opening 547.
上述したモータ5は、インナケース540の、第2流路51の上流側にステータ520のコイルエンド22に臨む第1開口部546及びステータ520に形成された溝部522に臨む第3開口部547が形成された冷媒貯留部545を有する。このため、モータ5は、インナケース540とコイルエンド22との間に第2の冷媒を貯留するための別部材を必要としない。
In the motor 5 described above, the first opening 546 facing the coil end 22 of the stator 520 and the third opening 547 facing the groove 522 formed in the stator 520 are formed on the upstream side of the second flow path 51 of the inner case 540. It has the formed refrigerant storage part 545. For this reason, the motor 5 does not require another member for storing the second refrigerant between the inner case 540 and the coil end 22.
また、上述したモータ5によれば、第1流路41を流れる第1の冷媒により、ステータ520を冷却できる。また、モータ4によれば、冷媒貯留部545から第1開口部546を通って第2流路51の上流側に位置する第1開口部546からコイルエンド22に第2の冷媒を滴下できるとともに、第2の冷媒を第3開口部547からステータ520に直接流すことができるため、ステータ420を冷却することができる。
Further, according to the motor 5 described above, the stator 520 can be cooled by the first refrigerant flowing through the first flow path 41. In addition, according to the motor 4, the second refrigerant can be dropped from the refrigerant reservoir 545 through the first opening 546 to the coil end 22 from the first opening 546 located on the upstream side of the second flow path 51. Since the second refrigerant can flow directly from the third opening 547 to the stator 520, the stator 420 can be cooled.
また、溝部522を流れた第2の冷媒は、第2流路51の下流側に位置するコイルエンド22に滴下されるため、モータ4の冷却効率を高めることができる。
Further, since the second refrigerant that has flowed through the groove 522 is dropped onto the coil end 22 located on the downstream side of the second flow path 51, the cooling efficiency of the motor 4 can be increased.
<第4実施形態におけるステータの変形例>
第4実施形態における溝部522の形状は、変更可能である。図8は、変形例として示すステータ570を説明する模式図である。ステータ570は、外側面に螺旋状に形成された溝部591を有する。図7に示したステータ570を用いることにより、第2の冷媒が、冷媒貯留部445から第3開口部547を通って、ステータ570の外周を取り巻くように溝部591を流通できる。これにより、ステータ570の冷却効率を高められる。 <Modification of Stator in Fourth Embodiment>
The shape of thegroove 522 in the fourth embodiment can be changed. FIG. 8 is a schematic diagram illustrating a stator 570 shown as a modification. The stator 570 has a groove portion 591 formed in a spiral shape on the outer surface. By using the stator 570 shown in FIG. 7, the second refrigerant can flow through the groove 591 so as to surround the outer periphery of the stator 570 from the refrigerant reservoir 445 through the third opening 547. Thereby, the cooling efficiency of the stator 570 can be increased.
第4実施形態における溝部522の形状は、変更可能である。図8は、変形例として示すステータ570を説明する模式図である。ステータ570は、外側面に螺旋状に形成された溝部591を有する。図7に示したステータ570を用いることにより、第2の冷媒が、冷媒貯留部445から第3開口部547を通って、ステータ570の外周を取り巻くように溝部591を流通できる。これにより、ステータ570の冷却効率を高められる。 <Modification of Stator in Fourth Embodiment>
The shape of the
なお、第4実施形態において用いられるステータ520及び変形例として示すステータ570は、複数枚の電磁鋼板の積層により実現可能である。
In addition, the stator 520 used in the fourth embodiment and the stator 570 shown as a modification can be realized by stacking a plurality of electromagnetic steel sheets.
図9は、ステータ570の構成を説明する模式図である。ステータ570は、複数枚の円板状の電磁鋼板571,572,573,・・・,57nを積層して形成されたものである。電磁鋼板571,572,573,・・・,57nには、それぞれ、外縁の一部に、切欠部581,582,583,・・・、58nが形成されている。
FIG. 9 is a schematic diagram illustrating the configuration of the stator 570. The stator 570 is formed by laminating a plurality of disc-shaped electromagnetic steel plates 571, 572, 573,. In the electromagnetic steel plates 571, 572, 573,..., 57n, notches 581, 582, 583,.
そして、隣接する電磁鋼板同士の切欠部を揃えて積層することにより、溝部522を形成することができる。また、隣接する電磁鋼板同士の切欠部の一部が重複するように、モータ4の周方向に少しずつずらした状態で積層することにより、溝部591を形成することができる。
And the groove part 522 can be formed by aligning the notch part of adjacent electromagnetic steel plates, and laminating | stacking. Moreover, the groove part 591 can be formed by laminating | stacking in the state shifted little by little in the circumferential direction of the motor 4 so that a part of notch part of adjacent electromagnetic steel plates may overlap.
[その他の実施形態]
以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を、上記実施形態の具体的構成に限定する趣旨ではない。上記実施形態に対し、特許請求の範囲に記載した事項の範囲内で様々な変更及び修正が可能である。 [Other Embodiments]
Although the embodiment of the present invention has been described above, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Not the purpose. Various changes and modifications can be made to the above embodiments within the scope of the matters described in the claims.
以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を、上記実施形態の具体的構成に限定する趣旨ではない。上記実施形態に対し、特許請求の範囲に記載した事項の範囲内で様々な変更及び修正が可能である。 [Other Embodiments]
Although the embodiment of the present invention has been described above, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Not the purpose. Various changes and modifications can be made to the above embodiments within the scope of the matters described in the claims.
上述した実施形態では、モータ1は、電気自動車用のモータジェネレータとして説明したが、車両以外の機器、例えば建設機械、家庭用電気機器、又はコンベア等の産業機械に用いられてもよい。
In the above-described embodiment, the motor 1 has been described as a motor generator for an electric vehicle. However, the motor 1 may be used for an apparatus other than a vehicle, for example, an industrial machine such as a construction machine, a household electric apparatus, or a conveyor.
また、上述した実施形態では、第1の冷媒として、冷却液のほか、水や油等の液体が採用されてもよい。また、空気等の気体が採用されてもよい。また、上述した実施形態において、第1の冷媒と第2の冷媒は、同一の冷媒であってもよい。
In the above-described embodiment, a liquid such as water or oil may be employed as the first refrigerant in addition to the coolant. A gas such as air may be employed. In the above-described embodiment, the first refrigerant and the second refrigerant may be the same refrigerant.
上述した実施形態において、第1流路41は、インナケース40とアウタケース50との間で密閉された流路が形成されていればよく、アウタケース50の内周面に凹設されていてもよい。
In the embodiment described above, the first flow path 41 only needs to form a sealed flow path between the inner case 40 and the outer case 50, and is recessed on the inner peripheral surface of the outer case 50. Also good.
上述した実施形態において、モータ1に形成される第1開口部46は、1つであってもよい。また、3つ以上あってもよい。
In the above-described embodiment, the first opening 46 formed in the motor 1 may be one. There may also be three or more.
第4実施形態において、溝部522は、ステータ520の外周面に凹設されているように説明したが、溝部は、インナケース540の内周面に形成されていてもよい。溝部591についても同様である。
In the fourth embodiment, the groove 522 is described as being recessed in the outer peripheral surface of the stator 520, but the groove may be formed in the inner peripheral surface of the inner case 540. The same applies to the groove 591.
Claims (9)
- 第1の冷媒及び第2の冷媒を用いて外周側からステータを冷却可能な回転電機であって、
前記ステータを収容するインナケースと、
前記インナケースの外周側に設けられるアウタケースと、
前記インナケースの外周面又は前記アウタケースの内周面の一方を凹設することでこれらケース間に前記回転電機の周方向に沿って形成され、前記第1の冷媒が通過する第1流路と、
前記アウタケースの前記回転電機の軸方向に沿って形成され、前記第2の冷媒が通過する第2流路と、
前記インナケースに形成され、前記第2流路と連通されており前記第2流路を通って送られた前記第2の冷媒を貯留する冷媒貯留部と、
前記インナケースに形成され、前記ステータのコイルエンドに臨み、前記冷媒貯留部に連通する第1開口部と、
を備える回転電機。 A rotating electrical machine capable of cooling a stator from the outer peripheral side using a first refrigerant and a second refrigerant,
An inner case for accommodating the stator;
An outer case provided on the outer peripheral side of the inner case;
A first flow path that is formed along the circumferential direction of the rotating electrical machine between the cases by recessing one of the outer peripheral surface of the inner case or the inner peripheral surface of the outer case, and through which the first refrigerant passes. When,
A second flow path formed along the axial direction of the rotating electrical machine of the outer case and through which the second refrigerant passes;
A refrigerant storage section that is formed in the inner case, communicates with the second flow path, and stores the second refrigerant sent through the second flow path;
A first opening formed in the inner case, facing the coil end of the stator and communicating with the refrigerant reservoir;
A rotating electrical machine. - 請求項1に記載の回転電機であって、
前記冷媒貯留部において、複数の前記第1開口部が前記回転電機の周方向に亘って形成される、
ことを特徴とする回転電機。 The rotating electrical machine according to claim 1,
In the refrigerant reservoir, a plurality of the first openings are formed over the circumferential direction of the rotating electrical machine.
Rotating electric machine characterized by that. - 請求項1又は2に記載の回転電機であって、
前記冷媒貯留部は、前記インナケースにおいて、前記第2流路の上流側と下流側の両方に形成される、
ことを特徴とする回転電機。 The rotating electrical machine according to claim 1 or 2,
The refrigerant reservoir is formed on both the upstream side and the downstream side of the second flow path in the inner case.
Rotating electric machine characterized by that. - 請求項3に記載の回転電機であって、
前記アウタケースには、前記冷媒貯留部と前記第2流路とを連通する連通部が形成されており、
前記第2流路の前記下流側に位置する前記冷媒貯留部に連通する下流側連通部のサイズは、前記第2流路の前記上流側に位置する前記冷媒貯留部に連通する上流側連通部のサイズよりも大きい、
ことを特徴とする回転電機。 The rotating electrical machine according to claim 3,
The outer case is formed with a communication portion that communicates the refrigerant storage portion and the second flow path,
The size of the downstream communication part communicating with the refrigerant storage part located on the downstream side of the second flow path is the upstream communication part communicating with the refrigerant storage part located on the upstream side of the second flow path. Larger than the size of the
Rotating electric machine characterized by that. - 請求項1又は2に記載の回転電機であって、
前記冷媒貯留部は、前記インナケースにおいて、前記第2流路の上流側に形成された、
ことを特徴とする回転電機。 The rotating electrical machine according to claim 1 or 2,
The refrigerant reservoir is formed on the upstream side of the second flow path in the inner case.
Rotating electric machine characterized by that. - 請求項5に記載の回転電機であって、
前記第2流路の下流側には、前記アウタケースから前記ステータのコイルエンドに直接臨むインナケース開口部が形成された
ことを特徴とする回転電機。 The rotating electrical machine according to claim 5,
The rotating electrical machine, wherein an inner case opening that directly faces the coil end of the stator from the outer case is formed on the downstream side of the second flow path. - 請求項5に記載の回転電機であって、
前記インナケースの内周面又は前記ステータの外周面の一方を凹設することで前記回転電機の軸方向に沿って形成される溝部と、
前記インナケースに形成され、前記溝部に臨み、前記冷媒貯留部に連通する第2開口部と、
を備えることを特徴とする回転電機。 The rotating electrical machine according to claim 5,
A groove formed along the axial direction of the rotating electrical machine by recessing one of the inner peripheral surface of the inner case or the outer peripheral surface of the stator;
A second opening formed in the inner case, facing the groove and communicating with the refrigerant reservoir;
A rotating electric machine comprising: - 請求項7に記載の回転電機であって、
前記溝部は、前記ステータの外周面に螺旋状に形成された、
ことを特徴とする回転電機。 The rotating electrical machine according to claim 7,
The groove is spirally formed on the outer peripheral surface of the stator.
Rotating electric machine characterized by that. - 請求項8に記載の回転電機であって、
前記ステータは、複数枚の円板状の電磁鋼板を積層して形成されたものであり、
前記円板状の電磁鋼板の外縁の一部には、切欠部が形成されており、
隣接する前記円板状の電磁鋼板を前記切欠部の一部が重複するように前記回転電機の周方向にずらした状態で積層することにより、前記溝部が形成される
ことを特徴とする回転電機。 The rotating electrical machine according to claim 8,
The stator is formed by laminating a plurality of disc-shaped electromagnetic steel plates,
A part of the outer edge of the disk-shaped electromagnetic steel sheet is formed with a notch,
The rotating electrical machine is characterized in that the groove portion is formed by laminating adjacent disk-shaped electromagnetic steel plates in a state shifted in the circumferential direction of the rotating electrical machine so that a part of the cutout portion overlaps. .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/004936 WO2019159240A1 (en) | 2018-02-13 | 2018-02-13 | Rotating electrical machine |
JP2019571845A JP6852817B2 (en) | 2018-02-13 | 2018-02-13 | Rotating machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/004936 WO2019159240A1 (en) | 2018-02-13 | 2018-02-13 | Rotating electrical machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019159240A1 true WO2019159240A1 (en) | 2019-08-22 |
Family
ID=67619787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004936 WO2019159240A1 (en) | 2018-02-13 | 2018-02-13 | Rotating electrical machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6852817B2 (en) |
WO (1) | WO2019159240A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112798035A (en) * | 2021-04-09 | 2021-05-14 | 禾美(浙江)汽车股份有限公司 | Condensate water resistance performance test system and method for new energy automobile driving motor |
WO2022190849A1 (en) * | 2021-03-09 | 2022-09-15 | ジヤトコ株式会社 | Component |
WO2024005175A1 (en) * | 2022-06-30 | 2024-01-04 | 株式会社アイシン | Rotating electrical machine |
WO2024202080A1 (en) * | 2023-03-31 | 2024-10-03 | ニデック株式会社 | Dynamo-electric machine and drive device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005229672A (en) * | 2004-02-10 | 2005-08-25 | Toyota Motor Corp | Rotating electric machine |
JP2006033916A (en) * | 2004-07-12 | 2006-02-02 | Nissan Motor Co Ltd | Cooler of motor |
JP2009022144A (en) * | 2007-07-13 | 2009-01-29 | Aisin Aw Co Ltd | Cooling structure and cooling method for rotating electrical machine |
JP2010130794A (en) * | 2008-11-27 | 2010-06-10 | Honda Motor Co Ltd | Motor unit for vehicle |
JP2011004488A (en) * | 2009-06-17 | 2011-01-06 | Honda Motor Co Ltd | Motor |
JP2011015578A (en) * | 2009-07-03 | 2011-01-20 | Fanuc Ltd | Motor cooling device |
JP2014225969A (en) * | 2013-05-16 | 2014-12-04 | 本田技研工業株式会社 | Electric motor |
JP2015033226A (en) * | 2013-08-02 | 2015-02-16 | マツダ株式会社 | Rotating electrical machine |
JP2017104011A (en) * | 2017-02-10 | 2017-06-08 | 日本電産株式会社 | motor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8783135B2 (en) * | 2012-08-09 | 2014-07-22 | GM Global Technology Operations LLC | Electro-mechanical drive-unit |
-
2018
- 2018-02-13 WO PCT/JP2018/004936 patent/WO2019159240A1/en active Application Filing
- 2018-02-13 JP JP2019571845A patent/JP6852817B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005229672A (en) * | 2004-02-10 | 2005-08-25 | Toyota Motor Corp | Rotating electric machine |
JP2006033916A (en) * | 2004-07-12 | 2006-02-02 | Nissan Motor Co Ltd | Cooler of motor |
JP2009022144A (en) * | 2007-07-13 | 2009-01-29 | Aisin Aw Co Ltd | Cooling structure and cooling method for rotating electrical machine |
JP2010130794A (en) * | 2008-11-27 | 2010-06-10 | Honda Motor Co Ltd | Motor unit for vehicle |
JP2011004488A (en) * | 2009-06-17 | 2011-01-06 | Honda Motor Co Ltd | Motor |
JP2011015578A (en) * | 2009-07-03 | 2011-01-20 | Fanuc Ltd | Motor cooling device |
JP2014225969A (en) * | 2013-05-16 | 2014-12-04 | 本田技研工業株式会社 | Electric motor |
JP2015033226A (en) * | 2013-08-02 | 2015-02-16 | マツダ株式会社 | Rotating electrical machine |
JP2017104011A (en) * | 2017-02-10 | 2017-06-08 | 日本電産株式会社 | motor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022190849A1 (en) * | 2021-03-09 | 2022-09-15 | ジヤトコ株式会社 | Component |
JP7465407B2 (en) | 2021-03-09 | 2024-04-10 | ジヤトコ株式会社 | parts |
CN112798035A (en) * | 2021-04-09 | 2021-05-14 | 禾美(浙江)汽车股份有限公司 | Condensate water resistance performance test system and method for new energy automobile driving motor |
CN112798035B (en) * | 2021-04-09 | 2021-07-23 | 禾美(浙江)汽车股份有限公司 | Condensate water resistance performance test system and method for new energy automobile driving motor |
WO2024005175A1 (en) * | 2022-06-30 | 2024-01-04 | 株式会社アイシン | Rotating electrical machine |
EP4478589A4 (en) * | 2022-06-30 | 2025-05-14 | Aisin Corp | ELECTRIC LATHE |
WO2024202080A1 (en) * | 2023-03-31 | 2024-10-03 | ニデック株式会社 | Dynamo-electric machine and drive device |
Also Published As
Publication number | Publication date |
---|---|
JP6852817B2 (en) | 2021-03-31 |
JPWO2019159240A1 (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019159240A1 (en) | Rotating electrical machine | |
JP5445675B2 (en) | Rotating machine | |
US9991754B2 (en) | Embedded permanent magnet rotary electric machine | |
CN103620918B (en) | The cooling structure of electric rotating machine | |
JP5772832B2 (en) | Rotating machine | |
US8242646B2 (en) | Rotating electric machine and drive device | |
US20130169077A1 (en) | Electric rotary machine | |
JP6270213B2 (en) | Electric motor | |
US10447115B2 (en) | Rotary electric machine and driving system | |
JP2011035992A (en) | Rotating electric machine | |
JP5331521B2 (en) | Toroidal winding motor | |
JP2009089513A (en) | Cooling structure in rotary electric machine | |
WO2017082023A1 (en) | Dynamo-electric machine | |
JP2019103245A (en) | Rotary electric machine and method of fitting lid member of rotary electric machine | |
JP7106892B2 (en) | Rotating electric machine | |
CN111600419A (en) | Rotating electrical machine | |
JP2011234433A (en) | Cooling structure of motor | |
JP2015162936A (en) | Totally-enclosed motor | |
JP2007336646A (en) | Rotary electric machine | |
JP2012052506A (en) | Electric pump | |
WO2012140879A1 (en) | Hybrid construction-machine | |
CN112436654A (en) | Motor casing and motor with cooling function | |
JP2010206994A (en) | Motor | |
JP2013034289A (en) | Stator of rotary electric machine, rotary electric machine, rotary electric machine driving system and electric vehicle | |
WO2020144802A1 (en) | Motor, and inverter-integrated rotating electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18906068 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019571845 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18906068 Country of ref document: EP Kind code of ref document: A1 |