[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019158018A1 - 一种寻呼消息的传输方法 - Google Patents

一种寻呼消息的传输方法 Download PDF

Info

Publication number
WO2019158018A1
WO2019158018A1 PCT/CN2019/074678 CN2019074678W WO2019158018A1 WO 2019158018 A1 WO2019158018 A1 WO 2019158018A1 CN 2019074678 W CN2019074678 W CN 2019074678W WO 2019158018 A1 WO2019158018 A1 WO 2019158018A1
Authority
WO
WIPO (PCT)
Prior art keywords
paging message
paging
uplink
frame
message corresponding
Prior art date
Application number
PCT/CN2019/074678
Other languages
English (en)
French (fr)
Inventor
高宽栋
黄煌
邵华
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019158018A1 publication Critical patent/WO2019158018A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communications, and more particularly to a method and apparatus for paging message transmission.
  • the future 5th Generation (5G) communication of the system adopts a higher carrier frequency than Long Term Evolution (LTE), such as carrier frequencies above 6 GHz such as 38 GHz and 72 GHz, thereby achieving greater bandwidth and higher.
  • Transmission rate wireless communication Due to the high carrier frequency, the wireless signal experiences more severe fading during spatial propagation, and even the receiving end may have difficulty detecting the wireless signal.
  • a beamforming technique will be employed in a 5G communication system to obtain a beam with good directivity. Beamforming techniques are used to limit the ability to transmit signals within a certain beam direction, thereby increasing the efficiency of signal transmission and reception.
  • paging information is transmitted through a downlink fixed time slot, and a scene of beam scanning is not considered, and thus cannot be applied to a scene of beam scanning.
  • the present application provides a method and apparatus for paging message transmission such that transmission of a paging message is applicable to a scene of beam scanning.
  • a method for transmitting paging information including:
  • the slot position I in the first paging frame, the paging message corresponding to each beam and the slot offset of the paging message corresponding to the first beam f(x, i)
  • a number of time slots N in a paging frame that can be used to transmit a paging message and/or a number of time slots in a paging frame to determine a paging frame in which a paging message corresponding to each beam is located, where the paging frame is a frame included in a paging occasion; the paging message is transmitted through a corresponding beam at a corresponding paging frame.
  • the foregoing solution is implemented by the network device, and correspondingly provides a device for transmitting paging information, where the device is a chip or a function module of the network device or the network device, including:
  • the processing module is configured to: according to the paging message corresponding to the first beam, the slot position I in the first paging frame, the paging message corresponding to each beam, and the slot offset of the paging message corresponding to the first beam. (x, i), and the number of slots N in a paging frame that can be used to transmit a paging message and/or the number of slots in a paging frame to determine the paging frame in which the paging message corresponding to each beam is located.
  • the paging frame is a frame included in a paging occasion; and the sending module is configured to send the paging message by using a corresponding beam in a corresponding paging frame.
  • a receiving module may be further included: for performing a receiving class step.
  • the paging message is sent through multiple beams, so there are multiple paging messages, usually one beam corresponds to one paging message, and may also correspond to multiple paging messages; since usually one beam corresponds to one SS block (synchronization) Signal block (synchronization signal block) or SS/PBCH block (synchronization signal/physical broadcast channel block), the paging message corresponding to the beam can also be called the SS block or the SS/PBCH block corresponding to the search. Call the message.
  • SS block synchronization
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • the time slot is an example of a time unit, and may be replaced by other time units, such as a subframe, one or more OFDM (orthogonal frequency division multiplexing) symbols, and the like.
  • the slot position I is usually a relative slot position, and may also be an absolute slot position;
  • the slot offset f(x, i) is usually a relative slot offset or an absolute slot offset.
  • the method before sending the paging message, further includes: according to the paging message corresponding to each beam, the uplink and downlink periodic index i DU in the corresponding paging frame, and the paging message corresponding to each beam is corresponding.
  • the starting time slot index in the uplink and downlink period determines the paging message corresponding to each beam in the time slot of the corresponding paging frame, for example, the starting time slot of the paging frame.
  • the slot position I may be used by the number of slots that can be used to transmit a paging message in an uplink and downlink period, and the time offset of the paging message corresponding to the first beam in the first paging frame. And one or more of the number of time slots of the uplink and downlink cycles are determined.
  • the slot position I is a fixed value, and the position of the slot of the non-transportable paging message can be excluded from the slot 0 to the start page of the first paging message in the first paging frame of the paging occasion.
  • the method before sending the paging message, further includes: according to the paging message corresponding to the first beam, in the first paging frame, relative to the slot position I, the paging message corresponding to each beam and the first one
  • the relative slot offset f(x, i) of the paging message and the number of slots in a paging frame determine the slot of the paging message corresponding to each beam, for example, the starting slot.
  • the first paging message used is within the first paging frame by the relative slot position I.
  • One or more of the relative slot offsets f(x, i) of the message are determined.
  • i is the index of the paging message, the beam index, the SS block index, or the SS ⁇ PBCH block index.
  • the index can also be a number, and I changes with the change of i, so I is a variable.
  • the relative slot offset f(x, i) of the paging message corresponding to each beam and the paging message corresponding to the first beam is indexed by each paging message or SS/ corresponding to each paging message.
  • the PBCH block index, and one or more determinations in the duration x of the paging message supervision window; the SS/PBCH block index may also be a beam index or an SS block index.
  • the number of slots N that can be used as a paging message in a paging frame is determined by the number of slots of a paging frame, the number of slots in one uplink and downlink period, and one uplink and downlink period. One or more of the number of time slots of the paging message is determined.
  • the uplink and downlink periodic indexes of the paging messages corresponding to the respective beams in the corresponding paging frame are indexed by the uplink and downlink periodicity in the paging frame in which the paging message corresponding to the first beam is located, where each The relative slot offset f(x, i) between the paging message corresponding to the beam and the paging message corresponding to the first beam, the number of uplink and downlink periods in one paging frame, and one uplink and downlink period can be used as One or more of the number of time slots in which the paging message is transmitted.
  • the start slot index in the corresponding uplink and downlink period of the paging message corresponding to each beam is the slot position of the paging message corresponding to the first beam in the corresponding uplink and downlink period, and each of the slots
  • the relative slot offset f(x, i) of the paging message corresponding to the beam and the paging message corresponding to the first beam, and the number of slots in one uplink and downlink period or one uplink and downlink period can be used for transmission
  • One or more of the number of time slots of the paging message is determined.
  • a method for transmitting paging information comprising: according to a paging message corresponding to a first beam, a slot message in a first paging frame, a paging message corresponding to the terminal device, and a paging message corresponding to the first beam.
  • the slot offset f(x, i), and the number of slots N in a paging frame that can be used to transmit a paging message and/or the number of slots in a paging frame determine the paging message corresponding to the terminal device
  • the paging frame is a frame included in a paging occasion; and the paging message is received by a corresponding beam in a corresponding paging frame.
  • the foregoing solution is implemented by the terminal device, and correspondingly provides a device for transmitting paging information, where the device is a chip or a function module of the terminal device or the terminal device, including:
  • Processing module used for the paging message corresponding to the first beam in the first paging frame slot position I, the paging message corresponding to the terminal device and the slot offset of the paging message corresponding to the first beam (x, i), and the number of slots N in a paging frame that can be used to transmit a paging message and/or the number of slots in a paging frame determine the paging frame in which the paging message corresponding to the terminal device is located.
  • the paging frame is a frame included in a paging occasion; and the receiving module is configured to receive the paging message by using a corresponding beam in a corresponding paging frame.
  • a sending module may be further included: for performing a sending class step.
  • the paging message is sent through multiple beams, so there are multiple paging messages, usually one beam corresponds to one paging message, and may also correspond to multiple paging messages; but one terminal device usually receives through one beam.
  • the paging message corresponding to the beam may also be referred to as a paging message corresponding to the SS block or the SS/PBCH block, because the paging message is usually one beam corresponding to one SS block or SS/PBCH block.
  • the paging message corresponding to the terminal device is the paging message corresponding to the beam where the terminal device is located.
  • the time slot is an example of a time unit, and may be replaced by other time units, such as a subframe, one or more OFDM symbols, and the like.
  • the slot position I is usually a relative slot position, and may also be an absolute slot position;
  • the slot offset f(x, i) is usually a relative slot offset or an absolute slot offset.
  • the method before receiving the paging message, further includes: according to the paging message corresponding to the terminal device, the uplink and downlink periodic index i DU in the corresponding paging frame, and the paging message corresponding to the terminal device is corresponding.
  • the start slot index in the uplink and downlink period determines that the paging message corresponding to the terminal device is in the slot of the corresponding paging frame, for example, the start slot.
  • the starting slot index can also be a slot location.
  • the slot position I may be the number of slots that can be used to transmit a paging message in an uplink and downlink period, and the absolute time of the paging message corresponding to the first beam in the first paging frame.
  • One or more of the offset and the number of time slots of the uplink and downlink periods are determined.
  • the method before receiving the paging message, further includes: according to the paging message corresponding to the terminal device, the slot position I in the first paging frame, the paging message corresponding to the terminal device, and the first paging message.
  • One or more of the slot offset f(x, i) and the number of slots in a paging frame determine a slot of a paging message corresponding to the terminal device, for example, a start slot.
  • the first paging message used in the first paging frame may not be in the uplink and downlink period from the uplink time slot position I.
  • the relative slot offset f(x, i) of the paging message corresponding to the terminal device and the paging message corresponding to the first beam is indexed by the paging message of the terminal device or the paging message of the terminal device.
  • the corresponding SS/PBCH block index, and one or more determinations of the duration x of the paging message supervision window; the SS/PBCH block index may also be a beam index or an SS block index.
  • the number of slots N that can be used as a paging message in a paging frame is determined by the number of slots of a paging frame, the number of slots in one uplink and downlink period, and one uplink and downlink period. One or more of the number of time slots of the paging message is determined.
  • the uplink and downlink periodic index of the paging message corresponding to the terminal device in the corresponding paging frame is indexed by the uplink and downlink periodicity in the paging frame where the paging message corresponding to the first beam is located, the terminal
  • One or more of the number of time slots in the transmission of the paging message may be used during the line period.
  • the start slot index of the paging message corresponding to the terminal device in the corresponding uplink and downlink period is the slot position of the paging message corresponding to the first beam in the corresponding uplink and downlink period and the terminal.
  • the relative slot offset f(x, i) of the paging message corresponding to the device and the paging message corresponding to the first beam, and the number of slots in one uplink and downlink period or one uplink and downlink period may be used for transmission.
  • One or more of the number of time slots of the paging message is determined.
  • the relative slot offset f(x, i) between the paging messages corresponding to the first beam of the paging message corresponding to each beam may be the paging message corresponding to each beam.
  • the slot position is usually the starting slot position, which can be reflected by the slot index, so the slot position or the starting slot position can also be the slot index or the starting slot index.
  • the parameters mentioned in the foregoing solution may be configured by the network device and sent to the terminal device, and the configuration information may be carried on a Physical Broadcast Channel (PBCH), Remaining minimum system information (RMSI), and system information.
  • PBCH Physical Broadcast Channel
  • RMSI Remaining minimum system information
  • SIB System Information Block
  • SIB2 SIB3, Media Access Control-control element
  • MAC-CE Media Access Control-control element
  • DCI Downlink Control Information
  • Radio Resource Control Radio Resource Control
  • RRC Radio Resource Control
  • the paging message transmission in the above solution is applicable to the scenario of beam scanning. Further, considering the uplink transmission and the downlink transmission in the frame structure, the collision of the uplink transmission is avoided when the paging message is transmitted.
  • each module included in each of the above devices has a function corresponding to each of the above methods.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a module can also be called a unit.
  • the determination or calculation of each parameter mentioned in the above method is implemented by a processing module, and the transmission or reception of parameters is implemented by a transmitting module or a receiving module.
  • each of the foregoing devices may include: a processing unit and a transceiver unit, and the transceiver unit may include a transmitting unit (module) and a receiving unit (module), respectively performing respective steps of sending and receiving in the foregoing methods, and processing The unit performs other steps in the above methods except for transmitting and receiving;
  • the transceiver unit may be, for example, a transceiver for performing the transmitting and receiving steps in the above method;
  • the transceiver includes a radio frequency circuit, and may also include a transmitter and a receiving unit.
  • the processing unit may be a processor, configured to perform steps other than sending and receiving, and the processing unit or the processor may be one or more.
  • the device further comprises a storage unit, which may be a memory.
  • a storage unit for storing a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the device to perform any of the above aspects.
  • the method of transmitting paging information is not limited to a storage unit for storing a computer execution instruction.
  • the chip when the device is a chip, the chip may include: a processing unit and a transceiver unit, the processing unit may be, for example, a processor, and the processor may be at least one; the transceiver unit may be, for example, Is the input / output interface, pins or circuits on the chip.
  • the processing unit may execute a computer-executable instruction stored by the storage unit to cause the chip within the terminal to perform the method of signal detection of any of the above aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the terminal device, such as a read-only memory ( Read-only memory (ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • ROM Read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • the first aspect of the method of signal detection is performed by an integrated circuit.
  • a communication system comprising: the terminal device and the network device mentioned in the above various solutions, which together accomplish the above respective methods.
  • a computer storage medium or chip having stored therein program code for indicating instructions to execute the various methods.
  • a computer program product comprising instructions for causing a computer to perform the various methods described above is provided when executed on a computer.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a flowchart of a paging message transmission method according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a paging occasion according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a paging occasion frame according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a paging message transmission apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a paging message transmission apparatus according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a paging message transmission apparatus according to still another embodiment of the present application.
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA).
  • Base Transceiver Station which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in an LTE system (Evolutional The NodeB, eNB or eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future.
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • FIG. 1 is a schematic diagram of a communication system of the present application.
  • the communication system of FIG. 1 may include user equipment (UE) 10 and network equipment 20.
  • the network device 20 is configured to provide communication services for the user equipment 10 and access the core network.
  • the user equipment 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between user equipment 10 and network device 20.
  • FIG. 2 shows a schematic diagram of an application scenario of the present application.
  • the network device can detect the paging message in real time and send the paging message by using one or more directions of the beam.
  • the network device can directly send the paging message by using one or more directions of the beam. It should be understood that the paging mechanism directly after performing step 201 can be referred to as a “beam scanning paging mechanism” in the following embodiments.
  • the paging message may include control resource information of the paging message and/or data resource information of the paging message, or may be a Control Resource Set (CORESET) of the paging message, or may be downlink control information.
  • DCI Downlink control information
  • the control resource information may be a Physical Downlink Control Channel (PDCCH) bearer
  • the data resource information may be a Physical Downlink Shared Channel (PDSCH).
  • the synchronization signal block may also be referred to as a synchronization signal/PBCH (Physical Broadcast Channel), and may include at least one of PBCH, PSS (primary synchronization signal), SSS (Secondary synchronization signal, secondary synchronization signal).
  • the paging message may include the PDCCH of the paging message and/or the PDSCH of the paging message.
  • the data resource information in the paging message may carry all or part of the paging UE group information, and may also carry the truncated identifier (ID) information of the partially paged UE, and may also carry part or all of the information.
  • the UE ID information of the paging UE may also carry all or part of the UE group information.
  • a paging message may also be referred to as a paging index or a paging indicator.
  • the paging packet may be a UE packet, may be a packet based on the UE ID, or may be a packet based on a different synchronization signal/physical broadcast channel block (SS/PBCH block), or may be It is a packet based on a paging index, or may be a grouping of terminal devices at a paging occasion, or may be a grouping of a terminal device in a tracking area, or may be a spatial parameter corresponding to an SS/PBCH block.
  • the grouping by the terminal device may also be a combination of all or a combination of the three, for example, a paging packet for a paging occasion under a tracking area.
  • the terminal device may wake up with a discontinuous reception (DRX) receiving cycle, and the DRX cycle may include at least one paging occasion, and at least one terminal device may perform the same paging occasion.
  • DRX discontinuous reception
  • Signal reception, and different paging occasions are used to serve different terminal devices in one DRX cycle. That is to say, the paging occasion for signal transmission between the network device and a certain terminal device is fixed.
  • the signal transmitted in the paging occasion may be a paging indication message, a paging message, a random access preamble, or a paging indication message and a paging message at the same time.
  • the application is not limited to this.
  • the time unit may be a frame, a subframe, a time slot or a mini-slot, a combination of any one or more of orthogonal frequency division multiplexing symbols, which is not limited in this application.
  • the mini-slot can be N OFDM symbols, where N can be any one or more of 1, 2, 4, 7, 12, 14.
  • each paging occasion can be used to page multiple terminal devices, and one terminal device can only receive paging messages on one paging occasion within one DRX cycle.
  • the supervision window, the paging message supervision window, the paging message control resource timing duration or the paging message duration mentioned in this application may refer to a time period in which the paging message of the quasi-co-located to the corresponding SS/PBCH block is transmitted. During the time period, there is a paging message that is quasi-co-located to the corresponding SS/PBCH block.
  • the duration of the paging message from the quasi-co-located to the i-th SS/PBCH block is 2 slots, which can be in the Sending a paging message on one time slot may also send a paging message on the second time slot, which may control the resource timing duration or paging message for the supervision window or paging message of the paging message.
  • the duration of the paging message, such as quasi-co-located to the i-th SS/PBCH block is 1 time slot, which can send a paging message on the first few symbols of the time slot, or in the middle The paging message is sent on the symbol, and the paging message may also be sent on the last few symbols.
  • the time slot may be the duration of the resource timing or the duration of the paging message for the supervision window or paging message of the paging message.
  • the paging message described herein may be a search space of a control resource of a paging message, a control resource of a paging message, a physical downlink control channel location of a paging message, or a data resource of a paging message. s position.
  • the network device may send the information in the paging occasion or the time-frequency resource and the Synchronous Signal Block (SS blocks)/Physical Broadcast Channel (Physical Broadcast Channel) through the configuration information before the step 201.
  • the information in the paging occasion may be a paging indication message, which may be the control information of the paging indication message, the data information of the paging indication message, the data information of the paging message, or the paging message. Control information.
  • the time-frequency resource in the paging occasion may be the time-frequency resource of the control information of the paging indication message, the time-frequency resource of the data information of the paging indication message, or the time-frequency resource of the control information of the paging information, or It is the data information time-frequency resource of paging information.
  • the paging occasion includes at least one paging indication message or paging message, and the paging indication message or the paging message in the paging occasion may be in one-to-one correspondence with the SS/PBCH block, or may be one-to-many, It can be a many-to-one association.
  • the random access timing and the SS/PBCH block may be one-to-one correspondence, or may be one-to-many, or may be a many-to-one association relationship.
  • mapping relationship between the paging indication message or the paging message and the SS/PBCH block can be understood as the transmission of the paging indicator message or the paging message used in the first paging occasion and the transmission of the SS in the SS/PBCH block.
  • /PBCH uses the same beam.
  • the associations in this application may also be referred to as mapping, correspondence, correlation, and allocation.
  • the terminal device of the paging occasion may send a random access preamble at the random access occasion in the random access period, and may be used for the request.
  • a paging message, or a report beam, a paging message, and an SS/PBCH block are associated, they may also indicate that they have a quasi co-located (QCL) relationship, and may use the same delay spread or the same Dopp. Le spread or the same average gain, the same average delay, or the same spatial domain parameters to transmit or receive signals, or use the same beam to transmit or receive signals.
  • QCL quasi co-located
  • the synchronization signal block of the embodiment of the present application may include an SS (Synchronization Signal) and/or a PBCH.
  • the SS can contain PSS, can also include SSS or both PSS and SSS.
  • the paging indication message may carry an identity (ID) of the paging packet.
  • ID identity
  • Each paging packet may include multiple terminal devices, and each paging packet specifically includes which terminal devices may be pre-configured by the terminal device and the network device, or may be pre-agreed and may be pre-agreed according to certain rules.
  • the paging indication message corresponds to different paging packets or different paging packets by data bit order, for example, the paging indication message corresponds to different paging packets or different paging packets by data bits.
  • the terminal device receives the paging message.
  • the terminal device receives the paging message at a paging time unit of a corresponding paging frame.
  • the network device sends the paging message through the beams in different directions, so that the terminal devices in different locations can receive the paging message.
  • the beam in the corresponding direction can be used in the paging time unit of the corresponding paging frame. Receiving the paging message, or receiving the paging message in a paging time unit of a corresponding paging frame in a corresponding beam direction.
  • the paging message may also carry one or more disaster warning messages such as a system update message, an earthquake disaster message, a volcano disaster message, and a tsunami disaster message.
  • disaster warning messages such as a system update message, an earthquake disaster message, a volcano disaster message, and a tsunami disaster message.
  • the paging message may carry the identity information (UE ID) of the paged terminal device.
  • UE ID identity information
  • the transmission of the paging message is a downlink signal
  • each paging message may be associated or QCL to an SS/PBCH block
  • an SS/PBCH block usually corresponds to one beam
  • the number of SS/PBCH blocks is relatively large.
  • the duration of the downlink signal is relatively long.
  • there are multiple types of semi-static DL/UL assignment periods which may be 0.625 ms, 1.25 ms, 2.5 ms, 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms period, for 120 KHz.
  • the number of time slots in the uplink and downlink cycles is 4, 5, 8, 10, 16, 20, 40, 80, etc.; for 60 KHz, the number of time slots in the uplink and downlink cycles is 2, 4, 5, 8, 10, 20, 40 and so on; for 30KHz, the number of time slots in the uplink and downlink cycles are: 1, 2, 4, 5, 10, 20, etc.; for 15KHz, the uplink and downlink cycles
  • the number of time slots is: 0.5, 1, 2, 5, 10 and so on.
  • the transmission of the paging message is related to the uplink and downlink cycle size and the uplink and downlink ratio
  • the time unit location of the paging message corresponding to the index i of the SS/PBCH block is related to the uplink and downlink cycle size and the uplink and downlink ratio
  • the uplink-downlink ratio may indicate the number of time units used for uplink in one uplink and downlink period, the number of time units used for downlink, and the number of time units for unknown or configurable.
  • the uplink and downlink periods are used in the system frame for the time unit type according to the downlink, unknown, and uplink configurations, and the duration is one uplink and downlink period.
  • the uplink and downlink period there may be only a downlink time unit and an unknown time unit, or only an unknown time unit and an uplink time unit, or only an unknown time unit, or only a downlink time unit and an uplink time unit, or only an uplink time unit.
  • the time unit in which the time unit type is unknown may be used as an uplink time unit or a downlink time unit, and may be used according to network device scheduling, or may be pre-defined by standards. Unknown time units can also be referred to as flexible time units.
  • a time unit that can be used to transmit a paging message and a time unit that is actually used to transmit a paging message are involved.
  • the time unit that can be used to transmit the paging message indicates that the time unit within one frame can be used as a time unit for transmitting the paging message, and may include all or part of the downlink time unit, or may include all or part of the unknown time unit. All or part of the downlink time unit and all or part of the unknown time unit may be included.
  • the actual time unit actually used to transmit the paging message is that the value can be used as the time unit for transmitting the paging message.
  • the time unit that cannot be used to transmit the paging message may be all or part of the uplink time unit, or all or part of the unknown time unit, or all or part of the uplink time unit and all or part of the unknown time unit.
  • the index of the SS/PBCH block received by the UE is 45, if the window length of a supervisory window is x (ie, one The duration or duration x of the paging message, for example: 2 slots) is a time unit, then 45 time units are needed, so at least two paging frames need to be received, and there may be time in the frame.
  • the unit is used to transmit uplinks and cannot be used for downlink transmission.
  • the maximum number of paging messages transmitted by the paging message in one system frame may be set to K, or the maximum number of time units that can be used to transmit the paging message within one frame is N, when When the SS/PBCH block index of the paging message (including the candidate SS/PBCH block index and/or the actually transmitted SS/PBCH block index) is greater than K, or the number of time units of the paging message is greater than N, the Transfer to the next frame or adjacent one or more frames.
  • System Frames This application is also referred to as paging frames, referred to as frames.
  • the paging message can be sent through one or more beams, one beam corresponding to one SS/PBCH block.
  • the SS/PBCH block is also called SS block.
  • the time unit may be a slot, or may be a subframe, an OFDM symbol or a mini slot.
  • a PO (paging occasion) consists of two frames (1st frame and 2nd frame), referred to herein as paging frames, each paging frame consisting of 10 time slots (numbered from 0 to 9), each The time slot is identified by a square.
  • One paging frame includes two uplink and downlink periods, and each uplink and downlink period has five time slots. The first three time slots can be used for downlink transmission, and the last two time slots are used for uplink transmission.
  • the slot (white part) is only used for uplink transmission, and cannot transmit paging messages.
  • the time slot is used as a time unit, and other time units, such as subframes, may also be used.
  • the paging message corresponding to the first beam is transmitted in the x part (slot 6, 7) of the 1st frame, occupies 2 time slots, and since the 2 uplink transmission time slots are followed by the paging message, the paging message cannot be transmitted.
  • the paging message corresponding to the second beam is transmitted in the first 2 slots (slot 0, 1) of the 2nd frame, and the paging message corresponding to the third beam is in the 3rd and 6th slots of the 2nd frame (slot 2) 5)
  • the transmission is performed because the 4th and 5th time slots (slots 3, 4) are uplink transmission time slots, and the paging message cannot be transmitted; the paging message corresponding to the fourth beam is the 7th and 8th of the 2nd frame.
  • the time slot (slot 6, 7) is transmitted, followed by 2 uplink transmission time slots (slots 8, 9). If there are other paging messages corresponding to the beam, the next page corresponding to the PO is required. Intraframe transmission, and so on.
  • the DL/UL periodicity duration may be 0.5, 1,2,5,10 slots; For 30 KHz, the DL/UL periodicity duration may be 1,2,4,5,10,20 slots;For 60 KHz,the DL/UL periodicity duration may be 2,4, 5,8,10,20,40; For 120 KHz, the DL/UL periodicity duration may be 4,5,8,10,16,20,40,80.Slot type order of each periodicity can be DL-Unknow- UL.
  • the paging messages of each PO may during multiple frames.
  • O initial 6 is the absolute time in the frame which s the initial slots of a paging occasion, as shown in figure 4
  • x is the slot number of each paging common search space occasion duration.
  • K DU,P is DL/UL periodicity number between the first paging message corresponding to SS/PBCH b Lock index 0 and the paging message corresponding to SS/PBCH block index iN UP
  • the first slot of paging PDCCH corresponding to SS/PBCH block index i is calculated based on the downlink link slots in a DL/UL periodicity and excluding the UL link slots and unknown slots in a DL/UL periodicity.
  • the content of the above embodiment may be a standard proposal, which is translated as:
  • a paging message is transmitted using a beam scanning method.
  • the maximum number of SS/PBCH blocks associated with the paging message QCL is 64 (6 GHz or more), 8 (3 to 6 GHz), and 4 (3 GHz or less). If each paging supervision window is in one time slot, each PO may be in a continuous resource for a long time. However, considering uplink message transmission, each PO has discrete time resources to avoid collision with UL message transmission.
  • DL/UL period duration 15 kHz, DL/UL period duration may be 0.5, 1, 2, 5, 10 time slots; 30 kHz, DL/UL period duration may be 1, 2, 4, 5, 10, 20 time slots; 60 kHz, DL
  • the /UL period duration may be 2, 4, 5, 8, 10, 20, 40 time slots; 120 KHz, DL/UL period duration may be 4, 5, 8, 10, 16, 20, 40, 80 time slots.
  • the sequence of slot types per cycle may be DL-Unknown-UL.
  • the transmission of the paging message should take into account the number of various DL slots in each DL/UL period and in each DL/UL period.
  • the RMSI transmission method can be used for paging transmission. Considering multiple SS/PBCH blocks (reflecting/corresponding to multiple beams, respectively), paging messages for each PO may be sent in multiple frames. In a PO (or a corresponding multiple frame), the common search space where the control resource set (CORESET, also called PDCCH) corresponding to the paging message (corresponding to the SS/PBCH block with index i) can be based on the SS.
  • CORESET also called PDCCH
  • the PDCCH is in the initial time slot of the first paging message of the first paging frame of the PO, and N is the number of time slots in the paging frame.
  • O initial 6 is the absolute time in the frame, indicating the initial time slot of a paging occasion, as shown in Figure 4, where x is the number of time slots per paging common search space duration.
  • K DU, P is the uplink between the paging message of the corresponding SS/PBCH block index 0 (or the first SS/PBCH index indicated by the actual transmission/SIB1) and the paging message of the corresponding SS/PBCH block index i
  • the first time slot of the paging PDCCH corresponding to the SS/PBCH block index i is calculated based on the downlink time slot and/or the unknown time slot in the uplink/downlink period, wherein the uplink time slot is excluded . That is, the paging message can be transmitted in the downlink time slot.
  • the first time slot of the paging PDCCH corresponding to the SS/PBCH block index i is calculated based on the downlink time slot and the unknown time slot in the uplink/downlink period, where the Uplink time slot. That is, the paging message can be transmitted in the downlink time slot and the unknown time slot.
  • the first time slot of the paging PDCCH corresponding to the SS/PBCH block index i is based on a downlink time slot, an unknown time slot, and an uplink in an uplink/downlink cycle.
  • Link time slot That is, the paging message can be transmitted in all time slots.
  • the number of time units in the paging frame that can be used to transmit the paging message N is the number of time units of the paging frame (10 slots in FIG. 4), the number of time units in one uplink and downlink period (5 slots in FIG. 4) and The number of time units (3 slots in FIG. 4) that can be used to transmit a paging message in one uplink and downlink period is determined one or more times.
  • the value of K, M, N may be one of the duration of the paging message, the subcarrier spacing, and the duration of the paging message supervision window. Or a plurality of decisions; or one or more values of M, K, N depending on the number of POs in the DRX cycle, the time interval of paging occasions, the duration of the paging window, and one or more of the subcarrier spacings
  • N may be x*K, x represents a paging window or paging message control resource timing duration, represented as 2 slots in FIG.
  • the values of M, K, and N may be related to the uplink and downlink periods, and may also be related to the uplink and downlink ratios.
  • the value of K, M, or N may be configured by a network device, or defined by a standard, or may be calculated or pre-agreed by the network device and the terminal device.
  • the value of N may be in the range of 1 to 80, or may be plural or all.
  • the number of time units that can be used to transmit paging messages in one upper and lower periods may be all or part of downlink time units, or all or part of unknown time units, or all or part of downlink time units and all or part of The unknown time unit can be used as long as it is not the uplink time unit.
  • the network device may configure the number of time units for transmitting paging messages in these three or both, or may be predefined.
  • N P, slot, T the number of time units that can be used to transmit paging messages in an uplink and downlink period
  • the value of N can be K1 * N P, slot, T , where * indicates multiplication, N P , slot, T represents the number of time units that can be used to transmit paging messages in an uplink and downlink period
  • the example in 4 in the above figure is 3.
  • N P, slot 1 T The number of time units that can be used to transmit paging messages in the first uplink and downlink period.
  • the number of time units that can be used to transmit paging messages during the period is N P, slot 2, T , then the value of N can be K11*N P, slot1, T + K12*N P, slot 2, T , where * indicates multiplication , N P, slot, T represents the number of time units that can be used to transmit paging messages in an uplink and downlink period.
  • N D,T The number of downlink time units in an uplink and downlink period is N D,T
  • N unknown,T the number of unknown time units in one uplink and downlink period
  • N U , T the number of uplink time units in one uplink and downlink period
  • N P, slot, T may be configured by the network device, or may be calculated by the network device or the terminal device; may be related to the number of downlink time units in one uplink and downlink period, or may be related to one uplink and downlink period
  • the number of unknown time units is related.
  • the number of downlink time units in the first uplink and downlink period is N D1,T , and the number of unknown time units in the first uplink and downlink period N Unknown1, T
  • the number of uplink time units in the first uplink and downlink period is N U1, T
  • N P, slot 1, T can be configured by the network device, or can be calculated by the network device or the terminal device;
  • the number of downlink time units in one uplink and downlink period is related to the number of unknown time units in one uplink and downlink period.
  • the number of downlink time units in the second uplink and downlink period is N D2,T
  • the number of uplink time units in the second uplink and downlink period is N U2, T
  • N P, slot 2 can be configured by the network device, or can be calculated by the network device or the terminal device;
  • the number of downlink time units in one uplink and downlink period is related to the number of unknown time units in one uplink and downlink period.
  • N P, slot, T can be N D, T , N unknown, T , N D, T + N unknown, T , floor (N D, T / x) * x, floor ((N D, T + N unknown,T )/x)*x,floor(N unknown,T /x)*x,ceil((N D,T +N unknown,T )/x)*x,ceil(N unknown,T /x ) Any one or more of *x.
  • N P, slot1, T can be N D1, T , N unknown1, T , N D1, T + N unknown1, T , floor(N D1, T /x)*x, floor((N D1,T +N unknown1,T )/x)*x,floor(N unknown1,T /x)*x,ceil((N D1,T +N unknown1,T )/x)*x,ceil(N unknown1,T / Any one or more of x)*x.
  • N P, slot 2 T can be N D2, T , N unknown 2, T , N D2, T + N unknown 2, T , floor (N D2, T / x) * x, floor ((N D2, T + N unknown2,T )/x)*x,floor(N unknown2,T /x)*x,ceil((N D2, T +N unknown2,T )/x)*x,ceil(N unknown2,T /x ) Any one or more of *x.
  • the uplink and downlink periods have only one time unit or less than one time unit, it can be considered that all time units in the frame can be used as downlink transmission, and the value of N can be equal to the number of time units in one frame.
  • N D,T ,N unknown,T ,N U,T ,N D1,T ,N unknown1,T ,N U1,T ,N D2,T ,N unknown2,T ,N U2,T can be from 1 to 80
  • the value of some or all of the values may be different according to the interval of the subcarriers.
  • the value of any one of the nine values may be configured by the network device, or may be predefined, or the network device and the terminal. Equipment pre-agreed.
  • the duration x of the control resource timing of a paging message is 2 slots
  • the control resource timing of each paging message corresponds to an SS/PBCH block
  • the uplink and downlink periods are N slots
  • T is 5
  • the time slot or T DU is 5 ms
  • the number of time domain resources used for paging in one uplink and downlink period is 3 time slots
  • the number of time slots that can be used for paging in one frame is 6, and the paging message is transmitted.
  • the maximum number of supervisory windows is 3.
  • the value of N can also be configured or pre-defined for the network device, or the network device and the terminal device are pre-agreed.
  • the duration x of the control resource timing of a paging message may be a value of some or all of 0.5, 1, 2, 4, 8.
  • the value of x may be configured by the network device, or may be pre-defined by the standard, or the network device and the terminal device pre-agreed.
  • the network device may be in the time unit location I of the first paging frame according to the paging message corresponding to the first beam, and the time unit offset of the paging message corresponding to each beam and the paging message corresponding to the first beam is f (x) And i), and the number of time units in the paging frame that can be used to transmit the paging message N/or the number of time units in the paging frame determines the frame in which the paging message corresponding to the i-th beam (SS/PBCH block) is located.
  • the value of i is usually 0-63, and the maximum value is not limited to 63, and may be 127, 255 or the like.
  • the terminal device shifts the time unit location I in the first paging frame according to the paging message corresponding to the first beam, and the time unit offset of the paging message corresponding to the terminal device and the paging message corresponding to the first beam.
  • (x, i) and the number of time units N in a paging frame that can be used to transmit a paging message and/or the number of time units in a paging frame determine the paging frame in which the paging message corresponding to the terminal device is located, that is, The paging frame where the paging message corresponding to the i-th beam is located.
  • the time unit position I is typically a relative time unit position
  • the time unit offset f(x, i) is typically a relative time unit offset.
  • This application uses a time unit as a time slot as an example.
  • the paging message corresponding to the first beam in the first paging frame may also be referred to as the offset value of the paging message or the offset value of the paging message group.
  • the following formula can be used: floor((I+f(x,i))/N) to calculate the frame position of the paging message window. .
  • the floor is rounded down, ceil is rounded up, mod is the remainder, * is multiplied, and / is divided.
  • the relative time unit offset f(x, i) of the paging message corresponding to each beam and the first paging message is indexed by the paging message or the SS/PBCH block corresponding to each paging message, and the paging message.
  • the duration x is determined.
  • f(x,i) is x*i,ceil(x*i),floor(x*i),x*floor(i/k),x*ceil(i/k),floor(x*floor (i/k)), ceil (x*floor(i/k)), floor(x*ceil(i/k)), ceil(x*ceil(i/k)), k can It indicates that k SS/PBCH blocks correspond to one paging message, that is, one paging message is sent through k beams, that is, the number of beams that send paging messages.
  • the first paging message in the first paging frame relative to the time unit location I can be used as the number of time units in the uplink and downlink period that can be used to transmit the paging message, the first paging message is in the first One or more of the absolute time offset within the paging frame and the number of time units in the uplink and downlink periods.
  • the value of I may indicate the location in the time unit in which the paging message of a paging occasion can transmit the paging message in the paging occasion frame; or the first paging message in a paging occasion may be excluded.
  • the relative time unit location where the time unit of the paging message is transmitted, and the first paging message may be a paging message corresponding to the SS/PBCH block index of 0.
  • the offset value of the call timing may also be the time unit location of the first paging message in a paging occasion, and I initial may be an absolute value, which may be related to the subcarrier spacing, may be configured by the network device, Can be pre-defined by the standard.
  • the value of I initial can be t1*2 u , where t1 can be any value or multiple values of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10ms, or all values
  • the value of I initial can also be any value from 0 to 79.
  • u denotes a subcarrier index. When the subcarrier spacing is 15 kHz, u is 0. When the subcarrier spacing is 30 kHz, u is 1.
  • N U P may be 0 to 1 initial and may not be used as the number of time units for transmitting paging messages.
  • the first paging message used in the first paging frame may not be used as a transmission paging in the uplink/downlink period.
  • the number of time units of the message, the number of time units that can be used to transmit the paging message in the uplink and downlink period, and the relative time unit offset f(x, i) of each paging message and the first paging message. determine.
  • K2 may represent the number of uplink and downlink cycles within 0 to I initial , for example, as shown in FIG. 4, K2 is 1.
  • N UP, T represents the number of time units that are not used to transmit paging messages in the uplink and downlink periods. As shown in FIG. 4, N UP and T are 2.
  • the frames, paging frames, and system frames in this application are all concepts.
  • K32 can be floor ((I initial - N slot1, frame ) / N slot2, T ), or ceil ((I initial - N slot2, frame ) / N slot1, T ), or (I initial - N slot1, frame )/N slot2, T , the number of time units that can not be used to transmit paging messages in the uplink and downlink periods is N UP2, and T can be expressed as N slot 2, T - N P, slot 2, T.
  • N UP T can be configured by the network device, or can be calculated by the network device or the terminal device, and can be related to the number of uplink time units in one uplink and downlink period, or the number of unknown time units in one uplink and downlink period.
  • T can be N U, T , N unknown, T , N U, T + N unknown, T , floor(N U, T / x) * x, floor((N U, T +N Unknown,T )/x)*x,floor(N unknown,T /x)*x,ceil((N U,T +N unknown,T )/x)*x,ceil(N unknown,T /x) Any one or more of *x.
  • N UP1 T can be configured by the network device, or can be calculated by the network device or the terminal device, and can be compared with the first type.
  • the number of uplink time units in the uplink and downlink periods may be related to the number of unknown time units in the first uplink and downlink period.
  • N UP1, T may be N U1, T , N unknown1, T , N U1, T +N unknown1,T ,floor(N U1,T /x)*x,floor((N U1,T +N unknown1, T )/x)*x,floor(N unknown1,T /x)*x,ceil ((N U1, T + N unknown1, T ) / x) * x, ceil (N unknown1, T / x) * x any one or more.
  • N UP2 T can be configured by the network device, or can be calculated by the network device or the terminal device, and can be compared with the second type.
  • the number of uplink time units in the uplink and downlink periods may be related to the number of unknown time units in the second uplink and downlink period.
  • N UP2, T may be N U2, T , N unknown2, T , N U2, T +N unknown2,T ,floor(N U2,T /x)*x,floor((N U2, T +N unknown2,T )/x)*x,floor(N unknown2,T /x)*x,ceil ((N U2, T + N unknown2, T ) / x) * x, ceil (N unknown 2, T / x) * x any one or more.
  • the network device or the terminal device may determine the frame position of the paging message according to the number of time units N UP, T in the uplink and downlink period, and the index i DU of the uplink and downlink period in which the paging message is located in the paging occasion.
  • the i DU may also be expressed as the number of uplink and downlink periods between the first paging message and the paging message corresponding to the SS/PBCH block indexed i or the paging message indexed i.
  • i DU can be based on floor(f(x,i)/N P,slot,T ),ceil(f(x,i)/N P,slot,T ),f(x,i)/N P,slot, Any formula in T is determined.
  • I can be expressed as I initial +i DU *N UP,T , and the position of the frame where the paging message is located can be floor((I initial +i DU *N UP,T +f(x,i))/ N slot, frame ) or I initial +i DU *N UP, T +f(x,i).
  • I can be expressed as I initial. +i DU1 *N UP1,T
  • the position of the frame where the paging message is located may be floor((I initial +i DU1 *N UP1,T +f(x,i))/N slot,frame ) or I initial +i DU1 *N UP1,T +f(x,i).
  • i DU1 can be based on floor(f(x,i)/N P,slot1,T ),ceil(f(x,i)/N P,slot1 , T ), f(x, i) / N P, slot 1, T is determined by any formula, where K PD2 represents I initial to N slot 1, and the number of time slots in the frame that can be used to transmit paging messages is calculated.
  • the formula can be K34*N P, slot1, T , where K34 can be any of the following formulas: floor((N slot1,frame -I initial )/N slot1,T ) or DC((N slot1,frame -I Initial )/N slot1,T ) or N slot1,frame -I initial )/N slot1,T .
  • K34 can be any of the following formulas: floor((N slot1,frame -I initial )/N slot1,T ) or DC((N slot1,frame -I Initial )/N slot1,T ) or N slot1,frame -I initial )/N slot1,T .
  • floor(f(x, i) is greater than and/or equal to K PD2
  • I can be expressed as I initial.
  • the position of the frame where the paging message is located may be floor((I+f(x,i))/N slot,frame ) or I+f( x,i).
  • i DU2 can be based on floor((f(x,i)-K34*N P,slot1,T )/N P,slot2,T ),ceil((f(x,i)-K34*N P, slot1, T ) / N P, slot2, T ), (f(x, i) - K34 * N P, slot1, T ) / N P, slot 2, T is determined by any formula.
  • the network device determines, according to the paging message, the uplink and downlink periodic index i DU in the corresponding paging frame, the frame and the start time unit index of each paging message in the corresponding uplink and downlink period, where the paging message is located in each frame.
  • indexes in this application are numbered from 0, and may be numbered from any numerical values such as 1, 2, and 3.
  • the time unit location of the paging message in a frame may be based on an uplink-downlink ratio, an uplink-downlink period time unit number in an uplink and downlink period, an index of a paging message or a corresponding SS/PBCH block index, and a paging message.
  • One or more of the durations of the determination may be based on an uplink-downlink ratio, an uplink-downlink period time unit number in an uplink and downlink period, an index of a paging message or a corresponding SS/PBCH block index, and a paging message.
  • An deterministic method is: first determining an uplink and downlink period index of the paging message, the index of the period is an index i DU, Frame of the uplink and downlink period in the paging frame , and determining a time unit of the paging message in the uplink and downlink period index.
  • the uplink and downlink periodic index of each paging message in the corresponding paging frame is indexed by the uplink and downlink periodicity in the paging frame in which the first paging message is located, and the start time unit location and the first paging message
  • the relative time unit offset f(x, i) between one paging message, the number of uplink and downlink periods in the paging frame, and the number of time units that can be used as the transmission paging message in the uplink and downlink period determine.
  • the method of Frame is K2+g(i, x, N P, slot, T ), or (K2+g(i) , x, N P, slot, T )) mod K3.
  • K3 can represent the number of uplink and downlink cycles within a frame.
  • the formula g(i, x, N P, slot, T ) can be floor(f(x,i)/N P,slot,T ),ceil(f(x,i)/N P,slot,T ), Any of f(x,i)/N P, slot, T.
  • K2 K31+K32 or K21.
  • the formula g(i, x, N P, slot1, T ) can be floor(f(x,i)/N P,slot1,T ),ceil(f(x,i)/N P,slot1,T ), Any one of f(x,i)/N P, slot1, T.
  • the time unit index (usually the start time index) of the paging message in the corresponding uplink and downlink period is the time unit location of the first paging message in the corresponding uplink and downlink period and the respective paging message and the first one
  • the relative time unit offset f(x, i) of the paging message, and the number of time units in the uplink and downlink periods or the number of time units that can be used as the transmission paging message during the uplink and downlink periods are determined.
  • the method for determining the time unit index of the paging message in the uplink and downlink periods may be (O+f(x, i)) mod N P, slot, T or (I initial + f(x, i)) mod N P, slot, T ; where O denotes the offset between the first paging message in the paging occasion and the start time unit of the uplink and downlink period in which the paging period is located, and the index of the paging cycle can start from the paging occasion
  • the position calculation can also be calculated from the starting position within the paging frame.
  • Another determination method is: according to the first paging message in the first paging frame relative to the time unit position I, the relative time unit offset of the paging message corresponding to each beam and the first paging message f (x) i) and the number of time units within a paging frame determine the start time unit of the paging message corresponding to each beam.
  • the time unit location of the paging message is determined according to the number of time units N U, P, T of the uplink and downlink periods in the uplink and downlink period and the index i DU of the uplink and downlink periods in the paging occasion.
  • I can be expressed as I initial +i DU *N UP,T
  • the location of the time unit of the paging message can be I initial +i DU *N UP, T +f(x,i), or (I initial +i DU *N UP, T +f(x,i)) mod N slot, frame .
  • I can be expressed as I initial. +i DU1 *N UP1,T , then the starting position of the time slot in which the paging message is located may be floor((I initial +i DU1 *N UP1,T +f(x,i)mod N slot,frame ) or I initial +i DU1 *N UP1,T +f(x,i).
  • I can be expressed as I initial + K34 * N UP1, T + i DU2 * N UP2, T , then the position of the frame where the paging message is located can be (I + f ( x, i)) mod N slot, frame or I+f(x, i).
  • the paging message in this application refers by default to a paging message corresponding to an SS/PBCH block with index i or a paging message with index i.
  • the SS/PBCH block whose index is i may be an index of the actually transmitted SS/PBCH block, or may be an SS/PBCH block index that may be transmitted.
  • the solution of the present application can also be applied to system information message transmission.
  • the paging message in the present application can be replaced by a system information message, and the paging occasion can be associated with the field. All system information within the actual transmission or possibly the SS/PBCH block.
  • the system information message herein may refer to a system information message configured by SIB1 (system information block 1, system information block 1) or RMSI (remaining minimum system information), or may be transmitted in a system information window.
  • SIB1 system information block 1, system information block 1
  • RMSI replacement minimum system information
  • the system information message may also be referred to as including one system information block or multiple system block blocks.
  • the system information message may also refer to the system information block of SIB1, or the RMSI system information block. Where RMSI can also be called SIB1 and/or SIB2
  • the transmission of the system information message described herein may refer to the transmission of a system information message over a redundant version of its period.
  • the redundancy version may be one of four redundancy versions in a TTI (Transmission Time Interval) period of the system information message, or may be an eight redundancy version in a TTI period of the system information message.
  • 8 redundancy versions or 4 redundancy versions or 16 redundancy versions or 32 redundancy versions in the TTI period of the system information message may indicate that the system information message is within its TTI period Repeated transmission, which may include a repeated transmission of system information messages for all SS/PBCH blocks within the corresponding field.
  • RVS1 can be ⁇ RV0, RV1, RV2, RV3 ⁇ or ⁇ RV0, RV2, RV3, RV1 ⁇ or ⁇ RV0, RV2, RV1, RV3 ⁇
  • RVS2 can be 2 repeated transmissions of each RV version in RVS1, for example, RVS1 can be ⁇ RV0, RV1, RV2, RV3 ⁇
  • RVS2 can be ⁇ RV0, RV0, RV1, RV1, RV2, RV2, RV3, RV3 ⁇
  • RVS3 can be ⁇ RVS30, RVS31, RVS32, RVS33 ⁇ or ⁇ RVS30, RVS32, RVS33, RVS31 ⁇ or ⁇ RVS30, RVS32, RVS31, RVS33 ⁇ .
  • RVS30 can be ⁇ RV0, RV0, RV0, RV0 ⁇
  • RVS31 can be ⁇ RV1, RV1, RV1, RV1 ⁇
  • RVS32 can be ⁇ RV2, RV2, RV2, RV2 ⁇
  • RVS33 can be ⁇ RV3, RV3, RV3, RV3 ⁇ .
  • the RV version may be distributed as RVS1, RVS1, RVS1, RVS1, RVS1, RVS1, RVS1, RVS1, RVS1 or RVS2, RVS2, RVS2, RVS2 or RVS3, RVS3.
  • RV version may be distributed as RVS1, RVS1, RVS1, RVS1, RVS1 or RVS2, RVS2 or RVS3.
  • the distribution of the RV version may be RVS1, RVS1 or RVS2.
  • the RV version may be distributed as RVS1 or ⁇ RV0, RV0, RV1, RV1 ⁇ or ⁇ RV0, RV0, RV3, RV3 ⁇ or ⁇ RV0, RV0, RV2, RV2 ⁇ or ⁇ RV1, RV1, RV2, RV2 ⁇ or ⁇ RV1, RV1, RV0, RV0 ⁇ or ⁇ RV1, RV1, RV2, RV2 ⁇ or ⁇ RV1, RV1, RV3, RV3 ⁇ .
  • the distribution of the RV version may be ⁇ RV0, RV3 ⁇ or ⁇ RV0, RV1 ⁇ or ⁇ RV0, RV2 ⁇ .
  • the parameters used in the foregoing embodiments may be defined by a standard, or may be pre-agreed by the network device and the terminal device, or may be configured by the network device, and sent to the terminal device in advance, and the configuration information may be carried on the physical broadcast channel.
  • Physical Broadcast Channel PBCH
  • RMSI System Information Block
  • SIB System Information Block
  • SIB2 SIB3
  • MAC-CE Media Access Control-control element
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • At least one means one or more, and "a plurality” means two or more.
  • the character "/” generally indicates that the contextual object is an "or” relationship.
  • "At least one of the following” or a similar expression thereof refers to any combination of these items, including any combination of a single item or a plurality of items. For example, at least one of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, c may be single or multiple .
  • FIG. 5 shows a schematic block diagram of an apparatus 1000 for signal transmission in an embodiment of the present application.
  • a device for transmitting a signal may be a network device, or may be a chip or a function module in the network device, including:
  • the processing module 1001 is configured to: according to the paging message corresponding to the first beam, the slot position in the first paging frame, the paging message corresponding to each beam, and the slot offset of the paging message corresponding to the first beam.
  • f(x, i) and the number of slots N in a paging frame that can be used to transmit a paging message and/or the number of slots in a paging frame determine the paging frame in which the paging message corresponding to each beam is located,
  • the paging frame is a frame included in a paging occasion;
  • the sending module 1002 is configured to send the paging message by using a corresponding beam in a corresponding paging frame.
  • a receiving module (not shown) may be further included: for performing a receiving class step.
  • the paging message is sent through multiple beams, so there are multiple paging messages, usually one beam corresponds to one paging message, and may also correspond to multiple paging messages; since usually one beam corresponds to one SS block or SS /PBCH block, the paging message corresponding to the beam may also be referred to as a paging message corresponding to the SS block or the SS/PBCH block.
  • the time slot is an example of a time unit, and may be replaced by other time units, such as a subframe, one or more OFDM symbols, and the like.
  • the slot position I is usually a relative slot position, and may also be an absolute slot position;
  • the slot offset f(x, i) is usually a relative slot offset or an absolute slot offset.
  • the receiving module and the transmitting module can be combined into a transceiver module.
  • the foregoing device may include only the sending module and the receiving module, and may also include a receiving module, a processing module, and a sending module.
  • the sending module is only used to send the random access preamble associated with the paging packet where the terminal device is located.
  • the device 1000 for signal transmission may correspond to the network device in the foregoing method embodiment, and may have any function of the network device in the method.
  • the device 1000 for signal transmission may correspond to the network device in the foregoing method embodiment, and may have any function of the network device in the method.
  • the method embodiment and details are not described in detail.
  • a device for signal transmission 2000 is also disclosed, which is a network device, or a chip or a function module in a network device;
  • the processing module 2001 is configured to: according to the paging message corresponding to the first beam, in the first paging frame slot position I, the paging message corresponding to the terminal device and the slot offset of the paging message corresponding to the first beam f(x, i), and the number of slots N in a paging frame that can be used to transmit a paging message and/or the number of slots in a paging frame determine the paging frame in which the paging message corresponding to the terminal device is located,
  • the paging frame is a frame included in a paging occasion;
  • the receiving module 2002 is configured to receive the paging message by using a corresponding beam in a corresponding paging frame.
  • a sending module (not shown) may be further included: for performing a sending class step.
  • the paging message is sent through multiple beams, so there are multiple paging messages, usually one beam corresponds to one paging message, and may also correspond to multiple paging messages; but one terminal device is usually received through one beam.
  • the paging message may be referred to as a paging message corresponding to the SS block or the SS/PBCH block, because the paging message corresponding to the beam may be referred to as an SS block or an SS/PBCH block.
  • the above solution can determine only the paging frame where the paging message corresponding to the terminal device is located from the perspective of a terminal device.
  • a time slot is an example of a time unit. Therefore, a time slot may be replaced by a time unit, or other time units may be substituted, such as a subframe, one or more OFDM symbols, and the like.
  • the slot position I is usually a relative slot position, and may also be an absolute slot position; the slot offset f(x, i) is usually a relative slot offset or an absolute slot offset.
  • the device for signal transmission is a chip in a terminal device or a network device
  • the chip includes a processing module and a transceiver module.
  • the transceiver module can be implemented by a transceiver, and the processing module can be implemented by a processor.
  • the transceiver module can be, for example, an input/output interface, a pin or a circuit, and the like.
  • the processing module can execute computer executed instructions stored by the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read-only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the processing module in each of the above embodiments may be replaced by a processor 3002, the transmitting module may be replaced by a transmitter 3003, and the receiving module may be replaced by a receiver.
  • the transmitting operation, the receiving operation, and the related processing operations in the respective method embodiments are respectively performed, and the transmitter and the receiver may constitute a transceiver.
  • the processor can be one or more.
  • the processor can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic device.
  • the transmitter and receiver can form a transceiver. It is also possible to further include an antenna, and the number of antennas may be one or more.
  • a storage unit (not shown) may be further included for storing related information, and the memory may be a single device or integrated in the processor.
  • the storage unit may be a memory (not shown) for storing computer executable program code, wherein when the program code includes instructions, when the processor executes the instructions, the instructions cause the network
  • the device or terminal device performs the corresponding steps in the method embodiment.
  • bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as buses in the figure.
  • 7 is only a schematic diagram, and may include other components or only some components, including, for example, a transmitter and a receiver; or only a transmitter, a receiver, and a processor.
  • the various devices or parts of the device of FIG. 7 above may be integrated into a chip for implementation, such as integration into a baseband chip.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read-only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the processor can be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous SDRAM
  • DDR SDRAM double data rate synchronous SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the chip system further comprises a memory for storing distributed units, centralized units, and program instructions and data necessary for the terminal device and the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种寻呼消息的传输方法,包括:根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移,以及寻呼帧内可以用作传输寻呼消息的时隙数目或所述寻呼帧内的时隙数目确定各个波束对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;在相应的寻呼帧通过相应波束发送所述寻呼消息。该寻呼消息的传输方法适用于波束扫描的场景。

Description

一种寻呼消息的传输方法 技术领域
本申请涉及通信领域,更具体地,涉及一种寻呼消息传输的方法和装置。
背景技术
系统未来的第五代(5th Generation,5G)通信中采用比长期演进(Long Term Evolution,LTE)更高的载波频率,如38GHz、72GHz等6GHz以上的载波频率,从而实现更大带宽、更高传输速率的无线通信。由于载波频率较高,无线信号在空间传播过程中经历更加严重的衰落,甚至接收端可能难以检测出该无线信号。为此,5G通信系统中将采用波束赋形(beamforming)技术来获得良好方向性的波束。波束赋形技术用于将传输信号的能力限制在某个波束方向内,从而增加信号发送和接收的效率。
然而,在采用波束成型技术的通信网络中,首先需要将发送波束和接收波束匹配,使得发送端到接收端的增益最大,否则无法获取比较高的通信效率。而且,为了达到全覆盖,要求基站端波束进行扫描。波束扫描将带来很多问题,其中之一就是广播信息传输的开销增大,尤其是寻呼信息。
另外,LTE中,寻呼信息通过下行固定时隙为来发送,也没考虑到波束扫描的场景,因此不能适用于波束扫描的场景。
发明内容
本申请提供一种寻呼消息传输的方法和装置,使得寻呼消息的传输适用于波束扫描的场景。
一方面,提供了一种寻呼信息的传输方法,包括:
根据第一个波束对应的寻呼消息在第一寻呼帧内时隙位置I,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的时隙偏移f(x,i),以及一个寻呼帧内可以用作传输寻呼消息的时隙数目N和/或一个寻呼帧内的时隙数目确定各个波束对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;在相应的寻呼帧通过相应波束发送所述寻呼消息。
上述方案由网络设备执行,相应的还提供了一种寻呼信息的传输装置,该装置为网络设备或网络设备的芯片或功能模块,包括:
处理模块:用于根据第一个波束对应的寻呼消息在第一寻呼帧内时隙位置I,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的时隙偏移f(x,i),以及一个寻呼帧内可以用作传输寻呼消息的时隙数目N和/或一个寻呼帧内的时隙数目确定各个波束对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;发送模块:用于在相应的寻呼帧通过相应波束发送所述寻呼消息。另外,还可以进一步包括接收模块:用于执行接收类步骤。
上述方案中,寻呼消息通过多个波束进行发送,因此有多个寻呼消息,通常一个波束对应一个寻呼消息,也可以对应多个寻呼消息;由于通常一个波束对应一个SS block (synchronization signal block,同步信号块)或SS/PBCH block(synchronization  signal/physical broadcast channel block,同步信号/物理广播信道块),波束对应的寻呼消息也可以称为SS block或SS/PBCH block对应的寻呼消息。
上述方案中,时隙是一个时间单位的举例,也可以有其它的时间单位替代,如子帧,一个或多个OFDM(orthogonal frequency division multiplexing,正交频分复用)符号等。时隙位置I通常为相对时隙位置,也可以为绝对时隙位置;时隙偏移f(x,i)通常为相对时隙偏移,也可以为绝对时隙偏移。
结合上述各方案,发送所述寻呼消息之前,进一步包括:根据各个波束对应的寻呼消息在相应的寻呼帧内的上下行周期索引i DU,Frame和各个波束对应的寻呼消息在相应上下行周期内的起始时隙索引确定各个波束对应的寻呼消息在相应的寻呼帧的时隙,例如:寻呼帧的起始时隙。
结合上述各方案,所述时隙位置I可以由一个上下行周期内可以用作传输寻呼消息的时隙数目,第一个波束对应的寻呼消息在第一寻呼帧内的时间偏移和上下行周期的时隙数目中的一项或多个确定。时隙位置I为固定值,可以为寻呼时机的第一个寻呼帧内从时隙0到第一个寻呼消息起始时隙排除了不可传输寻呼消息的时隙的位置。
结合上述各方案,发送所述寻呼消息之前,进一步包括:根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置I,各个波束对应的寻呼消息与第一个寻呼消息的相对时隙偏移f(x,i)和一个寻呼帧内的时隙数目确定各个波束对应的寻呼消息的时隙,例如:起始时隙。
结合上述各方案,计算各个波束对应的寻呼消息的时隙位置时,例如:起始时隙位置,所使用的第一个寻呼消息在第一寻呼帧内相对时隙位置I由一个上下行周期内不可以用作传输寻呼消息的时隙数目,一个上下行周期内可以用作传输寻呼消息的时隙数目,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移f(x,i)中的一项或多项确定。i为寻呼消息的索引、波束索引、SS block索引或SS\PBCH block索引,索引也可以为编号,I随着i的变化而变化,因此I为变量。
结合上述各方案,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移f(x,i)由各个寻呼消息的索引或各个寻呼消息对应的SS/PBCH block索引,以及寻呼消息监督窗的持续时间x中一项或多项确定;SS/PBCH block索引也可以为波束索引或SS block索引。
结合上述各方案,一个寻呼帧内可以用作传输寻呼消息的时隙数目N由一个寻呼帧的时隙数目,一个上下行周期内时隙数目和一个上下行周期内可用作传输寻呼消息的时隙数目中一项或多项确定。
结合上述各方案,所述各个波束对应的寻呼消息在相应的寻呼帧内的上下行周期索引由第一个波束对应的寻呼消息所在的寻呼帧内上下行周期索引,所述各个波束对应的寻呼消息与第一个波束对应的寻呼消息之间的相对时隙偏移f(x,i),一个寻呼帧内的上下行周期数目和一个上下行周期内可以用作传输寻呼消息的时隙数目中一项或多项确定。
结合上述各方案,各个波束对应的寻呼消息的在相应上下行周期内的起始时隙索引由第一个波束对应的寻呼消息在相应的上下行周期内的时隙位置、所述各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移f(x,i),以及一个上下行周期内的时隙的数目或一个上下行周期内可以用作传输寻呼消息的时隙数目中一项或多项确定。
上述方案从网络设备角度介绍本申请的技术方案,以下从一个终端设备作为接收方的 角度介绍该方案;
一种寻呼信息的传输方法,包括:根据第一个波束对应的寻呼消息在第一寻呼帧内时隙位置I,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的时隙偏移f(x,i),以及一个寻呼帧内可以用作传输寻呼消息的时隙数目N和/或一个寻呼帧内的时隙数目确定终端设备对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;在相应的寻呼帧通过相应波束接收所述寻呼消息。
上述方案由终端设备执行,相应的还提供了一种寻呼信息的传输装置,该装置为终端设备或终端设备的芯片或功能模块,包括:
处理模块:用于根据第一个波束对应的寻呼消息在第一寻呼帧内时隙位置I,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的时隙偏移f(x,i),以及一个寻呼帧内可以用作传输寻呼消息的时隙数目N和/或一个寻呼帧内的时隙数目确定终端设备对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;接收模块:用于在相应的寻呼帧通过相应波束接收所述寻呼消息。另外,还可以进一步包括发送模块:用于执行发送类步骤。
上述各方案中,寻呼消息通过多个波束进行发送,因此有多个寻呼消息,通常一个波束对应一个寻呼消息,也可以对应多个寻呼消息;但一个终端设备通常通过一个波束接收到所述寻呼消息,由于通常一个波束对应一个SS block或SS/PBCH block,波束对应的寻呼消息也可以称为SS block或SS/PBCH block对应的寻呼消息。终端设备对应的寻呼消息也就是终端设备所在的波束对应的寻呼消息,上述方案从一个终端设备角度描述,仅确定该终端设备对应的寻呼消息所在寻呼帧即可。
上述各方案中,时隙是一个时间单位的举例,也可以有其它的时间单位替代,如子帧,一个或多个OFDM符号等。时隙位置I通常为相对时隙位置,也可以为绝对时隙位置;时隙偏移f(x,i)通常为相对时隙偏移,也可以为绝对时隙偏移。
结合上述各方案,接收所述寻呼消息之前,进一步包括:根据终端设备对应的寻呼消息在相应的寻呼帧内的上下行周期索引i DU,Frame和终端设备对应的寻呼消息在相应上下行周期内的起始时隙索引确定终端设备对应的寻呼消息在相应的寻呼帧的时隙,例如:起始时隙。起始时隙索引也可以为时隙位置。
结合上述各方案,所述时隙位置I可以由一个上下行周期内可以用作传输寻呼消息的时隙数目,第一个波束对应的寻呼消息在第一寻呼帧内的绝对的时间偏移和上下行周期的时隙数目中的一项或多个确定。
结合上述各方案,接收所述寻呼消息之前,进一步包括:根据终端设备对应的寻呼消息在第一寻呼帧内时隙位置I,终端设备对应的寻呼消息与第一个寻呼消息的时隙偏移f(x,i)和一个寻呼帧内的时隙数目中一项或多项确定终端设备对应的寻呼消息的时隙,例如:起始时隙。
结合上述各方案,计算终端设备对应的寻呼消息的起始时隙位置时,所使用的第一个寻呼消息在第一寻呼帧内相对时隙位置I由一个上下行周期内不可以用作传输寻呼消息的时隙数目,一个上下行周期内可以用作传输寻呼消息的时隙数目,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移f(x,i)中的至少一项确定。
结合上述各方案,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移f(x,i)由终端设备的寻呼消息的索引或终端设备的寻呼消息对应的SS/PBCH block索引,以及寻呼消息监督窗的持续时间x中一项或多项确定;SS/PBCH block索引也可以为波 束索引或SS block索引。
结合上述各方案,一个寻呼帧内可以用作传输寻呼消息的时隙数目N由一个寻呼帧的时隙数目,一个上下行周期内时隙数目和一个上下行周期内可用作传输寻呼消息的时隙数目中一项或多项确定。
结合上述各方案,所述终端设备对应的寻呼消息在相应的寻呼帧内的上下行周期索引由第一个波束对应的寻呼消息所在的寻呼帧内上下行周期索引,所述终端设备对应的寻呼消息的起始时隙位置与第一个波束对应的寻呼消息之间的相对时隙偏移f(x,i),一个寻呼帧内的上下行周期数目和一个上下行周期内可以用作传输寻呼消息的时隙数目中一项或多项确定。
结合上述各方案,终端设备对应的寻呼消息的在相应上下行周期内的起始时隙索引由第一个波束对应的寻呼消息在相应的上下行周期内的时隙位置和所述终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移f(x,i),以及一个上下行周期内的时隙的数目或一个上下行周期内可以用作传输寻呼消息的时隙数目中一项或多项确定。
上述各个方案中,所述各个波束对应的寻呼消息的与第一个波束对应的寻呼消息之间的相对时隙偏移f(x,i)可以为各个波束对应的寻呼消息的起始时隙位置的与第一个波束对应的寻呼消息起始时隙位置之间的相对时隙偏移。
上述各个方案中,时隙位置通常为起始时隙位置,可以通过时隙索引来反映,因此时隙位置或起始时隙位置也可以为时隙索引或起始时隙索引。
上述方案提到的各个参数可以由网络设备配置,下发给终端设备,配置信息可以承载在物理广播信道(Physical Broadcast Channel,PBCH)、剩余最小系统信息(Remaining minimum system information,RMSI)、系统信息块(System Information Block,SIB)1、SIB2、SIB3,媒体接入控制控制元素(Media Access control-control element,MAC-CE)、下行控制信息(Down link control information,DCI)、无线资源控制(Radio Resource Control,RRC)以及系统信息中的任意一项;另外,各个参数也可以由标准规定,或者网络设备和终端设备预先约定。
上述两个方案分别从终端设备和网络设备的角度进行描述,其它特征参考上面各个方面的描述即可。
上述方案中的寻呼消息传输适用于波束扫描的场景,进一步的,考虑到帧结构中上行传输及下行传输,传输寻呼消息时避免了上行传输的冲突。
另外,上述各个装置包括的各个模块具有实现上述各个方法对应的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。模块也可以称为单元。例如:上述方法中提到的各个参数的确定或计算由处理模块实现,参数的发送或接收由发送模块或接收模块实现。
在一种可能的设计中,上述各个装置可以包括:处理单元和收发单元,收发单元可以包括发射单元(模块)和接收单元(模块),分别执行上述各个方法中发送及接收的相应步骤,处理单元执行上述各个方法中除了发送及接收外的其它步骤;所述收发单元例如可以是收发器,用于执行上述方法中的收发步骤;所述收发器包括射频电路,也可以包括发射器和接收器,分别用于执行方法中的发送类的步骤和接收类的步骤;所述处理单元可以是处理器,用于执行上述各方法中除发送接收之外的步骤,处理单元或处理器可以为一个或多个。
可选地,所述装置还包括存储单元,该存储单元可以是存储器。当装置备包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该装置执行上述任意方面的的寻呼信息的传输方法。
在另一种可能的设计中,当该装置为芯片时,该芯片可以包括:处理单元和收发单元,所述处理单元例如可以是处理器,处理器可以为至少一个;所述收发单元例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的信号检测的方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面信号检测的方法的程序执行的集成电路。
另一方面,提供了一种通信系统,该通信系统包括:上述各个方案中提到的终端设备和网络设备,它们共同完成上述各个方法。
又一方面,提供了一种计算机存储介质或芯片,该计算机存储介质或芯片中存储有程序代码,该程序代码用于指示执行各个方法的指令。
又一方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各个方法。
附图说明
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例的寻呼消息传输方法流程图;
图3是本申请实施例的寻呼时机的结构示意图;
图4是本申请一个实施例的寻呼时机帧结构示意图;
图5是本申请一个实施例的寻呼消息传输装置的示意性框图;
图6是本申请另一个实施例的寻呼消息传输装置的示意性框图;
图7是本申请又一个实施例的寻呼消息传输装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算机设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实 施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请一个通信系统的示意图。图1中的通信系统可以包括用户设备(user equipment,UE)10和网络设备20。网络设备20用于为用户设备10提供通信服务并接入核心网,用户设备10通过搜索网络设备20发送的同步信号、广播信号等接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过用户设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
图2示出了本申请一个应用场景的示意图。
201,网络设备可以实时检测寻呼消息,并采用一个或多个方向的波束发送寻呼消息。
网络设备可以直接采用一个或多个方向的波束发送寻呼消息,应理解,下述实施例中可以将在执行步骤201之后直接执行寻呼机制称为“波束扫描寻呼机制”。
具体地,寻呼消息可以包括寻呼消息的控制资源信息和/或寻呼消息的数据资源信息,也可以是寻呼消息的控制资源集合(Control Resource Set,CORESET),还可以是下行控制信息(Downlink control information,DCI),其中,控制资源信息可以是物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载;该数据资源信息可以是物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。同步信号块也可以称为同步信号/PBCH(Physical broadcast channel,物理广播信道),可以包含PBCH,PSS(primary synchronization signal,主同步信号),SSS(Secondary synchronization signal,辅同步信号)中的至少一个。寻呼消息可以包括寻呼消息的PDCCH和/或寻呼消息的PDSCH。
寻呼消息中的数据资源信息中可以携带全部或者部分的被寻呼的UE分组信息,也可以携带部分被寻呼的UE的截断标识(identity,ID)信息,也可以携带部分或全部的被寻呼UE的UE ID信息,也可以携带全部或部分的UE分组信息。寻呼消息也可以称为寻呼索引或寻呼指示。寻呼分组可以是UE分组,可以是基于UE ID进行的分组,也可以是基于不同的同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)进行的分组,也可以是基于寻呼索引进行的分组,也可以是对一个寻呼时机下终端设备进行分组,也可以是对一个追踪区域的终端设备进行的分组,也可以是对一个SS/PBCH block对应的空域参数下的终端设备进行的分组,还可以是三者的组合部分或者全部的组合,例如是对一个追踪区域下的寻呼时机的寻呼分组。
如图3所示,终端设备可以以非连续性(discontinuous reception,DRX)接收周期苏醒进行接收信号,该DRX周期可以包括至少一个寻呼时机,至少一个终端设备可以在同一个寻呼时机上进行信号接收,且在一个DRX周期内不同寻呼时机分别用于服务不同的终端设备。也就是说,网络设备与某一个终端设备进行信号传输的寻呼时机是固定的。
应理解,本申请实施例中,在寻呼时机中传输的信号可以是寻呼指示消息,也可以是 寻呼消息,随机接入前导,还可以同时是寻呼指示消息和寻呼消息,本申请对此不仅限定。
还应理解,时间单元可以是帧、子帧、时隙或迷你时隙,正交频分复用符号中的任意一种或者多种的组合,本申请对此不进行限定。迷你时隙可以为N个OFDM符号,其中N可以为1,2,4,7,12,14中的任意一个或多个值。
也就是说,每个寻呼时机可以用于寻呼多个终端设备,而一个终端设备只能在一个DRX周期内的一个寻呼时机上接收寻呼消息。
本申请提到的监督窗、寻呼消息监督窗、寻呼消息控制资源时机持续时间或寻呼消息持续时间可以是指发送准共址到对应的SS/PBCH block的寻呼消息的一个时间段,该时间段内有准共址到对应的SS/PBCH block的寻呼消息,例如准共址到第i个SS/PBCH block的寻呼消息的持续时间是2个时隙,它可以在第一个时隙上发送寻呼消息也可以在第二个时隙上发送寻呼消息,这2个时隙可以为寻呼消息的监督窗或寻呼消息控制资源时机持续时间,或寻呼消息的持续时间;例如准共址到第i个SS/PBCH block的寻呼消息的持续时间是1个时隙,它可以在该时隙前几个符号上发送寻呼消息,也可以在中间几个符号上发送寻呼消息,还可以在最后几个符号上发送寻呼消息,该时隙可以为寻呼消息的监督窗或寻呼消息控制资源时机持续时间,或寻呼消息的持续时间。这里所述的寻呼消息可以为寻呼消息的控制资源的搜索空间,也可以寻呼消息的控制资源,也可以指寻呼消息的物理下行控制信道位置,也可以为寻呼消息的数据资源的位置。
可选地,网络设备可以在步骤201之前,通过配置信息向终端设备发送寻呼时机中的信息或时频资源与同步信号块(Synchronous signal blocks,SS blocks)/物理广播信道(Physical Broadcast Channel,PBCH)块的映射关系,以及SS/PBCH块与随机接入时机周期中的随机接入时机的映射关系。寻呼时机中的信息可以是寻呼指示消息,可以是寻呼指示消息的控制信息,也可以是寻呼指示消息的数据信息,也可以是寻呼消息的数据信息,也可以是寻呼消息的控制信息。寻呼时机中的时频资源可以是寻呼指示消息的控制信息时频资源,也可以是寻呼指示消息的数据信息时频资源,也可以是寻呼信息的控制信息时频资源,也可以是寻呼信息的数据信息时频资源。
应理解,寻呼时机包括至少一个寻呼指示消息或寻呼消息,寻呼时机中的寻呼指示消息或寻呼消息与SS/PBCH块可以是一一对应,也可以是一对多,也可以是多对一的进行关联的。
应理解,随机接入时机与SS/PBCH块可以是一一对应,也可以是一对多,也可以是多对一的关联关系。
可选地,寻呼指示消息或寻呼消息与SS/PBCH块具有映射关系可以理解为在第一寻呼时机中传输寻呼指示消息或寻呼消息采用的波束与在SS/PBCH块传输SS/PBCH采用的波束相同。
本申请中的关联与也可以称为映射,对应,相关,分配。当随机接入周期或随机接入集合与寻呼时机相关的时候,可以为该寻呼时机的终端设备在该随机接入周期内的随机接入时机上发送随机接入前导,可以用于请求寻呼消息,或上报波束,寻呼消息和SS/PBCH block关联的时候,也可以表示它们具有准共址(quasi co-located,QCL)关系,可以采用相同的时延扩展或相同的多普勒扩展或相同的平均增益,相同的平均时延,或相同的空域参数发送或接收信号,或采用相同的波束发送或接收信号。
应理解,本申请实施例的同步信号块可以包括SS(Synchronization Signal,同步信号) 和/或PBCH。SS可以包含PSS,也可以包含SSS也可以同时包含PSS和SSS。
可选地,该寻呼指示消息可以携带寻呼分组的标识(identity,ID)。每个寻呼分组可以包括多个终端设备,且每个寻呼分组具体包括哪些终端设备可以是终端设备与网络设备预先配置的,也可以是预先约定的,可以按照一定的规则预先约定的。例如寻呼指示消息通过数据比特顺序对应不同的寻呼分组或不同的寻呼分组,例如寻呼指示消息通过数据比特对应不同的寻呼分组或不同的寻呼分组。
202,终端设备接收到寻呼消息。
终端设备在相应的寻呼帧的寻呼时间单元接收所述寻呼消息。
网络设备通过不同方向的波束发送寻呼消息,便于不同位置的终端设备均可以接收到寻呼消息,针对一个终端设备来说,可以采用相应方向的波束在相应的寻呼帧的寻呼时间单元接收到所述寻呼消息,或在相应的波束方向在相应的寻呼帧的寻呼时间单元接收到所述寻呼消息。
可选地,该寻呼消息还可以携带系统更新消息、地震灾害消息、火山灾害消息和海啸灾害消息等一种或多种的灾害预警的消息。
该寻呼消息可以携带被寻呼的终端设备的身份识别信息(UE ID)。
上述过程中,寻呼消息的传输是下行信号,每一个寻呼消息可能关联或QCL到一个SS/PBCH block,一个SS/PBCH block通常对应一个波束,当的SS/PBCH block的数目比较多的时候,下行信号的持续时间比较长。然而根据现有的协议,上下行周期(semi-static DL/UL assignment period)有多种,可以是0.625ms,1.25ms,2.5ms,0.5ms,1ms,2ms,5ms,10ms周期,对于120KHz的情况下,上下行周期的时隙数目有4,5,8,10,16,20,40,80等多种;对于60KHz的情况下,上下行周期的时隙数目有2,4,5,8,10,20,40等多种;对于30KHz的情况下,上下行周期的时隙数目有:1,2,4,5,10,20等多种;对于15KHz的情况下,上下行周期的时隙数目有:0.5,1,2,5,10等多种。因此寻呼消息的传输要与上下行周期大小和上下行配比相关,与SS/PBCH block的索引i对应的寻呼消息的时间单元位置与上下行周期大小和上下行配比相关。
上下行配比可以表示一个上下行周期中用于上行的时间单元数目,用于下行的时间单元数目,用于未知或可以配置的时间单元数目。上下行周期是指在系统帧中用于时间单元类型按照下行、未知和上行的排布,所持续的时间为一个上下行周期。上下行周期当中可以只有下行时间单元和未知时间单元,也可以只有未知时间单元和上行时间单元,也可以只有未知时间单元,也可以只有下行时间单元和上行时间单元,也可以只有上行时间单元,也可以只有下行时间单元,还可以同时包含下行时间单元,未知时间单元和上行时间单元。其中时间单元类型为未知的时间单元可以用作上行时间单元也可以用作下行时间单元,可以根据网络设备调度使用,也可以标准预先定义。未知的时间单元也可以称为灵活的时间单元。
在本申请当中涉及可以用作传输寻呼消息的时间单元和实际用作传输寻呼消息的时间单元。可以用作传输寻呼消息的时间单元表示一个帧内的时间单元可以用作传输寻呼消息的时间单元,可以包含全部或部分的下行时间单元,也可以包含全部或部分的未知时间单元,也可以包含全部或部分的下行时间单元和全部或部分的未知时间单元。实际实际用作传输寻呼消息的时间单元是值可以用作传输寻呼消息的时间单元由于各种原因,例如寻呼时机的偏移或起始位置,只能部分时间单元用作传输寻呼消息,这部分时间单元为实际 实际用作传输寻呼消息的时间单元。不能用作传输寻呼消息的时间单元可以为全部或部分的上行时间单元,也可以全部或部分的未知时间单元,也可以为全部或部分的上行时间单元和全部或部分的未知时间单元。
当终端设备接收到实际或可能传输的SS/PBCH block索引或数量可能比较大,例如对于60KHz的,UE接收到SS/PBCH block的索引为45,如果一个监督窗的窗长x(即,一个寻呼消息的时长或持续时间x,例如:2个时隙)为一个时间单元,则需要45个时间单元,因此至少需要在两个帧上接收寻呼消息,而且帧中还有可能有时间单元用于传输上行,不能用于下行传输。为了方便寻呼消息的传输,可以设置寻呼消息在一个系统帧内传输的寻呼消息的最大数目为K,或者设置一个帧内可以用来传输寻呼消息的时间单元最大数目为N,当寻呼消息的SS/PBCH block索引(包含候选的SS/PBCH block索引和/或实际传输的SS/PBCH block索引)大于K的时候,或者寻呼消息的时间单元数目大于N的时候,可以放到下一个帧或相邻的一个或多个帧内传输。系统帧本申请中也称为寻呼帧,简称为帧。
寻呼消息可以通过一个或多个波束发送,一个波束对应一个SS/PBCH block。SS/PBCH block也称为SS block。
在一个例子中,时间单元可以为时隙(slot),还可以是子帧,OFDM符号或小时隙(mini slot),下面结合附图4对上述内容进行说明:
假设一个PO(paging occasion,寻呼时机)包括两个帧(1st frame和2nd frame),这里称为寻呼帧,每个寻呼帧包括10个时隙(编号从0到9),每个时隙用一个方格来标识,一个寻呼帧包括2个上下行周期,每个上下行周期5个时隙,前3个时隙可以用于下行传输,后两个时隙用于上行传输(不能传输寻呼消息);则一个寻呼帧有6个时隙可以用于下行传输(图中深色部分),可以传输寻呼消息,即N=6;而一个寻呼帧有4时隙(白色部分)只用于上行传输,不能传输寻呼消息,假设每个寻呼消息需要占用2个时隙,则每个帧内最多传输3个寻呼消息,即K=3;如果波束数量大于3,每个波束对应一个寻呼消息,则需要多个帧进行寻呼消息的传输。这里以时隙作为一个时间单元,也可以为其它时间单元,如子帧。
例如:第一个波束对应的寻呼消息在1st frame的x部分(slot 6,7)传输,占用2个时隙,由于后面紧跟了2个上行传输时隙,不能传输寻呼消息,则第二个波束对应的寻呼消息在2nd frame的前2个时隙(slot 0,1)进行传输,第三个波束对应的寻呼消息在2nd frame的第3、6个时隙(slot 2,5)进行传输,因为第4、5个时隙(slot 3,4)是上行传输时隙,不能传输寻呼消息;第四个波束对应的寻呼消息在2nd frame的第7、8个时隙(slot 6,7)进行传输,接下来紧跟2个上行传输时隙(slot 8,9),如果还有其它波束对应的寻呼消息,则需要在该PO对应的下一个寻呼帧内传输,以此类推。
参考图4,还提供了以下实施例:
In NR paging,beam sweeping method is used to paging message transmission.Furthermore,maximum number of the SS/PBCH block QCLed with paging message is 64 for above 6GHz,8 for 3~6GHz and 4 for below 3GHz.If each paging monitor window during one slot,each PO may during a long consecutive time resource.However,consider the uplink message transmission,each PO have discrete time resource to avoid the collision with UL message transmission.For 15KHz,the DL/UL periodicity duration may be 0.5,1,2,5,10 slots; For 30 KHz,the DL/UL periodicity duration may be 1,2,4,5,10,20 slots;For 60 KHz,the DL/UL periodicity duration may be 2,4,5,8,10,20,40;For 120 KHz,the DL/UL periodicity duration may be 4,5,8,10,16,20,40,80.Slot type order of each periodicity can be DL-Unknow-UL.
So the paging message transmission should consider the various DL/UL periodicity and various DL slots number in each DL/UL periodicity.To solving the methods,the RMSI transmission method can be used to paging transmission.Considered the multiple SS/PBCH blocks which present multiple beams,the paging messages of each PO may during multiple frames.The frame of paging common search space occasion corresponding SS/PBCH block index i can be calculated based on formula:floor((O+floor(x*i))/N)in a PO,where O=O initial+K DU,P*N UP,T is initial slot of the first paging message corresponding to the ith paging PDCCH in the first paging frame of the PO and N is slot number in paging frame.The absolute value O initial=6 is the absolute time in the frame which denotes the initial slots of a paging occasion,as shown in figure 4,x is the slot number of each paging common search space occasion duration.K DU,P is DL/UL periodicity number between the first paging message corresponding to SS/PBCH block index 0 and the paging message corresponding to SS/PBCH block index i.N UP,T is the slot number of UL and unknown in a DL/UL periodicity,as shown in figure 4,N UP,T=2.K DU,P is obtained by the formula floor(floor(x*i)/N P,slot,T),where N P,slot,T denotes the down link slot number in a DL/UL periodicity,as shown in figure 4,N P,slot,T=3.
In the paging transmission,the first slot of paging PDCCH corresponding to SS/PBCH block index i is calculated based on the down link slots in a DL/UL periodicity and excluding the UL link slots and unknown slots in a DL/UL periodicity.
上述实施例内容可以为标准提案,其翻译为:
在NR寻呼中,采用波束扫描方法传输寻呼消息。此外,与寻呼消息QCL了的SS/PBCH块最大数目为64(6GHz以上),8(3~6GHz),4(3GHz以下)。如果每个寻呼监督窗口在一个时隙中,每个PO可能在长时间连续的资源中。然而,考虑上行消息传输,每个PO都有离散时间资源,避免与UL消息传输冲突。15kHz,DL/UL周期持续时间可能是0.5、1、2、5、10时隙;30kHz,DL/UL周期持续的时间可能是1,2,4,5,10,20时隙;60kHz,DL/UL周期持续时间可能2,4,5,8,10,20,40时隙;120KHz,DL/UL周期持续时间可能4,5,8,10,16,20,40,80时隙。每个周期时隙类型顺序可以为DL-未知-UL。
因此,寻呼消息的传输应考虑每个DL/UL周期和每个DL/UL周期中的各种DL时隙数。一种解决方法是,RMSI传输方法可用于寻呼传输。考虑到多个SS/PBCH块(分别反映/对应多个波束)、每个PO的寻呼消息可能在多个帧中发送。在一个PO(或者相应的多个帧)中,寻呼消息(对应索引为i的SS/PBCH块)对应的控制资源(control resource set,CORESET,又称PDCCH)所在的公共搜索空间可以根据SS/PBCH块索引i确定,例如可以根据公式计算:floor((O+floor(x*i))/N),其中O=O initial+K DU,P*N UP,T是对应第i个寻呼PDCCH在PO的第一寻呼帧的第一个寻呼消息的初始时隙,N是在寻呼帧的时隙数目。例如,绝对值O initial=6是在帧中的绝对时间,表示一个寻呼时机的初始时隙,如图4所示,x是每个寻呼公共搜索空间的持续时间的时隙数。K DU,P是对应的SS/PBCH块索引0(或者实际发送/SIB1指示的第一个SS/PBCH索引)的寻呼消息和对应SS/PBCH块索引i的 寻呼消息之间的上行/下行周期数。N UP,T是一个上行/下行周期中UL和未知的时隙数,如图4所示,N UP,T=2。K DU,P是由公式floor(floor(x*i)/N P,slot,T)获得,其中N P,slot,T表示在上行/下行周期中下行链路时隙数,例如图4所示,N P,slot,T=3。
在寻呼传输,对应SS/PBCH块索引i的寻呼PDCCH的第一时隙是基于在上行/下行周期的下行链路时隙和/或未知时隙计算,其中排除了上行链路时隙。即寻呼消息可以在下行时隙中传输。
在另外一种实现方式中,寻呼传输时,对应SS/PBCH块索引i的寻呼PDCCH的第一时隙是基于在上行/下行周期的下行链路时隙和未知时隙计算,其中排除了上行链路时隙。即寻呼消息可以在下行时隙和未知时隙中传输。
在又一种可能实现方式中,寻呼传输时,对应SS/PBCH块索引i的寻呼PDCCH的第一时隙是基于在上行/下行周期的下行链路时隙、未知时隙、和上行链路时隙。即寻呼消息可以在所有时隙中传输。
以下对本申请实施例进行详细说明:
寻呼帧内可以用作传输寻呼消息的时间单元数目N由寻呼帧的时间单元数目(图4为10个slot),一个上下行周期内时间单元数目(图4为5个slot)和一个上下行周期内可用作传输寻呼消息的时间单元数目(图4为3个slot)一项或多项确定。
假设传输完各个波束对应的寻呼消息的帧的数量为M,则K,M,N的值可以根据寻呼消息的周期,子载波间隔,寻呼消息监督窗的持续时间长度中的一项或多项决定;或者根据DRX周期内PO数目,寻呼时机的时间间隔,寻呼窗的持续时间,子载波间隔中的一项或多项决定M,K,N中一个或多个取值,其中N的值可以为x*K,x表示一个寻呼窗或者寻呼消息控制资源时机持续时间,图4中表示为2个slot。M,K,N的值可以与上下行周期相关,也可以与上下行配比相关。K、M或N的值是可以也可以是网络设备配置的,或者标准定义的,也可以是网络设备和终端设备计算的或预先约定的。N的值可以取值的范围为1~80中的任意一个,也可以为多个或全部。
例如:一种计算K或N的方法为:假设一个帧内的上下行周期的数目为K1(上面例子中K1=2),则K1可以为10ms/T DU,T DU为一个上下行周期的持续时间,10ms为帧长举例,不限于10ms;也可以根据一个帧内的时间单元数目N slot,frame和一个上下行周期内的时间单元数目N slot,T计算K1,例如K1=N slot,frame/N slot,T或K1=floor(N slot,frame/N slot,T)。
当一个寻呼帧或寻呼时机内有两种上下行周期的时候,定义N slot1,frame为第一个上下行周期和第二个上下行周期的切换点,也可以为第一个上下行周期的持续时间单元数目。则K1可以为K11+K12。其中K11可以为K11=N slot1,frame/N slot1,T,K12可以为K12=N slot2, frame/N slot2,T,其中N slot1,T为第一种上下行周期内的时隙数目,其中N slot2,T为第二种上下行周期内的时隙数目。N slot2,frame为第二种上下行周期在寻呼帧内或上下行周期内的所占的时隙数目。
一个上下周期内可以用于传输寻呼消息的时间单元数目可以为全部或者部分的下行时间单元,也可以为全部或者部分的未知时间单元,也可以是全部或部分的下行时间单元和全部或部分的未知时间单元,只要不是上行时间单元就可以。网络设备可以在这三种或两者当中配置用于于传输寻呼消息的时间单元数目,也可以预先定义。
例如:假设一个上下行周期内可以用于传输寻呼消息的时间单元数目为N P,slot,T,则N的值可以为K1*N P,slot,T,其中*表示相乘,N P,slot,T表示一个上下行周期内可以用于传输寻 呼消息的时间单元数目,上面图中4中的例子为3。
假设一个寻呼帧内或一个寻呼时机内有两种上下行周期,第一种上下行周期内可以用于传输寻呼消息的时间单元数目为N P,slot1,T,第二种上下行周期内可以用于传输寻呼消息的时间单元数目为N P,slot2,T,则N的值可以为K11*N P,slot1,T+K12*N P,slot2,T,其中*表示相乘,N P,slot,T表示一个上下行周期内可以用于传输寻呼消息的时间单元数目。
一个上下行周期内的下行时间单元的数目为N D,T,一个上下行周期内的未知(unknown)时间单元的数目N unknown,T,一个上下行周期内的上行时间单元的数目为N U,T,则N P,slot,T可以是网络设备配置的,也可以是网络设备或终端设备计算的;可以与一个上下行周期内的下行时间单元数目相关,也可以与一个上下行周期内的unknown的时间单元数目相关。
当一个寻呼时机或寻呼帧内有两种,第一种上下行周期内的下行时间单元的数目为N D1,T,第一种上下行周期内的未知(unknown)时间单元的数目N unknown1,T,第一种上下行周期内的上行时间单元的数目为N U1,T,则N P,slot1,T可以是网络设备配置的,也可以是网络设备或终端设备计算的;可以与一个上下行周期内的下行时间单元数目相关,也可以与一个上下行周期内的unknown的时间单元数目相关。当一个寻呼时机或寻呼帧内有两种,第二种上下行周期内的下行时间单元的数目为N D2,T,第二种上下行周期内的未知(unknown)时间单元的数目N unknown2,T,第二种上下行周期内的上行时间单元的数目为N U2,T,则N P,slot2,T可以是网络设备配置的,也可以是网络设备或终端设备计算的;可以与一个上下行周期内的下行时间单元数目相关,也可以与一个上下行周期内的unknown的时间单元数目相关。
例如:N P,slot,T可以为N D,T,N unknown,T,N D,T+N unknown,T,floor(N D,T/x)*x,floor((N D, T+N unknown,T)/x)*x,floor(N unknown,T/x)*x,ceil((N D,T+N unknown,T)/x)*x,ceil(N unknown,T/x)*x中的任意一个或多个。又例如:N P,slot1,T可以为N D1,T,N unknown1,T,N D1,T+N unknown1,T,floor(N D1, T/x)*x,floor((N D1,T+N unknown1,T)/x)*x,floor(N unknown1,T/x)*x,ceil((N D1,T+N unknown1,T)/x)*x,ceil(N unknown1,T/x)*x中的任意一个或多个。例如:N P,slot2,T可以为N D2,T,N unknown2,T,N D2, T+N unknown2,T,floor(N D2,T/x)*x,floor((N D2,T+N unknown2,T)/x)*x,floor(N unknown2,T/x)*x,ceil((N D2, T+N unknown2,T)/x)*x,ceil(N unknown2,T/x)*x中的任意一个或多个。当上下行周期只有一个时间单元或小于一个时间单元的时候,可以认为该帧内全部的时间单元都可以用作下行传输,此时N的值可以与一个帧内的时间单元数目相等。N D,T,N unknown,T,N U,T,N D1,T,N unknown1,T,N U1,T,N D2,T,N unknown2,T,N U2,T可以为1~80之间的部分或者全部的值,可以根据子载波的间隔不同也取值不同,这九个值中的任意一个的取值可以是网络设备配置的,也可以是预先定义的,或网络设备与终端设备预先约定。
例如如图4所示,一个寻呼消息的控制资源时机的持续时间x为2个时隙,每一个寻呼消息的控制资源时机对应一个SS/PBCH block,上下行周期N slot,T为5个时隙或者T DU为5ms,一个上下行周期内用于寻呼的时域资源数目为3个时隙,则一个帧内可以用于寻呼的时隙数目为6个,传输寻呼消息监督窗的数目最大为3。N的值也可以为网络设备配置或者预先定义的,或网络设备与终端设备预先约定。一个寻呼消息的控制资源时机的持续时间x取值可以为0.5,1,2,4,8中的部分或者全部的值。例如为前3个值,x的取值可以是网络设备配置的,也可以是标准预先定义的,或网络设备与终端设备预先约定。
网络设备可以根据第一个波束对应的寻呼消息在第一寻呼帧内时间单元位置I,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的时间单元偏移f(x,i),以及寻呼帧内 可以用作传输寻呼消息的时间单元数目N/或寻呼帧内的时间单元数目确定第i波束(SS/PBCH block)对应的寻呼消息所在帧。i的取值通常为0-63,最大值不限于63,可以127,255等。
相应的,终端设备根据第一个波束对应的寻呼消息在第一寻呼帧内时间单元位置I,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的时间单元偏移f(x,i),以及一个寻呼帧内可以用作传输寻呼消息的时间单元数目N和/或一个寻呼帧内的时间单元数目确定终端设备对应的寻呼消息所在寻呼帧,即第i个波束对应的寻呼消息所在寻呼帧。
时间单元位置I通常为相对时间单元位置,时间单元偏移f(x,i)通常为相对时间单元偏移。本申请以时间单元为时隙为例说明。
第一个波束对应的寻呼消息在第一寻呼帧内相对时间单元位置I也可以称为寻呼消息的偏移值或寻呼消息组的偏移值。
当计算寻呼消息或寻呼消息控制资源时机的所在的帧的时候,可以采用如下的公式:floor((I+f(x,i))/N)的进行计算寻呼消息窗的帧位置。
本申请中,floor为向下取整,ceil为向上取整,mod为求余,*为相乘,/为相除。
各个波束对应的寻呼消息与第一个寻呼消息的相对时间单元偏移f(x,i)由各个寻呼消息的索引或各个寻呼消息对应的SS/PBCH block索引,以及寻呼消息的持续时间x确定。
例如:f(x,i)为x*i,ceil(x*i),floor(x*i),x*floor(i/k),x*ceil(i/k),floor(x*floor(i/k)),ceil(x*floor(i/k)),floor(x*ceil(i/k)),ceil(x*ceil(i/k))中的任意一个公式,k可以表示k个SS/PBCH block对应一个寻呼消息,即一个寻呼消息通过k个波束发送,即发送寻呼消息的波束数量。
一个例子中,第一个寻呼消息在第一寻呼帧内相对时间单元位置I可以由一个上下行周期内可以用作传输寻呼消息的时间单元数目,第一个寻呼消息在第一寻呼帧内的绝对时间偏移和上下行周期的时间单元数目中的一项或多项确定。
I的取值可以表示一个寻呼时机的寻呼消息在该寻呼时机帧内可以传输寻呼消息的时间单元中的位置;也可以表示一个寻呼时机中第一个寻呼消息排除了不可传输寻呼消息的时间单元所在的相对时间单元位置,第一个寻呼消息可以为对应SS/PBCH block索引为0的寻呼消息。I的取值可以与上下行周期取值相关,也可以与上下行配比的取值相关,例如I=I initial-N U,P,其中I initial可以表示寻呼时机的起始位置或寻呼时机的偏移值,也可以为一个寻呼时机中第一个寻呼消息所在的时间单元位置,I initial可以为绝对的数值,可以与子载波间隔相关,可以是网络设备配置的,也可以是标准预先定义的。I initial的取值可以为t1*2 u,其中t1可以为0,1,2,3,4,5,6,7,8,9,10ms中的任意一个值或多个值,或全部值;I initial的取值也可以为0~79中的任意一个值。u表示子载波索引,当子载波间隔为15KHz的时候,u为0,当子载波间隔为30KHz的时候,u为1,当子载波间隔为60KHz的时候,u为2,当子载波间隔为120KHz的时候,u为3,当子载波间隔为240KHz的时候,u为4。N U,P可以为0~I initial不可以用作传输寻呼消息的时间单元数目。
另一个例子中,计算各个寻呼消息的所在的帧位置时,所使用的第一个寻呼消息在第一寻呼帧内相对时间单元位置I由上下行周期内不可以用作传输寻呼消息的时间单元数目,上下行周期内可以用作传输寻呼消息的时间单元数目,各个寻呼消息与第一个寻呼消息的相对时间单元偏移f(x,i)中的至少一项确定。
I的取值也可以为I initial;N U,P取值可以为K2*(N slot,T-N P,slot,T)=K2*N UP,T,其中K2可 以为floor(I initial/N slot,T),也可以为ceil(I initial/N slot,T),还可以为I initial/N slot,T,上下行周期内的不可以用作传输寻呼消息的时间单元数目为N UP,T可以表示为N slot,T-N P,slot,T。K2可以表示0~I initial内的上下行周期的数目,例如如图4所示,K2为1。N UP,T表示上下行周期内不用作传输寻呼消息的时间单元数目,如图4所示中,N UP,T为2。
本申请中的帧,寻呼帧,系统帧都是一个概念。当一个帧内或一个寻呼时机内有两种上下行周期的时候,当I initial小于和/或等于N slot1,frame的时候N U,P取值可以为K21*(N slot1, T-N P,slot1,T)=K21*N UP1,T,其中K21可以为floor(I initial/N slot1,T),也可以为ceil(I initial/N slot1,T),还可以为I initial/N slot1,T,上下行周期内的不可以用作传输寻呼消息的时间单元数目为N UP1,T可以表示为N slot1,T-N P,slot1,T。当一个帧内或一个寻呼时机内有两种上下行周期的时候,当I initial大于和/或等于N slot1,frame的时候N U,P取值可以为K31*(N slot1,T-N P,slot1,T)+K32*(N slot2, T-N P,slot2,T)=K31*N UP1,T+K32*N UP2,T,其中K31可以为floor(N slot1,frame/N slot1,T),也可以为ceil(N slot1,frame/N slot1,T),还可以为N slot1,frame/N slot1,T,上下行周期内的不可以用作传输寻呼消息的时间单元数目为N UP1,T可以表示为N slot1,T-N P,slot1,T。其中K32可以为floor((I initial-N slot1, frame)/N slot2,T),也可以为ceil((I initial-N slot2,frame)/N slot1,T),还可以为(I initial-N slot1,frame)/N slot2,T,上下行周期内的不可以用作传输寻呼消息的时间单元数目为N UP2,T可以表示为N slot2, T-N P,slot2,T
N UP,T可以是网络设备配置的,也可以是网络设备或终端设备计算的,可以与一个上下行周期内的上行时间单元数目相关,也可以与一个上下行周期内的unknown的时间单元数目相关,例如N UP,T可以为N U,T,N unknown,T,N U,T+N unknown,T,floor(N U,T/x)*x,floor((N U, T+N unknown,T)/x)*x,floor(N unknown,T/x)*x,ceil((N U,T+N unknown,T)/x)*x,ceil(N unknown,T/x)*x中的任意一个或多个。
当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,N UP1,T可以是网络设备配置的,也可以是网络设备或终端设备计算的,可以与第一种上下行周期内的上行时间单元数目相关,也可以与第一种上下行周期内的unknown的时间单元数目相关,例如N UP1,T可以为N U1,T,N unknown1,T,N U1,T+N unknown1,T,floor(N U1,T/x)*x,floor((N U1,T+N unknown1, T)/x)*x,floor(N unknown1,T/x)*x,ceil((N U1,T+N unknown1,T)/x)*x,ceil(N unknown1,T/x)*x中的任意一个或多个。当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,N UP2,T可以是网络设备配置的,也可以是网络设备或终端设备计算的,可以与第二种上下行周期内的上行时间单元数目相关,也可以与第二种上下行周期内的unknown的时间单元数目相关,例如N UP2,T可以为N U2,T,N unknown2,T,N U2,T+N unknown2,T,floor(N U2,T/x)*x,floor((N U2, T+N unknown2,T)/x)*x,floor(N unknown2,T/x)*x,ceil((N U2,T+N unknown2,T)/x)*x,ceil(N unknown2,T/x)*x中的任意一个或多个。
网络设备或终端设备可以根据上下行周期内的不传输寻呼消息的时间单元数目N UP,T和寻呼时机内寻呼消息所在的上下行周期的索引i DU确定寻呼消息的帧位置。i DU也可以表示为第一个寻呼消息与索引为i的SS/PBCH block对应的寻呼消息或索引为i的寻呼消息之间的上下行周期的数目。i DU可以根据floor(f(x,i)/N P,slot,T),ceil(f(x,i)/N P,slot,T),f(x,i)/N P,slot,T中的任意一个公式确定。此时I可以表示为I initial+i DU*N UP,T,则该寻呼消息所在帧的位置可以为floor((I initial+i DU*N UP,T+f(x,i))/N slot,frame)或I initial+i DU*N UP,T+f(x,i)。
当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,当floor(f(x,i)小于和/或等于K PD2的时候,此时I可以表示为I initial+i DU1*N UP1,T,则该寻呼消息所在帧的位 置可以为floor((I initial+i DU1*N UP1,T+f(x,i))/N slot,frame)或I initial+i DU1*N UP1,T+f(x,i)。i DU1可以根据floor(f(x,i)/N P,slot1,T),ceil(f(x,i)/N P,slot1,T),f(x,i)/N P,slot1,T中的任意一个公式确定。其中K PD2表示I initial到N slot1,frame中可以用作传输寻呼消息的时隙数目,其计算公式可以为K34*N P,slot1,T,其中K34可以为下列公式中的任意一个:floor((N slot1,frame-I initial)/N slot1,T)或cei((N slot1,frame-I initial)/N slot1,T)或N slot1,frame-I initial)/N slot1,T。当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,当floor(f(x,i)大于和/或等于K PD2的时候,此时I可以表示为I initial+K34*N UP1,T+i DU2*N UP2,T,则该寻呼消息所在帧的位置可以为floor((I+f(x,i))/N slot,frame)或I+f(x,i)。i DU2可以根据floor((f(x,i)-K34*N P,slot1,T)/N P,slot2,T),ceil((f(x,i)-K34*N P,slot1,T)/N P,slot2,T),(f(x,i)-K34*N P,slot1,T)/N P,slot2,T中的任意一个公式确定。
进一步的,网络设备根据寻呼消息在相应的寻呼帧内的上下行周期索引i DU, Frame和各个寻呼消息在相应上下行周期内的起始时间单元索引确定各个帧内寻呼消息所在的起始时间单元;各个波束(SS block)对应的寻呼消息的起始时间单元。
本申请中的索引从0编号,也可以从1、2、3等任意数值进行编号。
寻呼消息在一个帧内的时间单元位置可以根据一个上下行周期内的上下行配比、上下行周期时间单元数目,以及寻呼消息的索引或对应的SS/PBCH block索引,和寻呼消息的持续时间中一项或多项确定。
一种确方法是:先确定寻呼消息所在上下行周期索引,该周期的索引为寻呼帧内的上下行周期的索引i DU,Frame,再确定寻呼消息在上下行周期内的时间单元索引。
所述各个寻呼消息在相应的寻呼帧内的上下行周期索引由第一个寻呼消息所在的寻呼帧内上下行周期索引,所述各个寻呼消息的起始时间单元位置与第一个寻呼消息之间的相对时间单元偏移f(x,i),寻呼帧内的上下行周期数目和上下行周期内可以用作传输寻呼消息的时间单元数目一项或多项确定。
例如:确定寻呼消息在寻呼帧内的上下行周期内的索引i DU,Frame的方法为K2+g(i,x,N P,slot,T),也可以为(K2+g(i,x,N P,slot,T))mod K3。K3可以表示一个帧内上下行周期的数目。公式g(i,x,N P,slot,T)可以为floor(f(x,i)/N P,slot,T),ceil(f(x,i)/N P,slot,T),f(x,i)/N P,slot,T中的任意一个。
当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,当floor(f(x,i)小于和/或等于K PD2的时候,K2=K31+K32或K21。公式g(i,x,N P,slot1,T)可以为floor(f(x,i)/N P,slot1,T),ceil(f(x,i)/N P,slot1,T),f(x,i)/N P,slot1,T中的任意一个。当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,当floor(f(x,i)大于和/或等于K PD2的时候,g(i,x,N P,slot1,T)=K34+i DU2,K2=K31+K32或K21。
寻呼消息在相应上下行周期内的时间单元索引(通常为起始时间索引)由第一个寻呼消息在相应的上下行周期内的时间单元位置和所述各个寻呼消息与第一个寻呼消息的相对时间单元偏移f(x,i),以及上下行周期内的时间单元的数目或上下行周期内可以用作传输寻呼消息的时间单元数目确定。
例如:确定寻呼消息在上下行周期内的时间单元索引的方法可以为(O+f(x,i))mod N P,slot,T或(I initial+f(x,i))mod N P,slot,T;其中,O表示寻呼时机内的第一个寻呼消息与其所在的上下行周期起始时间单元之间的偏移,该寻呼周期的索引可以从寻呼时机起始位置计算,也可以从寻呼帧内的起始位置计算。
另一种确定方法是:根据第一个寻呼消息在第一寻呼帧内相对时间单元位置I,各个 波束对应的寻呼消息与第一个寻呼消息的相对时间单元偏移f(x,i)和一个寻呼帧内的时间单元数目确定各个波束对应的寻呼消息的起始时间单元。
例如:根据上下行周期内的不传输寻呼消息的时间单元数目N U,P,T和寻呼时机内上下行周期的索引i DU确定寻呼消息的时间单元位置。此时I可以表示为I initial+i DU*N UP,T,则该寻呼消息所在时间单元的位置可以为I initial+i DU*N UP,T+f(x,i),也可以为(I initial+i DU*N UP,T+f(x,i))mod N slot,frame
当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,当floor(f(x,i)小于和/或等于K PD2的时候,此时I可以表示为I initial+i DU1*N UP1,T,则该寻呼消息所在时隙的起始位置可以为floor((I initial+i DU1*N UP1,T+f(x,i)mod N slot,frame)或I initial+i DU1*N UP1,T+f(x,i)。当一个帧内有两种上下行周期或一个寻呼时机内有两种上下行周期,当floor(f(x,i)大于和/或等于K PD2的时候,此时I可以表示为I initial+K34*N UP1,T+i DU2*N UP2,T,则该寻呼消息所在帧的位置可以为(I+f(x,i))mod N slot,frame或I+f(x,i)。
本申请中的寻呼消息默认情况下是指对应索引为i的SS/PBCH block的寻呼消息或索引为i的寻呼消息。索引为i的SS/PBCH block可以为实际传输的SS/PBCH block的索引,也可以为可能传输的SS/PBCH block索引。
本申请的方案也可以应用在系统信息消息传输当中,当应用在系统信息消息的传输当中的时候,本申请中的寻呼消息可以使用系统信息消息来代替,寻呼时机可以使用关联到半帧内的所有实际传输或可能传输SS/PBCH block的所有系统信息。这里的系统信息消息可以是指SIB1(system information block 1,系统信息块1)或RMSI(remaining minimum system information,剩余最小系统信息)配置的一个系统信息消息,也可以是指在一个系统信息窗传输的系统信息消息,也可以是指包含了一个系统信息块或多个系统块块。系统信息消息也可以是指SIB1的系统信息块,或RMSI系统信息块。其中RMSI也可以称为SIB1和/或SIB2
本申请所述的系统信息消息的传输可以是指系统信息消息在其周期内的一个冗余版本当中传输。该冗余版本可以是系统信息消息的TTI(Transmission Time Interval,传输时间间隔)周期中的4个冗余版本中一个冗余版本,也可以是系统信息消息的TTI周期中的8个冗余版本(remaining version,RV)中的一个冗余版本。如果系统消息当中没有冗余版本,可以是指系统信息消息在其TTI周期内的一次重复传输,该重复传输可以包含对应半帧内所有的SS/PBCH block的系统信息消息的一次重复传输。系统信息消息的TTI周期中的8个冗余版本或4个冗余版本或16个冗余版本或32个冗余版本中的任意一个冗余版本可以表示系统信息消息在其TTI周期内的一次重复传输,该重复传输可以包含对应半帧内所有的SS/PBCH block的系统信息消息的一次重复传输。例如RMSI周期内重复传输的RV版本为RV K=ceiling(3/2*k)mod 4或RV K=k mod 4或RV K=k mod 8或RV K=ceiling(7/2*k)mod 8,其中k=(SFN/2)mod 4或k=(SFN/4)mod 4或k=SFN mod 4或k=SFN mod 8这其中的每一个RV版本的传输,都代表了一次RMSI周期内的重复传输。定义RV版本的分布集合为RVS1,RVS2,RVS3,其中RVS1可以为{RV0,RV1,RV2,RV3}或{RV0,RV2,RV3,RV1}或{RV0,RV2,RV1,RV3},RVS2可以为RVS1中各个RV版本的2次重复传输,例如RVS1可以为{RV0,RV1,RV2,RV3},RVS2可以为{RV0,RV0,RV1,RV1,RV2,RV2,RV3,RV3},RVS3可以为{RVS30,RVS31,RVS32,RVS33}或{RVS30,RVS32,RVS33,RVS31}或{RVS30,RVS32,RVS31, RVS33}。RVS30可以为{RV0,RV0,RV0,RV0},RVS31可以为{RV1,RV1,RV1,RV1},RVS32可以为{RV2,RV2,RV2,RV2},RVS33可以为{RV3,RV3,RV3,RV3}。当RMSI的重传周期为5ms的时候,其RV版本的分布可以为RVS1,RVS1,RVS1,RVS1,RVS1,RVS1,RVS1,RVS1或者为RVS2,RVS2,RVS2,RVS2或者为RVS3,RVS3。当RMSI的重传周期为10ms的时候,其RV版本的分布可以为RVS1,RVS1,RVS1,RVS1或者为RVS2,RVS2或者为RVS3。当RMSI的重传周期为20ms的时候,其RV版本的分布可以为RVS1,RVS1或者为RVS2。当RMSI的重传周期为40ms的时候,其RV版本的分布可以为RVS1或{RV0,RV0,RV1,RV1}或{RV0,RV0,RV3,RV3}或{RV0,RV0,RV2,RV2}或{RV1,RV1,RV2,RV2}或{RV1,RV1,RV0,RV0}或{RV1,RV1,RV2,RV2}或{RV1,RV1,RV3,RV3}。当RMSI的重传周期为80ms的时候,其RV版本的分布可以为{RV0,RV3}或{RV0,RV1}或{RV0,RV2}。
上述实施例中的各个用到的参数可以标准定义的,也可以是网络设备与终端设备预先约定的,也可以是网络设备配置的,并预先发送给终端设备,配置信息可以承载在物理广播信道(Physical Broadcast Channel,PBCH)、RMSI、系统信息块(System Information Block,SIB)1、SIB2、SIB3、媒体接入控制控制元素(Media Access control-control element,MAC-CE)、下行控制信息(Down link control information,DCI)、无线资源控制(Radio Resource Control,RRC)以及系统信息中的任意一项中。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
上文中详细描述了根据本申请实施例的信号传输的方法,下面将描述本申请实施例的信号传输的装置。
图5示出了本申请实施例的信号传输的装置1000的示意性框图。
一种信号传输的装置,该装置可以为网络设备,也可以为网络设备内的芯片或功能模块,包括:
处理模块1001:用于根据第一个波束对应的寻呼消息在第一寻呼帧内时隙位置I,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的时隙偏移f(x,i),以及一个寻呼帧内可以用作传输寻呼消息的时隙数目N和/或一个寻呼帧内的时隙数目确定各个波束对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;
发送模块1002:用于在相应的寻呼帧通过相应波束发送所述寻呼消息。
另外,还可以进一步包括接收模块(图中未示出):用于执行接收类步骤。
上述方案中,寻呼消息通过多个波束进行发送,因此有多个寻呼消息,通常一个波束 对应一个寻呼消息,也可以对应多个寻呼消息;由于通常一个波束对应一个SS block或SS/PBCH block,波束对应的寻呼消息也可以称为SS block或SS/PBCH block对应的寻呼消息。
上述方案中,时隙是一个时间单位的举例,也可以有其它的时间单位替代,如子帧,一个或多个OFDM符号等。时隙位置I通常为相对时隙位置,也可以为绝对时隙位置;时隙偏移f(x,i)通常为相对时隙偏移,也可以为绝对时隙偏移。
接收模块和发送模块可以合为收发模块。
上述装置可以只包括发送模块和接收模块,也可以包括接收模块、处理模块和发送模块,此时发送模块只用于发送所述终端设备所在的寻呼分组关联的随机接入前导即可。
应理解,该信号传输的装置1000可以对应于上述相应的方法实施例中的网络设备,可以具有方法中的网络设备的任意功能,具体可以参考方法实施例,不再详述。
相应的,同样参考图6,还公开了一种信号传输的装置2000,该装置为网络设备,或网络设备中的芯片或功能模块;包括:
处理模块2001:用于根据第一个波束对应的寻呼消息在第一寻呼帧内时隙位置I,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的时隙偏移f(x,i),以及一个寻呼帧内可以用作传输寻呼消息的时隙数目N和/或一个寻呼帧内的时隙数目确定终端设备对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;
接收模块2002:用于在相应的寻呼帧通过相应波束接收所述寻呼消息。
另外,还可以进一步包括发送模块(图中未示出):用于执行发送类步骤。
上述方案中,寻呼消息通过多个波束进行发送,因此有多个寻呼消息,通常一个波束对应一个寻呼消息,也可以对应多个寻呼消息;但一个终端设备通常通过一个波束接收到所述寻呼消息,由于通常一个波束对应一个SS block或SS/PBCH block,波束对应的寻呼消息也可以称为SS block或SS/PBCH block对应的寻呼消息。上述方案从一个终端设备角度,仅确定该终端设备对应的寻呼消息所在寻呼帧即可。
上述各个方法及装置方案中,时隙是一个时间单元的举例,因此,时隙可以用时间单元替换,也可以有其它的时间单元替代,如子帧,一个或多个OFDM符号等。时隙位置I通常为相对时隙位置,也可以为绝对时隙位置;时隙偏移f(x,i)通常为相对时隙偏移,也可以为绝对时隙偏移。
可选地,若上述信号传输的装置为终端设备或网络设备内的芯片,则该芯片包括处理模块和收发模块。收发模块可以由收发器实现,处理模块可以由处理器实现。所述收发模块例如可以是输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令。所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
上述各个装置实施例还有另一种实现方式,参考图7中装置3000,上述各个实施例中的处理模块可以由处理器3002替代,发送模块可以由发射器3003替代,接收模块可以由接收器3001替代,分别执行各个方法实施例中的发送操作、接收操作以及相关的处理操作,发射机及接收机可以组成收发器。处理器可以为一个也可以为多个。
处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者 其他可编程逻辑器件。
发射器和接收器可以组成收发机。还可以进一步包括天线,天线的数量可以为一个或多个。
另外还可以进一步包括存储单元(图中未示出),用于存储相关信息,存储器可以是一个单独的器件,也可以集成在处理器中。存储单元可以是存储器(图中未示出),用于存储计算机可执行程序代码,其中,当所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述网络设备或终端设备执行方法实施例中的相应步骤。
上述各个组件可以通过总线耦合在一起,其中总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线。
上述图7只是示意图,还有可以包括其它元件或只包括部分元件,例如包括发射机及接收机;或者只包括发射机、接收机及处理器。
上述图7的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM, SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存分布式单元、集中式单元以及终端设备和网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种寻呼消息的传输方法,包括:
    根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置,各个波束对应的寻呼消息与所述第一个波束对应的寻呼消息的相对时隙偏移,以及寻呼帧内可以用作传输寻呼消息的时隙数目和/或寻呼帧内的时隙数目确定各个波束对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;
    在相应的寻呼帧通过相应波束发送所述寻呼消息。
  2. 如权利要求1所述的方法,发送所述寻呼消息之前,进一步包括:根据各个波束对应的寻呼消息在相应的寻呼帧内的上下行周期索引和各个波束对应的寻呼消息在相应上下行周期内的起始时隙索引确定各个波束对应的寻呼消息在相应的寻呼帧的起始时隙。
  3. 如权利要求1或2所述的方法,所述相对时隙位置由上下行周期内可以用作传输寻呼消息的时隙数目,所述第一个波束对应的寻呼消息在第一寻呼帧内的时间偏移和所述上下行周期的时隙数目中的一项或多项确定。
  4. 如权利要求2所述的方法,所述各个波束对应的寻呼消息在相应的寻呼帧内的上下行周期索引由所述第一个波束对应的寻呼消息所在的寻呼帧内上下行周期索引,所述各个波束对应的寻呼消息与第一个波束对应的寻呼消息之间的相对时隙偏移,一个寻呼帧内的上下行周期数目和一个上下行周期内可以用作传输寻呼消息的时隙数目中的一项或多项确定。
  5. 如权利要求2所述的方法,各个波束对应的寻呼消息的在相应上下行周期内的起始时隙索引由所述第一个波束对应的寻呼消息在相应的上下行周期内的时隙位置和所述各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移,以及上下行周期内的时隙的数目或所述上下行周期内可以用作传输寻呼消息的时隙数目确定。
  6. 如权利要求1所述的方法,发送所述寻呼消息之前,进一步包括:根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移和寻呼帧内的时隙数目确定各个波束对应的寻呼消息的起始时隙。
  7. 如权利要求1或6所述的方法,计算各个波束对应的寻呼消息的起始时隙位置时,所使用的第一个寻呼消息在第一寻呼帧内相对时隙位置由上下行周期内不可以用作传输寻呼消息的时隙数目,所述上下行周期内可以用作传输寻呼消息的时隙数目,各个波束对应的寻呼消息与所述第一个波束对应的寻呼消息的相对时隙偏移中的一项或多项确定。
  8. 如权利要求1所述的方法,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移由各个寻呼消息的索引或各个寻呼消息对应的同步信号/物理广播信道块SS/PBCH block索引,以及寻呼消息的持续时间确定。
  9. 如权利要求1所述的方法,所述寻呼帧内可以用作传输寻呼消息的时隙数目由所述寻呼帧的时隙数目,上下行周期内时隙数目和所述上下行周期内可用作传输寻呼消息的时隙数目的确定。
  10. 一种寻呼消息的传输方法,包括:
    根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移,以及寻呼帧内可以用作传输寻呼消 息的时隙数目和/或寻呼帧内的时隙数目确定所述终端设备对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;
    在相应的寻呼帧通过相应波束接收所述寻呼消息。
  11. 如权利要求10所述的方法,接收所述寻呼消息之前,进一步包括:根据终端设备对应的寻呼消息在相应的寻呼帧内的上下行周期索引和终端设备对应的寻呼消息在相应上下行周期内的起始时隙索引确定终端设备对应的寻呼消息在相应的寻呼帧的起始时隙。
  12. 如权利要求11所述的方法,所述终端设备对应的寻呼消息在相应的寻呼帧内的上下行周期索引由第一个波束对应的寻呼消息所在的寻呼帧内上下行周期索引,所述终端设备对应的寻呼消息与第一个波束对应的寻呼消息之间的相对时隙偏移,一个寻呼帧内的上下行周期数目和一个上下行周期内可以用作传输寻呼消息的时隙数目一项或多项确定。
  13. 如权利要求11所述的方法,终端设备对应的寻呼消息的在相应上下行周期内的起始时隙索引由第一个波束对应的寻呼消息在相应的上下行周期内的时隙位置和所述终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移,以及上下行周期内的时隙的数目或所述上下行周期内可以用作传输寻呼消息的时隙数目确定。
  14. 如权利要求10所述的方法,接收所述寻呼消息之前,进一步包括:根据终端设备对应的寻呼消息在第一寻呼帧内相对时隙位置,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移和寻呼帧内的时隙数目确定所述终端设备对应的寻呼消息的起始时隙。
  15. 如权利要求10或14所述的方法,计算终端设备对应的寻呼消息的起始时隙位置时,所使用的第一个寻呼消息在第一寻呼帧内相对时隙位置由上下行周期内不可以用作传输寻呼消息的时隙数目,所述上下行周期内可以用作传输寻呼消息的时隙数目,终端设备对应的寻呼消息与所述第一个波束对应的寻呼消息的相对时隙偏移中的一项或多项确定。
  16. 如权利要求10所述的方法,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移由终端设备的寻呼消息的索引或终端设备的寻呼消息对应的同步信号/物理广播信道块SS/PBCH block索引,以及寻呼消息的持续时间确定。
  17. 一种寻呼消息的传输装置,包括:
    处理模块:用于根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置,各个波束对应的寻呼消息与所述第一个波束对应的寻呼消息的相对时隙偏移,以及寻呼帧内可以用作传输寻呼消息的时隙数目和/或寻呼帧内的时隙数目确定各个波束对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;
    发送模块:用于在相应的寻呼帧通过相应波束发送所述寻呼消息。
  18. 如权利要求17所述的传输装置,所述处理模块还用于:根据各个波束对应的寻呼消息在相应的寻呼帧内的上下行周期索引和各个波束对应的寻呼消息在相应上下行周期内的起始时隙索引确定各个波束对应的寻呼消息在相应的寻呼帧的起始时隙。
  19. 如权利要求17或18所述的传输装置,所述相对时隙位置由上下行周期内可以用作传输寻呼消息的时隙数目,所述第一个波束对应的寻呼消息在第一寻呼帧内的时间偏移和所述上下行周期的时隙数目中的一项或多项确定。
  20. 如权利要求18所述的传输装置,所述各个波束对应的寻呼消息在相应的寻呼帧 内的上下行周期索引由所述第一个波束对应的寻呼消息所在的寻呼帧内上下行周期索引,所述各个波束对应的寻呼消息与第一个波束对应的寻呼消息之间的相对时隙偏移,一个寻呼帧内的上下行周期数目和一个上下行周期内可以用作传输寻呼消息的时隙数目中的一项或多项确定。
  21. 如权利要求18所述的传输装置,各个波束对应的寻呼消息的在相应上下行周期内的起始时隙索引由所述第一个波束对应的寻呼消息在相应的上下行周期内的时隙位置和所述各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移,以及上下行周期内的时隙的数目或所述上下行周期内可以用作传输寻呼消息的时隙数目确定。
  22. 如权利要求17所述的传输装置,发送所述寻呼消息之前,进一步包括:根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移和寻呼帧内的时隙数目确定各个波束对应的寻呼消息的起始时隙。
  23. 如权利要求17或22所述的传输装置,计算各个波束对应的寻呼消息的起始时隙位置时,所使用的第一个寻呼消息在第一寻呼帧内相对时隙位置由上下行周期内不可以用作传输寻呼消息的时隙数目,所述上下行周期内可以用作传输寻呼消息的时隙数目,各个波束对应的寻呼消息与所述第一个波束对应的寻呼消息的相对时隙偏移中的一项或多项确定。
  24. 如权利要求17所述的传输装置,各个波束对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移由各个寻呼消息的索引或各个寻呼消息对应的同步信号/物理广播信道块SS/PBCH block索引,以及寻呼消息的持续时间确定。
  25. 如权利要求17所述的传输装置,所述寻呼帧内可以用作传输寻呼消息的时隙数目由所述寻呼帧的时隙数目,上下行周期内时隙数目和所述上下行周期内可用作传输寻呼消息的时隙数目的确定。
  26. 一种寻呼消息的传输装置,包括:
    处理模块:用于根据第一个波束对应的寻呼消息在第一寻呼帧内相对时隙位置,该装置对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移,以及寻呼帧内可以用作传输寻呼消息的时隙数目和/或寻呼帧内的时隙数目确定所述装置对应的寻呼消息所在寻呼帧,所述寻呼帧为寻呼时机包含的帧;
    接收模块:用于在相应的寻呼帧通过相应波束接收所述寻呼消息。
  27. 如权利要求26所述的传输装置,所述处理模块还用于:根据终端设备对应的寻呼消息在相应的寻呼帧内的上下行周期索引和终端设备对应的寻呼消息在相应上下行周期内的起始时隙索引确定终端设备对应的寻呼消息在相应的寻呼帧的起始时隙。
  28. 如权利要求27所述的传输装置,所述终端设备对应的寻呼消息在相应的寻呼帧内的上下行周期索引由第一个波束对应的寻呼消息所在的寻呼帧内上下行周期索引,所述终端设备对应的寻呼消息与第一个波束对应的寻呼消息之间的相对时隙偏移,一个寻呼帧内的上下行周期数目和一个上下行周期内可以用作传输寻呼消息的时隙数目一项或多项确定。
  29. 如权利要求27所述的传输装置,终端设备对应的寻呼消息的在相应上下行周期内的起始时隙索引由第一个波束对应的寻呼消息在相应的上下行周期内的时隙位置和所述终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移,以及上下行周 期内的时隙的数目或所述上下行周期内可以用作传输寻呼消息的时隙数目确定。
  30. 如权利要求26所述的传输装置,接收所述寻呼消息之前,进一步包括:根据终端设备对应的寻呼消息在第一寻呼帧内相对时隙位置,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移和寻呼帧内的时隙数目确定所述终端设备对应的寻呼消息的起始时隙。
  31. 如权利要求26或30所述的传输装置,计算终端设备对应的寻呼消息的起始时隙位置时,所使用的第一个寻呼消息在第一寻呼帧内相对时隙位置由上下行周期内不可以用作传输寻呼消息的时隙数目,所述上下行周期内可以用作传输寻呼消息的时隙数目,终端设备对应的寻呼消息与所述第一个波束对应的寻呼消息的相对时隙偏移中的一项或多项确定。
  32. 如权利要求26所述的传输装置,终端设备对应的寻呼消息与第一个波束对应的寻呼消息的相对时隙偏移由终端设备的寻呼消息的索引或终端设备的寻呼消息对应的同步信号/物理广播信道块SS/PBCH block索引,以及寻呼消息的持续时间确定。
  33. 一种计算机可读取存储介质,其特征在于,所述计算机可读取存储介质存储有计算机程序,所述计算机程序被计算机执行时,实现权利要求1至16任意一项所述的方法。
  34. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至16任一项所述的方法。
PCT/CN2019/074678 2018-02-14 2019-02-03 一种寻呼消息的传输方法 WO2019158018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810152158.9A CN110167141B (zh) 2018-02-14 2018-02-14 一种寻呼消息的传输方法
CN201810152158.9 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019158018A1 true WO2019158018A1 (zh) 2019-08-22

Family

ID=67618897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074678 WO2019158018A1 (zh) 2018-02-14 2019-02-03 一种寻呼消息的传输方法

Country Status (2)

Country Link
CN (1) CN110167141B (zh)
WO (1) WO2019158018A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220146190A1 (en) * 2020-11-09 2022-05-12 Haier Us Appliance Solutions, Inc. Refrigerator appliances and methods for tracking stored items

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584466B (zh) * 2019-09-27 2022-04-22 华为技术有限公司 一种信息接收方法及装置
US20230269702A1 (en) * 2020-09-03 2023-08-24 Qualcomm Incorporated Paging multiple devices using a common paging occasion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170930A (zh) * 2013-05-21 2016-11-30 三星电子株式会社 用于在波束成形无线通信网络中发射/接收寻呼的设备和方法
US20170367069A1 (en) * 2016-06-21 2017-12-21 Samsung Electronics Co., Ltd. System and method of paging in next generation wireless communication system
CN107534476A (zh) * 2015-04-20 2018-01-02 瑞典爱立信有限公司 用于广播传送和接收的方法和装置
US20180026698A1 (en) * 2016-07-20 2018-01-25 Lg Electronics Inc. Method and apparatus for calculating beamforming based paging occasion in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170930A (zh) * 2013-05-21 2016-11-30 三星电子株式会社 用于在波束成形无线通信网络中发射/接收寻呼的设备和方法
CN107534476A (zh) * 2015-04-20 2018-01-02 瑞典爱立信有限公司 用于广播传送和接收的方法和装置
US20170367069A1 (en) * 2016-06-21 2017-12-21 Samsung Electronics Co., Ltd. System and method of paging in next generation wireless communication system
US20180026698A1 (en) * 2016-07-20 2018-01-25 Lg Electronics Inc. Method and apparatus for calculating beamforming based paging occasion in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Paging in NR-Beamforming Aspects", 3GPP TSG-RAN2 AH-1801 R2-1800078, 11 January 2018 (2018-01-11), XP051385607 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220146190A1 (en) * 2020-11-09 2022-05-12 Haier Us Appliance Solutions, Inc. Refrigerator appliances and methods for tracking stored items

Also Published As

Publication number Publication date
CN110167141B (zh) 2024-06-18
CN110167141A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US11659527B2 (en) Apparatus for sending information regarding RMSI period
US10555346B2 (en) Method for configuring physical channel, base station and user equipment
CN110167035B (zh) 波束管理方法、终端、网络设备以及存储介质
US20160337086A1 (en) Method for configuring physical uplink channel, base station and user equipment
US11985648B2 (en) Secondary cell activation using temporary reference signals and beam selection
JP2019502301A (ja) 共有通信媒体におけるショート物理アップリンク制御チャネル(pucch)のためのハイブリッド自動再送要求(harq)ペイロードマッピング
KR20210038955A (ko) 신호 전송 방법, 단말기 및 네트워크 기기
JP2019502335A (ja) 共有された通信媒体上でのアップリンク制御シグナリング
CN110139361B (zh) 信号传输的方法和装置
TW202019213A (zh) 傳輸訊號的方法、網路設備及終端設備
TW202013921A (zh) 發送上行信號的方法和設備
CN113271683A (zh) 一种基于ue能力进行通信的方法和ue及网络侧设备
US11632774B2 (en) Systems and methods for determining cancellation timeline for user equipment with mixed processing capabilities
US20210112603A1 (en) Systems and methods for physical uplink shared channel (pusch) occasion validation for 2-step random access channel (rach)
US20220377801A1 (en) Systems and methods for latency reduction for 2-step random access channel (rach) hybrid automatic repeat requests (harq)
WO2019158018A1 (zh) 一种寻呼消息的传输方法
US11863331B2 (en) Determining priorities for a plurality of transport blocks for transmission
US11856539B2 (en) Method and device for transmitting downlink control information
US20230362938A1 (en) Dynamic indication of uplink transmission parameters via configured grant-uci (cg-uci)
CN114731580A (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2022061733A1 (zh) 无线通信方法和设备
WO2023097596A1 (en) Training of reconfigurable intelligent surfaces through 1 port comb-n reference signals
US20240154758A1 (en) Wireless communication method and device
WO2024026779A1 (zh) 数据传输方法及装置、终端设备、网络设备
WO2023240630A1 (zh) 无线通信方法、终端设备以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755126

Country of ref document: EP

Kind code of ref document: A1