[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019158010A1 - 资源管理的方法、设备及系统 - Google Patents

资源管理的方法、设备及系统 Download PDF

Info

Publication number
WO2019158010A1
WO2019158010A1 PCT/CN2019/074632 CN2019074632W WO2019158010A1 WO 2019158010 A1 WO2019158010 A1 WO 2019158010A1 CN 2019074632 W CN2019074632 W CN 2019074632W WO 2019158010 A1 WO2019158010 A1 WO 2019158010A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
address segment
network element
segment
allocation
Prior art date
Application number
PCT/CN2019/074632
Other languages
English (en)
French (fr)
Inventor
周汉
夏渊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019158010A1 publication Critical patent/WO2019158010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, device, and system for address resource management.
  • a packet data unit (PDU) session is managed by a session management function (SMF) network element.
  • SMF session management function
  • the above 5G network architecture is inconsistent with the actual deployment of the operator.
  • the SMF network element and the UPF network element are usually considered in consideration of the complexity of the configuration across the administrative area and the requirement of the operator to hide the network topology.
  • the deployment relationship is a many-to-many relationship.
  • the policy of binding the UPF address segment resource to the SMF is very inflexible. Different address segments cannot be dynamically allocated between SMFs. Therefore, a new address resource management strategy is needed to avoid the problem of address allocation conflicts.
  • the embodiment of the present application provides a method, a device, and a system for managing address resources, and provides a new address resource management policy to avoid conflicts in address allocation.
  • the embodiment of the present application provides the following technical solutions:
  • the first aspect provides a method for managing an address resource, where the method includes: when the address allocation network element learns that the address resource is insufficient; and sends an address segment allocation request message to the central segment management network element, the address segment allocation request message may include the data network. Name DNN.
  • the address segment allocation request message may further include an N3 interface IP address corresponding to the address segment.
  • the address allocation network element may include a session management function, for example, may be an SMF, and the address segment centralized management network element may include a user plane network element or a control plane network element.
  • the central management unit of the address segment is a user plane network element, it can be an UPF.
  • the central management unit of the address segment is a control plane network element, it can be an NRF.
  • the SMF dynamically requests the address segment resource from the UPF, and the SMF dynamically allocates the address segment resource to the UPF in a timely manner by sensing the insufficient address in the available address segment, and prepares the subsequent UE access in time.
  • the address resource is on the other hand, on the premise of avoiding the SMF address allocation conflict, the on-demand allocation of the address segment is realized.
  • This embodiment also provides a recovery mechanism for the address segment, which avoids that a large number of address segments cannot be fully utilized, thereby improving utilization efficiency.
  • the address allocation network element receives an address segment allocation response message sent by the network segment in the address segment, and the address segment allocation response message includes an address segment corresponding to the DNN.
  • the SMF may select the UPF according to the DNN information, obtain an address segment corresponding to the DNN, and the SMF allocates an IP address to the UE in the address segment.
  • the address allocation network element learns that the address resource is insufficient, and may include any one of the following: for example, the address allocation network element learns that the address segment does not exist, or the address in the address segment is exhausted or close to consumption. End, or the address occupancy ratio in the address segment exceeds the threshold.
  • the address allocation network element selects the N3 interface IP address as the local address of the N3 tunnel for the user equipment UE according to the binding relationship between the IP address of the N3 interface and the address segment.
  • the binding relationship can be expressed as follows: [N3Interface IP, UE IP section].
  • the address allocation network element sends an address segment release request message to the address segment centralized management network element, where the address segment release request includes at least one of the following information: releasing the address segment indication information, Address segment information, UE address and timing message.
  • the condition for sending the address segment release request message may include the following two situations:
  • the address allocation network element determines that the UE is the last UE in the occupied address segment, the address allocation network element sends the address segment release request message to the address segment centralized management network element;
  • the address allocation network element learns that the address utilization rate in the address segment is not high, the address allocation network element initiates a PDU session release request to the idle state UE, and instructs the idle state UE to initiate PDU session reconstruction.
  • the address allocation network element receives the address segment centralized management network element in the link establishment or link update or the network element instance status notification process to send at least one of the following information: an address segment, a TEID The segment identifier, the DNN corresponding to the address segment, and the N3 interface IP address corresponding to the initial address segment.
  • the address allocation network element selects the UPF according to the DNN, and obtains the identifier information of the UPF, and the address segment allocation request message carries the identifier information of the UPF.
  • the address allocation network element after receiving the PDU session creation or deletion request message sent by the UE, the address allocation network element sends an address segment allocation request or an address segment release message to the address segment centralized management network element.
  • the address allocation network element may send the address segment allocation request or the address segment release message to the address centralized management network element to include the DNN information carried in the PDU session creation or deletion request message sent by the UE.
  • the centralized management network element of the address segment is the control plane network element NRF: when the UE initiates the PDU session creation process, the SMF sends an available address segment request message to the NRF.
  • the request message may carry the user plane network element information selected by the SMF.
  • a second aspect provides a method for managing an address resource, where the method includes: an address segment centralized management network element receives an address segment allocation request message sent by a session management function SMF, and the address segment allocation request message may include a data network name DNN; an address segment The central management network element allocates an address segment to the SMF according to the DNN.
  • the centralized management network element of the address segment may include a user plane network element or a control plane network element. Specifically, when the central management unit of the address segment is a user plane network element, it can be an UPF. When the central management unit of the address segment is a control plane network element, it can be an NRF.
  • the address segment central management network element sends an address segment allocation response message to the SMF, and the address segment allocation response message includes an address segment.
  • the address segment allocation request further includes the identifier information of the user plane function UPF; the address segment allocation response message may further include an N3 interface IP address or a tunnel endpoint segment identifier associated with the address segment.
  • the IP address segment is uniformly managed by the NRF, and the address segment resource is dynamically requested by the SMF through the SMF.
  • the SMF allocates the address segment resource to the NRF dynamic request in time by sensing the insufficient address in the available address segment.
  • the address resources are prepared in time for the access of the UE or the subsequent UE, and on the other hand, the on-demand allocation of the address segment is realized on the premise of avoiding the conflict of the SMF address allocation.
  • the SMF can also actively trigger the UE to initiate the PDU session release process. In this way, the address of the address segment with low utilization rate is gradually recovered.
  • the centralized management network element of the address segment After no address is occupied by the UE in the address segment, the centralized management network element of the address segment will be The entire address segment is reclaimed, and the address segment can be allocated to the SMF again, and the address segment is effectively allocated between the SMFs, thereby improving the utilization efficiency of the address segment.
  • the address segment central management network element receives the address segment release request message sent by the SMF, and the address segment release request includes at least one of the following information: release address segment indication information, address segment information, and address of the UE. , timing messages.
  • the address segment centralized management network element sends an address segment release response message to the SMF, where the address segment release response message includes a release result of the to-be-recovered address segment information.
  • the central management unit of the address segment can also start a timer, and the timer is used to allocate the address segment that the address allocation network element requests to release to the address allocation network element again when the timer expires. .
  • the address segment centralized management network element sends at least one of the following information to the SMF in the link establishment or link update or the network element instance status notification process: the address segment, the TEID segment identifier, and the The DNN corresponding to the address segment and the N3 interface IP address corresponding to the initial address segment.
  • an address allocation network element is provided, the network element having the functionality to implement the method described in the first aspect above.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a fourth aspect provides a centrally managed network element for an address segment, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the target When the mobility management entity is running, the processor executes the computer-executed instructions stored by the memory to cause the target mobility management entity to perform the handover method as described in any of the first aspects above.
  • a fifth aspect a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the first aspect or the second aspect or the first, Any of any possible designs in the two aspects.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the first or second aspects described above or any of the possible designs of the first and second aspects item.
  • a chip system comprising a processor, configured to support a target mobility management entity to implement functions involved in the foregoing aspects, such as a target terminal related message, and send the target terminal to the source mobility management entity.
  • the chip system further includes a memory for storing necessary program instructions and data of the target mobility management entity.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the technical effects brought by any one of the third aspect to the seventh aspect may refer to the technical effects brought by the first aspect or the second aspect or any possible design manner of the first and second aspects, I will not repeat them here.
  • FIG. 1 is a schematic diagram of a possible network architecture provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a possible networking scenario according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a simplified network architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a resource management method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of another resource management method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart diagram of another resource management method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of another resource management method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart diagram of another resource management method according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart diagram of another resource management method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of another resource management method according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart diagram of another resource management method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a device according to an embodiment of the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 is a schematic diagram of a possible network architecture of the present application.
  • the network architecture is a 5G network architecture.
  • the network element in the 5G architecture includes an access and mobility management function (AMF) entity, an SMF entity, and a UPF entity; and may also include a policy control function (PCF) entity and a terminal (figure The terminal uses the UE as an example), the radio access network (RAN), and the unified data management (UDM) entity.
  • AMF access and mobility management function
  • PCF policy control function
  • the terminal uses the UE as an example), the radio access network (RAN), and the unified data management (UDM) entity.
  • the control plane function entity is mainly responsible for terminal authentication, application server management, and interaction with the network side control plane.
  • the application server is mainly responsible for providing service authentication and specific services for the terminal.
  • control plane function entity may be a Vehicle to Everything Communication Control Function (V2X Control Function) entity.
  • the application server can be a Vehicle to Everything Communication Application Server (V2X Application Server), which can be used for remote driving, distribution of traffic information, and the like.
  • the RAN device communicates with the AMF entity through the N2 interface, the RAN device communicates with the UPF entity through the N3 interface, the UPF entity and the SMF entity communicate through the N4 interface, and the PCF entity and the control plane control entity pass the N5 interface. Communication, the SMF entity and the PCF entity communicate through the N7 interface, the AMF entity and the UDM entity communicate through the N8 interface, the UPF entity and the UPF entity communicate through the N9 interface, and the SMF entity communicates with the UDM entity through the N10 interface.
  • the AMF entity communicates with the SMF entity through the N11 interface, and the AMF entity communicates with the PCF entity through the N15 interface.
  • the main function of the RAN is to control the user's access to the mobile communication network through wireless.
  • the RAN is part of a mobile communication system. It implements a wireless access technology. Conceptually, it resides between devices (such as mobile phones, a computer, or any remote controller) and provides connectivity to its core network.
  • the RAN device includes, but is not limited to, (g nodeB, gNB), evolved node B (eNB), radio network controller (RNC), node B (node B, NB) in 5G, Base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (BBU), transmission point (transmitting and receiving point, TRP), a transmitting point (TP), a mobile switching center, etc., and may also include a wireless fidelity (wifi) access point (AP) or the like.
  • BSC Base station controller
  • BTS base transceiver station
  • TRP transmission point
  • TRP transmitting and receiving point
  • TP transmitting point
  • AP wireless fidelity
  • the AMF entity is responsible for access management and mobility management of the terminal. In practical applications, it includes the mobility management function in the mobility management entity (MME) in the network framework of long term evolution (LTE). And joined the access management function.
  • MME mobility management entity
  • LTE long term evolution
  • the SMF entity is responsible for session management, such as user session establishment.
  • the UPF entity is a functional network element of the user plane, and is mainly responsible for connecting to an external network, and includes related functions of an LTE serving gateway (SGW) and a public data network gateWay (PDN-GW).
  • SGW LTE serving gateway
  • PDN-GW public data network gateWay
  • the UDM entity can store the subscription information of the user, and implements a backend similar to the Home Subscriber Server (HSS) in the 4G.
  • HSS Home Subscriber Server
  • the PCF entity is used to perform policy control, similar to the Policy and Charging Rules Function (PCRF) in 4G, and is mainly responsible for policy authorization, quality of service (QoS), and generation of charging rules. And the corresponding rules are delivered to the UPF entity through the SMF entity, and the corresponding policies and rules are installed.
  • PCF Policy and Charging Rules Function
  • the terminal in the present application is a device with wireless transceiving function, which can be deployed on land, indoors or outdoors, hand-held or on-board; it can also be deployed on the water surface (such as a ship, etc.); it can also be deployed in the air (for example) Aircraft, balloons and satellites, etc.)
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety, A wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the RAN device, the SMF entity, the UPF entity, the AMF entity, the PCF entity, and the UDM entity shown in FIG. 1 are only one name, and the name does not limit the device itself.
  • the network element or the entity corresponding to the RAN device, the SMF entity, the UPF entity, the AMF entity, the PCF entity, and the UDM entity may also be other names, which is not specifically limited in this embodiment of the present application. .
  • the name of the message mentioned in this application may also be used as a reference to other message names, and the application is not limited.
  • FIG. 2 shows a networking scenario in a 5G architecture.
  • one UPF can be attributed to multiple SMF management. Therefore, multiple SMFs can learn an internet protocol (IP) address pool supported by the UPF.
  • IP internet protocol
  • An SMF can also manage multiple UPFs.
  • One SMF can learn the IP address pool supported by multiple UPFs.
  • the scenario of the SMF and the UPF can be set up as the SMF Pool and the UPF Pool.
  • the deployment relationship between the SMF and the UPF is N:M.
  • the M and N are positive integers.
  • the address pool of the UPF is divided into multiple address segments, and different address segments are bound to different SMFs. This way of fixed binding is very inflexible.
  • different address segments cannot be dynamically provisioned between SMFs. For example, when the address segment usage rate for this UPF on a SMF is high, and the address segment usage rate for this UPF on other SMFs is low, since the address segment has been bound to the SMF, the usage rate cannot be compared.
  • the address segment on the low SMF is again allocated to the SMF with higher usage.
  • an SMF instance is added to the SMF pool. If no address pool is available in the address pool on the UPF, the new SMF instance cannot be connected.
  • UPF cannot meet the needs of the entire network SMF and UPF interconnection. Therefore, the existing technology cannot solve the problem of address allocation conflicts in the networking scenario, and a new address resource management scheme is needed to avoid multiple SMFs from performing address on the UE in a PDU session management process initiated by different UEs. A conflict occurs when assigning.
  • the embodiment of the present application provides a new address resource management solution.
  • the address pool in the data network (DN) is centrally managed, and the address segment in the address pool is dynamically allocated to the UPF connected to the DN.
  • the IP address of the UE is allocated by the SMF. That is, the address allocation network element is an SMF.
  • the SMF requests the address segment centralized management network element to allocate an available address segment, and the SMF allocates an address for the UE in the available address segment.
  • the SMF again requests the address segment centralized management network element to allocate an available address segment. After the PDU session of all the users in the available address segment is released, the SMF notifies the address segment to centrally manage the network element to recover the address segment.
  • the central management network element of the address segment may include: a user plane network element, such as an UPF; or a control plane network element, such as an NRF. If the centralized management network element of the address segment is a user plane network element, in the 5G system, the user plane network element is a UPF. That is, the SMF requests an available address segment from the UPF.
  • the control plane network element may be a network function repository function (NRF). That is, the SMF requests an available address segment from the NRF.
  • the NRF maintains and maintains whether the address segment is occupied. In this case, the UPF does not need to maintain the status of the address segment. It only needs to advertise all the address segments.
  • the NRF is a function storage function of the network element.
  • the network element function instance in the 5G network can register the services supported by the NRF to the NRF. Other network elements can query the NRF to provide the service network element function through the service discovery mechanism. Example.
  • FIG. 3 shows a simplified system structure diagram provided by an embodiment of the present application, which can be applied to the 5G network architecture shown in FIG. 1 and FIG.
  • the user plane network element may be a UPF in the 5G system. That is, the SMF requests an available address segment from the UPF. The UPF maintains a state in which the address segment is occupied.
  • the control plane network element may be an NRF. That is, the SMF requests an available address segment from the NRF. The NRF maintains and maintains whether the address segment is occupied. In this case, the UPF does not need to maintain the status of the address segment, and only needs to publish the routes of all the address segments.
  • the present application takes the network element such as the SMF entity, the UPF entity, and the NRF entity shown in FIG. 3 as an example for detailed description.
  • the UPF When the centralized management network element of the address segment is the user plane network element UPF, the UPF sends the user plane resource information to the SMF in the process of initiating link establishment or link update between the UPF and the SMF.
  • the user plane resource information may include an available address segment.
  • the user plane resource information may further include at least one of the following information:
  • the data network name (DNN) information associated with the available address segment is the segment identifier of the TEID divided by the SMF, and the UPF is the N3 interface address divided by the SMF.
  • the available address segment is a small range of available address segments, including fewer addresses. If the UPF sends the N3 interface address to the SMF in the link establishment or link update process, the UPF sends the address segment to the SMF together with the N3 interface address binding relationship.
  • the binding relationship can be expressed as [N3Interface IP, UE IP section]. The above steps are optional. You can also notify the SMF of the user plane resource information supported by the UPF in the configuration mode or the UPF NE instance status notification process.
  • the SMF After the SMF receives the foregoing resource information sent by the UPF, in the PDU session establishment procedure initiated by the UE, if the SMF selects the UPF for the UE, the SMF allocates an IP address to the UE in the available address segment. If the resource information further includes TEID segment identification information, the SMF needs to include the TEID segment identification information when the TEID is allocated to the UE. If the resource information further includes a binding relationship between the N3 interface address and the N3 interface address, the SMF allocates the IP address and the N3 interface address to the UE. .
  • the SMF When the SMF receives the UE-initiated PDU session release message, if the UE is the UE that last occupied the address in the address segment, the SMF notifies the UPF to reclaim the address segment.
  • the SMF learns that the address in the available address segment is insufficient, for example, the address segment does not exist, or the address segment resource is exhausted, or is nearly exhausted, or the address occupancy exceeds a certain threshold (more than a certain ratio, etc., such as exceeding a certain Percentage), the SMF applies to the UPF for a new available address segment.
  • the UPF allocates a new available address segment to the SMF.
  • the UPF sends the N3 interface address bound to the new available address segment to the SMF.
  • the SMF When the centralized management network element of the address segment is the control plane network element NRF: when the UE initiates the PDU session establishment procedure, the SMF sends an available address segment request message to the NRF.
  • the request message may carry the user plane network element information selected by the SMF.
  • the NRF returns the available address segment information of the user plane network element to the SMF.
  • the available address segment is a range of available small range address segments that contain fewer addresses.
  • the NRF may send the available address segment to the SMF together with the N3 interface address binding relationship.
  • the binding relationship can be expressed as [N3Interface IP, UE IP section].
  • the SMF After receiving the foregoing resource information sent by the NRF, the SMF allocates an IP address to the UE in the address segment if the SMF selects the user plane network element for the UE in the PDU session establishment process initiated by the UE.
  • the resource information further includes a binding relationship between the N3 interface address and the address segment, the SMF needs to bind the N3 interface address according to the address segment when the SMF allocates an IP address and an N3 interface address to the UE. Relationships are assigned.
  • the SMF When the SMF receives the PDU session release message initiated by the UE, if the UE is the UE that last occupied the address in the address segment, the SMF notifies the control plane network element to recover the address segment.
  • the SMF When the SMF learns that the address in the available address segment is insufficient (for example, the address segment does not exist, or the address group member is exhausted, or is nearly exhausted, or the address occupancy exceeds a certain percentage (percentage)), the SMF applies for a new available to the NRF. Address segment.
  • the NRF allocates a new available address segment to the SMF.
  • the NRF sends the N3 interface address bound to the available address segment to the SMF.
  • the address resource management scheme is described in detail from the address segment centralized management unit to the user plane network element or the control plane network element.
  • the first embodiment is described by taking a user plane network element as an address segment centralized management unit as an example.
  • the user plane network element may be an UPF.
  • the following three processes may be roughly divided into the following:
  • the link establishment or link update procedure of the connection between the UPF and the SMF divides resource information for the SMF.
  • the resource information may include an available IP address segment, and optionally, a TEID segment identifier, DNN information corresponding to the available IP address segment, and an N3 interface address bound to the available address segment. This step is optional.
  • the user plane resource information supported by the UPF can be notified to the SMF by the NRF in the configuration mode or the UPF NE instance status notification process.
  • the SMF allocates an IP address within the available address segment to the UE. If the SMF is aware that the address within the available address segment is insufficient, the SMF requests a new available address segment from the UPF in the flow.
  • Steps 1) and 3) are optional.
  • FIG. 4 shows the link establishment or link update procedure of the above 1) connection between the UPF and the SMF.
  • the UPF initiates an N4 link setup or link update request to the SMF.
  • UPF sends an N4association setup/update request message to the SMF.
  • the N4association setup/update request message carries the available address segments.
  • the available address segment contains a small range of addresses and a relatively small number of addresses.
  • the UPF may further provide the SMF with DNN information corresponding to the available address segment, the UPF is a TEID segment identifier allocated by the SMF, and N3 interface address information associated with (bind) with the available address segment.
  • the SMF After the SMF receives the above message, the SMF returns an N4association setup/update response message to the UPF.
  • the link establishment request may also be initiated by the SMF.
  • the SMF initiates an N4 link setup/update request to the UPF.
  • the specific link establishment/update process may refer to the process in which the foregoing UPF initiates an N4 link setup or update request to the SMF.
  • the main difference is that when the SMF initiates an N4 link setup or update request to the UPF, the UPF passes the N4 association setup/update response message.
  • the above information is sent to the SMF. Other processes are not described here.
  • FIG. 5 shows the above 2) UE initiated PDU Session Establish procedure. The following is specifically explained in conjunction with the flow in FIG.
  • the UE sends a PDU Session Establish Request message to the SMF, where the message carries DNN information.
  • the DNN is used to identify a DN network, and the SMF can select the UPF through the DNN.
  • the SMF receives the DNN information, and the SMF can select the UPF according to the DNN information to obtain an available address segment, and the SMF allocates an IP address to the UE in the available address segment.
  • the SMF allocates the TEID to the UE to include the TEID segment identifier.
  • the SMF selects the N3 interface IP address as the local address of the N3 tunnel when the UE establishes an N3 tunnel on the UPF. .
  • the SMF learns that the address in the available address segment is insufficient (the address segment does not exist or the address group member is exhausted or nearly exhausted or the occupancy rate exceeds a certain percentage (percentage)), the SMF carries the available address segment in the N4Session Establish request message.
  • the New IP Section Retrieve and DNN information request a new available address segment from the UPF.
  • the UPF allocates a new available address segment corresponding to the above DNN and sends it to the SMF in an N4 Session Start response message.
  • the UPF may also send the N3 interface IP address associated with the new available address segment to the SMF.
  • the UPF may also send the tunnel endpoint segment identifier to the SMF.
  • the SMF sends the IP address assigned to the UE to the UE in the PDU Session Establish response message.
  • This step may occur after the step 2, and may also occur after the step 4, which is not limited in the embodiment of the present application.
  • the SMF allocates an IP address to the subsequently accessed UE according to the obtained new available address segment.
  • For the process of assigning an address resource refer to the foregoing steps 1-3 to configure an IP address for the UE, and details are not described herein.
  • FIG. 6 shows the above 3) UE initiated PDU Session Delete procedure. The following is specifically explained in conjunction with the flow in FIG. 6.
  • the UE sends a PDU Session Delete request message to the SMF.
  • the SMF sends an N4Session Delete request message to the UPF. If the SMF is aware that the UE is the UE that occupies the last IP address in the IP Section, the SMF carries an IP Section release indication in the N4Session Delete Request message, instructing the UPF to reclaim the IP Section. The UPF can then reassign the above IP address segment to the SMF (or other SMF).
  • the SMF can also carry the timer information in the N4Session Delete request message.
  • the timer information is used to indicate that after the timer expires, the UPF may re-allocate the IP address segment to the SMF (or other SMF). That is, when the UPF receives the address segment request message sent by the SMF again, the UPF allocates the address segment to the SMF of the request address segment.
  • UPF sends an N4Session Delete response message to the SMF.
  • the above message carries the result of releasing the IP address segment.
  • the SMF returns a PDU Session Delete response message to the UE.
  • the IP address segment is collectively managed by the UPF, and the SMF dynamically requests the address segment resource from the UPF.
  • the SMF dynamically requests the address segment resource to be dynamically requested by the UPF by sensing the insufficient address in the available address segment.
  • the access of the UE prepares the address resource in time, and on the other hand, the on-demand allocation of the address segment is realized under the premise of avoiding the conflict of the SMF address allocation.
  • This embodiment also provides a recovery mechanism for the address segment, which avoids that a large number of address segments cannot be fully utilized, thereby improving utilization efficiency.
  • control plane network element may be an address segment centralized management unit as an example.
  • control plane network element may be an NRF. This embodiment may be roughly divided into three major processes:
  • the link establishment or update process between UPF and SMF may send the TEID segment identifier to the SMF.
  • This step is optional.
  • the user plane resource information supported by the UPF can be notified to the SMF by the NRF in the configuration mode or the UPF NE instance status notification process.
  • UE initiated PDU Session Establish process In the process, if the SMF learns that the address in the available address segment corresponding to the UPF selected by the UE is insufficient (the address segment does not exist, or the address resource is exhausted, or is nearly exhausted or the proportion exceeds a certain percentage (percentage )), the SMF requests the NRF for the new available address segment corresponding to the UPF selected by the UE.
  • Steps 1) and 3) are optional.
  • FIG. 7 shows a process of link establishment or link update procedure of 1) connection between UPF and SMF in Embodiment 2. As shown in Option 1 in Figure 4, the UPF initiates an N4 link setup or link update request to the SMF.
  • UPF sends an N4association setup/update request message to the SMF.
  • the N4association setup/update request message carries the TEID segment identifier assigned by the UPF to the SMF.
  • the SMF After the SMF receives the above message, the SMF returns an N4association setup/update response message to the UPF.
  • the link setup or update request may also be initiated by the SMF.
  • the SMF initiates an N4 link setup/update request to the UPF.
  • the specific link establishment or update process refer to the process in which the UPF initiates an N4 link setup/update request to the SMF in the foregoing Embodiment 2, the main difference is that when the SMF initiates an N4 link setup or update request to the UPF, the UPF passes the N4 association setup.
  • the TEID segment identification information is sent to the SMF in the response message. Other processes are not described here.
  • FIG. 11 is a diagram showing the manner in which the user plane resource information supported by the UPF is notified to the SMF by the NRF through the UPF network element instance status notification process in the first embodiment and the second embodiment.
  • the SMF subscribes to the UPF status notification to the NRF.
  • the DNN may be carried in the subscription message, that is, the SMF subscribes to the NRF to support the UPF status of one or some DNNs.
  • the UPF initiates registration with the NRF and registers its own capabilities, address pool, and supported DNNs to the NRF.
  • the NRF After receiving the registration message of the UPF, the NRF sends an NF status notification to the subscribed SMF according to the subscription message received in step 1 in this embodiment.
  • the user plane resource information of the UPF is carried in the notification message. Specifically, the UPF identification information, the DNN supported by the UPF, and the initial address segment supported by the UPF corresponding to the DNN.
  • the message further carries the TEID segment identifier allocated by the UPF for the SMF, or the N3 interface address information associated with the initial address segment.
  • FIG. 8 shows a PDU Session Establish procedure initiated by the UE in the second embodiment. The following is specifically explained in conjunction with the flow in FIG.
  • the UE sends a PDU Session Establish Request message to the SMF, where the message carries DNN information.
  • the SMF selects the UPF for the UE, and matches the available address segment corresponding to the UPF determined by the selection according to the DNN information, and the SMF allocates an IP address to the UE in the available address segment.
  • the SMF allocates the TEID to the UE to include the TEID segment identifier.
  • the SMF selects the N3 interface IP address as the local address of the N3 tunnel when the UE establishes an N3 tunnel on the UPF.
  • the SMF sends an address segment request message to the NRF, the address segment
  • the request message may carry a UPF ID, and the New IP Section retrieve and the DNN information request a new available address segment from the NRF.
  • the NRF allocates a new available address segment corresponding to the above UPF and DNN, and sends it to the SMF in the address segment request response message.
  • the NRF will also send the N3 interface IP address associated with the new available address segment above to the SMF.
  • the NRF may also send the tunnel endpoint segment identifier (ie, TEID) to the SMF.
  • TEID tunnel endpoint segment identifier
  • the SMF sends an N4Session Establish req message to the UPF. If the SMF does not assign an address to the UE in step 2, the SMF may assign an IP address to the UE in step 5. The SMF may assign an IP address to the UE according to the address segment obtained from step 4.
  • UPF returns the N4Session Establish rsp message to the SMF.
  • the SMF will send the IP address assigned to the UE to the UE in the PDU Session Establish response message.
  • the SMF allocates an IP address to the UE or a subsequently accessed UE according to the obtained new available address segment.
  • Steps 3 and 5 can occur in parallel, and the order of the messages is not limited.
  • steps 3 and 4 in the embodiment of the present application are not limited, and steps 3 and 4 may also be implemented in other messages, for example, the steps 3 and 4 are included in the UPF selection step initiated by the SMF to the NRF.
  • FIG. 9 shows a process of 3) UE-initiated PDU Session Delete in Embodiment 2. The following is specifically explained in conjunction with the flow in FIG.
  • the UE sends a PDU Session Delete request message to the SMF.
  • the SMF learns that the UE is the UE that last occupies the IP address in the IP Section, the SMF sends an IP Section release request message to the NRF, carries the UPF ID in the IP Section release request message, and needs to release the IP Section, or The IP address of the UE,
  • the SMF may further carry the timer information in the PDU Session Delete request message, where the NRF may reclaim the address segment after the timer expires.
  • the NRF can subsequently reassign the recovered IP address segment to the SMF (or other SMF). That is, when the NRF receives the address segment request message sent by the SMF again, the NRF allocates the address segment to the SMF of the request address segment.
  • the NRF sends an IP Section release response message to the SMF.
  • the above message carries the result of releasing the IP address segment.
  • the SMF sends an N4Session Delete request message to the UPF.
  • UPF sends an N4Session Delete response message to the SMF.
  • the SMF returns a PDU Session Delete response message to the UE.
  • Step 2 and step 4 can occur in parallel, and the order of messages is not limited. Steps 2 and 3 can also occur after step 6.
  • the message names of steps 2 and 3 in the embodiment of the present application are not limited.
  • the NRF uniformly manages the IP address segment, and the SMF dynamically requests the address segment resource from the NRF.
  • the SMF notifies the NRF dynamic request to allocate the address segment resource in time by sensing the insufficient address in the available address segment.
  • the access of the UE or the subsequent UE prepares the address resource in time, and on the other hand, the on-demand allocation of the address segment is realized on the premise of avoiding the conflict of the SMF address allocation.
  • This embodiment also provides a recovery mechanism for the address segment, which avoids that a large number of address segments cannot be fully utilized, thereby improving utilization efficiency.
  • the third embodiment shows a method for recovering an address resource, which can be implemented in combination with the foregoing embodiment 1 or the second embodiment.
  • the active recovery mechanism for the address segment resource shown in the third embodiment is The utilization of address resources can be further improved by combining the foregoing embodiments. Specifically, as shown in Figure 10.
  • the SMF can actively initiate the IP address segment recovery function. For example, the SMF learns that the UEs in the available address segments are in an idle state, and the SMF initiates an IP Session release procedure for the UEs, and notifies the UE to re-initiate the PDU session creation.
  • the UE After receiving the message, the UE initiates an IP Session Delete process, in which the SMF recovers the IP address.
  • the SMF When receiving the PDU session delete message of the last UE that occupies the IP address in the address segment, the SMF notifies the UPF or the NRF to reclaim the available address segment.
  • the SMF For the specific process, refer to the implementation manner of the foregoing Embodiment 1 or Embodiment 2.
  • the UE initiates a PDU Session Reestablishment, and the SMF allocates an IP address for the UE to select other available address segments.
  • the address segment request message described in all the foregoing embodiments, and the purpose of the address segment release message are respectively that the address allocation network element requests or allocates (reclaims) the address segment to the address centralized management network element, and the two embodiments of the present application
  • the name of the message is not restricted.
  • the SMF can actively trigger the UE to initiate a PDU session release process.
  • the address of the address segment with low utilization rate is gradually recovered.
  • the address is The segment centralized management network element recovers the entire address segment, and the address segment can be allocated to the SMF again, and the address segment is effectively allocated between the SMFs, thereby improving the utilization efficiency of the address segment.
  • the present application also provides a schematic diagram of a device.
  • the device may be a centrally managed network element for the address segment.
  • the device may be a UPF.
  • the device may perform the method performed by the UPF in any of the foregoing embodiments.
  • the centralized management network element of the address segment is a control plane network element, specifically, it may be an NRF, and the apparatus may perform the method performed by the NRF in any of the foregoing embodiments.
  • the device may also allocate a network element for the address.
  • the SMF is taken as an example.
  • the apparatus can also perform the method performed by the SMF in any of the embodiments described above.
  • the apparatus 1200 includes at least one processor 121, a transceiver 122, and optionally a memory 123.
  • the processor 121, the transceiver 122, and the memory 123 are connected by a communication line.
  • the processor 121 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line can include a path for communicating information between the units.
  • the transceiver 122 is configured to communicate with other devices or communication networks, and the transceiver includes a radio frequency circuit.
  • the memory 123 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device may also be an electrically erasable programmabler-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, or a disc storage ( Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • EEPROM electrically erasable programmabler-only memory
  • CD-ROM compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • disc storage Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 123 may be independently present and connected to the processor 121 via a communication line.
  • the memory 123 can also be integrated with the processor.
  • the memory 123 is used to store application code for executing the solution of the present invention, and is controlled by the processor 121 for execution.
  • the processor 121 is configured to execute application code stored in the memory 123.
  • the processor 121 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • apparatus 1200 can include multiple processors, such as processor 121 and processor 124 in FIG. Each of these processors may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • processors such as processor 121 and processor 124 in FIG.
  • processors may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • the function module of the present application may further divide the function modules according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation. For example, in the case where each functional module is divided by corresponding functions, FIG. 13 shows a schematic diagram of a device including a processing unit 1301 and a communication unit 1302.
  • the network element can be centrally managed for the address segment.
  • the centralized management network element of the address segment is a user plane network element, specifically, it may be an UPF, and the apparatus may perform the method performed by the UPF in any of the foregoing embodiments.
  • the centralized management network element of the address segment is a control plane network element, specifically, it may be an NRF, and the apparatus may perform the method performed by the NRF in any of the foregoing embodiments.
  • the device may also allocate a network element for the address.
  • the SMF is taken as an example.
  • the apparatus can also perform the method performed by the SMF in any of the embodiments described above.
  • the address segment centralized management network element or the address allocation network element may be presented in the form of dividing each function module corresponding to each function, or may be presented in an integrated manner to divide each functional module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC application-specific integrated circuit
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)
  • embodiments of the present application can be provided as a method, apparatus (device), computer readable storage medium, or computer program product.
  • the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects, which are collectively referred to herein as "module” or "system.”
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in the ASIC, and the ASIC may be disposed in the terminal device. Alternatively, the processor and the storage medium may also be disposed in different components in the terminal device.
  • the above-described functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供地址资源管理的方法、设备及系统,可以实现地址段的按需分配,避免地址分配出现冲突。方法包括:地址分配网元获知地址资源不足时向地址段集中管理网元发送地址段分配请求消息,地址段集中管理网元根据请求消息动态地为地址分配网元分配地址段。

Description

资源管理的方法、设备及系统
本申请要求于2018年2月13日提交中国国家知识产权局、申请号为201810150773.6、发明名称为“资源管理的方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及地址资源管理的方法、设备及系统。
背景技术
现有的第五代(5rd generation,5G)网络架构中,一个分组数据单元(packet data unit,PDU)会话由一个会话管理功能(session management function,SMF)网元管理。这意味着,在现有的5G网络架构中,当终端处于非漫游状态时,终端的PDU会话的用户面路径中的所有用户面功能(user plane function,UPF)网元均由一个SMF网元控制。
然而,上述5G网络架构与运营商的实际部署并不一致,在运营商的实际部署中,考虑到跨行政区域配置的复杂性以及运营商希望隐藏网络拓扑的需求,通常SMF网元和UPF网元的部署关系是一种多对多的关系,现有技术中将UPF的地址段资源与SMF进行绑定分配的策略显得非常不灵活,不同的地址段在SMF之间无法动态调配。因此,需要一种新的地址资源管理策略,来避免地址分配产生冲突的问题。
发明内容
本申请实施例提供地址资源管理的方法、设备及系统,提供了而一种新的地址资源管理策略,避免地址分配出现冲突。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供一种管理地址资源的方法,方法包括:地址分配网元获知地址资源不足时;向地址段集中管理网元发送地址段分配请求消息,地址段分配请求消息中可以包括数据网络名DNN。可选的,地址段分配请求消息中还可以包括与所述地址段对应的N3接口IP地址。其中,地址分配网元可以包括会话管理功能,例如可以为SMF,地址段集中管理网元可以包括用户面网元或控制面网元。具体的,地址段集中管理网元为用户面网元时可以为UPF,当地址段集中管理单元为控制面网元时可以为NRF。
基于本申请实施例提供的方法,通过SMF动态向UPF请求地址段资源,SMF通过感知可用地址段内地址不足,及时地向UPF动态请求分配地址段资源,一方面为后续UE的接入及时准备了地址资源,另一方面在避免SMF地址分配冲突的前提下,实现了地址段的按需分配。本实施例还提供了地址段的回收机制,避免了大量地址段无法充分利用,提高了利用效率。
在一种可能的设计中,地址分配网元接收地址段集中管理网元发送的地址段分配响应消息,地址段分配响应消息中包括与所述DNN对应的地址段。其中,SMF可以根据该DNN 信息来选择UPF,获得该DNN对应的地址段,SMF在该地址段内为UE分配IP地址。
在一种可能的设计中,地址分配网元获知地址资源不足,可以包括如下中的任意一种:例如,所述地址分配网元获知地址段不存在,或地址段内地址耗尽或接近耗尽,或地址段内地址占用比例超过阈值。
在一种可能的设计中,地址分配网元根据所述N3接口IP地址与所述地址段的绑定关系为用户设备UE选择N3接口IP地址作为N3隧道的本端地址。例如绑定关系可以通过如下方式体现:[N3Interface IP,UE IP section]。
在一种可能的设计中,地址分配网元向所述地址段集中管理网元发送地址段释放请求消息,所述地址段释放请求中包括如下信息中的至少一项:释放地址段指示信息,地址段信息,UE的地址和定时消息。其中,发送地址段释放请求消息的条件,可以包括如下两种情况:
1,当所述地址分配网元确定UE是占用地址段中最后一个UE时,所述地址分配网元向所述地址段集中管理网元发送所述地址段释放请求消息;或,
2,地址分配网元获知地址段内的地址利用率不高时,所述地址分配网元向空闲态的UE发起PDU会话释放请求,并指示所述空闲态的UE发起PDU会话重建。
在一种可能的设计中,地址分配网元在链路建立或链路更新或网元实例状态通知流程中接收所述地址段集中管理网元发送如下信息中的至少一项:地址段,TEID段标识,与所述地址段对应的DNN,和与初始地址段对应的N3接口IP地址。
在一种可能的设计中,地址分配网元根据DNN选择UPF,并获取所述UPF的标识信息,在地址段分配请求消息携带获取该UPF的标识信息。
在一种可能的设计中,地址分配网元接收到UE发送的PDU会话创建或删除请求消息后,向所述地址段集中管理网元发送地址段分配请求或地址段释放消息。地址分配网元向所述地址集中管理网元发送地址段分配请求或地址段释放消息中可以包含UE发送的PDU会话创建或删除请求消息中携带的DNN信息。当所述地址段集中管理网元是控制面网元NRF时:在UE发起PDU会话创建流程时,SMF向NRF发送可用地址段请求消息。可选的,请求消息中可以携带SMF选择的用户面网元信息。
第二方面,提供一种管理地址资源的方法,方法包括:地址段集中管理网元接收会话管理功能SMF发送的地址段分配请求消息,地址段分配请求消息中可以包括数据网络名DNN;地址段集中管理网元根据DNN为所述SMF分配地址段;其中,地址段集中管理网元可以包括用户面网元或控制面网元。具体的,地址段集中管理网元为用户面网元时可以为UPF,当地址段集中管理单元为控制面网元时可以为NRF。地址段集中管理网元向SMF发送地址段分配响应消息,地址段分配响应消息中包括地址段。
可选的,地址段分配请求还包括用户面功能UPF的标识信息;地址段分配响应消息中还可以包括与所述地址段关联的N3接口IP地址或隧道端点段标识。
基于本申请实施例提供的方法,通过NRF统一对IP地址段进行集中管理,通过SMF动态向NRF请求地址段资源,SMF通过感知可用地址段内地址不足,及时地向NRF动态请求分配地址段资源,一方面为本UE或后续UE的接入及时准备了地址资源,另一方面在 避免SMF地址分配冲突的前提下,实现了地址段的按需分配。另外,SMF还可以主动触发UE发起PDU会话释放流程,通过这种方式逐步将利用率不高的地址段的地址回收,当所述地址段内无UE占用地址后,地址段集中管理网元将整个地址段回收,所述地址段可以再次被分配给SMF,在SMF之间有效调配地址段,从而提高地址段的利用效率。
在一种可能的设计中,地址段集中管理网元接收SMF发送的地址段释放请求消息,地址段释放请求包括如下信息中的至少一种:释放地址段指示信息,地址段信息,UE的地址,定时消息。地址段集中管理网元向SMF发送地址段释放响应消息,所述地址段释放响应消息中包括待回收地址段信息的释放结果。
可选的,地址段集中管理网元还可以启动定时器,定时器用于当定时器超时时,地址段集中管理网元将所述地址分配网元请求释放的地址段再次分配给地址分配网元。
在一种可能的设计中,地址段集中管理网元在链路建立或链路更新或网元实例状态通知流程中向SMF发送如下信息中的至少一项:地址段,TEID段标识,与所述地址段对应的DNN,和与所述初始地址段对应的N3接口IP地址。
第三方面,提供了一种地址分配网元,该网元具有实现上述第一方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,提供了一种地址段集中管理网元,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该目标移动管理实体运行时,该处理器执行该存储器存储的该计算机执行指令,以使该目标移动管理实体执行如上述第一方面中任一所述的切换方法。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第二方面或第一、第二方面中任何可能的设计中任意一项。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或第二方面或第一、第二方面中任何可能的设计中任意一项。
第七方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持目标移动管理实体实现上述方面中所涉及的功能,例如目标终端相关的消息,并向源移动管理实体发送目标终端相关的消息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存该目标移动管理实体必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第七方面中任一种设计方式所带来的技术效果可参见第一方面或第二方面或第一、第二方面中任何可能的设计方式所带来的技术效果,此处不再赘述。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种可能的网络架构示意图;
图2为本申请实施例提供的一种可能的组网场景示意图;
图3为本申请实施例提供的一种简化的网络架构示意图;
图4为本申请实施例提供的一种资源管理方法的流程示意图;
图5为本申请实施例提供的另一种资源管理方法的流程示意图;
图6为本申请实施例提供的另一种资源管理方法的流程示意图;
图7为本申请实施例提供的另一种资源管理方法的流程示意图;
图8为本申请实施例提供的另一种资源管理方法的流程示意图;
图9为本申请实施例提供的另一种资源管理方法的流程示意图;
图10为本申请实施例提供的另一种资源管理方法的流程示意图;
图11为本申请实施例提供的另一种资源管理方法的流程示意图;
图12为本申请实施例提供的一种装置示意图;
图13为本申请实施例提供的一种装置示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1所示本申请的一种可能的网络架构示意图。该网络架构为5G网络架构。该5G架构中的网元包括接入和移动性管理功能(access and mobility management function,AMF)实体、SMF实体和UPF实体;还可以包括策略控制功能(policy control function,PCF)实体、终端(图中以终端为UE为例)、无线接入网(Radio Access Network,RAN)、统一数据管理(Unified Data Management,UDM)实体等。在应用域,包括控制面功能实体和应用服务器。其中,控制面功能实体主要负责终端的鉴权,应用服务器的管理以及与网络侧控制面的交互等。应用服务器主要负责为终端提供业务鉴权和具体业务。例如,在车联网通信中,控制面功能实体可以是车联网通信控制功能(Vehicle to Everything Communication Control Function,V2X Control Function)实体。应用服务器可以是车联网通信应用服务器(Vehicle to Everything Communication Application Server,V2X Application Server),可用于远程驾驶,交通信息的分发等。
其中,RAN设备与AMF实体之间通过N2接口通信,RAN设备与UPF实体之间通过N3接口通信,UPF实体与SMF实体之间通过N4接口通信,PCF实体与控制面控制实体之间通过N5接口通信,SMF实体与PCF实体之间通过N7接口通信,AMF实体与UDM实体之间通过N8接口通信,UPF实体与UPF实体之间通过N9接口通信,SMF实体与UDM实体之间通过N10接口通信,AMF实体与SMF实体之间通过N11接口通信,AMF实体与 PCF实体之间通过N15接口通信。
RAN的主要功能是控制用户通过无线接入到移动通信网络。RAN是移动通信系统的一部分。它实现了一种无线接入技术。从概念上讲,它驻留某个设备之间(如移动电话、一台计算机,或任何远程控制机),并提供与其核心网的连接。RAN设备包括但不限于:5G中的(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,此外,还可以包括无线保真(wireless fidelity,wifi)接入点(access point,AP)等。
AMF实体负责终端的接入管理和移动性管理,在实际应用中,其包括了长期演进(long term evolution,LTE)中网络框架中移动管理实体(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能。
SMF实体负责会话管理,如用户的会话建立等。
UPF实体是用户面的功能网元,主要负责连接外部网络,其包括了LTE的服务网关(serving gateway,SGW)和公用数据网网关(public data network GateWay,PDN-GW)的相关功能。
UDM实体可存储用户的签约信息,实现类似于4G中的归属签约用户服务器(Home Subscriber Server,HSS)的后端。
PCF实体用于执行策略控制,类似于4G中的策略与计费规则功能单元(Policy and Charging Rules Function,PCRF),主要负责策略授权,服务质量(Quality of Service,QoS)以及计费规则的生成,并将相应规则通过SMF实体下发至UPF实体,完成相应策略及规则的安装。
本申请中的终端,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
需要说明的是,图1中所示的RAN设备、SMF实体、UPF实体、AMF实体、PCF实体和UDM实体等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,RAN设备、SMF实体、UPF实体、AMF实体、PCF实体和UDM实体所对应的网元或实体也可以是其他的名字,本申请实施例对此不作具体限定。另本申请中所提及的消息名称,也可以用作其他消息名字指代,本申请不作限制。
图2示出了在5G架构下的一种组网场景。如图2所示,一个UPF可以归属于多个SMF 管理,因此,多个SMF可以获知一个UPF上所支持的互联网协议(internet protocol,IP)地址池。一个SMF也可以管理多个UPF,一个SMF可以获知多个UPF上所支持IP地址池。SMF与UPF的组网场景可以被组建为SMF Pool和UPF Pool组网的场景,即SMF与UPF之间的部署关系是N:M的关系,M,N为正整数。
在现有技术中,UPF的地址池被划分为多个地址段,不同地址段被绑定在不同的SMF上。这种固定绑定的方式非常不灵活,一旦初始绑定,不同的地址段在SMF之间就无法动态调配。例如,当一个SMF上的针对此UPF的地址段使用率较高,其他SMF上针对此UPF的地址段使用率较低时,由于地址段已经被绑定到SMF了,所以无法将使用率较低的SMF上的地址段再次划分给使用率较高的SMF使用。另一种情况,在SMF Pool中新增一个SMF实例,如果UPF上的地址池中无空闲(可用)地址段划分给该新增的SMF实例,则会导致该新增的SMF无法连接所述UPF,无法满足全网SMF与UPF互连的需求。因此,现有技术无法解决该组网场景下的地址分配产生冲突的问题,需要一种新的地址资源管理方案,来避免避免在不同UE发起的PDU会话管理流程中多个SMF对UE进行地址分配时产生冲突。
由此,本申请实施例提供一种新的地址资源管理方案。下面先对该实施例做一个总体概述。数据网络(Data Network,DN)中的地址池进行集中管理,地址池中的地址段被动态分配给与所述DN连通的UPF。在UE发起的PDU会话管理流程中,UE的IP地址由SMF分配。即,所述地址分配网元是SMF。具体的,SMF向地址段集中管理网元请求分配可用的地址段,SMF在所述可用的地址段内为UE分配地址。当所述可用的地址段中的地址耗尽或接近耗尽或占用率超过某个比例(百分比)时,SMF再次向地址段集中管理网元请求分配可用的地址段。当所述可用的地址段内的所有的用户的PDU会话释放之后,SMF通知所述地址段集中管理网元回收所述地址段。所述地址段集中管理网元可以包括:用户面网元,如UPF;或控制面网元,如NRF。如果所述地址段集中管理网元是用户面网元,在5G系统中,所述用户面网元是UPF。即SMF向UPF请求可用地址段。UPF上维护所述地址段是否被占用的状态。如果所述地址段集中管理网元是控制面网元,在5G系统中,所述控制面网元可以是网元功能存储功能(network Function repository function,NRF)。即SMF向NRF请求可用地址段。NRF上维护维护所述地址段是否被占用的状态。而在这种情况下,UPF上不需要维护地址段状态,只需要对外发布全部地址段的路由即可。其中,NRF是网元功能存储功能,5G网络中的网元功能实例可将自身支持的服务,能力向NRF进行注册,其他网元可以通过服务发现的机制向NRF查询可以提供服务的网元功能实例。
为方便说明,图3示出了为本申请实施例提供的一种简化的系统结构图,可应用于图1和图2所示的5G网络架构。如图3所示,如果地址段集中管理网元是用户面网元,则在5G系统中,用户面网元可以为UPF。即SMF向UPF请求可用地址段。UPF维护所述地址段是否被占用的状态。如果地址段集中管理网元是控制面网元,在5G系统中,控制面网元可以是NRF。即SMF向NRF请求可用地址段。NRF上维护维护所述地址段是否被占用的状态。而在这种情况下,UPF上不需要维护地址段状态,只需要对外发布全部地址段的路 由即可。
本申请以图3中所示的SMF实体,UPF实体,NRF实体等网元为例,详细说明。
1)当所述地址段集中管理网元为用户面网元UPF时,在UPF与SMF发起链路建立或链路更新的流程中,UPF向SMF发送用户面资源信息。其中,用户面资源信息可以包含可用地址段。
可选的,用户面资源信息还可以包含如下信息中的至少一项:
与可用地址段关联的数据网络名(data network name,DNN)信息,UPF为SMF划分的TEID的段标识,以及UPF为SMF划分的N3接口地址中。其中,可用地址段是一段可用的小范围地址段,包含了较少的地址。如果UPF将N3接口地址在链路建立或链路更新流程中发送给SMF,UPF将所述地址段与N3接口地址绑定关系一起发送给SMF。例如,绑定关系可以表现为[N3Interface IP,UE IP section]。上述步骤是可选发生的,还可以通过配置的方式或者UPF网元实例状态通知流程将UPF所支持的用户面资源信息通知给SMF。
SMF收到UPF发送的上述资源信息后,在UE发起的PDU会话建立流程中,如果SMF为所述UE选择了该UPF,则SMF在所述可用地址段内为UE分配IP地址。如果所述资源信息中还包含了TEID段标识信息,则SMF为所述UE分配TEID时需包含所述TEID段标识信息。如果所述资源信息中还包含N3接口地址与上述地址段的绑定关系,则SMF为所述UE分配IP地址与N3接口地址时,需要依据上述地址段与N3接口地址的绑定关系进行分配。
当SMF收到UE发起的PDU会话释放消息,如果所述UE是最后占用所述地址段中地址的UE,则SMF通知UPF回收所述地址段。
当SMF获知可用的地址段内的地址不足,例如地址段不存在,或地址段资源耗尽,或接近耗尽,或地址占用率超过一定阈值(超过某个比例等,例如超过某个特定的百分比),则SMF向UPF申请新的可用地址段。UPF为SMF分配新的可用地址段,可选的,UPF将与所述新的可用地址段绑定的N3接口地址发送给SMF。
2)当所述地址段集中管理网元是控制面网元NRF时:在UE发起PDU会话建立流程时,SMF向NRF发送可用地址段请求消息。可选的,请求消息中可以携带SMF选择的用户面网元信息。
NRF向SMF返回所述用户面网元的可用地址段信息。所述可用地址段是一段可用的小范围地址段,包含了较少的地址。可选的,NRF可以将所述可用地址段与N3接口地址绑定关系一起发送给SMF。例如,绑定关系可以表现为[N3Interface IP,UE IP section]。
SMF收到NRF发送的上述资源信息后,在UE发起的PDU会话建立流程中,如果SMF为所述UE选择了该用户面网元,则SMF在所述地址段内为UE分配IP地址。可选的,如果上述资源信息中还包含N3接口地址与上述地址段的绑定关系,则SMF为所述UE分配IP地址与N3接口地址时,需要依据上述地址段与N3接口地址的绑定关系进行分配。
当SMF收到UE发起的PDU会话释放消息,如果所述UE是最后占用所述地址段中地址的UE,则SMF通知所述控制面网元回收所述地址段。
当SMF获知可用地址段内的地址不足(例如地址段不存在,或地址组员耗尽,或接近耗尽,或地址占用率超过某个比例(百分比)),则SMF向NRF申请新的可用地址段。NRF 为所述SMF分配新的可用地址段,可选的,NRF将与所述可用地址段绑定的N3接口地址发送给SMF。
下面实施例分别从地址段集中管理单元为用户面网元或控制面网元两个方面进行详述地址资源管理的方案。
实施例一是基于用户面网元作为地址段集中管理单元为例来进行说明。本实施例中,用户面网元可以为UPF,本实施例大致可以分下述为三个大的流程:
1)UPF与SMF之间连接的链路建立或链路更新流程。在此链路建立或链路更新流程中UPF会为SMF划分资源信息。资源信息可以包含可用IP地址段,可选的,还包含TEID段标识,与所述可用IP地址段对应的DNN信息,以及与所述可用地址段绑定的N3接口地址。本步骤是可选发生的,还可以通过配置的方式或者UPF网元实例状态通知流程将UPF所支持的用户面资源信息由NRF通知给SMF。
2)UE发起的PDU Session Establish流程。在该流程中,SMF为所述UE分配所述可用地址段内的IP地址。如果SMF获知所述可用地址段内的地址不足,则SMF在所述流程中向UPF请求新的可用地址段。
3)UE发起的PDU Session Delete流程。在流程中,如果所述UE是所述地址段中最后一个占用地址的UE,在SMF通知所述UPF回收所述可用地址段。
其中步骤1)和3)是可选的。
图4示出了上述1)UPF与SMF之间连接的链路建立或链路更新流程过程。如图4中Option 1所示,UPF向SMF发起N4链路建立或链路更新请求。
1.UPF向SMF发送N4association setup/update request消息。N4association setup/update request消息中会携带可用地址段。所述可用地址段包含小范围的一段地址,数量比较少的地址。可选的,UPF还可以向SMF提供与所述可用地址段对应的DNN信息,UPF为SMF分配的TEID段标识,以及与上述可用地址段关联(绑定)的N3接口地址信息。
2.SMF收到上述消息后,SMF向UPF返回N4association setup/update response消息。
可选的,建链请求也可以由SMF来发起,如图4中Option 2所示,SMF向UPF发起N4链路建立/更新请求。具体链路建立/更新流程可参考前述UPF向SMF发起N4链路建立或更新请求的过程,主要区别在于当由SMF向UPF发起N4链路建立或更新请求时,UPF通过N4association setup/update response消息中将上述信息发送给SMF。其他过程此处不再赘述。
图5示出了上述2)UE发起的PDU Session Establish流程。下面结合图5中的流程具体阐述。
1.UE向SMF发送PDU Session Establish request消息,所述消息中携带DNN信息。所述DNN用于标识一个DN网络,SMF可以通过DNN来选择UPF。
2.SMF收到DNN信息,SMF可以根据该DNN信息来选择UPF,获得可用地址段,SMF在可用地址段内为UE分配IP地址。
可选的,如果在1)链路建立/更新流程过程中,UPF把TEID段标识发送给了SMF,则SMF为UE分配TEID中包含上述TEID段标识。
可选的,如UPF将与上述可用地址段关联的N3接口IP地址发送给SMF,则SMF在 为UE在所述UPF上建立N3隧道时,选择此N3接口IP地址作为N3隧道的本端地址。
3.如果SMF获知可用地址段内地址不足(地址段不存在或地址组员耗尽或接近耗尽或占用率超过某个比例(百分比)),则SMF在N4Session Establish request消息中携带可用地址段获取指示(New IP Section Retrieve)与DNN信息向UPF请求新的可用地址段。
4.UPF分配对应上述DNN的新的可用地址段,并在N4Session Establish response消息中发送给SMF。
可选的,UPF还可以将与上述新的可用地址段关联的N3接口IP地址一起发送给SMF。
可选的,UPF还可以将隧道端点段标识发给SMF。
5.SMF在PDU Session Establish response消息中将为UE分配的IP地址发送给UE。
本步骤可以发生在步骤2之后,也可以发生在步骤4之后,本申请实施例不作限制。
SMF根据获得的新的可用地址段为后续接入的UE分配IP地址。具体分配地址资源的过程参考前述步骤1-3为UE配置IP地址的过程,此处不再赘述。
图6示出了上述3)UE发起的PDU Session Delete流程。下面结合图6中的流程具体阐述。
1.UE向SMF发送PDU Session Delete request消息。
2.SMF向UPF发送N4Session Delete request消息。如果SMF获知该UE是所述IP Section中最后占用IP地址的UE,则SMF在上述N4Session Delete request消息中携带IP Section release指示,指示UPF对所述IP Section回收。UPF后续可以将上述IP地址段再次分配给SMF(或其他SMF)。
可选的,SMF还可以在N4Session Delete request消息中携带timer信息。所述timer信息用于指示在所述timer超时后,UPF可以将上述IP地址段再次分配给SMF(或其他SMF)。即当UPF再次收到SMF发送的地址段请求消息时,UPF将该地址段分配给请求地址段的SMF。
3.UPF发送N4Session Delete response消息给SMF。上述消息中携带IP地址段释放结果。
4.SMF给UE返回PDU Session Delete response消息。
本实施例中由UPF统一对IP地址段进行集中管理,通过SMF动态向UPF请求地址段资源,SMF通过感知可用地址段内地址不足,及时地向UPF动态请求分配地址段资源,一方面为后续UE的接入及时准备了地址资源,另一方面在避免SMF地址分配冲突的前提下,实现了地址段的按需分配。本实施例还提供了地址段的回收机制,避免了大量地址段无法充分利用,提高了利用效率。
实施例二是基于控制面网元作为地址段集中管理单元为例来进行说明。本实施例中,控制面网元可以为NRF,本实施例大致可以分下述为三个大的流程:
1)UPF与SMF之间链接建立或更新流程。可选的,在此流程中UPF可以把TEID段标识发送给SMF。本步骤是可选的,还可以通过配置的方式或者UPF网元实例状态通知 流程将UPF所支持的用户面资源信息由NRF通知给SMF。
2)UE发起的PDU Session Establish流程。在所述流程中,如果SMF获知为所述UE选择的UPF所对应的可用地址段内地址不足(地址段不存在,或地址资源耗尽,或接近耗尽或占用比例超过某个比例(百分比)),SMF向NRF请求为所述UE选择的UPF所对应的新的可用地址段。
3)UE发起的PDU Session Delete流程。在所述流程中,如果所述UE是所述地址段中最后一个占用地址的UE,在SMF通知所述NRF回收所述可用地址段。
其中步骤1)和3)是可选的。
图7示出了实施例二中1)UPF与SMF之间连接的链路建立或链路更新流程过程。如图4中Option 1所示,UPF向SMF发起N4链路建立或链路更新请求。
1.UPF向SMF发送N4association setup/update request消息。该N4association setup/update request消息中携带UPF为SMF分配的TEID段标识。
2.SMF收到上述消息后,SMF向UPF返回N4association setup/update response消息。
可选的,链路建立或更新请求也可以由SMF来发起,如图7中Option 2所示,SMF向UPF发起N4链路建立/更新请求。具体链路建立或更新流程可参考前述实施例二中UPF向SMF发起N4链路建立/更新请求的过程,主要区别在于当由SMF向UPF发起N4链路建立或更新请求时,UPF通过N4association setup response消息中将TEID段标识信息发送给SMF。其他过程此处不再赘述。
图11示出了实施例一和实施例二中通过UPF网元实例状态通知流程将UPF所支持的用户面资源信息由NRF通知给SMF的方式。
1.SMF向NRF订阅UPF状态通知。在该订阅消息中可携带DNN,即SMF向NRF订阅支持某个或某些DNN的UPF状态。
2.UPF实例部署之后,UPF向NRF发起注册,将自身的能力,地址池,支持的DNN等信息注册到NRF。
3.NRF收到UPF的注册消息后,根据本实施例中步骤1收到的订阅消息,向订阅的SMF发送NF状态通知。在上述通知消息中携带该UPF的用户面资源信息。具体包含,UPF标识信息,UPF支持的DNN,以及对应该DNN的UPF所支持的初始地址段。可选的,该消息中还携带UPF为SMF分配的TEID段标识,或与上述初始地址段关联(绑定)的N3接口地址信息。
图8示出了实施例二中2)UE发起的PDU Session Establish流程。下面结合图8中的流程具体阐述。
1.UE向SMF发送PDU Session Establish request消息,所述消息中携带DNN信息。
2.SMF为UE选择UPF,并根据所述DNN信息匹配与该选择确定的UPF对应的可用地址段,SMF在所述可用地址段内为UE分配IP地址。
可选的,如果在实施例二中的1)链路建立或更新流程过程,UPF把TEID段标识发送给了SMF,则SMF为UE分配TEID中包含上述TEID段标识。
可选的,如果SMF已经获知上述可用地址段关联的N3接口IP地址,则SMF在为UE 在所述UPF上建立N3隧道时,选择此N3接口IP地址作为N3隧道的本端地址。
3.如果SMF获知可用地址段内地址不足(地址段不存在,地址资源耗尽或接近耗尽或占用比例超过某个比例(百分比)),则SMF向NRF发送地址段请求消息,该地址段请求消息中可以携带UPF ID,地址段请求指示(New IP Section Retrieve)与DNN信息向NRF请求新的可用地址段。
4.NRF分配对应上述UPF与DNN的新的可用地址段,并在地址段请求响应消息中发送给SMF。
可选的,NRF还将与上述新的可用地址段关联的N3接口IP地址一起发送给SMF。
可选的,NRF还可以将隧道端点段标识(即TEID)发给SMF。
5.SMF向UPF发送N4Session Establish req消息。如果在步骤2中SMF没有为UE分配地址,SMF可以在步骤5中为UE分配IP地址。SMF可根据从步骤4中获得的地址段为所述UE分配IP地址。
6.UPF向SMF返回N4Session Establish rsp消息。
7.SMF将为UE分配的IP地址在PDU Session Establish response消息中发送给UE。
SMF根据获得的新的可用地址段为本UE或后续接入的UE分配IP地址。
步骤3和步骤5可以并行发生,消息顺序不作限制。
本申请实施例中步骤3和步骤4中的消息名称不做限制,步骤3和4也可以包含在其他消息中实施,例如所述步骤3和4包含在SMF向NRF发起的UPF选择步骤中。
图9示出了实施例二中3)UE发起的PDU Session Delete流程。下面结合图9中的流程具体阐述。
1.UE向SMF发送PDU Session Delete request消息。
2.如果SMF获知该UE是所述IP Section中最后占用IP地址的UE,则SMF向NRF发送IP Section release request消息,在上述IP Section release request消息中携带UPF ID,需要释放的IP Section,或者该UE的IP地址,
可选的,SMF还可以在PDU Session Delete request消息中携带timer信息,用于指示在所述timer超时后,NRF可以对所述地址段进行回收。由此,NRF后续可以将上述回收回来的IP地址段再次分配给SMF(或其他SMF)。即当NRF再次收到SMF发送的地址段请求消息时,NRF将该地址段分配给请求地址段的SMF。
3.NRF发送IP Section release response消息给SMF。上述消息中携带IP地址段释放结果。
4.SMF向UPF发送N4Session Delete request消息。
5.UPF发送N4Session Delete response消息给SMF。
6.SMF给UE返回PDU Session Delete response消息。
其中步骤2和步骤4可以并行发生,消息顺序不作限制。步骤2和步骤3也可以在步骤6之后发生。本申请实施例中步骤2和步骤3的消息名称不做限制。
本实施例中由NRF统一对IP地址段进行集中管理,通过SMF动态向NRF请求地址段资源,SMF通过感知可用地址段内地址不足,及时地向NRF动态请求分配地址段资源,一 方面为本UE或后续UE的接入及时准备了地址资源,另一方面在避免SMF地址分配冲突的前提下,实现了地址段的按需分配。本实施例还提供了地址段的回收机制,避免了大量地址段无法充分利用,提高了利用效率。
实施例三,如图10所示,示出了一种回收地址资源的方法,可以结合前述实施例一或实施例二来实现,通过实施例三所示的对于地址段资源的主动回收机制,结合前述实施例后可进一步提高地址资源的利用率。具体如图10所示。
1.当SMF获知可用地址段内的IP地址占用率不高时,SMF可以主动发起IP地址段回收功能。例如,SMF获知占用上述可用地址段内的UE转为空闲态,SMF针对这些UE发起IP Session release流程,并通知UE重新发起PDU session创建。
2.UE收到所述消息后,UE发起IP Session Delete流程,在所述流程中SMF将IP地址回收。当收到占用上述地址段内的IP地址的最后一个UE的PDU session delete消息时,SMF通知UPF或NRF将上述可用地址段回收,具体流程可参考前述实施例一或实施例二的实现方式。
3.UE发起PDU Session重建,SMF为UE选择其他的可用地址段分配IP地址。
上述所有实施例中描述的地址段请求消息,以及地址段释放消息的目的分别是地址分配网元向地址集中管理网元请求分配或请求释放(回收)地址段,本申请实施例对这两个消息的名称不作限制。
通过本申请实施例描述的方法,SMF可以主动触发UE发起PDU会话释放流程,通过这种方式逐步将利用率不高的地址段的地址回收,当所述地址段内无UE占用地址后,地址段集中管理网元将整个地址段回收,所述地址段可以再次被分配给SMF,在SMF之间有效调配地址段,从而提高地址段的利用效率。
基于相同的发明构思,本申请还提供的一种装置示意图。该装置可以为地址段集中管理网元,例如,当该地址段集中管理网元是用户面网元时,具体可以为UPF,该装置可执行上述任一实施例中由UPF执行的方法。或者,当该地址段集中管理网元是控制面网元时,具体可以为NRF,该装置可执行上述任一实施例中由NRF执行的方法。该装置还可以为地址分配网元,具体的,在本实施例中以SMF为例。因此,该装置还可执行上述任一实施例中由SMF执行的方法。
如图12所示,该装置1200包括至少一个处理器121,收发器122,可选地,还包括存储器123。所述处理器121、收发器122、存储器123通过通信线路连接。
处理器121可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信线路可包括一通路,在上述单元之间传送信息。
所述收发器122,用于与其他设备或通信网络通信,收发器包括射频电路。
存储器123可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器123可以是独立存在,通过通信线路与处理器121相连接。存储器123也可以和处理器集成在一起。其中,所述存储器123用于存储执行本发明方案的应用程序代码,并由处理器121来控制执行。所述处理器121用于执行所述存储器123中存储的应用程序代码。
在具体实现中,作为一种实施例,处理器121可以包括一个或多个CPU,例如图12中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置1200可以包括多个处理器,例如图12中的处理器121和处理器124。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器,这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
本申请实施例还可以根据上述方法示例对各功能网元进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图13示出了一种装置示意图,该装置包括处理单元1301和通信单元1302。
根据图13所示的装置可以为地址段集中管理网元。例如,当该地址段集中管理网元是用户面网元时,具体可以为UPF,该装置可执行上述任一实施例中由UPF执行的方法。或者,当该地址段集中管理网元是控制面网元时,具体可以为NRF,该装置可执行上述任一实施例中由NRF执行的方法。
该装置还可以为地址分配网元,具体的,在本实施例中以SMF为例。因此,该装置还可执行上述任一实施例中由SMF执行的方法。
在本申请实施例中,地址段集中管理网元或地址分配网元可以以对应各个功能划分各个功能模块的形式来呈现,或者,以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、计算机可读存储介质或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
在一个或多个示例性的设计中,本申请实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑 存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本申请是参照本申请的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (36)

  1. 一种管理地址资源的方法,其特征在于,所述方法包括:
    地址分配网元获知地址资源不足;
    所述地址分配网元向地址段集中管理网元发送地址段分配请求消息,所述地址段分配请求消息中包括数据网络名DNN。
  2. 根据权利要求1所述的方法,其特征在于,
    所述地址分配网元接收所述地址段集中管理网元发送的地址段分配响应消息,所述地址段分配响应消息中包括与所述DNN对应的地址段。
  3. 根据权利要求1或2所述的方法,其特征在于,所述地址分配网元获知地址资源不足,包括如下中的任意一种:
    所述地址分配网元获知地址段不存在,或地址段内地址耗尽或接近耗尽,或地址段内地址占用比例超过阈值。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述地址段分配响应消息中还包括如下中的至少一项:隧道端点段标识,和与所述地址段对应的N3接口IP地址。
  5. 根据权利要求4任一项所述的方法,其特征在于,
    所述地址分配网元根据所述N3接口IP地址与所述地址段的绑定关系为用户设备UE选择N3接口IP地址作为N3隧道的本端地址。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,
    所述地址分配网元向所述地址段集中管理网元发送地址段释放请求消息,所述地址段释放请求中包括如下信息中的至少一项:释放地址段指示信息,地址段信息,UE的地址和定时消息。
  7. 根据权利要求6所述的方法,其特征在于,所述地址分配网元向所述地址段集中管理网元发送地址段释放请求消息,包括:
    当所述地址分配网元确定UE是占用地址段中最后一个UE时,所述地址分配网元向所述地址段集中管理网元发送所述地址段释放请求消息。
  8. 根据权利要求1至6任一项所述的方法,其特征在于,
    所述地址分配网元获知地址段内的地址利用率不高时,所述地址分配网元向空闲态的UE发起PDU会话释放请求,并指示所述空闲态的UE发起PDU会话重建。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,
    所述地址分配网元在链路建立或链路更新或网元实例状态通知流程中接收所述地址段集中管理网元发送如下信息中的至少一项:地址段,TEID段标识,与所述地址段对应的DNN,和与初始地址段对应的N3接口IP地址。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,
    所述地址分配网元根据所述DNN选择UPF,并获取所述UPF的标识信息;
    所述地址段分配请求消息还包括所述UPF的标识信息;
  11. 根据权利要求1至10所述的方法,其特征在于,
    所述地址分配网元接收到UE发送的PDU会话创建或删除请求消息后,向所述地址段集中管理网元发送地址段分配请求或地址段释放消息。
  12. 根据权利要求11所述的方法,其特征在于,
    所述地址分配网元向所述地址集中管理网元发送地址段分配请求或地址段释放消息中包含UE发送的PDU会话创建或删除请求消息中携带的DNN信息。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,
    所述地址段集中管理网元包括用户面网元或控制面网元;
    所述地址分配网元包括会话管理功能。
  14. 一种管理地址资源的方法,其特征在于,所述方法包括:
    地址段集中管理网元接收会话管理功能SMF发送的地址段分配请求消息,所述地址段分配请求消息中包括数据网络名DNN;
    所述地址段集中管理网元根据所述DNN为所述SMF分配地址段;
    所述地址段集中管理网元向所述SMF发送地址段分配响应消息,所述地址段分配响应消息中包括所述地址段。
  15. 根据权利要求14所述的方法,其特征在于,
    所述地址段分配响应消息中还包括与所述地址段关联的N3接口IP地址。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述地址段集中管理网元接收所述SMF发送的地址段释放请求消息,所述地址段释放请求包括如下信息中的至少一种:释放地址段指示信息,地址段信息,UE的地址,定时消息。
  17. 根据权利要求16所述的方法,其特征在于,
    所述地址段集中管理网元向所述SMF发送地址段释放响应消息,所述地址段释放响应消息中包括待回收地址段信息的释放结果。
  18. 根据权利要求14至17任一项所述的方法,其特征在于,
    所述地址段集中管理网元启动定时器,所述定时器用于当定时器超时时,所述地址段集中管理网元将所述地址分配网元请求释放的地址段再次分配给地址分配网元。
  19. 根据权利要求14至18任一项所述的方法,其特征在于,还包括:
    所述地址段集中管理网元在链路建立或链路更新或网元实例状态通知流程中向所述SMF发送如下信息中的至少一项:地址段,TEID段标识,与所述地址段对应的DNN,和与所述初始地址段对应的N3接口IP地址。
  20. 根据权利要求14至19任一项所述的方法,其特征在于,
    所述地址段分配请求消息中还包括用户面功能UPF的标识信息。
  21. 根据权利要求14至20所述的方法,其特征在于,
    所述地址段集中管理网元包括用户面网元或控制面网元。
  22. 一种地址分配网元,其特征在于,包括:
    处理模块,用于获知地址资源不足;
    通信模块,用于向地址段集中管理网元发送地址段分配请求消息,所述地址段分配请求消息中包括数据网络名DNN。
  23. 根据权利要求22所述的网元,其特征在于,
    所述通信模块接收所述地址段集中管理网元发送的地址段分配响应消息,所述地址段分配响应消息中包括与所述DNN对应的地址段。
  24. 根据权利要求22或23所述的网元,其特征在于,所述处理模块获知地址资源不足,包括如下中的任意一种:
    所述处理模块获知地址段不存在,或地址段内地址耗尽或接近耗尽,或地址段内地址占用比例超过阈值。
  25. 根据权利要求22或24所述的网元,其特征在于,
    所述地址段分配响应消息中还包括如下中的至少一项:隧道端点段标识,和与所述地址段对应的N3接口IP地址。
  26. 根据权利要求22至25任一项所述的网元,其特征在于,
    所述通信模块向所述地址段集中管理网元发送地址段释放请求消息,所述地址段释放请求中包括如下信息中的至少一项:释放地址段指示信息,地址段信息,UE的地址和定时消息。
  27. 一种地址段集中管理网元,其特征在于,包括:
    通信模块,用于接收会话管理功能SMF发送的地址段分配请求消息,所述地址段分配请求消息中包括数据网络名DNN;
    处理模块,用于根据所述DNN为所述SMF分配地址段;
    所述通信模块,还用于向所述SMF发送地址段分配响应消息,所述地址段分配响应消息中包括所述地址段。
  28. 根据权利要求27所述的网元,其特征在于,
    所述通信模块向所述SMF发送地址段释放响应消息,所述地址段释放响应消息中包括待回收地址段信息的释放结果。
  29. 根据权利要求27或28所述的网元,其特征在于,
    所述处理模块启动定时器,所述定时器用于当定时器超时时,所述通信模块将所述地址分配网元请求释放的地址段再次分配给地址分配网元。
  30. 一种管理地址资源的系统,其特征在于,包括如权利要求22至26任一项所述的地址分配网元和如权利要求27至29任一项所述的地址段集中管理网元。
  31. 一种管理地址资源的方法,其特征在于,所述方法包括:
    地址分配网元获知地址资源不足;所述地址分配网元向地址段集中管理网元发送地址段分配请求消息,所述地址段分配请求消息中包括数据网络名DNN;
    所述地址段集中管理网元接收会话管理功能SMF发送的地址段分配请求消息;
    所述地址段集中管理网元根据所述DNN为所述SMF分配地址段;所述地址段集中管理网元向所述SMF发送地址段分配响应消息,所述地址段分配响应消息中包括所述地址段。
  32. 一种用于管理地址资源的系统,其特征在于,所述系统包括:地址分配网元和地 址段集中管理网元;
    所述地址分配网元用于获知地址资源不足,向所述地址段集中管理网元发送地址段分配请求消息,所述地址段分配请求消息中包括数据网络名DNN;
    所述地址段集中管理网元用于接收会话管理功能SMF发送的地址段分配请求消息;
    所述地址段集中管理网元还用于根据所述DNN为所述SMF分配地址段;所述地址段集中管理网元还用于向所述SMF发送地址段分配响应消息,所述地址段分配响应消息中包括所述地址段。
  33. 一种芯片装置,包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如权利要求1-21任意一项所述的方法的功能得以实现。
  34. 一种通信装置,包括至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置执行如权利要求1-21任意一项所述的方法。
  35. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-21任意一项所述的方法。
  36. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-21任意一项所述的方法。
PCT/CN2019/074632 2018-02-13 2019-02-02 资源管理的方法、设备及系统 WO2019158010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150773.6 2018-02-13
CN201810150773.6A CN110166580B (zh) 2018-02-13 2018-02-13 资源管理的方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2019158010A1 true WO2019158010A1 (zh) 2019-08-22

Family

ID=67618888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074632 WO2019158010A1 (zh) 2018-02-13 2019-02-02 资源管理的方法、设备及系统

Country Status (2)

Country Link
CN (1) CN110166580B (zh)
WO (1) WO2019158010A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944335A (zh) * 2019-12-12 2020-03-31 北京邮电大学 用于虚拟现实业务的资源分配方法及装置
CN114363296A (zh) * 2020-09-30 2022-04-15 大唐移动通信设备有限公司 地址冲突检测方法、用户面网元以及控制面网元
CN114726828A (zh) * 2022-05-10 2022-07-08 普联技术有限公司 Ip地址分配方法、装置、设备及存储介质
CN114900499A (zh) * 2022-04-20 2022-08-12 中国电信股份有限公司 Ip地址分配方法、装置、设备及存储介质
CN114980075A (zh) * 2022-05-05 2022-08-30 中国电信股份有限公司 地址分配方法、会话管理功能实体和通信系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039945B (zh) * 2020-07-21 2023-03-28 中国移动通信有限公司研究院 用户ip地址分配管理方法、装置及会话管理功能实体
CN112235776B (zh) * 2020-08-31 2022-07-12 北京中科晶上科技股份有限公司 一种按需分配ip地址段的方法及ip地址统计系统
CN114363291B (zh) * 2020-09-28 2024-08-16 中国移动通信有限公司研究院 地址分配方法、装置、控制面功能实体及用户面功能实体
CN112492063B (zh) * 2020-12-09 2023-06-09 恒安嘉新(北京)科技股份公司 一种ip地址池分配、申请方法、装置、设备及介质
CN112654090B (zh) * 2020-12-10 2022-08-30 中国联合网络通信集团有限公司 资源分配方法、装置、系统和计算机可读存储介质
CN114844862B (zh) * 2021-01-15 2023-09-05 大唐移动通信设备有限公司 资源处理方法、装置及通信设备
CN113282410B (zh) * 2021-05-14 2023-06-23 中国联合网络通信集团有限公司 资源配置方法及装置
CN114189851A (zh) * 2021-11-30 2022-03-15 中国电信股份有限公司 Ip地址分配方法、smf以及存储介质
CN114390629B (zh) * 2022-01-21 2022-10-21 广州爱浦路网络技术有限公司 5g网络终端回程路由的控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103685586A (zh) * 2012-09-07 2014-03-26 中兴通讯股份有限公司 一种实现地址共享的方法、装置和系统
WO2017161158A1 (en) * 2016-03-17 2017-09-21 University Of Florida Research Foundation, Incorporated Method for exploiting diversity with network coding
CN107682473A (zh) * 2017-10-31 2018-02-09 新华三信息安全技术有限公司 一种ip地址分配方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554178B (zh) * 2015-12-31 2019-07-19 上海华为技术有限公司 一种地址分配的方法、网关及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103685586A (zh) * 2012-09-07 2014-03-26 中兴通讯股份有限公司 一种实现地址共享的方法、装置和系统
WO2017161158A1 (en) * 2016-03-17 2017-09-21 University Of Florida Research Foundation, Incorporated Method for exploiting diversity with network coding
CN107682473A (zh) * 2017-10-31 2018-02-09 新华三信息安全技术有限公司 一种ip地址分配方法及装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944335A (zh) * 2019-12-12 2020-03-31 北京邮电大学 用于虚拟现实业务的资源分配方法及装置
CN110944335B (zh) * 2019-12-12 2022-04-12 北京邮电大学 用于虚拟现实业务的资源分配方法及装置
CN114363296A (zh) * 2020-09-30 2022-04-15 大唐移动通信设备有限公司 地址冲突检测方法、用户面网元以及控制面网元
CN114363296B (zh) * 2020-09-30 2023-07-25 大唐移动通信设备有限公司 地址冲突检测方法、用户面网元以及控制面网元
CN114900499A (zh) * 2022-04-20 2022-08-12 中国电信股份有限公司 Ip地址分配方法、装置、设备及存储介质
CN114900499B (zh) * 2022-04-20 2023-10-03 中国电信股份有限公司 Ip地址分配方法、装置、设备及存储介质
CN114980075A (zh) * 2022-05-05 2022-08-30 中国电信股份有限公司 地址分配方法、会话管理功能实体和通信系统
CN114726828A (zh) * 2022-05-10 2022-07-08 普联技术有限公司 Ip地址分配方法、装置、设备及存储介质
CN114726828B (zh) * 2022-05-10 2023-08-08 普联技术有限公司 Ip地址分配方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110166580A (zh) 2019-08-23
CN110166580B (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2019158010A1 (zh) 资源管理的方法、设备及系统
US20240098578A1 (en) Session Management Function Entity Selection Method, Apparatus, and System
EP3732846B1 (en) Quality of service (qos) control in mobile edge computing (mec)
CN109792651B (zh) 一种通信方法及设备
US11533610B2 (en) Key generation method and related apparatus
CN110012437B (zh) 一种组播报文的发送方法、装置及系统
EP3742785B1 (en) Session management method and device
JP7389225B2 (ja) セキュリティ保護モードを決定するための方法および装置
WO2019196811A1 (zh) 通信方法和相关装置
WO2019137125A1 (zh) 会话管理方法、设备及系统
WO2022001761A1 (zh) 通信方法及装置
WO2019076060A1 (zh) 数据转发方法、装置和系统
WO2019223702A1 (zh) 管理pdu会话的方法、装置和系统
US11323931B2 (en) Communication method and apparatus for a terminal device moving from a first access node to a second access node
WO2021097858A1 (zh) 一种通信方法及装置
CN114079995A (zh) 一种中继管理方法及通信装置
JP2020500451A (ja) 通信方法および装置
WO2020034971A1 (zh) 分配ebi的方法和装置
WO2018233451A1 (zh) 通信方法、装置和系统
WO2022033543A1 (zh) 一种中继通信方法及通信装置
JP2019510435A (ja) ネットワークアクセス方法、その関連機器およびシステム
CA3106122C (en) Communications method and apparatus
WO2022237505A1 (zh) 一种通信方法、设备及系统
US11777795B2 (en) Local breakout of user plan function at enterprise 5G radio access network
WO2022141528A1 (zh) 一种确定mec接入点的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754472

Country of ref document: EP

Kind code of ref document: A1